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(57) Abstract: A metabolic profiling approach for identitfying biomarkers that provide highly sensitive and specific colorectal cancer
(CRCO) detection and monitoring using serum samples. The methods can be used for distinguishing CRC patients from both healthy
controls and polyp patients, as well as to monitor disease progression or response to therapy. Receiver operator characteristic curves
generated based on these models showed high sensitivities for differentiating CRC patients from healthy controls or polyp patients,
good specificities, low false discovery rates, and excellent areas under the curve were obtained. Monte Carlo cross validation
(MCCV) was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.
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BIOMARKERS FOR DETECTING AND MONITORING COLON CANCER

[0001] This application claims the benefit of United States provisional patent application
numbers 61/928,596, filed January 17, 2014; 61/947,157, filed March 3, 2014, and 61/993,573,

filed May 15, 2014, the entire contents of each of which are incorporated herein by reference.

TECHNICAL FIELD OF THE INVENTION

[0002] The present invention relates to molecules and methods for detection and monitoring of
colon cancer. More specifically, the invention relates to a panel of metabolites and amino acids
that exhibit changes which can be detected in the bodily fluid of colorectal cancer patients.

Detection of these changes provides improved methods of ascertaining colon cancer status in a

subject.

BACKGROUND OF THE INVENTION

[0003] Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the third
leading cause of cancer death for both men and women in the US. The American Cancer
Society estimates that 136,830 people will be diagnosed in 2014 with colorectal cancer and
50,310 people will die of the disease in the US. Although, the percentage of deaths due to CRC

is steadily decreasing over the years, the number of deaths is still unnecessarily high.

[0004] CRC patients are usually monitored using diagnostic blood tests and/or imaging to
ensure that they remain disease free and are treated promptly with second line therapies upon
relapse. Additionally, malignant disease progression is often associated with drug resistance;
therefore, monitoring disease progression can indicate therapeutic response and/or suggest the
need for alternative therapies. In general, a monitoring test needs to be both sensitive and
specific to ensure either initiation/continuation of beneficial therapies or early

discontinuation/replacement of ineffective treatments.

[0005] The most widely used CRC monitoring test is carcinoembryonic antigen (CEA); CEA is a
glycoprotein involved in cell adhesion that is normally produced during fetal development.
Production of this protein ceases prior to birth and is, therefore, not typically present in the blood
of healthy adults. Elevated levels of CEA (>2.5 ng/mL) are most commonly used as a biomarker
for monitoring of CRC following tumor resection and for monitoring the response of metastatic
CRC to systemic therapy. Ratio methods that compare sequential CEA measurements are also
used. While CEA is FDA approved for these applications, elevated CEA levels are also
associated with other types of carcinomas, such as gastric, pancreatic, lung, and breast, making
it an unreliable biomarker solely for CRC cancer diagnosis or early cancer detection. CEA levels

can respond to recurrent CRC with a sensitivity and specificity that is less than optimal.
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[0006] There remains a need for improved and less invasive methods for monitoring and
detecting CRC. In particular, there remains a need for methods that combine the analysis of
amino acids in different domains, as well as of metabolites, to derive a multivariate statistical
model for the detection of colon cancer. There also remains a need for targeted serum
metabolic profiling of CRC. Moreover, methods are needed that consider the metabolic
differences between CRC patients and two different groups of non-cancer patients, polyp
patients and healthy controls, which both have important clinical impacts on correct CRC

diagnosis.

SUMMARY OF THE INVENTION

[0007] The invention meets these needs and others by providing methods of detecting and
monitoring colorectal cancer (CRC) in a subject. In one embodiment, the method of detecting
CRC comprises measuring the amount or concentration of one or more metabolites in a sample
obtained from the subject. In one embodiment, the method comprises measuring the
concentrations of at least five components of a panel of a plurality of serum metabolites in a
serum sample from the subject. For example, the components of the panel can be selected from
the metabolites listed in the tables and in the examples below. The method further comprises
determining a ratio of the concentration or amount of each of the measured components to a
control serum concentration or amount of each of the components; and detecting CRC in the
subject when the ratio is less than 0.95 or greater than 1.05 for at least five of the components.
In some embodiments, detecting CRC occurs when the ratio determined is less than 0.9 or
greater than 1.1. In some embodiments, detecting CRC occurs when the ratio determined is
less than 0.85 or greater than 1.2. In some embodiments, detecting CRC occurs when the ratio

determined is less than 0.8 or greater than 1.3.

[0008] In one representative embodiment, the components of the panel are selected from the
group consisting of: glyceraldehyde, Hippuric Acid, Glycochenodeoxycholate, Glycocholate,
Linolenic Acid, Hydroxyproline/Aminolevulinate, N-AcetylGlycine, and Leucic Acid. In another
embodiment, the components of the panel are selected from the group consisting of: Oxalic
Acid, Glyceraldehyde, Malonic Acid/3-hydroxybutyric acid (3HBA), Maleic Acid, N-
AcetylGlycine, Glutaric Acid, Aspartic Acid, D-Leucic Acid, Allantoin, 2-Aminoadipate,
phosphoenolpyruvic acid (PEP), Hippuric Acid, Kynurenate, Xanthurenate, Pentothenate,
Cystathionine, Biotin, Linoleic Acid, Linolenic Acid, Glycochenodeoxycholate, Adenylosuccinate,
Glycocholate, Trimethylamine-N-oxide, Alanine, Dimethylglycine, Creatinine, Proline,
Hydroxyproline/Aminolevulinate, Lysine, Glutamic acid, Methionine, Histidine, L-Kynurenine, 2'-

Deoxyuridine, Uridine, and Adenosine.

[0009] In one embodiment, detecting CRC occurs when the ratio of components N-
AcetylGlycine and Linolenic Acid is less than 0.85, and the ratio of components Glyceraldehyde,

Hippuric Acid, Glycochenodeoxycholate, Glycocholate, Hydroxyproline/Aminolevulinate, and

2
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Leucic Acid is greater than 1.2. In a typical embodiment, the at least five components comprise
Hippuric Acid, Glycochenodeoxycholate, Glycocholate, Hydroxyproline/Aminolevulinate, and
Leucic Acid. Optionally, the method further comprises measuring the concentration of at least
one additional serum metabolite selected from the group consisting of: Oxalic Acid,
Glyceraldehyde, Malonic Acid/3-hydroxybutyric acid (3HBA), Maleic Acid, N-AcetylGlycine,
Glutaric Acid, Aspartic Acid, D-Leucic Acid, Allantoin, 2-Aminoadipate, phosphoenolpyruvic acid
(PEP), Hippuric Acid, Kynurenate, Xanthurenate, Pentothenate, Cystathionine, Biotin, Linoleic
Acid, Linolenic Acid, Glycochenodeoxycholate, Adenylosuccinate, Glycocholate,
Trimethylamine-N-oxide, Alanine, Dimethylglycine, Creatinine, Proline,
Hydroxyproline/Aminolevulinate, Lysine, Glutamic acid, Methionine, Histidine, L-Kynurenine, 2'-

Deoxyuridine, Uridine, and Adenosine.

[0010] In another embodiment, the metabolites are amino acids, including free amino acids
(FAAs), free + soluble protein amino acids (FAASPAAs), and proteome amino acids (PAAs).
Representative amino acids are selected from the group consisting of: aspartic acid, glutamic
acid, glutamine/lysine, and histidine from FAAs, lysine from FAASPAAs, and arginine, serine,
and tyrosine from PAAs. When the relative amounts of aspartic acid and glutamic acid in FAAs
increase, the relative amounts of glutamine/lysine and histidine in FAAs decrease, the relative
amount of lysine in FAASPAAs decreases, and the relative amounts of arginine, serine, and
tyrosine in PAAs decrease, CRC is detected. In a typical embodiment, the method of detecting
colorectal cancer (CRC) in a subject comprises obtaining individual amino acids by subjecting a
serum sample from the subject to acid hydrolysis and measuring the relative distribution of free
amino acids (FAAs), free + soluble protein amino acids (FAASPAAS), and proteome amino
acids (PAAs) in the sample as compared to a control sample; and detecting the presence of
CRC in the subject when the relative amounts of aspartic acid and glutamic acid in FAAs
increase, the relative amounts of glutamine/lysine and histidine in FAAs decreases, the relative
amount of lysine in FAASPAAs decreases, and the relative amounts of arginine, serine, and
tyrosine in PAAs decrease. In one embodiment, the measuring step comprises multivariate

statistical analysis, such as, for example, logistic regression.

[0011] The invention further provides a method of detecting and/or monitoring progression of
colorectal cancer (CRC) in a subject. In one embodiment, the method comprises measuring the
concentrations or amounts of a plurality of serum metabolites in a serum sample from the
subject and determining a ratio of the concentration or amount in the sample relative to a
control. In one embodiment, the method comprises measuring the concentrations or amounts of
at least five components of a panel of a plurality of serum metabolites in a serum sample from
the subject, and determining a ratio of the concentration of each of the components to a control
serum congcentration of each of the components. CRC progression is detected in the subject

when the ratio determined is less than 0.9 or greater than 1.1 for at least five of the
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components. In another embodiment, detecting progression of CRC occurs when the ratio
determined is less than 0.85 or greater than 1.15. In another embodiment, detecting
progression of CRC occurs when the ratio determined is less than 0.95 or greater than 1.2. In
one embodiment, a significant statistical increase in the level of each of the at least five serum

metabolites in the serum sample indicates disease progression.

[0012] In one embodiment, the components of the panel are selected from the group consisting
of: glycine, normetanephrin, ribose-5-P, trimethylamine-N-oxide, histamine, adenylosuccinate,
alanine, pyruvate, D-leucic acid, aminoisobutyrate, lactate, guanosine diphosphate (GDP),
choline, acetoacetate, guanosine triphosphate (GTP), dimethylglycine, fumaric, deoxycytidine
diphosphate (DCDP), serine, succinate, pyridoxal-5-P, creatinine, nicotinate, gibberellin, proline,
glutaric acid, adipic acid, valine, malate, maleic acid, betaine, hypoxanthine, methylmalonate,
threonine, alpha-ketoglutaric acid, dihydroxyacetone phosphate (DHAP), taurine, xanthine,
chenodeoxycholate, creatine, phenylpropanolamine (PPA), glucose 1,6-bisphosphate (G16BP),
hydroxyproline, urate, fructose 6-phosphate/fructose 1-phosphate (F6P/F1P), leucine/iso-
leucine, homogentisate, oxalic acid, ornithine, phosphoenolpyruvic acid (PEP), glyceraldehyde,
homocysteine, glyceraldehyde-3-phosphate (D-GA3P), glycerate, acetylcholine, glycerol-3-P, N-
acetylglycine, glutamine, hyppuric acid, guanidinoacetate, glutamic acid, glucose, mevalonate,
methionine, 4-pyridoxic acid, allantoin, cystamine, 2/3-phosphoglyceric acid, inositol, histidine,
erythrose, homovanilate, carnitine, cystathionine, xanthurenate, phenylalanine, G1P/G6P,
pentothenate, arginine, reduced glutathione, biotin, glucosamine, fructose 1,6-
bisphosphate/fructose 2,6-bisphosphate (F16BP/F26BP), deoxycytidine monophosphate
(DCMP), tyrosine, sucrose, deoxyuridine monophosphate (DUMP), sorbitol, 5-formyl THF,
geranyl pyrophosphate, epinephrine, oxidized glutathione, thymidine cyclophosphate (DTMP),
tryptophan, gama-aminobutyrate, cytidine monophosphate (CMP), 5-hydroxytryptophan,
malonic acid/3-hydroxybutyric acid (3HBA), lactose, uridine, citraconic acid, cyclic guanosine
monophosphate (cGMP), phosphotyrosine, adenine, adenosine monophosphate (AMP),
adenosine, shikimic acid, inosine monophosphate (IMP), inosine, aconitate, prostaglandin
glycerol ester (PGE), guanosine, citrulline, orotidylic acid (OMP), xanthylic acid (XMP), citric
acid, uridine diphosphate (UDP), L-kinurenine, cystine, adenosine diphosphate (ADP), lysine,
xanthosine, folic acid, cytosine, uracil, deoxyuridine triphosphate (DUTP), homoserine, OH-
phenylpyruvate, adenosine triphosphate (ATP), niacinamide, glycochenodeoxycholate,
taurocholate, 1-methylhistamine, glycocholate, fructose, asparagine, dopamine, aspartic acid,
salicylurate, melatonin, methylsuccinate, 2'-deoxyuridine, orotate, myristic acid, 3-
hydroxykynurenine, anthranilate, margaric acid, cytidine, glucoronate, linoleic acid, pyroglutamic
acid, oxaloacetate, linolenic acid, 1-methyladenosine, propionate, galactose, 1-
methylguanosine, 2-aminoadipate, N2,N2-dimethylguanosine, kynorenate, aminolevulinic acid,

and 3-nitro-tyrosine.
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[0013] In another embodiment, the components of the panel are selected from the group
consisting of: Succinate, N2,N2-Dimethylguanosine, Adenine, Citraconic Acid, Methylmalonate,
1-Methylguanosine, and 3-Nitro-tyrosine. In one embodiment, detecting CRC occurs when the
ratio of component 3-Nitro-tyrosine is less than 0.9, and the ratio of components Succinate,
N2,N2-Dimethylguanosine, Adenine, Citraconic Acid, Methylmalonate, and 1-Methylguanosine
is greater than 1.1. In a typical embodiment, the at least five components comprise Succinate,

N2,N2-Dimethylguanosine, Adenine, Citraconic Acid, and 1-Methylguanosine.

[0014] Optionally, the method further comprises measuring the concentration(s) or amount(s) of
at least one additional serum metabolite selected from the group consisting of: Malonic
Acid/3HBA, G16BP, Urate, Aconitate, Homogentisate, MethylSuccinate, 1-Methyladenosine,

Cystathionine, Linolenic Acid, Cytidine, Pyruvate, Alanine, and gama-Aminobutyrate.

[0015] Any of the preceding methods can optionally further comprise measuring
carcinoembryonic antigen (CEA) in a serum sample from the subject. A statistically significant
increase in CEA relative to a control sample is indicative of progression of CRC. In some
embodiments, a level of CEA greater than or equal to about 2.5 ng/mL indicates disease

progression.

[0016] In a typical embodiment, the control serum is obtained from a normal, healthy subject. A
known reference amount or concentration for a normal, healthy subject can also serve as the

control. In some embodiments, the control serum is a sample obtained from the same subject at
an earlier point in time, and is used, for example, to monitor disease progression or response to

treatment.

BRIEF DESCRIPTION OF THE FIGURES

[0017] Figure 1. The distribution of amino acids in a biological system. Endogenous or
exogenous amino acids in a biological system are either metabolized or incorporated into three
domains that include free amino acids (FAAs), peptide amino acids, and proteome amino acids
(PAAs). In this study, we are focusing on amino acids in the three domains within the red

dashed line.

[0018] Figure 2. A schematic illustration of sample preparation to obtain amino acids in the
three domains from a single serum sample, including FAAs (Sample 1), FAASPAAs (Sample 2),
and PAAs (Sample 3).

[0019] Figures 3A-3B. Fig. 3A shows the total ion current (TIC) of the LC-MS/MS data of FAAs
(Sample 1) from a typical serum sample; Fig. 3B shows the individual extracted ion currents
(EICs) for 1, tryptophan; 2, phenylalanine; 3, leucine; 4, isoleucine; 5, tyrosine; 6, methionine; 7,
valine; 8, glycine; 9, alanine; 10, serine; 11, proline; 12, threonine; 13, asparagine; 14, aspartic

acid; 15, lysine; 16, glutamine; 17, glutamic acid; 18, histidine; 19, arginine.
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[0020] Figures 4A-4D. The ROC curves of the penalized logistic regression models based on
the amino acids with P values less than 0.05. (4A) FAAs, (4B), FAASPAAs, (4C) PAAs, and

(4D) the selected amino acids by penalized logistic regression using all three sample types.

[0021] Figures 5A-5C. Box-and-whisker plots for the amino acid markers in constructing the
model in Figure 4D. (5A) aspartic acid, glutamic acid, glutamine/lysine, and histidine from FAAs,

(5B) lysine from FAASPAASs, and (5C) arginine, serine, and tyrosine from PAAs.

[0022] Figure 6. MCCYV of the penalized logistic regression model of Figure 4D in a ROC space.

True class models, blue diamonds; random permutation models, brown squares.

[0023] Figures 7A-7B. PLS-DA VIP plots indicate important metabolite biomarkers (that have
VIP score >1) that can be used for prediction of cancer patients versus polyp patients or healthy
controls. VIP generated based on PLS-DA models: (7A) Cancer patients vs. Healthy Controls.
(7B) Cancer patients vs. Polyp patients. Metabolites IDs correspond to the IDs from list in Table
S1 available online as Supporting Information for Zhu et al., J. Proteome Res., 2014, 13 (9):
4120-4130.

