
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0080709 A1

Miller et al.

US 2013 0080709A1

(43) Pub. Date: Mar. 28, 2013

(54)

(71)

(72)

(21)

(22)

(63)

SYSTEMAND METHOD FOR PERFORMING
MEMORY OPERATIONS IN A COMPUTING
SYSTEM

Applicants: Steven C. Miller, Livermore, CA (US);
Martin M. Deneroff, Oakhurst, NJ
(US); Curt F. Schimmel, San Ramon,
CA (US); Larry Rudolph, Brookline,
MA (US); Charles E. Leiserson,
Cambridge, MA (US); Bradley C.
Kuszmaul, Lexington, MA (US); Krste
Asanovic, Cambridge, MA (US)

Inventors: Steven C. Miller, Livermore, CA (US);
Martin M. Deneroff, Oakhurst, NJ
(US); Curt F. Schimmel, San Ramon,
CA (US); Larry Rudolph, Brookline,
MA (US); Charles E. Leiserson,
Cambridge, MA (US); Bradley C.
Kuszmaul, Lexington, MA (US); Krste
Asanovic, Cambridge, MA (US)

Appl. No.: 13/683,367

Filed: Nov. 21, 2012

Related U.S. Application Data
Continuation of application No. 13/084.280, filed on
Apr. 11, 2011, now Pat. No. 8.321,634, which is a
continuation of application No. 12/168,689, filed on
Jul. 7, 2008, now Pat. No. 7,925,839, which is a con

as on me a - r - - en r

CPU

EvictFif

NextPt

NextPir

Evicted Addr

tinuation of application No. 10/836,932, filed on Apr.
30, 2004, now Pat. No. 7,398,359.

(60) Provisional application No. 60/467.019, filed on Apr.
30, 2003.

Publication Classification

(51) Int. Cl.
G06F 2/08 (2006.01)

(52) U.S. Cl.
CPC G06F 12/0815 (2013.01)
USPC .. 711A143

(57) ABSTRACT

A processor may operate in one of a plurality of operating
states. In a Normal operating state, the processor is not
involved with a memory transaction. Upon receipt of a trans
action instruction to access a memory location, the processor
transitions to a Transaction operating state. In the Transaction
operating state, the processor performs changes to a cache
line and data associated with the memory location. While in
the Transaction operating state, any changes to the data and
the cache line are not visible to other processors in the com
puting system. These changes become visible upon the pro
cessor entering a Commit operating state in response to
receipt of a commit instruction. After changes become vis
ible, the processor returns to the Normal operating state. If an
abort event occurs prior to receipt of the commit instruction,
the processor transitions to an Abort operating state where
any changes to the data and cache line are discarded.

NextPir -
Func code

Data
NextPt

EvictedAdd

Patent Application Publication Mar. 28, 2013 US 2013/0080709 A1

STATE TRANSiTIONS DUETO
NSTRUCTION EXECUTION

as s x x: g 8. r

NextPt -
Func code

NextPt

EvictedAddr

NextPt

EvictPif

NextPt

FuC Code

Data
NextPt

EvictedAdd

A/G 2

US 2013/0080709 A1

SYSTEMAND METHOD FOR PERFORMING
MEMORY OPERATIONS IN A COMPUTING

SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation application of
U.S. application Ser. No. 13/084.280, filed Apr. 11, 2011,
which is a continuation application of U.S. application Ser.
No. 12/168,689 filed Jul. 7, 2008, now U.S. Pat. No. 7,925,
839, which is a continuation of U.S. application Ser. No.
10/836,932 filed Apr. 30, 2004, now U.S. Pat. No. 7,398.359
which claims the benefit of U.S. Provisional Application No.
60/467,019 filed Apr. 30, 2003, all of which are hereby incor
porated by reference herein.

TECHNICAL FIELD OF THE INVENTION

0002 The present invention relates in general to computer
system processing and more particularly to a system and
method for performing memory operations in a computing
system.

