«» UK Patent Application «GB 2 322718 .. A

(43) Date of A Publication 02.09.1998

(21) Application No 9725995.6 (51) INTCL®
GO6F 9/38
(22) Date of Filing 09.12.1997
{52) UK CL (Edition P)
(30) Priority Data G4A APP

(31) 08761875 (32) 09.12.1996 (33} US
(56) Documents Cited

EP 0767425 A EP 0730224 A WO 97/25670 A1

(71) Applicant(s) US 5519864 A
International Business Machines Corporation
(Incorporated in USA - New York) (58) Field of Search
Armonk, New York 10504, United States of America UK CL (Edition P) G4A APP APX
INT CL® GOGF 9/38
{72) Inventor(s) ONLINE: WPI, INSPEC, COMPUTER
Troy Neal Hicks
Hung Oui Le
John Stephen Muhich
Steven Wayne White

(74) Agent and/or Address for Service
M J Jennings
IBM United Kingdom Limited, intellectual Property
Department, Mail Point 110, Hursley Park,
WINCHESTER, Hampshire, SO21 2JN,
United Kingdom

(54) Abstract Title
Dynamic classification and dispatch of instructions out of order

(57) A pre-execution queue PEQ 42 stores instructions FIG-2
for an information handling system, and schedules the - 1CACHE

issuing of these instructions to at least one execution i ©
cluster 54, 56, each comprising an early, 46, 50, and a late,

48, 52, execution unit. Each execution unit executes an mnu
instruction dispatched from PEQ 42, and generates and
forwards a result to another unit for execution of a further “~ “~\
instruction. This result data forwarding takes longer if it is
between units of different clusters. In particular, a result e N hld
from early unit 46 is available to late unit 48 in the same
cluster 54 in the same clock cycle. The instruction
scheduling takes into account this non-uniform
forwarding of result data (for example, by “pairing"
dependent instructions and issuing them to the same
cluster), and ensures that only instructions whose
operands are available are scheduled. PEQ 42 classifies
and groups the instructions into buckets with associated
selection priorities (fig. 6). Instructions can be dynamically
reassigned to buckets in response to execution delays and
priority conflicts.

8
_\
8
\
&
o)
k]

i
E
i
:

g

had .
- T8
3

.
-
o i1 iy

“

Ry

.,

4 ey EARLY

:
v
i

e ————— e -

e e —— =

e e e e

At least one drawing originally filed was informal and the print reproduced here is taken from a later filed formal copy.

This print takes account of replacement documents submitted after the date of filing to enable the application to comply
with the formal requirements of the Patents Rules 1995

;
§
%
8
V 8LLZZET 89

176

ve [44

(174
H3.Lldvayv H3.ldvav _
. AY1dSIa 30V443ILNI
H3sn
8\\ . 2!\
0e
H31ldvav Y3ldvav
SNOILYOINNWIOD O/l WOd Wvy NdD

)

AHOMLIN

J

Q\/_'

142

(4

0\./-'

FIG -2

216

I CACHE
[
I0| I1|I2]|13]14]]1I5
45 47
N AN vANNIS
0 | PEQ | r
BRANCH | | COMPARE STORE FL%\IRIT\IG
UNIT UNIT UNIT UNIT
’§_6 68
———————————— 0 0 Wiy
] ! : l
: |] T 1 g i
s -
s a P!
iy Bk P
B, i e b
: : L3 : |
PPN I
! : : !
: [
-t i —
: L2 : :
—60 | i | ea— LY b
; i : [
: LATE & E LATE & P
: D CACHE . 7 ;
\48 52 | |DCACHE P
L | [
|
|
semeemnennene SRR SRR emeeen e e : |
54---" ~.._56
(CLUSTER ZERO) (CLUSTER ONE)

3/6

5:1FOR 80 INSTRUCTION FROM IQ
INSTRUCTION / 82 8 g5 gg
| I l \ ¥ Q0
}
WO AW1 /\ W2 AW3 A W4 /A W5 INSTRUCTION
5:1/ \5:1/ \5:1 1 1/ \5:1 DCD/INTERLOCK
42
PRIORITY 1 /
ARRAY <«—|VWCLTD e
INSTRUCTION
- POINTER
B% 3 PEQ [SELECTION][GENERATDD
- 6
REAl;Y‘ - .
: INSTRUCTION = BOL 81_1./
(",‘:SHT,S‘F{%T’Z% LASSIFICAT!OI‘D _’\2{/\3_1

