## WORLD INTELLECTUAL PROPERTY ORGANIZATION #### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) | (51) | International Patent Classification 5: | |------|----------------------------------------| | | C12N 15/31, 15/32, 15/82, A01H 5/00, | | | A01N 63/00, C12P 1/04, C12N 1/21 // | | | C12Q 1/68, C12P 21/08, (C12P 1/04, | | | C12R 1:07) (C12N 1/21, C12R 1:07, | | | 1:19) | (11) International Publication Number: WO 94/21795 (43) International Publication Date: 29 September 1994 (29.09.94) (21) International Application Number: PCT/US94/03131 A1 (22) International Filing Date: 23 March 1994 (23.03.94) (30) Priority Data: 08/037,057 25 March 1993 (25.03.93) US (60) Parent Application or Grant (63) Related by Continuation US Filed on 08/037,057 (CIP) 25 March 1993 (25.03.93) (71) Applicant (for all designated States except US): CIBA-GEIGY AG [CH/CH]; Klybeckstrasse 41, CH-4002 Basle (CH). (72) Inventors; and (75) Inventors/Applicants (for US only): WARREN, Gregory, W. [US/US]; 324 Bond Lake Drive, Cary, NC 27513 (US). KOZIEL, Michael, G. [US/US]; 509 Carolyn Court, Cary, NC 27511 (US). MULLINS, Martha, A. [US/US]; 104 Countrybrook Lane, Youngsville, NC 27596 (US). NYE, Gordon, J. [US/US]; 1001 Bray Court, Apex, NC 27502 (US). DESAI, Nalini [US/US]; 107 Silverwood Lane, Cary, NC 27511 (US). CARR, Brian [US/US]; 1100D Lady's Slipper Court, Raleigh, NC 27606 (US). KOSTICHKA, N., Kristy [-/US]; 5017 Wineberry Drive, Durham, NC 27713 (74) Agent: ELMER, James, Scott; 7 Skyline Drive, Hawthorne, NY 10532 (US). (81) Designated States: AU, BB, BG, BR, BY, CA, CN, CZ, FI, GE, HU, JP, KG, KP, KR, KZ, LK, LV, MD, MG, MN, MW, NO, NZ, PL, RO, RU, SD, SI, SK, TJ, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). #### Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (54) Title: NOVEL PESTICIDAL PROTEINS AND STRAINS (57) Abstract The present invention is drawn to pesticidal strains and proteins. Bacillus strains which are capable of producing pesticidal proteins and auxiliary proteins during vegetative growth are provided. Also provided are the purified proteins, nucleotide sequences encoding the proteins and methods for using the strains, proteins and genes for controlling pests. #### FOR THE PURPOSES OF INFORMATION ONLY Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT. | AT | Austria | GB | United Kingdom | MR | Mauritania | |----|--------------------------|----|------------------------------|----|--------------------------| | ΑÜ | Australia | GE | Georgia | MW | Malawi | | BB | Barbados | GN | Guinea | NE | Niger | | BE | Belgium | GR | Greece | NL | Netherlands | | BF | Burkina Faso | HU | Hungary | NO | Norway | | BG | Bulgaria | Œ | Ireland | NZ | New Zealand | | BJ | Benin | П | Italy | PL | Poland | | BR | Brazil | JP | Japan | PT | Portugal | | BY | Belarus | KE | Kenya | RO | Romania | | CA | Canada | KG | Kyrgystan | RU | Russian Federation | | CF | Central African Republic | KP | Democratic People's Republic | SD | Sudan | | CG | Congo | | of Korea | SE | Sweden | | CH | Switzerland | KR | Republic of Korea | SI | Slovenia | | CI | Côte d'Ivoire | KZ | Kazakhstan | SK | Slovakia | | CM | Cameroon | LI | Liechtenstein | SN | Senegal | | CN | China | LK | Sri Lanka | TD | Chad | | CS | Czechoslovakia | LU | Luxembourg | TG | Togo | | CZ | Czech Republic | LV | Latvia | TJ | Tajikistan | | DE | Germany | MC | Monaco | TT | Trinidad and Tobago | | DK | Denmark | MD | Republic of Moldova | UA | Ukraine | | ES | Spain | MG | Madagascar | US | United States of America | | FI | Finland | ML | Mali | UZ | Uzbekistan | | FR | France | MN | Mongolia | VN | Vict Nam | | GA | Gabon | | | | | #### **NOVEL PESTICIDAL PROTEINS AND STRAINS** 5 The present invention is a continuation-in-part application of U.S. application serial number 08/037,057 filed March 25, 1993, the disclosures of which are herein incorporated by reference. 10 #### FIELD OF THE INVENTION The present invention is drawn to methods and compositions for controlling plant and non-plant pests. 15 20 #### **BACKGROUND OF THE INVENTION** Insect pests are a major factor in the loss of the world's commercially important agricultural crops. Broad spectrum chemical pesticides have been used extensively to control or eradicate pests of agricultural importance. There is, however, substantial interest in developing effective alternative pesticides. Microbial pesticides have played an important role as alternatives to chemical pest control. The most extensively used microbial product is based on the bacterium <u>Bacillus</u> thuringiensis (Bt). Bt is a gram-positive spore forming <u>Bacillus</u> which produces an insecticidal crystal protein (ICP) during sporulation. 25 Numerous varieties of Bt are known that produce more than 25 different but related ICP's. The ICP's made by Bt are toxic to larvae of certain insects in the orders <u>Lepidoptera</u>, <u>Diptera</u> and <u>Coleoptera</u>. In general, when the ICP is ingested by a susceptible insect the crystal is solubilized and transformed into a toxic moiety by the insect gut proteases. None of the ICP's active against coleopteran larvae have demonstrated significant effects on the genus <u>Diabrotica</u> particularly <u>Diabrotica</u> <u>virgifera</u> <u>virgifera</u>, the western corn rootworm (WCRW) or <u>Diabrotica</u> <u>longicornis</u> <u>barberi</u>, the northern corn rootworm. 5 10 20 Bt is closely related to <u>Bacillus cereus</u> (Bc). A major distinguishing characteristic is the lack of a parasporal crystal in Bc. Bc is a widely distributed bacterium that is commonly found in soil and has been isolated from a variety of foods and drugs. The organism has been implicated in the spoilage of food. Although Bt has been very useful in controlling insect pests, there is a need to expand the number of potential biological control agents. #### SUMMARY OF THE INVENTION The present invention is drawn to compositions and methods for controlling plant and non-plant pests. Particularly, new pesticidal proteins are disclosed which are isolatable from the vegetative growth stage of <u>Bacillus</u>. <u>Bacillus</u> strains, proteins, and genes encoding the proteins are provided. The methods and compositions of the invention may be used in a variety of systems for controlling plant and non-plant pests. #### **DETAILED DESCRIPTION OF THE INVENTION** Compositions and methods for controlling plant pests are provided. In particular, novel pesticidal proteins are provided which are produced during vegetative growth of <u>Bacillus</u> strains. The proteins are useful as pesticidal agents. 5 10 15 The present invention recognizes that pesticidal proteins are produced during vegetative growth of <u>Bacillus</u> strains. For the purpose of the present invention vegetative growth is defined as that period of time before the onset of sporulation. In the case of Bt, this vegetative growth occurs before production of ICPs. Genes encoding such proteins can be isolated, cloned and transformed into various delivery vehicles for use in pest management programs. For purposes of the present invention, pests include but are not limited to insects, fungi, bacteria, nematodes, mites, ticks, protozoan pathogens, animal-parasitic liver flukes, and the like. Insect pests include insects selected from the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthroptera, Thysanoptera, Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc. Tables 1 - 10 gives a list of pests associated with major crop plants and pests of human and veterinary importance. Such pests are included within the scope of the present invention. # TABLE 1 Lepidoptera (Butterflies and Moths) | 5 | | | | |----|--------------------------------------------|------------|---------------------------------------------| | | Maize | | Sunflower | | | Ostrinia nubilalis, European corn borer | 35 | Suleima helianthana, sunflower bud moth | | | Agrotis ipsilon, black cutworm | | Homoeosoma electellum, sunflower moth | | | Helicoverpa zea, com earworm | | | | 10 | Spodoptera frugiperda, fall armyworm | | Cotton | | | Diatraea grandiosella, southwestern corn | | Heliothis virescens, cotton boll worm | | | borer | 40 | Helicoverpa zea, cotton bollworm | | | Elasmopalpus lignosellus, lesser cornstalk | | Spodoptera exigua, beet armyworm | | | borer | | Pectinophora gossypiella, pink bollworm | | 15 | Diatraea saccharalis, sugarcane borer | | | | | | | Rice | | | Sorghum | 45 | Diatraea saccharalis, sugarcane borer | | | Chilo partellus, sorghum borer | | Spodoptera frugiperda, fall armyworm | | | Spodoptera frugiperda, fall armyworm | | Helicoverpa zea, com earworm | | 20 | Helicoverpa zea, com earworm | | | | | Elasmopalpus lignosellus, lesser cornstalk | | Soybean | | | borer | 50 | Pseudoplusia includens, soybean looper | | | Feltia subterranea, granulate cutworm | | Anticarsia gemmatalis, velvetbean | | | | | caterpillar | | 25 | Wheat | | <u>Plathypena scabra</u> , green cloverworm | | | Pseudaletia unipunctata, army worm | <b>-</b> - | Ostrinia nubilalis, European corn borer | | | Spodoptera frugiperda, fall armyworm | 55 | Agrotis ipsilon, black cutworm | | | Elasmopalpus lignosellus, lesser cornstalk | | Spodoptera exigua, beet armyworm | | | borer | | Heliothis virescens, cotton boll worm | | 30 | Agrotis orthogonia, pale western cutworm | | Helicoverpa zea, cotton bollworm | | | Elasmopalpus lignosellus, lesser cornstalk | <b>6</b> 0 | Darlan | | | borer | 60 | Barley | | | | | Ostrinia nubilalis, European corn borer | | | | | Agrotis ipsilon, black cutworm | # TABLE 2 # Coleoptera (Beetles) | | Maize | | |----|--------|------------------------------------------------------------------------------------------------------| | 5 | | Diabrotica virgifera virgifera, western corn rootworm | | | | <u>Diabrotica longicornis barberi</u> , northern corn rootworm | | | | <u>Diabrotica undecimpunctata howardi</u> , southern corn rootworm <u>Melanotus spp.</u> , wireworms | | | | Cyclocephala borealis, northern masked chafer (white grub) | | 10 | | Cyclocephala immaculata, southern masked chafer (white grub) | | | | Popillia japonica, Japanese beetle | | | | Chaetocnema pulicaria, corn flea beetle | | | | Sphenophorus maidis, maize billbug | | 15 | Sorghu | um | | | | Phyllophaga crinita, white grub | | | | Eleodes, Conoderus, and Aeolus spp., wireworms | | | | Oulema melanopus, cereal leaf beetle Chaetocnema pulicaria, corn flea beetle | | 20 | | Sphenophorus maidis, maize billbug | | | | | | | Wheat | Oulema malamanna annalla Charda | | | | Oulema melanopus, cereal leaf beetle Hypera punctata, clover leaf weevil | | 25 | | <u>Diabrotica undecimpunctata howardi</u> , southern corn rootworm | | | | | | | Sunflo | · · · | | | | Zygogramma exclamationis, sunflower beetle Bothyrus gibbosus, carrot beetle | | 30 | | <u>Domyrus grobosus</u> , currot occite | | | Cotton | • | | | | Anthonomus grandis, boll weevil | | | Rice | | | 35 | | Colaspis brunnea, grape colaspis | | | | <u>Lissorhoptrus</u> oryzophilus, rice water weevil | | | | Sitophilus oryzae, rice weevil | | | Soybea | n | | 10 | • | Epilachna varivestis, Mexican bean beetle | #### TABLE 3 #### Homoptera (Whiteflies, Aphids etc..) 5 Maize Rhopalosiphum maidis, corn leaf aphid Anuraphis maidiradicis, corn root aphid Sorghum 10 Rhopalosiphum maidis, corn leaf aphid Sipha flava, yellow sugarcane aphid Wheat Russian wheat aphid 15 <u>Schizaphis graminum</u>, greenbug Macrosiphum avenae, English grain aphid Cotton Aphis gossypii, cotton aphid 20 <u>Pseudatomoscelis seriatus</u>, cotton fleahopper <u>Trialeurodes abutilonea</u>, bandedwinged whitefly Rice Nephotettix nigropictus, rice leafhopper 25 Soybean Myzus persicae, green peach aphid Empoasca fabae, potato leafhopper 30 Barley Schizaphis graminum, greenbug Oil Seed Rape Brevicoryne brassicae, cabbage aphid #### TABLE 4 # Hemiptera (Bugs) | 5 | Maize | Blissus leucopterus leucopterus, chinch bug | |----|--------|---------------------------------------------------------------------------------| | 10 | Sorghu | um <u>Blissus leucopterus</u> <u>leucopterus</u> , chinch bug | | 10 | Cotton | Lygus lineolaris, tarnished plant bug | | 15 | Rice | Blissus leucopterus leucopterus, chinch bug Acrosternum hilare, green stink bug | | | Soybea | n<br>Acrosternum hilare, green stink bug | \_\_\_\_ Barley 20 Blissus leucopterus leucopterus, chinch bug Acrosternum hilare, green stink bug Euschistus servus, brown stink bug #### TABLE 5 # Orthoptera (Grasshoppers, Crickets, and Cockroaches) #### Maize 5 <u>Melanoplus femurrubrum</u>, redlegged grasshopper <u>Melanoplus sanguinipes</u>, migratory grasshopper #### Wheat 10 15 20 <u>Melanoplus</u> <u>femurrubrum</u>, redlegged grasshopper <u>Melanoplus</u> <u>differentialis</u>, differential grasshopper <u>Melanoplus</u> <u>sanguinipes</u>, migratory grasshopper #### Cotton Melanoplus femurrubrum, redlegged grasshopper Melanoplus differentialis, differential grasshopper #### Soybean Melanoplus femurrubrum, redlegged grasshopper Melanoplus differentialis, differential