BACKGROUND OF THE INVENTION

0003. In computer systems, there is a disparity between
processor cycle time and memory access time. Since this
disparity limits processor utilization, caches have been intro
duced to solve this problem. Caches, which are based on the
principal of locality, provide a small amount of extremely fast
memory directly connected to a processor to avoid the delay
in accessing the main memory and reduce the bandwidth
needed to the main memory. Eventhough caches significantly
improve system performance, a coherency problem occurs as
a result of the main memory being updated with new data
while the cache contains old data. For shared multi-processor
systems, a cache is almost a necessity since access latency to
memory is further increased due to contention for the path to
the memory. It is not possible for the operating system to
ensure coherency since processors need to share data to run
parallel programs and processors cannot share a cache due to
bandwidth constraints.
0004 Various algorithms and protocols have been devel
oped to handle cache coherency. For example, in a directory
based caching structure, a write invalidate scheme allows for
a processor to modify the data in its associated cache at a
particular time and force the other processors to invalidate
that data in their respective caches. When a processor reads
the data previously modified by another processor, the modi
fying processor is then forced to write the modified data back
to the main memory. Though such a scheme handles cache
coherency in theory, limitations in System performance are
still apparent.

SUMMARY OF THE INVENTION

0005 From the foregoing, it may be appreciated by those
skilled in the art that a need has arisen for an extended coher
ency protocol and an ability to track access to memory loca
tions involved in a transaction and processor state informa
tion. In accordance with the present invention, there is
provided a system and method for performing memory opera
tions in a computing system that Substantially eliminates or
greatly reduces disadvantages and problems associated with
conventional coherency protocols.

Mar. 28, 2013

0006. According to an embodiment of the present inven
tion, there is provided a system for performing memory
operations in a computing system that includes a processor
that operates in one of a plurality of operating states. In a
Normal operating State, the processor is not involved with a
memory transaction. Upon execution of a transaction instruc
tion to access a memory location, the processor transitions to
a Transaction operating state. In the Transaction operating
state, the processor performs changes to a cache line in a
cache memory associated with the memory location to
include changing from a MESI coherency protocol to one of
a plurality of transactional coherency states associated with
the Transaction operating state. While in the Transaction
operating state, any changes to the data and the cache line are
not visible to other processors in the computing system.
These changes become visible upon the processor entering a
Commit operating state in response to receipt of a commit
instruction.
0007. After changes become visible and the cache line is
returned to the MESI coherency protocol, the processor
returns to the Normal operating state. If an abort event occurs
prior to receipt of the commit instruction, the processor tran
sitions to an Abort operating state where any changes to the
data and cache line are discarded. Upon discarding the
changes, the processor transitions to a Suspended State and
awaits receipt of a commit instruction before transitioning to
the Normal operating state.
0008. The present invention provides various technical
advantages over conventional coherency protocols. For
example, one technical advantage is to treat memory access
and operations as transactions. Another technical advantage
is to provide a transaction record in the processor to track the
state of the processor during memory transactions. Yet
another technical advantage is to integrate an extended cache
coherency protocol with the transaction record of the proces
sor. Embodiments of the present invention may include all,
Some, or none of these technical advantages while other tech
nical advantages may be readily apparent to those skilled in
the art from the following figures, description, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

0009 For a more complete understanding of the present
invention and the advantages thereof, reference is now made
to the following description taken in conjunction with the
accompanying drawings, wherein like reference numerals
represent like parts, in which:
0010 FIG. 1 illustrates a state diagram for a processor in a
computing System;
0011 FIG. 2 illustrates the implementation of a transac
tion record maintained by the processor,
0012 FIG. 3 illustrates the cache coherency state transi
tions due to instruction execution.

DETAILED DESCRIPTION OF THE INVENTION

0013 FIG. 1 shows a state diagram of the transition states
that are entered into by a processor during operation. The
transition states include Normal, Transaction, Commit,
Abort, and Suspended. The Normal state indicates that there
is no active transaction to process. The Transaction state
indicates that a transaction is in progress. The Commit state
indicates that a transaction has successfully completed but the
transaction is in the process of being cleaned. The Abort state
indicates that a transaction has been aborted but the transac

