01/82068 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

1 November 2001 (01.11.2001) PCT WO 01/82068 A1l

(51) International Patent Classification’: GOG6F 9/445 (74) Agents: BURTON, Thomas, J. et al.; Sonnenschein Nath
& Rosenthal, P.O. Box 061080, Wacker Drive Station,

(21) International Application Number: PCT/US01/12820 Sears Tower, Chicago, IL. 60606-1080 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: 20 April 2001 (20.04.2001) AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
(25) Filing Language: English HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
(26) Publication Language: English NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,

(30) Priority Data:

60/199,046 21 April 2000 (21.04.2000) US
09/630,063 4 October 2000 (04.10.2000) US
09/839,644 20 April 2001 (20.04.2001) US

(71) Applicant: TOGETHERSOFT CORPORATION

[US/US]; Suite 410, 920 Main Campus Drive, Raleigh,
NC 27606 (US).

(72) Inventors: CHARISIUS, Dietrich; Gablenbergerweg 26,
70186 Stuttgart (DE). COAD, Peter; 1720 Leigh Drive,

Raleigh, NC 27603 (US).

TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND SYSTEMS FOR IDENTIFYING DEPENDENCIES BETWEEN OBJECT-ORIENTED ELEMENTS

Transient
Meta Model

A
|
|

;

(57) Abstract: Methods and systems consistent with the present invention (FIG.2,200,202,204,206,208) provide an improved
software development tool that represents multiple dependencies between a dependent node and a defining node (FIG.

21,2100,2101,2102,2104,2106,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120,2123,2124,2125,2126,2127,2128,21

in a product as a single dependency link. Methods and systems consistent with the present invention also identify and display
details regarding each dependency in a project upon request by the user (FIG. 19, 1900).

10

15

20

25

30

WO 01/82068 PCT/US01/12820

METHODS AND SYSTEMS FOR IDENTIFYING DEPENDENCIES BETWEEN
OBJECT-ORIENTED ELEMENTS

Cross-Reference To Related Applications

This application claims the benefit of the filing date of U.S. Provisional
Application No. 60/199,046, entitled “Software Development Tool,” filed on April 21,
2000, and is a continuation-in-part of U.S. Patent Application No. 09/680,063, entitled
“Method and System for Developing Software,” filed on October 4, 2000, which claims
the benefit of the filing date of U.S. Provisional Application No. 60/157,826, entitled
“Visual Unified Modeling Language Development Tool,” filed on October 5, 1999, and
U.S. Provisional Application No. 60/199,046, entitled “Software Development Tool,”
filed on April 21, 2000; all of which are incorporated herein by reference.

The following identified U.S. patent applications are also relied upon and are
incorporated by reference in this application;

| U.S. Patent Application No. 09/680,065, entitled “Method And System For
Displaying Changes Of Source Code,” filed on October 4, 2000;

U.S. Patent Application No. 09/680,030, entitled “Method And System For
Generating, Applying, And Defining A Pattern,” filed on October 4, 2000;

U.S. Patent Application No. 09/680,064, entitled “Method And System For
Collapsing A Graphical Representation Of Related Elements,” filed on October 4, 2000;

U.S. Patent Application No. , entitled “Methods and Systems for

Generating Source Code for Object Oriented Elements,” bearing attorney docket no.
30013630-0008, and filed on the same date herewith;
U.S. Patent Application No. , entitled “Methods and Systems for

Relating Data Structures and Object Oriented Elements for Distributed Computing,”
bearing attorney docket no. 30013630-0009, and filed on the same date herewith;
U.S. Patent Application No. , entitled “Methods and Systems for

Finding Specific Line Of Source Code,” bearing attorney docket no. 30013630-0011,
and filed on the same date herewith;

U.S. Patent Application No. , entitled “Methods and Systems for

Finding and Displaying Linked Objects,” bearing attorney docket no. 30013630-0012,

and filed on the same date herewith;

10

15

20

25

30

WO 01/82068 PCT/US01/12820

U.S. Patent Application No. _, entitled “Methods and Systems for

Animating the Interaction of Objects in an Object Oriented Program,” bearing attorney
docket no. 30013630-0013, and filed on the same date herewith;
U.S. Patent Application No. , entitled “Methods and Systems for

Supporting and Deploying Distributed Computing Components,” bearing attorney docket
no. 30013630-0014, and filed on the same date herewith;
U.S. Patent Application No. , entitled “Diagrammatic Control of

a Software in a Version Control System,” bearing attorney docket no. 30013630-0015,
and filed on the same date herewith;

U.S. Patent Application No. , entitled “Navigation Links in

Generated Documentation,” bearing attorney docket no. 30013630-0016, and filed on the
same date herewith; and

U.S. Patent Application No. _, entitled “Methods and Systems for

Relating a Data Definition File and a Data Model for Distributed Computing,” bearing
attorney docket no. 30013630-0020, and filed on the same date herewith.

Field Of The Invention

The present invention relates to a method and system for developing software.
More particularly, the invention relates to methods and systems for identifying

dependencies between object-oriented elements in a project.

Background Of The Invention

Computer instructions are written in source code. Although a skilled
programmer can understand source code to determine what the code is designed to
accomplish, with highly complex software systems, a graphical representation or model
of the source code is helpful to organize and visualize the structure and components of
the system. Using models, the complex systems are easily identified, and the structural
and behavioral patterns can be visualized and documented.

The well-known Unified Modeling Language (UML) is a general-purpose
notational language for visualizing, specifying, constructing, and documenting complex
software systems. UML is used to model systems ranging from business information

systems to Web-based distributed systems, to real-time embedded systems. UML

-0

10

15

20

25

30

WO 01/82068 PCT/US01/12820

formalizes the notion that real-world objects are best modeled as self-contained entities
that contain both data and functionality. UML is more clearly described in the following
references, which are incorporated herein by reference: (1) Martin Fowler, UML
Distilled Second Edition: Applying the Standard Object Modeling Language, Addison-
Wesley (1999); (2) Booch, Rumbaugh, and Jacobson, The Unified Modeling Language
User Guide, Addison-Wesley (1998); (3) Peter Coad, Jeff DeLuca, and Eric Lefebvre,

Java Modeling in Color with UML: Enterprise Components and Process, Prentice Hall
(1999); and (4) Peter Coad, Mark Mayfield, and Jonathan Kern, Java Design: Building

Better Apps & Applets (2nd Ed.), Prentice Hall (1998).

As shown in Fig. 1, conventional software development tools 100 allow a

programmer to view UML 102 while viewing source code 104. The source code 104 is
stored in a file, and a reverse engineering module 106 converts the source code 104 into
a representation of the software project in a database or repository 108. The software
project comprises source code 104 in at least one file that, when compiled, forms a
sequence of instructions to be run by the data processing system. The repository 108
generates the UML 102. If any changes are made to the UML 102, they are
automatically reflected in the repository 108, and a code generator 110 converts the
representation in the repository 108 into source code 104. Such software development
tools 100, however, do not synchronize the displays of the UML 102 and the source code
104. Rather, the repository 108 stores the representation of the software project while
the file stores the source code 104. A modification in the UML 102 does not appear in
the source code 104 unless the code generator 110 re-generates the source code 104 from
the data in the repository 108. When this occurs, the entire source code 104 is rewritten.
Similarly, any modifications made to the source code 104 do not appear in the UML 102
unless the reverse engineering module 106 updates the repository 108. As a result,
redundant information is stored in the repository 108 and the source code 104. In
addition, rather than making incremental changes to the source code 104, conventional
software development tools 100 rewrite the overall source code 104 when modifications
are made to the UML 102, resulting in wasted processing time. This type of manual,
large-grained synchronization requires either human intervention, or a “batch” style
process to try to keep the two views (the UML 102 and the source code 104) in sync.
Unfortunately, this approach, adopted by many tools, leads to many undesirable side-

-3 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

effects; such as desired changes to the source code being overwritten by the tool. A
further disadvantage with conventional software development tools 100 is that they are
designed to only work in a single programming language. Thus, a tool 100 that is
designed for Java™ programs cannot be utilized to develop a program in C++. There is
a need in the art for a tool that avoids the limitations of these conventional software

development tools.

Summary Of The Invention
Methods and systems consistent with the present invention provide an improved

software development tool that overcomes the limitations of conventional software
development tools. The improved software development tool of the present invention
allows a developer to simultaneously view a graphical and a textual display of source
code. The graphical and textual views are synchronized so that a modification in one
view is automatically reflected in the other view. In addition, the software development
tool is designed for use with more than one programming language.

The software development tool consistent with the present invention provides a
developer with a visual cue of multiple dependencies between two nodes in a project via
a single dependency link between the nodes. Thus, the software development tool saves
significant programming development time and aids in the production of error free code.
The software development tool also identifies and displays the details for each
dependency in a project to assist the developer in analyzing the code. Thus, the
developer does not need to search the code to identify the particular dependencies that
exist between various object-oriented elements in the project.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system. The data processing system has a dependent node,
a defining node, and a plurality of dependencies between the dependent node and the
defining node. The method comprises the steps of displaying a graphical representation
of the dependent node, displaying a graphical representation of the defining node,
receiving an indication to identify a dependency between the dependent node and the
defining node, and in response to receiving the indication to identify the dependency,
representing the plurality of dependencies as a number of links that is less than a number

of the dependencies between the dependent node and the defining node.

4.

10

15

20

25

30

WO 01/82068 PCT/US01/12820

In accordance with methods consistent with the present invention, a method is
provided in a data processing system. The data processing system has a plurality of
nodes, and each of the plurality of nodes has corresponding code. The method comprises
the steps of displaying a graphical representation of the plurality of nodes, determining
whether the code corresponding to a first of the plurality of nodes contains a first use of a
second of the plurality of nodes, and when it is determined that the code corresponding
to the first node contains the first use of the second node, determining whether the code
corresponding to the first node contains a second use of the second node, and when it is
determined that the code corresponding to the first node contains the second use of the
second node, displaying a dependency link between the graphical representation of the
first node and the graphical representation of the second node.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system. The data processing system has a plurality of
nodes, and each of the plurality of nodes has corresponding code. The method comprises
the steps of receiving an indication of a first of the plurality of nodes, receiving an
indication of a second of the plurality of nodes, determining whether the code
corresponding to the first node contains a first use and a second use of the second node,
and when it is determined that the code corresponding to the first node contains the first
use and the second use of the second node, displaying a dependency link between the
graphical representation of the first node and the graphical representation of the second
node.

In accordance with methods consistent with the present invention, a method is
provided in a data processing system. The data processing system has a plurality of
nodes, and each of the plurality of nodes has corresponding code. The method comprises
the steps of receiving an indication of a first of the plurality of nodes, receiving an
indication of a second of the plurality of nodes, determining whether the code
corresponding to the first node contains a use of the second node, and when it is
determined that the code corresponding to the first node contains the use of the second
node, displaying the usage of the second node by the first node.

In accordance with articles of manufacture consistent with the present invention,
a computer-readable medium is provided. The computer-readable medium contains

instructions for controlling a data processing system to perform a method. The data

-5

10

15

20

25

30

WO 01/82068 PCT/US01/12820

processing system has a dependent node, a defining node, and a plurality of
dependencies between the dependent node and the defining node. The method comprises
the steps of displaying a graphical representation of the dependent node, displaying a
graphical representation of the defining node, receiving an indication to identify a
dependency between the dependent node and the defining node, and in response to
receiving the indication to identify the dependency, representing the plurality of
dependencies as a number of links that is less than a number of the dependencies
between the dependent node and the defining node.

In accordance with articles of manufacture consistent with the present invention,
a computer-readable medium is provided. The computer-readable medium contains
instructions for controlling a data processing system to perform a method. The data
processing system has a plurality of nodes, and each of the plurality of nodes has
corresponding code. The method comprises the steps of displaying a graphical
representation of the plurality of nodes, determining whether the code corresponding to a
first of the plurality of nodes contains a first use of a second of the plurality of nodes, and
when it is determined that the code corresponding to the first node contains the first use
of the second node, determining whether the code corresponding to the first node
contains a second use of the second node, and when it is determined that the code
corresponding to the first node contains the second use of the second node, displaying a
dependency link between the graphical representation of the first node and the graphical
representation of the second node.

In accordance with articles of manufacture consistent with the present invention,
a computer-readable medium is provided. The computer-readable medium contains
instructions for controlling a data processing system to perform a method. The data
processing system has a plurality of nodes, and each of the plurality of nodes has
corresponding code. The method comprises the steps of receiving an indication of a first
of the plurality of nodes, receiving an indication of a second of the plurality of nodes,
determining whether the code corresponding to the first node contains a first use and a
second use of the second node, and when it is determined that the code corresponding to
the first node contains the first use and the second use of the second node, displaying a
dependency link between the graphical representation of the first node and the graphical

representation of the second node.

10

15

20

25

30

WO 01/82068 PCT/US01/12820

In accordance with articles of manufacture consistent with the present invention,
a computer-readable medium is provided. The computer-readable medium contains
instructions for controlling a data processing system to perform a method. The data
processing system has a plurality of nodes, and each of the plurality of nodes has
corresponding code. The method comprises the steps of receiving an indication of a first
of the plurality of nodes, receiving an indication of a second of the plurality of nodes,
determining whether the code corresponding to the first node contains a use of the
second node, and when it is determined that the code corresponding to the first node
contains the use of the second node, displaying the usage of the second node by the first
node.

Other systems, methods, features and advantages of the invention will be or will
become apparent to one with skill in the art upon examination of the following figures
and detailed description. It is intended that all such additional systems, methods,
features and advantages be included within this description, be within the scope of the

invention, and be protected by the accompanying claims.

Brief Description Of The Drawings

The accompanying drawings, which are incorporated in and constitute a part of
this specification, illustrate an implementation of the invention and, together with the
description, serve to explain the advantages and principles of the invention. In the
drawings,

Fig. 1 depicts a conventional software development tool,

Fig. 2 depicts an overview of a software development tool in accordance with
methods and systems consistent with the present invention;

Fig. 3 depicts a data structure of the language-neutral representation created by
the software development tool of Fig. 2;

Fig. 4 depicts representative source code;

Fig. 5 depicts the data structure of the language-neutral representation of the
source code of Fig. 4;

Fig. 6 depicts a data processing system suitable for practicing the present

invention;

10

15

20

25

30

WO 01/82068 PCT/US01/12820

Fig. 7 depicts an architectural overview of the software development tool of
Fig. 2;

Fig. 8A depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays a list of predefined criteria which the
software development tool checks in the source code;

Fig. 8B depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays the definition of the criteria which
the software development tool checks in the source code, and an example of source code
which does not conform to the criteria;

Fig. 8C depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays an example of source code which
conforms to the criteria which the software development tool checks in the source code;

Fig. 9 depicts a flow diagram of the steps performed by the software development
tool depicted in Fig. 2;

Figs. 10A and 10B depict a flow diagram illustrating the update model step of
Fig. 9;

Fig. 11 depicts a flow diagram of the steps performed by the software
development tool in Fig. 2 when creating a class;

Fig. 12 depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays a use case diagram of source code;

Fig. 13 depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays both a class diagram and a textual
view of source code;

Fig. 14 depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays a sequence diagram of source code;

Fig. 15 depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays a collaboration diagram of source
code;

Fig. 16 depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays a statechart diagram of source code;

Fig. 17 depicts a user interface displayed by the sofiware development tool

depicted in Fig. 2, where the user interface displays an activity diagram of source code;

-8-

10

15

20

25

30

WO 01/82068 PCT/US01/12820

Fig. 18 depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays a component diagram of source
code;

Fig. 19 depicts a user interface displayed by the software development tool
depicted in Fig. 2, where the user interface displays a deployment diagram of source
code;

Fig. 20 depicts exemplary code corresponding to a dependent class that uses
another defining class, resulting in a dependency between the dependent class and the
defining class;

Fig. 21 depicts an exemplary user interface displayed by the software
development tool in response to a request to open a project containing a group of object-
oriented elements, where the exemplary user interface shows a group of nodes that
graphically represent the group of object-oriented elements in the project;

Figs. 22A and 22B depict a flow diagram illustrating an exemplary process
performed by the software development tool in Fig. 2 to identify one or more
dependencies between two nodes in a project;

Fig. 23 depicts an exemplary user interface displayed by the software
development tool depicted in Fig. 2, where the user interface displays a list of
dependency search types that the software development tool may perform,

Fig. 24 depicts an exemplary user interface displayed by the software
development tool depicted in Fig. 2 for requesting the software development tool to
identify a dependency between packages; ,

Fig. 25 depicts an exemplary screen showing a single dependency link between
two packages displayed by the software development tool in Fig. 2 to reflect at least one
dependency identified in code corresponding to a class in one of the two packages;

Fig. 26 depicts an exemplary screen showing a single dependency link between a
class and a package displayed by the software development tool in Fig. 2 to reflect at
least one dependency identified in code corresponding the class or to a different class in
the package;

Figs. 27A and 27B depict a flow diagram illustrating a second embodiment of a
process performed by the software development tool in Fig. 2 to identify one or more

dependencies between two nodes in a project;

-9-

10

15

20

25

30

WO 01/82068 PCT/US01/12820

Fig. 28A-C depict a flow diagram illustrating an exemplary process performed by
the software development tool in Fig. 2 to identify and display all dependencies reflected
by a single dependency link between a dependent node and a defining node;

Fig. 29 depicts an exemplary user interface displayed by the sofiware
development tool depicted in Fig. 2 for requesting the software development tool to
show all dependencies reflected by a single dependency link between a dependent
package and a defining package;

Fig. 30 depicts exemplary code corresponding to a class associated with the
dependent package, where the exemplary code reflects a dependency on a second class
associated with the defining package;

Fig. 31 depicts exemplary code corresponding to a class associated with the
dependent package, where the exemplary code reflects a dependency on a second class
associated with the defining package;

Fig. 32 depicts an exemplary user interface displayed by the software
development tool depicted in Fig. 2, where the exemplary user interface shows all the
dependencies reflected by the single dependency link between the dependent node and
the defining node when the dependency search type is declarations;

Fig. 33 depicts an exemplary user interface displayed by the software
development tool depicted in Fig. 2, where the exemplary user interface shows all the
dependencies reflected by the single dependency link between the dependent node and
the defining node when the dependency search type is all usages;

Fig. 34 depicts an exemplary user interface displayed by the sofiware
development tool depicted in Fig. 2, where the exemplary user interface shows the effect
of removing an element having a dependency to a second node from a package;

Fig. 35 depicts an exemplary user interface displayed by the software
development tool depicted in Fig. 2, where the exemplary user interface shows a request
from a developer to display a dependency link between an interface and a package
without identifying if a dependency exists between the interface and the package; and

Fig. 36 depicts an exemplary user interface displayed by the software
development tool depicted in Fig. 2, where the exemplary user interface shows the lack
of dependencies reflected by the single dependency link requested by the developer

between the interface and the package.

