
US 20190227724A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0227724 A1

Schaefer et al . (43) Pub . Date : Jul , 25 , 2019

(54) METHOD AND DEVICE FOR PROTECTING
A WORKING MEMORY

(71) Applicant : Robert Bosch GmbH , Stuttgart (DE)

(72) Inventors : Achim Schaefer , Grossbottwar (DE) ;
Andrew Borg , Port of Spain ,
Woodbrook (TT) ; Gary Morgan ,
Thixendale (GB) ; Gunnar Piel ,
Hemmingen (DE) ; Paul Austin ,
Dunnington York (GB)

(30) Foreign Application Priority Data
Oct . 4 , 2016 (DE) 10 2016 219 202 . 7

Publication Classification
(51) Int . CI .

G06F 3 / 06 (2006 . 01)
(52) U . S . Cl .

CPC G06F 3 / 0622 (2013 . 01) ; G06F 9 / 45558
(2013 . 01) ; G06F 3 / 0673 (2013 . 01) ; G06F

370659 (2013 . 01)
(57) ABSTRACT
A method for protecting a working memory , including the
following features : — memory areas of the working memory
are optionally assigned to a first class or a second class ; prior
to a program execution , at least the memory areas of the first
class are entered into a configuration table of the memory
protection unit ; and when access to a destination area among
the memory areas of the second class is requested during the
program execution , the destination area is entered into the
configuration table before the access is granted .

(21) Appl . No . : 16 / 338 , 806

(22) PCT Filed : Sep . 20 , 2017

PCT / EP2017 / 073743 (86) PCT No . :
$ 371 (c) (1) ,
(2) Date : Apr . 2 , 2019

optionally assign
memory areas to
first or second class

hypervisor stores
transferrable memory
areas of the
second class in the
flash memory in a
suitable data structure ??????

prior to starting , hypervisor
sets up all non - transferrable
memoy areas by configuration
of the memory protection unit
in that it enters at least the areas
contained in the first class in the
configuration table of the memory
protection unit

16
gain access type (read , write , execute)
and the destination address
of the requested access

- - -

hypervisor provides an
exception handling routine
which decodes the
machine command
triggering the exception

authorized ?

15 1
virtual machine placed
in defined error state which
prompts the hyptervisor to carry out
a preconfigured error response - 18

if during program
execution access to
a destination area
among the memory areas
of the second class is requested
that is presently not entered
into the configuration table ,
an exception handling
defined by the memory
protection unit is initiated

exception handling routine
selects an area for transfer
according to a preconfigured
displacement strategy among
the memory areas of the second
class presently entered into the
configuration table of the memory
protection unit , and the entry is
filled with the memory
area to which the requested
access related

Patent Application Publication Jul . 25 , 2019 US 2019 / 0227724 A1

optionally assign
memory areas to
first or second class

hypervisor stores
transferrable memory
areas of the
second class in the
flash memory in a
suitable data structure

prior to starting , hypervisor
sets up all non - transferrable
memoy areas by configuration
of the memory protection unit
in that it enters at least the areas
contained in the first class in the
configuration table of the memory
protection unit gain access type (read , write , execute)

and the destination address
of the requested access

hypervisor provides an
exception handling routine
which decodes the
machine command
triggering the exception * * * - - - - A - - - - -

authorized ?

15
virtual machine placed
in defined error state which
prompts the hyptervisor to carry out
a preconfigured error response 18

Fig . 1 if during program
execution access to
a destination area
among the memory areas
of the second class is requested
that is presently not entered
into the configuration table ,
an exception handling
defined by the memory
protection unit is initiated

exception handling routine
selects an area for transfer
according to a preconfigured
displacement strategy among
the memory areas of the second
class presently entered into the
configuration table of the memory
protection unit , and the entry is
filled with the memory
area to which the requested
access related

control unit

Fig . 2

US 2019 / 0227724 A1 Jul . 25 , 2019

METHOD AND DEVICE FOR PROTECTING
A WORKING MEMORY

FIELD

[0001] The present invention relates to a method for
protecting a working memory . The present invention more
over relates to a corresponding device , to a corresponding
computer program , and to a corresponding storage medium .