[0024] Figures 8A-8B. Bar graphs of metabolites with PLS-DA VIP scores >1 in the comparison
of (8A) CRC cancer vs. Healthy controls; (8B) Cancer patients vs. Polyp patients (error bars

show standard error of the mean).

[0025] Figures 9A-9B. ROC curves for the enhanced PLS-DA model combining metabolites

(P<0.05 and VIP score >1) and clinical parameters (age, gender, smoking status, and alcohol
status). (9A) Cancer patients vs. Healthy Controls; AUROC 0.93, Sensitivity: 0.96, Specificity:
0.80; (9B) Cancer patients vs. Polyp patients; AUROC 0.95, Sensitivity: 0.89, Specificity: 0.88.

[0026] Figures 10A-10B. Monte Carlo cross validation (MCCV) results of enhanced PLS-DA
models, using metabolites (P<0.05 and VIP score >1) and clinical parameters (age, gender,
smoking status, and alcohol status). True, true class models; Random, random permutation
model. From the left to the right, the respective testing specificities were 0.95, 0.85 and 0.75.

(10A) Cancer patients vs. Healthy Controls, (10B) Cancer patients vs. Polyps patients.

[0027] Figure 11. Metabolic network of significantly changed metabolites in central carbon
metabolism (Glycolysis, TCA, and other related pathways). Bar chart left to right: CRC, Healthy
controls, and polyp patients; Y axis represents relative abundance of MS signal (normalized to
the highest peaks in comparison). Dash lines surrounding compounds means measured but not

significant between any of two groups. *, p<0.05; **, p<0.01; ***, p<0.001.

[0028] Figure 12. Metabolic network of the significantly changed metabolites involved in amino
acid, purine, and pyrimidine metabolisms. Bar charts left to right: CRC patients, Healthy

Controls and Polyp patients, Y axis represents relative abundance of MS signal (normalized to
the highest peaks in comparison). Dashed lines surrounding compounds means measured but

not significant diffference between any of two groups. *, p<0.05; **, p<0.01; ***, p<0.001.

6
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[0029] Figure 13. Flow chart describing biomarker selection, model development, and

validation.

[0030] Figures 14A-14B. ROC curves of PLS-DA models using all metabolites that have both U-
test p-values <0.05 and VIP scores >1. (14A) Cancer patients vs. Healthy Control; AUROC
0.90, Sensitivity: 0.80, Specificity: 0.84; (14B) Cancer patients vs. Polyp patients; AUROC 0.94,
Sensitivity: 0.92, Specificity: 0.86.

[0031] Figures 15A-15B. Monte Carlo cross validation (MCCV) results of proposed PLS-DA
models using only metabolites that have VIP scores>1. True: true class models; Random:
random permutation model. From the left to the right, the respective testing specificities were
0.95, 0.85 and 0.75. (15A) Cancer patients vs. Healthy Controls (15B) Cancer patients vs. Polyp

patients.

[0032] Figure 16. Box plots of metabolites that significantly changed (p<0.05) over different
CRC stages.

[0033] Figures 17A-17B. Receiver operator characteristic (ROC) curves for (17A) CEA values
(AUROC=0.77) and (17B) CEA sequential sample ratios (AUROC=0.80) for disease

progression vs. other disease status (stable disease and complete remission).

[0034] Figures 18A-18F. Individual ROC curves for the top six metabolites with p-value<0.01
comparing DP with CR and SD using sequential metabolite ratios: (18A) succinate,
AUROC=0.83; (18B) N2,N2-dimethylguanosine, AUROC=0.82; (18C) citraconic acid,
AUROC=0.81; (18D) adenine, AUROC=0.81; (18E) methylmalonate, AUROC=0.81; and (18F)
1-methylguanosine, AUROC=0.79.

[0035] Figures 19A-19B. Sensitivity and specificity when using five core metabolites. (19A)
ROC curve of PLS-DA model using five metabolites (with VIP>2) for DP vs. CR + SD: AUROC=
0.91; sensitivity= 0.83; specificity= 0.94. (19B) Monte Carlo cross validation (MCCV) PLS-DA
results from the same 5 metabolites: True, true class models; Random, random permutation

model. The testing group specificities were 0.95, 0.85, and 0.75.

[0036] Figures 20A-20B. Sensitivity and specificity when using five metabolites plus CEA.

(20A) ROC of PLS-DA model using five metabolites (with VIP>2) and CEA ratios for DP vs. CR
+ SD: AUROC= 0.912 (increased from 0.907, see Figure 19); sensitivity= 0.83; specificity= 0.94.
(20B) Monte Carlo cross validation (MCCV) PLS-DA results using the same metabolites: True,
true class models; Random, random permutation model. The testing specificities were 0.95,
0.85, and 0.75.

[0037] Figures 21A-21B. Sensitivity and specificity when using 6-7 metabolites to compare
different disease statuses. (21A) ROC of PLS-DA model using seven metabolites (with
VIP>1.8) and CEA ratios for CRC DP vs. SD. AUROC=0.95. (21B) ROC of PLS-DA model
using six metabolites (with VIP>1.8) and CEA ratios for CRC DP vs. CR. AUROC=0.91.

7
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[0038] Figure 22. Metabolic network of significantly changed metabolites in several important
pathways (e.g., glycolysis, TCA, purine and pyrimidine metabolism). Bar chart: blue (left),
disease progression; red (right), other disease status (CR and SD); Y axis represents the

metabolite ratios to their previous blood draws. *, p<0.05; **, p<0.01.

[0039] Figures 23A-23D. PLS-DA models use only eight core metabolites in the comparison of
(23A) CRC patients and Health controls, AUROC=0.83; and (23B) CRC patients and Polyp
patients, AUROC=0.81. Monte Carlo cross validation results of 8 core metabolites PLS-DA
models for (23C) CRC patients and Health controls; and (23D) CRC patients and Polyp

patients.

DETAILED DESCRIPTION OF THE INVENTION

[0040] The present invention is based on the surprising discovery of a metabolic profiling
approach for identifying biomarker candidates that enable highly sensitive and specific
colorectal cancer (CRC) detection and monitoring using human serum samples. The analysis
models established and described herein proved to be powerful for distinguishing CRC patients
from both healthy controls and polyp patients. Receiver operator characteristic curves
generated based on these models showed high sensitivities for differentiating CRC patients
from healthy controls or polyp patients, good specificities (low false discovery rates), and
excellent areas under the curve were obtained. Monte Carlo cross validation (MCCV) was also

applied, demonstrating the robust diagnostic power of this metabolic profiling approach.

Definitions

[0041] All scientific and technical terms used in this application have meanings commonly used
in the art unless otherwise specified. As used in this application, the following words or phrases

have the meanings specified.

[0042] As used herein, a “sample” from a subject means a specimen obtained from the subject

that contains blood, serum, saliva, urine, or other bodily fluid.

[0043] As used herein, measuring a “concentration” of analyte in a sample means obtaining

information indicative of the relative amount of the analyte per unit volume of the sample.

[0044] As used herein, the term "subject" includes any human or non-human animal. The term
"non-human animal” includes all vertebrates, e.g., mammals and non-mammals, such as non-

human primates, horses, sheep, dogs, cows, pigs, chickens, amphibians, reptiles, rodents etc.

[0045] As used herein, a “control” sample, unless context clearly indicates otherwise, means a
sample that is representative of normal measures of the respective analyte. The sample can be
an actual sample used for testing, or a reference level or range, based on known normal

measurements of the corresponding analyte. Where disease status is being monitored in a
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patient over time, a “baseline” sample obtained from the same subject at an earlier time point

can serve as the control sample.

[0046] As used herein, "a" or "an" means at least one, unless clearly indicated otherwise.

Methods of Detecting & Monitoring Colorectal Cancer

[0047] The invention provides methods of detecting and monitoring colorectal cancer (CRC)
in a subject. The methods described in detail below can be used for screening subjects as a
means of early and/or relatively noninvasive detection of CRC. The methods can also be
used to distinguish subjects with cancer from healthy subjects, subjects with cancer from
subjects with polyps, and healthy subjects from subjects with polyps. Monitoring of CRC
patients using the methods described herein also permits a less invasive means of detecting
recurrence or monitoring response to therapy. Adjustments to therapy can be made more

quickly and effectively through these methods, improving patient outcomes.

[0048] In one embodiment, the method of detecting CRC comprises measuring the amount
or concentration of one or more metabolites in a sample obtained from the subject. In one
embodiment, the method comprises measuring the concentrations of at least five components
of a panel of a plurality of serum metabolites in a serum sample from the subject. For
example, the components of the panel can be selected from the metabolites listed in the
tables and in the examples below. The method further comprises determining a ratio of the
concentration or amount of each of the measured components to a control serum
concentration or amount of each of the components; and detecting CRC in the subject when
the ratio is less than 0.95 or greater than 1.05 for at least five of the components. In some
embodiments, detecting CRC occurs when the ratio determined is less than 0.9 or greater
than 1.1. In some embodiments, detecting CRC occurs when the ratio determined is less than
0.85 or greater than 1.2. In some embodiments, detecting CRC occurs when the ratio

determined is less than 0.8 or greater than 1.3.

[0049] In one representative embodiment, the components of the panel are selected from the
group consisting of: glyceraldehyde, hippuric acid, glycochenodeoxycholate, glycocholate,

linolenic acid, hydroxyproline/aminolevulinate, N-acetylglycine, and leucic acid. In another

embodiment, the components of the panel are selected from the group consisting of: oxalic acid,

glyceraldehyde, malonic acid/3-hydroxybutyric acid (3HBA), maleic acid, N-acetylglycine,
glutaric acid, aspartic acid, D-leucic acid, allantoin, 2-aminoadipate, phosphoenolpyruvic acid
(PEP), hippuric acid, kynurenate, xanthurenate, pentothenate, cystathionine, biotin, linoleic acid,
linolenic acid, glycochenodeoxycholate, adenylosuccinate, glycocholate, trimethylamine-N-
oxide, alanine, dimethylglycine, creatinine, proline, hydroxyproline/aminolevulinate, lysine,

glutamic acid, methionine, histidine, L-kynurenine, 2'-deoxyuridine, uridine, and adenosine.
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[0050] In one embodiment, detecting CRC occurs when the ratio of components N-acetylglycine
and linolenic acid is less than 0.85, and the ratio of components glyceraldehyde, hippuric acid,
glycochenodeoxycholate, glycocholate, hydroxyproline/aminolevulinate, and leucic acid is
greater than 1.2. In a typical embodiment, the at least five components comprise hippuric acid,
glycochenodeoxycholate, glycocholate, hydroxyproline/aminolevulinate, and leucic acid.
Optionally, the method further comprises measuring the concentration of at least one additional
serum metabolite selected from the group consisting of: oxalic acid, glyceraldehyde, malonic
acid/3-hydroxybutyric acid (3HBA), maleic acid, N-acetylglycine, glutaric acid, aspartic acid, D-
leucic acid, allantoin, 2-aminoadipate, phosphoenolpyruvic acid (PEP), hippuric acid,
kynurenate, xanthurenate, pentothenate, cystathionine, biotin, linoleic acid, linolenic acid,
glycochenodeoxycholate, adenylosuccinate, glycocholate, trimethylamine-N-oxide, alanine,
dimethylglycine, creatinine, proline, hydroxyproline/aminolevulinate, lysine, glutamic acid,

methionine, histidine, L-kynurenine, 2'-deoxyuridine, uridine, and adenosine.

[0051] In another embodiment, the metabolites are amino acids, including free amino acids
(FAAs), free + soluble protein amino acids (FAASPAAs), and proteome amino acids (PAAs).
Representative amino acids are selected from the group consisting of: aspartic acid, glutamic
acid, glutamine/lysine, and histidine from FAAs, lysine from FAASPAAs, and arginine, serine,
and tyrosine from PAAs. When the relative amounts of aspartic acid and glutamic acid in FAAs
increase, the relative amounts of glutamine/lysine and histidine in FAAs decrease, the relative
amount of lysine in FAASPAAs decreases, and the relative amounts of arginine, serine, and
tyrosine in PAAs decrease, CRC is detected. In a typical embodiment, the method of detecting
colorectal cancer (CRC) in a subject comprises obtaining individual amino acids by subjecting a
serum sample from the subject to acid hydrolysis and measuring the relative distribution of free
amino acids (FAAs), free + soluble protein amino acids (FAASPAAS), and proteome amino
acids (PAAs) in the sample as compared to a control sample; and detecting the presence of
CRC in the subject when the relative amounts of aspartic acid and glutamic acid in FAAs
increase, the relative amounts of glutamine/lysine and histidine in FAAs decreases, the relative
amount of lysine in FAASPAAs decreases, and the relative amounts of arginine, serine, and
tyrosine in PAAs decrease. In one embodiment, the measuring step comprises multivariate

statistical analysis, such as, for example, logistic regression.

[0052] The invention further provides a method of detecting and/or monitoring progression of
colorectal cancer (CRC) in a subject. In one embodiment, the method comprises measuring the
concentrations or amounts of a plurality of serum metabolites in a serum sample from the
subject and determining a ratio of the concentration or amount in the sample relative to a control
(which, for monitoring progression, can be an earlier, “baseline” sample obtained from the same
subject). In one embodiment, the method comprises measuring the concentrations or amounts

of at least five components of a panel of a plurality of serum metabolites in a serum sample from
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the subject, and determining a ratio of the concentration of each of the components to a control
serum congcentration of each of the components. CRC progression is detected in the subject
when the ratio determined is less than 0.9 or greater than 1.1 for at least five of the
components. In another embodiment, detecting progression of CRC occurs when the ratio
determined is less than 0.85 or greater than 1.15. In another embodiment, detecting
progression of CRC occurs when the ratio determined is less than 0.95 or greater than 1.2. In
one embodiment, a significant statistical increase in the level of each of the at least five serum
metabolites in the serum sample indicates disease progression. For monitoring CRC, serial
blood samples are obtained and the ratio of the (5) metabolites from one time point (i.e., 1) are
compared to those at an earlier time point (t0). The “control” sample in this example is really a
baseline sample from the patient being monitored for disease progression, remission or stable

disease.

[0053] In one embodiment, the components of the panel are selected from the group consisting
of: glycine, normetanephrin, ribose-5-P, trimethylamine-N-oxide, histamine, adenylosuccinate,
alanine, pyruvate, D-leucic acid, aminoisobutyrate, lactate, GDP, choline, acetoacetate, GTP,
dimethylglycine, fumaric, DCDP, serine, succinate, pyridoxal-5-P, creatinine, nicotinate,
gibberellin, proline, glutaric acid, adipic acid, valine, malate, maleic acid, betaine, hypoxanthine,
methylmalonate, threonine, alpha-ketoglutaric acid, DHAP, taurine, xanthine,
chenodeoxycholate, creatine, PPA, G16BP, hydroxyproline, urate, F6P/F1P, leucine/iso-leucine,
homogentisate, oxalic acid, ornithine, PEP, glyceraldehyde, homocysteine, D-GA3P, glycerate,
acetylcholine, glycerol-3-P, N-acetylglycine, glutamine, hyppuric acid, guanidinoacetate,
glutamic acid, glucose, mevalonate, methionine, 4-pyridoxic acid, allantoin, cystamine, 2/3-
phosphoglyceric acid, inositol, histidine, erythrose, homovanilate, carnitine, cystathionine,
xanthurenate, phenylalanine, G1P/G6P, pentothenate, arginine, reduced glutathione, biotin,
glucosamine, F16BP/F26BP, DCMP, tyrosine, sucrose, DUMP, sorbitol, 5-formyl THF, geranyl
pyrophosphate, epinephrine, oxidized glutathione, DTMP, tryptophan, gama-aminobutyrate,
CMP, 5-hydroxytryptophan, malonic acid/3HBA, lactose, uridine, citraconic acid, cGMP,
phosphotyrosine, adenine, AMP, adenosine, shikimic acid, IMP, inosine, aconitate, PGE,
guanosine, citrulline, OMP, XMP, citric acid, UDP, L-kinurenine, cystine, ADP, lysine,
xanthosine, folic acid, cytosine, uracil, DUTP, homoserine, OH-phenylpyruvate, ATP,
niacinamide, glycochenodeoxycholate, taurocholate, 1-methylhistamine, glycocholate, fructose,
asparagine, dopamine, aspartic acid, salicylurate, melatonin, methylsuccinate, 2'-deoxyuridine,
orotate, myristic acid, 3-hydroxykynurenine, anthranilate, margaric acid, cytidine, glucoronate,
linoleic acid, pyroglutamic acid, oxaloacetate, linolenic acid, 1-methyladenosine, propionate,
galactose, 1-methylguanosine, 2-aminoadipate, N2,N2-dimethylguanosine, kynorenate,

aminolevulinic acid, and 3-nitro-tyrosine.
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[0054] In another embodiment, the components of the panel are selected from the group
consisting of: Succinate, N2,N2-dimethylguanosine, adenine, citraconic acid, methylmalonate,
1-methylguanosine, and 3-nitro-tyrosine. In one embodiment, detecting CRC occurs when the
ratio of component 3-Nitro-tyrosine is less than 0.9, and the ratio of components succinate,
N2,N2-dimethylguanosine, adenine, citraconic acid, methylmalonate, and 1-methylguanosine is
greater than 1.1. In a typical embodiment, the at least five components comprise succinate,

N2,N2-dimethylguanosine, adenine, citraconic acid, and 1-methylguanosine.