BUCKET
PRIORITIZING

INSTRUCTION
RELATIVE AGE
DETERMINATION

y

Y 4 Y .
COEPHr/\C1EPtr/\COLPtr/\C1LPty
4:1 5:1 8:1 10:1
92 94 96 98
\ | \

INSTRUCTIONS TO CLUSTERS
COoE Ci1E CoL CiL

y

100 102 104 106

4/6

(120 (122 (124 FIG-4
OPCODE AND
OTHER CONTROLs | RADATA | RBDATA
134
~ A e
u | o DPTR
152
M a2 e 150) 154 158 126 130 .,
138 144 / S RB 1558 160 128 %
1 C g 2 AN [
u | w|co|c1|coe:n| o | | u [wfco|ct|coen|To| |v|L|T |0
' |
vy \{ \/
Ci(0) Ci(1) t i T DO
s WA
164 166 1657 187 16

516

740 HO4 HALNIO 3L¥DLNO D3d 4 _—90§
/T A1
by m& N& _& N& N& 6* il . 24
(&) G T
8Ll 8ll Hidd Hida

100 HO4 H31NIOd 31vO.LNO D3d *

\l v0S

44700 e

103138
13X0Nn8

6L}

103138

310 HOJ H3LNIOd 31v91N0 D3d »

¥

yd

el avl wl 28l 18l Hl o

% iHd) 4
8Ll E.T@ Hldd HLdQ

N

Ad319

13Xong

6.1

103138

c0s

8LL

2

wl a3l

8L}

300 HO4 H3LNIOd 31vOLNO D3d *

44309

13)0Nng

641

103138

gl o]

8

A
A
(&)

A
14
(&)

Ll

0L

L

%

13Xong

6L}

¢-9Old

INNOO

a1
‘0'Ad

13axong

N/

.

Avdav

ALIHOHd

viL
cli

NOILYOIdI
-SSV10
13)0Nn8

N/

O -P .I— .> .o .;
SONYY3dO

616

)

d9 - Old m« MO
v eV '\
LY 2V
2d Y
2o 29 2V
15) 15) by Y
I H 1 ig
3 o) 3 0
24 g 24 14
31V | H3LSN1D JIVI0HILSNTD ATHVI L HILSNTO ATHVI 0 HILSNTD
OLSNOILONHLSNI OL SNOILONHLSNI OL SNOLONHLISNI OL SNOILONHLSNI
MO " HOH
ALIHOIHd NOILLO313S :
V9 - Oid il
+ [xToo ol +]oo]e
L [x {00 blx [xolef fo [frofr] FvTxTox[w][oTsJore][o]+ [oo]s
a n oo a oo a n a n » a n 1 ia 1o HOIH
4 13)ong 3 13)0N4g | 1340N8 0 13axong H 13xons8 9 13)0Ng
NQNL oo«L mm-.L 96 k emrL e MO
o|ofoolt
o]ofoole
b [ofoo0 o|olio]z| ofofotl|elfofo]oofe
L [o]oo LJo frofe] [olo[rols] YrToTor][ol ofor]v][0 000+
LN L now TR o Lo LN L n o HOIH
4 13)0n8 3 13)ong a 1axong 0 13Mong g 13)0n8 v 13M0N8
/\9: /(9: /(8- K\x: _zs1 N—o8!

AGE SELECT!ON PRIORITY

10

15

20

25

30

35

40

! 2322718

INSTRUCTION DISPATCH UNIT AND METHOD FOR DYNAMICALLY
CLASSIFYING AND ISSUING INSTRUCTIONS OUT OF ORDER

FIELD OF THE INVENTION

The present invention relates to information handling systems and
methods for operating information handling systems and, more
particularly, to apparatuses and methods for dispatching instructions to

one or more units in an information handling system.
BACKGROUND OF THE INVENTION

Forwarding data between multiple execution units in a super scalar
design has been a problem which often limits the cycle time of the
design. The result bus from each unit or the cache must be forwarded to
other execution units, the GPR/FPR register files, the SPRs, other
implementation dependent queues, and reservation stations or rename
buffers. In current designs, the result busses are forwarded uniformly to
all destinations (i.e., results are made available to all destinations in
the same cycle). Uniform forwarding of data to all destinations results
in heavy bus loading which becomes a critical performance degradation
factor, either by limiting the cycle time or delaying the forwarding of
data. This invention describes a non-uniform forwarding of data, as well
as an instruction gqueuing and issuing mechanism to utilize all the

execution units effectively.
SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to an apparatus for
dispatching instructions in an information handling system. The
apparatus comprises a pre-execution queue for storing instructions and at
least one execution cluster operably coupled to the pre-execution queue
comprising an early execution unit for executing a first instruction
dispatched from the pre-execution queue to generate and forward a first
result and a late execution unit for executing a second instruction
dispatched from the pre-execution queue to generate and forward a second
result after the first execution unit forwards the first result. The
apparatus further includes means (preferably implemented in circuitry)
operably associated with the pre-execution queue for prioritizing the
order in which the instructions in the pre-execution queue are

dispatched to the execution cluster.