-10 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

Detailed Description Of The Invention

Methods and systems consistent with the present invention provide an improved
software development tool that creates a graphical representation of source code
regardless of the programming language in which the code is written. In addition, the
software development tool simultaneously reflects any modifications to the source code
to both the display of the graphical representation as well as the textual display of the
source code.

As depicted in Fig. 2, source code 202 is being displayed in both a graphical form
204 and a textual form 206. In accordance with methods and systems consistent with the
present invention, the improved software development tool generates a transient meta
model (TMM) 200 which stores a language-neutral representation of the source code
202. The graphical 204 and textual 206 representations of the source code 202 are
generated from the language-neutral representation in the TMM 200. Although
modifications made on the displays 204 and 206 may appear to modify the displays 204
and 206, in actuality all modifications are made directly to the source code 202 via an
incremental code editor (ICE) 208, and the TMM 200 is used to generate the
modifications in both the graphical 204 and the textual 206 views from the modifications
to the source code 202.

The improved software development tool provides simultaneous round-trip
engineering, i.e., the graphical representation 204 is synchronized with the textual
representation 206. Thus, if a change is made to the source code 202 via the graphical
representation 204, the textual representation 206 is updated automatically. Similarly, if
a change is made to the source code 202 via the textual representation 206, the graphical
representation 204 is updated to remain synchronized. There is no repository, no batch
code generation, and no risk of losing code.

The data structure 300 of the language-neutral representation is depicted in Fig.
3. The data structure 300 comprises a Source Code Interface (SCI) model 302, an SCI
package 304, an SCI class 306, and an SCI member 308. The SCI model 302 is the
source code organized into packages. The SCI model 302 corresponds to a directory for
a software project being developed by the user, and the SCI package 304 corresponds to
a subdirectory. The software project comprises the source code in at least one file that is

compiled to form a sequence of instructions to be run by a data processing system. The

-11 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

data processing system is discussed in detail below. As is well known in object-oriented
programming, the class 306 is a category of objects which describes a group of objects
with similar properties (attributes), common behavior (operations or methods), common
relationships to other objects, and common semantics. The members 308 comprise
attributes and/or operations.

For example, the data structure 500 for the source code 400 depicted in Fig. 4 is
depicted in Fig. 5. Userlnterface 402 is defined as a package 404. Accordingly,
UserlInterface 402 is contained in SCI package 502. Similarly, Bank 406, which is
defined as a class 408, is contained in SCI class 504, and Name 410 and Assets 412,
which are defined as attributes (strings 414), are contained in SCI members 506. Since
these elements are in the same project, all are linked. The data structure 500 also
identifies the language in which the source code is written 508, e.g., the Java™ language.

Fig. 6 depicts a data processing system 600 suitable for practicing methods and
systems consistent with the present invention. Data processing system 600 comprises a
memory 602, a secondary storage device 604, an I/O device 606, and a processor 608.
Memory 602 includes the improved software development tool 610. The software
development tool 610 is used to develop a software project 612, and create the TMM 200
in the memory 602. The project 612 is stored in the secondary storage device 604 of the
data processing system 600. One skilled in the art will recognize that data processing
system 600 may contain additional or different components.

Although aspects of the present invention are described as being stored in
memory, one skilled in the art will appreciate that these aspects can also be stored on or
read from other types of computer-readable media, such as secondary storage devices,
like hard disks, floppy disks or CD-ROM; a carrier wave from a network, such as
Internet; or other forms of RAM or ROM either currently known or later developed.

Fig. 7 illustrates an architectural overview of the improved software development
tool 610. The tool 610 comprises a core 700, an open application program interface
(API) 702, and modules 704. The core 700 includes a parser 706 and an ICE 208. The
parser 706 converts the source code into the language-neutral representation in the
TMM, and the ICE 208 converts the text from the displays into source code. There are
three main packages composing the API 702: Integrated Development Environment
(IDE) 708; Read-Write Interface (RWT) 710; and Source Code Interface (SCI) 712. Each

-12-

10

15

20

25

WO 01/82068 PCT/US01/12820

package includes corresponding subpackages. As is well known in the art, a package is a
collection of attributes, notifications, operations, or behaviors that are treated as a single
module or program unit.

IDE 708 is the API 702 needed to generate custom outputs based on information
contained in a model. It is a read-only interface, i.e., the user can extract information
from the model, but not change the model. IDE 708 provides the functionality related to
the model’s representation in IDE 708 and interaction with the user. Each package
composing the IDE group has a description highlighting the areas of applicability of this
concrete package.

RWI 710 enables the user to go deeper into the architecture. Using RWI 710,
information can be extracted from and written to the models. RWI not only represents
packages, classes and members, but it may also represent different diagrams (class
diagrams, use case diagrams, sequence diagrams and others), links, notes, use cases,
actors, states, etc.

SCI 712 is at the source code level, and allows the user to work with the source
code almost independently of the language being used.

There are a variety of modules 704 in the software development tool 610 of the
present invention. Some of the modules 704 access information to generate graphical
and code documentation in custom formats, export to different file formats, or develop
patterns. The software development tool also includes a quality assurance (QA) module
which monitors the modifications to the source code and calculates the complexity
metrics, i.e., the measurement of the program’s performance or efficiency, to support
quality assurance. The types of metrics calculated by the software development tool
include basic metrics, cohesion metrics, complexity metrics, coupling metrics, Halstead
metrics, inheritance metrics, maximum metrics, polymorphism metrics, and ratio
metrics. Examples of these metrics with their respective definitions are identified in
Tables 1-9 below.

-13 -

WO 01/82068

PCT/US01/12820

Basic Metrics Description

Lines Of Code Counts the number of code lines.

Number Of Attributes | Counts the number of attributes. If a class has a high number of
attributes, it may be appropriate to divide it into subclasses.

Number Of Classes Counts the number of classes.

Number Of Import Counts the number of imported packages/classes. This measure

Statements can highlight excessive importing, and also can be used as a
measure of coupling.

Number Of Members | Counts the number of members, i.e., attributes and operations. If
a class has a high number of members, it may be appropriate to
divide it into subclasses.

Number Of Operations | Counts the number of operations. If a class has a high number of

operations, it may be appropriate to divide it into subclasses.

Table 1 — Basic Metrics

Cohesion Metrics Description

Lack Of Cohesion Of | Takes each pair of methods in the class and determines the set of

Methods 1 fields they each access. A low value indicates high coupling
between methods, which indicates potentially low reusability and
increased testing because many methods can affect the same
attributes.

Lack Of Cohesion Of | Counts the percentage of methods that do not access a specific

Methods 2 attribute averaged over all attributes in the class. A high value of
cohesion (a low lack of cohesion) implies that the class is well
designed.

Lack Of Cohesion Of | Measures the dissimilarity of methods in a class by attributes. A

Methods 3 low value indicates good class subdivision, implying simplicity

and high reusability. A high lack of cohesion increases
complexity, thereby increasing the likelihood of errors during the
development process. '

Table 2 — Cohesion Metrics

-14 -

WO 01/82068 PCT/US01/12820

Complexity Metrics | Description

Attribute Complexity | Defined as the sum of each attribute’s value in the class.

Cyclomatic Represents the cognitive complexity of the class. It counts the

Complexity number of possible paths through an algorithm by counting the
number of distinct regions on a flowgraph, i.e., the number of ‘if’
‘for’ and ‘while’ statements in the operation’s body.

Number Of Remote Processes all of the methods and constructors, and counts the

Methods number of different remote methods called. A remote method is

defined as a method which is not declared in either the class itself
or its ancestors.

Response For Class

Calculated as ‘Number of Local Methods’ + ‘Number of Remote
Methods.” A class which provides a larger response set is
considered to be more complex and requires more testing than
one with a smaller overall design complexity.

Weighted Methods Per | The sum of the complexity of all methods for a class, where each

Class 1 method is weighted by its cyclomatic complexity. The number of
methods and the complexity of the methods involved is a
predictor of how much time and effort is required to develop and
maintain the class.

Weighted Methods Per | Measures the complexity of a class, assuming that a class with

Class 2 more methods than another is more complex, and that a method

with more parameters than another is also likely to be more
complex.

Table 3 — Complexity Metrics

-15-

WO 01/82068

PCT/US01/12820

Coupling Metrics

Description

Coupling Between
Objects

Represents the number of other classes to which a class is
coupled. Counts the number of reference types that are used in
attribute declarations, formal parameters, return types, throws
declarations and local variables, and types from which attribute
and method selections are made.

Excessive coupling between objects is detrimental to modular
design and prevents reuse. The more independent a class is, the
easier it is to reuse it in another application. In order to improve
modularity and promote encapsulation, inter-object class couples
should be kept to a minimum. The larger the number of couples,
the higher the sensitivity to changes in other parts of the design,
and therefore maintenance is more difficult. A measure of
coupling is useful to determine how complex the testing of
various parts of a design is likely to be. The higher the inter-
object class coupling, the more rigorous the testing needs to be.

Data Abstraction
Coupling

Counts the number of reference types used in the attribute
declarations.

FanOut

Counts the number of reference types that are used in attribute
declarations, formal parameters, return types, throws declarations
and local variables.

Table 4 — Coupling Metrics

-16 -

WO 01/82068 PCT/US01/12820

Halstead Metrics Description

Halstead Difficulty This measure is one of the Halstead Software Science metrics. It
is calculated as (‘Number of Unique Operators’ / ‘Number of
Unique Operands’) * (‘Number of Operands’ / ‘Number of
Unique Operands’).

Halstead Effort This measure is one of the Halstead Software Science metrics. It
is calculated as ‘Halstead Difficulty’ * ‘Halstead Program
Volume.’

Halstead Program This measure is one of the Halstead Software Science metrics. It

Length is calculated as ‘Number of Operators’ + ‘Number of Operands.’

Halstead Program This measure is one of the Halstead Software Science metrics. It

Vocabulary is calculated as ‘Number of Unique Operators’ + ‘Number of
Unique Operands.’

Halstead Program This measure is one of the Halstead Software Science metrics. It

Volume is calculated as ‘Halstead Program Length’ * Log2(‘Halstead

. Program Vocabulary’).

Number Of Operands | This measure is used as an input to the Halstead Software Science
metrics. It counts the number of operands used in a class.

Number Of Operators | This measure is used as an input to the Halstead Software Science
metrics. It counts the number of operators used in a class.

Number Of Unique This measure is used as an input to the Halstead Software Science

Operands metrics. It counts the number of unique operands used in a class.

Number Of Unique This measure is used as an input to the Halstead Software Science

Operators metrics. It counts the number of unique operators used in a class.

Table 5 — Halstead Metrics

Inheritance Metrics | Description

Depth Of Inheritance | Counts how far down the inheritance hierarchy a class or

Hierarchy interface is declared. High values imply that a class is quite
specialized.

Number Of Child Counts the number of classes which inherit from a particular

Classes class, 1.e., the number of classes in the inheritance tree down from

a class. Non-zero value indicates that the particular class is being
re-used. The abstraction of the class may be poor if there are too
many child classes. It should also be stated that a high value of
this measure points to the definite amount of testing required for
each child class.

Table 6 — Inheritance Metrics

-17 -

WO 01/82068

PCT/US01/12820

Maximum Metrics

Description

Maximum Number Of
Levels

Counts the maximum depth of ‘if,” ‘for’ and ‘while’ branches in
the bodies of methods. Logical units with a large number of
nested levels may need implementation simplification and
process improvement because groups that contain more than
seven pieces of information are increasingly harder for people to
understand in problem solving.

Maximum Number Of
Parameters

Displays the maximum number of parameters among all class
operations. Methods with many parameters tend to be more
specialized and, thus, are less likely to be reusable.

Maximum Size Of

Counts the maximum size of the operations for a class. Method

Operation size is determined in terms of cyclomatic complexity, i.e., the
number of ‘if,” ‘for’ and ‘while’ statements in the operation’s
body.

Table 7 — Maximum Metrics

Polymorphism Description

Metrics

Number Of Added Counts the number of operations added by a class. A large value

Methods of this measure indicates that the functionality of the given class
becomes increasingly distinct from that of the parent classes. In
this case, it should be considered whether this class genuinely
should be inheriting from the parent, or if it could be broken
down into several smaller classes.

Number Of Counts the number of inherited operations which a class

Overridden Methods overrides. Classes without parents are not processed. High

values tend to indicate design problems, i.e., subclasses should
generally add to and extend the functionality of the parent classes
rather than overriding them.

Table 8 — Polymorphism Metrics

-18 -

WO 01/82068

PCT/US01/12820

Ratio Metrics Description

Comment Ratio Counts the ratio of comments to total lines of code including
comments. '

Percentage Of Package | Counts the percentage of package members in a class.

Members

Percentage Of Private
Members

Counts the percentage of private members in a class.

Percentage Of

Counts the percentage of protected members in a class.

Protected Members
Percentage Of Public | Counts the proportion of vulnerable members in a class. A large
Members proportion of such members means that the class has high

potential to be affected by external classes and means that
increased efforts will be needed to test such a class thoroughly.

True Comment Ratio

Counts the ratio of comments to total lines of code excluding
comments.

Table 9 — Ratio Metrics

The QA module also provides audits, i.e., the module checks for conformance to

predefined or user-defined styles. The types of audits provided by the module include

coding style, critical errors, declaration style, documentation, naming style, performance,

possible errors and superfluous content. Examples of these audits with their respective

definitions are identified in Tables 10-17 below.

-19-

WO 01/82068 PCT/US01/12820
Coding Style Audits | Description
Access Of Static Static members should be referenced through class names rather
Members Through than through objects.
Objects

Assignment To Formal
Parameters

Formal parameters should not be assigned.

Complex Assignment | Checks for the occurrence of multiple assignments and
assignments to variables within the same expression. Complex
assignments should be avoided since they decrease program
readability.

Don’t Use the The negation operator slows down the readability of the program.

Negation Operator Thus, it is recommended that it not be used frequently.

Frequently

Operator ‘?:” May Not
Be Used

The operator ‘?:” makes the code harder to read than the
alternative form with an if-statement.

Provide Incremental In
For-Statement or use
while-statement

Checks if the third argument of the ‘for’-statement is missing.

Replacement For
Demand Imports

Demand import-declarations must be replaced by a list of single
import-declarations that are actually imported into the
compilation unit. In other words, import-statements may not end
with an asterisk.

Use Abbreviated
Assignment Operator

Use the abbreviated assignment operator in order to write
programs more rapidly. Also some compilers run faster with the
abbreviated assignment operator.

Use ‘this’ Explicitly
To Access Class
Members

Tries to make the developer use ‘this’ explicitly when trying to
access class members. Using the same class member names with
parameter names often makes what the developer is referring to
unclear.

Table 10 — Coding Style Audits

-20 -

WO 01/82068 PCT/US01/12820

Critical Exrors Description

Audits

Avoid Hiding Detects when attributes declared in child classes hide inherited

Inherited Attributes attributes.

Avoid Hiding Detects when inherited static operations are hidden by child

Inherited Static classes.

Methods

Command Query Prevents methods that return a value from a modifying state. The

Separation methods used to query the state of an object must be different
from the methods used to perform commands (change the state of
the object).

Hiding Of Names Declarations of names should not hide other declarations of the
same name.

Inaccessible Overload resolution only considers constructors and methods that

Constructor Or are visible at the point of the call. If, however, all the

Method Matches constructors and methods were considered, there may be more
matches. This rule is violated in this case.
Imagine that ClassB is in a different package than ClassA. Then
the allocation of ClassB violates this rule since the second
constructor is not visible at the point of the allocation, but it still -
matches the allocation (based on signature). Also the call to open
in ClassB violates this rule since the second and the third
declarations of open are not visible at the point of the call, but it
still matches the call (based on signature).

Multiple Visible Multiple declarations with the same name must not be

Declarations With simultaneously visible except for overloaded methods.

Same Name

Overriding a Non- Checks for abstract methods overriding non-abstract methods in a

Abstract Method With | subclass.

an Abstract Method

Overriding a Private
Method

A subclass should not contain a method with the same name and
signature as in a superclass if these methods are declared to be
private.

Overloading Within a
Subclass

A superclass method may not be overloaded within a subclass
unless all overloading in the superclass are also overridden in the
subclass. It is very unusual for a subclass to be overloading
methods in its superclass without also overriding the methods it is
overloading. More frequently this happens due to inconsistent
changes between the superclass and subclass —i.e., the intention
of the user is to override the method in the superclass, but due to
the error, the subclass method ends up overloading the superclass
method.

Use of Static Attribute
for Initialization

Non-final static attributes should not be used in initializations of
attributes.

Table 11 — Critical Errors Audits

-21 -

WO 01/82068

PCT/US01/12820

Declaration Style
Audits

Description

Array declarators must be placed next to the type descriptor of

Badly Located Array

Declarators their component type.

Constant Private Private attributes that never get their values changed must be

Attributes Must Be declared final. By explicitly declaring them in such a way, a

Final reader of the source code get some information of how the
attribute is supposed to be used.

Constant Variables Local variables that never get their values changed must be

Must Be Final declared final. By explicitly declaring them in such a way, a

reader of the source code obtains information about how the
variable is supposed to be used.

