
USOO8806228B2

(12) United States Patent (10) Patent No.: US 8,806,228 B2
Gee et al. (45) Date of Patent: Aug. 12, 2014

(54) SYSTEMS AND METHODS FOR 6,877,087 B1 * 4/2005 Yamada et al. T12/226
7,007,004 B2 * 2/2006 Liukkonen et al. 707/1

YESERFORMANCE 7,058,829 B2 * 6/2006 Hamilton T13,320
7,099,864 B2 * 8/2006 Finlay et al. 707/7
7,184,003 B2 * 2/2007 Cupps et al. 345.30

(75) Inventors: Timothy W. Gee, Cary, NC (US); Mark 7,349,762 B2 * 3/2008 Omizo et al. 7OO/278
A. Rinaldi, Durham, NC (US) 2002/0016892 A1 2/2002 Zalewski et al.

2002/0052914 A1 5, 2002 Zalewski et al.
2003. O163666 A1 8/2003 Cupps et al.

(73) Assignee: stational systis 2004/0093512 A1* 5/2004 Sample T13 201
orporation, Armonk, NY (US) 2006, O259743 A1* 11, 2006 Suzuoki T12/220

- 2007. O1572O1 A1* 7, 2007 Schmidt et al. T18, 100
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS
U.S.C. 154(b) by 2549 days.

CN 1415085 A 4/2003
(21) Appl. No.: 11/457,414 CN 1666180 A 9, 2005

WO WO 2005,124550 A1 12/2005

(22) Filed: Jul. 13, 2006 * cited by examiner

(65) Prior Publication Data Primary Examiner — Mohammed Rehman
US 2008/OO16374A1 Jan. 17, 2008 (74) Attorney, Agent, or Firm — Steven J. Meyers; Schubert

Law Group PLLC
(51) Int. Cl.

G06F I/00 (2006.01) (57) ABSTRACT
(52) U.S. Cl. Systems, methods and media for allocating processing func

USPC .. 713/300 tions between a primary processor and a secondary processor
(58) Field of Classification Search are disclosed. In one embodiment, a primary processor per

USPC .. 713/300 forms routine processing duties, including execution of appli
See application file for complete search history. cation program code, while the secondary processor is in a

sleep state. When the load on the primary processor is deemed
(56) References Cited to be excessive, the secondary processor is awakened from a

sleep state and assigned to perform processing functions that
U.S. PATENT DOCUMENTS would otherwise need to be performed by the primary pro

3,768,074 A * 10/1973 Sharp etal T10/100 cessor. If temperatures in the system rise above a threshold,
586855; A 4/690 Balea. 36/03 the secondary processor is returned to the sleep state.
6,240,521 B1 5, 2001 Barber et al.
6,631,474 B1 * 10/2003 Cai et al. T13,300 19 Claims, 5 Drawing Sheets

116 1O8

DIGITAL
SYSTEM

PROCESSOR2
(SECONDARY)

CONTROL
CIRCUITRY

15O

OTHER
COMPUTERS
AND SERVERS

114

U.S. Patent Aug. 12, 2014 Sheet 1 of 5 US 8,806,228 B2

116 1O3

DIGITAL MEMOR SYSTEM ORY O4 1O4
EXECUTION BIOS 1 O7- "A" || 6 || OSCODE

109\ EXECUTIONQUEUE 2

PROCESSOR1
(PRIMARY)

Ll CACHE 2 CACHE

.
PROCESSOR2
(SECONDARY)

Ll CACHE 19

INSTRUCTION 1O2 INSTRUCTION 125
FETCHER FETCHER

CONTROL CONTROL 1(3O
CIRCUITRY CIRCUITRY

EXECUTION EXECUTION 15O
UNITS UNITS

11O-N INPUT/OUTPUT 15O
INTERFACE

114- OTHER
COMPUTERS SERVER 112
AND SERVERS

F.G. 1

U.S. Patent Aug. 12, 2014 Sheet 2 of 5 US 8,806,228 B2

214 216

2OO
MEMORY MEMORY CONTROLLER MEMORY

INSTRUCTIONCACHE
21O PROCESSOR

212

INSTRUCTION FETCHER o
INSTRUCTIONDECODER

INSTRUCTION BUFFER

-
CONTROL CIRCUITRY

26O

FG. 2

U.S. Patent Aug. 12, 2014 Sheet 3 of 5 US 8,806,228 B2

PROCESSOR 98,
(PRIMARY)

SYSTEMDLETASK 98O

PROCESSORUSAGE
MONITOR 98O4.

USAGE THRESHOLD
COMPARATOR 93O6

THERMAL MONITOR 3O8.

THERMAL THRESHOLD
COMPARATOR 931O

WAKE UP/SLEEP
FUNCTION 9812

FG. 2A

U.S. Patent Aug. 12, 2014 Sheet 4 of 5 US 8,806,228 B2

MONITOR
PROCESSOR
USAGELEVEL

3O2 OO

EXCEEDS YES
THRESHOLD2

MONITOR
SPECIAL

CONDITIONS

ALLOCATE PROCESSING
FUNCTIONS TO

SECONDARY PROCESSOR

SPECIAL 3O8.
CONDITION?

WAKE UP
SECONDARY
PROCESSOR

2512

F.G. 3

U.S. Patent Aug. 12, 2014 Sheet 5 of 5 US 8,806,228 B2

MONITOR
PROCESSOR
USAGELEVEL

4-O2 4. O O

BELOW
THRESHOLD2

YES

MONITOR
THERMAL

CONDITIONS

ALLOCATE ALL
PROCESSING FUNCTIONS
TO PRIMARY PROCESSOR

EXCEED 4-O3
THRESHOLD2

SECONDARY
PROCESSOR
TO SEEP

412

FG. 4

US 8,806,228 B2
1.