grasshopper #### Structural/Household Periplaneta americana, American cockroach Blattella germanica, German cockroach Blatta orientalis, oriental cockroach #### TABLE 6 #### Diptera (Flies and Mosquitoes) Maize 5 <u>Hylemya platura</u>, seedcorn maggot <u>Agromyza parvicornis</u>, corn blotch leafminer Sorghum Contarinia sorghicola, sorghum midge 10 Wheat Mayetiola destructor, Hessian fly Sitodiplosis mosellana, wheat midge Meromyza americana, wheat stem maggot Hylemya coarctata, wheat bulb fly 15 25 30 Sunflower Neolasioptera murtfeldtiana, sunflower seed midge 20 Soybean Hylemya platura, seedcorn maggot Barley <u>Hylemya platura</u>, seedcorn maggot <u>Mayetiola destructor</u>, Hessian fly Insects attacking humans and animals and disease carriers Aedes aegypti, yellowfever mosquito Aedes albopictus, forest day mosquito Phlebotomus papatasii, sand fly Musca domestica, house fly Tabanus atratus, black horse fly Cochliomyia hominivorax, screwworm fly 35 #### TABLE 7 ### Thysanoptera (Thrips) Maize 5 <u>Anaphothrips obscurus, grass thrips</u> Wheat Frankliniella fusca, tobacco thrips 10 Cotton <u>Thrips tabaci</u>, onion thrips <u>Frankliniella fusca</u>, tobacco thrips Soybean 15 <u>Sericothrips variabilis</u>, soybean thrips <u>Thrips tabaci</u>, onion thrips 20 #### **TABLE 8** # Hymenoptera (Sawflies, Ants, Wasps, etc.) Maize 25 <u>Solenopsis milesta</u>, thief ant Wheat Cephus cinctus, wheat stem sawfly #### TABLE 9 #### Other Orders and Representative Species Dermaptera (Earwigs) 5 <u>Forficula auricularia</u>, European earwig Isoptera (Termites) Reticulitermes flavipes, eastern subterranean termite 10 Mallophaga (Chewing Lice) <u>Cuclotogaster heterographa</u>, chicken head louse <u>Bovicola bovis</u>, cattle biting louse Anoplura (Sucking Lice) 15 <u>Pediculus humanus</u>, head and body louse Siphonaptera (Fleas) Ctenocephalides felis, cat flea # TABLE 10 # Acari (Mites and Ticks) | 5 | Maize <u>Tetranychus urticae</u> , twospotted spider mite | |----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 10 | Sorghum <u>Tetranychus cinnabarinus</u> , carmine spider mite <u>Tetranychus urticae</u> , twospotted spider mite | | 10 | Wheat <u>Aceria tulipae</u> , wheat curl mite | | 15 | Cotton <u>Tetranychus cinnabarinus</u> , carmine spider mite <u>Tetranychus urticae</u> , twospotted spider mite | | 20 | Soybean <u>Tetranychus turkestani</u> , strawberry spider mite <u>Tetranychus urticae</u> , twospotted spider mite | | | Barley <u>Petrobia latens</u> , brown wheat mite | | 25 | Important human and animal <u>Acari</u> <u>Demacentor variabilis</u> , American dog tick <u>Argas persicus</u> , fowl tick <u>Dermatophagoides farinae</u> , American house dust mite <u>Dermatophagoides pteronyssinus</u> , European house dust mite | 30 Now that it has been recognized that pesticidal proteins can be isolated from the vegetative growth phase of <u>Bacillus</u>, other strains can be isolated by standard techniques and tested for activity against particular plant and non-plant pests. Generally <u>Bacillus</u> strains can be isolated from any environmental sample, including soil, plant, insect, grain elevator dust, and other sample material, etc., by methods known in the art. See, for example, Travers et al. (1987) Appl. Environ. Microbiol. 53:1263-1266; Saleh et al. (1969) Can J. Microbiol. 15:1101-1104; DeLucca et al. (1981) Can J. Microbiol. 27:865-870; and Norris, et al. (1981) "The genera <u>Bacillus</u> and <u>Sporolactobacillus</u>," In Starr et al. (eds.), The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, Vol. II, Springer-Verlog Berlin Heidelberg. After isolation, strains can be tested for pesticidal activity during vegetative growth. In this manner, new pesticidal proteins and strains can be identified. 5 10 Such <u>Bacillus</u> microorganisms which find use in the invention include <u>Bacillus</u> cereus and <u>Bacillus</u> thuringiensis, as well as those <u>Bacillus</u> species listed in Table 11. # TABLE 11 # List of Bacillus species | 5 | Morphological Group 1 <u>B. megaterium</u> <u>B. cereus*</u> <u>B. cereus var. mycoides</u> <u>B. thuringiensis*</u> <u>B. licheniformis</u> | 35 | Unassigned Strains Subgroup A B. apiarus* B. filicolonicus B. thiaminolyticus B. alcalophilus | |----|----------------------------------------------------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------| | 10 | B. subtilis* B. pumilus B. firmus* B. coagulans | 40 | Subgroup B <u>B. cirroflagellosus</u> <u>B. chitinosporus</u> <u>B. lentus</u> | | 15 | Morphological Group 2 | | | | | B. polymyxa | 45 | Subgroup C | | | B. macerans | 45 | B. badius | | | B. circulans | | B. aneurinolyticus | | 20 | B. stearothermophilus | | <u>B. macroides</u><br><u>B. freundenreichii</u> | | 20 | B. alvei* B. laterosporus* | | B. meandemerenn | | | B. brevis | 50 | Subgroup D | | | B. pulvifaciens | 50 | B. pantothenticus | | | B. popilliae* | | B. epiphytus | | 25 | B. lentimorbus* | | | | | B. larvae* | | Subgroup E1 | | | | 55 | B. aminovorans | | | Morphological Group 3 | | B. globisporus | | | B. sphaericus* | | B. insolitus | | 30 | B. pasteurii | | B. psychrophilus | | | | 60 | Subgroup E2 <u>B. psychrosaccharolyticus</u> <u>B. macquariensis</u> | <sup>\*=</sup>Those Bacillus strains that have been previously found in insects 65 Grouping according to Parry, J.M. et al. (1983) Color Atlas of <u>Bacillus</u> species, Wolfe Medical Publications, London. 5 10 15 20 25 In accordance with the present invention, the pesticidal proteins produced during vegetative growth can be isolated from <u>Bacillus</u>. In one embodiment, insecticidal proteins produced during vegetative growth, herein after referred to as VIP's (Vegetative Insecticidal Protein), can be isolated. Methods for protein isolation are known in the art. Generally, proteins can be purified by conventional chromatography, including gel-filtration, ion-exchange, and immunoaffinity chromatography, by high-performance liquid chromatography, such as reversed-phase high-performance liquid chromatography, ion-exchange high-performance liquid chromatography, size-exclusion high-performance liquid chromatography, high-performance chromatofocusing and hydrophobic interaction chromatography, etc., by electrophoretic separation, such as one-dimensional gel electrophoresis, two-dimensional gel electrophoresis, etc. Such methods are known in the art. See for example <u>Current Protocols in Molecular</u> Biology, Vols. 1 and 2, Ausubel et al. (eds.), John Wiley & Sons, NY (1988). Additionally, antibodies can be prepared against substantially pure preparations of the protein. See, for example, Radka et al. (1983) J. Immunol. 128:2804; and Radka et al. (1984) Immunogenetics 19:63. Any combination of methods may be utilized to purify protein having pesticidal properties. As the protocol is being formulated, pesticidal activity is determined after each purification step. Such purification steps will result in a substantially purified protein fraction. By "substantially purified" or "substantially pure" is intended protein which is substantially free of any compound normally associated with the protein in its natural state. "Substantially pure" preparations of protein can be assessed by the absence of other detectable protein bands following SDS-PAGE as determined visually or by densitometry scanning. Alternatively, the absence of other amino-terminal sequences or N-terminal residues in a purified preparation can indicate the level of purity. Purity can be verified by rechromatography of "pure" preparations showing the absence of other peaks by ion exchange, reverse phase or capillary electrophoresis. The terms "substantially pure" or "substantially purified" are not meant to exclude artificial or synthetic mixtures of the proteins with other compounds. The terms are also not meant to exclude the presence of minor impurities which do not interfere with the biological activity of the protein, and which may be present, for example, due to incomplete purification. 5 10 15 20 25 Some proteins are single polypeptide chains while many proteins consist of more than one polypeptide chain. Once purified protein is isolated, the protein, or the polypeptides of which it is comprised, can be characterized and sequenced by standard methods known in the art. For example, the purified protein, or the polypeptides of which it is comprised, may be fragmented as with cyanogen bromide, or with proteases such as papain, chymotrypsin, trypsin, lysyl-C endopeptidase, etc. (Oike et al. (1982) <u>J. Biol. Chem.</u> 257:9751-9758; Liu et al. (1983) <u>Int. J. Pept. Protein Res.</u> 21:209-215). The resulting peptides are separated, preferably by HPLC, or by resolution of gels and electroblotting onto PVDF membranes, and subjected to amino acid sequencing. To accomplish this task, the peptides are preferably analyzed by automated sequencing. It is recognized that N-terminal, C-terminal, or internal amino acid sequences can be determined. From the amino acid sequence of the purified protein, a nucleotide sequence can be synthesized which can be used as a probe to aid in the isolation of the gene encoding the pesticidal protein. It is recognized that the proteins will vary in molecular weight, component peptides, activity against particular pests, and in other characteristics. However, by the methods set forth herein, proteins active against a variety of pests may be isolated and characterized. Once the purified protein has been isolated and characterized it is recognized that it may be altered in various ways including amino acid substitutions, deletions, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of the pesticidal proteins can be prepared by mutations in the DNA. Such variants will possess the desired pesticidal activity. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. See, EP Patent Application Publication No. 75,444. In this manner, the present invention encompasses the pesticidal proteins as well as components and fragments thereof. That is, it is recognized that component polypeptides or fragments of the proteins may be produced which retain pesticidal activity. These fragments include truncated sequences, as well as N-terminal, C-terminal, internal and internally deleted amino acid sequences of the proteins. 5 10 15 20 25 Most deletions, insertions, and substitutions of the protein sequence are not expected to produce radical changes in the characteristics of the pesticidal protein. However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays. The proteins or other component polypeptides described herein may be used alone or in combination. That is, several proteins may be used to control different insect pests. Additionally, certain of the proteins of the invention enhance the activity of the pesticidal proteins. These proteins are referred to herein as "auxiliary proteins." While the mechanism of action is not entirely certain, when the auxiliary protein and the pesticidal protein of interest are together, the insecticidal properties of the pesticidal protein are enhanced several fold. The pesticidal proteins of the present invention may vary in molecular weight, having component polypeptides at least a molecular weight of 30 kDa or greater, preferably about 50 kDa or greater. The auxiliary proteins of the invention may vary in molecular weight, having at least a molecular weight of about 15 kDa or greater, preferably about 20 kDa or greater. The auxiliary proteins themselves may have component polypeptides. It is possible that the pesticidal protein and the auxiliary protein may be components of a multimeric, pesticidal protein. Such a pesticidal protein which includes the auxiliary proteins as one or more of its component polypeptides may vary in molecular weight, having at least a molecular weight of 50 kDa up to at least 200 kDa, preferably about 100 kDa to 150 kDa. An auxiliary protein may be used in combination with the pesticidal proteins of the invention to enhance activity. To determine whether the auxiliary protein will affect activity, the pesticidal protein can be expressed alone and in combination with the auxiliary protein and the respective activities compared in feeding assays for increased pesticidal activity. 