Declare Variables In

Several variables (attributes and local variables) should not be

One Statement Each declared in the same statement.

Instantiated Classes This rule recommends making all instantiated classes final. It

Should Be Final checks classes which are present in the object model. Classes
from search/classpath are ignored.

List All Public And Enforces a standard to improve readability. Methods/data in your

Package Members class should be ordered properly.

First

Order Of Appearance | Checks for correct ordering of modifiers. For classes, this

Of Modifiers includes visibility (public, protected or private), abstract, static,
final. For attributes, this includes visibility (public, protected or
private), static, final, transient, volatile. For operations, this
includes visibility (public, protected or private), abstract, static,
final, synchronized, native.

Put the Main Function | Tries to make the program comply with various coding standards

Last regarding the form of the class definitions.

Table 12 — Declaration Style Audits

Documentation Description

Audits

Bad Tag In JavaDoc This rule verifies code against accidental use of improper

Comments JavaDoc tags.

Distinguish Between | Checks whether the JavaDoc comments in your program ends

JavaDoc And Ordinary | with “**/* and ordinary C-style ones with */.’

Comments

Table 13 — Documentation Audits

-22-

WO 01/82068 PCT/US01/12820
Naming Style Audits | Description
Class Name Must Checks whether top level classes or interfaces have the same
Match Its File Name name as the file in which they reside.
Group Operations Enforces standard to improve readability.
With Same Name
Together
Naming Conventions | Takes a regular expression and item name and reports all

occurrences where the pattern does not match the declaration.

Names Of Exception | Names of classes which inherit from Exception should end with
Classes Exception.

Use Conventional
Variable Names

One-character local variable or parameter names should be
avoided, except for temporary and looping variables, or where a
variable holds an undistinguished value of a type.

Table 14 — Naming Style Audits

Performance Audits

Description

Avoid Declaring
Variables Inside Loops

This rule recommends declaring local variables outside the loops
since declaring variables inside the loop is less efficient.

Append To String

Performance enhancements can be obtained by replacing String

Within a Loop operations with StringBuffer operations if a String object is
appended within a loop.

Complex Loop Avoid using complex expressions as repeat conditions within

Expressions loops.

Table 15 — Performance Audits

-23 .

WO 01/82068 PCT/US01/12820
Possible Error Audits | Description
Avoid Public And Declare the attributes either private or protected, and provide
Package Attributes operations to access or change them.
Avoid Statements Avoid statements with empty body.
With Empty Body
Assignment To For- ‘For’-loop variables should not be assigned.
Loop Variables
Don’t Compare Avoid testing for equality of floating point numbers since
Floating Point Types | floating-point numbers that should be equal are not always equal

due to rounding problems.

Enclosing Body The statement of a loop must always be a block. The ‘then’ and
Within a Block ‘else’ parts of ‘if’-statements must always be blocks. This makes

it easier to add statements without accidentally introducing bugs
in case the developer forgets to add braces.

Explicitly Initialize All
Variables

Explicitly initialize all variables. The only reason not to initialize
a variable is where it’s declared is if the initial value depends on
some computation occurring first. '

Method finalize() Calling of super.finalize() from finalize() is good practice of

Doesn’t Call programming, even if the base class doesn’t define the finalize()

super.finalize() method. This makes class implementations less dependent on
each other.

Mixing Logical An expression containing multiple logical operators should be

Operators Without parenthesized properly.

Parentheses

No Assignments In Use of assignment within conditions makes the source code hard

Conditional to understand.

Expressions

Use ‘equals’ Instead
Of ‘==

The ‘=="* operator used on strings checks if two string objects are
two identical objects. In most situations, however, one likes to
simply check if two strings have the same value. In these cases,
the ‘equals’ method should be used.

Use ‘L’ Instead Of ‘I’
at the end of integer
constant

It is better to use uppercase ‘L’ to distinguish the letter ‘I’ from
the number ‘1.’

Use Of the
‘synchronized’
Modifier

The ‘synchronized’ modifier on methods can sometimes cause
confusion during maintenance as well as during debugging. This
rule therefore recommends against using this modifier, and
instead recommends using ‘synchronized’ statements as
replacements.

Table 16 — Possible Error Audits

-24 -

WO 01/82068

PCT/US01/12820

Superfluous Content
Audits

Description

Duplicate Import There should be at most one import declaration that imports a

Declarations particular class/package.

Don’t Import the No classes or interfaces need to be imported from the package to

Package the Source which the source code file belongs. Everything in that package is

File Belongs To available without explicit import statements.

Explicit Import Of the | Explicit import of classes from the package ‘java.lang’ should not

java.lang Classes be performed.

Equality Operations Avoid performing equality operations on Boolean operands.

On Boolean “True’ and ‘false’ literals should not be used in conditional

Arguments clauses.

Imported Items Must | It is not legal to import a class or an interface and never use it.

Be Used This rule checks classes and interfaces that are explicitly
imported with their names — that is not with import of a complete
package, using an asterisk. If unused class and interface imports
are omitted, the amount of meaningless source code is reduced -
thus the amount of code to be understood by a reader is
minimized.

Unnecessary Casts Checks for the use of type casts that are not necessary.

Unnecessary Verifies that the runtime type of the lefi-hand side expression is

‘instanceof’ the same as the one specified on the right-hand side.

Evaluations

Unused Local Local variables and formal parameter declarations must be used.

Variables And Formal

Parameters

Use Of Obsolete The modifier ‘abstract’ is considered obsolete and should not be

Interface Modifier used.

Use Of Unnecessary All interface operations are implicitly public and abstract. All

Interface Member interface attributes are implicitly public, final and static.

Modifiers

Unused Private Class
Member

An unused class member might indicate a logical flaw in the
program. The class declaration has to be reconsidered in order to
determine the need of the unused member(s).

Table 17 — Superfluous Content Audits

If the QA module determines that the source code does not conform, an error

message is provided to the developer. For example, as depicted in Fig. 8A, the software

development tool checks for a variety of coding styles 800. If the software development

tool were to check for “Access Of Static Members Through Objects” 802, it would verify

whether static members are referenced through class names rather than through objects

804. Further, as depicted in Fig. 8B, if the software development tool were to check for

“Complex Assignment” 806, the software development tool would check for the

-25 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

occurrence of multiple assignments and assignments to variables within the same
expression to avoid complex assignments since these decrease program readability 808.
An example of source code having a complex assignment 810 and source code having a
non-complex assignment 812 are depicted in Figs. 8B and 8C, respectively. The QA
module of the software development tool scans the source code for other syntax errors
well known in the art, as described above, and provides an error message if any such
errors are detected.

The improved software development tool of the present invention is used to
develop source code in a project. The project comprises a plurality of files and the
source code of a chosen one of the plurality of files is written in a given language. The
software development tool determines the language of the source code of the chosen file,
converts the source code from the language into a language-neutral representation, uses
the language-neutral representation to textually display the source code of the chosen file
in the language, and uses the language-neutral representation to display a graphical
representation of at least a portion of the project. The source code and the graphical
representation are displayed simultaneously.

The improved software development tool of the present invention is also used to
develop source code. The software development tool receives an indication of a selected
language for the source code, creates a file to store the source code in the selected
language, converts the source code from the selected language into a language-neutral
representation, uses the language-neutral representation to display the source code of the
file, and uses the language-neutral representation to display a graphical representation of
the file. Again, the source code and the graphical representation are displayed
simultaneously.

Moreover, if the source code in the file is modified, the modified source code and
a graphical representation of at least a portion of the modified source code are displayed
simultaneously. The QA module of the software development tool provides an error
message if the modification does not conform to predefined or user-defined styles, as
described above. The modification to the source code may be received from the display
of the source code, the display of the graphical representation of the project, or via some
other independent software to modify the code. The graphical representation of the

project may be in Unified Modeling Language; however, one skilled in the art will

-26 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

recognize that other graphical representations of the source code may be displayed.
Further, although the present invention is described and shown using the various views
of the UML, one of ordinary skill in the art will recognize that other views may be
displayed.

Fig. 9 depicts a flow diagram of the steps performed by the software development
tool to develop a project in accordance with methods and systems consistent with the
present invention. As previously stated, the project comprises a plurality of files. The
developer either uses the software development tool to open a file that contains existing
source code, or to create a file in which the source code will be developed. If the
software development tool is used to open the file, determined in step 900, the software
development tool initially determines the programming language in which the code is
written (step 902). The language is identified by the extension of the file, e.g., “java”
identifies source code written in the Java™ language, while “.cpp” identifies source code
written in C++, The software development tool then obtains a template for the current
programming language, i.e., a collection of generalized definitions for the particular
language that can be used to build the data structure (step 904). For example, the
definition of a new Java™ class contains a default name, e.g., “Classl,” and the default
code, “public class Classl {}.” Such templates are well known in the art. For example,
the “Microsoft Foundation Class Library” and the “Microsoft Word Template For
Business Use Case Modeling” are examples of standard femplate libraries from which
programmers can choose individual template classes. The software development tool
uses the template té parse the source code (step 906), and create the data structure (step
908). After creating the data structure or if there is no existing code, the software
development tool awaits an event, i.e., a modification or addition to the source code by
the developer (step 910). If an event is received and the event is to close the file (step
912), the file is saved (step 914) and closed (step 916). Otherwise, the software
development tool performs the event (step 918), i.e., the tool makes the modification.
The software development tool then updates the TMM or model (step 920), as discussed
in detail below, and updates both the graphical and the textual views (step 922).

Figs. 10A and 10B depict a flow diagram illustrating the update model step of
Fig. 9. The software development tool selects a file from the project (step 1000), and
determines whether the file is new (stei) 1002), whether the file has been updated (step

-27 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

1004), or whether the file has been deleted (step 1006). If the file is new, the software
development tool adds the additional symbols from the file to the TMM (step 1008). To
add the symbol to the TMM, the software development tool uses the template to parse
the symbol to the TMM. If the file has been updated, the software development tool
updates the symbols in the TMM (step 1010). Similar to the addition of a symbol to the
TMM, the software development tool uses the template to parse the symbol to the TMM.
If the file has been deleted, the software development tool deletes the symbols in the
TMM (step 1012). The software development tool continues this analysis for all files in
the project. After all files are analyzed (step 1014), any obsolete symbols in the TMM
(step 1016) are deleted (step 1018).

Fig. 11 depicts a flow diagram illustrating the performance of an event,
specifically the creation of a class, in accordance with methods and systems consistent
with the present invention. After identifying the programming language (step 1100), the
software development tool obtains a template for the language (step 1102), creates a
source code file in the project directory (step 1104), and pastes the template onto the
TMM (step 1106). The project directory corresponds to the SCI model 302 of Fig. 3.
Additional events which a developer may perform using the software development tool
include the creation, modification or deletion of packages, projects, atiributes, interfaces,
links, operations, and the closing of a file.

The software development tool is collectively broken into three views of the
application: the static view, the dynamic view, and the functional view. The static view
is modeled using the use-case and class diagrams. A use case diagram 1200, depicted in
Fig. 12, shows the relationship among actors 1202 and use cases 1204 within the system
1206. A class diagram 1300, depicted in Fig. 13 with its associated source code 1302, on
the other hand, includes classes 1304, interfaces, packages and their relationships
connected as a graph to each other and to their contents.

The dynamic view is modeled using the sequence, collaboration and statechart
diagrams. As depicted in Fig. 14, a sequence diagram 1400 represents an interaction,
which is a set of messages 1402 exchanged among objects 1404 within a collaboration to
effect a desired operation or result. In a sequence diagram 1400, the vertical dimension
represents time and the horizontal dimension represents different objects. A

collaboration diagram 1500, depicted in Fig. 15, is also an interaction with messages

-28 -

10

15

20

25

WO 01/82068 PCT/US01/12820

1502 exchanged among objects 1504, but it is also a collaboration, which is a set of
objects 1504 related in a particular context. Contrary to sequence diagrams 1400 (Fig.
14), which emphasize the time ordering of messages along the vertical axis,
collaboration diagrams 1500 (Fig. 15) emphasize the structural organization of objects.

A statechart diagram 1600 is depicted in Fig. 16. The statechart diagram 1600
includes the sequences of states 1602 that an object or interaction goes through during its
life in response to stimuli, together with its responses and actions. It uses a graphic
notation that shows states of an object, the events that cause a transition from one state to
another, and the actions that result from the transition.

The functional view can be represented by activity diagrams 1700 and more
traditional descriptive narratives such as pseudocode and minispecifications. An activity
diagram 1700 is depicted in Fig. 17, and is a special case of a state diagram where most,
if not all, of the states are action states 1702 and where most, if not all, of the transitions
are triggered by completion of the actions in the source states. Activity diagrams 1700
are used in situations where all or most of the events represent the completion of
internally generated actions.

There is also a fourth view mingled with the static view called the architectural
view. This view is modeled using package, component and deployment diagrams.
Package diagrams show packages of classes and the dependencies among them.
Component diagrams 1800, depicted in Fig. 18, are graphical representations of a system
or its component parts. Component diagrams 1800 show the dependencies among
software components, including’ source code components, binary code components and
executable components. As depicted in Fig. 19, Deployment diagrams 1900 are used to
show the distribution strategy for a distributed object system. Deployment diagrams
1900 show the configuration of run-time processing elements and the software
components, processes and objects that live on them.

Although discussed in terms of class diagrams, one skilled in the art will
recognize that the software development tool of the present invention may support these

and other graphical views.

-29 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

Representing Multiple Dependencies Between Nodes With A Single Link

In addition to the functionality described above, the software development tool
610 saves significant programming development time and aids in the production of error
free code by providing a developer with a visual cue of multiple dependencies between
two nodes in a project via a single dependency link between the nodes. Each node in the
project may be a package, a class, or an interface. If the node is a package, the classes
and/or interfaces within the package are referred to as the “elements” in the node. If the
node is a class or an interface, the class or the interface is the “element” in the node. A
dependency exists between the two nodes if changes to a defining element, i.e., a class or
an interface in one node, may impact a dependent element, i.e., a class or an interface in
another node. The node containing the defining element is referred to as the “defining
node,” and the node containing the dependent element is referred to as the “dependent
node.” Changes to the defining element may impact the dependent element because the
dependent element uses the defining element, such as in a declaration, a local variable
definition, a method invocation, or a conmstructor (i.e., a special type of method
invocation that initializes every data field when a new object is created from a class).
For example, as shown in Fig. 20, class “Sale” 2002 uses the class “Product” 2004 by
declaring “aProd” 2006 (an argument parameter for the method “addItem” 2008) to be of
the type “Product,” resulting in one dependency. In addition, the class “Sale” 2002 uses
the class “Product” 2010 in a method invocation “Product.lookup(barCode)” 2012,
resulting in a second dependency. Conventional tools display the two dependencies
separately. In accordance with methods and systems consistent with the present
invention, the software development tool 610 allows a developer to display the two
dependencies between the class “sale” 2002 and the class “product” 2004 as a single
dependency link. By displaying multiple dependencies as a single dependency link and
allowing the developer to selectively choose to identify the multiple dependencies
reflected by the single dependency link, the software development tool visually apprises
the developer of which nodes may be impacted by a code change without displaying a
spider web of dependencies between the two nodes. In another embodiment, the
software development tool may alter the appearance of the link depending on the number

of dependencies between the nodes. For example, the thickness of the link may be

-30 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

proportional to the number of dependencies between the nodes, or the color of the link
may change depending on the number of dependencies between the nodes.

Fig. 21 depicts an exemplary user interface 2100 displayed by the software
development tool in response to a request to open a project containing a group of object-
oriented elements. Each object-oriented element may be a class or an interface. The
exemplary user interface 2100 shows a group of nodes 2102, 2104, 2106, and 2108 that
graphically represent the group of object-oriented elements in the project. As discussed
above, a node may be a graphical representation of a package, a class, or an interface.
As shown in Fig. 21, the software development tool displays a group of packages
(depicted graphically as 2102, 2104, and 2106) and an interface (depicted graphically as
2108) as nodes in the project “CashSales” 2101. Each package 2102, 2104, and 2106
represents a directory 2136, 2134, and 2132 that contains a portion of the object-oriented
elements in the project. Each object-oriented element in the project has corresponding
code stored in a respective file within the project. For example, in Fig. 21, class
“SaleDM” 2109 in package “DataManagement” 2106 has corresponding code stored in
file “SaleDM.java” 2110. Similarly, in package “ProblemDomain” 2104, class
“CashSale” 2111, class “CashSaleDetail” 2113, interface “IMakeCashSale” 2115, class
“ProductDesc” 2117, and class “ProductPrice” 2119 have corresponding code stored in
files “CashSale.java” 2112, “CashSaleDetail.java” 2114, “IMakeCashSale.java” 2116,
“ProductDesc java” 2118, and “ProductPrice java” 2120, respectively. Also in package
“UserInterface” 2102, class “CashSalesApp” 2131, class “POSFrame” 2123, class
“POSFrame AboutBox” 2125, and class “SaleUI” 2127 have corresponding code stored
in files “CashSalesApp.java” 2132, “POSFrame.java” 2124,
“POSFrame_AboutBox.java” 2126, and “SaleUIjava” 2128, respectively.

According to methods and systems consistent with the present invention, when a
developer prompts the software development tool to open the project “CashSales” 2101,
the software development tool parses code corresponding to each object-oriented element
(i.e, aclass or an interface having corresponding code) in each package into a respective
data structure 300 of TMM 200 as discussed previously. The software development tool
then generates the graphical representation of the code corresponding to each element in
TMM 200 on the graphical pane 2138. In one implementation, when viewing the root

directory of the project, such as indicated by “default” tab 2140, the software

-31-

10

15

20

25

30

WO 01/82068 PCT/US01/12820

development tool displays a graphical representation of each package 2102, 2104, and
2106 as a node. Each node includes an indication of the object-oriented elements
contained in each respective package. The graphical representation of the code
corresponding to each element, however, is hidden from view in order to provide a
developer with a more abstract” perspective view of the project. For example,
Userlnterface package 2102 includes an indication of class CashSalesApp 2131, however
the graphical representation of the code corresponding to CashSalesApp is hidden from
view.

