(12)公開特許公報(A)

(11)特許出願公開番号

特開2011-217575 (P2011-217575A)

(43) 公開日 平成23年10月27日(2011.10.27)

(51) Int. CL. FΙ テーマコード (参考) HO2P 27/06 (2006.01) HO2P 302D 5H007 7/63 HO2M 7/48 (2007.01) HO2M 7/48Ε 5H505 HO2P 21/00 (2006.01) HO2P 5/408А HO2P 27/04 (2006.01)

> 審査請求 未請求 請求項の数 6 OL (全 18 頁)

(21) 出願番号 (22) 出願日	特願2010-85712 (P2010-85712) 平成22年4月2日 (2010.4.2)	(71) 出願人	00006013 三菱電機株式会社 東京都千代田区丸の内二丁目7番3号
		(74)代理人	100094916
			弁理士 村上 啓吾
		(74)代理人	100073759
			弁理士 大岩 増雄
		(74)代理人	100093562
			弁理士 児玉 俊英
		(74)代理人	100088199
			弁理士 竹中 岑生
		(72)発明者	森 辰也
			東京都千代田区丸の内二丁目7番3号 三
			菱電機株式会社内
			最終頁に続く

(54) 【発明の名称】電力変換装置

(19) 日本国特許庁(JP)

(57)【要約】

【課題】デッドタイムに起因する出力電圧誤差を精度良 く補正し、電圧指令通りに回転電機に電力を供給するこ とが可能な電力変換装置を提供する。

【解決手段】補正電圧演算手段6において、電流検出手 段3で検出した回転電機電流に基づいて振幅演算器7で 求めた電流振幅値と、位置検出手段5で検出した回転子 磁極位置 mに基づいて余弦演算器8で求めた三相分の 余弦値とを補正電圧演算器9に入力し、補正電圧演算器 9で両者を乗算して得られる三相の電流推定値Iuc、 Ivc、Iwcを用いて補正電圧Vuc、Vvc、Vw cを算出する。そして、電圧加算手段10で補正電圧V uc、Vvc、Vwcを電圧指令Vu*、Vv*、Vw *に加算することで、電力変換器1の出力電流の零クロ ス近傍におけるデッドタイムに起因する電圧誤差を補正 する。

【選択図】図1

【特許請求の範囲】

【請求項1】

電圧指令に基づき三相電圧を出力して回転電機に供給する電力変換器を有するとともに、 上記回転電機に流れる回転電機電流を検出する電流検出手段と、上記回転電機の回転子磁 極位置を検出する位置検出手段と、上記回転電機を所望の状態に駆動制御するための上記 電圧指令を演算する電圧指令演算手段と、上記回転電機電流と上記回転子磁極位置とに基 づいて上記電圧指令を補正するための補正電圧を演算する補正電圧演算手段と、上記電圧 指令演算手段で得られる電圧指令に上記補正電圧を加算して補正後の電圧指令を上記電力 変換器に出力する電圧加算手段とを備え、

上記補正電圧演算手段は、上記回転電機電流から電流振幅を演算する振幅演算器と、上記回転子磁極位置から三相分の余弦値を演算する余弦演算器と、上記電流振幅および上記 余弦値に基づいて上記補正電圧を演算する補正電圧演算器と、を含む電力変換装置。 【請求項2】

上記余弦演算器は、上記回転子磁極位置に加えて、上記電圧指令演算手段により演算され た電流指令に基づいて三相分の余弦値を演算するものである請求項1に記載の電力変換装 置。

【請求項3】

上記余弦演算器は、上記回転子磁極位置に加えて、上記電流検出手段で検出された上記回 転電機電流に基づいて三相分の余弦値を演算するものである請求項1に記載の電力変換装 置。

【請求項4】

電圧指令に基づき三相電圧を出力して誘導性負荷に供給する電力変換器を有するとともに 、上記誘導性負荷に流れる負荷電流を検出する電流検出手段と、上記誘導性負荷に所望の 電力を供給するための電圧指令を演算する電圧指令演算手段と、上記負荷電流と上記誘導 性負荷の周波数指令とに基づいて上記電圧指令を補正するための補正電圧を演算する補正 電圧演算手段と、上記電圧指令演算手段で得られる電圧指令に上記補正電圧を加算して補 正後の電圧指令を上記電力変換器に出力する電圧加算手段とを備え、

上記補正電圧演算手段は、上記負荷電流から電流振幅を演算する振幅演算器と、上記誘導性負荷の周波数指令の積分値より三相分の余弦値を演算する余弦演算器と、上記電流振幅および上記余弦値に基づいて上記補正電圧を演算する補正電圧演算器と、を含む電力変換装置。

【請求項5】

上記余弦演算器は、上記誘導性負荷の周波数指令の積分値に加えて、上記電圧指令演算手段により演算された電流指令に基づいて三相分の余弦値を演算するものである請求項4に記載の電力変換装置。

【請求項6】

上記余弦演算器は、上記誘導性負荷の周波数指令の積分値に加えて、上記電流検出手段で 検出された上記負荷電流に基づいて三相分の余弦値を演算するものである請求項4に記載 の電力変換装置。

【発明の詳細な説明】

【技術分野】

【0001】

この発明は、回転電機や誘導性負荷に交流電力を供給する電力変換装置に関する。

【背景技術】

[0002]

電力変換装置は、その主要部を構成するインバータ等の電力変換器の出力段を構成する 上下アームのパワーデバイス素子が、電圧指令に基づきスイッチング動作を行って交流電 圧を生成し、交流負荷に出力するが、上下アームのパワーデバイス素子の同時導通による 短絡防止を目的として、上下アームのパワーデバイス素子を同時にオフ動作状態に制御す る期間、いわゆるデッドタイムを設けている。 20

【 0 0 0 3 】

ところが、このデッドタイムによって、電力変換器が受ける電圧指令と、それに基づい て電力変換器が実際に負荷に出力する電圧との間に誤差が生じることが知られており、こ の誤差電圧は、電力変換器の出力相電流の特性と逆極性の電圧となる。 【0004】

そして、このデッドタイムに起因する電圧誤差を補正するために、電流検出手段によっ て電力変換器の出力相電流を検出し、この検出した出力相電流の極性と同じ極性の電圧を 電圧指令に加えることでデッドタイムに起因する電圧誤差を相殺し、こうして補正した電 圧指令を、電力変換器に与える方法が知られている(例えば、下記の非特許文献1)。な お、上記の電流検出手段としては、電力変換器の出力相電流を直接検出する他に、電力変 換器のDCリンク電流から検出する方法も知られている(例えば、下記の非特許文献2)