[0055] Optionally, the method further comprises measuring the concentration(s) or amount(s) of
at least one additional serum metabolite selected from the group consisting of: malonic
acid/3HBA, G16BP, urate, aconitate, homogentisate, methylsuccinate, 1-methyladenosine,

cystathionine, linolenic acid, cytidine, pyruvate, alanine, and gama-aminobutyrate.

[0056] Any of the preceding methods can optionally further comprise measuring

carcinoembryonic antigen (CEA) in a serum sample from the subject. A statistically significant
increase in CEA relative to a baseline or control sample is indicative of progression of CRC. In
some embodiments, a level of CEA greater than or equal to about 2.5 ng/mL indicates disease

progression.

[0057] In a typical embodiment, the baseline serum is obtained from a the same subject. A
known reference amount or concentration for a normal, healthy subject can also serve as the

control.

[0058] Methods for use in the measuring step of the method include, but are not limited to, liquid
chromatography, mass spectrometry, enzymatic assay, and/or immunoassay. Representative
examples of methods for measuring metabolites include Time-of-flight mass analyzers, Gas
chromatography, capillary electrophoresis, Fourier transform ion cyclotron resonance (FT-ICR),
LC-MS (moderately high-throughput), ultrahigh pressure liquid chromatography (UPLC),
extractive electrospray ionization MS (EESI-MS), desorption electrospray atmospheric ionization
MS (DESI-MS), direct analysis in real time MS (DART-MS), and matrix-assisted laser
desorption/ionization MS (MALDI-MS). Such methods are reviewed in Gowda et al., 2008,
Expert Rev Mol Diagn, 8(5):617-633.

[0059] Gowda et al., supra, also reviews statistical methods suitable for analyzing results of
metabolic measurements that are suitable for use in the determining step of the above methods.
Both univariate and multivariate analyses can be used in various embodiments of the invention.
In one embodiment, the significant statistical difference is p<0.1 between disease progression
and other disease status, as measured by applying the univariate Mann-Whitney U-test. In
another embodiment, the significant statistical difference is p<0.05 between disease
progression and other disease status. In yet another embodiment, the significant statistical

difference is p<0.01 between disease progression and other disease status.
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[0060] The performance of the methods can be further enhanced by considering additional
variables in the analysis. For example, gender, age, smoking status, are body mass index (BMI)
variables that can have a small but measurable effect on the results. In addition, other
biomarkers can be used, including but not limited to, CEA, as described herein, and DNA and
RNA markers. These additional variables are combined with the metabolite values using

multivariate statistical methods such as PLS-DA or other similar methods.

Kits

[0061] For use in the methods described herein, kits are also within the scope of the invention.
Such kits can comprise a carrier, package or container that is compartmentalized to receive one
or more containers such as vials, tubes, and the like, each of the container(s) comprising one of
the separate elements to be used in the method. For example, the container(s) can comprise a
substrate and/or reagents for use in the methods of the invention. The kit can also include one
or more containers for a reporter-means, such as a biotin-binding protein, e.g., avidin or
streptavidin, bound to a detectable label, e.g., an enzymatic, florescent, or radioisotope label for

use in appropriate assays.

[0062] The kit of the invention will typically comprise the container described above and one or
more other containers comprising materials desirable from a commercial and user standpoint,
including buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.
In addition, a label can be provided on the container to indicate that the composition is used for a
specific diagnostic application, and can also indicate directions for use, such as those described
above. Directions and or other information can also be included on an insert which is included with
the kit.

EXAMPLES

[0063] The following examples are presented to illustrate the present invention and to assist
one of ordinary skill in making and using the same. The examples are not intended in any way

to otherwise limit the scope of the invention.

Example 1: Comprehensive Analysis of Amino Acids in Different Domains for Detecting

Colon Cancer

[0064] Amino acids play very important roles in biological systems, and they directly connect
metabolism with the proteome. While many studies have profiled free amino acids (FAAs) or
proteins, the changes of individual amino acids in the proteome due to cancer remain unknown,
and their combination with those of the FAAs has not been utilized in multivariate statistical
modeling. In this example, we obtained individual amino acids from peptides and proteins using
traditional acid hydrolysis. FAAs, the combination of free amino acids and soluble peptide amino
acids (FAASPAAs), and proteome amino acids (PAAs) were measured from the serum samples

of colon cancer patients and healthy controls using liquid chromatography tandem mass
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spectrometry (LC-MS/MS). It was discovered that colon cancer changed the amino acid profiles
and their relative distribution in the three domains. Furthermore, a multivariate statistical model,
penalized logistic regression, based on the amino acids from three domains had better
sensitivity and specificity than that from each individual domain. The amino acids with
significantly altered levels included aspartic acid, glutamic acid, glutamine/lysine, and histidine
from FAAs, lysine from FAASPAAs, and arginine, serine, and tyrosine from PAAs. This is the
first combined analysis of amino acids in the three domains and provides a multivariate

statistical model for detecting colon cancer.

[0065] As shown in Figure 1, endogenous or exogenous amino acids in a biological system
are either metabolized or incorporated into three domains that include free amino acids (FAAS),
peptide amino acids, and proteome amino acids (PAAs). In fact, amino acids are a direct and
important connection between metabolism and the proteome; therefore, the distribution of
individual amino acids in different domains should be related to the biological status of a living
system. However, although metabolomics and proteomics have been combined in previous
studies (Cai et al. 2010; Casado-Vela et al. 2011), the integrated analysis of individual amino
acids in various domains has not been performed, and the distribution changes of amino acids

in these domains in response to different physiological status have not been investigated.

[0066] Both metabolic and proteomic profiles of amino acids are altered by colorectal cancer
(CRC) (Okamoto et al. 2009; Miyagi et al. 2011; O'Dwyer et al. 2011; Randhawa et al. 2013).
Currently, CRC is the third most common and deadly cancer for both females and males in the
US. It was estimated by the American Cancer Society that approximately 142,820 new cases
and 50,830 deaths of CRC will occur in 2013 (Siegel et al. 2013). During the early stage of
tumor growth (from normal epithelium to small adenomatous polyps), the presence of
nonfunctional adenomatous polyposis coli (APC) proteins resulting constitutively from the
activated Wnt signaling pathway is considered as the CRC initiation event (Goss and Groden
2000). The concentration of plasma C-peptides was discovered to be positively associated with
the risk of CRC (Ma et al. 2004). In addition, free amino acids were measured to be potential
markers of CRC in the field of metabolomics by nuclear magnetic resonance spectroscopy
(NMR) and mass spectrometry (MS), using tissue (Lean et al. 1993; Denkert et al. 2008; Chan
et al. 2009; Piotto et al. 2009), serum (Qiu et al. 2009; Ritchie et al. 2010; Leichtle et al. 2012),
urine (Qiu et al. 2010), or fecal water samples (Monleon et al. 2009). In one representative
study, the levels of 24 amino acids and related metabolites were determined in the plasma
samples from CRC patients and healthy individuals (Okamoto et al. 2009). Logistic regression
was used to discriminate the cancer patients from controls, and an area under the receiver
operating characteristic curve (AUROC) of 0.86 was obtained. CRC appears to lead to

alterations in the amino-acid balances including those in proteins, peptides, and metabolism.
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[0067] In this Example, we obtained a “snapshot” of amino acid levels in the three domains (as
shown schematically within the red dashed line in Figure 1) and examined their performance for
detecting colon cancer. We applied the well-established acid hydrolysis method to obtain
individual amino acids from peptides and proteins, and used liquid chromatography tandem MS
(LC-MS/MS) to measure FAAs, free amino acids and soluble peptide amino acids (FAASPAAS),
and PAAs from colon cancer patients and healthy controls. We further constructed penalized
logistic regression models based on amino acids in the three domains, both individually and in
combination. To the best of our knowledge, this is the first study that combines the analysis of
amino acids in different domains to derive a multivariate statistical model for the detection of
colon cancer. This study lays the foundation for further quantitative tracking of the distribution of
individual amino acid levels in metabolic, peptide, and proteome profiles, which provides a new

window for biological sciences and biomedical research.
Experimental Section
Chemicals

[0068] The compounds purchased from Sigma-Aldrich (St. Louis, MO) included acetonitrile,
methanol, formic acid, and 20 amino acids (L-histidine, L-alanine, L-isoleucine, L-arginine, L-
leucine, L-asparagine, L-lysine, L-aspartic acid, L-methionine, L-cysteine, L-phenylalanine, L-
glutamic acid, L-threonine, L-glutamine, L-tryptophan, glycine, L-valine, L-proline, L-serine, and
L-tyrosine). Hydrochloric acid (HCI) was purchased from EMD Millipore (Billerica, MA). L-*C,-
tyrosine was bought from Cambridge Isotope Laboratories, Inc. (Andover, MA). DI water was

provided in-house by a Synergy Ultrapure Water System from EMD Millipore (Billerica, MA).
Serum Samples

[0069] All samples were collected in accordance with the protocols approved by the Indiana
University School of Medicine and Purdue University Institutional Review Boards. All subjects in
the study provided informed consent according to the institutional guidelines. Patients
undergoing colonoscopy for CRC screening were evaluated, and blood samples from the
patients were obtained after overnight fasting and bowel preparation prior to colonoscopy.
Based on the analysis of biopsied tissue, individuals were categorized as either colon cancer
patients or healthy controls. All colon cancer patients in this study were newly diagnosed, and
the blood samples were drawn before any surgery, chemotherapy, or radiation treatment. In
total, blood samples from 28 colon cancer patients and 28 healthy controls were analyzed. The
detailed demographic and clinical information for the patients and healthy controls was shown in
Table 1. Each blood sample was allowed to clot for 45 min and then was centrifuged at 2000
rpm for 10 min. The serum samples were collected and evaluated for protein content using the
BCA Protein Assay Kit (100-fold diluted serum, Thermo Fisher Scientific, Rockford, IL).
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[0070] Table 1. Demographic and clinical information for patients and healthy controls

Healthy Controls Colon Cancer
Samples (patients) 28 (28) 28 (28)
Age, median (range) 58 (18-80) 56 (29-88)
BMI*, median (range) 30.0 (21.1-43.2) 27.5(17.8-32.2)
Gender
Male 14 14
Female 14 14
Stage
I - 1
I - 2
1 - 6
v - 19
Ethnicity
Caucasian 13 15
African American 2 2
Hispanic or Latino 0 1
NA 13 10

* 13 controls and 9 colon cancer patients don’'t have BMI data.
Sample Preparation

[0071] In this study, we obtained 3 amino acid samples from each serum aliquot for further LC-
MS/MS experiments. Figure 2 illustrates how amino acids were obtained from the three
domains using a single serum sample, including the portions for measuring FAAs (Sample 1),
FAASPAAs (Sample 2), and PAAs (Sample 3). We mixed 30 uL serum and 300 uL methanol in
a 1.5 mL Micro tube with the safe screw cap (preferred for high temperature acid hydrolysis,
Sarstedt Inc., Newton, NC), and then vortexed the mixture for 10 min. The mixture was
incubated at 4 °C for 20 min and then centrifuged at 13,000 rpm for 5 min to precipitate the
proteins. The supernatant was collected into a new vial. To the protein pellet, we added 660 uL
methanol:DI water (10:1, v:v), which was then vortexed for 10 min. After centrifuging at 13,000
rpm for 5 min, the supernatant was added to the previous vial. The combined supernatant was
dried under vacuum using an Eppendorf Vacufuge (Eppendorf, Hauppauge, NY) and then
reconstituted in 60 uL DI water. The first half (30 uL) of the sample was mixed with 120 uL DI
water and used as Sample 1. The other half (30 uL) of the sample was mixed with 500 uL 6N
HCIl and baked at 110 °C using a digitally controlled dry bath (Labnet International, Inc., Edison,
NJ) for 24 hrs. This sample was then dried and reconstituted in 150 uL DI water prior to LC-
MS/MS analysis to prepare Sample 2. In addition, the protein pellet was suspended in 500 uL
6N HCI and incubated at 110°C for 24 hrs to prepare Sample 3. Then Sample 3 was dried and
reconstituted in the same way as that for Sample 2 except that it was diluted 50-fold with DI

water.
LC-MS/MS Measurements

[0072] All experiments were performed using an Agilent 1260 LC-6410 Triple Quad MS
system (Agilent Technologies, Inc., Santa Clara, CA). The injection volumes for Sample 1,

Sample 2, and Sample 3 were 9, 3, and 3 uL, respectively, to ensure that the MS intensities
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were within the dynamic range of the instrument. The LC separation was carried out on an
Agilent Eclipse XDB-C18 (100x3 mm, 1.8 um) column. The flow rate was 0.5 mL/min. Mobile
phase A was 0.2% formic acid in H,O, and mobile phase B was 0.2% formic acid in acetonitrile.
For each run, the content of mobile phase A was kept constant at 97% for the first 1 min, and
then decreased to 10% during the next 4 min. After that gradient, the mobile phase A content
was kept at 10% for 4 min until the end of gradient (a total of 9 min). The MS spectrometer was
operated under the multiple reaction monitoring (MRM) mode using positive (+) ionization. "*C,-
tyrosine (6.72 uM) was spiked into all samples for monitoring to ensure that the machine was
working well. The MS conditions were optimized for the best signal responses and peak quality
using the amino acid standards; Table 3 shows the optimized MS parameters to measure amino

acids in this study.

[0073] Table 3. The optimized MS parameters to measure amino acids

Amino Acid Precursor lon Product lon CE Fragmentor Accelerator voltage
isoleucine/leucine® 1321 86.1 10 80 1
valine 118.2 72.2 10 80 1
glutamine® 147 1 83.8 20 80 1
glutamic acid 148.0 84.2 15 80 1
tryptophan 205.1 118.0 25 80 5
proline 116.1 70.2 15 80 1
threonine 120.1 74.2 10 80 1
histidine 156.1 110.0 10 80 5
alanine 90.1 43.9 10 60 1
serine 105.9 60.1 10 60 1
aspartic acid 133.9 74.0 15 80 1
tyrosine 1821 136.1 10 80 3
methionine 150.0 104 .1 10 80 1
cysteine® 121.8 75.9 15 140 1
lysine® 147.0 84.1 15 80 7
phenylalanine 166.1 120.1 10 80 5
arginine 175.1 70.2 25 80 1
asparagine 132.9 74.0 15 80 1
glycine 76.2 29.9 10 60 1

% Isoleucine and leucine have the same optimized MS parameters.

® Glutamine and lysine have different but very similar optimized MS parameters. In this
study, they were measured separately, but they were combined for data analysis.

° We could not obtain a good sensitivity or peak shape for cysteine; therefore, it was

excluded from analysis in this study.
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Data Analysis

[0074] The Agilent MassHunter QQQ Quantitative Analysis software (version B.03.01) was
used to extract MS peak areas. The integrated areas of amino acids in each batch (3 batches in
total) were normalized to the average of those in the quality control (QC) sample (4 injections in
each batch) and then the BCA assay values. Similar to previous studies (Ma et al. 2004;
Okamoto et al. 2009; Asiago et al. 2010; Leichtle et al. 2012; Nishiumi et al. 2012), we used
penalized logistic regression to construct multivariate statistical models based on amino acid
levels measured in the three domains, both individually and in combination. The R statistical
software (version 2.8.0) was installed with the gimpath package for penalized logistic regression
calculations (Park and Hastie 2007). Ten-fold cross validation was used for model building. The
output of this procedure was a ranked set of markers according to the prediction probability of
validation samples (some less important variables could be omitted) (Chen and Dey 2003;
Bursac et al. 2008; Kiezun et al. 2009). Thereafter, logistic regression was used to build a
predictive model based on the selected variables. The verification package installed in R was
used to generate receiver operating characteristic (ROC) curves, and to calculate the sensitivity,

specificity, and the AUROC of the statistical models.
Results and Discussion
LC-MS/MS

[0075] Figure 3a shows the total ion chromatogram (TIC) of the LC-MS/MS data of FAAs
(Sample 1) from a typical serum sample, and Figure 3b shows the extracted ion chromatogram
(EIC) of Figure 3a. While 12 amino acids were overlapped (~0.9 min), 7 amino acids were
separated in the EIC (Figure 3b), including tryptophan, phenylalanine, leucine, isoleucine,
tyrosine, methionine, and valine. We could not obtain good sensitivity or peak shape for
cysteine, and therefore it was excluded from the analysis in this study. Isoleucine and leucine
had the same optimized MS parameters (Table 3), and they could not be base-line separated in
the LC separation (Figure 3b). Glutamine and lysine had different optimized MS parameters
(Table 3), but our analytical assay could not differentiate them either (they co-eluted together
and the MS spectrometer had unit resolution). Therefore, we obtained 17 variables from the LC-
MS/MS measurements of the FAA profile (Sample 1), after adding isoleucine/leucine and
glutamine/lysine together, respectively. In addition, during HCI hydrolysis tryptophan was
completely destroyed, and asparagine was completely hydrolyzed to aspartic acid. Glutamine
became glutamic acid, in which case lysine could be separately measured. Thus, we had 15
LC-MS/MS variables from Sample 2 (FAASPAAs) and Sample 3 (PAAs).