Figs. 22A and 22B depict a flow diagram illustrating an exemplary process
performed by the software development tool to graphically represent multiple
dependencies between two nodes in a project as a single dependency link. The steps are
performed after the source code has been parsed and the graphical representation of the
object-oriented elements in the source code has been displayed. Initially, the software
development tool receives an indication of a type of dependency search (step 2202). In
one implementation shown in Fig. 23, the software development tool receives the
indication of the type of dependency search from a pull down menu selection 2302.
Although the software development tool is depicted with a pull-down menu 2302, other
known input techniques, such as a keyboard input or an icon selection, may also be used
to convey the indication of the type of dependency search to the sofiware development
tool. In the implementation shown in Fig. 23, the type of declaration search is
“declarations only” 2304 or “all usages” 2306. If the type of dependency search is
“declarations only” 2304, the software development tool searches the element(s) in the
dependent node for a declaration, a return value of methods, or an argument parameter
for a reference to an element in the defining node. If the developer chooses “all usages”
2306 as the type of dependency search, the software development tool will also analyze
the element(s) in the dependent node for a use of the defining element. Thus, the
software development tool allows the developer to obtain a broad perspective of
dependencies between nodes by limiting the analysis to “declarations only” 2304.
However, the software development tool allows the developer to view all sources of
dependencies to take corrective measures in the design of the code or determine potential
impact to a change in the code by expanding the analysis performed by the software

development tool to “all usages” 2306.

-32.

10

15

20

25

30

WO 01/82068 PCT/US01/12820

After receiving an indication of the type of dependency search, the software
development tool receives a request to identify a dependency (step 2203). As shown in
the exemplary user interface 2400 depicted in Fig. 24, the sofiware development tool
may receive the request 2402 to identify a dependency via the developer making a
selection from a pull down menu. However, any known data input technique, such as a
keyboard input or an icon selection, may be used to convey the same information to the
software development tool.

The next step performed by the software development tool is to select a
dependent node (step 2204). The software development tool also selects a defining node
(step 2206). The software development tool then selects an element from the dependent
node (step 2208). After selecting the element from the dependent node, the software
development tool determines whether a declaration in the selected element refers to any
element in the defining node, also known as the defining element (step 2210). As
previously noted, a node may be a package, class, or interface that is graphically
represented by the software development tool. For example, in Fig. 21, the software
development tool displays nodes 2102, 2104, 2106, and 2108 in the project “CashSales”
2101, which graphically represent packages “Userlnterface” 2136, “ProblemDomain”
2134, and “DataManagement” 2132 as well as interface “IMakeCashSale” 2130,
respectively. To determine whether a declaration in the code corresponding to the
selected element refers to any defining element, the software development tool searches
the source code of the selected element by invoking the TMM 200 to provide a
declaration associated with the defining element. In another implementation, the
software development tool may scan the file associated with the selected element to find
a declaration in the code corresponding to the defining element. For example, in Fig. 25,
if class “POSFrame” 2512 in node 2102 (i.e., package “UserInterface”) is the selected
element, the software development tool searches the source code of class “POSFrame”
2502 to find the declaration “CashSale currentSale” 2504. The declaration 2504 refers to
a defining element, “CashSale” 2506, that is in a different node, “ProblemDomain”
2104, i.e., the defining node.

If no declaration in the selected element refers to any element in the defining
node, the software development tool determines whether the type of dependency search

is “all usages” (step 2212). If the developer chose to search “all usages,” the software

-33 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

development tool determines whether a method in the selected element in the dependent
node refers to any element in the defining node (step 2214). Thus, the software
development tool determines whether the developer has requested a more extensive
analysis. To determine whether a method in the selected element refers to an element in
the defining node, the software development tool searches the source code of the selected
element by invoking the TMM 200 to provide a method associated with the selected
element. In another implementation, the software development tool scans the file
associated with the selected element for a method header construct that includes an
access specifier, a return type, a method name, and an argument field between
parenthesis. For example, if the software development tool is searching the class
“POSFrame” 2502 as the selected element, the software development tool will find the
method header “private void setUpProducts()” (not shown in Fig. 25) which identifies a
method in code corresponding to class “POSFrame” 2502. In this implementation, the
software development tool then searches the method body, ie., the code that is in
brackets “{ }” following the method header, to identify if the second class is used in a
local variable definition, method invocation, or a constructor. As discussed above, a
constructor is a special type of method invocation for initializing data fields in a newly
created object of a class. For example, the constructor “new ProductDesc[10]” (not
shown in Fig. 25) creates and initializes an object of the defining element,
“ProductDesc” (graphically depicted as 2526) in the defining node, “ProblemDomain”
2104. Thus, in this instance, the software development tool would identify a dependency
as the method in the class “POSFrame” 2512 in the node “UserInterface” 2102 using the
class “ProductDesc” 2526 in the node “ProblemDomain” 2104. In the event that the type
of dependency search is not “all usages,” the software development would not perform
step 2214, thus limiting the search to declarations in the selected element that refer to an
element in the defining node.

If no method in the selected element refers to any element in the defining node,
or if the type of dependency search is not “all usages,” the software development tool
determines whether there are more elements in the dependent node (step 2218 in Fig.
22B). If there are more elements, processing continues with the next element at step
2208. For example, as shown in Fig. 25, if the sofiware development tool completed its

analysis of the code corresponding to “POSFrame” 2512 as the selected element, the

-34 -

10

15

20 -

25

30

WO 01/82068 PCT/US01/12820

software development tool recognizes that the associated dependent node, “User
Interface” 2102, has three other elements “CashSalesApp” 2514, “POSFrame
AboutBox” 2516 and “SaleUI” 2518. Thus, the software development tool will proceed
to check the next element associated with the dependent node, “User Interface” 2102,
when it is determined that each element in the dependent node has not been checked.
Moreover, since the software development tool draws one dependent link regardless of
how many dependencies exist between two nodes, the software development tool need
not check all elements in each node. Once a dependency is found, the software
development tool may proceed to the next node.

If all elements in the dependent node have been analyzed, the software
development tool determines whether there are any more defining nodes (step 2220). If
there are more defining nodes, processing continues with the next defining node at step
2206. If all defining nodes have been analyzed, the software development tool
determines whether there are any more dependent nodes (step 2222). If there are more
dependent nodes, processing continues with the next dependent node at step 2204, If all
dependent nodes have been analyzed, processing ends. If at step 2210 or 2214, the
software development tool determines that a dependency exists between the dependent
node and the defining node, the software development tool displays a single dependency
link from the dependent node to the defining node (step 2216). Processing then
continues at step 2220. For example, as shown in Fig. 25, the software development tool
displays the dependency link 2510 in response to identifying that the class “POSFrame”
2512 in the dependent node “UserInterface” 2102 refers to the class “ProductDesc” 2526
in the defining node, “ProblemDomain” 2104. The dependency link 2510 is displayed as
a broken arrow pointing from the dependent node 2102 to the defining node 2104 to
visually signify that the package “Userlnterface” has a dependent element that uses a
defining element contained in the package “ProblemDomain.”

If the user were to display the object-oriented elements within package 2102, the
software development tool would display exemplary user interface 2600 depicted in
Fig. 26. As discussed above, class “POSFrame” 2512 within package “UserInterface”
2102 refers to class “ProdDesc” 2526. In Fig. 26, package “Userlnterface” is represented
by tab 2602, class “POSFrame” is represented by node 2608, and “ProdDesc” 2526 is an

element in package “ProblemDomain.ProductDesc” represented by node 2606. In

-35-

10

15

20

25

30

WO 01/82068 PCT/US01/12820

response to determining that a method in class “POSFrame” 2608 refers to class
“ProductDesc” 2526 in package “ProblemDomain.ProductDesc,” the software
development tool displays the dependency link 2604 between class “POSFrame” 2608
and package “ProblemDomain. ProductDesc” 2606.

In the example depicted in Fig. 25, the software development tool identifies a
single dependency link 2520 when the dependent node is “ProblemDomain” 2104 and
the defining node is “DataManagement” 2106. The software development tool also
identifies a single dependency link 2524 when the dependent node is “DataManagement”
2106 and the defining node is “ProblemDomain” 2104. Thus, in one iniplementation,
the software development tool displays two dependency links between two nodes in
opposite directions to represent dependencies in both directions. In an alternative
embodiment, a single link (not shown) may be used to represent the dependency links in
opposite directions.

In an alternative implementation, the software development tool identifies at least
two dependencies between the dependent node and the defining node before displaying a
single dependency link between the two nodes. Figs. 27A and 27B depict a flow
diagram illustrating this embodiment. As with the previous embodiment, the steps are
performed after the source code has been parsed and the graphical representation of the
object-oriented elements in the source code has been displayed. Moreover, the initial
steps performed by the software development tool are the same as with the previous

embodiment. Thus, the software development tool initially receives an indication of a

type of dependency search (step 2702). After receiving an indication of the type of

dependency search, the software development tool receives a request to identify a
dependency (step 2703). The next step performed by the software development tool is to
select a dependent node (step 2704). The software development tool also selects a
defining node (step 2706). The software development tool then selects an element from
the dependent node (step 2708). After selecting the element from the dependent node,
the software development tool determines whether a declaration in the selected element
refers to any element in the defining node, also known as the defining element (step
2710). If no declaration in the selected element refers to any element in the defining
node, the software development tool determines whether the type of dependency search

is “all usages” (step 2712). If the developer chose to search “all usages,” the software

-36-

10

15

20

25

WO 01/82068 PCT/US01/12820

development tool determines whether a method in the selected element refers to any
element in the defining node (step 2714).

If the software development tool determines that a dependency exists between the
selected element and the defining node, i.e., if a method in the selected element refers to
any element in the defining node or if a declaration in the selected element refers to an
element in the defining node, the sofiware development tool determines whether the
second declaration in the selected element refers to any element in the defining node
(step 2716 in Fig. 27B). If the second declaration refers to any element in the defining
node, i.e., if a second dependency between the dependent node and the defining node is
found, then the software development tool displays the dependency link from the
dependent node to the defining node (step 2722). If the second declaration does not refer
to any element in the defining node, then the software development tool determines
whether the type of dependency search is “all usages” (step 2718). If the type of
dependency search is “all usages,” then the software development tool determines
whether a second method in the selected element refers to any element in the defining
node (step 2720). If the second method refers to an element in the defining node, then
the software development tool displays the dependency link (step 2722).

If the second dependency is not identified at steps 2716 or 2720, the software
development tool determines whether there are more elements in the dependent node
(step 2724). Also, if the type of dependency search in step 2712 is not “all usages,” the
software development tool determines whether there are more elements in the dependent
node (step 2724). If there are more elements, processing continues with the next element
at step 2708. If all elements in the dependent node have been analyzed, the software
development tool determines whether there are any more defining nodes (step 2726). If
there are more defining nodes, processing continues with the next defining node at step
2706. If all defining nodes have been analyzed, the software development tool
determines whether there are any more dependent nodes (step 2728). If there are more
dependent nodes, processing continues with the next dependent node at step 2704. If all

dependent nodes have been analyzed, processing ends.

-37 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

Identifying and Displaying Details Regarding Dependencies

Methods and systems consistent with the present invention identify and display
details for each dependency in a project to assist the developer in analyzing the code.
Conventional tools identify the existence of dependencies between object-oriented
elements, but fail to provide the developer with details regarding the types of
dependencies between nodes and the elements within the nodes between which the
dependencies exist. Thus, the developer must search the code to identify the particular
dependencies that exist between the nodes. Methods and systems consistent with the
present invention provide the developer with a list identifying the defining element, the
dependent element, and the usage that results in the dependency. With this information,
the developer can modify the code to reduce the number of dependencies between the
nodes. With fewer dependencies, any further changes to the code are less likely to affect
other parts of the code.

Figs. 28A, 28B, and 28C depict a flow diagram illustrating an exemplary process
performed by the software development tool to identify and display the specific elements
and usage that result in each dependency between a dependent node and a defining node.
The software development tool initially receives an indication of a dependency link from
a dependent node to a defining node (step 2802). In one implementation, the software
development tool searches the code or the TMM, as described above, to identify the
dependencies. Alternatively, if dependency links are already drawn, for example as
displayed on the graphical pane 2904 in Fig. 29, the software development tool receives
the display coordinates for the single dependency link 2902 when a developer uses a
mouse or stylus to click on the single dependency link 2902. The TMM 200 identifies
the symbol associated with the received display coordinates and provides this
information to the software development tool, which correlates and stores the display
coordinates of the single dependency link 2902 with the associated dependent node 2102,
“Userlnterface.” In another implementation, the software development tool may store
the display coordinates of the single dependency link 2902 with the associated defining
node “ProblemDomain” 2104. The identified single dependency link 2902 limits the
scope of a subsequent dependency search or analysis by the software development tool to
the object-oriented elements in the dependent node “UserInterface” 2102, i.e., it limits

the search to class “CashSalesApp” 2906, class “POSFrame” 2908, class “POSFrame

-38-

10

15

20

25

30

WO 01/82068 PCT/US01/12820

AboutBox” 2910, and class “SaleUI” 2912. In addition, the identified single dependency
link limits the search or analysis to identifying the use of the object-oriented elements in
the defining node “ProblemDomain” 2104, i.e., it limits the search to class “CashSale”
2914, class “CashSaleDetail” 2916, class “ProductDesc” 2918, class “ProductPrice”
2220, and class “InsuffPaymentException” 2922.

The software development tool also receives an indication of a type of
dependency search (step 2804). A developer may indicate to the software development
tool the type of dependency search by any known programming input technique, such as
selection of an option on a pull down menu, or a keyboard input. In another
implementation, the software development tool may receive the indication of the type of
dependency search from a system variable, such as a dependency check system variable
2302 shown in Fig. 23. In this implementation, the type of dependency search may be
“declarations only” 2304 or “all usages” 2306. This allows the software development
tool to limit the dependencies reflected by a single dependency link to only declarations.
Examples of such declarations are the attribute declaration “private CashSale
theCashSale” 2924 shown in Fig. 29 as code in class “SaleUI” 2926, or the declaration
“Product aProd” made as an argument parameter for the method “addItem(Product:
aProd)” 2008 in Fig. 20.

The software development tool also receives a request to display dependencies
reflected by the selected single dependency link (Step 2806). In one implementation, the
request to display dependencies may be received at the same time and be synonymous
with the indication of a dependency link in step 2802. In another implementation shown
in Fig. 29, the software development tool may receive the request via a developer
selecting the option 2928 on a pull down menu. However, any known programming
input technique may be used to indicate the request to the software development tool.

Having received the request to display dependencies, the software development
tool limits the dependency search to the identified dependent node, “UserInterface”
2102. The software development tool then selects a dependent element from the
dependent node (step 2808). The software development tool also selects a declaration
from the dependent element (step 2810). The software development tool determines
whether the selected declaration uses a defining element in the defining node (step 2812).

In one implementation, the software development tool invokes the TMM 200 to identify

-39.

10

15

20

25

30

WO 01/82068 PCT/US01/12820

each declaration in the corresponding code of the dependent element. In another
implementation, the software development tool scans the code of the dependent élement
to find a declaration. For example, Fig. 30 depicts exemplary code corresponding to
class “POSFrame” 3002. Class “POSFrame” 2123 is depicted graphically in Fig. 21 in
relation to the dependent node 2102, “Userlnterface.” By invoking the TMM 200 or by
scanning the file 2124, the software development tool identifies the declaration
“ProductDesc[] products” 3004. The software development tool then determines that the
declaration 3004 has an attribute type “ProductDesc[]” 3006 that refers to the defining
element, class “ProductDesc” 3102, shown in Fig. 31. Class “ProductDesc” 2918 is
depicted graphically in Fig. 29 in relation to the defining node “ProblemDomain” 2104.

Having identified that the declaration 3004 refers to the defining element 3006 in
the defining node 2104, the software development tool records the usage of the defining
element in the selected declaration of the dependent element (step 2814). The software
development tool then displays an indication that the dependent element uses the
defining element (step 2816). The software development tool also displays the usage
(step 2818). The software development tool then checks whether there are any more
declarations (step 2820). The software development tool also checks for additional
declarations if the selected declaration does not use a defining element in the defining
node. If there are more declarations, processing continues at step 2810 with the next
declaration from the dependent element. If there are no more declarations in the
dependent element, the software development tool determines whether the type of
dependency search is “all usages” (step 2822 in Fig. 28B). If the search is not for “all
usages,” the software development tool determines whether there are any more
dependent elements (step 2824). If there are more dependent elements, processing
continues at step 2808 with the next dependent element from the dependent node. If
there are no more dependent elements, processing is complete.

If the type of dependency search is “all usages,” the software development tool
will also identify and display dependencies from a dependent element having a method
that refers to a defining element. The software development tool selects a method in the
dependent element (step 2826 in Fig. 28C). The software development tool then selects
a defining element from the defining node (step 2828). The software development tool

determines whether the selected method refers to the defining element (step 2830). In

-40 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

determining whether the corresponding code of the dependent element has a method that
refers to the defining element, the software development tool may invoke the TMM 200
to identify a method associated with the dependent element. In another implementation,
the software development tool may scan the code of the dependent element to identify a
method header and a method body that is in brackets (i.e., “{ }”) following the method
header. The software development tool may then search the body of the identified
method for a usage of the defining element, such as in a local variable declaration, in a
method invocation, or in a constructor. For example, the code for class “POSFrame”
3002 in Fig. 30 includes a method header 3010 for the method “setUpProducts” 3014.
When analyzing the body 3012 of the method “setUpProducts” 3014 in the class
“POSFrame” 3002, the software development tool identifies a constructor used in a local
variable assignment (i.e., “products = new ProductDesc [10]” 3016). The software
development tool determines that the constructor in the local variable assighment 3016
refers to “ProductDesc()” 3104 defined in the defining element, class “ProductDesc”
3102 in Fig. 31.