5 10 15 20 25 It may be beneficial to screen strains for potential pesticidal activity by testing activity of the strain alone and in combination with the auxiliary protein. In some instances the auxiliary protein with the native proteins of the strains yields pesticidal activity where none is seen in the absence of the auxiliary protein. The auxiliary protein can be modified, as described above, by various methods known in the art. Therefore, for purposes of the invention, the term "Vegetative Insecticidal Protein" (VIP) encompasses those proteins produced during vegetative growth which alone or in combination can be used for pesticidal activity. This includes pesticidal proteins, auxiliary proteins and those proteins which demonstrate activity only in the presence of the auxiliary protein or the polypeptide components of these proteins. It is recognized that there are alternative methods available to obtain the nucleotide and amino acid sequences of the present proteins. For example, to obtain the nucleotide sequence encoding the pesticidal protein, cosmid clones, which express the pesticidal protein, can be isolated from a genomic library. From larger active cosmid clones, smaller subclones can be made and tested for activity. In this manner, clones which express an active pesticidal protein can be sequenced to determine the nucleotide sequence of the gene. Then, an amino acid sequence can be deduced for the protein. For general molecular methods, see, for example, Molecular Cloning, A Laboratory Manual, Second Edition, Vols. 1-3, Sambrook et al. (eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989), and the references cited therein. The present invention also encompasses nucleotide sequences from organisms other than <a href="Bacillus">Bacillus</a>, where the nucleotide sequences are isolatable by hybridization with the <a href="Bacillus">Bacillus</a> nucleotide sequences of the invention. Such nucleotide sequences can be tested for pesticidal activity. The invention also encompasses the proteins encoded by the nucleotide sequences. Furthermore, the invention encompasses proteins obtained from organisms other than <a href="Bacillus">Bacillus</a> wherein the protein cross-reacts with antibodies raised against the proteins of the invention. Again the isolated proteins can be assayed for pesticidal activity by the methods disclosed herein. 5 10 15 20 25 Once the nucleotide sequences encoding the pesticidal proteins of the invention have been isolated, they can be manipulated and used to express the protein in a variety of hosts including other organisms, including microorganisms and plants. The pesticidal genes of the invention can be optimized for enhanced expression in plants. See, for example U.S. Application Serial No. 07/951,715; EPA 0359472; EPA 0385962; WO 91/16432; Perlak et al (1991) Proc. Natl. Acad. Sci. USA 88:3324-3328; and Murray et al (1989) Nucleic Acids Research 17: 477-498. In this manner, the genes can be synthesized utilizing plant preferred codons. That is the preferred codon for a particular host is the single codon which most frequently encodes that amino acid in that host. The maize preferred codon, for example, for a particular amino acid may be derived from known gene sequences from maize. Maize codon usage for 28 genes from maize plants is found in Murray et al. (1989), Nucleic Acids Research 17:477-498, the disclosure of which is incorporated herein by reference. Synthetic genes could also be made based on the distribution of codons a particular host uses for a particular amino acid. In this manner, the nucleotide sequences can be optimized for expression in any plant. It is recognized that all or any part of the gene sequence may be optimized or synthetic. That is, synthetic or partially optimized sequences may also be used. In like manner, the nucleotide sequences can be optimized for expression in any microorganism. For <u>Bacillus</u> preferred codon usage, see, for example US Patent No. 5,024,837 and Johansen et al (1988) <u>Gene</u> 65:293-304. 5 10 25 Methodologies for the construction of plant expression cassettes as well as the introduction of foreign DNA into plants are described in the art. Such expression cassettes may include promoters, terminators, enhancers, leader sequences, introns and other regulatory sequences operably linked to the pesticidal protein coding sequence. Generally, for the introduction of foreign DNA into plants Ti plasmid vectors have been utilized for the delivery of foreign DNA as well as direct DNA uptake, liposomes, electroporation, micro-injection, and the use of microprojectiles. Such methods had been published in the art. See, for example, Guerche et al., (1987) Plant Science 52:111-116; Neuhause et al., (1987) Theor. Appl. Genet. 75:30-36; Klein et al., (1987) Nature 327: 70-73; Howell et al., (1980) Science 208:1265; Horsch et al., (1985) Science 227: 1229-1231; DeBlock et al., (1989) Plant Physiology 91:694-701; Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press, Inc. (1988); and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press, Inc. (1989). See also US patent Application Serial No. 08/008,374 herein incorporated by reference. See also, EPA 0193259 and EPA 0451878A1. It is understood that the method of transformation will depend upon the plant cell to be transformed. It is further recognized that the components of the expression cassette may be modified to increase expression. For example, truncated sequences, nucleotide substitutions or other modifications may be employed. See, for example Perlak et al. (1991) <u>Proc. Natl. Acad. Sci.</u> <u>USA</u> 88:3324-3328; Murray et al. (1989) <u>Nucleic Acids Research</u> 17:477-498; and WO 91/16432. The construct may also include any other necessary regulators such as terminators, (Guerineau et al., (1991), Mol. Gen. Genet., 226:141-144; Proudfoot, (1991), Cell, 64:671-674; Sanfacon et al., (1991), Genes Dev., 5:141-149; Mogen et al., (1990), Plant Cell, 2:1261-1272; Munroe et al., (1990), Gene, 91:151-158; Ballas et al., (1989), Nucleic Acids Res., 17:7891-7903; Joshi et al., (1987), Nucleic Acid Res., 15:9627-9639); plant translational consensus sequences (Joshi, C.P., (1987), Nucleic Acids Research, 15:6643-6653), introns (Luehrsen and Walbot, (1991), Mol. Gen. Genet., 225:81-93) and the like, operably linked to the nucleotide sequence. It may be beneficial to include 5' leader sequences in the expression cassette construct. Such leader sequences can act to enhance translation. Translational leaders are known in the art and include: 10 15 Picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein, O., Fuerst, T.R., and Moss, B. (1989) PNAS USA 86:6126-6130); Potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Allison et al., (1986); MDMV leader (Maize Dwarf Mosaic Virus); Virology, 154:9-20), and Human immunoglobulin heavy-chain binding protein (BiP), (Macejak, D.G., and Sarnow, P., (1991), Nature, 353:90-94; Untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4), 20 (Jobling, S.A., and Gehrke, L., (1987), Nature, 325:622-625; Tobacco mosaic virus leader (TMV), (Gallie, D.R. et al., (1989), Molecular Biology of RNA, pages 237-256; and Maize Chlorotic Mottle Virus leader (MCMV) (Lommel, S.A. et al., (1991), <u>Virology</u>, 81:382-385. See also, Della-Cioppa et al., (1987), <u>Plant Physiology</u>, 84:965-968. A plant terminator may be utilized in the expression cassette. See, Rosenberg et al., (1987), Gene, 56:125; Guerineau et al., (1991), Mol. Gen. Genet., 226:141-144; Proudfoot, (1991), Cell, 64:671-674; Sanfacon et al., (1991), Genes Dev., 5:141-149; Mogen et al., (1990), Plant Cell, 2:1261-1272; Munroe et al., (1990), Gene, 91:151-158; Ballas et al., (1989), Nucleic Acids Res., 17:7891-7903; Joshi et al., (1987), Nucleic Acid Res., 15:9627-9639. For tissue specific expression, the nucleotide sequences of the invention can be operably linked to tissue specific promoters. See, for example, US Application Serial No. 07/951,715 herein incorporated by reference. 5 10 15 20 25 It is recognized that the genes encoding the pesticidal proteins can be used to transform insect pathogenic organisms. Such organisms include Baculoviruses, fungi, protozoa, bacteria and nematodes. The <u>Bacillus</u> strains of the invention may be used for protecting agricultural crops and products from pests. Alternatively, a gene encoding the pesticide may be introduced via a suitable vector into a microbial host, and said host applied to the environment or plants or animals. Microorganism hosts may be selected which are known to occupy the "phytosphere" (phylloplane, phyllosphere, rhizosphere, and/or rhizoplana) of one or more crops of interest. These microorganisms are selected so as to be capable of successfully competing in the particular environment with the wild-type microorganisms, provide for stable maintenance and expression of the gene expressing the polypeptide pesticide, and, desirably, provide for improved protection of the pesticide from environmental degradation and inactivation. Such microorganisms include bacteria, algae, and fungi. Of particular interest are microorganisms, such as bacteria, e.g., Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium, Rhodopseudomonas, Methylius, Agrobacterium, Acetobacter, Lactobacillus, Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes; fungi, particularly yeast, e.g., Saccharomyces, Cryptococcus, Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of particular interest are such phytosphere bacterial species as Pseudomonas syringae, Pseudomonas fluorescens, Serratia marcescens, Acetobacter xylinum, Agrobacteria, Rhodopseudomonas spheroides, Xanthomonas campestris, Rhizobium melioti, Alcaligenes entrophus, Clavibacter xyli and Azotobacter vinlandii; and phytosphere yeast species such as Rhodotorula rubra, R. glutinis, R. marina, R. aurantiaca, Cryptococcus albidus, C. diffluens, C. laurentii, Saccharomyces rosei, S. pretoriensis, S. cerevisiae, Sporobolomyces rosues, S. odorus, Kluyveromyces veronae, and Aureobasidium pollulans. Of particular interest are the pigmented microorganisms. 5 10 15 20 25 A number of ways are available for introducing a gene expressing the pesticidal protein into the microorganism host under conditions which allow for stable maintenance and expression of the gene. For example, expression cassettes can be constructed which include the DNA constructs of interest operably linked with the transcriptional and translational regulatory signals for expression of the DNA constructs, and a DNA sequence homologous with a sequence in the host organism, whereby integration will occur, and/or a replication system which is functional in the host, whereby integration or stable maintenance will occur. Transcriptional and translational regulatory signals include but are not limited to promoter, transcriptional initiation start site, operators, activators, enhancers, other regulatory elements, ribosomal binding sites, an initiation codon, termination signals, and the like. See, for example, US Patent 5,039,523; US Patent No. 4,853,331; EPO 0480762A2; Sambrook et al. supra; Molecular Cloning, a Laboratory Manual, Maniatis et al. (eds) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982); Advanced Bacterial Genetics, Davis et al. (eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1980); and the references cited therein. Suitable host cells, where the pesticide-containing cells will be treated to prolong the activity of the toxin in the cell when the then treated cell is applied to the environment of the target pest(s), may include either prokaryotes or eukaryotes, normally being limited to those cells which do not produce substances toxic to higher organisms, such as mammals. However, organisms which produce substances toxic to higher organisms could be used, where the toxin is unstable or the level of application sufficiently low as to avoid any possibility of toxicity to a mammalian host. As hosts, of particular interest will be the prokaryotes and the lower eukaryotes, such as fungi. Illustrative prokaryotes, both Gram-negative and -positive, include Enterobacteriaceae, such as Escherichia, Erwinia, Shigella, Salmonella, and Proteus; Bacillaceae; Rhizobiceae, such as Rhizobium; Spirillaceae, such as photobacterium, Zymomonas, Serratia, Aeromonas, Vibrio, Desulfovibrio, Spirillum; Lactobacillaceae; Pseudomonadaceae, such as Pseudomonas and Acetobacter; Azotobacteraceae and Nitrobacteraceae. Among eukaryotes are fungi, such as Phycomycetes and Ascomycetes, which includes yeast, such a Saccharomyces and Schizosaccharromyces; and Basidiomycetes yeast, such as Rhodotorula, Aureobasidium, Sporobolomyces, and the like. 5 10 25 Characteristics of particular interest in selecting a host cell for purposes of production include ease of introducing the protein gene into the host, availability of expression systems, efficiency of expression, stability of the protein in the host, and the presence of auxiliary genetic capabilities. Characteristics of interest for use as a pesticide microcapsule include protective qualities for the pesticide, such as thick cell walls, pigmentation, and intracellular packaging or formation of inclusion bodies; leaf affinity; lack of mammalian toxicity; attractiveness to pests for ingestion; ease of killing and fixing without damage to the toxin; and the like. Other considerations include ease of formulation and handling, economics, storage stability, and the like. Host organisms of particular interest include yeast, such as Rhodotorula sp., Aureobasidium sp., Saccharomyces sp., and Sporobolomyces sp.; phylloplane organisms such as Pseudomonas sp., Erwinia sp. and Flavobacterium sp.; or such other organisms as Escherichia, <u>Lactobacillus sp.