Amino Acids
[0076] Table 2 shows the amino acids in the three domains with significant differences

(Student’'s T-Test P values less than 0.05) when comparing the colon cancer patients and
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healthy controls. Notably, the average coefficient of variation (CV) of the amino acid
measurements for 12 injections of the QC sample (4 injections in each of the 3 batches) was
3.7%, ranging from 2.0% (alanine) to 10.4% (tryptophan). As shown in Table 2, there were 10,
9, and 14 amino acids with low P values (<0.05) in FAAs (Sample 1), FAASPAAs (Sample 2),
and PAAs (Sample 3), respectively. Histidine in FAAs had the lowest P value of 0.00013; in
general, FAASPAAs had higher P values than FAAs and PAAs. Interestingly, glutamic
acid/glutamine/lysine, histidine, isoleucine/leucine, threonine, and valine were changed
significantly in all the three domains; asparagine/aspartic acid (FAAs and PAAs), methionine
(FAAs and FAASPAAs), serine (FAASPAAs and PAAs), and tyrosine (FAASPAAs and PAAS)
were altered in two profiles. The relative intensities of histidine in FAAs to those in PAAs were
more affected by colon cancer, with a fold change of 0.85 (cancer/control), than the relative
intensities of histidine in FAASPAAs (fold change, 0.98). This indicates that colon cancer not
only changes amino acids individually in metabolism, peptides, or proteins, but also affects the

amino acid distribution in these domains.

[0077] Table 2. Amino acids in the three domains with P values<0.05 when comparing

colon cancer patients and healthy controls.

Amino Acid P Values
FAAs (sample 1)

asparagine 0.031
aspartic acid 0.018
glutamic acid 0.032
glutamine/lysine 0.0045
histidine 0.00013
isoleucine/leucine 0.026
methionine 0.0050
threonine 0.042
tryptophan 0.044
valine 0.0078

FAASPAAs (sample 2)

glutamic acid/glutamine 0.015
histidine 0.042
isoleucine/leucine 0.010
lysine 0.0017
methionine 0.036
serine 0.022
threonine 0.0041
tyrosine 0.023
valine 0.0032
PAAs (sample 3)

alanine 0.00099
arginine 0.00089
aspartic acid/asparagine 0.0045
glutamic acid/glutamine 0.0016
glycine 0.048
histidine 0.0022
isoleucine/leucine 0.0013
lysine 0.00066
phenylalanine 0.00037
proline 0.0071
serine 0.014
threonine 0.0057
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tyrosine 0.00042
valine 0.0094

Logistic Regression Analysis

[0078] To improve the performance and reliability in the statistical modeling, we further
constructed penalized logistic regression models based on the amino acids in Table 2 (P
values<0.05). We first individually examined the performance of amino acids in different
domains for detecting colon cancer patients. Figure 4a shows the ROC curve for the logistic
regression model using the FAAs (Sample 1). This model had an AUROC of 0.86. The
sensitivity was 28% when the specificity was 95%. Penalized logistic regression selected 4
important variables from 10 candidates (FAAs in Table 2), including aspartic acid, glutamic acid,

glutamine/lysine, and histidine.

[0079] Similarly, Figure 4b shows the ROC curve for the penalized logistic regression model
based on the FAASPAAs (Sample 2) in Table 2. An AUROC of 0.75 was obtained, which was
less than that (0.86) in Figure 4a. The sensitivity was 32% (>28% in Figure 4a) when the
specificity was 95%. The selected amino acids from the 9 FAASPAAs were lysine and valine.
Figure 4¢ shows the ROC curve for the penalized logistic regression model based on the 14
PAAs (Sample 3) in Table 2, and the AUROC was determined to be 0.88. The significant amino
acids included alanine, arginine, aspartic acid/asparagine, glycine, proline, serine, threonine,
tyrosine, and valine. This model (Figure 4¢) had a better performance to differentiate colon
cancer than that in Figure 4a and 4b, especially when the specificity was between 80%-100%.
For example, the sensitivity was 43% (compared to 28% and 32% in Figure 4a and 4b,

respectively) when the specificity was 95%.

[0080] Furthermore, we performed penalized logistic regression on the selected variables from
the 3 models above. An AUROC of 0.91 was achieved for the ROC curve in Figure 4d. In
particular, this model had a sensitivity of 65% when the specificity was 95%. The important
amino acids selected in Figure 4d were aspartic acid, glutamic acid, glutamine/lysine, and
histidine from FAAs (4 out of 4 variables), lysine from FAASPAAs (1 out of 2 variables), and
arginine, serine, and tyrosine from PAAs (3 out of 9 variables). Figure 5 shows the box-and-
whisker plots for the amino acid marker candidates in constructing the model shown in Figure
4d. Aspartic acid and glutamic acid in FAAs were increased in the colon cancer patients, while
the rest of amino acids were decreased. This further confirmed that the distribution of amino

acids in the three domains was altered under the biological stress of colon cancer.

[0081] To further evaluate the reliability and consistence of statistical modeling, we used
Monte Carlo Cross Validation (MCCV) (Rocha et al. 2011; Wei et al. 2012) to validate the
penalized logistic regression model in Figure 4d. In each iteration (100 total), all the samples

were randomly divided into two sets, 70% as the training set and 30% as the test set. Penalized
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logistic regression was performed on the training set, and then the resulting model was used to
predict the classification of the test set samples. The sample membership could be either
correctly assigned, referred as true class, or randomly assigned (permutation). Figure 6 shows
the sensitivities at the specificities of 0.95, 0.85, and 0.75, respectively, for the true class models
and permutation models in a ROC space. The true class models were clearly separated from
the permutation models, with significantly higher sensitivities. For example, the average
sensitivity of true class models was 71% (£14%) at the highest selected specificity, while it was
12% (x13%) for the permutation models. This testified to the fact that amino acids from the

three domains in the serum samples contain variations related to colon cancer.

[0082] Itis well known that colon cancer leads to alterations in amino acid metabolism, and
amino acids have been recognized in metabolomics as putative markers for diagnosing colon
cancer (Tan et al. 2013). Nishiumi et al. found that the gas chromatography-MS (GC-MS)
intensities of aspartic acid and glutamic acid were increased in CRC serum samples while the
glutamine and lysine intensities were decreased (Nishiumi et al. 2012), which fits well with our
results (Figure 5). Their logistic regression model based on 4 markers including aspartic acid
achieved higher diagnosis accuracy (85%) than that by CEA (66%) or CA 19-9 (58%). Aspartic
acid is produced from oxaloacetate by transamination, and an increased serum level of aspartic
acid may indicate that tumor cells need more nutrient uptake (Heber et al. 1985). Cancer cells
require a higher consumption of glutamine for both energy and biosynthetic purposes
(DeBerardinis et al. 2007; Wise et al. 2008; Heiden et al. 2009), and the observed
complementary changes of glutamic acid (increased) and glutamine (decreased) suggest that
glutamine synthetase may be associated with colon cancer. Okamoto et al. also discovered that
glutamic acid was significantly increased in colon cancer plasma samples and histidine was
decreased, although with less significance (Okamoto et al. 2009). However, some
inconsistencies were observed among our study and previous research as well. For example,
Nishiumi et al. found an increased level of histidine in CRC sera (Nishiumi et al. 2012), and Tan
et al. obtained lower levels of glutamate and aspartate in CRC serum samples using GC-time of
flight (TOF)-MS and LC-TOF-MS (Tan et al. 2013). Leichtle et al. found 11 serum amino acids
that were significantly different between colon cancer patients and healthy controls, and they
built a statistical model based on CEA, glycine, and tyrosine (Leichtle et al. 2012). Therefore, as
suggested by Kimura et al. (Kimura et al. 2009), it might be necessary to evaluate the network
of amino acids in metabolism, peptides, and proteins (Figure 1) in order to gain a deeper

understanding of these phenomena.

[0083] Proteomics is complementary to metabolomics in systems biology, and colon cancer
induces altered protein synthesis/degradation (Heber et al. 1985). Carcinogenesis of colorectal
cancer is a complex process involving multiple genetic abnormalities such as mutations in both

tumor suppressor genes and oncogenic mediators (Fearon and Vogelstein 1990; Markowitz and
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Bertagnolli 2009; Noffsinger 2009; Nambiar et al. 2010). An important consequence of this
complex progression could be the altered uptake and usage of amino acids. SILAC is used to
study the incorporation of amino acids and degradation of proteins; however, the analysis of
individual amino acids composing proteins/peptides has rarely been combined with those in
metabolism. In this semi-quantitative study, it was demonstrated that colon cancer changed the
amino acid domains of FAASPAAs and PAAs (Table 2). More importantly, the distribution of
amino acids was changed among isolated metabolites, peptides, and proteins. In addition, the
combined analysis of amino acids in the three domains helped improve the diagnostic power of

logistic regression modeling to detect colon cancer (Figure 4 and Figure 6).

[0084] While an improved logistic regression model was obtained after incorporating amino
acids in peptides and proteins, our approach does not provide the ability to identify specific
proteins/peptides related to colon cancer. Many amino acids underwent some degree of loss
during hydrolysis; therefore, in this semi-quantitative study we prepared the samples using the
same and traditional hydrolysis method (incubation in HCI under 110 °C for 24 hrs). Correction
factors can be employed if a precise quantification is desired (Robel and Cranea 1972;
Fountoulakis and Lahm 1998). In principle, stable isotope-resolved metabolomics (SIRM) (Fan
and Lane 2011; Lane et al. 2011) and SILAC (Ong et al. 2002; Pratt et al. 2002; Mann 2006;
Schmidt et al. 2007; Marimuthu et al. 2013) can quantitatively track the distribution of each
amino acid in different domains (Figure 1). We measured 168 samples (FAAs, FAASPAAs, and
PAAs) from 56 subjects, which limited our ability to perform analyses related to other important
factors such as cancer stage. External cross validation with a separate test set using additional

subjects is planned to further validate the statistical models.
Conclusions

[0085] This is the first study to perform a combined analysis of amino acids in the three
domains of FAAs, FAASPAAs, and PAAs. We used acid hydrolysis to obtain individual amino
acids from peptides and proteins, and LC-MS/MS was utilized to measure the serum samples
from colon cancer patients and healthy controls. It was shown that colon cancer changed the
amino acid profiles and their relative distribution in these three domains. Furthermore, the
combined analysis helped improve the sensitivity and specificity of the penalized logistic
regression model for detecting colon cancer. The significant amino acids were selected to be
aspartic acid, glutamic acid, glutamine/lysine, and histidine from FAAs, lysine from FAASPAAs,
and arginine, serine, and tyrosine from PAAs. This study directly connects metabolism and
proteome through the measurement of individual amino acids, and it potentially brings new

insights to the diagnosis and mechanistic studies of colon cancer.
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Example 2: Colorectal Cancer Detection using Targeted Serum Metabolic Profiling

[0086] In this example, a targeted liquid chromatography-tandem mass spectrometry-based
metabolic profiling approach was employed for identifying biomarker candidates that could
enable highly sensitive and specific CRC detection using human serum samples. 158
metabolites from 25 metabolic pathways of potential significance were monitored. 234 serum
samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy
controls) were analyzed. Partial least squares-discriminant analysis (PLS-DA) models were
established, which proved to be powerful for distinguishing CRC patients from both healthy
controls and polyp patients in this study. Receiver operator characteristic curves generated
based on these PLS-DA models showed high sensitivities (0.96 and 0.89, respectively, for
differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and
0.88), low false discovery rates (0.22 and 0.14), and excellent areas under the curve (0.93 and
0.95) were obtained. Monte Carlo cross validation (MCCV) was also applied, demonstrating the

robust diagnostic power of this metabolic profiling approach.
Materials and methods

[0087] Clinical samples: Patient recruitment and sample collection protocols were approved by
the Purdue University and Indiana University School of Medicine Institutional Review Boards.
Informed consent was provided from all subjects in the study according to institutional
guidelines. Patients undergoing colonoscopy for CRC screening were evaluated, and blood
samples from the patients were obtained after overnight fasting and bowel preparation prior to

colonoscopy. In total, 234 subjects were recruited in this study, and they were grouped into
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CRC patients (n=66), polyp patients (n=76), and healthy controls (n=92) based on the analysis

of biopsied tissue. Patients were age and gender matched in each group. All serum samples

were from patients without any intervention/treatment. All the CRC patients in this study were

newly diagnosed, and the blood samples were drawn before any surgery, chemotherapy, or
radiation treatment. Patients’ demographical and clinical information is shown in Table 4. Each
blood sample was allowed to clot for 45 min and then centrifuged at 2000 rpm for 10 min. All

samples were stored in -80 °C freezer until experiments.

[0088] Table 4. Summary of clinical and demographic characteristics of human subjects

CRC Polyps Healthy

Total n=234
n=66 n=76 Control n=92
Age Median 58 56 57
Min 27 37 18
Max 88 86 80
Gender Male 30 37 45
Female 36 39 47
Cancer
stage Stage /11 21 - -
Stage IlI 17 - -
Stage IV 28 - -
Diagnosis  Colon Cancer 39 - -
Rectal Cancer 27 - -

[0089] Reagents: Acetonitrile, ammonium acetate, and acetic acid (LC-MS grade) were all
purchased from Fisher Scientific (Pittsburgh, PA). Standard compounds corresponding to the
measured metabolites (see list in Table S1 available online as Supporting Information for Zhu et
al., J. Proteome Res., 2014, 13 (9): 4120—4130) were purchased from Sigma-Aldrich (Saint
Louis, MO) or Fisher Scientific (Pittsburgh, PA). Stable isotope-labeled tyrosine and lactate
internal standards (L-tyrosine-">C, and sodium-L-lactate-"*C3) were purchased from Cambridge
Isotope Laboratories, Inc. (Tewksbury, MA). The purities of non-labeled standards were >95-

99% whereas the purities of the two *C labeled compounds were > 99%.

[0090] Sample preparation: Frozen samples were first thawed at room temperature for
approximately 45 min, and 50 pL of each serum was placed into a 2mL Eppendorf vial (Fisher
Scientific). The initial step for protein precipitation and metabolite extraction was performed by
adding 150 pL of methanol; the mixture was the vortexed for 2 min and stored at -20 °C for 20
min. Next, the sample was centrifuged at 14,000 rpm for 10 min, and the supernatant was
collected into a new Eppendorf vial. To the first vial containing the pellet, another 300 uL
methanol was added, and the mixture was vortexed for 10 min to allow thorough metabolite

extraction. After centrifuging this mixture at 14,000 rpm for 10 min, the supernatant was
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collected into the same vial that contained the previous supernatant. The resulting supernatants
from two rounds of extractions were dried using a Vacufuge Plus evaporator (Eppendorf,
Hauppauge, NY). The dried samples were stored at -20 °C, and were reconstituted in 500 uL 5
mM ammonium acetate in 40% water/60% acetonitrile + 0.2% acetic acid containing 5.13 uM L-
tyrosine-">C, and 22.54 pM sodium-L-lactate->C; (Cambridge Isotope Laboratory). The two
isotope-labeled internal standards were added to each sample to monitor the system
performance. The samples were filtered through 0.45 um PVDF filters (Phenomenex, Torrance,
CA) prior to LC-MS analysis. A pooled sample, which was a mixture of serum from CRC
patients, polyp patients, and healthy controls, was extracted using the same procedure as
above. This sample was used as the quality control (QC) sample and was analyzed once for

every ten patient samples.

[0091] Liquid chromatography conditions: The LC system was composed of two Agilent
1260 binary pumps, an Agilent 1260 auto-sampler, and Agilent 1290 column compartment
containing a column-switching valve (Agilent Technologies, Santa Clara, CA). Each sample was
injected twice, 10 yL for analysis using negative ionization mode and 2 pL for analysis using
positive ionization mode. Both chromatographic separations were performed in hydrophilic
interaction chromatography (HILIC) mode on two SeQuant ZIC-cHILIC columns (150 x 2.1 mm,
3.0 um particle size, Merck KGaA, Darmstadt, Germany) connected in parallel. Our setup allows
one column to perform the separation while the other column is reconditioned and readied for
the next injection. The flow rate was 0.300 mL/min, the auto-sampler temperature was kept at 4
°C, the column compartment was set at 40 °C, and total separation time for both ionization
modes was 20 min. The mobile phase was composed of Solvents A (5 mM ammonium acetate
in 90%H,0/ 10% acetonitrile + 0.2% acetic acid) and B (5 mM ammonium acetate in
90%acetonitrile/ 10% H,O + 0.2% acetic acid). The gradient conditions for both separations

were identical and are shown in Table 7.

[0092] Table 7. LC Gradient Conditions.