SYSTEMS AND METHODS FOR
ASYMMETRICAL PERFORMANCE

MULT-PROCESSORS

FIELD

The present invention is in the field of computers. More
particularly, the invention relates to allocation of processing
tasks between multiple processors in a computing system.

BACKGROUND

Many different types of computing systems have attained
widespread use around the world. These computing systems
include personal computers, servers, mainframes and a wide
variety of Stand-alone and embedded computing devices.
Sprawling client-server systems exist, with applications and
information spread across many PC networks, mainframes
and minicomputers. In a distributed System connected by
networks, a user may access many application programs,
databases, network systems, operating systems and main
frame applications. Computers provide individuals and busi
nesses with a host of Software applications including word
processing, spreadsheet, and accounting. Further, networks
enable high speed communication between people in diverse
locations by way of e-mail, websites, instant messaging, and
web-conferencing.
A common architecture for high performance, single-chip

microprocessors is the reduced instruction set computer
(RISC) architecture characterized by a small simplified set of
frequently used instructions for rapid execution. Thus, in a
RISC architecture, a complex instruction comprises a small
set of simple instructions that are executed in steps very
rapidly. These steps are performed in execution units adapted
to execute specific simple instructions. In a SuperScalar archi
tecture, these execution units typically comprise load/store
units, integer Arithmetic/Logic Units, floating point Arith
metic/Logic Units, and Graphical Logic Units that operate in
parallel. In a processor architecture, an operating system con
trols operation of the processor and components peripheral to
the processor. Executable application programs are stored in
a computers hard drive. The computer's processor causes
application programs to run in response to user inputs.

In some systems a service processor operates in conjunc
tion with a main processor. The main processor performs
most of the processing work including the execution of appli
cation program code, whereas the service processor performs
routine tasks. These routine tasks include configuring the
system components, including configuring the main proces
sor. A present day processing system consists of a collection
of entities. These include memory, devices (ethernet adapters,
USB adapters, video adapter), and processors, all of which
have to work together to accomplish the functions of the
computer. These entities may be grouped together based on
physical characteristics, for example, how many address/data
lines they have, how those lines are driven, what clock speeds
they need, etc. These devices are in communication through
address and data busses. Entities of one bus must communi
cate to entities of another bus. The device that conducts infor
mation from one bus to another is called a bridge.
An important job of the service processor is to go through

the web of buses and configure these bridges so that the
individual buses can work together as an effective system.
The service processor provides setup information to the main
processor, and configures clocks and system Voltage sources.
The service processor also starts the main processor. After the
processor is started, the main processor finishes system ini

10

15

25

30

35

40

45

50

55

60

65

2
tialization by configuring all the specific devices on the bus
ses, starts the operating system and begins executing appli
cation programs.
Once the main processor is running, the service processor

is relieved of initialization duties and then starts monitoring
the system environment. For example, the service processor
monitors thermal conditions and if the system gets to hot, the
service processor may start a fan. If the system temperature
continues to rise, the service processor may slow the main
processor So that it consumes less power and dissipates less
heat. In a temperature extreme, the service processor may
shut the main processor down.
The service processor does not execute application pro

gram code and also has its own code space; i.e., the code
executed by the service processor is different and separate in
memory from the code executed by the main processor. Since
the service processor in current systems does not execute the
operating system code executed by the main processor, and
also does not execute application program code, the service
processor power is not fully utilized. Accordingly, there is a
need for more efficient allocation of processing functions
between a primary processor and a secondary processor to
achieve more efficient power consumption.

SUMMARY

The problems identified above are in large part addressed
by Systems, methods and media for allocation of processing
duties between a primary processor and a secondary proces
sor. In one embodiment, the system comprises a primary
processor to perform processor functions, including applica
tion code execution, as long as the occurrence of a special
condition is not detected. The system further comprises a
secondary processor to perform at least Some processor func
tions when the occurrence of the special condition is detected.
The secondary processor is held in a sleep state if the special
condition has not occurred. The secondary processor is
placed in a wake state and is allocated processing functions if
a special condition has occurred. In the event that a tempera
ture exceeds a threshold, the secondary processor is returned
to the sleep state. A common operating system may be
executed by both the primary processor and the secondary
processor when the secondary processor is not in a sleep state.

Embodiments include a method for allocating processing
functions among a primary processor and a secondary pro
cessor. The method comprises storing executable code in a
memory accessible by both the primary processor and the
secondary processor. A primary processor executes computer
code including application code when a special condition has
not occurred. A secondary processor executes executable
code when the special condition has occurred. The secondary
processor is held in a sleep state when the special condition
has not occurred. The special condition may comprise a level
of processor usage exceeding a threshold, or may comprise
receipt of a floating point instruction by the primary processor
or receipt of instructions for performing spreadsheet calcula
tions and updates, print and preview functions that format and
render graphics, application program startups, anti-virus file
scans, and viewing web casts. The secondary processor is
awakened when the special condition has occurred. The sec
ondary processor may be returned to a sleep state if thermal
conditions exceed a specified threshold.

Another embodiment of the invention provides a computer
program product comprising instructions effective, when
executing in a data processing system, to cause the system to
perform a series of operations for allocating processing func
tions between a primary processor and a secondary processor.

US 8,806,228 B2
3

The series of operations generally include monitoring one or
more special conditions. The secondary processor is main
tained in a sleep state if one or more special conditions do not
occur. Processing functions are allocated to be performed by
the secondary processor if one or more special conditions do
occur. Once, again the secondary processor may be returned
to a sleep state if thermal conditions exceed a specified thresh
old.