[0005]

しかし、出力相電流の極性が切り替わる零クロス近傍では、出力相電流の絶対値が小さ いので、電流検出手段によって出力相電流の極性を正確に検出することが困難である。ま た、零クロス近傍では、出力相電流がチャタリングを起こすので、出力相電流の極性と同 じ極性の電圧を電圧指令に加算する前記の補正方法では、電圧指令に加える補正電圧の極 性誤りが発生したり、補正電圧の極性が正負交互に連続して切り替わる現象が発生したり する不具合を起こす。

[0006]

そこで、従来から、出力相電流の絶対値が小さい零クロス近傍におけるデッドタイムの 補正の問題点を回避するために、種々の提案がなされている(例えば、下記の特許文献1 ~5等)。

[0007]

すなわち、特許文献1では、インバータ装置の出力電圧の短絡防止期間に起因する出力 電圧誤差を補正するインバータ装置の出力電圧誤差補正装置を、インバータ装置の出力電 流を検出する電流検出手段と、この電流検出手段にて検出された出力電流の極性を判別す る電流極性判別手段と、出力電流に対し設定した閾値に対し、インバータ装置の出力電流 が閾値外ならば、判別した出力電流の極性により出力電圧誤差の補正を行い、閾値内なら ば電圧指令の極性により出力電圧補正を行う電圧誤差補正手段とで構成した例が開示され ている。

【 0 0 0 8 】

また、特許文献2では、半導体スイッチング素子であるアームをブリッジ接続して直流 を交流に変換するインバータを構成し、電圧指令信号とキャリア信号との大小関係で得ら れるパルス幅変調した電圧信号を前記ブリッジ接続の上側アーム素子または下側アーム素 子との同時オンを防止するオン遅延時間を設けているパルス幅変調制御インバータの制御 回路として、前記インバータの出力電流が正または負の所定値を超えた場合にこの出力電 流の極性を判別する信号を出力する電流極性判別手段と、前記オン遅延時間が原因で当該 インバータの出力電圧に誤差電圧を補償する量を演算する第1の補正量演算手段と、この 第1補償量演算値の極性を前記電流極性と電圧極性とに対応させて出力する補償量分配手 段と、前記電圧指令信号にこの補償量分配手段の出力値を加算した値を新たな電圧指令信 号とする加算手段と、で構成した例が開示されている。

また、特許文献3では、ACモータへ流れる電流を検出する電流検出手段と、指令電流 と検出電流とから偏差電流を計算する偏差電流演算手段と、前記偏差電流から指令電圧の 演算を行う電流制御部と、電流極性を決める電流極性判別手段を有し、デッドタイム補償 電圧を出力するデッドタイム補償電圧を加えて最終指令電圧を演算する電圧加算演算手段 と、前記電圧加算演算手段により得られた最終指令電圧の情報を用い直流電圧から交流電 圧への変換を行うPWM電力変換装置とを備えたACモータ駆動装置において、前記デッ ドタイム補正手段を、指令電流から指令電流極性を判断する指令電流極性判断手段と、検 10

20

出電流から検出電流極性を判断する検出電流極性判断手段と、前記指令電流極性と検出電 流極性から最終電流極性を判断する最終電流極性判断手段と、で構成した例が開示されて いる。

また、特許文献4では、上下アーム短絡防止期間とPWMキャリア周波数と直流電圧と を用いて算出した誤差電圧によりインバータ出力電圧を補正する電圧補正手段が、インバ ー 夕 出 力 電 流 の 絶 対 値 が 所 定 値 よ り 大 き い と き は イ ン バ ー 夕 出 力 電 流 の 極 性 に 応 じ て イ ン バータ出力電圧を補正し、インバータ出力電流の絶対値が所定値よりも小さいときはイン バータ出力 電 圧の 極 性 に 応 じ て イ ン バ ー タ 出 力 電 圧 を 補 正 す る P W M 制 御 イ ン バ ー タ 装 置 において、前記PWMキャリア周波数を設定するPWMキャリア設定手段を、誤差電圧が インバータ出力電圧よりも小さいときはPWMキャリア周波数をその値に保ち、誤差電圧 がインバータ出力電圧よりも大きくなるときは誤差電圧とインバータ出力電圧との比を一 定に保つようにPWMキャリア周波数を変化させるように構成した例が開示されている。 [0011]

さらに、特許文献5では、入力する交流電圧指令に従って交流負荷に供給する交流電力 を生成する電力変換手段と、前記電力変換手段に与えるべき周波数fの交流電圧指令を演 算する電圧指令演算手段との間に、電流検出手段より検出された出力電流に基づいて電圧 指令演算手段が求めた交流電圧指令を補正する補正電圧を演算し、前記補正電圧を前記電 圧指令演算手段が求めた交流電圧指令に加算して前記電力変換手段に与える電圧指令補正 手段を設け、前記電圧指令補正手段は、前記出力電流に対してそのゼロレベルを含む所定 の電流範囲を設け、前記出力電流の値が前記電流範囲の外部から内部に入る第1の時刻に 、前記第1の時刻と前記周波数fとを用いて電流の零クロスタイミングを求め、この求め た零クロスタイミングに前記補正電圧の極性を切り替える時刻を設定する技術が開示され ている。

【先行技術文献】

【非特許文献】

【非特許文献1】杉本、小山、玉井:ACサーボシステムの理論と設計の実際:総合電子 出版社(55頁9行~57頁5行) 30 【非特許文献 2】''Three-Phase Current-Waveform-D PWM Inverter from DC Link etection on

rrent-Steps''IPEC-Yokohama'95 p.p.271-27

【特許文献】

[0013]

【特許文献1】特許第2756049号公報(16頁、図11)

【 特 許 文 献 2 】 特 許 第 3 2 4 5 9 8 9 号 公 報 (1 2 頁 、 図 7)

【特許文献3】特許第2004-112879号公報(6頁、図2)

【特許文献 4 】特許第 3 2 8 7 1 8 6 号公報 (8 頁、図 3)

【 特 許 文 献 5 】 W O 2 0 0 8 / 0 5 3 5 3 8 号 公 報 (3 3 頁 、 図 2)

【発明の概要】

【発明が解決しようとする課題】

[0014]