If the software development tool determines that the selected method refers to the
defining element, the software development tool records the usage of the defining
element in the selected method (step 2832). Thus, the software development tool stores
the dependent element, class “POSFrame” 3002, and the defining element, class
“ProductDesc” 3102, as well as the actual usage of the defining element within the
dependent element so that a developer is aware of a cause of the identified dependency.
Thus, the software development tool records the constructor in the local variable
assignment 3016, in Fig. 30. The software development tool displays an indication that
the dependent element uses the defining element (step 2834). The software development
tool then displays the usage (step 2836).

In one implementation, as shown in Fig. 32, the sofiware development tool
displays the indication that the dependent element in the dependent node uses the
defining element in the defining node by displaying an expandable directory tree with a
root name that corresponds to the name of the dependent node and the name of the
dependent element. Thus, for dependent node “UserInterface” and dependent element
“POSFrame,” the root name is “Userlnterface.POSFrame” 3202. The software

development tool also displays a dependent branch of the tree with a dependent branch

-4] -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

name that corresponds to the name of the defining node and the name of the defining
element. Thus for defining node “ProblemDomain” and defining element
“ProductDesc,” the dependent branch name is “ProblemDomain.ProductDesc” 3204. In
this implementation, the software development tool displays each recorded usage as a
respective name of a second branch off of the dependent branch. For example, a second
branch 3206 off the dependent branch 3204 has a name corresponding to “ProductDesc][]
products,” which is the exemplary usage in the dependent element, class “POSFrame”
3002, recorded by the software development tool when the type of dependency search is
“declarations only.” In the example shown in Fig. 33, when the type of dependency
search 1s “all usages,” the software development tool also displays the recorded usage of
the defining element in the method of the dependent element. For example, the software
development tool displays the local variable assignment with the constructor 3016 in Fig.
30, as a recorded usage 3302 in Fig. 33.

After displaying the usage, the software development tool checks whether there
are any more defining elements (step 2838). The software development tool also checks
whether there are any more defining elements if the selected method does not refer to
defining elements. If there are more defining elements, processing continues at step
2828 with the next defining element from the defining node. Otherwise, the sofiware
development tool determines whether there are any more methods in the dependent
element (step 2840). If so, processing continues at step 2826 with the next method in the
dependent element. If there are no more methods, processing continues at step 2824,

Returning to the example shown in Fig. 32, the software development tool also
identifies and records the indication that the dependent element, class “POSFrame” 3002,
also uses another element, class “CashSale,” in the defining node 2104,
“ProblemDomain.” This indication is displayed as a dependent branch
“ProblemDomain.CashSale” 3208 of the expandable directory tree for
“Userlnterface. POSFrame” 3202. The recorded usage “CashSale currentSale” 3210 of
the defining element, class “CashSale,” in the defining node 2104 is also displayed by
the software development tool.

In response to performing the process in Figs. 28A, 28B and 28C, the software
development tool identifies, records, and displays the multiple dependencies 3212, in

Fig. 32, when the single dependency link 2510 is selected and when the type of

-42 -

10

15

20

25

30

WO 01/82068 PCT/US01/12820

dependency search is “declarations only.” Similarly, the software development tool
identifies, records, and displays the multiple dependencies 3310, in Fig. 33, when the
single dependency link 2510 is selected and when the type of dependency search is “all
usages.”

Methods and systems consistent with the present invention also allow a developer
to track the dependencies between object-oriented elements when the elements are
removed from their corresponding packages. For example, the effect of removing class
“POSFrame” 3002 from package “Userlnterface” 2102 and creating a new node for the
removed class is depicted in Fig. 34. As depicted in Figs. 32 and 33, the dependencies
represented by link 2510 include dependencies from class “POSFrame,” as identified by
branch “Userlnterface POSFrame” 3202. If class POSFrame is removed from package
UserlInterface and a new node 3404 is created for class POSFrame, the software
development tool will distinguish the dependencies originating from package
“Userlnterface” 2102 from those of class POSFrame 3404. Graphically, the
dependencies from package UserInterface are illustrated as link 3402, whereas the
dependencies from class POSFrame are illustrated as link 3406.

The software development tool, in accordance with methods and systems
consistent with the present invention, also allow a developer to manually draw a
dependency between two nodes to determine whether any dependencies exist between
those specific nodes. For example, Fig. 35 depicts an exemplary user interface displayed
by the software development tool, where the exemplary user interface reflects a
diagrammatic request 3504 received by the software development tool to form a
dependency link between a selected dependent node 2102 and a selected defining node
2108. In the implementation shown in Fig. 35, the software development tool receives

an indication to form a manual dependency link via an actuation of a button 3502 on the

.user interface screen 3500. In this implementation, the developer may indicate the

dependent node 2102 to the software development tool via a mouse click on the
dependent node 2102. The developer may then indicate the defining node 2108 to the
software development tool by dragging and dropping a cursor on the defining node 2108
to complete the diagrammatic request 3504.

As shown in Fig. 36, the software development tool forms the manual

dependency link 3602 in response to the indication to form the manual dependency link

- 43 -

10

WO 01/82068 PCT/US01/12820

3502 and the diagrammatic request 3504. The manual dependency link 3602 may not
reflect any dependencies between the dependent node 2102 and the defining node 2108.
The dependency link may, however, serve as visual reminder to the developer to create a
dependency between the two nodes as the developer incorporates changes into the code
corresponding to the dependent node 2102. Also, as shown in Fig. 36, in response to
performing the process in Figs. 28A, 28B and 28C when the identified single
dependency link is the manual dependency link 3602, the sofiware development tool
displays a no dependencies message 3604 to indicate that no element in the dependent
node 2102 uses or is dependent on any element in the defining node 2108.

While various embodiments of the application have been described, it will be
apparent to those of ordinary skill in the art that many more embodiments and
implementations are possible that are within the scope of this invention. Accordingly,
the invention is not to be restricted except in light of the attached claims and their

equivalents.

- 44 -

10

15

20

25

WO 01/82068 PCT/US01/12820

CLAIMS

‘What is claimed is:

1. A method in a data processing system having a dependent node, a defining node, and
a plurality of dependencies between the dependent node and the defining node, the
method comprising the steps of:

displaying a graphical representation of the dependent node;

displaying a graphical representation of the defining node;

receiving an indication to identify a dependency between the dependent node and

the defining node; and

in response to receiving the indication to identify the dependency, representing

the plurality of dependencies as a number of links that is less than a number of

the dependencies between the dependent node and the defining node.

2. The method of claim 1, wherein the plurality of dependencies is represented as a

single link.
3. The method of claim 1, wherein each node comprises an element.

4. The method of claim 3, wherein one of the plurality of dependencies comprises a use

of the defining node element by the dependent node element.

5. The method of claim 3, wherein one of the plurality of dependencies comprises a

declaration of the defining node element by the dependent node element.

6. The method of claim 3, wherein one of the plurality of dependencies comprises a call

to a method of the defining node element by the dependent node element.

7. The method of claim 3, wherein one of the plurality of dependencies comprises a
local variable definition using the defining node element in a method of the dependent

node element.
8. The method of claim 3, wherein the dependent node element comprises a class.

9. The method of claim 3, wherein the dependent node element comprises an interface.

- 45 -

10

15

WO 01/82068 PCT/US01/12820

10. The method of claim 3, wherein the defining node element comprises a class.

11. The method of claim 3, wherein the defining node element comprises an interface.
12. The method of claim 1, wherein the dependent node comprises a class.

13. The method of claim 1, wherein the dependent node comprises an interface.

14. The method of claim 1, wherein the dependent node comprises a package.

15. The method of claim 14, wherein the package comprises a plurality of elements.

16. The method of claim 15, wherein one of the plurality of elements comprises a class.

17. The method of claim 15, wherein one of the plurality of elements comprises an

interface.

18. The method of claim 1, wherein the defining node comprises a class.

19. The method of claim 1, wherein the defining node comprises an interface.

20. The method of claim 1, wherein the defining node comprises a package.

21. The method of claim 20, wherein the package comprises a plurality of elements.
22. The method of claim 21, wherein one of the plurality of elements comprises a class.

23. The method of claim 21, wherein one of the plurality of elements comprises an

interface.

- 46 -

10

15

20

25

WO 01/82068 PCT/US01/12820

24. A method in a data processing system having a plurality of nodes, each of the
plurality of nodes having corresponding code, the method comprising the steps of*
displaying a graphical representation of the plurality of nodes;
determining whether the code corresponding to a first of the plurality of nodes
contains a first use of a second of the plurality of nodes; and
when it is determined that the code corresponding to the first node contains the
first use of the second node,
determining whether the code corresponding to the first node contains a
second use of the second node; and
when it is determined that the code corresponding to the first node
contains the second use of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.
25. The method of claim 24, wherein the first use comprises a declaration.

26. The method of claim 25, wherein the step of determining whether the code
corresponding to the first node contains the first use of the second node comprises the
step of searching the code corresponding to the first node for an attribute declaration that

uses the second node.

27. The method of claim 25, wherein the step of determining whether the code
corresponding to the first node contains the first use of the second node comprises the
step of searching the code corresponding to the first node for an initializer of an attribute

declaration that uses the second node.

28. The method of claim 25, wherein the step of determining whether the code
corresponding to the first node contains the first use of the second node comprises the
step of searching the code corresponding to the first node for an argument parameter of a

method that uses the second node.

29. The method of claim 24, wherein the first use comprises a method call.

-47 -

10

15

20

WO 01/82068 PCT/US01/12820

30. The method of claim 24, wherein the first use of the second node comprises a local

variable definition using the second node in a method of the first node.

31. The method of claim 24, wherein the first node comprises a class.

32. The method of claim 24, wherein the first node comprises an interface.
33. The method of claim 24, wherein the first node comprises a package.

34. The method of claim 24, wherein the second node comprises a class.

35. The method of claim 24, wherein the second node comprises an interface.
36. The method of claim 24, wherein the second node comprises a package.

37. A method in a data processing system having a plurality of nodes, each of the
plurality of nodes having corresponding code, the method comprising the steps of:
displaying a graphical representation of the plurality of nodes;
determining whether the code corresponding to a first of the plurality of nodes
contains a declaration of the second node; and
when it is determined that the code corresponding to the first node contains the
declaration of the second node,
determining whether the code corresponding to the first node contains
another declaration of the second node; and
when it is determined that the code corresponding to the first node
contains the other declaration of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.

-48 -

10

15

20

WO 01/82068 PCT/US01/12820

38. The method of claim 37, wherein when it is determined that the code corresponding
to the first node does not contain the other declaration of the second node,
determining whether the code corresponding to the first node contains a call to a
method of the second node; and
when it is determined that the code corresponding to the first node contains the
call to the method of the second node,
displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.

39. The method of claim 37, wherein when it is determined that the code corresponding
to the first node does not contain the other declaration of the second node,
determining whether the code corresponding to the first node comprises a method
having a local variable definition using the second node; and
when it is determined that the code corresponding to the first node comprises a
method having the local variable definition using the second node,
displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.
40. The method of claim 37, wherein the first node comprises a class.
41. The method of claim 37, wherein the first node comprises an interface.
42. The method of claim 37, wherein the first node comprises a package.
43. The method of claim 37, wherein the second node comprises a class.
44. The method of claim 37, wherein the second node comprises an interface.

45. The method of claim 37, wherein the second node comprises a package.

- 49 -

WO 01/82068 PCT/US01/12820

46. A method in a data processing system having a first node and a second node, each of
the nodes having corresponding code, the second node having a method, the method
comprising the steps of:
displaying a graphical representation of the first node and the second node;
determining whether the code corresponding to the first node contains a call to
the method of the second node; and
when it is determined that the code corresponding to the first node contains the
call to the method of the second node, |
determining whether the code corresponding of the first node contains
another call to the method of the second node; and
when it is determined that the code corresponding to the first node
contains the other call to the method of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.

47. The method of claim 46, wherein when it is determined that the code corresponding
to the first node does not contain the other call to the method of the second node,
determining whether the code correéponding to the first node comprises a method
having a local variable definition using the second node; and
when it is determined that the code corresponding to the first node comprises a
method having the local variable definition using the second node,
displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.

48. The method of claim 46, wherein when it is determined that the code corresponding
to the first node does not contain the other call to the method of the second node,
determining whether the code corresponding to the first node contains a
declaration of the second node; and
when it is determined that the code corresponding to the first node contains the
declaration of the second node,
displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.

-50 -

10

15

20

WO 01/82068 PCT/US01/12820

49. The method of claim 46, wherein the first node comprises a class.

50. The method of claim 46, wherein the first node comprises an interface.
51. The method of claim 46, wherein the first node comprises a package.

52. The method of claim 46, wherein the second node comprises a class.

53. The method of claim 46, wherein the second node comprises an interface.
54. The method of claim 46, wherein the second node comprises a package.

55. A method in a data processing system having a plurality of nodes, each of the
plurality of nodes having corresponding code, the method comprising the steps of:
receiving an indication of a first of the plurality of nodes;
receiving an indication of a second of the plurality of nodes;
determining whether the code corresponding to the first node contains a first use
and a second use of the second node; and
when it is determined that the code corresponding to the first node contains the
first use and the second use of the second node,
displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.

.56. The method of claim 55, wherein the first use comprises a declaration.

57. The method of claim 55, wherein the first use comprises a method call.

58. The method of claim 55, wherein the first use of the second node comprises a local

variable definition using the second node in a method of the first node.

59. The method of claim 55, wherein the first node comprises a class.

60. The method of claim 55, wherein the first node comprises an interface.
61. The method of claim 55, wherein the first node comprises a package.

62. The method of claim 55, wherein the second node comprises a class.

-51-

10

15

20

WO 01/82068 PCT/US01/12820

63. The method of claim 55, wherein the second node comprises an interface.
64. The method of claim 55, wherein the second node comprises a package.

65. A method in a data processing system having a plurality of nodes, each of the
plurality of nodes having corresponding code, the method comprising the steps of:
receiving an indication of a first of the plurality of nodes;
receiving an indication of a second of the plurality of nodes;
determining whether the code corresponding to the first node contains a
declaration of the second node; and
when it is determined that the code corresponding to the first node contains the
declaration of the second node,
determining whether the code corresponding to the first node contains
another declaration of the second node; and
when it is determined that the code corresponding to the first node
contains the other declaration of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.
66. The method of claim 65, wherein the first node comprises a class.
67. The method of claim 65, wherein the first node comprises an interface.
68. The method of claim 65, wherein the first node comprises a package.
69. The method of claim 65, wherein the second node comprises a class.
70. The method of claim 65, wherein the second node comprises an interface.

71. The method of claim 65, wherein the second node comprises a package.

-52 -

10

15

20

WO 01/82068 PCT/US01/12820

72. A method in a data processing system having a plurality of nodes, each of the
plurality of nodes having corresponding code, the method comprising the steps of:
receiving an indication of a first of the plurality of nodes;
receiving an indication of a second of the plurality of nodes, wherein the second
node has a method,
determining whether the code corresponding to the first node contains a call to
the method of the second node; and
when it is determined that the code corresponding to the first node contains the
call to the method of the second node,
determining whether the code corresponding of the first node contains
another call to the method of the second node; and
when it is determined that the code corresponding to the first node
contains another call to the method of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.
73. The method of claim 72, wherein the first node comprises a class.
74. The method of claim 72, wherein the first node comprises an interface.
75. The method of claim 72, wherein the first node comprises a package.
76. The method of claim 72, wherein the second node comprises a class.
77. The method of claim 72, wherein the second node comprises an interface.

78. The method of claim 72, wherein the second node comprises a package.

-53-

10

15

20

25

WO 01/82068 PCT/US01/12820

79. A method in a data processing system having a plurality of nodes, each of the
plurality of nodes having corresponding code, the method comprising the steps of:
receiving an indication of a first of the plurality of nodes;
receiving an indication of a second of the plurality of nodes;
determining whether the code corresponding to the first node contains a use of
the second node; and
when it is determined that the code corresponding to the first node contains the
use of the second node,

displaying the usage of the second node by the first node.
80. The method of claim 79, wherein each node comprises an element.

81. The method of claim 79, wherein when it is determined that the code corresponding
to the first node contains the use of the second node, the method further comprises the

step of displaying the first node element.

82. The method of claim 81, further comprising the step of displaying the first node Wifh
the first node element and with the usage to visually indicate that the first node contains

the usage of the second node.

83. The method of claim 79, wherein when it is determined that the code corresponding
to the first node contains the use of the second node, the method further comprises the

step of displaying the second node element.

84. The method of claim 83, further comprising the step of displaying the second node
with the second node element and with the usage to visually indicate that the first node

contains the usage of the second node.

85. The method of claim 79, wherein the first node comprises a class.

86. The method of claim 79, wherein the first node comprises an interface.
87. The method of claim 79, wherein the first node comprises a package.

88. The method of claim 79, wherein the second node comprises a class.

-54 -

10

15

20

25

WO 01/82068 PCT/US01/12820

89. The method of claim 79, wherein the second node comprises an interface.
90. The method of claim 79, wherein the second node comprises a package.

91. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a dependent
node, a defining node, and a plurality of dependencies between the dependent node and
the defining node, the method comprising the steps of:

displaying a graphical representation of the dependent node;

displaying a graphical representation of the defining node;

receiving an indication to identify a dependency between the dependent node and

the defining node; and

in response to receiving the indication to identify the dependency, representing

the plurality of dependencies as a number of links that is less than a number of

the dependencies between the dependent node and the defining node.

92. The computer-readable medium of claim 91, wherein the plurality of dependencies is

represented as a single link.

93. The computer-readable medium of claim 91, wherein each node comprises an

element.

94. The computer-readable medium of claim 93, wherein one of the plurality of
dependencies comprises a use of the defining node element by the dependent node

element,

95. The computer-readable medium of claim 93, wherein one of the plurality of
dependencies comprises a declaration of the defining node element by the dependent

node element.

96. The computer-readable medium of claim 93, wherein one of the plurality of
dependencies comprises a call to a method of the defining node element by the

dependent node element.

