0 0 0 000 O

WO 00/73897 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureaun

(43) International Publication Date
7 December 2000 (07.12.2000)

A D

(10) International Publication Number

WO 00/73897 Al

(51) International Patent Classification’: GOG6F 9/38,
9/32, 9/30

(21) International Application Number: PCT/US00/13165

(22) International Filing Date: 12 May 2000 (12.05.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/322,196

28 May 1999 (28.05.1999) US

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College Boule-
vard, Santa Clara, CA 95052 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): DOSHI, Guatam, B.

(74

t.3Y)

84

[US/US]; 442 Madera Avenue, No. 10, Sunnyvale. CA
94086-7414 (US). MUTHUKUMAR, Kalyan [IN/US];
20219 Camarda Court, Cupertino, CA 95014 (US).

Agents: MALLIE, Michael, J. et al.; Blakely, Sokoloff,
Taylor & Zafman LLP, 7th floor, 12400 Wilshire Boule-
vard, Los Angeles, CA 90025 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,
DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT,
TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent
(AM, AZ,BY, KG, KZ,MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

[Continued on next page]

(54) Title: MECHANISM TO REDUCE THE OVERHEAD OF SOFTWARE DATA PREFETCHES

(57) Abstract: The present invention provides a mechanism for

prefetching array data efficiently from within a loop. A prefetch

START
1 instruction is parameterized by a register from a set of rotating
registers. On each loop iteration, a prefetch is implemented according
,N.muzé’gmme to the parameterized prefetch instruction, and the address targeted
REGISTER SET by the prefetch instruction is adjusted. The registers are rotated for
each loop iteration, and the prefetch instruction parameterized by
the rotating register is adjusted accordingly. The number of iterations
300 220 between prefetches for a given array is determined by the number of
PREFETCH CACHE LINE elements in the set of rotating register.
FOR DESIGNATED
ARRAY
330
ADJUST ARRAY
ADDRESS FOR NEXT
PREFETCH
360 340
ROTATE REGISTERS TO
EXECUTE REMAINING
UPDATE ARRAY
DESIGRATION LOOP INSTRUCTIONS

350
LAST
ITERATION?,

370
END OF LOOP

wo 00773897 A1 MR 8D 00RO T R AR

MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,

For two-letter codes and other abbreviations, refer to the "Guid-
GA, GN, GW, ML, MR, NE, SN, TD, TG).

ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.
Published:

With international search report.
Before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments.

WO 00/73897 PCT/US00/13165

MECHANISM TO REDUCE THE OVERHEAD OF SOFTWARE DATA
PREFETCHES
Background of the Invention

Technical Field The present invention relates to methods for prefetching data,

and in particular, to methods for performing prefetches within a loop.

Background Art. Currently available processors run at clock speeds that are

significantly faster than the clock speeds at which their associated memories operate. It
is the function of the memory system to mask this discrepancy between memory and
processor speeds, and to keep the processor’s execution resources supplied with data.
For this reason, memory systems typically include a hierarchy of caches, e.g. L0, L1, L2
.., in addition to a main memory. The caches are

maintained with data that the processor is likely to request by taking advantage of the
spatial and temporal locality exhibited by most program code. For example, data is
loaded into the cache in blocks called “cache lines” since programs tend to access data in
adjacent memory locations (spatial locality). Similarly, data that has not been used
recently is preferentially evicted from the cache, since data is more likely to be accessed
when it has recently been accessed (temporal locality).

The advantages of storing data in caches arise from their relatively small size and
their attendant greater access speed. They are fast memory structures that can provide
data to the processor quickly. The storage capacities of caches generally increase from
L0 to L2, et seq., as does the time required by succeeding caches in the hierarchy to
return data to the processor. A data request propagates through the cache hierarchy,
beginning with the smallest, fastest structure, until the data is located or the caches are
exhausted. In the latter case, the requested data is returned from main memory.