しかしながら、上記の各特許文献1~4に記載の従来技術は、出力相電流の零クロスを 正確に検出することが難しく、このため出力相電流の零クロスおいて補正電圧の極性を精 度良いタイミングで切り替えることができず、その極性の反転する瞬間が出力相電流の零 クロス前後にずれる。その結果、出力相電流の零クロス近傍においては、電力変換器に入 力する補正した電圧指令、つまり補正電圧を加算して得られる電圧指令と電力変換器から の出力電圧との間に電圧誤差が生じ、依然としてデッドタイムに起因する誤差電圧の発生 を十分に補正することができない。

20

10

Сu

50

【0015】

また、上記の特許文献 5 記載の従来技術は、特許文献 1 ~ 4 の課題を解決するために提 案されたものではあるが、出力相電流にはノイズやリップルが含まれているので、出力相 電流が電流範囲近傍の値をとるときに、出力相電流に含まれるリップル成分の影響によっ て、第 1 の時刻と周波数 f とを用いて求めた出力相電流の零クロスタイミングが、実際の 零クロスタイミングより遅れることになり、そのため、特許文献 1 ~ 4 と同様、出力相電 流が零クロス近傍において、補正電圧を加算して得られる電圧指令と電力変換手段からの 出力電圧との間に依然として誤差が生じる。

(5)

[0016]

特に、この電圧誤差は、電力変換器から低い周波数の交流電力を出力する場合に顕著と 10 なり、回転電機を接続した場合には、この電圧誤差によって回転ムラが大きくなって駆動 性能が劣化したり、低速駆動時に回転ムラが顕著となるなどの問題がある。

[0017**]**

この発明は、上記の課題を解決するためになされたものであり、電力変換器の出力相電 流の零クロス近傍におけるデッドタイムに起因する電圧誤差を精度良く補正し、電力変換 手段が電圧指令の通りに交流電力を精度良く出力することができる電力変換装置を提供す ることを目的とする。

【課題を解決するための手段】

[0018]

第1の発明は、電圧指令に基づき三相電圧を出力して回転電機に供給する電力変換器を 有するとともに、上記回転電機に流れる回転電機電流を検出する電流検出手段と、上記回転電機の回転子磁極位置を検出する位置検出手段と、上記回転電機を所望の状態に駆動制 御するための上記電圧指令を演算する電圧指令演算手段と、上記回転電機電流と上記回転 子磁極位置とに基づいて上記電圧指令を補正するための補正電圧を演算する補正電圧演算 手段と、上記電圧指令演算手段で得られる電圧指令に上記補正電圧を加算して補正後の電 圧指令を上記電力変換器に出力する電圧加算手段とを備え、上記補正電圧演算手段は、上 記回転電機電流から電流振幅を演算する振幅演算器と、上記回転子磁極位置から三相分の 余弦値を演算する余弦演算器と、上記電流振幅および上記余弦値に基づいて補正電圧を演 算する補正電圧演算器と、を含むものである。

【0019】

第2の発明は、電圧指令に基づき三相電圧を出力して誘導性負荷に供給する電力変換器 を有するとともに、上記誘導性負荷に流れる負荷電流を検出する電流検出手段と、上記誘 導性負荷に所望の電力を供給するための電圧指令を演算する電圧指令演算手段と、上記負 荷電流と上記誘導性負荷の周波数指令とに基づいて上記電圧指令を補正するための補正電 圧を演算する補正電圧演算手段と、上記電圧指令演算手段で得られる電圧指令に上記補正 電圧を加算して補正後の電圧指令を上記電力変換器に出力する電圧加算手段とを備え、上 記補正電圧演算手段は、上記負荷電流から電流振幅を演算する振幅演算器と、上記誘導性 負荷の周波数指令の積分値より三相分の余弦値を演算する余弦演算器と、上記電流振幅お よび上記余弦値に基づいて補正電圧を演算する補正電圧演算器と、を含むものである。 【発明の効果】

[0020]

この発明によれば、補正電圧演算手段において、余弦演算器により求めたノイズやリッ プルを含まない三相分の余弦値と、振幅演算器により求めた電流振幅値とを乗算して得ら れる三相の電流推定値を用いて補正電圧を算出し、電圧加算手段でこの補正電圧を電圧指 令に加算するので、電力変換器の出力相電流の零クロス近傍におけるデッドタイムに起因 する電圧誤差を精度良く補正することができる。その結果、電力変換器は電圧指令の通り に交流電力を出力することができる。

【図面の簡単な説明】

【 0 0 2 1 】

【図1】この発明の実施の形態1における電力変換装置のシステム構成図である。

【図2】同装置の補正電圧演算器の詳細を示す回路構成図である。 【図3】電流検出手段で検出される一相分の回転電機電流Iuと、図2の補正電圧演算器 で得られる一相分の電流推定値Iucとを比較して示す波形図である。 【図4】この発明の実施の形態2における電力変換装置のシステム構成図である。 【図5】同装置の余弦演算器の詳細を示す回路構成図である。 【図6】同装置の余弦演算器の変形例を示す回路構成図である。 【図7】同装置の余弦演算器の他の変形例を示す回路構成図である。 【図8】この発明の実施の形態3における電力変換装置のシステム構成図である。 【図9】同装置の余弦演算器の詳細を示す回路構成図である。 【図10】同装置の余弦演算器の変形例を示す回路構成図である。 【 図 1 1 】 この 発 明 の 実 施 の 形 態 4 に お け る 電 力 変 換 装 置 の シ ス テ ム 構 成 図 で あ る 。 【図12】この発明の実施の形態5における電力変換装置のシステム構成図である。 【図13】同装置の余弦演算器の詳細を示す回路構成図である。 【図14】同装置の余弦演算器の変形例を示す回路構成図である。 【図15】同装置の余弦演算器の他の変形例を示す回路構成図である。 【図16】この発明の実施の形態6における電力変換装置のシステム構成図である。 【図17】同装置の余弦演算器の詳細を示す回路構成図である。 【図18】同装置の余弦演算器の変形例を示す回路構成図である。 【発明を実施するための形態】 [0022]実施の形態1. 図1は、この発明の実施の形態1における電力変換装置のシステム構成図である。 [0023]この実施の形態1の電力変換装置は、三相分の電圧指令Vu*′、Vv*′、Vw*′ に基づいて三相交流電圧を生成してこれを回転電機2に供給するインバータ等からなる電 力変換器1を備える。すなわち、この電力変換器1は、図示しない上下アームのパワーデ バイス素子が、後述の電圧加算手段10から入力される三相分の電圧指令Vu*^、Vv * '、 Vw* 'に基づいてスイッチング動作を行うことで三相交流電圧を生成し、これを 回転電機2に出力する。この場合、電力変換器1に与えられる各電圧指令Vu*'、Vv * ' 、 Vw* ' は、上下アームのパワーデバイス素子の同時導通による短絡防止を目的と して、上下アームのパワーデバイス素子を同時にオフ状態に制御するデッドタイム電圧指 令を含んでいる。 [0024]