-55-

10

15

20

25

WO 01/82068 PCT/US01/12820

97. The computer-readable medium of claim 93, wherein one of the plurality of
dependencies comprises a local variable definition using the defining node element in a

method of the dependent node element.

98. The computer-readable medium of claim 93, wherein the dependent node element

comprises a class.

99. The computer-readable medium of claim 93, wherein the dependent node element

comprises an interface.

100. The computer-readable medium of claim 93, wherein the defining node element

comprises a class.

101. The computer-readable medium of claim 93, wherein the defining node element

comprises an interface.

102. The computer-readable medium of claim 91, wherein the dependent node

comprises a class.

103. The computer-readable medium of claim 91, wherein the dependent node

comprises an interface.

104. The computer-readable medium of claim 91, wherein the dependent node

comprises a package.

105. The computer-readable medium of claim 104, wherein the package comprises a

plurality of elements.

106. The computer-readable medium of claim 105, wherein one of the plurality of

elements comprises a class.

107. The computer-readable medium of claim 105, wherein one of the plurality of

elements comprises an interface.

108. The computer-readable medium of claim 91, wherein the defining node

comprises a class.

-56 -

10

15

20

25

WO 01/82068 PCT/US01/12820

109. The computer-readable medium of claim 91, wherein the defining node

comprises an interface.

110. The computer-readable medium of claim 91, wherein the defining node

comprises a package.

111. The computer-readable medium of claim 110, wherein the package comprises a

plurality of elements.

112. The computer-readable medium of claim 111, wherein one of the plurality of

elements.comprises a class.

113. The computer-readable medium of claim 111, wherein one of the plurality of

elements comprises an interface.

114. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
nodes, each of the plurality of nodes having corresponding code, the method comprising
the steps of:
displaying a graphical representation of the plurality of nodes;
determining whether the code corresponding to a first of the plurality of nodes
contains a first use of a second of the plurality of nodes; and
when it is determined that the code corresponding to the first node contains the
first use of the second node,
determining whether the code corresponding to the first node contains a
second use of the second node; and
when it is determined that the code corresponding to the first node
contains the second use of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.

115. The computer-readable medium of claim 114, wherein the first use comprises a

declaration.

-57-

10

15

20

25

WO 01/82068 PCT/US01/12820

116. The computer-readable medium of claim 115, wherein the step of determining
whether the code corresponding to the first node contains the first use of the second node
comprises the step of searching the code corresponding to the first node for an attribute

declaration that uses the second node.

117. The computer-readable medium of claim 115, wherein the step of determining
whether the code corresponding to the first node contains the first use of the second node
comprises the step of searching the code corresponding to the first node for an initializer

of an attribute declaration that uses the second node.

118. The computer-readable medium of claim 115, wherein the step of determining
whether the code corresponding to the first node contains the first use of the second node
comprises the step of searching the code corresponding to the first node for an argument

parameter of a method that uses the second node.

119. The computer-readable medium of claim 114, wherein the first use comprises a

method call.

120. The computer-readable medium of claim 114, wherein the first use of the second
node comprises a local variable definition using the second node in a method of the first

node.

121. The computer-readable medium of claim 114, wherein the first node comprises a

class.

122. The computer-readable medium of claim 114, wherein the first node comprises

an interface.

123. The computer-readable medium of claim 114, wherein the first node comprises a

package.

124. The computer-readable medium of claim 114, wherein the second node

comprises a class.

125. The computer-readable medium of claim 114, wherein the second node

comprises an interface.

- 58 -

10

15

20

25

WO 01/82068 PCT/US01/12820

126. The computer-readable medium of claim 114, wherein the second node

comprises a package.

127. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
nodes, each of the plurality of nodes having corresponding code, the method comprising
the steps of:
displaying a graphical representation of the plurality of nodes;
determining whether the code corresponding to a first of the plurality of nodes
contains a declaration of the second node; and
when it is determined that the code corresponding to the first node contains the
declaration of the second node,
determining whether the code corresponding to the first node contains
another declaration of the second node; and
when it is determined that the code corresponding to the first node
contains the other declaration of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.

128. The computer-readable medium of claim 127, wherein when it is determined that
the code corresponding to the first node does not contain the other declaration of the
second node, the method further comprises the steps of:

determining whether the code corresponding to the first node contains a call to a

method of the second node; and

when it is determined that the code corresponding to the first node contains the

call to the method of the second node,

displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.

-59.

10

15

20

WO 01/82068 PCT/US01/12820

129. The computer-readable medium of claim 127, wherein when it is determined that
the code corresponding to the first node does not contain the other declaration of the
second node, the method further comprises the steps of:

determining whether the code corresponding to the first node comprises a method

having a local variable definition using the second node; and

when it is determined that the code corresponding to the first node comprises a

method having the local variable definition using the second node,

displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.

130. The computer-readable medium of claim 127, wherein the first node comprises a

class.

131. The computer-readable medium of claim 127, wherein the first node comprises

an interface.

132. The computer-readable medium of claim 127, wherein the first node comprises a

package.

133. The computer-readable medium of claim 127, wherein the second node

comprises a class.

134. The computer-readable medium of claim 127, wherein the second node

comprises an interface.

135. The computer-readable medium of claim 127, wherein the second node

comprises a package.

- 60 -

10

15

20

25

WO 01/82068 PCT/US01/12820

136. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a first node
and a second node, each of the nodes having corresponding code, the second node
having a method, the method comprising the steps of:
displaying a graphical representation of the first node and the second node;
determining whether the code corresponding to the first node contains a call to
the method of the second node; and
when it is determined that the code corresponding to the first node contains the
call to the method of the second node,
determining whether the code corresponding of the first node contains
another call to the method of the second node; and
when it is determined that the code corresponding to the first node
contains the other call to the method of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.

137. The computer-readable medium of claim 136, wherein when it is determined that
the code corresponding to the first node does not contain the other call to the method of
the second node, the method further comprises the steps of:

determining whether the code corresponding to the first node comprises a method

having a local variable definition using the second node; and

when it is determined that the code corresponding to the first node comprises a

method having the local variable definition using the second node,

displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.

-61-

10

15

20

WO 01/82068 PCT/US01/12820

138. The computer-readable medium of claim 136, wherein when it is determined that
the code corresponding to the first node does not contain the other call to the method of
the second node, the method further comprises the steps of:

determining whether the code corresponding to the first node contains a

declaration of the second node; and

when it is determined that the code corresponding to the first node contains the

declaration of the second node,

displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.

139. The computer-readable medium of claim 136, wherein the first node comprises a

class.

140. The computer-readable medium of claim 136, wherein the first node comprises

an interface.

141. The computer-readable medium of claim 136, wherein the first node comprises a

package.

142. The computer-readable. medium of claim 136, wherein the second node

comprises a class.

143. The computer-readable medium of claim 136, wherein the second node

comprises an interface.

144. The computer-readable medium of claim 136, wherein the second node

comprises a package.

- 62 -

10

15

20

25

WO 01/82068 PCT/US01/12820

145. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
nodes, each of the plurality of nodes having corresponding code, the method comprising
the steps of:

receiving an indication of a first of the plurality of nodes;

receiving an indication of a second of the plurality of nodes;

determining whether the code corresponding to the first node contains a first use

and a second use of the second node; and

when it is determined that the code corresponding to the first node contains the

first use and the second use of the second node,

displaying a dependency link between the graphical representation of the

first node and the graphical representation of the second node.

146. The computer-readable medium of claim 145, wherein the first use comprises a

declaration.

147. The computer-readable medium of claim 145, wherein the first use comprises a

method call.

148. The computer-readable medium of claim 145, wherein the first use of the second
node comprises a local variable definition using the second node in a method of the first

node.

149. The computer-readable medium of claim 145, wherein the first node comprises a

class.

150. The computer-readable medium of claim 145, wherein the first node comprises

an interface.

151. The computer-readable medium of claim 145, wherein the first node comprises a

package.

152. The computer-readable medium of claim 145, wherein the second node

comprises a class.

-63 -

10

15

20

25

WO 01/82068 PCT/US01/12820

153. The computer-readable medium of claim 145, wherein the second node

comprises an interface.

154. The computer-readable medium of claim 145, wherein the second node

comprises a package.

155. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
nodes, each of the plurality of nodes having corresponding code, the method comprising
the steps of:
receiving an indication of a first of the plurality of nodes;
receiving an indication of a second of the plurality of nodes;
determining whether the code corresponding to the first node contains a
declaration of the second node; and
when it is determined that the code corresponding to the first node contains the
declaration of the second node,
determining whether the code corresponding to the first node contains
another declaration of the second node; and
when it is determined that the code corresponding to the first node
contains the other declaration of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.

156. The computer-readable medium of claim 155, wherein the first node comprises a

class.

157. The computer-readable medium of claim 155, wherein the first node comprises

an interface.

158. The computer-readable medium of claim 155, wherein the first node comprises a

package.

159. The computer-readable medium of claim 155, wherein the second node

comprises a class.

- 64 -

10

15

20

25

WO 01/82068 PCT/US01/12820

160. The computer-readable medium of claim 155, wherein the second node

comprises an interface.

161. The computer-readable medium of claim 155, wherein the second node

comprises a package.

162. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
nodes, each of the plurality of nodes having corresponding code, the method comprising
the steps of:
receiving an indication of a first of the plurality of nodes;
receiving an indication of a second of the plurality of nodes, wherein the second
node has a method;
determining whether the code corresponding to the first node contains a call to
the method of the second node; and
when it is determined that the code corresponding to the first node contains the
call to the method of the second node,
determining whether the code corresponding of the first node contains
another call to the method of the second node; and
when it is determined that the code corresponding to the first node
contains another call to the method of the second node,
displaying a dependency link between the graphical representation
of the first node and the graphical representation of the second

node.

163. The computer-readable medium of claim 162, wherein the first node comprises a

class.

164. The computer-readable medium of claim 162, wherein the first node comprises

an interface.

165. The computer-readable medium of claim 162, wherein the first node comprises a

package.

-65-

10

15

20

25

WO 01/82068 PCT/US01/12820

166. The computer-readable medium of claim 162, wherein the second node

comprises a class.

167. The computer-readable medium of claim 162, wherein the second node

comprises an interface.

168. The computer-readable medium of claim 162, wherein the second node

comprises a package.

169. A computer-readable medium containing instructions for controlling a data
processing system to perform a method, the data processing system having a plurality of
nodes, each of the plurality of nodes having corresponding code, the method comprising
the steps of:

receiving an indication of a first of the plurality of nodes;

receiving an indication of a second of the plurality of nodes;

determining whether the code corresponding to the first node contains a use of

the second node; and

when it is determined that the code corresponding to the first node contains the

use of the second node,

displaying the usage of the second node by the first node.

170. The computer-readable medium of claim 169, wherein each node comprises an

element,

171. The computer-readable medium of claim 169, wherein when it is determined that
the code corresponding to the first node contains the use of the second node, the method

further comprises the step of displaying the first node element.

172. The computer-readable medium of claim 171, wherein the method further
comprises the step of displaying the first node with the first node element and with the

usage to visually indicate that the first node contains the usage of the second node.

173. The computer-readable medium of claim 169, wherein when it is determined that
the code corresponding to the first node contains the use of the second node, the method

further comprises the step of displaying the second node element.

- 66 -

10

15

WO 01/82068 PCT/US01/12820

174. The computer-readable medium of claim 173, wherein the method further
comprises the step of displaying the second node with the second node element and with

the usage to visually indicate that the first node contains the usage of the second node.

175. The computer-readable medium of claim 169, wherein the first node comprises a

class.

176. The computer-readable medium of claim 169, wherein the first node comprises

an interface.

177. The computer-readable medium of claim 169, wherein the first node comprises a

package.

178. The computer-readable medium of claim 169, wherein the second node

comprises a class.

179. The computer-readable medium of claim 169, wherein the second node

comprises an interface.

180. The computer-readable medium of claim 169, wherein the second node

comprises a package.

-67 -

10

15

20

25

WO 01/82068 PCT/US01/12820

181. A data processing system comprising;

a secondary storage device further comprising a plurality of nodes, each of the
plurality of nodes having corresponding code;

a memory device further comprising a program that displays a graphical
representation of the plurality of nodes, that determines whether the code
corresponding to a first of the plurality of nodes contains a declaration of the
second node, and when it is determined that the code corresponding to the first
node contains the declaration of the second node, the program determines
whether the code corresponding to the first node contains another declaration of
the second node, and when it is determined that the code corresponding to the
first node contains the other declaration of the second node, the program displays
a dependency link between the graphical representation of the first node and the
graphical representation of the second node; and

a processor for running the program.

182. The data processing system of claim 181, wherein when it is determined that the
code corresponding to the first node does not contain the other declaration of the second
node, the program determines whether the code corresponding to the first node contains
a call to a method of the second node, and when it is determined that the code
corresponding to the first node contains the call to the method of the second node, the
program displays a dependency link between the graphical representation of the first

node and the graphical representation of the second node.

183. The data processing system of claim 181, wherein when it is determined that the
code corresponding to the first node doels not contain the other declaration of the second
node, the program determines whether the code corresponding to the first node
comprises a method having a local variable definition using the second node, and when it
1s determined that the code corresponding to the first node comprises a method having
the local variable definition using the second node, the program displays a dependency
link between the graphical representation of the first node and the graphical

representation of the second node.

-68 -

10

15

20

25

WO 01/82068 PCT/US01/12820

184. The data processing system of claim 181, wherein the first node comprises a

class.

185. The data processing system of claim 181, wherein the first node comprises an

interface.

186. The data processing system of claim 181, wherein the first node comprises a

package.

187. The data processing system of claim 181, wherein the second node comprises a

class.

188. The data processing system of claim 181, wherein the second node comprises an

interface.

189. The data processing system of claim 181, wherein the second node comprises a

package.

190. A data processing system comprising:

a secondary storage device further comprising a first node and a second node,
each of the nodes having corresponding code, the second node having a method,;

a memory device further comprising a program that displays a graphical
representation of the first node and the second node, that determines whether the
code corresponding to the first node contains a call to the method of the second
node, and when it is determined that the code corresponding to the first node
contains the call to the method of the second node, the program determines
whether the code corresponding of the first node contains another call to the
method of the second node, and when it is determined that the code
corresponding to the first node contains the other call to the method of the second
node, the program displays a dependency link between the graphical
representation of the first node and the graphical representation of the second
node; and

a processor for running the program.

-69 -

10

15

20

25

WO 01/82068 PCT/US01/12820

191. The data processing system of claim 190, wherein when it is determined that the
code corresponding to the first node does not contain the other call to the method of the
second node, the program determines whether the code corresponding to the first node
comprises a method having a local variable definition using the second node, and when it
is determined that the code corresponding to the first node comprises a method having
the local variable definition using the second node, the program displays a dependency
link between the graphical representation of the first node and the graphical

representation of the second node.

192. The data processing system of claim 190, wherein when it is determined that the
code corresponding to the first node does not contain the other call to the method of the

second node, the program determines whether the code corresponding to the first node

contains a declaration of the sécond node, and when it is determined that the code

corresponding to the first node contains the declaration of the second node, the program
displays a dependency link between the graphical representation of the first node and the

graphical representation of the second node.

193. The data processing system of claim 190, wherein the first node comprises a

class.

194. The data processing system of claim 190, wherein the first node comprises an

interface.

195. The data processing system of claim 190, wherein the first node comprises a

package.

196. The data processing system of claim 190, wherein the second node comprises a

class.

197. The data processing system of claim 190, wherein the second node comprises an

interface.

198. The data processing system of claim 190, wherein the second node comprises a

package.

-70 -

10

15

20

25

WO 01/82068 PCT/US01/12820

199. A data processing system comprising:

a secondary storage device further comprising a plurality of nodes, each of the
plurality of nodes having corresponding code;

a memory device further comprising a program that receives an indication of a
first of the plurality of nodes, that receives an indication of a second of the
plurality of nodes, that determines whether the code corresponding to the first
node contains a declaration of the second node, and when it is determined that the
code corresponding to the first node contains the declaration of the second node,
the program determines whether the code corresponding to the first node contains
another declaration of the second node, and when it is determined that the code
corresponding to the first node contains the other declaration of the second node,
the program displays a dependency link between the graphical representation of
the first node and the graphical representation of the second node; and

a processor for running the program.

200. The data processing system of claim 199, wherein the first node comprises a

class.

201. The data processing system of claim 199, wherein the first node comprises an

interface.

202. The data processing system of claim 199, wherein the first node comprises a

package.

203. The data processing system of claim 199, wherein the second node comprises a

class.

204. The data processing system of claim 199, wherein the second node comprises an

interface.

205. The data processing system of claim 199, wherein the second node comprises a

package.

-71 -

10

15

20

25

WO 01/82068 PCT/US01/12820

206. A data processing system comprising:

a secondary storage device further comprising a plurality of nodes, each of the
plurality of nodes having corresponding code;

a memory device further comprising a program that receives an indication of a
first of the plurality of nodes, that receives an indication of a second of the
plurality of nodes, wherein the second node has a method, that determines
whether the code corresponding to the first node contains a call to the method of
the second node, and when it is determined that the code corresponding to the
first node contains the call to the method of the second node, the program
determines whether the code corresponding of the first node contains another call
to the method of the second node, and when it is determined that the code
corresponding to the first node contains another call to the method of the second
node, the program displays a dependency link between the graphical
representation of the first node and the graphical representation of the second
node; and

a processor for running the program.

207. The data processing system of claim 206, wherein the first node coinprises a

class.

208. The data processing system of claim 206, wherein the first node comprises an

interface.

209. The data processing system of claim 206, wherein the first node comprises a

package.

210. The data processing system of claim 206, wherein the second node comprises a

class.

211. The data processing system of claim 206, wherein the second node comprises an

interface.

212. The data processing system of claim 206, wherein the second node comprises a

package.