BRIEF DESCRIPTION OF THE DRAWINGS

Advantages of the invention will become apparent upon
reading the following detailed description and upon reference
to the accompanying drawings in which, like references may
indicate similar elements:

FIG. 1 depicts an embodiment of a digital system within a
network; within the digital system is a primary processor and
a secondary processor.

FIG. 2 depicts an embodiment of a processor within a
computer that may be configured to allocate processing func
tions between the primary and secondary processors.

FIG. 2A depicts a block diagram of functions performed by
a primary processor for detecting a special condition for
allocating processor functions to a secondary processor.

FIG.3 depicts a flowchart of an embodiment for allocating
processing functions between a primary processor and a sec
ondary processor when the secondary processor is asleep and
not performing processing functions.

FIG. 4 depicts a flowchart of an embodiment for allocating
processing functions when the secondary processor is awake
and performing processing functions

DETAILED DESCRIPTION OF EMBODIMENTS

The following is a detailed description of example embodi
ments of the invention depicted in the accompanying draw
ings. The example embodiments are in Such detail as to
clearly communicate the invention. However, the amount of
detail offered is not intended to limit the anticipated varia
tions of embodiments; but, on the contrary, the intention is to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the present invention as defined
by the appended claims. The detailed descriptions below are
designed to make Such embodiments obvious to a person of
ordinary skill in the art.

Systems, methods and media for allocating processing
functions between a primary processor and a secondary pro
cessor are disclosed. In one embodiment, a primary processor
performs routine processing duties, including execution of
application program code, while the secondary processoris in
a sleep state. When the load on the primary processor is
deemed to be excessive, the secondary processor is awakened
from a sleep state and assigned to perform processing func
tions that would otherwise need to be performed by the pri
mary processor. If temperatures in the system rise above a
threshold, the secondary processor is returned to the sleep
State.

FIG. 1 shows a digital system 116 such as a computer
implemented according to one embodiment of the present
invention. Digital system 116 comprises a first processor
(processor 1) 98 and a second processor (processor 2) 100.
Processor 98 is the primary processor and processor 100 is the
secondary processor. Each of processors 98, 100 operate
according to BIOS (Basis Input/Output System) Code 104
and Operating System (OS) Code 106. The BIOS and OS
code is stored in memory 108. The BIOS code is typically
stored on Read-Only Memory (ROM) and the OS code is

10

15

25

30

35

40

45

50

55

60

65

4
typically stored on the hard drive of computer system 116.
Digital system 116 comprises a level 2 (L2) cache 102 located
physically close to processors 98, 100. Memory 108 also
stores other programs for execution by processors 98, 100. In
an embodiment, memory 108 stores allocation software use
ful to allocate processing burden between processors 1 and 2.
as will be described herein. This software may be part of the
OS code 106. Memory 108 may further comprise a first
execution queue 107 containing instructions pending to be
executed by processor 1, and a second execution queue 109
containing instructions pending to be executed by processor
2. Memory 108 also stores data to be used by processors 98.
100 in the course of executing instructions.

In one embodiment, primary processor 98 is a low-power
processor that operates more slowly and uses less power than
secondary processor 100. Secondary processor 100 is a high
power processor that operates relatively fast compared to
primary processor 98 and uses more power. Moreover, sec
ondary processor 100 may execute floating point instructions
directly by execution unit hardware, whereas primary proces
sor 98 may execute floating point instructions more slowly by
way of software emulation of floating point hardware. In
routine operation, low-power processor 98 executes routine
functions such as keyboard and mouse communications, rela
tively simple video display functions and other routine col
lateral functions. In addition, primary processor 98 can rou
tinely execute all software and perform all operations
normally executed and performed by a computer system.
When the load on primary processor 98 is deemed to be too

heavy, then some of the work is offloaded onto relatively high
power, high speed processor 100. Accordingly, secondary
processor 100 is normally in a sleep state and is awakened
only when the burden on primary processor 98 is deemed to
be too large. While in a sleep state, secondary processor 100
only operates to maintain its L1 cache memory, and perform
other minimal functions, and does not execute operating sys
tem or application program code. More specifically, when
secondary processor 100 is in a sleep state, all configuration
parameters, i.e. power management options, clocking
options, core error handling options, memory cache options,
high performance tuned bus options, are all setup and pre
served in memory. This is in contrast to the processor being
completely powered down. If the processor were powered off,
then primary processor 98 would have to execute initializa
tion procedures to restore this information before secondary
processor 100 would be operational.

In a sleep state, only a hardware interrupt command needs
be applied to have the processor access a predetermined
memory location, restore a set of general purpose registers,
and start executing code. Alternative embodiments may
employ alternative methods for waking the secondary proces
sor. When the secondary processor 100 is operating, the oper
ating system assigns to it the most labor intensive processes,
while assigning to the primary processor 98 minor tasks Such
as processing inputs from the keyboard or mouse and painting
the video display. Labor intensive processes allocated to sec
ondary processor 100 may include floating point operations,
database operations, spreadsheet calculations and updates,
print and preview functions that format and render graphics,
application program startups, anti-virus file scans, and view
ing web casts.
A processor 98, 100 comprises an on-chip level one (L1)

cache 190, an instruction fetcher 130, control circuitry 160,
and execution units 150. Level 1 cache 190 receives and
stores instructions that are near to time of execution. Instruc
tion fetcher 130 fetches instructions from memory. Execution
units 150 perform the operations called for by the instruc

US 8,806,228 B2
5

tions. Execution units 150 may comprise load/store units,
integer Arithmetic/Logic Units, floating point Arithmetic/
Logic Units, and Graphical Logic Units. Each execution unit
comprises stages to perform steps in the execution of the
instructions fetched by instruction fetcher 130. Control cir
cuitry 160 controls instruction fetcher 130 and execution
units 150. Control circuitry 160 also receives information
relevant to control decisions from execution units 150. For
example, control circuitry 160 is notified in the event of a data
cache miss in the execution pipeline to process a stall.