(6)

回転電機制御手段4は、回転電機2を所望の状態に駆動制御するための三相分の電圧指 令 V u * 、 V v * 、 V w * を演算するもので、特許請求の範囲の電圧指令演算手段に対応 している。

[0025]

ここで、回転電機2を所望の状態に駆動制御するとは、回転電機2の回転子位置指令 *、回転電機2の速度指令 *、回転電機2の周波数指令 f *、回転電機2のトルク指令 T * 、回転電機 2 の電流指令 I * など、回転電機 2 を所望の状態に駆動制御すべく入力さ れる信号の全てを指す。なお、回転電機2が誘導機の場合には、電力変換器1から出力さ れる交流電力の周波数と、前記誘導機の回転周波数とは、すべり周波数の分だけ差異が生 じる。公知の技術を用いてすべり周波数を算出し、そのすべり周波数を回転周波数に加え て電力変換器1から出力される交流電力の周波数を求め、それを周波数指令f*としても よい。

[0026]

電圧加算手段10は、回転電機制御手段4から出力される回転電機駆動用の三相分の電 圧指 令 V u * 、 V v * 、 V w * に対 して、 後述の 補 正 電 圧 演 算 手 段 6 から 与 えら れる 三 相 分の補正電圧Vuc、Vvc、Vwcをそれぞれ加算して、電力変換器1に電圧指令Vu * '、 V v * '、 V w * 'として出力するものである。

50

10

20

【0027】

電流検出手段3は、本例では、電力変換器1からの三相分の出力相電流である回転電機 電流Iu、IV、IWの全てを直接検出するように三相出力線の全てに配置されている。 しかし、このように、三相分の回転電機電流Iu、IV、IWの全てを検出しなくても、 Iu+IV+IW=0の関係があるので、三相の内の二相出力線に電流検出手段3を配置 して二相分の回転電機電流を検出し、残り一相の回転電機電流を演算で求めるようにして もよい。

(7)

[0028]

また、電流検出手段3は、本例の場合、各相の回転電機電流Iu、Iv、Iwを直接検 出しているが、その他に、例えば前述の非特許文献2に紹介されているように、電力変換 器1のDCリンク電流から回転電機電流Iu、Iv、Iwを検出する方法を用いてもよい 。さらに、この発明を実施する際に後述の補正電圧演算手段6が必要な電流情報としては 、電流検出手段3で直接に検出される回転電機電流Iu、Iv、Iwに限らず、回転電機 制御手段4の構成法との関連で、例えば、次のような電流情報を用いてもよい。 【0029】

すなわち、回転電機制御手段4は、電流検出手段3が求めた三相の回転電機電流Iu、 Iv、Iwと、電力変換器1から出力したい電流指令Iu*、Iv*、Iw*との偏差に 基づいて三相分の電圧指令Vu*、Vv*、Vw*を演算する場合があるが、そのような 構成を採る場合には、電流検出手段3で直接に検出される回転電機電流Iu、Iv、Iw に代えて、電流指令Iu*、Iv*、Iw*を補正電圧演算手段6が必要な電流情報とし て利用することができる。

また、回転電機制御手段4は、内部に磁束オブザーバを構成し、推定した回転電機内部 の磁束と回転電機2の定数とを用いて換算した回転電機電流Iu、IV、IWを用いて電 圧指令Vu*、VV*、VW*を演算する場合があるが、そのような構成を採る場合にも 、電流検出手段3で直接に検出される回転電機電流Iu、IV、IWに代えて、演算で求 めた回転電機電流Iu、IV、IWを補正電圧演算手段6が必要な電流情報として利用す ることができる。

【0031】

以上説明した各種の方法で得られる回転電機電流Iu、Iv、Iwや電流指令Iu*、 Iv*、Iw*は、電力変換器1が回転電機2に供給する交流電力の電流成分を示す情報 であり、これらは全てこの発明で言う電流検出手段3で検出される回転電機電流に含まれ る。ただし、ここでは、発明の理解を容易にするため、図1に示す構成に従って、電流検 出手段3が直接に検出した三相の回転電機電流Iu、Iv、Iwを補正電圧演算手段6に 与えるものとして説明する。

【0032】

位置検出手段5は、本例の場合、回転電機2の回転子磁極位置 mを直接に検出するものである。しかし、この発明を実施する際に補正電圧演算手段6が必要な回転子磁極位置情報としては、このように位置検出手段5で直接に検出する場合に限らず、例えば、「金原:回転座標上の適応オブザーバを用いたPM電動機の位置センサレス制御:電学論DMAY2003 Volume123-D」に記載されているように、回転電機2に供給する電圧、回転電機電流および回転電機2の定数を用いて回転子磁極位置を推定する方式によって求められた回転子磁極位置を用いてもよい。同様に、例えば、WO2009/040965号公報に記載されているように、電力変換器1の回転電機電流に高周波成分を重畳し、その成分を抽出、演算することによって求められた回転子磁極位置を用いてもよい。ただし、ここでは、発明の理解を容易にするため、図1に示す構成に従って、位置検出手段5が直接検出した回転電機2の回転子磁極位置 mを補正電圧演算手段6に与えるものとして説明する。