</u>, <u>Bacillus sp.</u>, and the like. Specific organisms include <u>Pseudomonas</u> aeurginosa, <u>Pseudomonas fluorescens</u>, <u>Saccharomyces cerevisiae</u>, <u>Bacillus thuringiensis</u>, <u>Escherichia coli</u>, <u>Bacillus subtilis</u>, and the like. General methods for employing the strains of the invention in pesticide control or in engineering other organisms as pesticidal agents are known in the art. See, for example US Patent No. 5,039,523 and EP 0480762A2. 5 10 15 20 25 The <u>Bacillus</u> strains of the invention or the microorganisms which have been genetically altered to contain the pesticidal gene and protein may be used for protecting agricultural crops and products from pests. In one aspect of the invention, whole, i.e., unlysed, cells of a toxin (pesticide)-producing organism are treated with reagents that prolong the activity of the toxin produced in the cell when the cell is applied to the environment of target pest(s). Alternatively, the pesticides are produced by introducing a heterologous gene into a cellular host. Expression of the heterologous gene results, directly or indirectly, in the intracellular production and maintenance of the pesticide. These cells are then treated under conditions that prolong the activity of the toxin produced in the cell when the cell is applied to the environment of target pest(s). The resulting product retains the toxicity of the toxin. These naturally encapsulated pesticides may then be formulated in accordance with conventional techniques for application to the environment hosting a target pest, e.g., soil, water, and foliage of plants. See, for example EPA 0192319, and the references cited therein. The active ingredients of the present invention are normally applied in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession, with other compounds. These compounds can be both fertilizers or micronutrient donors or other preparations that influence plant growth. They can also be selective herbicides, insecticides, fungicides, bactericides, nematicides, mollusicides or mixtures of several of these preparations, if desired, together with further agriculturally acceptable carriers, surfactants or application-promoting adjuvants customarily employed in the art of formulation. Suitable carriers and adjuvants can be solid or liquid and correspond to the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, binders or fertilizers. 5 10 15 20 Preferred methods of applying an active ingredient of the present invention or an agrochemical composition of the present invention which contains at least one of the pesticidal proteins produced by the bacterial strains of the present invention are leaf application, seed coating and soil application. The number of applications and the rate of application depend on the intensity of infestation by the corresponding pest. In one embodiment of the invention a <u>Bacillus cereus</u> microorganism has been isolated which is capable of killing <u>Diabrotica virgifera virgifera</u>, and <u>Diabrotica longicornis barberi</u>. The novel <u>B. cereus</u> strain AB78 has been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, IL 61604, USA and given Accession No. NRRL B-21058. A protein has been substantially purified from the <u>B</u>, cereus strain. Purification of the protein has been verified by SDS-PAGE and biological activity. The protein has a molecular weight of about 60 to about 100 kDa, particularly about 70 to about 90 kDa, more particularly about 80 kDa. Amino-terminal sequencing has revealed the N-terminal amino-acid sequence to be: NH2-Lys-Arg-Glu-Ile-Asp-Glu-Asp-Thr-Asp-Thr-Asx-Gly-Asp-Ser-Ile-Pro- (SEQ ID NO:8) where Asx represents either Asp or Asn. The entire amino acid sequence is given in SEQ ID NO:7. An oligonuleotide probe for the region of the gene encoding amino acids 3-9 of the NH<sub>2</sub>-terminus has been generated. The probe was synthesized based on the codon usage of a Bacillus thuringensis (Bt) δ-endotoxin gene. The nucleotide sequence of the oligonucleotide probe used for Southern hybridizations was as follows: 5'- GAA ATT GAT CAA GAT ACN GAT -3' (SEQ ID NO:9) where N represents any base. In addition, the DNA probe for the Bc AB78 VIP-1 gene described herein, permits the screening of any <u>Bacillus</u> strain or other organisms to determine whether the VIP-1 gene (or related gene) is naturally present or whether a particular transformed organism includes the VIP-1 gene. The invention now being generally described, the same will be better understood by reference to the following detailed examples that are provided for the purpose of illustration and are not to be considered limiting of the invention unless so specified. #### **EXPERIMENTAL** #### Example 1. AB78 Isolation and Characterization Bacillus cereus strain AB78 was isolated as a plate contaminant in the laboratory on T3 media (per liter: 3 g tryptone, 2 g tryptose, 1.5 g yeast extract, 0.05 M sodium phosphate (pH 6.8), and 0.005 g MnCl<sub>2</sub>; Travers, R.S. 1983). AB78 gave significant activity against western corn rootworm. Antibiotic activity against gram-positive <u>Bacillus spp</u>. was also demonstrated (Table 12). 10 Table 12 Antibiotic activity of AB78 culture supernatant 15 | | | Z | one of inhibition(cm) | |----|---------------------|------|-----------------------| | | Bacteria tested | AB78 | Streptomycin | | 20 | E. coli | 0.0 | 3.0 | | | B. megaterium | 1.1 | 2.2 | | | B. mycoides | 1.3 | 2.1 | | | B. cereus CB | 1.0 | 2.0 | | | B. cereus 11950 | 1.3 | 2.1 | | 25 | B. cereus 14579 | 1.0 | 2.4 | | | B. cereus AB78 | 0.0 | 2.2 | | | Bt var. isrealensis | 1.1 | 2.2 | | • | Bt var. tenebrionis | 0.9 | 2.3 | | | | | | 30 Morpholgical characteristics of AB78 are as follows: Vegetative rods straight, 3.1-5.0 mm long and 0.5-2.0 mm wide. Cells with rounded ends, single in short chains. Single subterminal, cylindical-oval, endospore formed per cell. No parasporal crystal formed. Colonies opaque, erose, lobate and flat. No pigments produced. Cells motile. Flagella present. Growth characteristics of AB78 are as follows: Facultative anaerobe with optimum growth temperature of 21-30°C. Will grow at 15, 20, 25, 30 and 37°C. Will not grow above 40°C. Grows in 5-7% NaCl. Table 13 provides the biochemical profile of AB78. Table 13 Biochemical characteristics of B cereus strain AB78 | | Acid from L-arabinose | - | Methylene blue reoxidized | + | |---|-------------------------|---|--------------------------------------------|---| | ; | Gas from L-arabinose | - | Nitrate reduced | + | | | Acid from D-xylose | - | NO <sub>3</sub> reduced to NO <sub>2</sub> | + | | | Gas from D-xylose | - | VP | + | | | Acid from D-glucose | + | H <sub>2</sub> O <sub>2</sub> decomposed | + | | | Gas from D-glucose | - | Indole | - | | | Acid from lactose | - | Tyrosine decomposed | + | | | Gas from lactose | - | Dihydroxiacetone | - | | | Acid from sucrose | - | Litmus milk acid | - | | | Gas from sucrose | - | Litmus milk coagulated | - | | | Acid from D-mannitol | | - Litmus milk alkaline | | | | Gas from D-mannitol | - | Litmus milk peptonized | - | | | Proprionate utilization | | + Litmus milk reduced | | | | Citrate utilization | + | Casein hydrolyzed | + | | | Hippurate hydrolysis | w | Starch hydrolyzed | + | | | Methylene blue reduced | + | Gelatin liquidified | + | | ) | <u>-</u> | | Lecithinase produced | w | w= weak reaction #### Example 2. Bacterial Culture A subculture of Bc strain AB78 was used to inoculate the following medium, known as TB broth: | 5 | | | | |----|---------------------------------|------|------| | | Tryptone | 12 | g/l | | | Yeast Extract | 24 | g/l | | | Glycerol | 4 | ml/l | | | KH <sub>2</sub> PO <sub>4</sub> | 2.1 | g/l | | 10 | $K_2\overline{HPO_4}$ | 14.7 | g/l | pH 7.4 The potassium phosphate was added to the autoclaved broth after cooling. Flasks were incubated at 30°C on a rotary shaker at 250 rpm for 24 h.-36 h. The above procedure can be readily scaled up to large fermentors by procedures well known in the art. During vegetative growth, usually 24-36 h. after starting the culture, AB78 bacteria were centrifuged from the culture supernatant. The culture supernatant containing the active protein was used in bioassays. 20 15 #### Example 3. Insect Bioassays B. cereus strain AB78 was tested against various insects as described below. Western, Northern and Southern corn rootworm, <u>Diabrotica virgifera virgifera</u>, <u>D.</u> longcornis barberi and <u>D. undecempunctata howardi</u>, respectively:, dilutions were made of AB78 culture supernatant grown 24-36 h., mixed with molten artificial diet (Marrone et al. (1985) <u>J. of Economic Entomology</u> 78:290-293) and allowed to solidify. Solidified diet was cut and placed in dishes. Neonate larvae were placed on the diet and held at 30°C. Mortality was recorded after 6 days. E. coli clone bioassay: E. coli was grown overnight in L-Amp100 at 37°C. Ten ml culture was sonicated 3X for 20 sec each. 500 ml of sonicated culture was added to molten western corn rootworm diet. 5 10 15 20 Colorado potato beetle <u>Leptinotarsa decemlineata</u>:-dilutions in Triton X-100 (to give final concentration of 0.1% TX-100) were made of AB78 culture supernatant grown 24-36 h. Five cm<sup>2</sup> potato leaf pieces were dipped into these dilutions, air dried, and placed on moistened filter paper in plastic dishes. Neonate larvae were placed on the leaf pieces and held at 30°C. Mortality was recorded after 3-5 days. Yellow mealworm, <u>Tenebrio molitor</u>:- dilutions were made of AB78 culture supernatant grown 24-36 h., mixed with molten artificial diet (Bioserv #F9240) and allowed to solidify. Solidified diet was cut and placed in plastic dishes. Neonate larvae were placed on the diet and held at 30°C. Mortality was recorded after 6-8 days. European corn borer, black cutworm, tobacco budworm, tobacco hornworm and beet armyworm; Ostrinia nubilalis, Agrotis ipsilon, Heliothis virescens, Manduca sexta and Spodoptera exigua, respectively: -dilutions, in TX-100 (to give final concentration of 0.1% TX-100), were made of AB78 culture supernatant grown 24-36 hrs. 100 ml was pipetted onto the surface of 18 cm<sup>2</sup> of solidified artifical diet (Bioserv #F9240) and allowed to air dry. Neonate larvae were then placed onto the surface of the diet and held at 30°C. Mortality was recorded after 3-6 days. Northern house mosquito, <u>Culex pipiens:</u>-dilutions were made of AB78 culture supernatant grown 24-36 h. 100 ml was pipetted into 10 ml water in a 30 ml plastic cup. Third instar larvae were added to the water and held at room temperature. Mortality was recorded after 24-48 hours. The spectrum of entomocidal activity of AB78 is given in Table 14. Table 14 Activity of AB78 culture supernatant against various insect species | | Insect species | | | |----|-----------------------------|-------|----------| | | tested to date | Order | Activity | | 10 | Western corn rootworm | | | | | (Diabrotica virgifera | | | | | virgifera) | Col | +++ | | | Northern corn rootworm | | | | | (Diabrotica longicornis | | | | 15 | <u>barberi</u> ) | Col | +++ | | | Southern corn rootworm | | | | | (Diabrotica undecimpunctata | | | | | howardi) | Col | - | | | Colorado potato beetle | | | | .0 | (Leptinotarsa decemlineata) | Col | - | | | Yellow mealworm | | | | | (Tenebrio molitor) | Col | - | | | European corn borer | | | | | (Ostrinia nubilalis) | Lep | - | | 5 | Tobacco budworm | _ | | | | (Heliothis virescens) | Lep | - | | | Tobacco hornworm | - | | | | (Manduca sexta) | Lep | - | | | Beet armyworm | • | | | 0 | (Spodoptera exigua) | Lep | - | | | Black cutworm | • | | | | (Agrotis ipsilon) | Lep | - | | | Northern house mosquito | • | | | | (Culex pipiens) | Dip | - | | | \/ | | | | 5 | | | | 5 The newly discovered <u>B. cereus</u> strain AB78 showed a significantly different spectrum of insecticidal activity as compared to known coleopteran active δ-endotoxins from Bt. In particular, AB78 showed more selective activity against beetles than known coleopteran-active Bt strains in that it was specifically active to <u>Diabrotica spp.</u> More specifically, it was most active against <u>D. virgifera virgifera</u> and <u>D. longicornis barberi</u> but not <u>D. undecimpunctata howardi</u>. A number of <u>Bacillus</u> strains were bioassayed for activity during vegetative growth (Table 15) against western corn rootworm. The results demonstrate that AB78 is unique in that activity against western corn rootworm is not a general phenomenon. 10 5 Table 15 Activity of culture supernatants from various <u>Bacillus spp.