Despite advances in the design of memory systems, certain types of programming
structures can still place significant strains on their ability to provide the processor with
data. For example, code segments that access large amounts of data from loops can
rapidly generate mulitple cache misses. Each cache miss requires a long latency access
to retrieve the target data from a higher level cache or main memory. These accesses can
significantly reduce the computer system’s performance.

Prefetching is a well known technique for masking the latency associated with

moving data from main memory to the lower level caches‘(those closest to the

1

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

processor’s execution resources). A prefetch instruction is issued well ahead of the time
the targeted data is required. This overlaps the access with other operations, hiding the
access latency behind these operations. However, prefetch instructions bring with them
their own potential performance costs. Prefetch requests add traffic to the processor
memory channel, which may increase the latency of loads. These problems are
exacerbated for loops that load data from multiple arrays on successive loop iterations.
Such loops can issue periodic prefetch requests to ensure that the array data is available
in the low level caches when the corresponding loads are executed. As discussed below,
simply issuing requests on each loop iteration generates unnecessary, i.e. redundant,
memory traffic and bunches the prefetches in relatively short intervals.

A prefetch returns a line of data that includes the requested address to one or
more caches. Each cache line typically includes sufficient data to provide array elements
for multiple loop iterations. As a result, pefetches do not need to issue on every iteration
of the loop. Further, generating too many prefetch requests in a short interval can
degrade system performance. Each prefetch request consumes bandwidth in the
processor-memory communication channel, increasing the latency for demand fetches
and other operations that use this channel. In addition, where multiple arrays are
manipulated inside a loop, prefetch operations are provided for each array. Cache misses
for these prefetches tend to occur at the same time, further burdening the memory
subsystem with bursts of activity. One method for dealing with some of these issues is
loop unrolling.

A portion of an exemplary loop (I) is shown below. The loop loads and
manipulates data from five arrays A, B, C, D, and E on each loop iteration.

O Orig_Loop:
load A(T)
load B(I)
load C(I)
load D(I)
load E(I)

branch Orig_Loop

2

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

Fig. 1 represents loop (I) following its modification to incorporate prefetching.
Here, it is assumed that each array element is 8 bytes and each cache line returns 64
bytes, in which case a prefetch need only be issued for an array on every eighth iteration
of the loop. This is accomplished in Fig. 1 by unrolling loop (I) 8 times, and issuing a
prefetch request for each array with the instruction groups for successive array elements.
Unrolling the loop in this manner adjusts the amount of data that is consumed on each
iteration of the loop to equal the amount of data that is provided by each prefetch,
eliminating redundant prefetches. On the other hand, loop unrolling can significantly
expand a program’s footprint (size) in memory, and it fails to address the bursts of
prefetch activity that can overwhelm the memory channel.

An alternative approach to eliminating redundant prefetches is to predicate the
prefetches, calculate the predicate values on successive iterations to gate the appropriate
prefetch(es) on or off. The instruction necessary to implement the predicate calculations
expand the code size and, depending on the conditions to be determined, can slow down
the loop.

The present invention addresses these and other issues related to implementing
prefetches from loops.

Summary of the Invention

The present invention reduces the instruction overhead and improves scheduling
for software data prefetches. Register rotation is used to distribute prefetches over
selected loop iterations, reducing the number of prefetches issued in any given iteration.
It is particularly useful for programs that access large amounts of data from within loops.

In accordance with the present invention, data is prefetched within a loop by a
prefetch operation that is parameterized by a value in a register. Data targeted by the
prefetch operation is adjusted by rotating a new value into the register.

For one embodiment of the invention, the register that parameterizes the prefetch
operation is a rotating register that indicates the address to be prefetched. Rotating a new
value into the register alters the prefetch target for a subsequent iteration of the loop. For
another embodiment of the invention, the register is a rotating predicate register that
activates or deactivates the prefetch operation according to the current value of the
predicate it stores. Rotating a new value into the register activates or deactivates the

prefetch operation for the next iteration of the loop.

3

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

Brief Description of the Drawings

The present invention may be understood with reference to the following
drawings, in which like elements are indicated by like numbers. These drawings are
provided to illustrate selected embodiments of the present invention and are not intended
to limit the scope of the invention.