US 2013/0080709 A1

tion is still in the process of being cleaned. The Suspended
state indicates that a transaction has been aborted and cleaned
but the processor has not executed a Commit or Abort instruc
tion.
0014. In order to support transactions, the processor pro
vides Support for tracking access to memory locations
involved in a transaction and State information for recording
the processor's transaction state. To track transaction states,
each processor maintains a Transaction Record as well as a
mechanism (such as a pointer to a free list) to obtain memory
locations for storage of additional transaction state informa
tion. In addition, the primary data cache State field is
expanded to include the states of Invalid (I), Shared (S),
Exclusive (E), Dirty (D), Shared Transactional (ST). Exclu
sive Transactional (ET), and Dirty Transactional (DT). Each
cache tag also includes two added bits, TV and TVE, to
indicate that transaction data formerly resided in that line and
has been evicted. The TV bit indicates that data was evicted
from the ST state. The TVE bit indicates that data was evicted
from the ET or DT state. These bits are persistent through
changes to the tag but are cleared when the transaction state is
cleaned up during the Abort or Commit states.
0015 FIG. 2 shows the implementation of a Transaction
Record maintained by the processor. The Transaction Record
is a set of hardware registers in the processor storing the
following fields: TState Normal, Transaction, Commit,
Abort, Suspended, WBPtr {pointer to WBRrecord), and
EvictPtr {pointer to evicted shared addresses. Other infor
mation may be included to support additional functionality.
When in the Normal state, the processor begins a transaction
with the execution of any Transactional Memory Reference
instruction (see following section for description of these
instructions). This causes transition 1 in the state diagram of
FIG. 1 and causes the processor to set the Transaction Record
to the Transaction state. As long as the processor remains in
the Normal state, it is not involved in a transaction and its
actions obey the conventional coherency protocols.
0016 Upon entering the Transaction state, the processor's
behavior changes as it is now engaged in a transaction and,
from that point until a Successful Commit state, the processor
will do nothing which will cause the state of memory visible
to other processors in the system to change. The processor's
cache is used to hold changes which it makes, and any data
which is evicted from the primary data cache is copied into an
eviction list instead of being sent back to its normal memory
location. Upon executing a Commit state, all changes to
memory performed during the transaction are made globally
visible. If, instead, the transaction aborts, the locations in the
cache containing changes made during the transaction and the
evicted writebacks are discarded, restoring the state of
memory (as viewed by all processors) to what it was at the
beginning of the transaction.
0017 While in the Transaction state, any transactional
load instruction to a new address adds that address to the
transaction's Read Set and any transactional load exclusive or
transactional store instruction adds that address to the trans
action's Write Set. Any attempt by another processor to write
to an address in the Read Set, or to read or write from an
address in the Write Set, will cause the current transaction to
abort (transition 3 in the state diagram of FIG. 1). An abort
will also be caused by any exception during the transaction or
by the execution of an Abort instruction. Certain simple
exceptions may be permitted, especially Transaction Looka
side Buffer (TLB) misses (if these are still handled in soft

Mar. 28, 2013

ware) to occur without causing an abort. An ABORT instruc
tion may be added at the beginning of the exception handlers
instead of doing the abort in hardware.
0018 While in Transaction state, the processor's response
to incoming coherency (Invalidate, Update, and Intervention
Requests) messages is modified as follows: Invalidate and
Update requests are processed normally, except that if the
primary cache line it targets has a TV or TVE bit set, the
coherency address is also checked againstall addresses in the
Evicted or Writeback list, respectively. If both bits are set,
both lists will be checked. If the coherency address matches
any address in one of these lists, or if it hits a line in the ST. ET,
or DT states, the transaction aborts (see below for details of
the abort operation). Intervention requests that match the tag
of a line in the DT state will be processed as if the line were in
the ET state—the processor responds with a message indicat
ing that the contents of memory should be used. If the TVE bit
for the line is set, the Intervention address is also checked
against the Writeback list. If the Intervention address matches
a tag or a list address, the transaction aborts.
0019. Other than an abort, the only other way to exit the
Transaction state is the execution of a Commit instruction,
which causes the transaction state machine to go to the Com
mit state (transition 2 in the state diagram of FIG. 1). Upon
execution of a COMMIT instruction while in Transaction
state, the processor enters the Commit state. In this state, all
changes to memory performed during the committed trans
action are made visible to the rest of the system. To accom
plish this, the following actions are performed:

0020. The Evicted Address list is discarded and the
tokens in the list are attached to the end of the free list.
The Evict Pointer is set to null.

0021 All writebacks stored in the Writeback list are
converted to WEack messages and written to their home
node. All tokens in the Writeback list are attached to the
end of the free list. The Writeback Pointer is set to null.
The L2 cache is invalidated at the address of the write
back if that address is currently stored in the L2 cache.