-7 -

10

15

20

25

WO 01/82068 PCT/US01/12820

213. A data processing system comprising:

a secondary storage device further comprising a plurality of nodes, each of the
plurality of nodes having corresponding code;

a memory device further comprising a program that receives an indication of a
first of the plurality of nodes, that receives an indication of a second of the
plurality of nodes, that determines whether the code corresponding to the first
node contains a use of the second node, and when it is determined that the code
corresponding to the first node contains the use of the second node, the program
displays the usage of the second node by the first node; and

a processor for running the program.

214. The data processing system of claim 213, wherein each node comprises an

element.

215. The data processing system of claim 213, wherein when it is determined that the
code corresponding to the first node contains the use of the second node, the program

further displays the first node element.

216. The data processing system of claim 215, wherein the program further displays
the first node with the first node element and with the usage to visually indicate that the

first node contains the usage of the second node.

217. The data processing system of claim 213, wherein when it is determined that the
code corresponding to the first node contains the use of the second node, the program

further displays the second node element.

218. The data processing system of claim 217, wherein the program further displays
the second node with the second node element and with the usage to visually indicate

that the first node contains the usage of the second node.

219. The data processing system of claim 213, wherein the first node comprises a

class.

220. The data processing system of claim 213, wherein the first node comprises an

interface.

-73 -

10

15

WO 01/82068 PCT/US01/12820

221. The data processing system of claim 213, wherein the first node comprises a

package.

222. The data processing system of claim 213, wherein the second node comprises a

class.

223. The data processing system of claim 213, wherein the second node comprises an

interface.

224. The data processing system of claim 213, wherein the second node comprises a

package.

225. A system having a dependent node, a defining node, and a plurality of
dependencies between the dependent node and the defining node, the system comprising:
means for displaying a graphical representation of the dependent node;
means for displaying a graphical representation of the defining node;
means for receiving an indication to identify a dependency between the
dependent node and the defining node; and
means for representing the plurality of dependencies as a number of links that is
less than a number of the dependencies between the dependent node and the

defining node in response to receiving the indication to identify the dependency.

-74 -

WO 01/82068 . PCT/US01/12820

1/41

102

UML

100

108

Repository

106\ 110
Reverse /
Engineering Code
Module Generator

Source Code

FIG. 1
(Prior Art)

104

WO 01/82068 PCT/US01/12820

2/4%
200—\
R
| Transient
| Meta Model
i
204
206
:—; Source Code
S
:]
i Incremental |

FIG. 2

WO 01/82068 PCT/US01/12820
3/41
SCI SCI SCI SCI
Model Package Class Member
302/ 04/ FIG. 3 \\306 \308
300
402 400
;7
package Userinterface;
404——— 406
public class Bank;
408— 7" 410
public string Name; 412
/gubrfztring Assets;
M4 —
506
SCl Member
502 504 000 AT T T TTTTTT
/ / Name
SCI Package SCI Class k410
/ Userinterface Bank 506
Language = _
402 SCI Member
Java 406 __________e_ﬂ
508 Assets
0 FIG. 5

WO 01/82068

443

PCT/US01/12820

600

/

610

200

606

Data Processing System

602
/ 604
Memory Secondary /
Storage 612
Software : -
Development Project
Tool
Transient
Meta Model
608
110 Processor g

FIG.6

WO 01/82068

5/41

610

PCT/US01/12820

}‘ 708
/‘704
Modules /710 - 702
RWI 712
IDE
SCli —/////.d/
Parser Incremental Code Editor

Lk 706

*\ 20

)

N
700

FIG. 7

i

= I3 Coding Style

Ty

WO 01/82068

Title

6/41

. Access Of Static Members Through Objects - IAOSMTO - Tl —rs
Assignment To Forimal Parameters ATFP v
Complex Assignment CA v
Don't Use the Negation Operstor Fraguently DUNOF ¥
Operator '7.' May Not Be Used OBl v
Provide Incremental In For-Statement or use w... PIFS v
Replacement For Detnand Imports RFDI V]

Use Abbrevisted Assignment Operator UALD vl
-} Use 'this' Explictly To Access Class Members UTETACM [v]
< 8 Critical Errors (¥l
Avoid Hiding Inhertted Attributes AHL]
Avoid Hiding Inherited Static Methods AHISKM v
Command Query Separation alel]
Hiding Of Names HON v
Inaccessible Constructor Or Method Matches ICOMM v
Multiple Visible Declarations With Same Mame [MYDVWEN [v]
Overriding & Non-Ahatract Method With an Ab... [ONARYAM [v]
Overriding a Private Method OPM]

. || selectal || Unselectal |- ' Saveset#s.. || Losd set...

PCT/US01/12820

FIG. 8A

, Se‘-.-'erittf: @
—s800
T80z

!%(’;‘ﬁ' kd

WO 01/82068

Title

7/41

806

o[sbbrevigtion. | C

hosen.

PCT/US01/12820

© Camplex Aésignmerrt

/.v

CJCA

Don't Use the Negation Operator Frequertly

DUNOF

Operator '7:' May Not Be Used

OhNBU

< Severtty: [Normal v | ¢ “ :

Provide Incremental In For-Statement of use w...

PIFS

Replacement For Demand Imports

RFD!

- llse Ahbrevisted Assionmert Onarstor
Al selectall ||

OEEEEE

i

Unselectall || Set default

Llasn

| Load set... |

1
i

| CA - Complex Assignment

'} Wrong

17/ compound azsignment
Pi F= 3k

Ik
Tl
.

= j = la;

3 4= L15;

negsted assignment
4+ 4+ 20;

13 25) + 30;

i

; :Tip: Break statetnent into several ones.

s e 2 - . .

810

5

- | Checks for the occurrence of multiple assignments and assignments to variatles within the same
| expression. Too complex assignments should be avoided since they decrease program readability.

808

FIG. 8B

WO 01/82068

8/41

806

. / | Abbrevigtion

Complex Assignment - AT of S el

Don't Use the Negation Operstar Frequently DUNOF [¥]

Operstor '?:' May Not Be Used OMNBU =

Provide lncrerperrtal In qu-Sta’temerrt or uge w... IPIIFS E% xl
§él§tt',all | ';lghs‘e]ect;al’l 1| Set defautts - i’z\:‘.S;g_via'éet Asi I

. Sewerity:,

PCT/US01/12820

| Normal ¥}

// instead

‘| Tip: Break statement into several ones.

i | Right

'#/ instead of i *= j++;
JAE:

i =g

// instead of k

10;

j = 10;

of 1

j += 15;

1

of i = 3+ + 20:

2

li o= 9+ 20;
- // inztead

of 1 =

j = 25;

ti=3 + 30;

812

- .Cancel” ||

FIG. 8C

WO 01/82068

900

902

904

906

908

Existing
source
code?

Identify current
language

Y.

Obtain template
for current
language

A 4

Parse source
code

A 4

Create data
structure

910

Receive
event?

Y

9/41

Event =
close file?

PCT/US01/12820

Perform event

920

Update model

922

Update views

/ 914
r

Save file

916
L

Close file

End

FIG. 9

WO 01/82068 PCT/US01/12820

10/41
v (Begin)
R joo
Select file
1002
Is file new? >
i 1008
)
1004 Add symbol
to TMM
Has file
been Y
updated? 1010
Y j
Update
1006 symbol >
in TMM
Has file been Y
deleted?
1012
Ny
N Delete
symbol >
from TMM

@ FIG. 10A

WO 01/82068 PCT/US01/12820

11/41

More files?

v 1016
Any
obsolete Y
symbols in
TMM?
N v 1018
Delete J
obsolete
symbols
from TMM
End

FIG. 10B

WO 01/82068 PCT/US01/12820

12/41

(Begin)

Y

1100

_

[dentify current

language
1102
Obtain template
for current
language
‘/1}04

Create source
file in project
directory

Y

Paste template

End

FIG. 11

WO 01/82068

=

I8 Together & suntitledt. 5t inan s

PCT/US01/12820

13/41

B &P unfitledt

23 <defaut>
B, untitfed
26 untitied
S untitted
= | uniitied
& untitledt
b untitledt
uniitled
. untitied
92 untiteat
untitied
¥ untitled

B [E] packagel:

~eTR
o

B Oy

% 0 ek

v i

ed ey

UseCasel

UseCase2

i L reft .
%' .
'

L Actol

UseCase3

ClE -

FIG. 12

WO 01/82068

14/41

PCT/US01/12820

N E leel?-ﬁl’“r‘-@ EX

g %ﬂ CashSales:
] . DataiManagement

[ProvlemDomain

i [B) Userinterface

23 <defaults>

7 POS System

IMakeCashSale

=

63

AL
) - ICashSa!eDe&aI[Java

o n e meE

Sppanaingt)| -

- <<mi-detall>» «descrlpllon»

*

K e Stiommny
+ma|ngargs:3(]

L)
EijPrblilemDomain.cagllsaleDetall ————£ : ProhlemDnmam PrudumDesc =
& .

¢ z<moment-interval=»

JFrame
PQSFrame

"| progusts:Pracuctbescy
| -colNames:String[={"Item", "Name'

ProblemDoimain.CashSale [*
Rttt

JPanel |
SaleUl

‘| currencyFormat:NumberFormat=NL

.1, | menuFile:Menu=new JMenu(
"'| menuFileExitJMenultem=new Jie

currentgale:CashSale=new CashS

-ADDED_DETAILint= oo
-REMOVED DETAIL:nt=1 ’ h

-cashiers:Sitingfl=f "Jim" *Lucy" St

menuBar!:JenuBar=new JMenuE

<

menuHelp:Jidenu=new Jdenug B hd

import java.math,BigDecinal;

,Mm

* Qaurhor Togerherfofo

* flsterectype ni-detail *4
public class CashSaleDetail {

##% Thas indicaves how many of this item arfe being purchazed.
private int qty;

Vi

+ This would allow you o use unats like: each, pounds, wesw.

L

0f course, yo

1302

1 wonld have bo have the intellid

% product pricang side az well., We wen't be using this <.

. RN

FIG. 13

W nset T umio

WO 01/82068

lxu:,r’*leel?ﬁ@r"-le»wsmi

15/41

PCT/US01/12820

B &P CashSales
@ [E] DataMenagement
[§] ProblemDomain
i [B) Userinteriace
23 Userlnterface
28 urtitted
o untitted
}, CashSalesAppn
I urtitled
L, untitledt
€2 untitled2
. % untiled
F untitied
® B cashSalesApp
& B Classt
i B PosFrame :
@- E&] POsSFrame_Akoy
@ E satev)
B9 «defaut>
2% urtitled
£7 POS System

St L a7

untitledt
unititiect

@ B WekeCashSale

4T

[l united N

: "11, CashSaIesApp maln(1) [

initial
Class1

'L"]&T?I@I"&&g(

static
UlManager

getsysieanaW\ndFeeIOIaesName

“<constructor='

frame

‘cqnstru??qrb FOSFrame ;
seﬁ'.efauhc

- <constrictol
"addwindow g
"setpprogy

Jainit - -5

i getconten]”. |
kS setlayout(h

FIG. 14

WO 01/82068 PCT/US01/12820

16/41

I8 Together 4 - CashSoles
|Flle Edit- Object - Search . View | Select Options Tools', Help

Ia.ﬁl@mxuameellﬁi@[—@wnglcw"»iﬁlwl@lww

|

R |
15 &P CashSsles
® [B) DataManagement
®) Prablembomain
1 [E] Userlnterface
Userlnterface
2€ untitted
& uriited
949 cashSalesAppan | -
H, untitled
f, unttled
242 untitted2
untitled
F untitied
®] cashsslesapp
@ [Classt :
[B POSFrame b

S S .
anonymous:Toolkit

NMNU L SOF

\HH geisyAsmLookAndFeelClassNama
anager.getSvstemL okAndFeelOIassNameO) L

'S

1.2:'setqukAn&E§é‘(f |

; 1}1 3 5 Screensize - gef ; yneie‘nsl‘ze

a,

~o~1.3,4: gelDefaultToolkit

@ B PosFrame_sbou - T i ') L ;

B [salell PR e Ee
<default> . o g L
% unditied e LR
3 POS System PO PR
T untitied N RIEFIRRES
Ay urttlec : A
17 untitled °

® [E] MakeCashSale

" linitiakClass1| - .

3] '<constructors =t

&y: mainetnomyold

FIG. 15

WO 01/82068 PCT/US01/12820

17/41

= % unfiledt
@ [B) package
8 «default>
2, untitied
28 unitied
- P untitied
=] untitled
(9 untittedt
£ untitledt
untitled
"[L untitied
S untitied!
% untitied
% untitied

Vel

FIG. 16

WO 01/82068 PCT/US01/12820

18/41

¥ Yogether 4 upiitledt. g :
File Edit Object Search View Selec’c Ogtlons Tools l:ielg

I'alllil@»

B B un‘lﬂled1

5 B packeget,
2% <defautt»
", untitied
28 untiled
A untitted
2] untitied
(7 uniitiedt
2 untitledt
urtitled
*, urtitied
24 untitiedt
Qo unitiied
%7 untited

Activityl

T

EuAE%2dEe I 0 UROO

%

‘ Activity3 o

sy Activityd

B [et iy Activivd "!» §rronrsss
e MR gt

FIG. 17

WO 01/82068

19/41

PCT/US01/12820

a[n

B TP unlitied!

B8 <defauts>
B, uriitled
& unitled
o untitied
2] uriitled
7 untitlect
T untitiedt
&9 untitled
L, untitied
242 untitiedt
untitiedt
7 united

[package?:

Component2

i
i B

Interfaced’

Component3

, Interface?:

O

FIG. 18

WO 01/82068

(5 Togeﬂher Fion untmecn

20/41

PCT/US01/12820

Féz[r;u‘
B & untitlect

& [packaget®
88 «default»
B, untitied
24 uniitled
& urtitled
=] urtitled
(7 untittecit

- 8 untittedt

" @3 untitled
*IL uniitied
E untitledt

<@ untitied
‘% untitled

Camponentt

Node2

Object1
——>

£

7
Nogel

Compaonent?

Q

Interfacet

FIG. 19

WO 01/82068

PCT/US01/12820
21/41

FIG. 20

2002

public class Sale

{

/**

* @link aggregation

* @associates <{SaleDetail}>
*

private Vector InkSaleDetail;

public void addItem(Product aProd)
{

} 2008 2004 2006
public SaleDetail(String barCode)

{

Product item = Prc)duct.lookUp(barCode);

}} e

2010 \ 2012

WO 01/82068

22/41

PCT/US01/12820

i B Siava f‘

i & & CashSele 21 01
DataManagement

21 32—/5:] - DataManagement.dfPackage

21 1 0 [DataManagement.diPackage wint
&) SaleDMJava

21 34:/@ ProblemDomain

[CashSale.calcTt dfSequence

211 12 B CashSale java
21 14"—“ B CashSaleDetsiljava
21 1 6 B MakeCashSalejava
-1 B nsutfPaymertException java
i } ¢ [B) Make A Sele dfUseCase
l i+ [Make A Sale.dfUseCase.wmf
I [E] ProblembDomain dfPackege
21 1 8 E] ProblemDomain dfPackage.wmf
21 9 ProduciDesc]ava
: - B Sale Activity. dec:hwty
l 21 36 [Ssle Stete Diagram dfState
| . Ej Sele State Diagram.dfState wmf
! 21 32 [& Total of Sele.dfSequence

Usetlrterface
2 1 2 CashSalesAppjave

POSFrame java
2126

B POSFrame_AboutBox Java
2 12 8———-— B salelljava
[E] Userinterface.dfPackage
[} Userinterface.dfPackage.wmf

i . CashSales tpr
! ! [cashSalestws
i
i
i

. B defautt dfPackage
" [defautt dfPackage.wmf

/:—% IMakeCashSale java
[&] POS System diDeployment

2 1 30 [POS System.diDeployment.wmf

Userlnterface

| +CashSalesApp
+POSFrame

ProhlemBDomain &
| |+Cashsale— 2111} -
| | +CashSaleDetail—— 2[113
| +iMakeCashSale :115 .
+ProductDesc
| +ProductPric :
i +InsuffPaymentException N

.| +POSFrame About%"‘ﬁ-z"()z o

21 17 21 06"\ DataManagement

<<plug-in polnt==
interface
iakeCashSale

‘ +makeCashSaile():void

“|«<data managements=>

+SaleDM\ ,.

jpublic interface IMakeCashSale {
void nekeCashSale();

[T specialini

; NI IMakeCashSale Java:

3
ki
{
i

i

E

l

H ‘Insert H Lnl R r_CnI

WO 01/82068

PCT/US01/12820
23/41

(Begn) FIG. 22A

Y /- 2202
Receive indication of type of dependency search

Y 2203

Receive request to identify a dependency

| ot

v 2204

3

Select dependent node

> 2206
A

\

Select defining node

> 2208

A 4

\

Select element from dependent node

Does declaration in selected
element refer to any element i

2212 A

ype of dependency

search = all usages?

Does method in selected element refer
0 any element in defining node?