Figs. 1 represents a loop that has been unrolled according to conventional
methods to implement prefetching from within the loop.

Fig. 2 is a block diagram of one embodiment of a system in which the present
invention may be implemented.

Fig. 3 is a flowchart representing a method in accordance with the present
invention for processing prefetches from within a loop.

Detailed Description of the Invention

The following discussion sets forth numerous specific details to provide a
thorough understanding of the invention. However, those of ordinary skill in the art,
having the benefit of this disclosure, will appreciate that the invention may be practiced
without these specific details. In addition, various well-known methods, procedures,
components, and circuits have not been described in detail in order to focus attention on
the features of the present invention.

The present invention supports efficient prefetching by reducing the instruction
overhead and improving the scheduling of software data prefetches. It is particularly
useful where data prefetching is implemented during loop operations. Methods in
accordance with the present invention allow prefetches to be issued within loops at
intervals determined by the cache line size and the data size being requested rather than
by the loop iteration interval. They do so without expanding the code size or adding
costly calculations (instruction overhead) within the loop. Rather, a prefetch operation
within the loop is parameterized by a value stored in a selected register from a set of
rotating registers. Pefetching is adjusted by rotating a new value into the selected
register on each iteration of the loop.

For one embodiment, the register value indicates an address to be targeted by the
prefetch operation. Where the loop includes loads to multiple arrays, a prefetch
instruction is targeted to prefetch data for a different array on each iteration of the loop.

The size of the rotating register set is determined by the number of arrays in the loop for

4

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

which data is to be prefetched. Depending on the number of arrays to be prefetched, the
size of their data elements (stride) and the cache line size, it may be preferable to employ
more than one prefetch instruction per loop iteration. In addition to controlling the
frequency of prefetches for each array, reuse of the prefetch instruction for multiple
arrays reduces the footprint of the program code in memory.

For an alternative embodiment, the register is a predicate register and a prefetch
instruction is gated on or off according to the value it holds. If the loop includes a single
array from which data is loaded, the prefetch instruction can be activated for selected
loop iterations by initializing the rotating predicate registers appropriately. This
eliminates redundant prefetch requests that may be generated when the cache line returns
sufficient data for multiple loop iterations. If the loop includes multiple arrays, multiple
prefetch instructions may be parameterized by associated predicate registers. Register
rotation determines which prefetch instruction(s) is activated for which array on each
loop iteration.

Persons skilled in the art and having the benefit of this disclosure will recognize
that the exemplary embodiments may be modified and combined to accommodate the
resources available in a particular computer system and the nature of the program code.

The present invention may be implemented in a system that provides support for
register rotation. For the purpose of this discussion, register rotation refers to a method
for implementing register renaming. In register rotation, the values stored in a specified
set of registers are shifted cyclically among the registers. Rotation is typically done
under control of an instruction, such as a loop branch instruction. For example, a value
stored in register, r(n), on a current iteration of a loop, is shifted to register r(n+1) when
the loop branch instruction triggers the next iteration of the loop. Register rotation is
described, for example, in IA-64 Application Instruction Set Architecture Guide,
published by Intel® Corporation of Santa Clara, California. A more detailed description
may be found in Rau, B.R., Lee, M., Tirumalai, P., and Schlansker, M.S. Register
Allocation For Software Pipelined Loops, Proceeding s of the SIGNPLAN °92
Conference on Programming Language Design and Implementation, (San Francisco,
1992).

The number and type of registers available for rotation may vary with the register

type. For example, Intel’s IA-64 instruction set architecture (ISA) provides 64 rotating

5

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

predicate register, ninety-six rotating floating point registers, and a variable number of
rotating general purpose registers. In the IA-64 ISA, up to ninety-six of the 128 general
purpose registers may be defined to rotate. Rotating general purpose registers are
defined in multiples of 8.