Digital system 116 also typically includes other compo
nents and Subsystems not shown, Such as: a Trusted Platform
Module, memory controllers, random access memory
(RAM), peripheral drivers, a system monitor, a keyboard, a
color video monitor, one or more flexible diskette drives, one
or more removable non-volatile media drives such as a fixed
disk hard drive, CD and DVD drives, a pointing device such
as a mouse, and a network interface adapter, etc. Digital
systems 116 may include personal computers, workstations,
servers, mainframe computers, notebook or laptop comput
ers, desktop computers, or the like. One or both of processors
98, 100 may also communicate with a server 112 by way of
Input/Output Device 110. Server 112 connects system 116
with other computers and servers 114. Thus, digital system
116 may be in a network of computers such as the Internet
and/or a local intranet. Further, server 112 may control access
to other memory comprising tape drive storage, hard disk
arrays, RAM, ROM, etc.

Thus, in one mode of operation of digital system 116, the
L2 cache receives from memory 108 data and instructions
expected to be processed in the processor pipeline of a pro
cessor 98, 100. L2 cache 102 is fast memory located physi
cally close to processors 98,100 to achieve greater speed. The
L2 cache receives from memory 108 the instructions for a
plurality of instruction threads. Such instructions may
include load and store instructions, branch instructions, arith
metic logic instructions, floating point instructions, etc. The
L1 cache 190 is located in the processor core and contains
data and instructions preferably received from L2 cache 102.
Ideally, as the time approaches for a program instruction to be
executed, the instruction is passed with its data, if any, first to
the L2 cache, and then as execution time is near imminent, to
the L1 cache.

Execution units 150 execute the instructions received from
the L1 cache 190. Execution units 150 may comprise load/
store units, integer Arithmetic/Logic Units, floating point
Arithmetic/Logic Units, and Graphical Logic Units. Each of
the units may be adapted to execute a specific set of instruc
tions. Instructions can be submitted to different execution
units for execution in parallel. In one embodiment, two execu
tion units may be employed simultaneously by a processor
98, 100 to execute certain instructions. Data processed by
execution units 150 are storable in and accessible from inte
ger register files and floating point register files (not shown.)
Data stored in these register files can also come from or be
transferred to on-board L1 cache 190 or an external cache or
memory. The processor can load data from memory. Such as
L1 cache, to a register of the processor by executing a load
instruction. The processor can store data into memory from a
register by executing a store instruction.
The memory of a computer comprises Read-Only

Memory (ROM), cache memory implemented in DRAM and
SRAM, a hard disk drive, CD drives and DVD drives. A server
also has its own memory and may control access to other
memory such as tape drives and hard disk arrays. Each com
puter in a network may store and execute its own application
programs. Some application programs, such as databases,

10

15

25

30

35

40

45

50

55

60

65

6
may reside in the server. Thus, each computer may access the
same database stored in the server. In addition, each computer
may access other memory by way of the server.

Thus, embodiments encompass a multi-processor system
with a primary, low-power processor 98 and a secondary, high
power processor 100. In another embodiment, both proces
sors may achieve comparable power consumption. Upon
start-up, primary processor 98 initializes system resources,
and brings up to the ready, secondary processor 100 and
performs configuration duties. These configuration duties are
similar to configuration duties normally performed by a
simple service processor. Upon completion of initialization
and configuration, secondary processor 100 drops into a sleep
state. While in a sleep state, secondary processor 100 does not
execute computer code. In the sleep state, secondary proces
Sor 100 performs no processing duties and merely remains
ready to perform operations when called upon to do so by
primary processor 98 operating under the directions of the
OS. Meanwhile, primary processor 98 performs all process
ing functions including execution of application program
code.

In normal operation the OS code comprises a system idle
task routine performed by primary (low-power) processor 98
to enable determination of processor usage. In a multi-tasking
operating system, Such as OS-X, Windows, Linux, AIX, each
of the tasks that Vie for access to the processor must register
its intent by placing itself in an execution queue. Each task
will run for a small amount of time, and then pause so that
other tasks can run. Sometimes a task might also pause
because information is needed that is not readily available,
Such as an input from the keyboard. When a task pauses, or is
completed, the system returns to executing the operating sys
tem code, while the task remains in an execution queue. The
operating system then directs processor 98 to execute the next
task in the execution queue. If there are no tasks in the execu
tion queue, processor 98 performs the system idle task until a
task is again entered into the execution queue. In one embodi
ment, system usage is the ratio of time spent in the system idle
task during a given period to time spent performing processor
functions and the system idle task. If, for example, during a 1
second period, 500 millisec is spent in the system idle task,
utilization is 50%. Other embodiments may use alternative
measurements of system usage, as will be recognized by
persons of ordinary skill in the art.

Monitoring the time of the system idle task thus enables
determination of a level of primary processor usage. If usage
exceeds a certain specifiable first threshold, then primary
processor 98 calls secondary processor 100 into operation.
Logic to perform this comparison function may be included
in OS code or as in separate code executable by primary
processor 98. This threshold is stored in ROM or may be input
by a user and stored in read-writable memory. More specifi
cally, primary processor 98 would generate a hardware inter
rupt command under direction of the operating system to
secondary processor 100, which calls secondary processor
100 into operation. Then, secondary processor 100 begins
executing code in its execution queue, labeled as execution
queue 2, 109, in FIG. 1. Meanwhile, primary processor 98
may still perform some processing duties by executing code
in its execution queue, labeled as execution queue 1, 107, in
FIG 1.