【0033】

補正電圧演算手段6は、前述の回転電機電流Iu、Iv、Iwおよび回転子磁極位置 50

10

50

m に 基づ い て 、 回 転 電 機 制 御 手 段 4 か ら 出 力 さ れ る 電 圧 指 令 V u * 、 V v * 、 V w * に 対 するデッドタイム誤差補正用の補正電圧Vuc、Vvc、Vwcを生成するものである。 これにより、電力変換器1を構成する上下アームのパワーデバイス素子の同時導通による 短絡防止を目的として設定されるデッドタイムに起因する回転電機電流Iu、Iv、Iw の零クロス近傍における電圧誤差を精度良く低減することができる。 [0034]ここで、補正電圧演算手段6は、振幅演算器7、余弦演算器8、および補正電圧演算器 9からなる。 [0035] 10 振幅演算器7は、電流検出手段3で得られる回転電機電流Iu、Iv、Iwに基づいて 次式(1)からその電流振幅値 I a m p を演算する。 [0036]Iamp = { $(2/3) \cdot (Iu^2 + Iv^2 + Iw^2)$ } (1) ただし、上記の式(1)の他に、回転電機電流Iu、Iv、Iwを静止座標直交二軸電 流に変換したもの、または回転座標直交二軸電流に変換したものを用いるなど、三相電流 の振幅値が求まる演算ならばどのような演算手段であってもよい。 [0038]次に、余弦演算器8は、回転電機2の回転子磁極位置 mの情報を用いて、電流ベクト 20 ルの位相角 cを次式(2)より求める。 $\begin{bmatrix} 0 & 0 & 3 & 9 \end{bmatrix}$ c = m + (2) は定数であり、回転子磁極位置 mが機械角の場合は、 ただし、 mを回転電機2の 極対数倍して電気角に直して演算を行う。 [0040]続いて、式(2)で求めた電流ベクトルの位相角 cから三相分の各余弦値cos c ______ cos(_c-2 /3)、cos(_c-4 /3)を演算する。ここで、余弦値と 正弦値には、次式(3)の関係があるので、各余弦値の代わりに正弦値を演算してもよい 30 $\begin{bmatrix} 0 & 0 & 4 & 1 \end{bmatrix}$ + / 2) = c o s (3) sin($\begin{bmatrix} 0 & 0 & 4 & 2 \end{bmatrix}$ 補正電圧演算器9は、振幅演算器7より求めた回転電機電流の電流振幅値Iamp、お よび余弦演算器8より求めた各余弦値cos c、cos(c-2 /3)、cos(c - 4 / 3)を共に入力し、これらに基づいて補正電圧Vuc、Vvc、Vwcを求 めて出力するもので、図2に示すように、各相に対応して3つの乗算器91、92、93 と、3つの補正電圧発生器97、98、99とからなる。 [0043] ここに、各乗算器91、92、93は、振幅演算器7で得られる回転電機電流Iu、I 40 v、 I w の電流振幅値 I a m p を共通に入力するとともに、余弦演算器 8 で得られる三相 分の各余弦値cos c、cos(c-2 /3)、cos(c-4 /3)を個別 に入力して、各相の電流推定値Iuc、Ivc、Iwcを求めるものである。また、各補 正電圧発生器97、98、99は、入力される各電流推定値Iuc、Ivc、Iwcに対 する補正電圧Vuc、Vvc、Vwcが予めテーブル化するなどして記憶されており、各 相の電流推定値Iuc、Ivc、Iwcが入力されると、これに対応した補正電圧Vuc 、Vvc、Vwcを出力する。 [0044]すなわち、乗算器91にcos cとIampとを入力してIucを求め、次いで、こ

(8)

の求めたIucを補正電圧発生器97に入力してU相の補正電圧Vucを求める。同様に 、乗算器92にcos(c-2 /3)とIampとを入力してIvcを求め、次いで 、この求めた I v c を補正電圧発生器 9 8 に入力して V 相の補正電圧 V v c を求める。同様に、乗算器 9 3 に c o s (c - 4 / 3)と I a m p とを入力して I w c を求め、次いで、この求めた I w c を補正電圧発生器 9 9 に入力して W 相の補正電圧 V w c を求める。この場合に得られる各補正電圧 V u c、 V v c、 V w c は、電流検出手段 3 で検出される回転電機電流 I u、 I v、 I w と同じ極性となっている。

【0045】

次に、 各相の電流推定値Iuc、Ivc、Iwcに基づいて、補正電圧Vuc、Vvc 、Vwcを算出することによる効果について説明する。

【0046】

各乗算器91、92、93から出力される各相の電流推定値Iuc、Ivc、Iwcは、位置検出手段5で検出される回転子磁極位置 mの情報を含むので電流検出手段3で検出される回転電機電流Iu、Iv、Iwと同期している。一方、電流振幅値Iampは、前述の式(1)ように、電流検出手段3で得られる回転電機電流Iu、Iv、Iwに基づいて生成されるものであるので、リップルやノイズ成分を含んでいる。ただし、電流振幅値Iampに含まれるノイズやリップル成分をフィルタを通して除かないようにすることで、負荷変動に伴う補正電圧Vuc、Vvc、Vwcの算出時の追従性が高められる。

いま、回転電機電流の電流振幅値 I a m p を、直流成分 I a とノイズやリップル成分 I r i p p l e とに分離するとすれば、例えば U 相の電流推定値 I u c は、次式(4)のように変形することができる。

[0048]

Iuc=Iamp·cos c = (Ia+Iripple)·cos c

= Ia·cos c+Iripple·cos c (4)

【0049】

ここで、直流成分Iaは零でない(Ia 0)とすると、Iucの基本波成分Ia・c os cの項が零近傍の値をとるとき、cos cは零近傍の値をとる。よって、上記の 式(4)のリップル成分を含む第2項においてもcos cが含まれているため、その項 も零近傍の値をとる。よって、電流推定値Iucが零近傍の値をとるとき、Irippl e・cos cは零近傍の値となり、零クロス近傍におけるIrippleの影響が激減 する。

[0050]

図3(a)に電流検出手段3で検出されるU相の回転電機電流Iuの波形を、図3(b)に補正電圧演算器9の乗算器91で得られるU相の電流推定値Iucの波形を、それぞれ比較して示す。図3から明らかなように、回転電機電流Iuの波形(同図(a))より も電流推定値Iucの波形(同図(b))の方が零クロス近傍においてリップルやノイズ 成分が激減していることが確認できる。

[0051]

したがって、補正電圧演算器9でこの電流推定値Iucに基づいて得られる補正電圧V ucも零クロス近傍におけるIrippleの影響が解消されており、かつ、この補正電 圧Vucは、電流検出手段3で検出される回転電機電流Iuと同じ極性となっている。こ のため、こうして得られた補正電圧Vucを電圧指令Vu*に加算することにより、デッ ドタイムに起因する回転電機電流Iuの零クロス近傍における電圧誤差を精度良く低減す ることができる。なお、ここでは、一例としてU相の電流推定値Iucに着目して補正電 圧Vucを求める場合について説明したが、他のV相、W相についても同様である。 【0052】

以上のように、この実施の形態1では、補正電圧演算手段6の補正電圧演算器9において、余弦演算器8で求めた回転電機電流Iu、Iv、Iwに同期したリップルやノイズ成分を含まない各余弦値cos c、cos(c-2 /3)、cos(c-4 /3)と、振幅演算器7で求めた電流振幅値Iampとを用いて、各相の補正電圧Vuc、V

20

v c、 V w c を求める演算を行い、こうして得られた補正電圧 V u c、 V v c、 V w cを 電圧加算手段10で電圧指令 V u *、 V v *、 V w *に加算するので、回転電機電流 I u 、 I v、 I w の零クロス近傍におけるデッドタイムに起因する電圧誤差を精度良く補正す ることができる。その結果、電力変換器1は電圧指令 V u *、 V v *、 V w *の通りに交 流電力を回転電機2の出力することができるため、回転電機2の回転ムラやトルクリップ ルを低減することが可能となる。

【0053】

実施の形態2.