Fig. 2 is a block diagram of one embodiment of a system 200 in which the
present invention may be implemented. System 200 includes a processor 202 and a main
memory 270 that are coupled to system logic 290 through a system bus 280 and a
memory bus 284. System 200 typically also includes a graphics system and peripheral
device(s) (not shown) which also communicate through system logic 290.

The disclosed embodiment of processor 202 includes execution resources 210, a
first cache (L0O) 220, a second cache (L1) 230, a third cache (L2), a cache controller 250,
and a bus controller 260. Processor 202 typically also includes other logic elements (not
shown) to retrieve and process instructions and to update its architectural state as
instructions are retired. Bus controller 260 manages the flow of data between processor
202 and main memory 270. L2 cache 240 may be on a different chip than processor 202,
in which case bus controller 260 may also manage the flow of data between L2 cache
240 and processor 202. The present invention does not depend on the detailed structure
of the memory system or the processor.

L0 cache 220, L1 cache 230, L2 cache 240, and main memory 270 form a
memory hierarchy that provides data and instructions to execution resources 210. The
instructions operate on data (operands) that are provided from register files 214 or
bypassed to execution resources 210 from various components of the memory hierarchy.
A predicate register file 218 may be used to conditionally execute selected instructions in
a program. Operand data is transferred to and from register file 214 through load and
store operations, respectively. A load operation searches the memory hierarchy for data
at a specified memory address, and returns the data to register file 214 from the first level
of the hierarchy in which the requested data is found. A store writes data from a register
in file 214 to one or more levels of the memory hierarchy.

For the present invention, portions of register files 214, 218 may be rotated by a
register renaming unit 216. When execution resources 210 implement a loop in which
prefetches are managed in accordance with the present invention, the prefetch operations

are directed to different locations in a data region 274 of rﬁemory 270 by rotation of the

6
SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

registers. These prefetch operations move array data to one or more low level caches
220, 230, where they can be accessed quickly by load instructions in the loop when the
corresponding loop iterations are reached. The instructions that implement prefetching,
loading, and manipulating the data are typically stored in an instruction region 278 of
memory 270 during execution. They may be supplied to main memory from a non-
volatile memory structure (hard disk, floppy disk, CD, etc.).

Embodiments of the present invention are illustrated by specific code segments
with the understanding that persons skilled in the art and having the benefit of this
disclosures will recognize numerous variations of these code segments that fall within
the spirit of the present invention.

One embodiment of the present invention is illustrated by the following code

segment:

{11 r41 = address of E(1+X)
r42 = address of D(1+X)
r43 = address of C(1+X)
r44 = address of B(1+X)
r45 = address of A(1+X)

(IIa) Loop:

Prefetch [r45]
r40 = r45 + INCR

load A(J)
load B(J)
load C(J)
load D(J)
load E(J)

J=J+1
branch Loop
A, B, C, D, and E represent arrays, the elements of which are accessed from
within the loop portion of code segment (II) by the corresponding load instructions.

When prefetching is synchronized properly, the data elements targeted by these loads are

7

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

available in a low level cache, and can be supplied to the processor’s execution resources
with low access latency, e.g. a one or two cycles. In code segment (ID), this is
accomplished by selecting appropriate values for address offset, X, and address
increment, INCR.

In the disclosed loop, when the current loop iteration is operating on element (J)
of the arrays, the prefetch targets element (J+X) of the array. Here, X represents the
number of array elements by which the targeted element follows the current element. In
effect, X represents the lead time necessary to ensure sure that element J+X is in the
cache when the load targeting J+X executes. The value of X depends on the number of
cycles required to implement each iteration of code segment (II), and the latency for
returning data from the main memory. For example, if code segment (II) completes an
iteration in 10 clock cycles and it takes 100 clock cycles to return a cache line from
memory, the prefetch in the current iteration of the loop should target an element that is
at least 10 elements ahead of that in the current iteration of the loop.