</u> against western corn rootworm | 15 | , | Percent | |----|------------------------------|----------------| | | Bacillus strain | WCRW mortality | | | B. cereus AB78 (Bat.1) | 100 | | | B. cereus AB78 (Bat.2) | 100 | | 20 | B. cereus (Carolina Bio.) | 12 | | | B. cereus ATCC 11950 | 12 | | 4 | B. cereus ATCC 14579 | 8 | | | B. mycoides (Carolina Bio.) | 30 | | | B. popilliae | 28 | | 25 | B. thuringiensis HD135 | 41 | | | B. thuringiensis HD191 | 9 | | | B. thuringiensis GC91 | 4 | | | B. thuringiensis isrealensis | 24 | | | Water Control | 4 | | 30 | ,, a.d. condo | | Specific activity of AB78 against western corn rootworm is provided in Table 16. Table 16 Activity of AB78 culture supernatant against neonate western corn rootworm | | Culture supernatant | Percent | |----|------------------------|----------------| | | _concentration (µl/ml) | WCRW mortality | | 10 | 100 | 100 | | | 25 | 87 | | | 10 | 80 | | | 5 | 40 | | | 2.5 | 20 | | 15 | 1 | 6 | | | 0 | 0 | The LC<sub>50</sub> was calculated to be 6.2 $\mu$ l of culture supernatant per ml of western corn rootworm diet. 20 25 5 #### Example 4. Isolation and Purification of Corn Rootworm Active Protein from AB78. Culture media free of cells and debris was made to 70% saturation by the addition of solid ammonium sulfate i.e. (472 g/L). Dissolution was at room temperature followed by cooling in an ice bath and centrifugation at 10,000 x g for thirty minutes to pellet out the precipitated proteins. The supernatant was discarded and the pellet was dissoved in 1/10 the original volume with 20 mM TRIS-HCl at pH 7.5. The dissolved pellet was desalted either by dialysis in 20 mM TRIS HCl pH 7.5, or passing through a desalting column. The desalted material was titrated to pH 3.5 with 20 mM sodium citrate pH 2.5. Following a thirty minute room temperature incubation the solution was centrifuged at 3000 X g for ten minutes. The supernatant at this stage contained the greatest amount of active protein. Following neutralization of the pH to 7.0 the supernatant was applied to a Mono-Q, anion exchange, column equilibrated with 20 mM TRIS pH 7.5 at a flow rate of 300 mL/min. The column was develoed with a stepwise and linear gradient employing 400 mM NaCl in 20 mM TRIS pH 7.5. Bioassay of the column fractions and SDS-PAGE analysis were used to confirm the active fractions. SDS-PAGE analysis identified the biologically active protein as having a molecular weight in the range of 80 kDa. ## Example 5. Sequence Analysis of the Corn Rootworm Active Protein 5 10 The 80 kDa protein isolated by SDS-PAGE was transferred to PVDF membrane and was subjected to amino-terminal sequencing as performed by repetitive Edman cycles on the ABI 470 pulsed-liquid sequencer. Transfer was carried out in 10 mM CAPS buffer with 10% methanol pH 11.0 as follows: Incubation of the gel following electrophoresis was done in transfer buffer for five minutes. 20 ProBlott PVDF membrane was wetted with 100% MeOH briefly then equilibrated in transfer buffer. The sandwich was arranged between foam sponges and filter paper squares with the configuration of Cathode-Gel-Membrane-Anode. Transfer was performed at 70 V constant voltage for 1 hour. Following transfer the membrane was rinsed with water and stained for two minutes with 0.25% Coomassie Blue R-250 in 50% MeOH. Destaining was done with several rinses with 50% MeOH 40% water 10% acetic acid. Following destaining the membrane was air dried prior to excision of the bands for sequence analysis. A BlottCartridge and appropriate cycles were utilized to achieve maximum efficiency and yield. Data analysis was performed using the model 610 Sequence Analysis software for identifying and quantifying the PTH-amino acid derivatives for each sequential cycle. The N-terminal sequence was determined to be: NH<sub>2</sub>-Lys-Arg-Glu-Ile-Asp-Glu-Asp-Thr-Asp-Thr-Asx-Gly-Asp-Ser-Ile-Pro- (SEQ ID NO:8) where Asx represents Asp or Asn. #### Example 6. Construction of DNA Probe An oligonucleotide probe for the region of the gene encoding amino acids 3-9 of the N-terminal sequence (Example 5) was generated. The probe was synthesized based on the codon usage of a <u>Bacillus thuringensis</u> (Bt) $\delta$ -endotoxin gene. The nucleotide sequence 5'- GAA ATT GAT CAA GAT ACN GAT -3' (SEQ ID NO:9) was used as a probe in Southern hybridizations. The oligonucleotide was synthesized using standard procedures and equipment. 20 15 5 #### Example 7. Isoelectric Point Determination of the Corn Rootworm Active Protein Purified protein from step 5 of the purification process was analyzed on a 3-9 pI isoelectric focusing gel using the Phastgel electrophoresis system (Pharmacia). Standard operating procedures for the unit were followed for both the separation and silver staining development procedures. The pI was approximated at about 4.9. # Example 8. PCR Data On AB78 5 PCR analysis (See, for example US patent Application Serial No. 08/008,006; and, Carozzi et al. (1991) <u>Appl. Environ. Microbiol.</u> 57(11):3057-3061, herein incorporated by reference.) was used to verify that the <u>B. cereus</u> strain AB78 did not contain any insecticidal crystal protein genes of <u>B. thuringensis</u> or <u>B. sphaericus</u> (Table 17). Table 17 <u>Bacillus</u> insecticidal crystal protein gene primers tested by PCR against AB78 DNA. | | C | | |----|-----------------------------------|------------------| | | Primers Tested | Product Produced | | 15 | 2 sets specific for CryIIIA | Negative | | | CryIIIB | Negative | | | 2 sets specific for CryIA | Negative | | | CryIA(a) | Negative | | | CryIA(b) specific | Negative | | 20 | CryIB | Negative | | | CryIC specific | Negative | | | CryIE specific | Negative | | | 2 sets specific for B. sphaericus | Negative | | | 2 sets specific for CryIV | Negative | | 25 | Bacillus control (PI-PLC) | Positive | #### Example 9. Cosmid Cloning of Total DNA from B. cereus Strain AB78 The VIP-1 gene was cloned from total DNA prepared from strain AB78 as follows: 5 #### Isolation of AB78 DNA was as follows: - 1. Grow bacteria in 10 ml L-broth overnight. (Use 50 ml sterile centrifuge tube) - 2. Add 25 ml of fresh L-broth and ampicillin (30 mg/ml). - 3. Grow cells 2-6 h. at 30°C with shaking. - Spin cells in a 50 ml polypropylene orange cap tube in IEC benchtop clinical centrifuge at 3/4 speed. - 5. Resuspend cell pellet in 10 ml TES. - 6. Add 30 mg lyzozyme and incubate 2 hrs at 37°C. - 7. Add 200 ml 20% SDS and 400 ml Proteinase K (20 mg/ml). Incubate at 37°C. - 15 8. Add 200 ml fresh Proteinase K. Incubate 1 hr. at 55°C. Add 5 ml TES (TES = 50 mM tirs pH 8.0, 100mM EDTA, 15 mM NaCl) to make 15 ml final volume. - 9. Phenol extract twice (10 ml phenol, spin at room temperature at 3/4 speed in an IEC benchtop clinical centrifuge). Transfer supernatant (top) to a clean tube with a wide bore pipet. - 20 10. Extract once with 1:1 vol. phenol:chloroform/isoamyl alcohol (24:1 ratio). - 11. Precipitate DNA with an equal volume of cold isopropanol; Centrifuge to pellet DNA. - 12. Resuspend pellet in 5 ml TE. - 13. Precipitate DNA with 0.5 ml 3M NaOAc pH 5.2 and 11 ml 95% ethanol. Place at -20°C for 2 h. 14. "Hook" DNA from tube with a plastic loop, transfer to a microfuge tube, spin, pipet off excess ethanol, dry in vacuo. - 15. Resuspend in 0.5 ml TE. Incubate 90 min. at 65°C to help get DNA back into solution. - 16. Determine concentration using standard procedures. #### Cosmid Cloning of AB78 All procedures, unless indicated otherwise, were performed according to Stratagene Protocol, Supercos 1 Instruction Manual, Cat. No. 251301. Generally, the steps were as follows: - A. Sau 3A Partial Digestion of the AB78 DNA. - B. Preparation of Vector DNA - C. Ligation and packaging of DNA - D. Titering the cosmid library - Start a culture of HB101 cells by placing 50 ml of an overnight culture in 5 mls of TB with 0.2% maltose. Incubate 3.5 hrs. at 37°C. - 2. Spin out cells and resuspend in 0.5 mls 10 mM MgSO<sub>4</sub>. - 3. Add together: 100 ml cells 100 ml diluted packaging mixture 100 ml 10 mM MgSO<sub>4</sub> 30 ml TB - 4. Adsorb at room temperature for 30 minutes with no shaking. - 5. Add 1 ml TB and mix gently. Incubate 30 minutes at 37°C. - 6. Plate 200 ml onto L-amp plates. Incubate at 37°C overnight. 20 15 5 10 At least 400 cosmid clones were screened for activity against western corn rootworm as described in Example 3. DNA from 5 active clones and 5 non-active clones were used in Southern hybridizations. Results demonstrated that hybridization using the above described oligonucleotide probe correlated with western corn rootworm activity (Table 18). Cosmid clones P3-12 and P5-4 have been deposited with the Agricultural Research Service Patent Culture Collecton (NRRL) and given accession nos. B-21061 and B-21059 respectively. Table 18 Activity of AB78 cosmid clones against western corn rootworm. | 10 | Clone | Mean percent mortality (N=4) | | |----|--------------------------------------|------------------------------|--| | | Clones which hyb | ridize with probe | | | | P1-73 | 47 | | | 15 | P1-83 | 64 | | | | P2-2 | 69 | | | | P3-12 | 85 | | | | P5-4 | 97 | | | 20 | Clones which do not hybridize with p | | | | | P1-2 | 5 | | | | P3-8 | 4 | | | | P3-9 | 12 | | | 5 | P3-18 | 0 | | | | P4-6 | 9 | | #### Example 10. Identification of a 6 kb region active against western corn rootworm. 5 10 15 20 DNA from P3-12 was partially digested with restriction enzyme Sau 3A, and ligated into the E. coli vector pUC19 and transformed into E. coli. A DNA probe specific for the 80 kDa protein was synthesized by PCR amplification of a portion of P3-12 DNA. The oligonucleotides MK113 and MK117, which hybridize to portions of VIP-1, were synthesized using the partial amino acid sequence of the 80 kDa protein. Plasmid subclones were identified by colony hybridization to the PCR probe, and tested for activity against western corn rootworm. One such clone, PL2, hybridizes to the PCR fragment, and is active against western corn rootworm by the assay previously described. A 6 kb Cla I restriction fragment from PL2 was cloned into the Sma I site of the E.coli-Bacillus shuttle vector pHT 3101 (Lereclus, D. et al, 1989, FEMS Microbiology Letters 60:211-218) to yield pCIB6201. This construct confers anti-western corn rootworm activity upon both Bacillus and E.coli strains, in either orientation. pCIB6022 contains this same 6 kb Cla I fragment in pBluescript SK(+) (Stratagene), produces equivalent VIP-1 protein (by western blot), and is also active against western corn rootworm. The nucleotide sequence of pCIP6022 was determined by the dideoxy termination method of Sanger et al., <a href="Proc. Natl. Acad. Sci.">Proc. Natl. Acad. Sci.</a> USA, 74:5463-5467 (1977), using PRISM Ready Reaction Dye Deoxy Terminator Cycle Sequencing Kits and PRISM Sequenase® Terminator Double-Stranded DNA Sequencing Kit and analyzed on AB1 373 automatic sequencer. The sequence is given in SEQ ID NO:1. pCIB6022 was deposited with the Agricultural Research Service, Patent Culture Collection, (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA, and given the Accession No. NRRL B-21222. #### Example 11. Functional dissection of the VIP-1 DNA region. 5 10 15 20 25 To confirm that the VIP-1 open reading frame (ORF) is necessary for insecticidal activity a translational frameshift mutation was created in the gene. The restriction enzyme Bgl II recognizes a unique site located 1758 bp into the coding region of VIP-1. pCIB6201 was digested with Bgl II, and the single-stranded ends filled-in with DNA polymerase (Klenow fragmnent) and dNTPS. The plasmid was re-ligated and transformed into <u>E. coli</u>. The resulting plasmid, pCIB6203, contains a four nucleotide insertion in the coding region of VIP-1. pCIB6203 does not confer insecticidal activity, confirming that VIP-1 is an essential component of western corn rootworm activity. To further define the region necessary to encode VIP-1, subclones of the VIP-1 and VIP-2 (auxiliary protein) region were constructed and tested for their ability to complement the mutation in pCIB6203. pCIB6023 contains the 3.7kb Xba I-EcoRV fragment in pBluescript SK(+) (Stratagene). Western blot analysis indicates that pCIB6023 produces VIP-1 protein of equal size and quantity as clones PL2 and pCIB 6022. pCIB6023 contains the entire gene for the 80kd protein. pCIB6023 was deposited with the Agricultural Research Service, Patent Culture Collection, (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA, and given the Accession No. NRRL B-21223. pCIB6023 shows some western corn rootworm activity. However, the level of activity is less than the activity of pCIB6022. A mixture of cells containing pCIB6203 (VIP-1-mutated, and VIP-2) and cells containing pCIB6023(only VIP-1) shows high activity against western corn rootworm. Thus, pCIB6023 must produce functional VIP-1 gene product, and pCIB6203 must produce a functional VIP-2 gene product. These results suggest a requirement for additional gene product(s) from the VIP-2 region, in combination with VIP-1, to confer maximal western corn rootworm activity. See Table 19. TABLE 19 Characterization of pCIB 6022 Construct(s) Activity tested vs WCRV. C X S RI B VIP-1 RV C pCIB6022 +++ pCIB6023 + pCIB6203 pCIB6203 pCIB6203 +++ Boxed regions represent the extent of VIP-1. Light shading indicates the regions encoding the 80 kDa peptide observed in <u>Bacillus</u>. Dark shading