Time Segment,

Solvent A, %

Solvent B, %

min.

0-2 25 75

2-5 from 25to 70 from 75 to 30
5-9 70 30

9-11 from 70 to 25 from 30 to 75
11-20 25 75

[0093] The metabolite identities were confirmed by spiking the pooled serum sample used for
method development with mixtures of standard compounds (each mixture contained five
standard metabolites). However, some metabolites that could not be well separated and had

similar m/z values (<1 Da) were integrated as single peaks (e.g., malonic acid and 3-
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hydroxybutyric acid were reported as a single peak). All the samples were analyzed over a 12-
day period and the retention times (RT) did not undergo any significant shift (each peak was

within 6 s throughout 12 days of analysis), which proved the robustness of our HILIC method.

[0094] Mass spectrometry conditions: After the chromatographic separation, MS ionization
and data acquisition were performed using an AB Sciex QTrap 5500 mass spectrometer (AB
Sciex, Toronto, ON, Canada) equipped with an electrospray ionization (ESI) source. The
instrument was controlled by Analyst 1.5 software (AB Sciex, Toronto, ON, Canada). Targeted
data acquisition was performed in multiple-reaction-monitoring (MRM) mode. We monitored 99
and 59 MRM transitions in negative and positive mode, respectively (158 transitions in total).
The source and collision gas was N, (99.999% purity). The ion source conditions in
negative/positive mode were: curtain gas (CUR) = 25 psi, collision gas (CAD) = high, ion spray
voltage (IS) = - 3.8/3.8 KV, temperature (TEM) = 500 °C, ion source gas 1 (GS1) = 50 psi, and
ion source gas 2 (GS2) = 40 psi. The optimized MS compound conditions are shown in Table
S1 available online as Supporting Information for Zhu et al., J. Proteome Res., 2014, 13 (9):
4120-4130. The extracted MRM peaks were integrated using MultiQuant 2.1 software (AB

Sciex).

[0095] Data analysis, model development and cross validation: In order to search for
potential CRC diagnostic serum biomarkers, metabolite selection, model building, and cross
validation were performed, and the data analysis steps are shown using a simplified flow chart
shown in Figure 13. After exporting from MultiQuant software, spectral data were normalized
using average values from the data of QC injections (at least five in each batch, 33 QC samples
in total). Mann Whitney U-tests, generation of receiver operator characteristics (ROC) curves,
and calculation of sensitivity, specificity, and area under ROC curves (AUROC) were conducted
using JMP Pro10 (SAS Institute). Partial least squares-discriminant analysis (PLS-DA) and
Monte Carlo Cross Validation (MCCV, developed using in-house scripts) were performed using
Matlab software (Mathworks, Natick, MA) installed with the PLS toolbox (Eigenvector Research
Inc., Wenatchee, WA). MCCV was applied using 70% of the data as the training set while the
remaining 30% served as the testing set, and employing 100 iterations. For each iteration three
specificities of the training set, 0.95, 0.85, and 0.75, were used to determine the thresholds of
PLS-DA predicted Y values. The same thresholds were then applied to the test set to determine
sensitivities and specificities. The sample classification can be correctly assigned, termed “true
class,” or the sample class information can be randomly permuted, which is referred to as a

‘random permutation.”
Results

[0096] Targeted metabolic profiles of CRC vs. polyp patients and health controls: In the
current study, we used a targeted LC-MS/MS approach for comprehensive CRC serum

metabolic profiling. Using this metabolic profiling system, we achieved targeted screening of 156
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multiple reaction monitoring (MRM) transitions, for metabolites of 20 different chemical classes
(such as amino acids, carboxylic acids, pyridines, etc.) and that are located in 25 important
metabolic pathways (e.g., TCA cycle, amino acid metabolism, glycolysis, purine and pyrimidine
metabolism, urea cycle) in both positive and negative ionization modes (see Table S1 available
online as Supporting Information for Zhu et al., J. Proteome Res., 2014, 13 (9): 4120-4130)).
Two additional stable isotope labeled internal standards (L-tyrosine-"*C, and sodium-L-lactate-
3C,) were also monitored to ensure instrument performance. In total, we detected 113
metabolites out of 158 targeted MRM ftransitions, with an average coefficient of variation (CV) of
11% (~80% metabolites have CV<15%). 42 of these metabolites showed statistical significance
between CRC patients and healthy controls, 48 of them showing statistical difference between
CRC and polyp patients, and 8 between healthy controls and polyp patients (Table 5) based on
the Mann-Whitney U test with a p-value<0.05. Fold changes (FC) are also calculated based on
mean ratios for CRC/Healthy, CRC/Polyps or Healthy/Polyps as appropriate. Eleven
metabolites had p <0.001(with FC ranging from 0.75 to 2.73) when comparing the CRC patients
to healthy controls, and thirteen metabolites had p <0.001(with FC ranging from 0.77 to 3.22)
when comparing the CRC patients to polyp patients.

[0097] Table 5. P values and fold changes (FCs) for all potential metabolite biomarkers (with
p<0.05) based on Mann-Whitney U-test, 42 metabolites for comparison of cancer patients and
healthy controls, 48 for comparison of cancer patients and polyp patients, and 8 for comparison

of healthy controls and polyp patients.

Cancer Healthy
Vs, Cancer vs.

Metabolites (MRM transitions) Healthy  FC* vs. Polyps FC* Polyps FC*
Oxalic Acid (89.0 / 61.0) 2.00E-02 112 4.08E-02 0.92
Glyceraldehyde (89.0/ 59.0) 1.52E-05 1.34 219E-07 1.41
gama-Aminobutyrate (102.1/ 85.0) 1.75E-02 0.93 4.95E-03 0.91

Malonic Acid/3HBA (103.0 / 59.0) 3.47E-03 0.78

Fumarate (115.0/71.0) 4.34E-02 1.09 272E-02 1.07

Maleic Acid (115.0 / 71.0 (2)) 1.45E-03 1.13 1.96E-03 1.11

N-AcetylGlycine (116.0 / 74.0) 7.70E-04 0.75 1.71E-03  0.67

Glutaric Acid (131.0/ 87.0) 1.22E-02 1.05

Oxaloacetate (131.0 / 87.0 (2)) 446E-02 1.03 | 1.30E-02 1.05
MethylSuccinate (131.0 / 113.0) 4.60E-02 0.95 1.48E-02 0.94

Aspartic Acid (132.0/ 88.0) 1.40E-03 1.37 1.32E-03  1.39

D-Leucic Acid (133.1/87.0) 4.02E-02 1.46 2.07E-03 1.47

2-Oxoglutarate (145.0 / 101.0) 571E-03 0.93 3.06E-03  0.93

Allantoin (157.0/ 114.0) 1.02E-03 1.24 258E-02 1.1

2-Aminoadipate (160.1/ 116.0) 8.81E-03 0.86

PEP (166.9/79.0) 3.29E-02 0.89 3.68E-03 0.85

Urate (167.0/ 124.0) 1.40E-02 0.93 1.49E-02 0.93
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Homogentisate (167.0 / 123.0)
Glycerol-3-P (171.0/ 79.0)
Hippuric Acid (178.0 / 134.0)
Glucose (179.0/ 89.0)
OH-Phenylpyruvate (179.0/ 107.0)
Kynurenate (188.0 / 144.0)
Erythrose (199.0 / 97.0)
Xanthurenate (204.0 / 160.0)
Pentothenate (218.1 / 88.0)
Cystathionine (221.1/ 134.0)
Biotin (243.1 / 200.0)

Margaric Acid (269.1 / 251.3)
Linoleic Acid (277.1 / 259.0)
Linolenic Acid (279.1 / 261.0)
G16BP (339.0/79.0 (2))
Glycochenodeoxycholate (448.3 / 74.0)
Adenylosuccinate (462.1/79.0)
Glycocholate (464.3 / 74.0)
Trimethylamine-N-oxide (76.1 / 58.0)
Alanine (90.0/ 44.0)
Dimethylglycine (104.1 / 58.0)
Creatinine (114.1/ 44.0)

Proline (116.1/70.0)

Threonine (120.1/ 102.0)

Creatine (132.1/ 90.0)

Hydroxyproline/Aminolevulinate (132.1 / 86.2)

Leucine/iso-Leucine (132.1 / 86.2)
Asparagine (133.1/74.0)
Acetylcholine (146.1/ 87.0)
Glutamine (147.1/ 84.0)

Lysine (147.1/84.0 (2))

Glutamic acid (148.1 / 84.0)
Methionine (150.1/61.0)
Histidine (156.1/ 110.0)

Arginine (175.1/70.0)
Tryptophan (205.1 / 146.0)
L-Kynurenine (209.1 / 94.0)
2'-Deoxyuridine (229.1 / 113.0)
Uridine (245.0/ 113.0)

Adenosine (268.1/ 136.0)
1-Methyladenosine (282.1 / 150.0)

1.59E-02

8.46E-05
2.63E-02
4.34E-02
6.49E-03
3.53E-02

4.90E-03

2.71E-02
3.32E-04

5.84E-05
2.35E-03
4.25E-04

1.40E-03
9.08E-03
1.72E-02

1.66E-03

1.12E-03
1.18E-04
6.27E-04
1.16E-04
2.75E-06
1.77E-02

8.10E-04
4.72E-02

2.78E-02

0.92
0.98
273
1.08
1.08
1.16
1.08

1.45

0.88
0.78

1.42
1.21
1.79

0.82
0.90
1.10

1.37

0.92
0.88
1.22
0.88
0.81
1.08

0.91
0.92

1.04

2.81E-02
2.32E-02
1.40E-05

1.01E-02

3.19E-03
3.11E-02

1.01E-03
8.44E-03
5.62E-03
2.04E-04

9.22E-05
1.02E-02
1.94E-04
4.33E-02
1.91E-02
2.11E-04
2.04E-03

1.87E-02

9.09E-04
2.53E-02
2.13E-02
4.13E-02
3.91E-04
5.00E-06
5.84E-03
1.89E-06
2.57E-05

2.06E-02
4.77E-02
3.81E-05
2.26E-05
2.47E-03

PCT/US2015/011869

0.93
0.91
3.22

0.90
1.09

0.89
0.91
0.83
0.77

227
1.19
3.01
1.20
0.89
0.78
0.88

0.92

1.32
0.92
0.95
0.92
0.92
0.84
1.22
0.85
0.85
1.05
0.91
1.16
0.89
0.84
0.33

3.66E-02

3.30E-03

3.17E-02

4.82E-02

2.55E-02
1.93E-03

0.95

0.91

0.95

0.90

0.92
0.61
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*FC: Fold change calculated as mean ratios for CRC/Healthy control, CRC/Polyp patients or Healthy

control/Polyp patients

[0098] Biomarker selection, model setup, and cross validation: Initially, individual
metabolites that had p<0.05 were selected as potential biomarker candidates. AUROC,
sensitivity, and specificity values for each metabolite were calculated while comparing CRC
patients with healthy controls, and CRC patients with polyp patients, respectively, and these
values are listed in Tables 8 and 9. As evidenced in these two tables, no single metabolite
proved to be sufficiently sensitive and specific by itself to distinguish CRC patients from either
healthy controls or polyp patients (generally the AUROC values are below 0.7 for each
metabolite). Partial least square-discriminant analysis (PLS-DA) models with leave one out
cross validation were then applied to identify groups of biomarkers that could be used for
diagnosing CRC patients. All metabolites that had p<0.05 between patient groups (42
metabolites between CRC and control, and 48 metabolites between CRC and Polyp,
respectively) were used for initial PLS-DA analysis. As shown by the predicted Y values from
different groups, the resulting PLS-DA model these proved to be powerful in separating CRC
cancer from both healthy controls and polyp patient groups in this study, with and AUROC of 1.

[0099] Table 8.

95% Confidence
AURO Std. Interval Sensi- Speci

Metabolites C Error Lower Upper tivity ficity Accuracy
Bound Bound
Histidine 0.719 0.040 0.640 0.798 0.924 0.467 0.658
Glyceraldehyde 0.702 0.042 0.619 0.785 0.742 0.641 0.686
Glycochenodeoxycholate  0.688 0.042 0.605 0.770 0.879 0.435 0.620
Hyppuric Acid 0.684 0.044 0.597 0.771 0.591 0.794 0.709
Methionine 0.680 0.043 0.596 0.764 0.667 0.630 0.646
Lysine 0.680 0.043 0.595 0.764 0.530 0.794 0.684
Linolenic Acid 0.668 0.044 0.581 0.755 0.439 0.880 0.696
Glycocholate 0.665 0.043 0.580 0.749 0.742 0.565 0.703
Glutamic acid 0.660 0.044 0.574 0.746 0.606 0.707 0.665
N-AcetylGlycine 0.657 0.044 0.570 0.744 0.788 0.511 0.623
2'-Deoxyuridine 0.656 0.044 0.571 0.742 0.576 0.685 0.639
Allantoin 0.653 0.043 0.568 0.739 0.606 0.663 0.639
Glutamine 0.652 0.044 0.566 0.739 0.546 0.707 0.639
Aspartic Acid 0.649 0.046 0.559 0.739 0.439 0.859 0.684
Dimethylglycine 0.649 0.044 0.562 0.736 0.606 0.663 0.639
Maleic Acid 0.649 0.045 0.560 0.737 0.606 0.707 0.665
Hydroxyproline/

Aminolevulinate 0.647 0.044 0.561 0.733 0.682 0.587 0.627
Adenylosuccinate 0.642 0.045 0.553 0.731 0.439 0.815 0.658
Malonic Acid/3HBA 0.637 0.048 0.542 0.731 0.546 0.815 0.703
Cystathionine 0.631 0.044 0.544 0.718 0.727 0.522 0.608
Alpha-Ketoglutaric Acid 0.629 0.046 0.540 0.719 0.393 0.870 0.671
Kynorenate 0.627 0.045 0.538 0.716 0.636 0.576 0.601
2-Aminoadipate 0.622 0.046 0.533 0.712 0.758 0.478 0.595
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Creatinine 0.622 0.045 0.533 0.711 0.697 0.554 0.614
Urate 0.615 0.045 0.527 0.703 0.636 0.587 0.608
Homogentisate 0.613 0.045 0.524 0.701 0.455 0.772 0.639
Proline 0.611 0.046 0.521 0.702 0.424 0.794 0.639
gama-Aminobutyrate 0.611 0.047 0.518 0.704 0.485 0.783 0.658
Arginine 0.611 0.047 0.518 0.704 0.591 0.685 0.646
Oxalic Acid 0.609 0.046 0.519 0.698 0.470 0.717 0.614
Glucose 0.604 0.045 0.515 0.693 0.864 0.370 0.576
Linoleic Acid 0.603 0.048 0.509 0.698 0.349 0.957 0.703
1-Methyladenosine 0.603 0.045 0.514 0.691 0.712 0.544 0.614
Pyruvate 0.601 0.046 0.510 0.692 0.712 0.533 0.608
PEP 0.600 0.045 0.511 0.688 0.955 0.261 0.551
Erythrose 0.598 0.045 0.509 0.687 0.909 0.272 0.538
lactate 0.596 0.046 0.507 0.686 0.636 0.565 0.595
Leucic Acid 0.596 0.045 0.507 0.685 0.712 0.467 0.570
Fumarate 0.594 0.047 0.503 0.686 0.439 0.783 0.639
OH-Phenylpyruvate 0.594 0.046 0.504 0.685 0.379 0.804 0.627
MethylSuccinate 0.593 0.047 0.502 0.684 0.727 0.446 0.563
Uridine 0.593 0.046 0.503 0.682 0.742 0.467 0.582
[0100] Table 9.
95% Confidence
Metabolites =~ AUROC ESrtrdo'r Low?:ervallJpper Sensitivity ~ Specificity ~ Accuracy
Bound  Bound
Glyceraldehyde  0.753  0.041 0.672 0.833 0.742 0.697 0.711
Methionine 0.732 0.043 0.648 0.816 0.667 0.750 0.711
Lysine 0.722 0.042 0.640 0.805 0.576 0.763 0.676
Hyppuric Acid 0.712 0.044 0.625 0.798 0.591 0.790 0.697
Uridine 0.707 0.044 0.620 0.793 0.742 0.645 0.690
Histidine 0.705 0.044 0.620 0.791 0.682 0.658 0.669
2'-Deoxyuridine  0.701  0.044  0.615 0.786 0.576 0.790 0.690
Glycocheno-
deoxycholate 0.691 0.044 0.605 0.777 0.636 0.658 0.648
Glycocholate 0.682 0.045 0.594 0.769 0.561 0.776 0.676
Linolenic Acid 0.681 0.045 0.593 0.769 0.546 0.750 0.655
Dimethylglycine  0.681 0.045  0.592 0.769 0.712 0.618 0.662
Glutamine 0.673 0.045 0.585 0.761 0.409 0.868 0.655
Hydroxyproline/
Aminolevulinate  0.662 0.046  0.572 0.752 0.667 0.658 0.662
Biotin 0.660 0.047 0.569 0.752 0.546 0.763 0.662
Aspartic Acid 0.656 0.047 0.564 0.749 0.439 0.882 0.676
N-AcetylGlycine  0.653 0.046  0.563 0.743 0.606 0.697 0.655
Maleic Acid 0.651 0.047 0.560 0.742 0.606 0.697 0.655
Creatinine 0.650 0.047 0.558 0.743 0.682 0.605 0.641
Leucic Acid 0.650 0.046 0.560 0.740 0.742 0.526 0.627
Adenosine 0.648 0.047 0.555 0.740 0.394 0.908 0.669
Alpha-
Ketogluearic Acid 0.644 0.047 0.552 0.736 0.379 0.934 0.676
Xanthurenate 0.644 0.047 0.551 0.736 0.621 0.711 0.669
PEP 0.642 0.046 0.551 0.732 0.939 0.382 0.641
gama-
Aminobutyrate 0.637 0.048 0.543 0.731 0.485 0.855 0.683
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Linoleic Acid 0.635 0.047 0.542 0.728 0.364 0.921 0.662
Glutamic acid 0.634 0.047 0.543 0.726 0.652 0.632 0.641
Xanthine 0.633 0.047 0.540 0.725 0.645 0.591 0.662
Margaric Acid 0.628 0.047 0.536 0.721 0.576 0.684 0.634
Orotate 0.628 0.047 0.535 0.720 0.652 0.579 0.613
Kynorenate 0.625 0.047 0.533 0.718 0.667 0.618 0.641
Adenylosuccinate  0.625 0.048  0.531 0.719 0.515 0.763 0.648
Glutaric Acid 0.622 0.047 0.530 0.714 0.652 0.605 0.627
MethylSuccinate  0.619 0.048  0.525 0.713 0.636 0.605 0.620
Urate 0.619 0.047 0.526 0.711 0.682 0.553 0.613
Threonine 0.615 0.048 0.520 0.709 0.333 0.921 0.648
Alanine 0.614 0.047 0.521 0.707 0.864 0.395 0.613
Tryptophan 0.613 0.048 0.519 0.706 0.697 0.540 0.613
Asparagine 0.612 0.048 0.517 0.707 0.621 0.658 0.641
Glycerol-3-P 0.611 0.048 0.517 0.704 0.530 0.686 0.613
Leucine/iso-