For each iteration of code segment (II), the prefetch instruction targets an address
specified in r45. Here, r45 is a virtual register identifier that points to a value ina
physical register. The correspondence between the physical register and the virtual
register identifier is provided by the register renaming algorithm, which in this case is
register rotation. For code segment (II), r41 — r45 are initialized to addresses of elements
in arrays E - A, respectively. The values in these registers are rotated on each iteration of
the loop, when the loop branch instruction is executed. Register rotation adjusts the
array to which the prefetch instruction applies on each iteration of code segment (ID).
This eliminates the need for separate prefetch instructions for each array and the
bandwidth problems associated with bunched prefetches. It also allows the frequency
with which prefetches are issued for a particular array to be adjusted to reflect the size of
the cache line returned by prefetches and the array stride.

The assignment instruction, r40 = r45 + INCR increments the target address of
the array for its next prefetch and returns it to a starting register in the set of rotating
registers. In code segment (II), the prefetch targets an element of a given array every 5
iterations — the number of loop iterations necessary to move the incremented array

address from r40 back to r45. As a result, a prefetch targets elements in arrays A, B, C,

8
SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

D, and E on 5 successive iterations, then repeats the cycle, beginning with array A on the
6™ iteration.

The increment value in the assignment instruction depends on the following
parameters: the size of the cache line returned on each prefetch (L); the number of
iterations between line fetches, i.e. the number of arrays that require prefetches (N); and
the size (stride) of the array elements (M). The cache line size divided by the stride is
the number of iterations for which a single line fetch provides data. For example, where
a cache line is 64 bytes (L = 64), data is required for 5 arrays (N = 5), and each array
element is 8 bytes (M = 8):

INCR = N*L/M
For the above example, INCR = 5*64/8 = 40.

Certain ISAs, e.g. the IA-64 ISA, provide prefetch instructions that automatically
increment the address to be prefetched by a specified value, e.g. prefetch [target address],
address increment. For these ISAs, the prefetch and assignment instructions can be
replaced by a an auto-increment prefetch instruction and a MOV instruction. For
example, the first two instructions in loop (IIa) may be replaced by prefetch [r45], 40 and
‘mov r40 = r45.

Table 1 shows the iterations of Loop (II) for which elements of array A are
prefetched, the current element of A when the prefetch is launched, the address of the
element to be prefetched, and the elements of the array returned by the prefetch. Table

entries are suitable for the case in which X = 20.

J | CURRENT | PREFETCH | CACHE LINE
ELEMENT | ADDRESS CONTENTS
0 A(0) AQ20) A(16)-A(23)
5 AG) A(25) AQ4) - AG31)
10 A(10) A(30) A(24) - A(31)
15 A(15) A(35) A(32) - A(39)
20 A(20) A(40) A(40) - A(47)
25 A(25) A(45) A(40) - A(47)
30 A(30) A(50) A(48) — A(55)
35 AGS) A(55) A(48) - A(53)
40 A40) A(60) A(56) — A(63)
45 A(45) A(65) A(64) - A(71)
50 A(50) A(70) A(64) - A(7])
9

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

The method embodied in code segment (II) does generate some redundant
prefetches. For example, those launched on the 10" 25™ 35™ and 50™ iterations target
the same cache lines as those launched on the 5%, 20", 30" and 45" iterations.
Redundant prefetches are generated when the number of array elements returned in a
cache line is incommensurate with the number of iterations between prefetches. The
level of redundancy is, however, significantly less than that obtained when prefetches are
launched on every iteration. In addition, the processor may include logic to identify and
eliminate redundant prefetches.

Another embodiment of the present invention is illustrated by the following code

segment:

(111) p4l = true
p42 = false
p43 = false
p44 = false
p45 = false
p46 = false
p47 = false
p48 = false

r4 = address of A(1+X)
r5 = address of B(1+X)
r6 = address of C(1+X)
r7 = address of D(1+X)
r8 = address of E(1+X)
(Illa) Loop:
(p41) prefetch [r4
(p42) prefetch [15
(p43) prefetch [r6
(p44) prefetch [17
(p45) prefetch [r8
p40 = p48
load A(J)

], 64
]64
1, 6
1,6
1,6

10

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

load B(J)
load C(J)
load D(J)
load E(J)

J=J+1
branch Loop

Prior to entering the loop (I1la), a set of rotating predicate registers, p41-p48 are
initialized so that at least one predicate represents a logic true value. In addition, each
register in a set of non-rotating registers, r4 — r8, is initialized to a prefetch address for
one of the arrays, A — E. Here, X represents an offset from the first address of the array.
As in the previous embodiment, it is selected to provide enough time for prefetched data
to be returned to a cache before the load targeting it is executed.