Thus, each processor 98 and 100 has its own execution
queue. When a special condition occurs, signifying the need
to awaken secondary processor 100, primary processor 98
can move tasks from its execution queue 107 to the secondary
processor's execution queue 109. In some embodiments, an
attribute of a task's task control block indicates the originat

US 8,806,228 B2
7

ing execution queue So that the task is associated with the
originating execution queue. Certain tasks, as for example,
floating point operations, may only be executable by second
ary processor 100. Such tasks may be so designated by
another attribute of the tasks task control block.

If secondary processor 100 is put to sleep because of for
example, thermal conditions exceeding a threshold, execu
tion of secondary-processor-only tasks are Suspended until
the secondary processor is again awakened. All other tasks
may be returned to the primary processor execution queue
107 for execution by the primary processor. If, while second
ary processor 100 is asleep, and the primary processor's level
of utilization rises above a threshold, then the primary pro
cessor's execution queue 107 is scanned for processes owned
by secondary processor 100, as indicated by each tasks task
control block. These are moved to the secondary processors
execution queue 109 and secondary processor 100 is awak
ened.

If there are no tasks owned by secondary processor 100 in
the queue 107 of primary processor 98 when it is time to wake
up secondary processor 100, then some of the tasks in primary
processor queue 107 perhaps, half of them—are transferred
to secondary processor queue 109. These tasks are still owned
by primary processor 98, but any processes to be executed
resulting from the execution of these task may be owned by
secondary processor 100. When, secondary processor 100
finishes execution of all tasks in its queue 109, then secondary
processor 100 may be put to sleep.

Thus, in one embodiment, processor 100, when called into
operation by processor 98, will perform the system idle task
and will return to a sleep state when CPU usage of secondary
processor 100 drops below a certain specifiable second
threshold. Secondary processor 100 is returned to the sleep
state by a hardware interrupt command generated by primary
processor 98 under directions of the OS code 106. For
example, primary processor 98 may enqueue a sleep task into
the execution queue of the secondary processor causing the
secondary processor to write a bit to its machine state register,
to induce a sleep state. Alternative embodiments may be
employed for placing the secondary processorina sleep state.
Further, in some embodiments, the first threshold may be
different from the second threshold to form a hysteresis of
operation of secondary processor 100. These thresholds may
be stored in ROM (read-only-memory) and accessed when
needed. In another embodiment, these thresholds are stored in
read-writable memory and may be specified by a user through
a user interface device Such as a keyboard.

In one embodiment, primary processor 98 will call second
ary processor 100 into operation when a particular condition
occurs. For example, in one embodiment primary processor
98 may lack floating point execution units for performing
floating point arithmetic. In this case, upon receiving an
operation code calling for floating point arithmetic to be
performed, primary processor 98 will call secondary proces
Sor 100—which does contain floating point execution units—
into operation to perform the floating point arithmetic.

Thus, when primary processor 98 reaches a threshold level
of utilization or other special condition occurs, primary pro
cessor 98 calls into operation secondary processor 100. To do

10

15

25

30

35

40

45

50

55

this, primary processor 98 stores its state for a thread of 60
execution to be offloaded to secondary processor 100. The
state is stored in memory accessible to both the primary and
secondary processor. Primary processor 98 brings secondary
processor 100 up to a state enabling inter-processor commu
nications and informs secondary processor 100 of a current
time base value and transmits the address of the start of the
thread to be executed by secondary processor 100. Other

65

8
procedures for bringing secondary processor 100 into opera
tion will be recognized by persons of ordinary skill in the art.
Primary processor 98 informs the OS dispatcher that second
ary processor 100 is awake and ready to assistin processing of
instructions to be executed. The OS dispatcher is that portion
of OS code 106 that receives a task from a queue and directs
the task to be executed by a processor. Thus, the OS dis
patcher will obtain each next task to be run from the execution
queue 109 of secondary processor 100 and cause each task to
be executed by secondary processor 100.
When awakened, secondary processor 100 loads the con

text information (e.g., the address of the instruction from
which execution is to commence) and branches to that loca
tion. Thus, secondary processor 100 acts as though returning
from an interrupt. Secondary processor 100 is now controlled
by the OS code 106. A threadassigned to secondary processor
100 is performed exclusively by secondary processor 100,
and not by primary processor 98. Once called into operation,
secondary processor 100 also executes whatever additional
threads assigned to it by OS code 106. In one embodiment,
during multi-processor operations, primary processor 98 will
be informed by timing of a system idle task to monitor sec
ondary processor usage levels, whether secondary processor
utilization drops below a threshold. In another embodiment,
primary processor monitors whether primary processor usage
drops below a threshold. Thus, when processing demand is
again light, secondary processor 100 is caused by primary
processor 98 to drop back into a sleep mode and primary
processor 98 assumes full responsibility for operations until a
need for secondary processor 100 again occurs.

In some embodiments, transfer of processing duties from
secondary processor 100 to primary processor 98 may occur
in the event that thermal conditions exceed a specified thresh
old. This monitoring of thermal conditions and comparison to
a temperature threshold may be performed by processor 98
operating under the directions of OS code 106. This is espe
cially important in the case of laptop computers where ther
mal conditions may become critical and cooling is not easily
achieved. Thus, in the course of operation by secondary pro
cessor 100, component temperatures may rise. Component
temperatures may be detected by temperature sensors strate
gically located within the housing of digital system 116, and
in particular, a temperature sensor may be located to detect
temperature in proximity to secondary processor 100. In the
event that a temperature exceeds a threshold, secondary pro
cessor 100 is brought to a sleep state, and primary processor
98, which may dissipate less power in the form of heat, takes
over all system operations. Therefore, transfer of processing
responsibilities to secondary processor 100 may be condi
tioned upon processor usage, and transfer of processing
responsibilities back to primary processor 98 may be condi
tioned upon thermal conditions.