require a memory protection unit themselves , for example to
implement a protected operating system within the virtual
machine .
[0008] An advantage of one specific embodiment of the
present invention may be that it overcomes the numerical
limitation of the configurable memory areas of a generic
memory protection unit to be able to accurately establish all
memory areas used directly and indirectly - for example via
the hypervisor — by a virtual machine . Such an approach
allows the virtual machine to access an almost arbitrary
number of memory areas , without being limited by the
capabilities of the hardware memory protection unit .
[0009] The measures described herein may allow advan
tageous refinements of and improvements on the basic
aspects of the present invention .

BACKGROUND INFORMATION

BRIEF DESCRIPTION OF THE DRAWINGS
10010] Exemplary embodiments of the present invention
are shown in the figures and are described in greater detail
below .
[0011] FIG . 1 shows the activity diagram of a method
according to a first specific embodiment .
[0012] FIG . 2 schematically shows a control unit accord
ing to a second specific embodiment .

[0002] In memory management , memory protection refers
to the ability of operating systems and so - called hypervisors
to divide the available working memory and to separate
running programs or guest systems from one another in such
a way that a crash of an individual program — triggered by a
programming error , for example does not impair the sta
bility of other programs or of the overall system . The
programs monitored in this way are thus prevented from
inadvertently or intentionally accessing the memory area of
other programs or from using the operating system other
than through standardized interfaces .
[0003] Memory protection units (MPUs) or more complex
memory management units (MMUS) which support memory
protection are sufficiently known . Within the scope of the
following statements , the designation “ memory protection
unit ” shall thus be understood in a broad sense of the word ,
which expressly includes advanced memory management
units having the ability to translate virtual addresses .
[0004] Memory protection units were originally designed
as an external additional component for microprocessors ,
but according to the related art are directly integrated into
high performance processors or at least situated in their
vicinity . However , embedded systems and in particular
microcontrollers which traditionally were only designed to
execute a single application are also increasingly equipped
with virtualization and memory protection mechanisms .
10005) German Patent Application No . DE 10 2014 208
848 Al describes a method and a computer program for
carrying out memory accesses . A hypervisor is used for this
purpose in conjunction with a memory protection unit , via
which the memory accesses are carried out .

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

SUMMARY
[0006] The present invention provides a method for pro
tecting a working memory , a corresponding device , a cor
responding computer program for example in the form of
a hypervisor or an operating system and a machine - read
able storage medium .
[0007] The approach according to the present invention is
based on the finding that the number of configurable
memory areas and access rights in this regard in a generic
hardware memory protection unit is limited . As a result of
this limitation , the number of memory areas used by a virtual
machine (VM) may exceed the capabilities of the hard
ware such as in the case of a hypervisor . In this regard , at
the most a merging of individual memory areas is possible ,
which limits the granularity of the memory protection con
figuration , so that it is no longer possible to completely
preclude unauthorized accesses by virtual machines to cer
tain memory locations . This problem may be exacerbated in
that a hypervisor reserves several entries of the correspond
ing configuration table for internal use or provides a virtual
MPU implementation for virtual machines which , in turn ,

[0013] FIG . 1 illustrates the fundamental sequence of one
exemplary embodiment of a method 10 according to the
present invention . For the purpose of the following descrip
tion , it shall be assumed that the considered system includes
a larger number of memory areas to be distinguished than
the memory protection unit supports in terms of hardware .
[0014] The approach discussed hereafter is based on a
basic aspect that the hypervisor replaces configuration
entries of the memory protection unit regarding the run time
as needed . This approach provides the virtual machine
operated as a guest system of the hypervisor with an
execution context which takes all memory areas specified in
the configuration of the particular machine into consider
ation even when the number of configured memory areas
exceeds that of the memory protection unit .
[0015] The described replacement follows a configurable
displacement strategy derived from the operating system
theory as it is used according to the related art for cache
memories , for example . For example , it is possible to
transfer the configuration entry whose last use by the MPU
dates back the furthest (least recently used , LRU) .
[0016] The implementation follows the following pattern
in accordance with the illustration : In the development
phase , the memory areas to be configured are initially
optionally assigned to a first or a second class (activity 11) .
The configuration language of the hypervisor allows the
integrator for this purpose to identify individual areas either
as non - transferable (first class) or transferable (second
class) . It shall be understood that , in this case , at least one
configuration entry of the memory protection unit should
always be reserved to the memory areas of the second class ,
if at least one area was assigned to this class .
[0017] During the classification of the memory areas , it
should be noted that the waiting period for the execution of
machine commands in transferred memory areas and for
read and write accesses to such memory areas may be