10

15

20

25

30

35

40

The present invention also includes a method for dispatching
instructions in an information handling system comprising a pre-execution
queue for storing instructions and at least one execution cluster
operably coupled to the pre- execution queue comprising an early
execution unit for executing a first instruction dispatched from the pre-
execution queue to generate and forward a first result and a late
execution unit for executing a second instruction dispatched from the
pre-execution queue to generate and forward a second result after the
first execution unit forwards the first result. The method comprises the
steps of storing instructions in the pre-execution queue and prioritizing
the order in which instructions in the pre- execution Queue are

dispatched to the execution cluster.

It is an advantage of the present invention that the non- uniform
forwarding of data enhances system performance time due to the decreased
amount of data forwarded on the system bus. It is a further advantage of
the present invention that an instruction queuing and issuing mechanism

ensures that all execution units are used effectively.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of an information handling system

embodying the present invention.

Figure 2 is a block diagram of the architecture of a system
embodying the present invention, including a high-level view of the

instruction queue, the pre-execution queue, and the fixed point unit.

Figure 3 is a block diagram of an apparatus for dispatching

instructions according to the present invention.

Figure 4 is a diagram of an instruction and its associated status

bits according to the present invention.

Al
&~

Figure 5 is a block diagram of an apparatus for cléssifying

instructions according to the present invention.

Figure 6A shows the logical sequence of the classification

performed by the apparatus of Figure 5.

10

15

20

25

30

35

40

Figure 6B depicts a logical selection table as used in the logical

sequence of Figure 6A.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT OF THE INVENTION

The preferred embodiment describes an implementation that supports
the Fixed Point Unit of the Power PC architecture (Power PC is a
trademark of International Business Machines Corp.). The same scheme can
be adapted to support other execution units as well as other

architectures.

A typical information handling system is depicted in Figure 1 and
includes at least one central processing unit (CPU) 2. CPU 2 is
interconnected via system bus 4 to random access memory (RAM) 6, read
only memory (ROM) 8, and input/output (I/0) adapter 10 for connecting
peripheral devices such as disc units 12 and tape drives 14 to bus 4,
user interface adapter 16 for connecting keyboard 18, mouse 22, speaker
24, microphone 20, and/or other user interface devices such as a touch
screen device (not shown) to bus 4, communication adapter 26 for
connecting the information handling system to a data processing network,

and display adapter 28 for connecting bus 4 to display device 30.

Figure 2 shows a high level overview of a CPU 2, comprising an
instruction queue 40, a pre-execution queue (PEQ) 42, a fixed point unit
44, a branch unit 41, a compare unit 43, a store unit 45, and floating
point unit 47. Fixed point unit 44 consists of four execution units, 46,
48, 50, and 52, which are arranged in two clusters, cluster zero 54 and
cluster one 56. Each cluster 54, 56 has an early execution unit 46, 50
and a late execution unit 48, 52. To avoid timing problems with
forwarding data to multiple destinations, the results from each execution
unit 46, 48, 50, 52 are forwarded non-uniformly depending on the location

of the destination and the time when the result is available.

The instructions in the instruction queue come from an instruction
cache or other memory units (not shown). Instructions are gated into PEQ
42, which holds instructions and data to be sent to the clusters 54, 56.
Instructions and data are sent from PEQ 42 to latches L1 58, L2 60, L3
62, and L4 64. Instructions and data are gated from the latches into the
execution units. For example, instructions and data are gated-from latch
58 into execution unit 46. Any result from an exequ;ion unit 46, 48, 50,
52 may also be sent to any latch L1 58, L2 60, L3 52, or L4 64 for

10

15

20

25

30

35

40

further processing by the execution unit associated with the particular
latch. Latches L5 64, L6 66, L7 68, and L8 70 receive the results from
each execution unit 46, 48, 50, 52 and then send these results back to

PEQ 42 for further processing.

Fixed point clusters 54, 56 have the following characteristics.
The early unit in a cluster can forward the result to the late unit in
the same cluster to be used in the same cycle. For example, an
instruction executing in early unit 46 in cycle n can forward the result
to late unit 48 in the same cluster 54 so that a dependent instruction
can use that result and execute in late unit 48 in cycle n (0 cycle
forwarding) . The late unit in a cluster can forward the result to the
early unit in the same cluster so that the result is available for
execution in the early unit during the cycle after the result is
generated (one cycle forwarding within a cluster). For example, an
instruction executing in late unit 48 in cycle n can forward the result
to early unit 46 in the same cluster 54 so that a dependent instruction

can use that result and execute in early unit 46 in cycle n+1.

The early unit in a cluster (local cluster) can forward the result
to the execution units in another cluster (remote cluster) so that the
result is available for execution in the remote cluster during the cycle
after the result is generated. For example, an instruction executing in
early unit 46 of local cluster 54 in cycle n can forward the result to
either early unit 50 or late unit 52 of remote cluster 56 so that a
dependent instruction can use that result and execute in early unit 50 or

late unit 52 in cycle n+l.