Leucine 0.609 0.048 0.516 0.702 0.424 0.790 0.620
Allantoin 0.609 0.047 0.516 0.701 0.849 0.408 0.613
Fumarate 0.608 0.048 0.513 0.702 0.439 0.842 0.655

Homogentisate 0.607 0.047 0.514 0.700 0.803 0.434 0.606
Pentothenate 0.605 0.048 0.510 0.700 0.106 0.934 0.549
Acetylcholine 0.599 0.048 0.505 0.694 0.439 0.763 0.613

Trimethylamine-

N-oxide 0.598 0.048 0.503 0.694 0.439 0.790 0.627

Oxaloacetate 0.598 0.047 0.505 0.691 0.818 0.382 0.585
L-Kynurenine 0.596 0.048 0.502 0.691 0.424 0.816 0.634

[0101] Subsequently, efforts were made to simplify our model in consideration of developing
more practical applications suitable for clinical settings. PLS-DA variable importance in
projection (VIP) plots (Figure 7) were generated to evaluate the metabolites that contributed
most to the differentiation of CRC patients with the other two groups in this study. When the VIP
score threshold was set to 1 according to previous studies,*- thirteen metabolites (histidine,
glycocholate, hippuric acid, malonic acid/3HBA, glycochenodeoxycholate, D-leucic acid,
methionine, maleic acid, linolenic acid, hydroxyproline/aminolevulinate, 2-aminoadipate, N-
acetylglycine and glyceraldehyde) were selected for the separation between CRC patients and
healthy control, and fourteen metabolite biomarkers (adenosine, alanine, PEP, glyceraldehyde,
glycocholate, hippuric acid, glycochenodeoxycholate, trimethylamine-N-oxide, N-acetylglycine,
hydroxyproline/aminolevulinate, dimethylglycine, linolenic acid, D-leucic acid and pantothenate )
were selected for the separation of CRC patients from polyp patients. The detailed pairwise
comparison of each VIP metabolite can be seen in Figure 8. Based on the VIP selection, a
second PLS-DA model was built using only the metabolites that had VIP scores greater than 1.
To evaluate the diagnostic power of the potential metabolic markers, ROC curves (Figure 14)
were generated. Also in order to exam the robustness of our PLS-DA based CRC diagnostic
models, Monte Carlo cross validation (MCCV)*2 was applied to compare the PLS-DA models

using the true sample classifications to those with randomly permuted sample class information;
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superior sensitivity observed in the true sample classifications showed the robust diagnostic

power of this metabolic profiling approach (Figure 15).

[0102] Clinical factors, such as gender, age, medication, and substance status have often been
incorporated to build predictive or diagnostic clinical models, and such variables have recently
used to enhance metabolite biomarker models.* In order to enhance our current VIP metabolite
model, four general clinical factors (age, gender, smoking, and alcohol status) were chosen to
be candidates for inclusion in the model. The enhanced metabolite model (Figure 9) showed
excellent AUROCs (0.93 and 0.95, respectively, for differentiating CRC patients from healthy
controls or polyp patients), high sensitivities (0.96 and 0.89), good specificities (0.80 and 0.88),
and low false discovery rates (0.22 and 0.14) were obtained. The model incorporating these four
clinical parameters showed better performance than the VIP metabolite model alone (Figure
14), which suggests that inclusion of clinical factors could improve an already well-performed
VIP metabolite model, therefore increasing the diagnostic power of this targeted serum
metabolic profiling approach for CRC. MCCV was again applied, and the advanced
performance of the true class models over the random permutation model was obtained as
anticipated (Figure 10). Sensitivity and specificity values after MCCV were X1x and Yzy,

indicating the strong performance of this combined metabolite and clinical model approach.

[0103] After the enhanced metabolite based prediction model was established, subgroups of
CRC patients in this study were analyzed using the model to evaluate the diagnostic power for
specific CRC disease type and stage. As can be seen in Table 6, using the clinical factor
enhanced VIP metabolite model, all AUROCs were equal to or greater than 0.93. The models
have slightly better diagnostic power in colon cancer detection compared to rectal cancer, and
also have varying performances depending on different stages of CRC, with the highest

performance seen for stage IV CRC diagnosis.

[0104] Table 6. The performance of established prediction models for different CRC diagnostic

groups and cancer stages.

Compared to Colon Rectal

Stage /1| Stage Il Stage IV
Healthy Controls Cancer Cancer
AUROC 0.96 0.93 0.93 0.93 0.99
Sensitivity 0.95 0.93 0.95 0.76 0.94
Specificity 0.88 0.82 0.82 0.95 0.94
Compared to Colon Rectal

Stage I/l Stage Il Stage IV
Polyp Patients Cancer Cancer
AUROC 0.96 0.95 0.97 0.94 0.99
Sensitivity 0.92 0.89 0.95 0.94 1.00
Specificity 0.91 0.95 0.92 0.82 0.96
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Discussion

[0105] During the past decade, interest has grown in applying mass spectrometry-based
metabolic profiling for analyzing and monitoring cancer related metabolic alterations, and in
particular to thereby provide sensitive and valuable diagnostic information.*!# 2 |n the current
investigation, we explored the combination of targeted metabolic profiling with multivariate
statistical analysis for the discovery of sensitive and specific panel of metabolite biomarkers for
CRC detection. We have used this particular method to monitor 158 metabolites from 25
metabolic pathways of potential significance by LC-MS/MS using both positive and negative
ionization modes and MRM methods. Based on our multiple step biomarker selections, model
constructions, and cross validation, we successfully demonstrated the robust diagnostic power

of this metabolic profiling approach in this study comprised of 234 patient samples.

[0106] To date, a number of studies have performed mass spectrometry based methods (such
as GC-MS and LC-QTOF-MS) for detecting the serum metabolic alterations from CRC
patients.t# 1 & However, these studies have typically used global metabolic profiling methods
to measure as many features that can be captured by the analytical platform, which can make
them less reliable and robust. In contrast, the very reproducible targeted LC-MS/MS metabolite
profiling approach we applied in this current study has median CV values of ~8%, and has not
been reported in any previous CRC metabolic profiling study. Additionally, instead of only

applying database searches for compound annotation, 3 13¢

we tested all the targeted
metabolites included in this study with pure standard compounds (although the somewhat low
possibility of an unknown compound with a similar m/z and retention time being detected
simultaneously still exists). It is also worth noticing that there are only a few studies available so
far regarding the comparison of metabolic shifts from healthy controls to polyp patients and then
to CRC patients,# and none of these studies used serum samples. In our current study, we
performed pairwise comparisons of serum metabolites from CRC patients, polyp patients, and
healthy controls, and observed significant alterations in a variety of the metabolites detected
(e.g., amino acids, carboxylic acid, fatty acids and nucleosides); see Table 10 for detailed
metabolite classifications. Furthermore, significantly altered serum metabolites with p < 0.05
(Mann-Whitney U test) and VIP > 1 in the first PLS-DA model were selected in this study and
summarized (Figure 8). Meanwhile, efforts were also made in this study to look for possible
enhancements to the VIP metabolite model using 4 clinical factors, including age, gender,
smoking and alcohol status. After adding these clinical factors to the selected VIP metabolites,
improved AUROC, sensitivity, and/or selectivity were observed in the cross validated PLS-DA

model.
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[0107] Table 10. Percentage of different classes of metabolites that have significant alterations

(p<0.05) in comparing CRC patients to either healthy controls or polyp patients.

Classification Percentage
Alcohols 1.72%
Alkylamines 1.72%
Amino Acid 39.66%
Carboxylic Acids 8.62%
Cinnamic Acids 1.72%
Fatty Acids 6.90%
Imidazolidines 1.72%
Imidazopyrimidines 1.72%
Keto Acids 1.72%
Lactams 1.72%
Linoleic Acids 3.45%
Monosaccharides 517%
Neurotransmitter 1.72%
Organic Oxoanionic 1.72%

Organic Oxoazanium Compounds 1.72%

Oxolanes 1.72%
Phenylacetic Acid 1.72%
Purine Nucleosides 3.45%
Pyrimidine Nucleosides 3.45%
RNA 1.72%
Steroids 3.45%
Thienoimidazolidines 1.72%
Vitamins 1.72%

[0108] In order to understand the possible connections among these serum metabolites,
metabolic pathway maps were constructed based on information obtained from the Kyoto
Encyclopedia of Genes and Genomes website (www.genome.jp/kegg/) and are shown in
Figures 11 and 12. For example, in examining central carbon metabolism, including glycolysis,
the tricarboxylic acid (TCA) cycle, and other related pathways, ten metabolites were altered
significantly (Figure 11). Mean glucose levels from CRC patients are significantly higher than in
healthy controls, which has previously been related to a higher risk of CRC,% and significantly
impaired glucose metabolism has also been reported in CRC cases previously.** Meanwhile,
significantly increased pyruvate and lactate levels in CRC patients were also detected in our
study, which matched previous reports.® £ |ncreased glycolysis is proposed to be associated
with many tumors and with cancer cell growth, and forms part of the well-known Warburg
effect.® Three metabolites were detected as having significant differences in the pairwise
comparison of CRC with the other two groups; 2-oxoglutarate was found decreased in CRC

patients, indicating that the TCA cycle is impaired leading to reduced mitochondrial respiration.
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The other two TCA cycle metabolites, fumarate and oxaloacetate, were however found slightly
increased in CRC patients compared to either healthy control or polyp patients. Interestingly,
significantly increased fumarate levels were also reported by a previous metabolic study#® and
was suggested as part of a typical metabolic fingerprint of hypoxic cells. The authors from that
study also proposed that so-called fumarate respiration, which is a known activity of some
parasites and bacteria, contributes greatly to the energy generation of cancer cells under
conditions of glucose deprivation and severe hypoxia.#- On the other hand, oxaloacetate has
been reported to contribute greatly to aspartic acid production by transamination,*** while an
increase in aspartic acid levels was reported in various studies and was proposed as one of the

134

nutrients that cancer cells prefer.=*

[0109] Amino acid, purine and pyrimidine metabolism pathways were also significantly impacted
by CRC, as can be seen in Figure 12. Cancer cells are known to use some amino acids as an
energy source;# alterations of amino acids therefore can be indicative of cancer cell activities.
For example, significant decreases of alanine, glutamine, lysine, creatinine, asparagine, and
tryptophan, and significant increase of glutamate, proline, asparate, and hydroxylproline in CRC
patient serum samples compared to either healthy controls and/or polyp patients were detected
in our study, which were in agreement with previous serum studies.= = -1t is interesting to
note that these observations are somehow different from a previous CRC tissue study, in which
most of the free amino acids were higher in CRC due to possible up-regulation of cell amino
acid biosynthesis and cell autophagy,® suggesting the potential influence from different clinical
specimens to metabolites level. However, metabolite level changes in tissue and serum are not
always correlated?. Altered purine metabolism has been reported in other types of cancer such
as liver cancer, and enzyme pattern imbalances and other changes in purine metabolism have
been linked to disease progression.2 Therefore, based on the evidence of significant changes
in adenosine, urate, adenylosuccinate, and allantoin between CRC and the other two groups,
the impact of CRC to purine metabolism can be observed. Pyrimidine metabolism, which has
close connection to glutamine metabolism (Figure 12), can also be influenced by CRC.#4 2 |n
our study several pyrimidine metabolites, such as uridine and 2-deoxyuridine, were detected as
significantly decreased in CRC patients compared to both healthy controls and polyp patients,

while orotate was measured to be higher in CRC than polyp patients.

[0110] Most of the key serum metabolite biomarker candidates (determined by the criteria of
both p<0.05 and VIP score>1) discovered in this study are of biological importance and have
been proposed as CRC related compounds. For example, glycocholate and
glycochenodeoxycholate, two intermediate metabolites between primary bile synthesis and
secondary bile synthesis, have significantly higher concentrations in CRC patients compared to
healthy controls or polyp patients (in agreement with a previous report %), suggesting significant

increases of primary and secondary bile acids in CRC patients. Down regulation of histidine was
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observed in our study and by others, and this down regulation may be due to the
acceleration of decarboxylation from histidine to histamine in CRC patients, which is caused by
the increased activity of histidine decarboxylase.® Increased concentrations of hydroxylproline
were also observed in CRC patients, and a previous study suggested that the excessive
degradation of collagen in these patients may be the cause.® Furthermore, we discovered
some new potential CRC serum biomarkers, including glyceraldehyde, glycocholate, linolenic

acid, and D-leucic acid that have not been previously reported.

[0111] Besides the diagnostic power of metabolite biomarkers for comparing CRC patients with
healthy controls and polyp patients, we also carefully examined the metabolite changes in CRC
patients with different disease stages, and observed that three significantly altered serum
metabolites, namely glutamic acid, adenosine, and aspartic acid, that consistently changed over
the different cancer stages (see Figure 16). These metabolites could be further explored in the

future for the potential differentiation between early stage and late stage CRC.

[0112] This is the first time that an LC-MS/MS targeted serum metabolic profiling approach has
been applied for the comparison of CRC patients to both healthy controls and polyp patients,
and our results demonstrate that a panel of 13 serum metabolites for the differentiation of CRC
patients and healthy controls, and 14 for the differentiation of CRC and polyp patients, when
enhanced by four clinical factors (age, gender, smoking and alcohol status), can potentially

serve as a novel disease biomarker panel for CRC diagnosis.
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Example 3: Targeted Serum Metabolite Profiling for Colorectal Cancer Progression

Monitoring

[0114] In this example, a targeted LC-MS/MS metabolic profiling approach was applied using

serial serum samples to monitor CRC patient disease progression. A PLS-DA model using a

panel of 5 metabolites (succinate, N2, N2-dimethylguanosine, adenine, citraconic acid, and 1-

methylguanosine) with or without CEA was established, and excellent model performance
(sensitivity=0.83, specificity = 0.94, AUROC=0.91) was obtained, superior to CEA alone
(sensitivity=0.75, specificity=0.76 AUROC=0.80). Monte Carlo cross validation was applied, and

the robustness of the model was clearly observed by the separation of true classification models

from the random permutation models. This is the first study using an LC-MS/MS targeted serum
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metabolic profiling approach for CRC disease progression monitoring. The results support the

usefulness of metabolic profiling for CRC patient therapy monitoring.

[0115] The most widely used CRC monitoring test is carcinoembryonic antigen (CEA); CEAis a
glycoprotein involved in cell adhesion that is normally produced during fetal development.
Production of this protein ceases prior to birth and is, therefore, not typically present in the blood
of healthy adults (14). Elevated levels of CEA (>2.5 ng/mL) are most commonly used as a
biomarker for monitoring of CRC following tumor resection and for monitoring the response of
metastatic CRC to systemic therapy. Ratio methods that compare sequential CEA
measurements are also used, often with improved performance (1£). While CEA is FDA
approved for these applications, elevated CEA levels are also associated with other types of
carcinomas, such as gastric, pancreatic, lung, and breast, making it an unreliable biomarker
solely for CRC cancer diagnosis or early cancer detection (18). CEA levels can respond to
recurrent CRC with a sensitivity of ~ 80% (range, 17-89%) and specificity of ~ 70% (range, 34—
91%) (14, 17), which is less than optimal.