The loop (IlIa) includes a predicated prefetch instruction for each array. The true
predicate value moves to successive predicate registers as the predicate registers rotate
on successive loop iterations. On each iteration, the prefetch instruction gated by the
predicate register that currently holds the true value is activated. The other prefetch
instructions are deactivated (predicated off). Of the 8 predicate registers in the set, only
5 gate prefetch instructions. The last three are dummies that allow the prefetch
frequency for an array to be synchronized with the cache line size and the array stride.
For the disclosed embodiment, a prefetch is activated once every eight iterations by
rotating the true predicate value through a set of 8 rotating predicate registers. This
makes the number of iterations between prefetches (8) equal to the number of array
elements returned by a cache line (8), eliminating redundant prefetches.

For the disclosed embodiment, the activated prefetch instruction automatically
increments the address in the corresponding register by 64 bytes, e.g. 8 array elements.
For other embodiments, the same operations may be accomplished by a simple prefetch
instruction (one without an auto-increment capability), and an assignment instruction (r4
=14 + 64) as in code segment (II).

Following the predicated prefetches, the assignment instruction, p40 = p48
rotates the value in the last predicate register of the set back to a position from which it

can begin to cycle through the set of predicate registers again. An embodiment of code

11

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

segment (11I) based on the [A-64 ISA may implement the assignment using the following
compare instruction:

(p48) comp.eq.unc p40, p0 = r0,r0.
The 1A-64 ISA also allows the predicate initialization to be implemented by a single
instruction, pr.rot = 0x20000000000, which initializes P41 to true and all other predicate
registers to false.

Fig. 3 is a flowchart representing a method 300 in accordance with the present
invention for executing software prefetches from within a loop. Before entering the loop
portion of method 300, a set of rotating registers is initialized 310. For example, rotating
general registers may be initialized with the first prefetch addresses of the arrays, as
illustrated by code segment (II). Alternatively, rotating predicate registers may be
initialized to logical true or false values, to activate selected prefetch instructions, as
illustrated in code segment (III). In this case, non-rotating general registers are
initialized to the first prefetch addresses of arrays.

Following initialization 310, the loop portion of method 300 begins. A cache line
is prefetched 320 for an array designated through the rotating register set. For disclosed
embodiments, this is accomplished through prefetch instruction(s) that are parameterized
by one or more of the rotating registers. For code segment (II), the target address is the
parameter and the general register specifying the target address parameterizes the
prefetch. For code segment (I11), the predicates associated with the prefetch instructions
are the parameters, and the predicate registers that hold these values parameterize their
associated prefetches. In each case, altering the value in the designated register changes
the array targeted by the prefetch operation. Following the prefetch 320, the address of
the array(s) for which the prefetch is performed is adjusted 330 to point to the cache line
containing the next element to be prefetched for the array(s).

Any instructions in the loop body, such as the load instructions and any
instructions that operate on loaded values, are executed 340 on each iteration of the loop.
While these are shown to follow prefetching 320 and adjusting 330 in Fig. 3, their
relative order in method 300 is not important. The remaining instructions may be
executed before, after, or concurrently with prefetching and adjusting the current array
address. On each loop iteration, a termination condition 350 is checked and the loop 1s

terminated 370 if the condition is met. If additional iterations remain, registers are
12

<

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

rotated 360 to update the prefetch instruction for the next iteration, and the loop is
repeated. Depending on the computer system employed, registers may be rotated even
when the loop termination condition is met.