The late unit in a local cluster can forward the result to the
execution units of a remote cluster one cycle after the result is
generated (two cycle forwarding between clusters). For example, an
instruction executing in late unit 48 of local cluster 54 in cycle n can
forward the result to either early unit 50 or late unit 52 of remote
cluster 56 so that a dependent instruction can use that -result and

execute in early unit 50 or late unit 52 in cycle n+2.

All units in the clusters can forward the result to the GPR<Knot
shown) and PEQ 42 one cycle after the result is generated (two cycle

forwarding) .

10

15

20

25

30

35

40

A load instruction can only execute in the late unit of a cluster.

To keep all units in the clusters operating efficiently, the
instruction issuing unit, PEQ 42, must take into account the non-uniform
forwarding of the result data by the execution units within and between
the clusters when scheduling instructions to the clusters. In addition,
PEQ 42 must schedule only instructions of operands which are available.

However, out-of-order issuing is allowed.

PEQ 42 must also provide a fast recovery method in the case that
speculative instructions are scheduled and aborted. For example,
instructions may be scheduled on the assumption that a particular branch
will take a certain path, and instead the branch takes an alternate path.
There is also the possibility that an exception will occur between two

scheduled instructions.

In addition, PEQ 42 must only schedule certain instructions, such
as load instructions to the late units. Finally, PEQ 42 must implement
the above features in a simplified way to meet the cycle time of the

processor.

The instruction queuing and issuing mechanism has the following
features. PEQ 42 acts as a reservation station, and holds instructions
and their data to be issued to the clusters 54,56. A set of latches
implementing a priority array (shown in Figures 3 and 5), keeps track of
the relative ages of instructions in PEQ 42. A set of bits in PEQ 42 is
used to indicate that operands are available for an instruction. Only
instructions with available operands are selected by PEQ 42 to be issued

to clusters 54,56.

Another set of bits in PEQ 42 allows dependent instructions to be
"paired", i.e. instructions A and B are paired if instruction A is not a
load and instruction A generates the result that instruction B uses. PEQ
42 will try to issue the pair AB together to the same cluster (A to the
early unit and B to the late unit) to take advantage of the early to late

unit 0 cycle forwarding.

Still another set of bits in PEQ 42 keeps track of where the result
is being generated so that a dependent instruction that uses that result
will be iséued to the proper cluster. For example, if instruction A is

executing in late unit 48 of cluster zero 54, PEQ 42 will try to issue

10

15

20

25

30

35

40

instruction B, which is dependent on A, to cluster zero 54 to take

advantage of the one cycle forwarding of data within a cluster.

An instruction classification scheme groups instructions into
buckets. The instruction selection logic operates on each bucket
concurrently. The instruction selection time is improved as the
instruction selection process is changed from selecting instructions
sequentially to selecting instructions from buckets in parallel. For
example, assume instruction A is executing in early unit 46 of cluster
zero 54 in cycle n. Instruction B which depends on A can execute in late
unit 48 of cluster zero 54 in cycle n. B can execute in any of the four

units 46, 48, 50, 52 in cycle n+l or afterward.

As another example, assume instruction A is executing in late unit
48 of cluster zero 54 in cycle n. Instruction B, which depends on A, can
execute in either execution unit 46, 48 of cluster zero 54 in cycle n+l.
B can execute in any of the four units 46, 48, 50, 52 in cycle n+2 or

afterward.

Figure 3 shows the instruction flow through PEQ 42. Instructions
are dispatched from Instruction Queue (IQ) 40, shown in Figure 2. They
are gated into PEQ 42 through multiplexers 80, 82, 84, 86, 88, 90.
Controls for instruction selection are calculated and gated through four
multiplexers: COEptr 92, ClEptr 94, COLptr 96, and ClLptr 98.
Instructions from PEQ 42 are gated out through four buses: COE 100 (to
cluster zero early unit 46), ClE 102 (to cluster one early unit 50), COL
104 (to cluster zero late unit 48), and ClL 106 (to cluster one late unit
52). If there is no available instruction in PEQ 42, then dispatched
instructions can be bypassed directly to execution units 46, 48, 50, 52

through four multiplexers: BOE 108, B1E 110, BOL 112, and BI1L 114.

Figure 4 shows the fields for each entry of PEQ 42. Each entry
consists of an opcode and other controls 120, RA data 122, and RB data

124. Bits that are associated with each PEQ entry are as follows:

* V 126: indicates whether entry is valid.
* L 128: indicates whether instruction is a load instruction.
* T 130: indicates whether instruction is the earlier (target)

instruction of a dependent pair instruction. (Note that if

10

15

20

25

30

35

40

an instruction is a dependent instruction, it is not treated
as the target instruction. However, if it becomes an

independent instruction, i.e., its D 132 bit is reset, and if
its T 130 bit is set, then it automatically becomes the

target instruction).