represents the N-terminal amino acids predicted by the DNA sequence of VIP-1. Large "X" represents the location of the frameshift mutation introduced into VIP-1. Arrows represent constructs transcribed by the betagalactosidase promoter. Restriction sites: C - Cla I; X - Xba I; S - Sca I; RI - Eco RI; B - Bgl II; RV - Eco RV. #### Example 12. AB78 Antibody Production 5 10 15 20 25 Antibody production was initiated in 2 Lewis rats to allow for both the possibility of moving to production of hybridoma cell lines and also to produce enough serum for limited screening of cDNA library. Another factor was the very limited amount of antigen available and the fact that it could only be produced to purity by PAGE and subsequent electrotransfer to nitrocellulose. Due to the limited availability of antigen on nitrocellulose, the nitrocellulose was emulsified in DMSO and injected into the hind footpads of the animals to elicit B-cell production in the popliteal lymph nodes just upstream. A strong reacting serum was produced by western analysis within the first production bleed. Several subsequent injections and bleeds produced enough serum to accomplish all of the screening required. Hybridoma production with one of the rats was then initiated. The popliteal lymph node was excised, macerated, and the resulting cells fused with mouise myeloma P3x63Ag8.653. Subsequent cell screening was accomplished as described below. Four initial wells were selected which gave the highest emulsified antigen reaction to be moved to limited dilution cloning. An additional 10 wells were chosen for expansion and cryoperservation. Procedure to Emulsify AB78 on nitrocellulose in DMSO for ELISA screening: After electrotransfer of AB78 samples run on PAGE to nitrocellulose, the reversible strain Ponceaus is used to visualize all protein transferred. The band corresponding to AB78 toxin, previously identified and N-terminal sequenced, is identified and excised from nitrocellulose. Each band is approximately 1mmx5mm in size to minimize the amount of nitrocellulose emulsified. A single band is placed in a microfuge tube with 250ul of DMSO and macerated using a plastic pestle (Kontes, Vineland, NJ). To aid in emulsification, the DMSO mixture is heated for 2-3 minutes at 37°C-45°C. Some further maceration might be necessary following heating; however, all of the nitrocellulose should be emulsified. Once the AB78 is emulsified, the sample is placed on ice. In preparation for microtiter plate coating with the emulsified antigen, the sample must be diluted in borate buffered saline as follows: 1:5, 1:10, 1:15, 1:20, 1:30, 1:50, 1:100, and 0. The coating antigen must be prepared fresh immediately prior to use. ## 5 ELISA protocol: - 1. Coat with AB78/DMSO in BBS. Incubate overnight at 4°C. - 2. Wash plate 3X with 1X ELISA wash buffer. - 3. Block (1% BSA & 0.05% Tween 20 in PBS) for 30 minutes at Room Temperature. - 10 4. Wash plate 3X with 1X ELISA wash buffer. - 5. Add Rat Serum. Incubate 1.5 hours at 37°C. - 6. Wash plate 3X with 1X ELISA wash buffer. - 7. Add Goat anti-Rat at a conc. of 2ug/ml in ELISA diluent. Incubate 1 hr. at 37°C. - 8. Wash plate 3X with 1X ELISA wash buffer. - Add Rabbit anti-Goat Alkaline Phosphatase at 2ug/ml in ELISA diluent. Incubate 1Hr. at 37°C. - 10. Wash 3X with 1X ELISA wash buffer. - 11. Add Substrate. Incubate 30 minutes at Room Temperature. - 12. Stop with 3N NaOH after 30 minutes. # Example 13. Activation of insecticidal activity of non-active Bt strains with AB78 VIP clones. Adding pCIB6203 together with culture supernatant from a Bt strain GC91 produces 100% mortality in <u>Diabrotica virgifera virgifera</u>. Neither pCIB6203 nor GC91 is active on <u>Diabrotica virgifera virgifera</u> by itself. Data are shown below: | Test material | Percent Diabrotica mortality | |-----------------|------------------------------| | pCIB6203 | 0 | | GC91 | 16 | | pCIB6203 + GC91 | 100 | | Control | 0 | #### Example 14. Isolation and Biological Activity of B.cereus AB81. 10 5 A second <u>B</u>. <u>cereus</u> strain, designated AB81, was isolated from grain bin dust samples by standard methodologies. A subculture of AB81 was grown and prepared for bioassay as described in Example 2. Biological activity was evaluated as described in Example 3. The results are as follows: 15 20 | Insect species | Percent | |--------------------------------|------------------| | tested | <b>Mortality</b> | | Ostrinia nubilalis | 0 | | Agrotis ipsilon | 0 | | Diabrotica virgifera virgifera | 55 | # Example 15. Isolation and Biological Activity of B. thuringiensis AB6. A B. thuringiensis strain, designated AB6, was isolated from grain bin dust samples by standard methods known in the art. A subculture of AB6 was grown and prepared for bioassay as described in Example 2. Half of the sample was autoclaved 15 minutes to test for the presence of β-exotoxin. Biological activity was evaluated as described in Example 3. The results are as follows: | 10 | Insect species | Percent | |----|-------------------------------------|-----------| | | tested | Mortality | | | Ostrinia nubilalis | 0 | | | Agrotis ipsilon | 100 | | | Agrotis ipsilon (autoclaved sample) | 0 | | 15 | Diabrotica virgifera virgifera | 0 | | | | | Strain AB6 has been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA, and given Accession No. NRRL B-21060. ## Example 16. <u>Isolation and Biological characterization of B. thuringiensis AB88.</u> A Bt strain, designated AB88, was isolated from grain bin dust samples by standard 25 methodologies. A subculture of AB88 was grown and prepared for bioassay as described in Example 2. Half of the sample was autoclaved 15 minutes to test for the presence of β-exotoxin. Biological activity was evaluated against a number of insect species as described in Example 3. The results are as follows: 20 | | | Percent mortality of culture supernatant | | | |-----------------------|-------------|------------------------------------------|------------|--| | Insect species tested | Order | Non-autoclaved | Autoclaved | | | Agrotis ipsilon | Lepidoptera | 100 | 5 | | | Ostrinia nubilalis | Lepidoptera | 100 | 0 | | | Spodoptera | | | | | | frugiperda | Lepidoptera | 100 | 4 | | | Helicoverpa zea | Lepidoptera | 100 | 12 | | | Heliothis virescens | Lepidoptera | 100 | 12 | | | <u>Leptinotarsa</u> | | | | | | decemlineata | Coleoptera | 0 | 0 | | | Diabrotica virgifera | - | | | | | <u>virgifera</u> | Coleoptera | 0 | 5 | | Delta-endotoxin crystals were purified from strain AB88 by standard methodologies. No activity from pure crystals was observed when bioassayed against <u>Agrotis ipsilon</u>. #### 5 Example 17. <u>Purification of VIPs from Strain AB88:</u> 10 15 Bacterial liquid culture was grown overnight at 30°C in TB media. Cells were spun out and the supernatant kept. Proteins were precipitated with ammonium sulfate (70% saturation), centrifuged and the pellet kept. The pellet was resuspended in the original volume of 20 mM Tris pH 7.5 and dialyzed against the same buffer. AB88 dialysate was more turbid than comparable material from AB78. AB88 proteins have been separated by several different methods following clarification including isoelectric focusing (Rotofor, BioRad, Hercules, CA), precipitation at pH 4.5, ion-exchange chromotography, size exclusion chromatography and ultrafiltration. European Corn Borer-active protein remained in the pellet obtained by pH 4.5 precipitation of dialysate. When preparative IEF was done on the dialysate using pH 3-10 ampholytes, ECB insecticidal activity was found in all fractions with pH of 7 or greater. SDS-PAGE of these fractions showed protein bands of MW ~60 kDa and ~80 kDa. The 60 kDa and 80 kDa bands were separated by anion exchange HPLC on a Poros-Q column (PerSeptive Biosystems, Cambridge, MA). N-terminal sequence was obtained from two fractions containing proteins of slightly differing MW, but both of approximately 60 kDa in size. The sequences obtained were similar to each other and to some δ-endotoxins. anion exchange fraction 23 (smaller): xEPFVSAxxxQxxx (SEQ ID NO:10) anion exchange fraction 28 (larger): xEYENVEPFVSAx (SEQ ID NO:11) When the (active) pH 4.5 pellet was further separated by anion exchange on a Poros-Q column, activity was found only in fractions with a major band of ~60 kDa. Black Cutworm-active protein also remained in the pellet when AB88 dialysate was brought down to pH 4.5. In preparative IEF using pH 3-10 ampholytes, activity was not found in the ECB-active IEF fractions; instead, it was highest in a fraction of pH 4.5-5.0. Its major components have molecular weights of ~35 and ~80 kDa. The pH 4.5 pellet was separated by anion exchange HPLC to yield fractions containing only the 35 kDa material and fractions containing both 35 kDa and 80 kDa bands. ## Example 18. <u>Characterization of AB88 VIP.</u> Fractions containing the various lepidopteran active vegetative proteins were generated as described in Example 17. Analysis of active fractions demonstrates that different VIP's are responsible for the different lepidopteran species activity. 20 5 10 The <u>Agrotis ipsilon</u> activity is due to an 80 kDa and or a 35 kDa protein either delivered singly or in combination. These proteins are not related to any $\delta$ -endotoxins from Bt as evidenced by the lack of sequence homology of known Bt $\delta$ -endotoxin sequences. Also, these proteins are not found in the AB88 $\delta$ -endotoxin crystal. N-terminal sequences of the major $\delta$ - endotoxin proteins were compared with the N-terminal sequences of the 80 kDa and 35 kDa VIP and reveal no sequence homology. A summary of the results follows: | Agrotis VIP N-terminal sequences | N-terminal sequence of major δ-<br>endotoxin proteins | |----------------------------------|-------------------------------------------------------| | | 130 kDa | | | MDNNPNINE (SEQ ID NO:14) | | 80 kDa | 80 kDa | | MNKNNTKLPTRALP (SEQ ID NO:12) | MDNNPNINE (SEQ ID NO:15) | | | 60 kDa | | | MNVLNSGRTTI (SEQ ID NO:16) | | 35 kDa | | | ALSENTGKDGGYIVP (SEQ ID NO:13) | | 5 The Ostrinia nubilalis activity is due to a 60 kDa VIP and the Spodoptera frugiperda activity is due to a VIP of unknown size. Bacillus thuringiensis strain AB88 has been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Ilinois 61604, USA and given the Accession No. NRRL B-21225. #### Example 19. <u>Isolation and Biological Activity of Other Bacillus sp.</u> 10 Other <u>Bacillus</u> species have been isolated which produce proteins with insecticidal activity during vegetative growth. These strains were isolated from environmental samples by standard methodologies. Isolates were prepared for bioassay and assayed as described in Examples 2 and 3 respectively. Isolates which produced insecticidal proteins during vegetative growth with activity against <u>Agrotis ipsilon</u> in the bioassay are tabulated below. | | Presence of δ-endotoxin | | | | |------------------|-------------------------|-------------------|--|--| | Bacillus isolate | crystal | Percent mortality | | | | AB6 | + | 100 | | | | AB53 | - | 80 | | | | AB88 | + | 100 | | | | AB195 | - | 60 | | | | AB211 | - | 70 | | | | AB217 | - | 83 | | | | AB272 | - | 80 | | | | AB279 | - | 70 | | | | AB289 | + | 100 | | | | AB292 | + | 80 | | | | AB294 | - | 100 | | | | AB300 | - | 80 | | | | AB359 | - | 100 | | | Isolates AB289, AB294 and AB359 have been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria Il 61604, USA and given the Accession Numbers NRRL B-21227, NRRL B-21229, and NRRL B-21226 respectively. <u>Bacillus</u> isolates which produce insecticidal proteins during vegetative growth with activity against <u>Diabrotica virgifera virgifera</u> are tabulated below. | 1 | Λ | |---|---| | ı | v | | | Presence of δ-endotoxin | | |------------------|-------------------------|-------------------| | Bacillus isolate | crystal | Percent mortality | | AB52 | • | 50 | | AB59 | • | 71 | | AB68 | + | 60 | | AB78 | • | 100 | | AB122 | - | 57. | | AB218 | • | 64 | | AB256 | - | 64 | Isolates AB59 and AB256 have been deposited in the Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria Illinois 61604, USA, and given the Accession Numbers NRRL B-21228 and B-21230, respectively. 