図4は、この発明の実施の形態2における電力変換装置のシステム構成図であり、図1 に示した実施の形態1と同一機能を有するものには同一符号を付して、ここではその説明 ¹⁰ を省略する。

[0054]

上記の実施の形態1では、前述の(2)式における を定数としている。これは、回転 座標直交二軸電流指令Id*、Iq*のいずれか一方が零であることを前提としている。 これに対して、この実施の形態2では、(2)式における が回転座標直交二軸電流指令 Id*、Iq*に応じて変動する場合を想定し、これに対処して三相分の各余弦値cos c、cos(c‐2 /3)、cos(c‐4 /3)が得られるようにしたもの である。

[0055]

したがって、この実施の形態2の特徴は、補正電圧演算手段6における余弦演算器8の ²⁰ 構成が実施の形態1の場合と異なっており、回転電機制御手段4から与えられる回転座標 直交二軸電流指令Id*、Iq*と、位置検出手段5で得られる回転子磁極位置 mとを 用いて三相分の各余弦値cos c、cos(c-2 /3)、cos(c-4 / 3)をそれぞれ演算するように構成されていることである。

【 0 0 5 6 】

図5は、この実施の形態2の余弦演算器8の詳細を示す回路構成図である。

この余弦演算器8は、位相演算器A1で回転座標直交二軸電流指令Id*、Iq*から 回転座標軸基準の位相角 c'を求め、それを次段の加算器84で回転子磁極位置 mと 加算することで電流ベクトルの位相角 cを求める。次いで、この位相角 cを余弦演算 器87へ、また減算器85で求めた c-2 /3を余弦演算器88へ、さらに加算器8 6で求めた c+2 /3を余弦演算器89へそれぞれ入力することで、各余弦値cos c、cos(c-2 /3)、cos(c+2 /3)をそれぞれ演算する。 【0057】

ただし、回転電機2の磁極位置 mが機械角の場合、それを回転電機2の極対数倍して 演算に利用する。また、余弦値と正弦値には、前述の式(3)の関係があるので、各余弦 値cos c、cos(c-2 /3)、cos(c+2 /3)の代わりに正弦値 を演算してもよい。

[0058]

なお、余弦演算器8としては、図5に示した構成のものに限らず、例えば、図6に示す ように、回転電機制御手段4から静止座標直交二軸電流指令I *、I *を入力するこ とにより位相演算器A2で電流ベクトルの位相角 cを求めたり、あるいは、図7に示す ように、回転電機制御手段4から三相分の電流指令Iu*、Iv*、Iw*を入力して座 標変換器B1と位相演算器A2とを組み合わせることによって電流ベクトルの位相角 c を求めることが可能である。

[0059]

以上のように、この実施の形態2では、補正電圧演算手段6の余弦演算器8が、回転電 機制御手段4から与えられる回転座標直交二軸電流指令Id*、Iqと、位置検出手段5 で得られる回転子磁極位置 mとを用いて三相分の各余弦値cos c、cos(c-2 /3)、cos(c-4 /3)をそれぞれ演算するように構成されているので、 実施の形態1の効果に加えて、回転座標直交二軸電流指令Id*、Iq*の両方を変化さ

せる場合にも適用することが可能となる。

その他の構成、および作用効果は実施の形態1と同様であるから、ここでは詳しい説明 は省略する。

【 0 0 6 0 】

実施の形態3.

図8は、この発明の実施の形態3における電力変換装置のシステム構成図であり、図1 に示した実施の形態1と同一機能を有するものには同一符号を付して、ここではその説明 を省略する。

[0061]

この実施の形態3の特徴は、補正電圧演算手段6の余弦演算器8が、電流検出手段3で 10 得られる回転電機電流Iu、Iv、Iw、および位置検出手段5で得られる回転子磁極位 置 mを用いて三相分の各余弦値cos c、cos(c-2 /3)、cos(c -4 /3)をそれぞれ演算するように構成されていることである。

【0062】

図9は、この実施の形態3の余弦演算器8の詳細を示す回路構成図である。

この余弦演算器8は、座標変換器B2により、回転電機2の磁極位置 mおよび回転電 機電流Iu、Iv、Iwを用いて回転座標直交二軸電流Id、I qを演算する。次いで、 これらの回転座標直交二軸電流Id、I qをそれぞれ低域通過フィルタ82、83に入力 して、ノイズやリップル成分が取り除かれた回転座標直交二軸電流Id f、I q f を求め る。続いて、こうして得られた回転座標直交二軸電流Id f、I q f を座標変換器B3に 入力して、静止座標直交二軸電流I f、I fを求める。引き続いて、これらの静止座 標直交二軸電流I f、I fを位相演算器A2に入力し、電流ベクトルの位相角 cを 求める。そして、位相角 cを余弦演算器87へ、また減算器85で求めた c - 2 / 3を余弦演算器88へ、さらに加算器86で求めた c + 2 / 3を余弦演算器89へそ れぞれ入力することで、各余弦値cos c、cos(c - 2 / 3)、cos(c + 2 / 3)をそれぞれ演算する。

[0063]

ただし、回転電機2の磁極位置 mが機械角の場合、それを回転電機2の極対数倍して 演算に利用する。また、余弦値と正弦値には、式(3)の関係があるので、各余弦値の代 わりに正弦値を演算してもよい。