D 132: indicates whether instruction is the later instruction

(depends on a target instruction) of a dependent pair.

RT (instruction target is GPR):

U 134: indicates whether field is valid
TID 136: indicates target ID of GPR to which instruction will
be sent. TID 136 is the pointer to be used for operand

interlock. TID 136 also is the instruction identifier.

RA (instruction source is GPR):

U 138: indicates whether field is valid

W 140: indicates whether RA field is loaded (if RA is not
used, this bit is set to 1 at dispatch).

C0 142, C1 144: indicates whether operand is dependent on the
instruction being executed in the late unit of the cluster
(bit 0 for cluster zero, bit 1 for cluster one). These bits
are active for one cycle to steer this instruction to the
unit that has the data.

CD 146: CO 142, Cl 144 bits delayed by a cycle.

PEQ 42 uses CD 146 to reset the W bit 140 if data is
canceled.

TID 148: the target ID of the GPR which will provide the

necessary instruction.

RB (instruction source is GPR):

U 150: indicates whether field is valid.

W 152: indicates whether RB field is loaded (if RB is not
used, this bit is set to 1 at dispatch).

CO0 154, C1 156: indicates that operand is dependent the
instruction being executed in the late unit of the cluster
(bit 0 for cluster zero, bit 1 for cluster one). These bits
are active for one cycle to steer this instruction to-the
unit that has the data.

CD 158: CO 154, Cl1 156 bits delayed by a cycle.

10

15

20

25

30

35

40

PEQ 42 uses CD 158 to reset W bit 152 if data is canceled.
TID 160: target ID of the GPR which will provide the

necessary information.

* DPTR 162: Points to the entry that contains the instruction
that depends on this instruction. It is valid when the T 130

bit is active.

Figure 4 also shows the following PEQ 42 instruction state
indicators, which are the combinations of individual bits described above

to specify the state of each entry in PEQ 42:

* Ci(0) 164: indicates that instruction is dependent on the
instruction being executed in late unit 48. This bit is the

"OR" of the CO bits 142, 154 of the two operands.

* Cci(1) 166: indicates that instruction is dependent on the
instruction being executed in late unit 52. This bit is the

"OR" of the Cl1 bits 144, 156 of the two operands.

* RV 168: indicates that instruction is ready for execution.
This bit is the combination of the two operand available bits
W 140, W 152, queue entry valid bit V 126, and the two C bits
164, 166 (note that an instruction is not ready if it depends

on operands that are being generated in both late units).
* .Li 165: indicates that instruction is a load.

* .Ti 167: indicates that instruction is the target instruction
of a dependent pair instruction and is not the dependent

instruction.

* .Di 169: indicates that instruction is the dependent of a

dependent pair instruction.

Dispatched instructions from the IQ 40, in the order of oldest to
newest (IQ0 to IQ4), are gated into the lowest empty locations as
indicated by PEQ valid bit V 126. The order of all entries in the
six-entry deep PEQ 42 is marked by the 15- bit priority array 170, shown

in Figure 5. Each bit called "n O m" indicates that entry n is older

10

15

20

25

30

35

40

than entry m. Entry zero 172 has five bits (001 through 005), entry one
174 has four bits (102 through 105), etc.

When instructions are dispatched, PEQ 42 is scanned for existing
instructions, and priority array 170 is set to reflect the age of the

instructions relative to other instructions in PEQ 42.

Dispatched instructions are checked against each other and against
existing instructions in PEQ 42 to determine if they can be paired. An
instruction may be paired to an older instruction being dispatched or
existing in PEQ 42 if one of its source operands is the result of the
older instruction (the TIDs are used to determine the interlock), and the

older instruction is not a load.

When a dispatched instruction is detected to be dependent on a
prior instruction, the dependent instruction’s PEQ position is saved with
the target instruction in the DPTR 162 field in Figure 4. The T bit 130
of the target instruction is set, and the D bit 132 of the dependent
instruction is set. If multiple instructions are dependent on the same
target instruction, only the oldest dependent instruction is paired with
the target instruction. If two sources of an instruction depend on two
different instructions, then "pairing" is performed on the RA source of
the dependent instruction only. If the target of a pair of instructions
is issued and the dependent instruction is not issued (i.e., the late
unit is not available), then the D bit 132 of the dependent operand is
reset. This allows the dependent instruction to become an independent

instruction in the next cycle.

Bach source operand in PEQ 42 has an associated W (written) bit
140, 152 bit to indicate if the data for that operand is available. The W
bit 140, 152 is set at dispatch if the data is in the GPR, if the source
is not needed by the instruction, or if the dispatching sources match any
TID being broadcast during the cycle. If the entry is the dependent
instruction of a dependent pair, then the dependent source is marked as

ready.