The present invention thus supports efficient prefetching from within a loop, by
reducing redundant prefetches and distributing prefetch activity across multiple loop
iterations. This is accomplished without expanding the code size of the loop or
increasing the instruction overhead. A set of rotating registers is initialized, and one or
more prefetch instructions within the loop are parameterized by one or more rotating
registers. Operation of the prefetch instruction(s), e.g. the target address, active/NOP
status, is adjusted as the registers are rotated on successive iterations of the loop. The
present invention may be employed advantageously in any code that implements
prefetching from within a loop.

The disclosed embodiments have been provided to illustrate the general features
of the present invention. Persons skilled in the art of computer software, having the
benefit of this disclosure, will recognize modifications and variations of these
embodiments that fall within the spirit of the present invention. The scope of the

invention is limited only by the appended claims.

13

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

What is claimed is:
1. A method for prefetching data comprising:

initiating a prefetch operation to an indicated array;

loading data for one or more arrays, including the indicated array; and

executing a register rotation to indicate a new array.
2. The method of claim 1, wherein initiating prefetch operation comprises initiating
a prefetch operation to an array indicated by a designated rotating register.
3. The method of claim 2, wherein executing a register rotation comprises:

incrementing a value in the designated rotating register to point to a new

element of the indicated array; and

rotating an address associated with a new array into the rotating register.
4, The method of claim 1, further comprising initializing multiple rotating registers
to point to selected elements in corresponding multiple arrays prior to entering the loop.
5. The method of claim 1, wherein initiating a prefetch operation comprises
initiating a prefetch operation associated with the indicated array.
6. The method of claim 5, wherein the prefetch operation is associated with the
indicated array through a rotating predicate register having a specified logic value.
7. The method of claim 6, wherein executing a register rotation comprises rotating
the specified logic value into a predicate register associated with the new array.
8. A method for prefetching elements from a plurality of arrays, the method
comprising:

issuing a prefetch for an element of an array that is specified through a

prefetch parameter;

loading data from each of the plurality of arrays; and

adjusting the prefetch parameter.
9. The method of claim 8, wherein the prefetch parameter is stored in a rotating
predicate register that gates a prefetch associated with the array, and issuing the prefetch
comprises issuing the prefetch when the predicate register holds a specified logic value.
10. The method of claim 9, wherein adjusting the prefetch parameter comprises

moving a logic value into the predicate register by register rotation.

14

SUBSTITUTE SHEET (RULE 26)

WO 00/73897 PCT/US00/13165

11. The method of claim 8, wherein the prefetch parameter is an array address stored
in a designated rotating register, and issuing the prefetch comprises issuing the prefetch
to an element of the array indicated by the address.
12. The method of claim 11, wherein adjusting the prefetch parameter comprises
rotating an address associated with another array into the designated rotating register.
13. A machine readable medium on which are stored instruction that may be
executed by a processor to implement a method comprising:
issuing a prefetch operation that is parameterized by a register;
adjusting an address targeted by the prefetch operation; and
rotating a new value into the register.
14. A computer system comprising:
a processor to execute instructions; and
a memory on which are stored instructions that may be executed by the
processor to implement a method comprising:
issuing a prefetch operation that is parameterized by a register;
adjusting an address targeted by the prefetch operation; and

rotating a new value into the register.

15

SUBSTITUTE SHEET (RULE 26)

WO 00/73897

1/3

Unr_Loop:

prefetch A(J+X)
load A(J)
load B(J)
load C(J)
load D(J)
load E(J)

prefetch B(J+X)
load A(J+1)
load B(J+1)
load C(J+1)
load D(J+1)
load E(J+1)

prefetch C(J+X)
load A(J+2)
load B(J+2)
load C(J+2)
load D(J+2)
load E(J+2)

prefetch D(J+X)
load A(J+3)
load B(J+3)
load C(J+3)
load D(J+3)
load E(J+3)

prefetch E(J+X)
load A(J+4)
load B(J+4)
load C(J+4)
foad D(J+4)
load E(J+4)

load A(J+5)
load B(J+5)
load C(J+5)
load D(J+5)
load E(J+5)

load A(J+6)
load B(J+6)
load C(J+6)
load D(J+6)
load E(J+6)

load A(J+7)
load B(J+7)
load C(J+7)
load D(J+7)
load E(J+7)