FIG. 2 shows an embodiment of a primary or secondary
processor 200 that can be implemented in a digital system
such as digital system 116 to execute OS code 106, applica
tion programs, as well as processor allocation software,
which may be part of the OS code. A level 1 instruction cache
210 receives instructions from memory 216 external to the
processor, such as level 2 cache. Thus, for example, processor
allocation Software may be stored in memory as an applica
tion program or as part of the OS code. Also, code executed by
processor 200 may be code stored in its respective execution
queue, 107 or 109. Groups of sequential instructions can be
transferred from an execution queue 107,109 to the L2 cache,
and subgroups of these instructions can be transferred to the
L1 cache.

US 8,806,228 B2
9

An instruction fetcher 212 maintains a program counter
and fetches processing allocation instructions from L1
instruction cache 210. The program counter of instruction
fetcher 212 comprises an address of a next instruction to be
executed. Instruction fetcher 212 also performs pre-fetch
operations. Thus, instruction fetcher 212 communicates with
a memory controller 214 to initiate a transfer of instructions
from a memory 216 to instruction cache 210. The place in the
cache to where an instruction is transferred from system
memory 216 is determined by an index obtained from the
system memory address.

Sequences of instructions are transferred from system
memory 216 to instruction cache 210 to implement processor
allocation functions. For example, a sequence of instructions
may instruct processor 1 to monitor processor usage levels
over time. The sequence of instructions may comprise deter
mining if processor usage exceeds a specified threshold. The
sequence of instructions may further comprise offloading
processing functions to the secondary processor. The
sequence of instructions may further comprise detecting a
special condition for which processing is offloaded to the
secondary processor. For example, certain labor-intensive
instructions, such as, for example, floating point instructions,
may be offloaded for execution by the secondary processor.
These sequences of instructions may be part of operating
system code 106 or may be part of a separate program
executed by primary processor 98. The functions performed
by these sequences of instructions are depicted in FIG. 2A.

Instruction fetcher retrieves instructions passed to instruc
tion cache 210 and passes them to an instruction decoder 220.
Instruction decoder 220 receives and decodes the instructions
fetched by instruction fetcher 212. Instruction buffer 230
receives the decoded instructions from instruction decoder
220. Instruction buffer 230 comprises memory locations for a
plurality of instructions. Instruction buffer 230 may reorder
the order of execution of instructions received from instruc
tion decoder 220. Instruction buffer 230 therefore comprises
an instruction queue to provide an order in which instructions
are sent to a dispatch unit 240.

Dispatch unit 240 dispatches instructions received from
instruction buffer 230 to execution units 250. In a superscalar
architecture, execution units 250 may comprise load/store
units, integer Arithmetic/Logic Units, floating point Arith
metic/Logic Units, and Graphical Logic Units, all operating
in parallel. Dispatch unit 240 therefore dispatches instruc
tions to Some or all of the executions units to execute the
instructions simultaneously. Execution units 250 comprise
stages to perform steps in the execution of instructions
received from dispatch unit 240. Data processed by execution
units 250 are storable in and accessible from integer register
files and floating point register files not shown. Thus, instruc
tions are executed sequentially and in parallel.

FIG. 2 shows a first execution unit (XU1) 270 and a second
execution unit (XU2) 280 of a processor with a plurality of
execution units. Each stage of each of execution units 250 is
capable of performing a step in the execution of a different
instruction. In each cycle of operation of processor 200,
execution of an instruction progresses to the next stage
through the processor pipeline within execution units 250.
Those skilled in the art will recognize that the stages of a
processor pipeline' may include other stages and circuitry
not shown in FIG. 2. Moreover, by multi-thread processing,
multiple processes may run concurrently. Thus, a plurality of
instructions may be executed in sequence and in parallel to
perform processor allocation functions.

FIG. 2 also shows control circuitry 260 to perform a variety
of functions that control the operation of processor 200. For

10

15

25

30

35

40

45

50

55

60

65

10
example, an operation controller within control circuitry 260
interprets the OPCode contained in an instruction and directs
the appropriate execution unit to perform the indicated opera
tion. Also, control circuitry 260 may comprise a branch redi
rect unit to redirect instruction fetcher 212 when a branch is
determined to have been mispredicted. Control circuitry 260
may further comprise a flush controller to flush instructions
younger than a mispredicted branch instruction. When sec
ondary processor 100 is asleep, the various components dis
cussed with reference to FIG. 2 are idle. Thus, when second
ary processor 100 is asleep, the instruction fetcher, instruction
decoder, dispatch unit and execution units are not performing
their normal functions but are, instead, idle.

FIG. 2A shows a block diagram of functions performed by
primary processor 98 for detecting a special condition for
allocating processor functions to secondary processor 100.
The functions comprise a system idle task 9802 performed
when processor 98 is idle. A processor usage monitor 9804
monitors processor usage. In one embodiment, processor
usage is determined as a ratio of time spent in the system idle
task during a given period to time spent performing processor
functions plus system idle task time. Other measures of pro
cessor usage may be employed. A usage threshold compara
tor 9806 compares processor usage to a threshold to deter
mine if there is a need to allocate processor functions to the
secondary processor.