One cycle before the result appears on the earliest resui€ bus, the
TID associated with that result is broadcast to PEQ 42. It is compared
against all source TIDs in PEQ 42. If there is a match, the W bit 140,
152 bit for that source field is set. When the W bit 140, 152 is set it

stays set until it is overlaid with a new entry (an older instruction in

10

15

20

25

30

35

40

10

the queue has been issued or canceled). It is also reset if the
corresponding data which is supposed to be generated by the unit is not

valid (i.e., cache miss condition).

A PEQ entry is ready for dispatch to one of the execution units 46,
48, 50, 52 if the entry is valid (v=1), it does not depend on
instructions being executed in different clusters, and either it is not
the dependent instruction of a dependent pair and its two source operands
are ready (W=1), or it is the dependent instruction of a dependent pair
and its independent source operand and the instruction it depends on are
ready. This is accomplished by keeping the DPTR 162 pointing to the
instruction which depends on it and setting the W bit 140, 152 of the

dependent source unconditionally.

Each source operand also has a two bit C field 142, 144 or 154, 156
to indicate which, if any, late unit in the cluster is generating the
data for this operand. The C field 142, 144 or 154, 156 is set when the
W bit 140, 152 is set as a result of a match of the source operand TID

148, 160 and the broadcast TID from the corresponding late unit.

As shown in Figure 5, ready instructions in PEQ 42 are classified
into buckets by examining the RV, Ci, Li, Ti, Di state indicators of the
instruction in each entry. Figure 6A illustrates the different bucket

types. The buckets are (see Figure 6A):

* Type A 180 (Ci=00, Li=0, Ti=0)
Contains instructions that can go to either cluster, early or
late unit, and are not targets for dependent pair

instructions.

* Type B 182 (Ci=10, Li=0, Ti=0)
Contains instructions that only go to cluster zero, early or
late unit, and are not targets for dependent pair

instructions.
* Type C 184 (Ci=10, Li=0, Ti=1)
Contains instructions that only go to cluster zero, early or

late unit, and are targets for dependent pair instructions.

* Type D 186 (Ci=01, Li=0, Ti=0)

10

15

20

25

30

35

40

11

Contains instructions that only go to cluster one, early or
late unit, and are not targets for dependent pair

instructions.

Type E 188 (Ci=01, Li=0, Ti=1)
Contains instructions that only go to cluster one, early or

late unit, and are targets for dependent pair instructions.

Type F 190 (Ci=00, Li=0, Ti=1)
Contains instructions that go to either cluster, early or

late unit, and are targets for dependent pair instructions.

Type G 192 (Ci=00, Li=1, Di=0)
Contains instructions that can go to the late unit of either
cluster and are not dependent instructions of dependent pair

instructions.

Type H 194 (Ci=10, Li=1, Di=0)
Contains instructions that only go to the late unit of
cluster zero and are not dependent instructions of dependent

pair instructions.

Type C’ 196 (Ci=x0, Li=x, Di=1)
Contains dependent instructions of which the targets are in

group C.

Type I 198 (Ci=01, Li=1, Di=0)
Contains instructions that only go to the late unit of
cluster one and are not dependent instructions of dependent

pair instructions.

Type E* 200 (Ci=0x, Li=x, Di=1)
Contains dependent instructions of which the targets are in

Group E.

Type F’ 202 (Ci=00, Li=x, Di=l)
Contains dependent instructions of which the targets are in

group F.

Figure 5 shows the process of selecting instructiofs from PEQ 42 to

issue to Fixed Point unit 44. It consists of three steps:

10

15

20

25

30

35

40

12

* Bucket Classification 176: group ready instructions (Rv=1)
into the appropriate bucket 180-202 (see Figure 6A4).

* Age prioritization 178: calculate the relative ages of the
ready instructions (RvV=1) in each bucket. This is
accomplished by examining priority array latches 170 and
generating the pointer that points to the PEQ entry that
contains the instruction. For example, if the oldest ready
instruction in the F bucket is in entry number 3 of PEQ 42,

then the F1 input of multiplexor 500 will have a value of 3.

* Bucket selection 177, 179: count the number of ready
instructions within a bucket and generate the select controls
to multiplexor 500, 502, 504, 506. This is accomplished by
counting the number of instructions within a bucket and
examining the count to generate the select controls. For
example, if there is one instruction in the F bucket, at
least one instruction in the E bucket, two instructions in
the G bucket, and no instruction in other buckets, then the
control to multiplexor 500 will select input F1l, the control
to multiplexor 502 will select input E, the control to
multiplexor 504 will select input G1, the control to

multiplexor 506 will select input G2.