0022 All TV and TVE bits in the primary cache are set
tO Zero.

0023 All cache lines in the ST state transition to the S
state. All cache lines in the ET state transition to the E
state. All cache lines in the DT state transition to the D
state. Upon completion of the above actions, the proces
sor transitions to the Normal state (transition 4 in the
state diagram of FIG. 1).

0024. While in the Commit state, incoming Intervention,
Invalidate, and Update requests are held until the processor
exits this state. It may be feasible to handle these requests in
this state as a performance optimization by taking the actions
needed to produce the same result as would occur after the
Commit state is complete. Any transactional memory refer
ence instruction that is issued Stalls until the processor exits
the Commit state. Commit and Abort instructions are treated
as no operation instructions (NOPs) if executed when the
processor is not in the Transaction state. In some implemen
tations, these instructions trap if an attempt is made to execute
them when already in the Commit state.
0025. When in the Transaction state, the following situa
tions will cause a transition to the Abort state (transition 3 in
the state diagram of FIG. 1), aborting the current transaction:

0026
0027

Execution of an Abort instruction.

The processor takes an exception.

US 2013/0080709 A1

0028. An Invalidate or Update Request is received
whose address matches any cache line that is part of the
Read Set.

0029. An Intervention is received whose address
matches any cacheline that is part of the Write Set.

0030 Upon execution of an abort instruction, the proces
Sorenters the Abort state. In this state, all changes to memory
performed during the aborted transaction are discarded,
restoring the state of the contents of the Write Set to its state
prior to the start of the transaction. To accomplish this, the
following actions are performed:

0031 Eliminate messages may be sent to the directory
for all addresses in the Evicted Address list (this is a
performance optimization which is optional). The
Evicted Address list is discarded and the tokens in the list
are attached to the end of the free list. The Evict Pointer
is set to null.

0032 Eliminate messages may be sent to the directory
for all addresses in the Writeback list (this is a perfor
mance optimization which is optional). All writebacks
stored in the Writeback list are discarded. All tokens in
the Writeback list are attached to the end of the free list.
The Writeback Pointer is set to null. The L2 cache is
invalidated at the address of the writeback if that address
is currently stored in the L2 cache.

0033 All TV and TVE bits in the primary cache are set
tO Zero.

0034 All cache lines in the ST state transition to the S
state. All cache lines in the ET state transition to the E
state. All cache lines in The DT state transition to the I
state. Eliminate messages may be sent to the directory
for all cache lines transitioned to the I state.

0035. Upon completion of the above actions, the processor
transitions to the Suspended state (transition 5 in the state
diagram of FIG. 1) until a Commit instruction is executed
(Commit instructions will stall if dispatched while in the
Abort state and execute as soon as the transition to the Sus
pend state occurs).
0036 While in the Abort state, incoming Intervention,
Invalidate, and Update requests are held until the processor
exits this state. It may be feasible to handle these requests in
this state as a performance optimization by taking the actions
needed to produce the same result as would occur after the
abort instruction is complete. Any transactional memory ref
erence instruction that is issued Stalls until the processor exits
the Abort state.
0037. The processor enters the Suspended state as soon as

it completes the cleanup of the aborted transaction in the
Abort state. While in the Suspended state, the processor
executes as in the Normal state except that all transactional
memory reference instructions are treated as NOPs. Upon
executing a Commit instruction, the processor transitions to
the Normal state, making it ready to begin another transac
tion.
0038. The following new processor instructions are
added:
0039 TESTT (R) Sets register R to a non-zero Reason
Code (reason codes to be defined) if the processor is currently
in the Abort or Suspended states; sets R to Zero otherwise.
This instruction is used to test to see whether the current
transaction has been aborted to allow skipping the execution
ofuseless instructions.
0040 ABORT. Aborts the current transaction. If the
processoris in the Transaction state, sets the Transaction State