WO 01/82068 PCT/US01/12820

24/41

FIG. 22B

2216

Display single
dependency link from
dependent node to
deﬁninlq node

WO 01/82068 PCT/US01/12820

25/41

FIG. 23

- Dlagram detail lev

- Member Tormet
Show subpackage corrtents

Shaow beans - f.u i e
P 'Referenced Classes e o et ot 1Shcnw Name b o
I=5 DEPENGENGiEs - i oot SERIT [E 2302
l:Show between classes o o ['2304
Checks . R

[Sequerice diagramw i gy i SO : ' -Declarationa:only

DESGI ifption

If dapendemyclwckbetwee velasses:
classes ormterfaces Mo § L

O'kv‘ ‘ ” . ‘(_)ancvel o H : hpply | | Advanced == H " Help

WO 01/82068 PCT/US01/12820

26/41

FIG. 24

2400-\

i Together 4 -- EasSaIes
Fule CEdit - Object Search Yiew Selec’t Op_rhons Tools Help =

BlaEbloe|Xh U l%l[—r"@] & ll' | @ d; i ‘ w-ﬁl@:]?‘:
: (ES <dlefault> rgg : | o | T
Userlnterface o | Y “plug-in point==>

| +*CashBalesApp- intetface
| +POSFrame WiakeCashSale

.| *POSFrame AboutBox
| +satev

- +makeCashSale).void

5 am I@Ffﬂ

i
f/
i

ProblemDomain Lo eedata managements= |
+CashSale -~ ’|__pataManagement |-
+CashSaleDetail R N
|| +iMakeCashSale
4| +FroductDesc
|| +ProductPrice Lo T
4| +InsutPaymentException | mnm

B0 R

: .‘ Propertles Alt+Erter

.«;fadd Shortcut...jf S ctishitia

i * Bauthor Togetherfoftr/

SO hlic class POSFrame extends JFrfe

e B
/4 Problen Domain Dhiect ‘

“Clri+F4

CashSale currentSale = new Cg
A4 Dunnmy list of store items |

Tools o ‘ Xt

[4] Quality Assurance S »[

WSPOSFrameJava.l o Lo R » make Node .
: |‘ T S RehudNode
Byt RETEEN A =5 S Sy P

Generste-MakeFile. . | L]

[——— | i

WO 01/82068

PCT/US01/12820

;Flle Edrt iject Search Vlew Selec’t OE:_rtlnns Tools Help

;:lem&ar“r”@l«%#tu:;

Userinterface
+Cash8alesﬂp5—25—1
1| +POSFrame —=—~ o
| | +POSFrame AboutBox f—
+GaleUl 2518 | -

BN N

U S Sy

ProblemDomain
. +CashSale
1| +CashSaleDetail

+iMakeCashSalg =~
+ProductDesc
1| +ProductPrice
|| +InsufiPaymentException

S

+makeCashSale(void I

-~ gate0i
526 | - 2104 2920 ae

<<plug-in pointﬁr
interface
akeCashsale

2106

- «=data managerment>>= ‘
‘| DataManagement

“:

¥ Bauthor TogetherSofgs/

hublic class POSFrame extends JFrame {

4/ Problen Domain Object
N

S
R

P 5w5ale currentSale = new Cash$ale():
: f Dunmy list of store jtems

[y}

WPOSFrame javal

‘III "‘

EmmmL

]

WO 01/82068 PCT/US01/12820

28/41

FIG. 26

2600

18] Together 4 - CashSales
CFile Edt 'beij.'vC’t;i Search View Select Options . j_‘bols ﬂélp;
BlaBOISE L

[B8 Userinterface ™ -

iy POSFrame
'l currentSale:GashSale=new CashS |~ -
““ | products:ProductDesc[,
|-colNames:String[={"liem", "Name' |
1-ADDED DETAIL:int=0

- |-REMOVED DETAILini=1
| .cashiers:Stringll=f "Jim" "Lucy' st [»
“| currencyForrmatNumberFormat=Nc |
| menuBarl:JMenuBar=new JMenuE| -
.| menuFile:JMenu=new Jienu(.
| menuFileExit JMenultern=new Jier |
, menuHelpJienu=new Jhehug

| rnenuHelpAbout Menultem=new J

%:? ‘ : : L “{toolBarJToolBat=new JToolBar)
11 3 oo |imageHelpdmagelcon
: o LT | statusBarJLabel=new JLabel)

horderLayoutt:BorderLayout=new |
jScrollPaneDetailsJScrollPane=ne
iTableSaleDetaila:JTahle=new JTa

] v

-
-

“I'_

WO 01/82068

PCT/US01/12820
29/41

(Begin) F.G. 27A

A 4

2702

S

Receive indication of type of dependency search

A

2703

\

Receive request to identify a dependency

.
Y

y

2704
@ Select dependent node

3

> 2706
\ 4
@ | Select defining node

|

1 2708
Select element from dependent node

{

.

Does declaration in selected
glement refer to any element i

defining node?
/
2712 A ‘

ype of dependency
search = all usages?

Does method in selected element refer
o any element in defining node?

WO 01/82068

PCT/US01/12820

/-2716

Does second declaration in
selected element refer to any
element in defining node?

ype of dependency

earch = all usages?

2720

Does second method in selected
element refer to any element in

FIG. 27B

definining node? 2792
\
Display dependency
2794 link from dep'er!dent
/ node to defining
More elements in node

dependent node?

ore dependen
nodes?

WO 01/82068 PCT/US01/12820
31/41

FIG. 28A

2802
Receive indication of a dependency link from a /—
dependent node to a defining node

!

2804
Receive indication of a type of dependency /—
search

v

Receive request to display dependencies / 2806
reflected by the dependency link

-
A

Select dependent element from dependent node

B
y 2810
:; /

Select declaration from dependent element

2812
o
Does selected declaration use a N
defining element in the defining
node?
Y
Record usage of defining element in selected |~ 2814

declaration

Y 2816
Display indication that dependent element uses /-
defining element

y 2818
Display usage

A

Y

Y Any more
declarations?

WO 01/82068 PCT/US01/12820
32/41

FIG. 28B

Type of dependency
search = all usages?

2824

Any more dependent
elements?

WO 01/82068 PCT/US01/12820
33/41

FIG. 28C

»
»

4 /— 2826
Select method in dependent element

Y
Select a defining element from defining |~
node

2828

2830

Does selected method
refer to defining element?

2832
Record usage of defining element in /_
selected method

Y

2834
Display indication that dependent /
elements uses defining element

Display usage

WO 01/82068 PCT/US01/12820
34/41

FIG. 29

2900

{[& Together 4 -- CashSales
iFlle Edrt Object Search ‘v‘lew Select O;:_rtlons Tools Help

HED|S e
; { EE ddefauﬁ, [SE '

v Userlnterface
+Cash8aleSApp/
* |+PosFrame—=2908 %
. | +POSFrame AboutBox———
+8aleU——— 2912

’n!

cMplug-in point>:~
interface
iakeCashsale

+tnakeCashSaley) void

.‘ ProperﬂeQ Lo B.IHEn’:er

CDelete Delgte |

'Z: ———‘I ’;Scmll to Source : 2928 I

Scmll 1o DE"‘tII‘la“tIOI'I

*-,2 T4 problembl. ;;—'f;m =<data managements»
it MwCashSale = Datallanagement

+SaleDM

SM+CaghSaleDel. T
||+ MakeCashSale
rProductDesc
+ProductPrice
J~+InsufiPaymentException

ooz

* 7 2926
public class Salelll extends JPanel
{

. \@ivate CashSale theCashSaly
[Y
: 2924

|4
: | salet Javal I » . : a
. .‘Dependenoy 1|nP13 T ! |]”|L 3 ” '!"35& ” L 14 i Col: 1 i’

Tl

WO 01/82068 PCT/US01/12820

/P'roductDesc[] products;

35/41

FIG. 30

3002

public class POSFrame extends JFrame {

// Problem Domain Object

CashSale currentSale = new CashSale();
// Dummy list of store items

3004

7 // Sale Detail Table Column Header

3006

3008<

3012

private final String[] colNames = {"Item", "Name", "Unit", "Qty", "Price"};
private final static int ADDED_DETAIL = 0;

private final static int REMOVED_DETAIL = 1;

// Dummy list of cashiers

private final static String[] cashiers =

{

"Jim","Lucy","Steve","Sarah","Jon","Buddy","Bettie","Sue","John","Ted" } :

NumberFormat currencyFormat = NumberFormat.getCurrencyInstance();

3014

‘ 3010 " 3016
/NG | N
(" private void setUpProducts() {

/products = new ProductDesc[10]

products[0] = new ProductDesc("1", "Pepsi 24-pack", "Pepsi 24", new BigDecimal(3.99));
products[1] = new ProductDesc("2", "Lays Ridges", "Lays", new BigDecimal(1.99));
products[2] = new ProductDesc("3", "Vienna Sausages", "Vienna Sausages",

new BigDecimal(2.99));

products[3] = new ProductDesc("4", "White Popcorn", "White Popcorn",

< new BigDecimal(1.30));

products[4] = new ProductDesc("5", "Soy Burgers", "Soy Burger", new BigDecimal(5.99)
products[5] = new ProductDesc("6", "Cat Chow", "Cat Chow", new BigDecimal(9.99));

products[6] = new ProductDesc("7", "Puppy Chow", "Puppy Chow", new BigDecimal(12.
products[7] = new ProductDesc("8", "Finch Food", "Finch Food", new BigDecimal(1.59))
products[8] = new ProductDesc("9", "Rice Krispies", "Rice Krispies", new BigDecimal(3..
\I:Eoducts[9] = new ProductDesc("10", "Fruit Loops", "Fruit Loops", new BigDecimal(3.49

NS

WO 01/82068 PCT/US01/12820
36/41

FIG. 31

/*#* Use it if you need to identify Products as specific types. */
private int type;

3102

public class ProductDesc {

/** Product name. For example: Goetze's Caramel Cremes */
private String name;

/¥* This is the unique identifying number. Something like a UPC for retail
products. */
private String itemNumber;

/** Default price. */
private BigDecimal defaultPrice;

/** Some prose describing the product in all its glory. */
© private String description;

/**
*List of prices. If this list has elements, then they are checked. Otherwise,
the default price is used. <p>
* @supplierCardinality 1..*
* @associates ProductPrice
*/
private Vector priceObjects;

/¥
* Constructors
® */

3104 /** Constructor requires all parameters. Type is defaulted to 0 since we

aren't using it. */
\-public ProductDesc(String anltemNum, String aDesc, String aName,
BigDecimal aPrice) {
type = 0; // not currently used
itemNumber = anltemNum;
description = aDesc;
name = aName;
defaultPrice = aPrice;
priceObjects =new Vector();
} // END ProductDesc(...)

WO 01/82068

3212

37/41

FIG. 32

3200

Togelher 4 - CashSales]
ﬂle it Dbt

Search Vlew Selecrt Ogtlons Tools Help E

PCT/US01/12820

EW%ﬂEfBl;
r B8 <defaut> [)
lr‘*: . Userinterface

- | +CashSalesApp
i | +POSFrame
+POSFrame AboutBox
+SaleUl

ProblemDomain
+CashSale |
+Cash&aleDetail)

IQ:' e IE’%’) I@ [:limb‘]D?:E &=

<<plug-in point==
intetface
ifakeCashSale

| +makeCashSale):void

.| DataManagement |

—|<<data management== |’

+GaleDM

v || +iMakeCashSale

o]

= El Userinterface.SaleUl

N - B B problemDomain.CashSele

i " privete CashSale theCashSale
serinterface POSFrame ¢

. ProblemDomsin Productbess——— 3204

ProductDesc{] products= 06
ProblemDomain.CashSale——— 3208
CashSalz currentSsle 3210

(|, Display claﬁs)éfeézcyausing g@lé\pehdency first |

| Packages: Userinterface and ProblemDomain (declarations only) {

=—Tn

et L 1L a1],

WO 01/82068

3300

Togethel

FIG.

4 - CashSales

PCT/US01/12820
38/41

33

Userlnterfacé) IMakeCashsél‘e
| *CashSalesApp .| +makeCashsateqvoid
+ | +POSFrame
\.. . | *POSFrame AboutBox
\- o/ +saleu
ProhlemDomain Ji/ ’

By
=

m
m- [

P

m- - -~

o nE

g
[IE

Userinterface.SaleUl
ProblemDamain.CashSale

privete CashSale theCashSale

UserIrtertace POSFrame. TakleDatalModel
ProblemDomain.ProductDesc

ProductDese product

ProblembDomain.CashSaleDetail i
(CashSaleDetailcurrentSale getDetailList().elemert At{row..

CazhSaleDetail detail

ProblemDomain.CashSale

CashBaleDetall detsi

Userlnterface POSFrame 31 02
ProblemDomsin.Producttese 3104

products = new PraductDesc[tg] 3302
PraductDesc]] producis?) 1 06
ProduciDest product

PracuctDeas: prod

2 [rroblembomein. CashSaleDetail]
: (CashSaleDetail)currentSale getDetailList().elementAt(row. . : ;

CashSaleDetall detall
CazhBalzDetail debai

=1 ProblemDomain.CashSale

CashSsale currertSale
oz

‘EjMe

e

i ‘)Pacl'ages Userinterface. and PrablemDormain (all usages) [

lll 1L

{=0] 5| —

WO 01/82068 PCT/US01/12820
39/41

FIG. 34

3400

I Together 4 - Eashﬁales
: |Ie:.§drt gi.;ff;c.‘? Search \-'|ew Selact Oghons Tools Help

TEEERD %L O
3 [&8 =default- YEE

’i‘:i |6‘E?|@|lﬁbl‘>ﬁ

___.I ‘ " e.:plug-in point#
S SR — intetface
. 2102-= | Usernterface || mskeCashSale
St N| +CashBalesApp ¢
| +POSFrame AboutBox
+Salel]

+malkeCashSale() void

-lz==data management==

Datallanagerent
+SaleDM

ProblemDomain
|-| +cashsale

- || +CashSaleDetail

e +iMakeCashSale

- M| | +ProductDesc

[f] +ProductPrice

- || +InsuffPaymentException :
B JFrame
(e | ; POSFrame

o

S ‘| currentSale:CashBale=new Cashs

products:ProductDesc(]

1-colNames:String[={"lkem", "Narmg’

|-ADDED DETAIL:int=0

-REMOVED DETAIL:int=1

| -cashiers:SiringI={ "Jim" "L ucy" "Sh |

| currencyFormat:NumberFormat=Nt
: ‘pmll:

B

[E B Userinterface SaleLl e S
: = ProblemDomain. CashSale o Digplay classes causing a dependency firg

: 3406
private CashSale theCashSale

Bl Messages | EJB Deployment. ackages: DataManiapement ard ProblemDornain (all usages) |
Packages Usarlrrterface and PrnblemDomaln (all usagesﬂ A ‘

l — JllHH D nsent 1 tnzs |[carsr)

i

WO 01/82068 PCT/US01/12820

40/41

FIG. 35

3500

" , Together 4 - CashSales
 Ble Edt Obect Search View Seol Oplons Todks Help . ot S ol
BEEDIS XD HBDEABS|E¢C L WD Sk

[BB <defautt> I'e3

/2108
<<plug-in point==
interface
iakeCashSale

Userinterface 4

Y +CashSalesApp

- +POSFrame

= +POSFrame AhoutBox
| +SaleUl

| +malkeCashSale).void

ProblemDomain
+CashSale . <<data management==} 5 &
+CashSaleDetail DataManagement :
-} +IMakeCashSale 2 +SaleDM

S ~ || +ProductDesc
it]| +ProductPrice
I *InsuffPaymentException

rk.flii'.liz

= B Userlnterface SaleUl
) ProblemDomain.CashSale

| private CashSale theCashSale
|| Bl B Userlnterface POSFrame TableDatahodel

B ProblemDotmain ProductDesc
! [ProductDese product
5 EE ProblemDomain CashSaleDetail

[ErMesseage Interta

 Packages: Usetinterface and ProblemDomain (all usages)]

BEC__ Jmmmi e][=we Ceai]

WO 01/82068

3600

; . Tugether 4 - Cashﬁales

EFIIE Edlit ObJSCt Search vlew Select Oghons Tools Help

41/41

FIG. 36

PCT/US01/12820

l‘<hﬁ$ i‘)&ﬁ?@-—ﬁwﬁ

) Egg <dotouit r

ProblemDomain

|| +Cash8ale
+CashSaleDetail
|| +IMakeCashbale
= 4| +PraductDest

i " || +ProductPrice

+|nsuffPaymentException

-Userinterface

| +CashgalesApp

| +POSFrame

“| +POSFrame AboutBox

R] +8aleul

+rnakeCashSale]) void

:? +SaleDM

L 2108

c<<plug-m pcuntw
intetrface
WakeCashSale

=zzdata management==| .
DataManagement

18604

ShowDependencies module: started
Na source code fragments causing this dependency link were found. Far example, if you create th

ShowDependencies module: finishad

w

4]

[

11 By Messages I

i]_[?v_\:’i’h;é‘_e@ H}; Ly 18 ”', Col: 1»’J‘E

BT

INTERNATIONAL SEARCH REPORT International application No.

PCT/US01/12820
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) . GO6F 9/445
US CL SN AV/K]

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 717/3; 703/13; 717/11

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Internet - www.google.com & www.hotbot.com

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y Unified Modeling Language (UML) UML BOOCH & OMT 1-225
Quick Reference for Rational Rose 4.0.

Y Ratjonal Rose Corporation, Rational Rose Release 4.0 (November 1996) "Using Rational 1-225
Rose 4.0" Chapters 3-11, pages 11-207.

Y . Object-Oriented Software Engineering A Use case Driven Approach (1996) Jacobson, 1-225
Ivar, Part I, Chapters 1-5, Part II Chapters 6-12, Part III Chapters 13-16, pages 1-500.

Y UML Distilled Applying the Standard Object Modeling Language 1997 Martin Fowler with | 1-225
Kendall Scott, Chapters 1-11, pages 1-73.

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
\ “X" document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L” document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “yr document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
“O” document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P" document published prior to the international filing date but later than the “&” document member of the same patent family

priority date claimed

Date of the actual compl:tion of the international search Date of mailing of the international search report

6 JUL 2001

s

May 25, 2001 (05.21.2001)

Name and mailing address of the ISA/US Authorized officer
Commissioner of Patents and Trademarks
Box PCT Mark R. Powell YR d , A
Washington, D.C. 20231 % ﬁ w'%‘c‘:@
Facsimile No. (703)305-3230 Telephone No. (703) 308-3900

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US01/12820

Continuation of B. FIELDS SEARCHED Item3:

WEST - US Patents Full-Text Database, US Pre-Grant Publication Full-Text Database, JPO Abstracts Database, EPO Abstracts
Database, Derwent World Patents Index, IBM Technical Disclosure Bulletins, Internet (www.google.com www.hotbot.com) terms:
version control system, language-neutral, platform agnostic, class diagram, use case diagram, etc., etc., etc. ...

Form PCT/ISA/210 (extra sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