Figure 6A shows the bucket classification. The age prioritizing
within each bucket is shown vertically (top to bottom for each bucket).
Figure 6B shows the logical selection table. Each column contains the
candidates for each execution unit 46, 48, 50, 52, where the letter
specifies the instruction bucket assigned to each execution unit 46, 48,
50, 52, and the number specifies the relative age of the instruction
within a particular bucket. Only one instruction per column can be
selected. The selection priority is from left to right and top to
bottom. For example, if Al (this notation refers to the oldest
instruction in bucket A) is selected for cluster zero early unit 46, then
from bucket A only A2 may be selected for cluster one early unit 50.

O

Preferably, the maximum number of instructions.ih each bucket
matches the number of execution units. For example, bucket A (180 in
Figure 6A) has four instructions which can go to any of the four
execution units 46, 48, 50, 52, bucket C (184 in Figure 6A) has two

instructions since they must go to cluster zero which has only two

10

15

20

25

30

35

40

13

execution units 46, 48. By doing so, this invention allows an
implementation of a "deep" PEQ, i.e., a PEQ having more entries than the
number of execution units, while confining the selection process to a

manageable number of instructions within each bucket.

Table 1, "Program Example", shows an instruction sequence sample.
Table 2, "PEQ Dynamic Instruction Selection Example", shows how the
instruction sequence from Table 1 passes through the PEQ 42. Column 1
specifies the cycle (time advances from cycle 0 to 5), column 2 specifies
the instruction tag, column 3 specifies the instruction in PEQ 42, column
4 specifies the instruction buckets, column 5 specifies the units that
the instruction is issued to, column 6 specifies where the instructions

are executed.

Note that as instructions are issued and executed, the state bits
in PEQ 42 change dynamically and the instructions are dynamically
reassigned into different buckets with different relative age. This is
caused by instruction interaction at execution, such as with issued
priority conflicts (i.e., instruction 18 in cycle 3), conditions that
cause delay in execution (cache miss, multi-cycle operations),
mispredicted branch instructions, or interrupts. Also note that store
instructions and branch instructions are issued to their respective

queues and do not appear in PEQ 42.

Although the present invention and its advantages have been
described in detail, it should be understood that various changes,
substitutions and alterations can be made herein without departing from

the spirit or scope of the invention as defined in the appended claims.

10

15

20

25

30

14

Table 1: Program Example

I tag
(sequence from
top to bottom)

instruction
*=fixed point operation
() =Register location of operand
() Memory=memory access from address in ()

OB WNEQAD Y

(5)<--(29)*(28)
(2)<--(31)*(30)
(1)<--(29) *(28)
Store
(3)<--(4)*(5)
Branch not taken
(6)<--(8)*(5)
(7)<--(8)*(9)
Store

(10) <-- (3)Memory
(11)<-- (2)Memory
(12) <--(5) * (1)
Store

(13)<--(12) *(10)
(14)<--(13)*(10)
(7)<--(8)*(9)
Store
(9)<--(12)Memory
(10) <--(3)Memory
(15) <--(7) * (5}
(16)<--(15)*(7)
(17)<--(18)*(19)
(20) <--(21) * (22)

-

10

15

Table 2: PEQ Dynamic Instruction Selection Example

Ccycle I Tag Instruction in Bucket Issue Cluster Comment
PEQ to execute
COE/COL
CIE/CIL
0 a (5)<--(29)*(28) F1 COE -Instructions a and 2
b (2)<--(31)*(30) Al ClE are paired across 2
c (1)<--(29)*(28) A2 ClL instructions and
2 (3)<--(4)*(5) F1 coL issued together
- (0 cycle forwarding)
1 4 (6)<--(8)*(5) Al COE a/2 b/c -Instruction 4 1is
5 (7)<--(8)*(9) A2 C1E classified as Al (not
6 (10)<-- H1 coL Bl) because
7 (3)Memory (23] clL instruction a (which
8 (11)<-- 4 depends on) is
(2)Memory exeucted in the early
- unit (1 cycle
- forwarding)
-Instruction 7 is a
load and depends on
instruction 2 so it
is issued to cluster
0 (1 cycle forwarding
within cluster)
2 9 (12)<--(5)*(1) Al ClE 4/7 5/8 -Instructions 11 and
11 (13)<--(12)*(10) c1 COE 12 are paired and
12 (14)<--(13)*(10) c’1 coL issued to cluster 0
13 (7)<--(8)*(9) A2 clL because they depend
- on instruction 7
- which is executing in
cluster 0
3 15 (9)<-- G1 CcOL 11/12 /13 -Even though
16 (12)Memory G2 CclL instruction 18 is
17 (10)<-- D1 ClE ready, it is not
18 (3)Memory D2 - issued because
18 (15)<--(7)*(5) Al COE instruction 16 is
(16)<--(15)*(7) selected to the late
(17)<--(18)*(19) unit of cluster 1
- already (G2 has
higher priority than
D2). Instruction 19
is selected instead
{out of order issued
due to different
bucket)
4 20 (20)<--(21)*(22) A2 ClE 19/15 17/16 -Instruction 18
- changes from bucket
- D2 to Al dynamically
- and is issued to the
18 (16)<--(15)*(7) Al COE early unit of cluster
- 0
5 18/- 20/-