[0116] In this study we utilized a targeted liquid chromatography tandem mass spectrometry
(LC-MS/MS) serum metabolic profiling approach to identify metabolites that correlate with CRC
patient disease status. Using 49 serial serum samples from 20 CRC patients, a number of
metabolites showed a significant difference (p-values<0.05) in their sequential ratios between
CRC patients with progressing disease and CRC patients with other disease status. The
individual performance of several of these metabolites was higher than CEA alone. Partial least
squares-discriminant analysis (PLS-DA) was performed using sequential patient sample ratios
of these metabolite biomarkers, and high sensitivity and specificity were obtained for the
differentiation of CRC patients with disease progression status compared to patients with stable

disease or complete remission.
Materials and Methods

[0117] Chemicals and reagents: LC-MS grade acetonitrile, ammonium acetate, and acetic
acid were purchased from Fisher Scientific (Pittsburgh, PA). Standard compounds
corresponding to the measured metabolites were purchased from Sigma-Aldrich (Saint Louis,
MO) or Fisher Scientific (Pittsburgh, PA), and a list of these compounds can be found in the
Supplementary Table 15. Stable isotope-labeled tyrosine and lactate (L-tyrosine-'*C, and
sodium-L-lactate-'>C3) were purchased from Cambridge Isotope Laboratories, Inc. (Tewksbury,
MA). The purities of non-labeled standards were >95-99%, whereas the purities of the two *C

labeled compounds were >99%.

[0118] Table 15. List of targeted metabolites in this study (verified by chemical standards).

Glycine Normetanephrin Ribose-5-P

Trimethylamine-N-oxide Histamine Adenylosuccinate
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Alanine Pyruvate D-Leucic Acid
Aminoisobutyrate lactate GDP
Choline Acetoacetate GTP
Dimethylglycine Fumaric DCDP
Serine Succinate Pyridoxal-5-P
Creatinine Nicotinate Gibberellin
Proline Glutaric Acid Adipic Acid
Valine Malate Maleic Acid
Betaine Hypoxanthine Methylmalonate
Threonine Alpha-Ketoglutaric Acid DHAP
Taurine Xanthine Chenodeoxycholate
Creatine PPA G16BP
Hydroxyproline Urate F6P/F1P
Leucine/iso-Leucine Homogentisate Oxalic Acid
Ornithine PEP Glyceraldehyde
Homocysteine D-GA3P Glycerate
Acetylcholine Glycerol-3-P N-AcetylGlycine
Glutamine Hyppuric Acid Guanidinoacetate
Glutamic acid Glucose Mevalonate
Methionine 4-Pyridoxic acid Allantoin
Cystamine 2/3-Phosphoglyceric Acid Inositol
Histidine Erythrose Homovanilate
Carnitine Cystathionine Xanthurenate
Phenylalanine G1P/G6P Pentothenate
Arginine Reduced glutatione Biotin
Glucosamine F16BP/F26BP DCMP
Tyrosine Sucrose DUMP
Sorbitol 5-Formyl THF Geranyl Pyrophosphate
Epinephrine Oxidized glutathione DTMP
Tryptophan gama-Aminobutyrate CMP
5-Hydroxytryptophan Malonic Acid/3HBA Lactose
Uridine Citraconic Acid cGMP
Phosphotyrosine Adenine AMP
Adenosine Shikimic Acid IMP
Inosine Aconitate PGE
Guanosine Citrulline OMP
XMP Citric Acid UDP
L-Kinurenine Cystine ADP
Lysine Xanthosine Folic Acid
Cytosine Uracil DUTP

40



10

15

WO 2015/109263 PCT/US2015/011869
Homoserine OH-Phenylpyruvate ATP
Niacinamide Glycochenodeoxycholate Taurocholate
1-Methylhistamine Glycocholate Fructose
Asparagine Dopamine Aspartic Acid
Salicylurate Melatonin MethylSuccinate
2'-Deoxyuridine Orotate Myristic Acid
3-Hydroxykynurenine Anthranilate Margaric Acid
Cytidine Glucoronate Linoleic Acid

Pyroglutamic Acid

Oxaloacetate

Linolenic Acid

1-Methyladenosine

Propionate

Galactose

1-Methylguanosine

2-Aminoadipate

N2,N2-Dimethylguanosine

Kynorenate

Aminolevulinic Acid

3-Nitro-tyrosine

[0119] Clinical samples: Patient recruitment and sample collection protocols were approved by
Institutional Review Boards at Purdue University and the Indiana University School of Medicine.
Informed consent was provided from all subjects in the study according to institutional
guidelines. Longitudinal serum samples (49) were obtained from 20 CRC patients and included
in this study. Patient summary demographic and clinical information are shown in Table 11. The
four major CRC disease statuses are defined as the following: At diagnosis (AD)- the patient
has just been diagnosed with cancer and has not yet received any form of treatment for it;
Disease progression (DP)- a patient has growing tumor (determined either clinically or by
imaging), and the patient is usually on treatment but can also be off treatment; Stable disease
(SD)- the patient has a tumor, may or may not be on treatment, and imaging studies/clinical
exam suggest that his/her tumor is the same size as determined in previous visits; and
Complete remission (CR)- the patient has a tumor, may or may not be on treatment, and
imaging studies/clinical exam suggest that he/she has no visible tumor anymore. All samples
were evaluated for serum CEA values at the time of collection, and this information was also
utilized for comparison in this study. Each blood sample was allowed to clot for 45 min and then
centrifuged at 2000 rpm for 10 min. All samples were stored at -80 °C until experiments were

performed.

[0120] Table 11. Summary of patient and sample information

Age (SD) 54.9 (15.6)
BMI (SD)* 25.8 (3.7)
Gender

Male 9

Female 11
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Stage at diagnostics

Stage I/l 2
Stage Il 4
Stage IV 14
Serum samples

(# of ratios)

Disease progression 22 (12)
Other status 27 (17)

*BMI Information for 5 patients was not recorded

[0121] Sample preparation: Frozen samples were first thawed at room temperature for
approximately 45 min, and 50 pL of each sample was protein precipitated using two rounds of
cold methanol extraction (150 pyL and 300 pL, respectively) at -20 °C. The resulting supernatant
containing desired metabolites were collected into a new Eppendorf vial, dried using a Vacufuge
Plus evaporator (Eppendorf, Hauppauge, NY), and then reconstituted in 500 pyL of 5 mM
ammonium acetate in 40% water/60% acetonitrile + 0.2% acetic acid containing 5.13 uyM L-
tyrosine-">C, and 22.5 uM sodium-L-lactate-'*Cs. The two isotope-labeled internal standards
were added to each sample to monitor system performance. The samples were filtered through
0.45 ym PVDF filters (Phenomenex, Torrance, CA) prior to LC-MS analysis. A pooled human
serum sample was extracted using the same procedure as above. This sample was used as the

quality control (QC) sample and was analyzed once every ten serum samples.

[0122] Liquid chromatography mass spectrometry conditions: Two Agilent 1260 binary
pumps, an Agilent 1260 auto-sampler, and an Agilent 1290 column compartment containing a
column-switching valve (Agilent Technologies, Santa Clara, CA) were used in this study. Two
separate injections (10 pL for analysis using negative ionization mode and 2 L for analysis
using positive ionization mode) were made for each sample. Chromatographic separations were
performed using hydrophilic interaction chromatography (HILIC) on two SeQuant ZIC-cHILIC
columns (150 x 2.1 mm, 3.0 ym particle size, Merck KGaA, Darmstadt, Germany) connected in
parallel. This setup facilitates high-throughput analysis as it allows one column to perform the
separation while the other column is being reconditioned for the next sample injection. The
reconstituted serum samples were gradient-eluted at 0.300 mL/min using solvents A (56 mM
ammonium acetate in 90% H,0/ 10% acetonitrile + 0.2% acetic acid) and B (5 mM ammonium
acetate in 90% acetonitrile/ 10% H,0 + 0.2% acetic acid). The auto-sampler temperature was
kept at 4 °C, the column compartment was set at 40 °C, and the total separation time for both
ionization modes was 20 min. The gradient conditions for both separations were identical and
are briefly summarized as follows: 75% B isocratic for 2 min, 75% B to 30% B in three min, 30%

B isocratic for 4 min, and then back to 75% B in two min.
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[0123] The metabolite identities were confirmed by spiking the pooled serum sample used for
method development with mixtures of standard compounds (each mixture contained five
standard metabolites). The few metabolites that could not be well separated and had similar m/z

values (<1 Da) were integrated as single peaks (e.g., malonic acid and 3-hydroxybutyric acid).

[0124] The mass spectrometer setting was optimized and described as follows. Briefly, after the
chromatographic separation, MS ionization and data acquisition were performed using an AB
Sciex QTrap 5500 mass spectrometer (AB Sciex, Toronto, ON, Canada) equipped with an
electrospray ionization (ESI) source. The instrument was controlled by Analyst 1.5 software (AB
Sciex). Targeted data acquisition was performed in multiple-reaction-monitoring (MRM) mode.
We monitored 105 and 57 MRM transitions in negative and positive mode, respectively (162
transitions in total). The source and collision gas was N; (99.999% purity). The ion source
conditions in negative/positive mode were as follows: curtain gas (CUR) = 25 psi, collision gas
(CAD) = high, ion spray voltage (IS) =-3.8/3.8 KV, temperature (TEM) = 500 °C, ion source gas
1 (GS1) = 50 psi, and ion source gas 2 (GS2) = 40 psi. The optimized MS compound conditions

were optimized with chemical standards.

[0125] Data analysis, model development, and cross validation: The extracted MRM peaks
were integrated, and the spectral data were exported using MultiQuant 2.1 software (AB Sciex).
Sequential metabolite ratios (for example, the ratio of the same metabolite from the second
blood draw to that from the first blood draw of the same patient) were used for the analyses.
The calculated ratio values were linked to the disease status at the time of the most recent
blood draw, and there were only three groups of disease status (CR, DP and SD) left after the

ratio transformation.

[0126] Both univariate and multivariate statistical analyses were applied for metabolite
biomarker discovery and model development on a selected set of biomarker candidates. Mann-
Whitney U-tests, generation of receiver operator characteristics (ROC) curves, and calculation
of sensitivity, specificity, and area under ROC curves (AUROCSs) were calculated for each
metabolite using JMP Pro10 (SAS Institute). Partial least squares-discriminant analysis (PLS-
DA) and Monte Carlo Cross Validation (MCCV, developed using in-house scripts) were
performed using Matlab software (Mathworks, Natick, MA) installed with the PLS toolbox
(Eigenvector Research Inc., Wenatchee, WA). MCCV was applied with 100 iterations, using
70% of the data (randomly selected) as the training set while the remaining 30% served as the
testing set for each iteration. Three specificities, 0.95, 0.85, and 0.75, for the training sets were
used to determine the thresholds of PLS-DA predicted Y values. The same thresholds were
then applied to the test set to determine sensitivities and specificities. The sample classification
can be correctly assigned, termed “true class,” or the sample class information can be randomly

permuted, which is referred to as “random permutation.”
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Results

[0127] In the present study, a targeted LC-MS/MS metabolic profiling approach was developed
to monitor CRC patient disease status using serial serum samples. The targeted platform allows
the detection of 162 metabolites, representing more than 20 different classes (such as amino
acids, carboxylic acids, pyridines, etc.) from 25 important metabolic pathways (e.g., TCA cycle,
amino acid metabolism, purine and pyrimidine metabolism, glycolysis, etc.). In this study, 131
metabolites were reproducibly detected in the 49 samples, with an average coefficient of
variation (CV) of 7.1%.

[0128] CEA values were available for all 49 samples and the resulting ROC curve is shown in
Figure 17A. The sensitivity and specificity were 0.86 and 0.44, respectively, for the typical cutoff
values of 2.5 ng/mL (18). At 5 ng/mL (19), the sensitivity and specificity were 0.86 and 0.67,
respectively. The AUROC was 0.77. Often, DP is better identified in CRC patients using CEA
ratios calculated from sequential samples (15, 23), and therefore we also evaluated the CEA
performance for CRC DP monitoring based on its ratio of serial blood draws from the same
patient, although with 29 ratios for the 20 patients, we did not have sufficient samples to
calculate exponentially fitted slopes (28). Using a ratio cutoff value of 1.2, the sensitivity and
specificity are 0.75 and 0.76, respectively (lower cutoff values can be used, which would
increase the detection sensitivity but also decrease the specificity). The area under ROC curve
(AUROC) was 0.80 for the differentiation of DP from both CR and SD groups.

[0129] Metabolite data was then analyzed after calculating the sequential metabolite ratios for
serial patient samples. Both univariate and multivariate statistical methods were used for
metabolite biomarker selection. After applying the univariate Mann-Whitney U-test, 19
metabolites from different classes, such as monosaccharides, amino acids, carboxylic acids,
and nucleosides, showed a significant statistical difference (p<0.05) between CRC DP and
other CRC disease status (CR + SD). The p-values and fold changes for these metabolites are
listed in Table 12. Furthermore, highly significant changes (defined as p<0.01) were found for
six metabolites in comparison between disease progression and other disease status (CR +
SD), namely succinate, N2, N2-dimethylguanosine, adenine, citraconic acid methylmalonate,
and 1-methylguanosine. We established the individual ROCs for each of these six metabolites
for monitoring the CRC disease progression (Figure 18). Some of these metabolites had good
AUROCs, such as 0.83 for succinate and 0.82 for N2, N2 dimethylguanosine, which have better

performance than CEA (or its sequential sample ratio) alone.
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[0130] Table 12. Summary of metabolites with low p-values (p<0.05) using sequential

metabolite ratio in comparing DP vs. CR +SD.

Metabolite p-value FC*
Succinate 2.80E-03 1.33
N2,N2-Dimethylguanosine 3.73E-03 1.34
Adenine 4.93E-03 1.11
Citraconic Acid 4.93E-03 1.58
Methylmalonate 4.93E-03 1.31
1-Methylguanosine 8.42E-03 1.25
3-Nitro-tyrosine 1.24E-02 0.84
Aconitate 1.40E-02 1.45
Cystathionine 1.58E-02 0.65
Urate 1.78E-02 1.15
Ornithine 2.53E-02 0.91
Homogentisate 2.84E-02 1.19
G16BP 3.17E-02 1.05
Galactose 3.17E-02 0.36
MethylSuccinate 3.17E-02 0.80
Oxaloacetate 4.39E-02 1.30
Pyruvate 4.39E-02 0.64
2-Aminoadipate 4.88E-02 1.38
F16BP/F26BP 4.88E-02 1.03

*Fold change represents the average metabolite ratio for disease progression samples

compared to the average metabolite ratio of samples from other groups.

[0131] Furthermore, PLS-DA was utilized to identify the performance of multiple metabolite
biomarkers in combination for monitoring CRC DP. Variable importance in projection (VIP)
scores from the PLS-DA of all metabolites were calculated to evaluate those metabolites that
contributed most to the differentiation of CRC DP from CR and SD (see Table 16 for metabolites
with low p-value (p<0.05) in comparison of DP vs. CR + SD; and Table 17 for metabolites with
VIP>1.5). A series of PLS-DA models were then established based on the different VIP
thresholds (from 1.5 to 2), and the model performances were evaluated and are listed in Table
13. Interestingly, when the VIP threshold was set to 2, five out of the six metabolites (succinate,
N2, N2-dimethylguanosine, adenine, citraconic acid and 1-methylguanosine) that had p<0.01

were again selected as important biomarkers for CRC DP monitoring.

[0132] Table 13. Summary of PLS-DA model performance using different numbers of

sequential metabolite ratios for the differentiation of DP vs. CR + SD.
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# of
Metabolites
Metabolites
PLS-DA Models selection AUROC Sensitivity Specificity
used in the
Threshold
model*
DP vs. CR+SD VIP>1.5 20 0.92 0.92 0.88
(Metabolites only VIP>1.8 7 0.90 0.83 0.94
models) VIP>2 5 0.91 0.83 0.94
DP vs. CR+SD VIP>1.5 20 0.92 0.92 0.88
(Metabolites + VIP>1.8 7 0.89 0.83 0.94
CEA models) VIP>2 5 0.91 0.83 0.94

*See Table 17 for metabolites and their corresponding VIP scores.

[0133] Table 16. Summary of MS parameters for the metabolites with low p-value (p<0.05) in
comparison of DP vs. CR + SD.