【0064】

なお、余弦演算器 8 としては、図9 に示した構成に限らず、例えば図10 に示す構成を 採用することもできる。すなわち、図10 に示す余弦演算器 8 は、座標変換器 B 2 により 、回転電機 2 の磁極位置 mおよび回転電機電流 I u、 I v、 I wを用いて回転座標直交 二軸電流 I d、 I q を演算する。次いで、これらの回転座標直交二軸電流 I d、 I q を電 流振幅演算器 7 9 へ入力することにより電流振幅値を演算する。続いて、各除算器 8 0、 8 1 で回転座標直交二軸電流 I d、 I q を電流振幅値で除算し、その結果をそれぞれ低域 通過フィルタ L P F 8 2、83 に入力して回転座標直交二軸電流 I d f '、 I q f 'を求 める。次に、それらを座標変換器 B 4 へ入力することにより各余弦値 c o s c、 c o s (c - 2 / 3)、 c o s (c - 4 / 3)を演算する。 【0065】

なお、図10の構成では、座標変換器B2で得られる回転座標直交二軸電流Id、Iq を電流振幅値で除算したが、これに限らず、例えば入力した回転電機電流Iu、Iv、I wを電流振幅値で除算した後に、座標変換器B2に入力するようにしてもよい。 【0066】

以上のように、この実施の形態3では、補正電圧演算手段6の余弦演算器8が、電流検 出手段3で得られる回転電機電流Iu、IV、IW、および位置検出手段5で得られる回 転子磁極位置 mを用いて三相分の各余弦値cos c、cos(c-2 / 3)、c os(c-4 / 3)をそれぞれ演算するので、実際の各検出値Iu、IV、IW、 mに基づくフィードバック制御となり、実施の形態1、2の場合よりも一層精度の高い電

20

(12)

圧誤差補正を行うことが可能となる。

その他の構成、および作用効果は実施の形態1と同様であるから、ここでは詳しい説明 は省略する。

[0067]

実施の形態4.

図11は、この発明の実施の形態4における電力変換装置のシステム構成図であり、図 1に示した実施の形態1と同一機能を有するものには同一符号を付して、ここではその説 明を省略する。

[0068]

この実施の形態4の特徴は、実施の形態1~3のような回転電機2の回転子磁極位置 mを検出する位置検出手段5が省略されている。また、補正電圧演算手段6には、回転電 機2の速度指令 *を積分する積分器11が設けられるとともに、余弦演算器8が、積分 器11で得られる積分値 *を用いて三相分の各余弦値cos c、cos(c-2 /3)、cos(c-4 /3)をそれぞれ演算するように構成されていることである

[0069]

次に、補正電圧演算手段6を構成する余弦演算器8の動作について説明する。 まず、積分器11により演算された回転電機2の速度指令 *の積分値 *を用いて、 電流ベクトルの位相角 cを次式(5)より求める。

[0070]

c = * +

(5) ただし、 は定数であり、積分値 *が機械角の場合は、 *を回転電機2の極対数倍 して電気角に直して演算を行う。

[0071]

次に、上記の式(5)で求めた位相角 cより各余弦値cos c、cos(c-2 /3)、cos(c-4 /3))を演算する。なお、余弦値と正弦値には、前述の 式(3)の関係があるので、各余弦値の代わりに正弦値を演算してもよい。

その他の構成、および作用効果は実施の形態1と同様であるから、ここでは詳しい説明 は省略する。

以上のように、この実施の形態4では、位置検出手段5が省略された場合でも、回転電 機2の速度指令 *を積分する積分器11を設けるとともに、積分器11で演算された回 転電機 2の速度指令の積分値 *を用いることで、余弦演算器 8 において各余弦値cos c、cos(c - 2 / 3)、cos(c - 4 / 3)をそれぞれ演算することが できるので、位置検出手段5を設ける場合よりもコストダウンを図ることが可能となる。 その他の構成、および作用効果は実施の形態1と同様であるから、ここでは詳しい説明 は省略する。

[0073]

実施の形態5.

40 図 1 2 は、この発明の実施の形態 5 における電力変換装置のシステム構成図であり、図 1 に示した実施の形態1と同一機能を有するものには同一符号を付して、ここではその説 明を省略する。

[0074]

この実施の形態5の特徴は、実施の形態4と同様、実施の形態1~3のような回転電機 2の回転子磁極位置 mを検出する位置検出手段5が省略され、また、補正電圧演算手段 6には、回転電機2の速度指令 *を積分する積分器11が設けられている。さらに、余 弦 演 算 器 8 が 、 積 分 器 1 1 で 得 ら れ る 積 分 値 🛛 * 、 お よ び 回 転 電 機 制 御 手 段 4 か ら 与 え ら れる回転座標直交二軸電流指令Id*、Ia*を用いて三相分の各余弦値cos C, C os(c-2 /3)、cos(c-4 /3)をそれぞれ演算するように構成され ていることである。

30

10

[0075]

図13は、余弦演算器8の構成を示すブロックである。

この余弦演算器8は、位相演算器A1で回転座標直交二軸電流指令Id*、Iq*から 回転座標軸基準の位相角 c'を求め、次段の加算器84で位相角 c'と積分器11で 演算された回転電機2の速度指令 *の積分値 *と加算することで電流ベクトルの位相 角 cを求める。次いで、この位相角 cを余弦演算器 8 7 へ、また減算器 8 5 で求めた c - 2 / 3 を余弦演算器 8 8 ∧、さらに加算器 8 6 で求めた c + 2 / 3 を余弦演 算器89へそれぞれ入力することで、各余弦値cos c、cos(c-2 /3)、 cos(c+2 / 3)をそれぞれ演算する。

ただし、速度指令 *の積分値 *が機械角の場合、それを回転電機2の極対数倍して 演算に利用する。また、余弦値と正弦値には、前述の式(3)の関係があるので、各余弦 値cos c、cos(c-2 /3)、cos(c+2 /3)の代わりに正弦値 を演算してもよい。

[0077]

なお、余弦演算器8としては、図13に示した構成のものに限らず、例えば、図14に 示すように、回転電機制御手段4から静止座標直交二軸電流指令I *、I *を入力す ることにより位相演算器A2で電流ベクトルの位相角 cを求めたり、あるいは、図15 に示すように、回転電機制御手段4から三相分の電流指令Iu*、Iv*、Iw*を入力 して座標変換器B1と位相演算器A2とを組み合わせることによって電流ベクトルの位相 角 cを求めることが可能である。

以上のように、この実施の形態5では、補正電圧演算手段6の余弦演算器8が、積分器 11で得られる積分値 *、および回転電機制御手段4から与えられる回転座標直交二軸 電流指令Id*、Igを用いて三相分の各余弦値cos c、cos(c-2 / 3) 、cos(c-4 /3)をそれぞれ演算するように構成されているので、実施の形態 4の効果に加えて、電流指令の回転座標直交二軸電流指令Id*、Ia*の両方を変化さ せる場合にも適用することが可能となる。

その他の構成、および作用効果は実施の形態4と同様であるから、ここでは詳しい説明 は省略する。

[0079]

実施の形態6.