Mar. 28, 2013

to the Abort state thereby initiating the actions described
above. If the current transaction has already aborted, or the
processor is in any state other than the Transaction state, this
instruction acts as a NOP.
0041) COMMIT (R)-Attempts to commit the current
transaction—If the processor is in the Transaction state, sets
the Transaction state to the Commit state, performing the
commit of the current transaction, as described above. If the
current transaction has already aborted (the processor being
in the Suspended state), the COMMIT instruction causes a
transition to the Normal state. If the current state is the Abort
state, the COMMIT instruction stalls until transaction
cleanup completes and the processor transitions to the Nor
mal state. Register R is set to a non-Zero Reason Code (reason
codes to be defined) if the processor is currently in the Abort
or Suspended states; R is set to Zero otherwise. If executed
while in the Normal or Commit states, a COMMIT instruc
tion acts as a NOP or may cause an exception.
0042. For the following group of Transactional Memory
Reference instructions, if the processor's state is Normal,
executing these sets the processor state to Transaction. These
instructions may be in single and double word, integer, and
floating point forms.
0043 LT (Load Transactional) Performs a Load for read
access only and adds the referenced memory location to the
Read Set of the current transaction. This instruction acts
exactly like an ordinary Load instruction, except that it sets
the cache state to the ST state instead of the S state. If the
cache is already in the S or E state, it transitions to ST; if
already in the D state it performs an ordinary Writeback with
Data Retained and transitions to ST. If the cache is already in
any T state, the state remains unchanged.
0044) LTX (Load Transactional Exclusive)—Performs a
Load for write access and adds the referenced memory loca
tion to the Write Set of the current transaction. This instruc
tion acts exactly like an ordinary Load instruction, except that
it issues a read exclusive request to the directory and sets the
cache state to the ET state instead of the S state. If the cache
is already in the S, ST, or Estates, it sends an Upgrade request
to the directory and transitions to ET; if already in the D state
it performs an ordinary Writeback with Data Retained and
transitions to the ET state. If the cache is already in ET or DT
state, the state remains unchanged. This instruction may
replace a LL instruction.
0045 STX (Store Transactional) Performs a Store and
adds the referenced memory location to the Write Set of the
current transaction. This instruction acts exactly like an ordi
nary Store instruction, except that it sets the cache state to the
DT state instead of the D state. If the cache is already in the S.
ST, or E states, it sends an Upgrade request to the directory
and transitions to the DT state; if already in the D state it
performs an ordinary Writeback with data retained and tran
sitions to the DT state; if already in the ET state, the cache
transitions to the DT state. If the cache is already in the DT
state, the state remains unchanged.
0046 FIG. 3 shows the cache state transitions due to
instruction execution. The following shows the system
behavior for the various cache states under the extended
coherency model needed to support the functions described
above.

0047 Invalid (I)—Cacheline is not in use and contains no
valid data. The directory may be in any state.
0048 Shared (S) Cache line contains a copy of data
which is the same as the contents of memory and the contents

US 2013/0080709 A1

of other caches also in S or ST states. The directory will be in
the S state and its sharing vector will point at this node.
0049 Shared Transactional (ST). Cache line contains a
copy of data that is the same as the contents of memory (and
the same as the contents of other caches also in the S or ST
states). The collection of all cachelines in the ST state plus all
of the cache lines in the Eviction List constitutes the Read Set
of a transaction. The directory will be in the S state and its
sharing vector will point at this node. When a cache line is in
the ST state and the processor is in the Transaction state, an
eviction of the line from the processor's cache will cause the
evicted address to be added to the Eviction List and the TV bit
for that cache tag to be set.
0050 Exclusive (E)—Cache line contains a copy of data
that is the same as the contents of memory. No other cache in
the system contains a copy of this data and the processor may
write to this line without performing any coherency transac
tions. The directory will be in the E state and its pointer will
point at this node.
0051 Exclusive Transactional (ET)—Cache line contains
a copy of data that is the same as the contents of memory. No
other cache in the system contains a copy of this data and the
processor may write to this line without performing any
coherency transactions. The directory will be in the E state
and its pointer will point at this node. When a cache line is in
the ET state and the processor is in the Transaction state, an
eviction of the line from the processor's cache will cause the
evicted address to be added to the Writeback List and the TVE
bit for that cache tag to be set.
0052. Dirty (D)—Cache line contains modified data that is
different from the contents of memory. No other cache in the
system contains a copy of this data and the processor may
write to this line without performing any coherency transac
tions. The directory will be in the E state and its pointer will
point at this node.
0053 Dirty Transactional (DT)—Cache line contains
modified data that is different from the contents of memory.
The directory will be in the Estate and its pointer will point at
this node. When a cache line is in DT state and the processor
is in the Transaction state, an eviction of the line from the
processor's cache will cause the evicted address and data to
be added to the Writeback List and the TVE bit for that cache
tag to be set.
0054. In summary, the state of the processor during
memory transactions is maintained in a transaction record of
the processor. The coherency protocol for the cache lines is
extended to include additional states. By providing Support
for memory transactions along with an expanded cache State
implementation, an improved cache coherency protocol is
achieved. The processing discussed above may be incorpo
rated entirely in computer Software code, on a computer read
able medium, or be incorporated into a combine software/
hardware implementation.
0055 One of the advantages provided by the present
invention is that the cache coherency protocol does not need
to be changed. Moreover, the directory structures are
unchanged on the memory modules. Another important
advantage is that the footprint of a transaction is not limited
by the size of the cache within a processor module. A
sequence of instructions can be treated as a single transaction
that is either atomically executed with respect to other
sequences of instructions or is not executed. The number of
distinct memory locations referenced by an instruction