Pos/ Ret. Q1/Q3 Declustering Collision
Metabolite Neg Time Mass Potential Energy
mode (Min) (Da) (Volts) (Volts)

Succinate Neg 2.28 117/73 -50 -18
N2,N2-

Dimethylguanosine Pos 1.77 312/180 200 47
Adenine Neg 3.06 134/107 -250 -25
Citraconic Acid Neg 2.56 129/85 -50 -15
Methylmalonate Neg 2.28 117/73 -50 -18
1-Methylguanosine Pos 2.08 298/166 65 33
3-Nitro-tyrosine Neg 3.62 2251179 -50 -16
Aconitate Neg 2.55 173/129 -65 -20
Cystathionine Neg 7.96 221134 -75 -20
Urate Neg 2.94 167/124 -85 -22
Ornithine Pos 2.27 133/70 75 25
Homogentisate Neg 2.94 167/123 -75 -20
G16BP Neg 9.07 339/79 -120 -60
Galactose Neg 2.61 179/89 -50 -15
MethylSuccinate Neg 4.45 131/113 -80 -20
Oxaloacetate Neg 1.84 131/87 -70 -12
Pyruvate Neg 2.22 87/43 -75 -12
2-Aminoadipate Neg 2.64 160/116 -60 -20
F16BP/F26BP Neg 9.07 339/79 -120 -60
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[0134] Table 17. Summary of metabolites with high VIP scores (VIP>1.5) using sequential

metabolite ratios in comparing DP vs. CR +SD.

Metabolite VIP FC*
N2,N2-Dimethylguanosine 215 1.34
Citraconic Acid 204 1.58
1-Methylguanosine 204 1.25
Succinate 2.01 1.33
Adenine 2.01 1.11
Methylmalonate 1.84  1.31
3-Nitro-tyrosine 1.83 0.84
Malonic Acid/3HBA 1.77  5.99
G16BP 1.76  1.05
Urate 1.76  1.15
Aconitate 1.73 1.45
Homogentisate 1.66 1.19
MethylSuccinate 1.61  0.80
1-Methyladenosine 1.61 1.15
Cystathionine 1.60 0.65
Linolenic Acid 1.58 1.77
Cytidine 1.57 1.39
Pyruvate 1.57 0.64
Alanine 1.55 0.80
gama-Aminobutyrate 1.53 0.82

*Fold change represents the average metabolite ratio for disease progression samples

compared to the average metabolite ratio of samples from other groups.

[0135] A PLS-DA model using only these five core metabolite biomarkers was then applied to
evaluate the performance of this approach for CRC DP monitoring, and the ROC curve
generated for this metabolite model is shown in Figure 19A. The AUROC for this five metabolite
model demonstrated excellent performance with an AUROC of 0.91, a sensitivity of 0.83 and a
specificity of 0.94. To further test the robustness of this model, MCCV was applied with three
different specificities. The true classification models clearly outperformed the random
permutation models (Figure 19B), suggesting that the five core metabolite biomarker model is

reliable for the CRC DP monitoring.

[0136] The model was further enhanced by adding the CEA ratio to the five metabolite model.
Slightly improved performance (AUROC increased from 0.907 to 0.912) was obtained by adding

the CEA ratio to the 5 metabolite ratio model (Figure 20), suggesting that the combination of
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both metabolite biomarkers and CEA may provide the most utility for the close monitoring of
patients for CRC DP.

[0137] To improve the potential for metabolite applications for more specific disease status
differentiation, PLS-DA models were also evaluated in this study for DP vs. SD and DP vs. CR,
and the model performance can be seen in Table 14. It is interesting to note that when only
comparing the CRC DP to either SD or CR, two important CRC disease statuses in CRC
monitoring, excellent model performances was obtained (with AUROC=0.95 for DP vs. SD
using 7 metabolites, and AUROC=0.91 for DP vs. CR using 6 metabolites, Figure 21).

[0138] Table 14. Summary of PLS-DA model performance using sequential metabolite ratios for
the differentiation of DP vs. CR and DP vs. SD.

# of
Metabolites
Metabolites .
PLS-DA Models selection AUROC Sensitivity Specificity
used in the
Threshold
model
DP vs. CR VIP>1.5 17 0.94 0.89 0.92
(Metabolites only VIP>1.7 8 0.96 0.83 1.00
models) VIP>1.9 4 0.92 0.75 1.00
VIP>1.5 17 0.94 0.92 0.89
DP vs. CR
VIP>1.8 6 0.91 0.83 1.00
(Metabolites +
VIP>1.9 4 0.91 0.75 1.00
CEA models)
VIP>2 1 0.84 0.75 1.00
VIP>1.5 17 0.94 0.92 1.00
DP vs. SD
VIP>1.7 10 0.95 0.92 1.00
(Metabolites only
VIP>1.9 4 0.92 0.92 0.88
models)
VIP>2 2 0.95 0.93 1.00
DP vs. SD VIP>1.5 17 0.94 0.92 1.00
(Metabolites + VIP>1.8 7 0.95 0.92 1.00
CEA models) VIP>1.9 4 0.94 0.92 0.88
Discussion

[0139] During the past several decades, the search for new and better biomarkers has become
an important part of cancer research. Sensitive, specific, and reliable metabolite biomarkers can
serve multiple clinical purposes, such as cancer diagnostics, recurrence monitoring, and
prognosis management, as well as understanding disease mechanisms (21, 22). In the case of
CRC, efforts have been made to discover and evaluate potential metabolite biomarkers for
diagnostics procedures (7, &, 18, 23), and good performance for using these combinations of

metabolite biomarkers can be observed (AUROC range from 0.88 to 0.97). However, there are
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also healthcare needs for closely monitoring CRC patients after surgeries/treatments, to ensure
that patients remain disease free or are treated promptly in case of relapse. Metabolomics

research focusing on this area is largely lacking.

[0140] Currently, one of the most frequently used clinical biomarkers for CRC disease status
monitoring is CEA, and high preoperative concentrations of CEA would normally correlate with
adverse prognosis. Based on the available reports, it appears that monitoring all CRC patients
with serial CEA assays has only a modest effect on patient outcome, and serial CEA
measurements can detect recurrent colorectal cancer with a sensitivity of ~ 80%, a specificity of
~70% (17), which is consistent with our evaluation in this study. In order to provide an
alternative CRC monitoring tool with better performance, we propose an LC-MS/MS targeted
serum metabolite profiling approach. Sequential metabolite ratios, combined with a multivariate
statistical analysis were used to evaluate the usefulness of metabolite biomarkers for CRC
disease progression monitoring. Excellent model performance (AUROC = 0.91) was obtained
for the differentiation of CRC disease progression status from CR and SD, using five core
metabolite markers in our PLS-DA model. Using 20 metabolites, based on VIP score >1.5, an
even better performance was achieved (AUROC = 0.92). After robustness testing using MCCYV,
a clear distinction between the true classification models and random permutation models was
observed. Furthermore, enhanced performance was also obtained by adding the five core
metabolite model to the CEA ratio (AUROC=0.91). This result again suggests the potential
usefulness of this targeted metabolite profiling approach for CRC DP monitoring. The five core
metabolite model outperformed the CEA data alone, suggesting that better sensitivity and
specificity for CRC disease status monitoring can be obtained by applying the metabolite

biomarker models separately, or together with CEA.

[0141] Significantly changed metabolites discovered in this study are involved in multiple
important metabolic pathways, such as the tricarboxylic acid (TCA) cycle, glycolysis, amino acid
metabolism, purine metabolism, the urea cycle and their related pathways. Therefore, an effort
was made to understand the possible connections among these serum metabolites. A metabolic
pathway map was constructed using reference information obtained from the Kyoto
Encyclopedia of Genes and Genomes website (www.genome.jp/kegg/) and is shown in Figure
22. Six significantly altered metabolites in this study, namely galactose, pyruvate, cystathionine,
3 nitro-tyrosine, ornithine, and methyl succinate, showed decreased levels in CRC DP serum
samples in comparison with CR and SD. On the other hand, thirteen significantly altered
metabolites, including glucose 1, 6-bisphosphate (G16BP), fructose 1, 6-bisphosphate (F16BP),
1-methylguanosine, 2-aminoadipate, citraconic acid, N2, N2-dimethylguanosine, oxaloacetate,
cis-aconitate, succinate, homogentisate, methylmalonate, adenine, and urate increased in the
CRC DP group. Several of the biological discoveries in this study are consistent with previously

published results. For example, G16BP and F16BP showed a significant increase in

49



10

15

20

25

30

35

WO 2015/109263 PCT/US2015/011869

progressing patients. A recent gastric cancer study suggested that fructose-1, 6-
bisphosphatase-2 (FBP2), the enzyme that catalyzes the hydrolysis of F16BP to fructose-6-
phosphate and inorganic phosphate in glucose metabolism, was down regulated in gastric
cancer patient tissue (24), which could lead to the accumulation of upstream F16BP. Pyruvate,
the major downstream product of glycolysis, was significantly lower in CRC DP patients
compared to CR and SD in this study, which matches the observation from several other studies
(25, 28). The proposed mechanisms behind this observation are that CRC cancer cells try to
maintain low levels of pyruvate to avoid cell death caused by histone deacetylases (HDAC) (26),
and also overexpress pyruvate dehydrogenase kinase to increase drug resistance and early
recurrence (25). Increased levels of modified nucleosides, such as N2, N2-dimethylguanine,
have been observed in urine from patients suffering from CRC (27, 28), which is also in
agreement with the current study. Increased levels of three TCA cycle metabolites (succinate,
oxaloacetate and cis-aconitate) were observed in this study, which may suggest a typical
metabolic fingerprint of mitochondrial dysfunction in hypoxic cells (29); however, it is uncertain

what causes the accumulation of these metabolites in CRC DP samples.

[0142] This is the first study in which an LC-MS/MS targeted serum metabolic profiling approach
has been applied to distinguish CRC DP patients from CRC patients with other disease status
(SD and CR). Our results demonstrate that a panel of five core serum metabolites (succinate,
N2, N2-dimethylguanosine, adenine, citraconic acid methylmalonate, and 1-methylguanosine)
can be used for sensitive and specific CRC disease status monitoring. Furthermore, with the
enhancement of adding CEA to the model, this metabolic profiling approach can potentially
serve as a novel tool for CRC disease status monitoring and provide useful information for many
CRC related healthcare decisions. While these findings with a small samples size are
promising, further studies with larger patient cohorts will be needed to substantiate the results,
verify the important biological roles of these key metabolites, and determine any association of
the derived metabolite markers with pathologically different CRC disease status. Considering
their strong performance as biomarkers in the present study, these five core metabolites as well

as larger profiles might be of particular interest for further validation studies.
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Example 4: Use of a Subset of 8 Metabolites for Detecting Colon Cancer

[0144] Eight core metabolites that have VIP scores > 1 and have shown up in both CRC vs.
Healthy control comparison and CRC vs. Polyp patients comparison are: Glyceraldehyde,
Hippuric Acid, Glycochenodeoxycholate, Glycocholate, Linolenic Acid, Hydroxyproline/
Aminolevulinate, N-AcetylGlycine, and Leucic Acid. Modified PLS-DA models were built, using
only these eight metabolite values in both comparison. Results of the models can be seen in
Figures 23A and 23B, Monte Carlo Cross Validation (MCCV) was also applied on these models,
and clear separation between true class and random permutation can be observed as well
(Figures 23C and 23D).

[0145] From the foregoing it will be appreciated that, although specific embodiments of the
invention have been described herein for purposes of illustration, various modifications may be
made without deviating from the spirit and scope of the invention. Accordingly, the invention is

not limited except as by the appended claims.
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What is claimed is:
1. A method of detecting colorectal cancer (CRC) in a subject, the method comprising:

(a) measuring the concentrations of at least five components of a panel of a plurality of
serum metabolites in a serum sample from the subject, wherein the components of the panel

are selected from the group consisting of:

glyceraldehyde, hippuric acid, glycochenodeoxycholate, glycocholate, linolenic acid,

hydroxyproline/aminolevulinate, N-acetylglycine, and leucic acid;

(b) determining a ratio of the concentration of each of the components measured in step

(a) to a control serum concentration of each of the components; and

(c) detecting CRC in the subject when the ratio determined in (b) is less than 0.9 or

greater than 1.1 for at least five of the components.

2.  The method of claim 1, wherein detecting CRC occurs when the ratio determined in step (b)

is less than 0.8 or greater than 1.3.

3. The method of claim 1, wherein detecting CRC occurs when the ratio of components N-
acetylglycine and linolenic acid is less than 0.85, and the ratio of components glyceraldehyde,
hippuric acid, glycochenodeoxycholate, glycocholate, hydroxyproline/aminolevulinate, and

leucic acid is greater than 1.2.

4. The method of claim 1, wherein the at least five components comprise hippuric acid,

glycochenodeoxycholate, glycocholate, hydroxyproline/aminolevulinate, and leucic acid.

5. The method of claim 1, wherein the control serum is obtained from a normal, healthy

subject.

6. The method of claim 1, further comprising measuring the concentrations of at least one

additional serum metabolite selected from the group consisting of:

oxalic acid, glyceraldehyde, malonic acid/3-hydroxybutyric acid (3HBA), maleic acid, N-
acetylglycine, aspartic acid, d-leucic acid, allantoin, 2-aminoadipate, phosphoenolpyruvic acid
(PEP), hippuric acid, kynurenate, xanthurenate, cystathionine, biotin, linoleic acid, linolenic acid,
glycochenodeoxycholate, adenylosuccinate, glycocholate, trimethylamine-N-oxide, alanine,
dimethylglycine, creatinine, proline, hydroxyproline/aminolevulinate, lysine, glutamic acid,

methionine, histidine, L-kynurenine, 2'-deoxyuridine, uridine, adenosine and pyruvate.
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7. The method of claim 1, further comprising measuring carcinoembryonic antigen (CEA) in a
serum sample from the subject, wherein a statistically significant increase in CEA relative to a

control sample is indicative of CRC.
8. A method of detecting colorectal cancer (CRC) in a subject, the method comprising:

(a) obtaining individual amino acids by subjecting a serum sample from the subject to acid

hydrolysis;

(b) measuring the relative distribution of free amino acids (FAAs), free + soluble protein
amino acids (FAASPAAS), and proteome amino acids (PAAs) in the sample as compared to a

control sample, wherein the amino acids are selected from the group consisting of:

aspartic acid, glutamic acid, glutamine/lysine, and histidine from FAAs, lysine from

FAASPAAs, and arginine, serine, and tyrosine from PAAs; and

(c) detecting the presence of CRC in the subject when the relative amounts of aspartic
acid and glutamic acid in FAAs increase, the relative amounts of glutamine/lysine and histidine
in FAAs decreases, the relative amount of lysine in FAASPAAs decreases, and the relative

amounts of arginine, serine, and tyrosine in PAAs decrease.

9. The method of claim 8, wherein the measuring of step (b) comprises multivariate statistical

analysis.
10. The method of claim 9, wherein the multivariate statistical analysis is logistic regression.

11. The method of claim 8, wherein the control sample is obtained from a normal, healthy

subject.

12. The method of claim 8, further comprising measuring carcinoembryonic antigen (CEA) in a
serum sample from the subject, wherein a statistically significant increase in CEA relative to a

control sample is indicative of CRC.

13. A method of detecting progression of colorectal cancer (CRC) in a subject, the method

comprising:

(a) measuring the concentrations of at least five components of a panel of a plurality of
serum metabolites in a serum sample from the subject, wherein the components of the panel

are selected from the group consisting of:

succinate, N2,N2-dimethylguanosine, adenine, citraconic acid, methylmalonate, 1-

methylguanosine, and 3-nitro-tyrosine;

53



10

15

20

25

WO 2015/109263 PCT/US2015/011869

(b) determining a ratio of the concentration of each of the components measured in step

(a) to a control serum concentration of each of the components; and

(c) detecting CRC progression in the subject when the ratio determined in (b) is less than

0.85 or greater than 1.15 for at least five of the components.

14. The method of claim 13, wherein detecting progression of CRC occurs when the ratio

determined in step (b) is less than 0.9 or greater than 1.1.

15. The method of claim 13, wherein detecting CRC occurs when the ratio of component 3-
Nitro-tyrosine is less than 0.9, and the ratio of components succinate, N2,N2-dimethyl-
guanosine, adenine, citraconic acid, methylmalonate, and 1-methylguanosine is greater than
1.1.

16. The method of claim 13, wherein the at least five components comprise succinate, N2,N2-

dimethylguanosine, adenine, citraconic acid, and 1-methylguanosine.

17. The method of claim 13, wherein the control serum is obtained from a normal, healthy

subject or obtained from the subject at an earlier time.

18. The method of claim 13, further comprising measuring the concentrations of at least one

additional serum metabolite selected from the group consisting of:

malonic acid/3HBA, G16BP, urate, aconitate, homogentisate, methylsuccinate, 1-
methyladenosine, cystathionine, linolenic acid, cytidine, pyruvate, alanine, and gama-

aminobutyrate.

19. The method of claim 13, further comprising measuring carcinoembryonic antigen (CEA) in a
serum sample from the subject, wherein a statistically significant increase in CEA relative to a

control sample is indicative of progression of CRC.

20. The method of any of the preceding claims, wherein the measuring comprises liquid

chromatography, mass spectrometry, enzymatic assay, and/or immunoassay.
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