US 2019 / 0227724 A1 Jul . 25 , 2019

considerable . It is up to the integrator to decide which
memory areas are to be configured as non - transferrable and
which are to be configured as transferrable . As a function of
the real time requirements of the respective application , the
same applies to the selection of an advantageous displace
ment strategy
[0018] The hypervisor then stores the transferrable
memory areas of the second class in the flash memory in a
suitable data structure (activity 12) . For each area of this
type , the structure includes its details relevant for an autho
rization check , i . e . , in particular the boundaries of the
address space taken up by it and the allowed access type of
the particular guest system or process . Without departing
from the scope of the present invention , in one alternative
specific embodiment a checking routine which , for example ,
carries out a case distinction (switch statement) between the
areas of the first and second classes may nonetheless be
generated based on the classification made by way of the
code generation .

[0019] Prior to starting , the hypervisor sets up all non
transferrable memory areas by configuration of the memory
protection unit in that it enters at least the areas contained in
the first class in the configuration table of the memory
protection unit in this regard (activity 13) . As long as the
overall number of the memory areas distinguished by the
configuration does not exceed the number of available table
entries , no transfer of individual entries is necessary . How
ever , if the number of provided memory areas exceeds the
capability of the memory protection unit , such a transfer is
possible during the run time of the virtual machine .
[0020] A " configuration table ” of the memory protection
unit includes , in particular , the page table typically provided
in modern memory management units , which is primarily
used to translate virtual memory addresses into physical
memory addresses . Such a page table may have a one - stage ,
a multi - stage or — to save memory space also an inverted
design , the searching in the page table being expeditable by
an upstream so - called hash table . The aforementioned entry
(activity 13) in the page table in this case takes place by the
generation of a page table entry (PTE) .
[0021] In a simpler specific embodiment , the configuration
table may nonetheless be embodied by registers of a simple
memory protection unit having no virtual memory manage
ment , as they are provided , for example , within the scope of
the AUTOSAR development partnership for isolating dif
ferent software components (SW - Cs) of a generic control
unit (electronic control unit , ECU) . The entries of the
configuration table known to the electronics expert as
“ regions " _ typically , between 2 and 32 such regions per
MPU , depending on model — in this case denote so - called
partitions within the context of the AUTOSAR , which in
turn may each include multiple software components as
mutually delimited protection areas . For each of these
regions , the register contents of the MPU specify the access
types permissible for the respective partition through manu
facturer - dependent bit sequences , at sometimes a further
distinction being made between accesses by " privileged ”
and “ non - privileged ” software .
[0022] . When the virtual machine during the program
execution requests access to a memory area which is encom
passed by the second class and thus , in principle , is trans
ferrable , but already preconfigured in the memory protection
unit — this case is not shown in the illustration — no inter
vention by the hypervisor is necessary . However , if during