J=J+8
branch

Unr_Loop

Fig. 1

PCT/US00/13165

WO 00/73897
2/3
214
REGISTER
216 FILE 210
RENAME EXECUTION 220
UNIT 18 RESOURCES LO CACHE
REGISTER
FILE
250
230 CACHE
L1 CACHE CONTROLLER
260
BUS CONTROLLER
A
280
h 4
290
SYSTEM LOGIC
3
284
A 4
270
MAIN MEMORY
274 278
DATA INSTRUCTIONS

PCT/US00/13165

202

240
L2 CACHE

Fig. 2

WO 00/73897

300

3/3

START

!

310
INITIALIZE ROTATING
REGISTER SET

A

360
ROTATE REGISTERS TO
UPDATE ARRAY
DESIGNATION

320

.| PREFETCH CACHE LINE

FOR DESIGNATED
ARRAY

330
ADJUST ARRAY
ADDRESS FOR NEXT
PREFETCH

340
EXECUTE REMAINING
LOOP INSTRUCTIONS

Fig. 3

370
END OF LOOP

PCT/US00/13165

INTERNATIONAL SEARCH REPORT

In. ational Appiication No

PCT/US 00/13165

A. CLASSIFICATION SUBJECT MATTER

IPC 7 GOBFO/38 — "GO6F9/32 GO6F9/30

According to international Patent Ciassification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbois)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and. where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to ctaim No.

A WO 98 06041 A (BABAYAN BORIS ARTASHESOVICH 1,14
;GRUZDOV FEODOR ANATOLIEVICH (RU); GOR)
12 February 1998 (1998-02-12)

the whole document

A HIROSHI N ET AL: "PSEUDO VECTOR PROCESSOR 1
FOR HIGH-SPEED LIST VECTOR COMPUTATION
WITHHIDING MEMORY ACCESS LATENCY"
PROCEEDINGS OF THE REGION 10 ANNUAL
INTERNATIONAL CONFERENCE (TENCON),US,NEW
YORK, IEEE,

vol. CONF. 9, 22 August 1994 (1994-08-22),
pages 338-342, XP000529497

ISBN: 0-7803-1863-3

the whole document

m Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents :

“A" document defining the general state of the art which is not
considered to be of particutar relevance

citation or other special reason (as specified)

“O" document referring to an oral disclosure, use, exhibition or
other means _
“"P" document published prior to the intemational filing date but in the art.
later than the priority date claimed “&" document member of the same patent family

“T" later document published after the intemational filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention
"E" earlier document but published on or after the international “X" document of particular relevance; the claimed invention
fiing date cannot be considerad novel or cannot be considerad to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another "y document of particular relevance; the claimed invention

cannot be considerad to invoive an inventive step when the
document is combined with one or more other such docu-—
ments, such combination being obvious to a person skilled

Date of the actuai completion of the intemational search

27 September 2000

Date of mailing of the internationai search report

05/10/2000

Name and mailing address of the {SA

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Authorized officer

Fax: (+31-70) 340-3016 Daskalakis, T

Fomm PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

In. ational Application No

PCT/US 00/13165

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category -

Citation of document, with indication.where approprate. of the relevant passages

Relevant to claim No.

US 5 881 263 A (SYMES DOMINIC ET AL)
9 March 1999 (1999-03-09)
column 27, line 35 -column 31, line 12

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent famiily members

Int itional Application No

PCT/US 00/13165

Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 9806041 A 12-02-1998 us 5889985 A 30-03-1999
US 5881263 A 09-63-1999 GB 2317464 A 25-03-1998
WO 9812625 A 26-03-1998
CN 1231740 A 13-10-1999
EP

0927389 A 07-07-1999

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