Processor 98 also performs a thermal monitoring function
98.08 to determine a system temperature, which may be, for
example, the temperature in proximity to the secondary pro
cessor. A thermal threshold comparator 9810 compares the
measured temperature to a threshold value to determine if the
secondary processor should be put to sleep. The temperature
is measured by one or more temperature sensors strategically
located within the computer housing. In particular, tempera
ture sensors may be located in proximity to the processors. A
wake up/sleep function 9812 provides the commands neces
sary to wake up or put to sleep the secondary processor in the
event that a special condition is detected. The instructions for
performing the functions of FIG. 2A may be part of the
operating system or may be provided as a separate program
stored in System memory.

FIG. 3 shows an embodiment of a flow chart 300 for allo
cation of processing functions when the secondary processor
is asleep and not performing processing functions. During
normal operation, wherein the primary processor performs all
system processing operations, the primary processor moni
tors processor usage levels (element 302). This may be done
by way of the system idle task of the operating system. The
primary processor determines if the primary processor usage
level exceeds a specified threshold (element 304). If the speci
fied threshold is exceeded, then processing functions are allo
cated to the secondary processor (element 308) and the sec
ondary processor is awakened (element 312). Processing
functions are allocated to the secondary processor by the
primary processor moving tasks from its own execution
queue to the execution queue of the secondary processor. An
attribute of a tasks task control block is set to designate the
primary processor as the originating processor. Also the task
control block indicates if this is a task to be performed by the
secondary processor only. Such tasks will always be moved to
the secondary processor's execution queue when it is time to
awaken the secondary processor.

If the threshold is not exceeded, then the primary processor
proceeds in its functions and monitors whether a special
condition arises (element 306). Thus, for example, the pri
mary processor may detect if a floating point operation is
called for by the instructions in the primary processor's pipe

US 8,806,228 B2
11

line. In some embodiments, floating point instructions may be
offloaded to the secondary processor. In other embodiments,
a special condition may be deemed to exist in the event of
instructions for performing other labor intensive tasks, such
as: spreadsheet calculations and updates, print and preview
functions that format and render graphics, application pro
gram startups, anti-virus file scans, and viewing web casts. If
a special condition exists (element 310), then processing
functions are allocated to the secondary processor (element
308) and the secondary processor is awakened (element 312).
If a special condition is not detected the process continues at
element 302.

FIG. 4 shows an embodiment of a flow chart 400 for allo
cating processing functions when the secondary processor is
awake and performing processing functions. During opera
tion, the operating system may cause the secondary processor
to execute a system idle task to monitor secondary processor
usage (element 402). In one embodiment, the secondary pro
cessor determines if the secondary processor usage level
drops below a specified threshold (element 404). In another
embodiment, the primary processor determines ifusage of the
primary processor drops below a threshold. If so, then all
processing functions except those to be performed exclu
sively by the secondary processor are allocated to the primary
processor (element 408) and the secondary processor is put to
sleep (element 412). If the threshold is exceeded, then the
secondary processor proceeds in its functions while the pri
mary processor monitors thermal conditions (element 406).

If a temperature threshold is exceeded (element 410), then
all processing functions are allocated to the primary proces
sor (element 408) the secondary processor is put to sleep
(element 412). The temperature at issue may be a temperature
measured by a temperature sensor in proximity to the second
ary processor or a temperature sensor located at Some other
strategic point in the computer housing. Otherwise, the pro
cess continues at element 402. The processing functions are
allocated to the primary processor by moving tasks from the
secondary processor's execution queue to the primary pro
cessor's execution queue. Some of these tasks will be marked
as being owned by and performed exclusively by the second
ary processor. Such tasks will not be executed by the primary
processor, but rather, will be reserved for the secondary pro
cessor when it is again awakened by the occurrence of a
special condition.
The invention can take the form of an entirely hardware

embodiment, an entirely software embodiment or an embodi
ment containing both hardware and Software elements. In one
embodiment, the invention is implemented in Software,
which includes but is not limited to firmware, resident soft
ware, microcode, etc. Furthermore, embodiments can take
the form of a computer program product accessible from a
machine accessible readable medium providing program
code for use by or in connection with a computer Such as
shown in FIG. 1, or any instruction execution system. For the
purposes of this description, a machine accessible or com
puter-usable or computer readable medium can be any appa
ratus that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device. The
medium can be an electronic, magnetic, optical, electromag
netic, infrared, or semiconductor system (or apparatus or
device) or a propagation medium. Examples of a machine
accessible medium include a semiconductor or solid state
memory, magnetic tape, a removable computer diskette, a
random access memory (RAM), a read-only memory (ROM),
a rigid magnetic disk and an optical disk. Current examples of

5

10

15

25

30

35

40

45

50

55

60

65

12
optical disks include compact disk-read only memory (CD
ROM), compact disk-read/write (CD-R/W) and DVD.
A data processing system suitable for storing and/or

executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus, such as shown in FIG. 1. The memory elements
can include local memory 108 employed during actual execu
tion of the program code, bulk storage, and cache memories
102, 190, which provide temporary storage of at least some
program code in order to reduce the number of times code
must be retrieved from bulk storage during execution. Input/
output or I/O devices (including but not limited to keyboards,
displays, pointing devices, etc.) can be coupled to the system
either directly or through intervening I/O controllers. Net
work adapters may also be coupled to the system to enable the
data processing system to become coupled to other data pro
cessing systems or remote printers or storage devices through
intervening private or public networks. Modems, cable
modem and Ethernet cards are just a few of the currently
available types of network adapters.