the program execution access to a destination area among
the memory areas of the second class is requested which is
presently not entered into the configuration table (event 15) ,
an exception handling defined by the memory protection
unit is initiated . The hypervisor provides an exception
handling routine (exception handler) registered for this
purpose , which decodes the machine command triggering
the exception (activity 14) , and in this way gains the access
type read , write or execute — and the destination address of
the requested access (activity 16) . Based on this information
and the data structure stored in activity 12 , the exception
handling routine subjects the provided access to an autho
rization check (decision 19) and , if it fails (branch N) , places
the virtual machine in a defined error state , which prompts
the hypervisor to carry out a preconfigured error response
(activity 17) , such as the reboot of the virtual machine . In
this case , the memory protection unit recognizes the attempt
to access the protected address space without authorization ,
based on the authorizations stored in the configuration table
as a so - called protection violation (segmentation violation ,
segmentation fault , segfault) or access violation , and signals
this to the hypervisor . In a UNIX - like operating system , this
signaling could take place , for example , by the exception
condition SIGSEGV , in the case of microprocessors with
IA - 32 or X86 architecture or in the case of more powerful
microcontrollers by an interrupt .
[0023] If , due to a successfully completed authorization
check 19 , the requested access is to be granted (branch Y) ,
the exception handling routine (16 , 17 , 18 , 19 , Y , N) selects
an area for the transfer according to the preconfigured
displacement strategy among the memory areas of the
second class presently entered into the configuration table of
the memory protection unit . The entry occupied by this
discarded area is now filled with the memory area to which
the requested access relates (activity 18) . This destination
area defined essentially by the boundaries of the address
space taken up by it and the allowed access type — may again
be derived from the data structure stored in activity 12 . In
this way , the exception handling (16 , 17 , 18 , 19 , Y , N) may
ultimately be completed , the control flow in the virtual
machine may be continued , and the machine command 14
requesting the access may now be again processed without
a memory protection violation .
10024] This method 10 may be implemented in software or
hardware or in a mixed form made up of software and
hardware , for example in a control unit 20 , as the schematic
representation of FIG . 2 illustrates .

1 - 10 . (canceled)
11 . A method for protecting a working memory with the

aid of a memory protection unit , comprising :
assigning memory areas of the working memory are to a

first class or a second class ;
prior to a program execution , entering at least the memory

areas assigned to the first class into a configuration
table of the memory protection unit ; and

when access to a destination area among the memory
areas of the second class is requested during the pro
gram execution , entering the destination area into the
configuration table before the access is granted .

12 . The method as recited in claim 11 , wherein the
requested access is handled by an exception handling rou
tine , the exception handling routine carrying out an autho
rization check at least based on the destination area , and the

US 2019 / 0227724 A1 Jul . 25 , 2019

exception handling routine triggers a preconfigured error
response if the authorization check fails .

13 . The method as recited in claim 12 , wherein the
exception handling routine decodes an access type and a
destination address within the destination area to which the
access relates based on a machine command requesting the
access , and the authorization check is furthermore carried
out based on the access type and the destination address .

14 . The method as recited in claim 13 , wherein at least one
memory area of the second class is entered into the con
figuration table , and if the access is granted , the exception
handling routine replaces the memory area in the configu
ration table with the destination area , and prompts a renewed
processing of the machine command .

15 . The method as recited in claim 14 , wherein multiple
memory areas of the second class are entered into the
configuration table , and if the access is granted , the excep
tion handling routine selects a memory area among the
entered memory areas of the second class according to a
preconfigured displacement strategy , replaces the selected
memory area in the configuration table with the destination
area , and prompts a renewed processing of the machine
command .

16 . The method as recited in claim 12 , wherein based on
the memory areas of the second class , a checking routine is
generated prior to the program execution , and the authori
zation check includes a call up of the checking routine .

17 . The method as recited in claim 12 , wherein the
memory areas of the second class are stored in a data

structure preferably in a flash memory , and the authorization
check is furthermore carried out based on the data structure .

18 . A non - transitory machine - readable storage medium on
which is stored a computer program for protecting a working
memory with the aid of a memory protection unit , the
computer program , when executed by a computer , causing
the computer to perform :

assigning memory areas of the working memory are to a
first class or a second class ;

prior to a program execution , entering at least the memory
areas assigned to the first class into a configuration
table of the memory protection unit ; and

when access to a destination area among the memory
areas of the second class is requested during the pro
gram execution , entering the destination area into the
configuration table before the access is granted .

19 . A device configured for protecting a working memory
with the aid of a memory protection unit , the device con
figured to :

assign memory areas of the working memory are to a first
class or a second class ;

prior to a program execution , enter at least the memory
areas assigned to the first class into a configuration
table of the memory protection unit ; and

when access to a destination area among the memory
areas of the second class is requested during the pro
gram execution , enter the destination area into the
configuration table before the access is granted .