図16は、この発明の実施の形態6における電力変換装置のシステム構成図であり、図 1 に示した実施の形態1と同一機能を有するものには同一符号を付して、ここではその説 明を省略する。

 $\begin{bmatrix} 0 & 0 & 8 & 0 \end{bmatrix}$

この実施の形態6の特徴は、実施の形態4と同様、実施の形態1~3のような回転電機 2の回転子磁極位置 mを検出する位置検出手段5が省略され、また、補正電圧演算手段 6には、回転電機2の速度指令 *を積分する積分器11が設けられている。さらに、余 弦演算器8が、積分器11で得られる積分値 *、および電流検出手段3で得られる回転 電機電流Iu、Iv、Iwを用いて三相分の各余弦値cos c、cos(c - 2 3)、cos(c-4 /3)をそれぞれ演算するように構成されていることである。 $\begin{bmatrix} 0 & 0 & 8 & 1 \end{bmatrix}$

図17は、この実施の形態6の余弦演算器8の詳細を示す回路構成図である。 この余弦演算器8は、座標変換器B2により、速度指令 *の積分値 *および回転電 機電流Iu、Iv、Iwを用いて回転座標直交二軸電流Id、Igを演算する。次いで、 これらの回転座標直交二軸電流Id、Igをそれぞれ低域通過フィルタ82、83に入力 して、ノイズやリップル成分が取り除かれた回転座標直交二軸電流Idf、Iafを求め る。 続 い て 、 こ う し て 得 ら れ た 回 転 座 標 直 交 二 軸 電 流 I d f 、 I q f を 座 標 変 換 器 B 3 に 入力して、静止座標直交ニ軸電流I f、I fを求める。引き続いて、これらの静止座 10

標直交二軸電流 I f、 I fを位相演算器 A 2 に入力し、電流ベクトルの位相角 cを 求める。そして、位相角 cを余弦演算器 8 7 へ、また減算器 8 5 で求めた c - 2 / 3 を余弦演算器 8 8 へ、さらに加算器 8 6 で求めた c + 2 / 3 を余弦演算器 8 9 へそ れぞれ入力することで、各余弦値 c o s c、 c o s (c - 2 / 3)、 c o s (c + 2 / 3)をそれぞれ演算する。

(14)

[0082]

ただし、速度指令 *の積分値 *が機械角の場合、それを回転電機2の極対数倍して 演算に利用する。また、余弦値と正弦値には、式(3)の関係があるので、各余弦値の代 わりに正弦値を演算してもよい。

【 0 0 8 3 】

なお、余弦演算器 8 としては、図17に示した構成に限らず、例えば図18に示す構成 を採用することもできる。すなわち、図18に示す余弦演算器 8 は、座標変換器 B 2 によ り、速度指令 *の積分値 *および回転電機電流Iu、Iv、Iwを用いて回転座標直 交二軸電流Id、Iaを演算する。次いで、これらの回転座標直交二軸電流Id、Iaを 電流振幅演算器 7 9 へ入力することにより電流振幅値を演算する。続いて、各除算器 8 0 、8 1 で回転座標直交二軸電流Id、Iaを電流振幅値で除算し、その結果をそれぞれ低 域通過フィルタLPF82、83に入力して回転座標直交二軸電流Idf'、Iaf'を 求める。次に、それらを座標変換器 B 4 へ入力することにより各余弦値cos c、co s(c-2 /3)、cos(c-4 /3)を演算する。

【0084】

なお、図18の構成では、座標変換器B2で得られる回転座標直交二軸電流Id、Iq を電流振幅値で除算したが、これに限らず、例えば入力した回転電機電流Iu、Iv、I wを電流振幅値で除算した後に、座標変換器B2に入力するようにしてもよい。

【0085】

以上のように、この実施の形態6では、補正電圧演算手段6の余弦演算器8が、電流検 出手段3で得られる回転電機電流Iu、Iv、Iw、および積分器11で得られる速度指 令 *の積分値 *を用いて三相分の各余弦値cos c、cos(c-2 /3)、 cos(c-4 /3)をそれぞれ演算するので、実際の各検出値Iu、Iv、Iwに 基づくフィードバック制御となり、実施の形態4、5の場合よりも一層精度の高い電圧誤 差補正を行うことが可能となる。

その他の構成、および作用効果は実施の形態4と同様であるから、ここでは詳しい説明 は省略する。

[0086]

上記の実施の形態4~6では、電力変換器1から回転電機2に交流電力が供給されることを前提として説明したが、これらの各実施の形態4~6の構成は、実施の形態1~3のような回転電機2の回転子磁極位置 mを直接に検出する位置検出手段5が不要であるため、電力変換器1に誘導性負荷(例えば、変圧器、照明、IHクッキングヒータ)を接続した場合も適用することが可能である。

【0087】

すなわち、電力変換器1に回転電機2に代えて誘導性負荷を接続する場合、実施の形態 4~6の構成に対して、積分器11に与えられる回転電機の速度指令 *を周波数指令f *に変更し、回転電機制御手段4は、周波数指令f *に基づいて誘導性負荷を所望の状態 に駆動制御するための三相分の電圧指令Vu *、Vv *、Vw *を演算する負荷制御手段 (特許請求の範囲の電圧指令演算手段に相当)として構成する。また、電流検出手段3は 、誘導性負荷に流れる電流を負荷電流として検出する。電圧加算手段10および補正電圧 演算手段6の構成は、実施の形態4~6の場合と同様の構成とする。このようにすること により、電力変換器1に誘導性負荷が接続された場合でも実現することが可能となる。 【符号の説明】

[0088]

1 電力変換器、 2 回転電機 (誘導性負荷)、 3 電流検出手段、

4 回転電機制御手段(電圧指令演算手段)、 5 位置検出手段、

6 補正電圧演算手段、7 振幅演算器、8 余弦演算器、9 補正電圧演算器、
10 電圧加算手段、11 積分器。

【図6】

【図17】

フロントページの続き

(72)発明者 小島 鉄也
 東京都千代田区丸の内二丁目7番3号 三菱電機株式会社内
 Fターム(参考) 5H007 AA06 BB06 CC23 DA06 DB02 DC02 DC04
 5H505 BB10 DD05 EE41 HB01 JJ22 JJ26 LL22 MM20