Mar. 28, 2013

sequence as a single transaction, in a system having a proces
Sor module with a processor and a cache, is not limited by the
size of the cache.
0056. Thus, it is apparent that there has been provided, in
accordance with the present invention, a system and method
for performing memory operations in a computing system
that satisfies the advantages set forth above. Although the
present invention has been described in detail, it should be
understood that various changes, Substitutions, and alter
ations may be readily ascertainable by those skilled in the art
and may be made herein without departing from the spirit and
scope of the present invention as defined by the following
claims. Moreover, the present invention is not intended to be
limited in any way by any statement made herein that is not
otherwise reflected in the appended claims.
What is claimed is:
1. A method of performing memory operations in a com

puting System, comprising:
transitioning a cache line associated with a memory loca

tion from a conventional coherency protocol to one of a
plurality of extended coherency protocol states associ
ated with an operating state of a processor;

performing an update to the cache line associated with the
memory location in accordance with the operating state
of the processor, the update to the cache line not being
visible to other processors in the computing system; and

tracking access to a memory location by identifying the
cache line with the extended coherency protocol state
according to the update performed.

2. The method of claim 1, wherein the conventional coher
ency protocol includes a MESI coherency protocol.

3. The method of claim 1, wherein the plurality of extended
coherency protocol states is associated with a Transaction
operating state of the processor.

4. The method of claim 1, wherein the plurality of extended
coherency protocol states includes a Shared Transactional
state characterized by the cacheline having a copy of data that
is the same as the corresponding contents of the memory and
one or more other cache lines also in a Shared Transactional
State.

5. The method of claim 4, when the cache line is in the
Shared Transactional state and in response to an eviction of an
address from the cache line, further comprising:

adding the evicted address to an Eviction List; and
setting one of two cache tag constituent elements.
6. The method of claim 1, wherein the plurality of extended

coherency protocol states include an Exclusive state charac
terized by the cache line having an exclusive copy of data that
is the same as the corresponding contents of the memory, Such
that no other cache has a copy of said data.

7. The method of claim 6, when the cache line is in the
Exclusive state, further comprising writing to the cache line
without performing a coherency transaction.

8. The method of claim 1, wherein the plurality of extended
coherency protocol states include an Exclusive Transactional
state characterized by the cache line having an exclusive copy
of data that is the same as the corresponding contents of the
memory, Such that no other cache has a copy of said data.

9. The method of claim 8, when the cache line is in the
Exclusive Transactional state and in response to an eviction of
an address from the cache line, further comprising:

adding the evicted address to a Writeback List; and
setting one of two cache tag constituent elements.

US 2013/0080709 A1

10. The method of claim 8, further comprising writing to
the cache line without performing a coherency transaction
when the cache line is in the Exclusive Transactional state.

11. The method of claim 1, wherein the plurality of
extended coherency protocol states include a Dirty state char
acterized by the cache line having modified data that is dif
ferent from the corresponding contents of the memory, and
wherein no other cache has a copy of the modified data.

12. The method of claim 11, further comprising writing to
the cache line without performing a coherency transaction
when the cache line is in the Exclusive Transactional state.

Mar. 28, 2013

13. The method of claim 1, wherein the plurality of
extended coherency protocol states include a Dirty Transac
tional state characterized by the cache line having modified
data that is different from the corresponding contents of the
memory.

14. The method of claim 13, when the cache line is in the
Dirty Transactional state and in response to an eviction of an
address from the cache line, further comprising:

adding the evicted address and data to a Writeback List:
and

setting one of two cache tag constituent elements.
k k k k k