Thus, another embodiment of the invention provides a
computer program product containing instructions effective,
when executing in a data processing system, to cause the
system to perform a series of operations for allocating pro
cessing functions between a primary processor and a second
ary processor. The series of operations generally include
monitoring one or more special conditions. The secondary
processor is maintained in a sleep state if one or more special
conditions do not occur. The secondary processor is placed in
a wake state and processing functions are allocated to be
performed by the secondary processorifone or more process
ing conditions do occur. The series of operations also com
prise monitoring a temperature level and placing the second
ary processor in the sleep state if a temperature exceeds a
threshold. The series of operations may also include moni
toring a usage level of the secondary processor when the
secondary processor is not in a sleep state. The secondary
processor is returned to a sleep state if the usage level of the
secondary processor drops below a threshold. The series of
operations may also comprise monitoring a usage level of the
primary processor. When the usage level exceeds a threshold,
the secondary processor is awakened from a sleep state to
perform processing functions.

Although the present invention and some of its advantages
have been described in detail for some embodiments, it
should be understood that various changes, Substitutions and
alterations can be made herein without departing from the
spirit and scope of the invention as defined by the appended
claims. Although an embodiment of the invention may
achieve multiple objectives, not every embodiment falling
within the scope of the attached claims will achieve every
objective. Moreover, the scope of the present application is
not intended to be limited to the particular embodiments of
the process, machine, manufacture, composition of matter,
means, methods and steps described in the specification. As
one of ordinary skill in the art will readily appreciate from the
disclosure of the present invention, processes, machines,
manufacture, compositions of matter, means, methods, or
steps, presently existing or later to be developed that perform
substantially the same function or achieve substantially the
same result as the corresponding embodiments described
herein may be utilized according to the present invention.
Accordingly, the appended claims are intended to include
within their scope Such processes, machines, manufacture,
compositions of matter, means, methods, or steps.

US 8,806,228 B2
13

What is claimed is:
1. A multi-processor system to allocate processing func

tions of a common operating system between a primary pro
cessor and a secondary processor, comprising:

a primary processor to execute the common operating sys
tem to perform processor functions exclusive of a sec
ondary processor, the processing functions comprising
application code execution, during non-detection of a
special condition, and to place the secondary processor
in a wake state in the event of detection of the special
condition; and

a secondary processor to execute the common operating
System to perform at least some processor functions
when a special condition is detected and the secondary
processor is in the wake state, and the secondary proces
Sor to remain in a sleep state in which a cache of the
Secondary processor is maintained during non-detection
of the special condition, and the secondary processor
when in the wake state to be placed in the sleep state ifa
monitored temperature exceeds a threshold.

2. The system of claim 1, wherein the primary processor
configures the secondary processor.

3. The system of claim 1, wherein the secondary executes
application program code when not in the sleep state.

4. The system of claim 1, wherein the primary processor
executes a system idle task during non-detection of the spe
cial condition and wherein the secondary processor executes
the system idle task when the secondary processor is in the
wake state.

5. The system of claim 1, wherein the special condition
occurs if usage of the primary processor exceeds a threshold.

6. The system of claim 1, wherein the special condition
occurs if a floating point instruction is received for execution
by the primary processor.

7. The system of claim 1, wherein, after the special condi
tion has occurred, the secondary processor returns to the sleep
state if the primary processor usage falls below a threshold.

8. The system of claim 1, wherein, after the special condi
tion has occurred, the secondary processor returns to the sleep
state if thermal conditions exceed a threshold.

9. A method for allocating processing functions from a
common operating system among a primary processor and a
Secondary processor; comprising:

storing executable code from the common operating sys
tem in a memory accessible by both the primary proces
Sor and the secondary processor;

executing, by the primary processor, the executable code
comprising application code during non-detection of a
special condition; and

executing, by the secondary processor, the executable code
in response to occurrence of the special condition, the

10

15

25

30

35

40

45

50

14
secondary processor to remain in a sleep state in which
a cache of the secondary processor is maintained during
non-occurrence of the special condition, the secondary
processor to be placed in a wake state in the event of
occurrence of the special condition, and the secondary
processor to be returned to the sleep state if a tempera
ture exceeds a threshold.

10. The method of claim 9, wherein the special condition
comprises a processor usage level exceeding a threshold.

11. The method of claim 9, wherein the special condition
comprises receipt by the primary processor of a floating point
instruction.

12. The method of claim 9, wherein the temperature is
monitored by the primary processor.

13. A computer program product comprising a computer
useable storage medium having a computer readable pro
gram, wherein the computer readable program when
executed on a computer causes the computer to:

monitor one or more processing conditions while a primary
processor performs processing functions of a common
operating system for the primary processor and a sec
ondary processor,

maintain the secondary processor in a sleep state in which
a cache of the secondary processor is maintained during
non-detection of a special condition;

place the secondary processor in a wake state and allocate
processing functions by the common operating system
to the secondary processor if the special condition is
detected; and

return the secondary processor to the sleep state if a tem
perature exceeds a threshold.

14. The computer program product of claim 13, wherein
the computer readable program further causes the computer
to monitor a usage level of the secondary processor when the
secondary processor is a wake state.

15. The computer program product of claim 14, wherein
the computer readable program further causes the computer
to return the secondary processor to the sleep state if the usage
level of the primary processor drops below a threshold.

16. The computer program product of claim 13, wherein
the temperature is a temperature in close proximity to the
secondary processor.

17. The computer program product of claim 13, wherein
monitoring a special condition comprises monitoring a usage
level of the primary processor.

18. The computer program product of claim 13, wherein
monitoring a special condition comprises detecting a floating
point instruction passed to the primary processor.

19. The computer program product of claim 13, wherein
the temperature is monitored by the secondary processor.

ck ck ck ck ck