10

15

20

25

30

35

40

16

CLAIMS

1. An apparatus for dispatching instructions in an information

handling system, said apparatus comprising:

a pre-execution queue for storing instructions;

at least a first execution cluster operably coupled to said
pre-execution queue comprising an early execution unit for executing a
first instruction dispatched from said pre-execution queue to generate
and forward a first result and a late execution unit for executing a
second instruction dispatched from said pre-execution queue to generate
and forward a second result after said first execution unit forwards said

first result; and

means operably associated with said pre-execution queue for
prioritizing the order in which instructions in said pre-execution queue

are dispatched to said execution cluster.

2. The apparatus, as recited in claim 1, wherein said means for
prioritizing includes a plurality of containers for grouping instructions
in said pre-execution queue according to the availability of source

operands for the instructions.

3. The apparatus, as recited in claim 1, wherein said means for
prioritizing includes a plurality of containers for grouping instructions
in said pre-execution queue according to the dependencies of the

instructions.

4. The apparatus, as recited in claim 1, wherein said means for
prioritizing includes a plurality of containers for grouping instructions

in said pre-execution queue according to the type of the instruction.

5. The apparatus, as recited in claim 4, wherein said means for
prioritizing includes at least one container for grouping load

instructions in said pre-execution queue.

6. The apparatus, as recited in any preceding claim, wherein said
means for prioritising includes a plurality of containers for grouping
instructions in said pre-execution queue, and wherein said pre-execution

queue includes means for assigning at least one of said early or late

10

15

20

25

30

35

40

17

execution units to entries in the containers so that instructions in a
particular entry of a particular container are dispatched to said

execution unit assigned to said particular entry.

7. The apparatus, as recited in any previous claim, wherein said
means for prioritising includes a plurality of containers for grouping
instructions in said pre-execution queue, the apparatus further
including means for prioritizing said containers such that the order in
which instructions in said pre-execution queue are dispatched is
prioritized according to which of said containers the instruction is

grouped in.

8. The apparatus, as recited in claim 7, further including means for
prioritizing instructions in a container according to the age of the
instruction so that the oldest instruction in a selected entry in a
container is dispatched to said execution unit assigned to said selected

entry.

9. The apparatus, as recited in claim 8, further including means for
prioritizing containers and prioritizing instructions in said containers

by age in parallel.

10. The apparatus, as recited in any preceding claim, further
comprising a first and a second execution cluster operably coupled to
said pre-execution queue, said first and second execution clusters
comprising an early execution unit for executing a first instruction to
generate and forward a first result and a late execution unit for
executing a second instruction to generate and forward a second result

after said first execution unit forwards said first result.

11. A method for dispatching instructions in an information handling
system including at least a first execution cluster operably coupled to a
pre-execution queue comprising an early execution unit for executing a
first instruction dispatched from the pre-execution queue to generate and
forward a first result and a late execution unit for executing a second
instruction dispatched from the pre-execution queue‘to generate and
forward a second result after the first execution unit’ forwards the first

result, said method comprising the steps of:

storing instructions in the pre-execution queue; and

10

15

18

prioritizing the order in which instructions in the pre- execution

queue are dispatched to the execution cluster.

12. The method, as recited in claim 11, wherein said step of
prioritizing includes the step of grouping instructions in the
pre-execution queue according to the availability of source operands for

the instructions.

13. The method, as recited in claim 11, wherein the step of
prioritizing includes the step of grouping instructions in the

pre-execution queue according to the dependencies of the instructions.

14. The method, as recited in claim 11, wherein said step of
prioritizing includes the step of grouping instructions in said

pre-execution queue according to the type of instruction.

15. The method, as recited in claim 14, wherein said step of
prioritizing includes the step of grouping load instructions in said

pre-execution queue.

Application No: GB 9725995.6 Examiner: Melanie Gee

Claims searched: 1-15

Patents Act 1977

P ine
Ofhce

19

Date of search: 25 June 1998

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.P): G4A (APP, APX)
Int Cl (Ed.6): GOG6F 9/38
Other: Online: WPI, INSPEC, COMPUTER

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims
A EP 0767425 A (DIGITAL EQUIPMENT CORPORATION), see
especially cols. 5-8
A EP 0730224 A (HAL COMPUTER SYSTEMS), see whole
document
A | WO 97/25670 A1 (ADVANCED MICRO DEVICES), see whole
document
X US 5519864 A (MARTELL et al.), see whole document L1
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or after the declared priority date but before

with one or more other documents of same category. the filing date of this invention.
E Patent document published on or after, but with priority date earlier

& Member of the same patent family

than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