5 10 All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. The following deposits have been made at Agricultural Research Service, Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, U.S.A.: | 15 | 1. <u>E</u> . <u>coli</u> PL2 | Accession No. NRRL B-21221 | |----|--------------------------------------|----------------------------| | | 2. <u>E</u> . <u>coli</u> pCIB 6022 | Accession No. NRRL B-21222 | | | 3. <u>E</u> . <u>coli</u> pCIB 6023 | Accession No. NRRL B-21223 | | | 4. Bacillus thuringiensis HD73-78VIP | Accession No. NRRL B-21224 | | | 5. Bacillus thuringiensis AB88 | Accession No. NRRL B-21225 | | 20 | 6. Bacillus thuringiensis AB359 | Accession No. NRRL B-21226 | | | 7. Bacillus thuringiensis AB289 | Accession No. NRRL B-21227 | | | 8. Bacillus sp. AB59 | Accession No. NRRL B-21228 | | | 9. Bacillus sp. AB294 | Accession No. NRRL B-21229 | | | 10. Bacillus sp. AB256 | Accession No. NRRL B-21230 | | 25 | 11. <u>E. coli</u> P5-4 | Accession No. NRRL B-21059 | 12. <u>E. coli</u> P3-12 Accession No. NRRL B-21061 13. <u>Bacillus cereus</u> AB78 Accession No. NRRL B-21058 14. <u>Bacillus thuringiensis</u> AB6 Accession No. NRRL B-21060 5 Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims. #### SEQUENCE LISTING #### (1) GENERAL INFORMATION: - (i) APPLICANT: - (A) NAME: CIBA-GEIGY AG - (B) STREET: Klybeckstrasse 141 - (C) CITY: Basle - (E) COUNTRY: Switzerland (F) POSTAL CODE (ZIP): CH-4002 - (G) TELEPHONE: (061) 696 11 11 - (H) TELEFAX: (061) 696 79 76 - (A) NAME: Gregory W. Warren - (B) STREET: 324 Bond Lake Drive - (C) CITY: Cary - (D) STATE: NC - (E) COUNTRY: USA - (F) POSTAL CODE (ZIP): 27513 - (A) NAME: Michael G. Koziel - (B) STREET: 509 Carolyn Court - (C) CITY: Cary (D) STATE: NC - (E) COUNTRY: USA - (F) POSTAL CODE (ZIP): 27511 - (A) NAME: Martha A. Mullins - (B) STREET: 104 Countrybrook Lane - (C) CITY: Youngsville - (D) STATE: NC (E) COUNTRY: USA - (F) POSTAL CODE (ZIP): 27596 - (A) NAME: Gordon J. Nye(B) STREET: 1001 Bray Court - (C) CITY: Apex - (D) STATE: NC - (E) COUNTRY: USA (F) POSTAL CODE (ZIP): 27502 - (A) NAME: Brian Carr - (B) STREET: 110 D Lady's Slipper Ct. - (C) CITY: Raleigh (D) STATE: N.C. - (E) COUNTRY: U.S.A. - (F) POSTAL CODE (ZIP): 27606 - (A) NAME: Nalini Manaj Desai - (B) STREET: 107 Silverwood Lane - (C) CITY: Cary - (D) STATE: N.C. (E) COUNTRY: U.S.A. - (F) POSTAL CODE (ZIP): 27511 - (A) NAME: N. Kristy Kostichka (B) STREET: 5017 Wineberry Dr. - (C) CITY: Durham - (D) STATE: NC - (E) COUNTRY: USA - (F) POSTAL CODE (ZIP): 27713 - (ii) TITLE OF INVENTION: Novel Pesticidal Proteins and Strains - (iii) NUMBER OF SEQUENCES: 18 - (iv) COMPUTER READABLE FORM: - (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO) - (vi) PRIOR APPLICATION DATA: - (A) APPLICATION NUMBER: US 08/037,057 - (B) FILING DATE: 25-MAR-1993 - (2) INFORMATION FOR SEQ ID NO: 1: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 6106 base pairs - (B) TYPE: nucleic acid - (C) STRANDEDNESS: single - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: DNA (genomic) - (vi) ORIGINAL SOURCE: - (A) ORGANISM: Bacillus cereus - (B) STRAIN: AB78 - (C) INDIVIDUAL ISOLATE: NRRL B-21058 - (ix) FEATURE: - (A) NAME/KEY: CDS - (B) LOCATION: 1082..1810 - (D) OTHER INFORMATION: /product= "VIP-2" /label= ORF-1 - (ix) FEATURE: - (A) NAME/KEY: CDS - (B) LOCATION: 1925..2470 - (D) OTHER INFORMATION: /product= "VIP-2" /label= ORF-2 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1: | 7 | TCGATACAA | TGTTGTTTTA | CTTAGACCGG | TAGTCTCTGT | AATTTGTTTA | ATGCTATATT | 60 | |---|------------|------------|------------|------------|------------|------------|-----| | C | TTTACTTTG | ATACATTTTA | ATAGCCATTT | CAACCTTATC | AGTATGTTTT | TGTGGTCTTC | 120 | | C | CTCCTTTTTT | TCCACGAGCT | CTAGCTGCGT | TTAATCCTGT | TTTGGTACGT | TCGCTAATAA | 180 | | 7 | ATCTCTTTC | TAATTCTGCA | ATACTTGCCA | TCATTCGAAA | GAAGAATTTC | CCCATAGCAT | 240 | | 7 | AGAGGTATC | AATGTTGTCA | TGAATAGAAA | TAAAATCTAC | ACCTAGCTCT | TTGAATTTTT | 300 | | c | ACTTAACTC | AATTAGGTGT | TTTGTAGAGC | GAGAAATTCG | ATCAAGTTTG | TAAACAACTA | 360 | | 420 | TTTTTA | TCTT | CGC | AGGG | TTG | CGAG | TCTI | A AC | TAGO | CTTI | AT A | CGT | TTT | GCC | 'TATC | TCT | |------|------------------|-------------------|------------------|------------------|------------|------------------|------------------|------------------|------------------|------------|------------------|------------------|------------------|------------------|------------|------------------| | 480 | CTATTT | GCAT | AAA | TTGC | TTG | CATA | 'ACAC | T CI | CCTI | 'ATAC | GA I | TCCI | TTTC | TAT | CTGI | TTC | | 540 | TGGTTT | AAAT | ATC | AAAA | ACC | CATA | CGAG | A CA | GCTG | CTGI | CT I | TGTI | ATTI | GAG | TATO | GCA | | 600 | AAATAA | ATTA | TAA | TTAT | ACC | AAAA | CACC | T AG | 'AAAA | TATI | 'AT C | ATAI | CTAA | TAT | TTCC | CAC | | 660 | GCTTTT | TAAC | TTT | GAGT | GAT | TATG | TCAA | T AC | TTGG | GATT | 'AT G | 'GGA'I | TTTI | TGT | ACTT | GGA | | 720 | AATCTG | AAAT. | AAT | ACAT | ATG | TGGG | TTTT | T CG | ACGG | ATAA | GC C | AAGI | AAAC | AAC | AAAA | GTI | | 780 | GACTGA | AACT( | TTC | GTAC | TTT | TTTA | CAGT | G CC | TACA | TCCT | GT A | CCTT | CTAA | AAC | GATT | TTI | | 840 | CTCTAT | GATG | ACG | CATA | TTC | TATT | TATA | A TT | TAAA | TTCA | GG I | TGAA | AACA | AAC | TGAA | ATA | | 900 | GCATCT | AAAA( | AAA | AGTG. | GGG. | CGGA | CAAA | A AA | AAAA | TAAG | TT A | TAAA | TAGT | TTA | TAGG | CTT | | 960 | ATGAAT | AAAT | AAT | AGAT. | ATT. | GGAG | GGGG | G AA | ATAA | TTTA | CT C | CAGG | TTTA | AAT | CTAT | TCT | | 1020 | AACAAA | CAAC | ATA | TCAT. | CTT | CTAA | TTAT | A AC | CAAT | TCTA | GC T | GTTT | AATT | TAT | TATC | ATC | | 1080 | TTCATA | TAAT: | AAA | TATA | CTT | GTTC | AGTT | T TC | CATT | TATT | GT A | GATT | TCCA | AAA | GACT | ACA | | 1126 | | AA T<br>ys Le | | | | | he M | | | | | | | | | | | 1174 | TCT<br>Ser | ATA<br>Ile<br>30 | TCT<br>Ser | TTC<br>Phe | GTT<br>Val | ACA<br>Thr | AGT<br>Ser<br>25 | CTT<br>Leu | TTG<br>Leu | GTA<br>Val | Thr | AAA<br>Lys<br>20 | ACT<br>Thr | GTT<br>Val | GTA<br>Val | CAA<br>Gln | | 1222 | TCT<br>Ser | AAT<br>Asn | ATA<br>Ile<br>45 | AAT<br>Asn | TTA<br>Leu | CAA<br>Gln | GAA<br>Glu | GCT<br>Ala<br>40 | AAA<br>Lys | ATA<br>Ile | GTG<br>Val | GAA<br>Glu | AAT<br>Asn<br>35 | AAT<br>Asn | TTA<br>Leu | TTA<br>Leu | | 1270 | GTA<br>Val | AAG<br>Lys | GAC<br>Asp | ACT<br>Thr<br>60 | ATC<br>Ile | AAA<br>Lys | CTA<br>Leu | AAT<br>Asn | CAA<br>Gln<br>55 | TTG<br>Leu | AAC<br>Asn | ACT<br>Thr | Tyr | AAA<br>Lys<br>50 | AGT<br>Ser | CAA<br>Gln | | 1318 | | AAA<br>Lys | | | | | | | | | | | | | | | | 1366 | AAT<br>Asn<br>95 | ATG<br>Met | AAA<br>Lys | GGA<br>Gly | AAA<br>Lys | GAA<br>Glu<br>90 | ACT<br>Thr | GCT<br>Ala | ACT<br>Thr | CTA<br>Leu | AAA<br>Lys<br>85 | TGG<br>Trp | GAG<br>Glu | AAA<br>Lys | GAA<br>Glu | AAA<br>Lys<br>80 | | 1414 | | GAA<br>Glu<br>110 | | | | | | | | | | | | | | | | 1462 | | TTA<br>Leu | | | | | | | | | | | | | | | | 1510 | | ATT<br>Ile | | | | | | | | | | | | | | | | | | Lys | AAT<br>Asn | | | | | | | | | | | | | 1558 | |--------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|------------------------------| | | | | AAT<br>Asn | | | | | | | | | | | | | 1606 | | | | | GAT<br>Asp | | | | | | | | | | | | | 1654 | | | | | CAA<br>Gln<br>195 | | | | | | | | | | | | | 1702 | | | | | AGT<br>Ser | | | | | | | | | | | | | 1750 | | | | | AAT<br>Asn | | | | | | | | | | | | | 1798 | | | CAT<br>His | | GAT<br>Asp | TAA | GTA! | rca 1 | AAAG' | rggt( | GA A | AAAA( | GGGG | G TG | GAGT( | SCCT | | 1850 | | TAC | TAAL | rga A | AGGGZ | ACTT: | ra az | AAAA | GAGT | TTC | GACT: | CTAA | AAA: | rgat <i>i</i> | ATA A | AATG | CTGAAG | 1910 | | | | | | | | | | | | | | | | | | | | CGC | ATAGO | CTG ( | GGT | | | | | | | TGG<br>Trp | | | | | | 1960 | | GAT | TCG | CAA | AGG<br>Arg | Met<br>1<br>GAA | Lys<br>GCT | Asn<br>TTA | Tyr | Glu<br>5<br>GGG | Glu<br>TAT | Trp | Ala | Lys | Asp<br>10<br>GAT | Leu | Thr | 1960<br>2008 | | GAT<br>Asp<br>GAA | TCG<br>Ser | CAA<br>Gln<br>15 | AGG | Met<br>1<br>GAA<br>Glu<br>TAT | Lys<br>GCT<br>Ala<br>TTA | Asn<br>TTA<br>Leu<br>AGA | Tyr GAT Asp 20 AAT | Glu<br>5<br>GGG<br>Gly<br>CAA | Glu<br>TAT<br>Tyr<br>GGC | Trp<br>GCT<br>Ala<br>GGA | Ala<br>AGG<br>Arg | Lys<br>CAA<br>Gln<br>25<br>GGA | Asp<br>10<br>GAT<br>Asp | TAT<br>Tyr | Thr<br>AAA<br>Lys<br>AAA | | | GAT<br>Asp<br>GAA<br>Glu | TCG<br>Ser<br>ATC<br>Ile<br>30<br>GAT | CAA<br>Gln<br>15<br>AAT<br>Asn | AGG<br>Arg | Met<br>1<br>GAA<br>Glu<br>TAT<br>Tyr | GCT<br>Ala<br>TTA<br>Leu | Asn<br>TTA<br>Leu<br>AGA<br>Arg<br>35 | Tyr GAT Asp 20 AAT Asn | Glu<br>5<br>GGG<br>Gly<br>CAA<br>Gln<br>TCT | Glu<br>TAT<br>Tyr<br>GGC<br>Gly<br>GAT | Trp<br>GCT<br>Ala<br>GGA<br>Gly<br>GCT | AGG<br>Arg<br>AGT<br>Ser<br>40 | CAA<br>Gln<br>25<br>GGA<br>Gly | Asp<br>10<br>GAT<br>Asp<br>AAT<br>Asn | TAT<br>Tyr<br>GAA<br>Glu | Thr AAA Lys AAA Lys CCA | 2008 | | GAT<br>Asp<br>GAA<br>Glu<br>CTA<br>Leu<br>45 | TCG<br>Ser<br>ATC<br>Ile<br>30<br>GAT<br>Asp | CAA<br>Gln<br>15<br>AAT<br>Asn<br>GCT<br>Ala | AGG<br>Arg<br>AAT<br>Asn | Met<br>1<br>GAA<br>Glu<br>TAT<br>Tyr<br>ATA<br>Ile | GCT<br>Ala<br>TTA<br>Leu<br>AAA<br>Lys<br>50 | TTA<br>Leu<br>AGA<br>Arg<br>35<br>AAT<br>Asn | GAT<br>Asp<br>20<br>AAT<br>Asn<br>ATT<br>Ile | GGG<br>Gly<br>CAA<br>Gln<br>TCT<br>Ser | Glu<br>TAT<br>Tyr<br>GGC<br>Gly<br>GAT<br>Asp | GCT Ala GGA Gly GCT Ala 55 | AGG<br>Arg<br>AGT<br>Ser<br>40<br>TTA<br>Leu | CAA<br>Gln<br>25<br>GGA<br>Gly<br>GGG<br>Gly | ASP<br>10<br>GAT<br>ASP<br>AAT<br>ASN<br>AAG<br>Lys | TAT<br>Tyr<br>GAA<br>Glu<br>AAA<br>Lys | Thr AAA Lys AAA Lys CCA Pro 60 TTT | 2008 | | GAT<br>ASP<br>GAA<br>Glu<br>CTA<br>Leu<br>45<br>ATA<br>Ile | TCG<br>Ser<br>ATC<br>Ile<br>30<br>GAT<br>Asp<br>CCG<br>Pro | CAA<br>Gln<br>15<br>AAT<br>Asn<br>GCT<br>Ala<br>GAA<br>Glu | AGG<br>Arg<br>AAT<br>Asn<br>CAA<br>Gln | Met<br>1<br>GAA<br>Glu<br>TAT<br>Tyr<br>ATA<br>Ile<br>ATT<br>Ile<br>65 | GCT Ala TTA Leu AAA Lys 50 ACT Thr | Asn<br>TTA<br>Leu<br>AGA<br>Arg<br>35<br>AAT<br>Asn<br>GTG<br>Val | Tyr GAT Asp 20 AAT Asn ATT Ile TAT Tyr | Glu<br>5<br>GGG<br>Gly<br>CAA<br>Gln<br>TCT<br>Ser<br>AGA<br>Arg | Glu TAT Tyr GGC Gly GAT Asp TGG Trp 70 TCT | Trp GCT Ala GGA Gly GCT Ala 55 TGT Cys | AGG<br>Arg<br>AGT<br>Ser<br>40<br>TTA<br>Leu<br>GGC<br>Gly | CAA<br>Gln<br>25<br>GGA<br>Gly<br>GGG<br>Gly<br>ATG<br>Met | Asp<br>10<br>GAT<br>Asp<br>AAT<br>Asn<br>AAG<br>Lys<br>CCG<br>Pro | TAT<br>Tyr<br>GAA<br>Glu<br>AAA<br>Lys<br>GAA<br>Glu<br>75 | Thr AAA Lys AAA Lys CCA Pro 60 TTT Phe | 2008<br>2056<br>2104 | | GAT<br>Asp<br>GAA<br>Glu<br>CTA<br>Leu<br>45<br>ATA<br>Ile<br>GGT<br>Gly | TCG<br>Ser<br>ATC<br>Ile<br>30<br>GAT<br>Asp<br>CCG<br>Pro | CAA<br>Gln<br>15<br>AAT<br>Asn<br>GCT<br>Ala<br>GAA<br>Glu<br>CAA<br>Gln | AGG<br>Arg<br>AAT<br>Asn<br>CAA<br>Gln<br>AAT<br>Asn | Met<br>1<br>GAA<br>Glu<br>TAT<br>Tyr<br>ATA<br>Ile<br>65<br>AGT<br>Ser | GCT Ala TTA Leu AAA Lys 50 ACT Thr GAT Asp | Asn TTA Leu AGA Arg 35 AAT Asn GTG Val CCG Pro | GAT Asp 20 AAT Asn ATT Ile TAT Tyr TTA Leu GAA | Glu 5 GGG Gly CAA Gln TCT Ser AGA Arg CCT Pro 85 GAC | Glu TAT Tyr GGC Gly GAT Asp TGG Trp 70 TCT Ser | GCT Ala GGA Gly GCT Ala 555 TGT Cys TTA Leu GGA | Ala AGG Arg AGT Ser 40 TTA Leu GGC Gly AAA Lys | CAA<br>Gln<br>25<br>GGA<br>Gly<br>GGG<br>Gly<br>ATG<br>Met | Asp<br>10<br>GAT<br>Asp<br>AAT<br>Asn<br>AAG<br>Lys<br>CCG<br>Pro<br>TTT<br>Phe<br>90<br>AGT | TAT<br>Tyr<br>GAA<br>Glu<br>AAA<br>Lys<br>GAA<br>Glu<br>75<br>GAA<br>Glu | Thr AAA Lys AAA Lys CCA Pro 60 TTT Phe GAA Glu AGC | 2008<br>2056<br>2104<br>2152 | | Leu | Ser<br>110 | Ser | Glu | Arg | Leu | Ala<br>115 | Ala | Phe | Gly | Ser | Arg<br>120 | Lys | Ile | Ile | Leu | | | |-------------------|------------|-------------------|-------------------|------------|-------------------|------------|-------------------|-------------------|------------|-------------------|---------------|------------|-------------------|------------|-------------------|----------|------| | CGA<br>Arg<br>125 | TTA<br>Leu | CAA<br>Gln | GTT<br>Val | CCG<br>Pro | AAA<br>Lys<br>130 | GGA<br>Gly | AGT<br>Ser | ACG<br>Thr | GGT<br>Gly | GCG<br>Ala<br>135 | TAT<br>Tyr | TTA<br>Leu | AGT<br>Ser | GCC<br>Ala | ATT<br>Ile<br>140 | | 2344 | | | | | GCA<br>Ala | | | | | | | | | | | | | | 2392 | | TAT<br>Tyr | CAT<br>His | ATT | GAT<br>Asp<br>160 | AAA<br>Lys | GTA<br>Val | ACA<br>Thr | GAG<br>Glu | GTA<br>Val<br>165 | ATT<br>Ile | ATT<br>Ile | AAA<br>Lys | GGT<br>Gly | GTT<br>Val<br>170 | AAG<br>Lys | CGA<br>Arg | | 2440 | | TAT<br>Tyr | GTA<br>Val | GTG<br>Val<br>175 | GAT<br>Asp | GCA<br>Ala | ACA<br>Thr | TTA<br>Leu | TTA<br>Leu<br>180 | ACA<br>Thr | AAT<br>Asn | TAA | GGAG <i>I</i> | ATG A | AAA. | ATATO | SA | | 2490 | | AGAA | AAAG | STT . | AGCAA | GTGI | T GI | AAC | STGTA | CGI | TAT | TAGC | TCCI | ATG | TT ' | TTGA | ATGGA. | A | 2550 | | ATGT | 'GAA'I | GC ' | TGTTI | ACGC | A GA | CAGC | AAAA | CAA | ATC | TAA | TTCT | ACA | ACA ( | CAGAA | TAAA | C | 2610 | | AACA | GAAA | GA ( | GATGG | ACCG | A AA | AGGA | TTAC | TTG | GGTA | ATTA | TTTC | CAAAC | GA Z | AAAGA | ATTTT. | A | 2670 | | GTAA | TCTT | 'AC | TATGI | TTGC | A CC | GACA | CGTG | ATA | GTAC | CTCT | TATI | TATO | AT ( | CAACA | AACA | G | 2730 | | CAAA | TAAA | CT | ATTAG | ATAA | A AA | ACAA | CAAG | AAT | ATCA | GTC | TATI | CGTI | GG I | ATTG | TTTG. | A | 2790 | | TTCA | GAGT | 'AA | AGAAA | CGGG | A GA | TTTC | ACAT | TTA | ACTI | ATC | TGAG | GAT | SAA ( | CAGGC | AATT | A | 2850 | | TAGA | AATC | AA ! | IGGGA | TAAA | T AT | TTCI | 'AATA | AAG | GGAA | AGA | AAAG | CAAG | STT ( | GTCCA | ATTA | G | 2910 | | AAAA | AGGA | AA A | ATTAG | TTCC | A AI | CAAA | ATAG | AGT | ATCA | ATC | AGAT | 'ACAA | AA! | TTAA | TATT | G | 2970 | | ACAG | TAAA | AC A | ATTTA | AAGA | A CI | 'TAAA | TATT | TTA | RAA I | AGA | TAGI | CAAA | AC ( | CAACC | CCAG | С | 3030 | | AAGT | CCAG | CA A | AGATG | AACT | G AG | TAAA | CCTG | AAT | TTAA | CAA | GAAA | GAAI | CA ( | CAGGA | ATTC: | r | 3090 | | TAGC | GAAA | CC Z | ATCGA | AAAT | A AA | TCTT | TTCA | CTC | AAMA | TAA | GAAA | AGGG | AA A | ATTGA | TGAA | 3 | 3150 | | ACAC | GGAT | AC ( | GGATG | GGGA | C TC | TATT | CCTG | ACC | TTTG | GGA | AGAA | AATG | GG : | TATAC | GATT( | С | 3210 | | AMAA | TAGA | AT ( | CGCTG | TAAA | G TG | GGAC | GATT | CTC | TAGO | AAG | TAAA | .GGGI | 'AT A | ACGAA | TTTA. | <b>3</b> | 3270 | | TTTC. | AAAT | CC I | ACTAG | AAAG | T CA | CACA | GTTG | GTG | ATCC | TTA | TACA | GATI | 'AT ( | SAAAA | .GGCA | 3 | 3330 | | CAAG. | AGAT | CT A | AGATT | TGTC | A AA | TGCA | AAGG | AAA | CGTT | TAA | CCCA | TTGG | TA ( | CTGC | TTTT | 2 | 3390 | | CAAG | TGTG. | AA 1 | rgtta | GTAT | G GA | AAAG | GTGA | TAT | TATC | ACC | AAAT | GAAA | AT I | TATC | CAAT | A | 3450 | | GTGT | AGAG | TC 1 | CATT | CATC | C AC | GAAT | TGGT | CTT | ATAC | AAA | TACA | GAAG | GT ( | CTTC | TGTT | 3 | 3510 | | AAGC | GGGG. | AT I | rggac | CAAA | a GG | TATT | TCGT | TCG | GAGT | TAG | CGTA | AACT | 'AT ( | CAACA | CTCT( | 3 | 3570 | | AAAC | AGTT | GC F | ACAAG | AATG | G <b>G</b> G | AACA | TCTA | CAG | GAAA | TAC | TTCG | CAAT | TC A | ATAC | GGCT: | r | 3630 | | CAGC | GGGA' | TA I | AATT | ATGC. | A AA | TGTT | CGAT | ATA | ACAA | TGT | AGGA | ACTG | GT ( | CCAT | CTAC | 3 | 3690 | | ATGT | AAAA | CC I | TACAA | CAAG' | т тт | TGTA | TTAA | ATA | ACGA | TAC | TATC | GCAA | CT A | ATTAC | GGCGZ | A | 3750 | | AATCTAATTC | TACAGCCTTA | AATATATCTC | CTGGAGAAAG | TTACCCGAAA | AAAGGACAAA | 3810 | |------------|------------|------------|------------|------------|------------|------| | ATGGAATCGC | AATAACATCA | ATGGATGATT | TTAATTCCCA | TCCGATTACA | TTAAATAAAA | 3870 | | AACAAGTAGA | TAATCTGCTA | AATAATAAAC | CTATGATGTT | GGAAACAAAC | CAAACAGATG | 3930 | | GTGTTTATAA | GATAAAAGAT | ACACATGGAA | ATATAGTAAC | TGGCGGAGAA | TGGAATGGTG | 3990 | | TCATACAACA | AATCAAGGCT | AAAACAGCGT | CTATTATTGT | GGATGATGGG | GAACGTGTAG | 4050 | | CAGAAAAACG | TGTAGCGGCA | AAAGATTATG | AAAATCCAGA | AGATAAAACA | CCGTCTTTAA | 4110 | | CTTTAAAAGA | TGCCCTGAAG | CTTTCATATC | CAGATGAAAT | AAAAGAAATA | GAGGGATTAT | 4170 | | TATATTATAA | AAACAAACCG | ATATACGAAT | CGAGCGTTAT | GACTTACTTA | GATGAAAATA | 4230 | | CAGCAAAAGA | AGTGACCAAA | CAATTAAATG | ATACCACTGG | GAAATTTAAA | GATGTAAGTC | 4290 | | ATTTATATGA | TGTAAAACTG | ACTCCAAAAA | TGAATGTTAC | AATCAAATTG | TCTATACTTT | 4350 | | ATGATAATGC | TGAGTCTAAT | GATAACTCAA | TTGGTAAATG | GACAAACACA | AATATTGTTT | 4410 | | CAGGTGGAAA | TAACGGAAAA | AAACAATATT | CTTCTAATAA | TCCGGATGCT | AATTTGACAT | 4470 | | TAAATACAGA | TGCTCAAGAA | AAATTAAATA | AAAATCGTGA | CTATTATATA | AGTTTATATA | 4530 | | TGAAGTCAGA | AAAAAACACA | CAATGTGAGA | TTACTATAGA | TGGGGAGATT | TATCCGATCA | 4590 | | CTACAAAAAC | AGTGAATGTG | AATAAAGACA | ATTACAAAAG | ATTAGATATT | ATAGCTCATA | 4650 | | ATATAAAAAG | TAATCCAATT | TCTTCACTTC | ATATTAAAAC | GAATGATGAA | ATAACTTTAT | 4710 | | TTTGGGATGA | TATTTCTATA | ACAGATGTAG | CATCAATAAA | ACCGGAAAAT | TTAACAGATT | 4770 | | CAGAAATTAA | ACAGATTTAT | AGTAGGTATG | GTATTAAGTT | AGAAGATGGA | ATCCTTATTG | 4830 | | ATAAAAAAGG | TGGGATTCAT | TATGGTGAAT | TTATTAATGA | AGCTAGTTTT | AATATTGAAC | 4890 | | CATTGCCAAA | TTATGTGACC | AAATATGAAG | TTACTTATAG | TAGTGAGTTA | GGACCAAACG | 4950 | | TGAGTGACAC | ACTTGAAAGT | GATAAAATTT | ACAAGGATGG | GACAATTAAA | TTTGATTTTA | 5010 | | CCAAATATAG | TAAAAATGAA | CAAGGATTAT | TTTATGACAG | TGGATTAAAT | TGGGACTTTA | 5070 | | AAATTAATGC | TATTACTTAT | GATGGTAAAG | AGATGAATGT | TTTTCATAGA | TATAATAAAT | 5130 | | AGTTATTATA | TCTATGAAGC | TGGTGCTAAA | GATAGTGTAA | AAGTTAATAT | ACTGTAGGAT | 5190 | | TGTAATAAAA | GTAATGGAAT | TGATATCGTA | CTTTGGAGTG | GGGGATACTT | TGTAAATAGT | 5250 | | TCTATCAGAA | ACATTAGACT | AAGAAAAGTT | ACTACCCCCA | CTTGAAAATG | AAGATTCAAC | 5310 | | TGATTACAAA | CAACCTGTTA | AATATTATAA | GGTTTTAACA | AAATATTAAA | CTCTTTATGT | 5370 | | TAATACTGTA | ATATAAAGAG | TTTAATTGTA | TTCAAATGAA | GCTTTCCCAC | AAAATTAGAC | 5430 | | TGATTATCTA | ATGAAATAAT | CAGTCTAATT | TTGTAGAACA | GGTCTGGTAT | TATTGTACGT | 5490 | | GGTCACTAAA | AGATATCTAA | TATTATTGGG | CAAGGCGTTC | CATGATTGAA | TCCTCGAATG | 5550 | | TCTTGCCCTT | TTCATTTATT | TAAGAAGGAT | TGTGGAGAAA | TTATGGTTTA | GATAATGAAG | 5610 | |------------|------------|------------|------------|------------|------------|------| | AAAGACTTCA | CTTCTAATTT | TTGATGTTAA | ATAAATCAAA | ATTTGGCGAT | TCACATTGTT | 5670 | | TAATCCACTG | ATAAAACATA | CTGGAGTGTT | CTTAAAAAAT | CAGCTTTTTT | CTTTATAAAA | 5730 | | TTTTGCTTAG | CGTACGAAAT | TCGTGTTTTG | TTGGTGGGAC | CCCATGCCCA | TCAACTTAAG | 5790 | | AGTAAATTAG | TAATGAACTT | TCGTTCATCT | GGATTAAAAT | AACCTCAAAT | TAGGACATGT | 5850 | | TTTTAAAAAT | AAGCAGACCA | AATAAGCCTA | GAATAGGTAT | CATTTTTAAA | AATTATGCTG | 5910 | | CTTTCTTTTG | TTTTCCAAAT | CCATTATACT | CATAAGCAAC | ACCCATAATG | TCAAAGACTG | 5970 | | TTTTTGTCTC | ATATCGATAA | GCTTGATATC | GAATTCCTGC | AGCCCGGGGG | ATCCACTAGT | 6030 | | TCTAGAGCGG | CCGCCACCGC | GGTGGAGCTC | CAGCTTTTGT | TCCCTTTAGT | GAGGGTTAAG | 6090 | | TTCGAGCTTG | TCGTGG | | | | | 6106 | ## (2) INFORMATION FOR SEQ ID NO: 2: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 243 amino acids - (B) TYPE: amino acid(D) TOPOLOGY: linear - (ii) MOLECULE TYPE: protein - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2: - Met Lys Arg Met Glu Gly Lys Leu Phe Met Val Ser Lys Lys Leu Gln 1 15 - Val Val Thr Lys Thr Val Leu Leu Ser Thr Val Phe Ser Ile Ser Leu 20 25 30 - Leu Asn Asn Glu Val Ile Lys Ala Glu Gln Leu Asn Ile Asn Ser Gln - Ser Lys Tyr Thr Asn Leu Gln Asn Leu Lys Ile Thr Asp Lys Val Glu - Asp Phe Lys Glu Asp Lys Glu Lys Ala Lys Glu Trp Gly Lys Glu Lys 65 70 75 80 - Glu Lys Glu Trp Lys Leu Thr Ala Thr Glu Lys Gly Lys Met Asn Asn - Phe Leu Asp Asn Lys Asn Asp Ile Xaa Thr Asn Tyr Lys Glu Ile Thr 105 - Phe Ser Met Ala Gly Ser Phe Glu Asp Glu Ile Lys Asp Leu Lys Glu - Ile Asp Lys Met Phe Asp Lys Thr Asn Leu Ser Asn Ser Ile Ile Thr Tyr Lys Asn Val Glu Pro Thr Thr Ile Gly Phe Asn Lys Ser Leu Thr 145 150 155 160 Glu Gly Asn Thr Ile Asn Ser Asp Ala Met Ala Gln Phe Lys Glu Gln 165 170 175 Phe Leu Asp Arg Asp Ile Lys Phe Asp Ser Tyr Leu Asp Thr His Leu 180 185 190 Thr Ala Gln Gln Val Ser Ser Lys Glu Arg Val Ile Leu Lys Val Thr 195 200 205 Val Pro Ser Gly Lys Gly Ser Thr Thr Pro Thr Lys Ala Gly Val Ile 210 215 220 Leu Asn Asn Ser Glu Tyr Lys Met Leu Ile Asp Asn Gly Tyr Met Val 225 230 235 His Val Asp #### (2) INFORMATION FOR SEQ ID NO: 3: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 182 amino acids - (B) TYPE: amino acid - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: protein - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3: Met Lys Asn Tyr Glu Glu Trp Ala Lys Asp Leu Thr Asp Ser Gln Arg 1 10 15 Glu Ala Leu Asp Gly Tyr Ala Arg Gln Asp Tyr Lys Glu Ile Asn Asn 20 25 30 Tyr Leu Arg Asn Gln Gly Gly Ser Gly Asn Glu Lys Leu Asp Ala Gln 35 40 45 Ile Lys Asn Ile Ser Asp Ala Leu Gly Lys Lys Pro Ile Pro Glu Asn 50 55 60 Ile Thr Val Tyr Arg Trp Cys Gly Met Pro Glu Phe Gly Tyr Gln Ile 65 70 75 80 Ser Asp Pro Leu Pro Ser Leu Lys Asp Phe Glu Glu Gln Phe Leu Asn 85 90 95 Thr Ile Lys Glu Asp Lys Gly Tyr Met Ser Thr Ser Leu Ser Ser Glu 100 105 110 Arg Leu Ala Ala Phe Gly Ser Arg Lys Ile Ile Leu Arg Leu Gln Val 115 120 125 Pro Lys Gly Ser Thr Gly Ala Tyr Leu Ser Ala Ile Gly Gly Phe Ala 130 135 140 Ser Glu Lys Glu Ile Leu Leu Asp Lys Asp Ser Lys Tyr His Ile Asp 150 155 Lys Val Thr Glu Val Ile Ile Lys Gly Val Lys Arg Tyr Val Val Asp Ala Thr Leu Leu Thr Asn 180 (2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2655 base pairs(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iii) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: Bacillus cereus (B) STRAIN: AB78 (C) INDIVIDUAL ISOLATE: NRRL B-21058 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..2652 (C) IDENTIFICATION METHOD: experimental (D) OTHER INFORMATION: /product= "100 kDa protein VIP-1" /evidence= EXPERIMENTAL (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4: ATG AAA AAT ATG AAG AAA AAG TTA GCA AGT GTT GTA ACG TGT ACG TTA 48 Met Lys Asn Met Lys Lys Leu Ala Ser Val Val Thr Cys Thr Leu TTA GCT CCT ATG TTT TTG AAT GGA AAT GTG AAT GCT GTT TAC GCA GAC 96 Leu Ala Pro Met Phe Leu Asn Gly Asn Val Asn Ala Val Tyr Ala Asp 20 25 AGC AAA ACA AAT CAA ATT TCT ACA ACA CAG AAA AAT CAA CAG AAA GAG 144 Ser Lys Thr Asn Gln Ile Ser Thr Thr Gln Lys Asn Gln Gln Lys Glu 35 ATG GAC CGA AAA GGA TTA CTT GGG TAT TAT TTC AAA GGA AAA GAT TTT 192 Met Asp Arg Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe AGT AAT CTT ACT ATG TTT GCA CCG ACA CGT GAT AGT ACT CTT ATT TAT 240 Ser Asn Leu Thr Met Phe Ala Pro Thr Arg Asp Ser Thr Leu Ile Tyr GAT CAA CAA ACA GCA AAT AAA CTA TTA GAT AAA AAA CAA CAA GAA TAT 288 Asp Gln Gln Thr Ala Asn Lys Leu Leu Asp Lys Lys Gln Gln Glu Tyr | | | | | 85 | | | | | 90 | | | | | 95 | | | |------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|------------|------------|------------|------| | | | | | Trp | | | | | CAG<br>Gln | | | | | | | 336 | | | | | | | | | | | CAG<br>Gln | | | | | | | 384 | | | | | | | | | | | GAA<br>Glu | | | | | | TTA<br>Leu | 432 | | | Lys | | | | | | | | ATA<br>Ile | | | | | | | 480 | | | | | | | | | | | AAA<br>Lys<br>170 | | | | | | | 528 | | | | | | | | | | | GTC<br>Val | | | | | | | 576 | | AAT<br>Asn | CCT<br>Pro | GAA<br>Glu<br>195 | TTT<br>Phe | AAC<br>Asn | AAG<br>Lys | AAA<br>Lys | GAA<br>Glu<br>200 | TCA<br>Ser | CAG<br>Gln | GAA<br>Glu | TTC<br>Phe | TTA<br>Leu<br>205 | GCG<br>Ala | AAA<br>Lys | CCA<br>Pro | 624 | | | | | | | | | | | ATG<br>Met | | | | | | | 672 | | | | | | | | | | | CCT<br>Pro | | | | | | | 720 | | | | | | | | | | | GTA<br>Val<br>250 | | | | | | | 768 | | | | | | | | | | | TCA<br>Ser | | | | | | | 816 | | | | | | | | | | | GAA<br>Glu | | | | | | | 864 | | | | | | | | | | | AAC<br>Asn | | | | | | | 912 | | | | | | | | | | | GTG<br>Val | | | | | | | 960 | | | | | | | | | | | TCA<br>Ser | | | | | | | 1008 | | | | 325 | | | 330 | | | 335 | | |--|-----|-----|-------------------|--|-----|--|--|-----|----------| | | | | TCT<br>Ser | | | | | | 1056 | | | | | GTA<br>Val | | | | | | 1104 | | | Trp | | ACA<br>Thr<br>375 | | | | | | 1152 | | | | | GCA<br>Ala | | | | | | 1200 | | | | | AAA<br>Lys | | | | | | <br>1248 | | | | | ACG<br>Thr | | | | | | 1296 | | | | | TAC<br>Tyr | | | | | | 1344 | | | | | TTT<br>Phe<br>455 | | | | | | 1392 | | | | | CTA<br>Leu | | | | | | 1440 | | | | | TAT<br>Tyr | | | | | | 1488 | | | | | AAT<br>Asn | | | | | | 1536 | | | | | GAT<br>Asp | | | | | | 1584 | | | | | GAA<br>Glu<br>535 | | | | | | 1632 | | | | | AAG<br>Lys | | | | | | 1680 | | | | | TAT<br>Tyr | | | | | | 1728 | | | | | | 565 | | | | | 570 | | | | | 575 | | | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------| | GTT<br>Val | ATG<br>Met | ACT<br>Thr | TAC<br>Tyr<br>580 | TTA<br>Leu | GAT<br>Asp | GAA<br>Glu | AAT<br>Asn | ACA<br>Thr<br>585 | GCA<br>Ala | AAA<br>Lys | GAA<br>Glu | GTG<br>Val | ACC<br>Thr<br>590 | AAA<br>Lys | CAA<br>Gln | 1776 | | TTA<br>Leu | AAT<br>Asn | GAT<br>Asp<br>595 | ACC<br>Thr | ACT<br>Thr | GGG<br>Gly | AAA<br>Lys | TTT<br>Phe<br>600 | AAA<br>Lys | GAT<br>Asp | GTA<br>Val | AGT<br>Ser | CAT<br>His<br>605 | TTA<br>Leu | TAT<br>Tyr | GAT<br>Asp | 1824 | | GTA<br>Val | AAA<br>Lys<br>610 | CTG<br>Leu | ACT<br>Thr | CCA<br>Pro | AAA<br>Lys | ATG<br>Met<br>615 | AAT<br>Asn | GTT<br>Val | ACA<br>Thr | ATC<br>Ile | AAA<br>Lys<br>620 | TTG<br>Leu | TCT<br>Ser | ATA<br>Ile | CTT<br>Leu | 1872 | | TAT<br>Tyr<br>625 | GAT<br>Asp | AAT<br>Asn | GCT<br>Ala | GAG<br>Glu | TCT<br>Ser<br>630 | AAT<br>Asn | GAT<br>Asp | AAC<br>Asn | TCA<br>Ser | ATT<br>Ile<br>635 | GGT<br>Gly | AAA<br>Lys | TGG<br>Trp | ACA<br>Thr | AAC<br>Asn<br>640 | 1920 | | ACA<br>Thr | AAT<br>Asn | ATT<br>Ile | GTT<br>Val | TCA<br>Ser<br>645 | GGT<br>Gly | GGA<br>Gly | AAT<br>Asn | AAC<br>Asn | GGA<br>Gly<br>650 | AAA<br>Lys | AAA<br>Lys | CAA<br>Gln | TAT<br>Tyr | TCT<br>Ser<br>655 | TCT<br>Ser | 1968 | | AAT<br>Asn | AAT<br>Asn | CCG<br>Pro | GAT<br>Asp<br>660 | GCT<br>Ala | AAT<br>Asn | TTG<br>Leu | ACA<br>Thr | TTA<br>Leu<br>665 | AAT<br>Asn | ACA<br>Thr | GAT<br>Asp | GCT<br>Ala | CAA<br>Gln<br>670 | GAA<br>Glu | AAA<br>Lys | 2016 | | TTA<br>Leu | AAT<br>Asn | AAA<br>Lys<br>675 | AAT<br>Asn | CGT<br>Arg | GAC<br>Asp | TAT<br>Tyr | TAT<br>Tyr<br>680 | ATA<br>Ile | AGT<br>Ser | TTA<br>Leu | TAT<br>Tyr | ATG<br>Met<br>685 | AAG<br>Lys | TCA<br>Ser | GAA<br>Glu | 2064 | | AAA<br>Lys | AAC<br>Asn<br>690 | ACA<br>Thr | CAA<br>Gln | TGT<br>Cys | GAG<br>Glu | ATT<br>Ile<br>695 | ACT<br>Thr | ATA<br>Ile | GAT<br>Asp | GGG<br>Gly | GAG<br>Glu<br>700 | ATT<br>Ile | TAT<br>Tyr | CCG<br>Pro | ATC<br>Ile | 2112 | | ACT<br>Thr<br>705 | ACA<br>Thr | AAA<br>Lys | ACA<br>Thr | GTG<br>Val | AAT<br>Asn<br>710 | GTG<br>Val | AAT<br>Asn | AAA<br>Lys | GAC<br>Asp | AAT<br>Asn<br>715 | TAC<br>Tyr | AAA<br>Lys | AGA<br>Arg | TTA<br>Leu | GAT<br>Asp<br>720 | 2160 | | ATT<br>Ile | ATA<br>Ile | GCT<br>Ala | CAT<br>His | AAT<br>Asn<br>725 | ATA<br>Ile | AAA<br>Lys | AGT<br>Ser | AAT<br>Asn | CCA<br>Pro<br>730 | ATT<br>Ile | TCT<br>Ser | TCA<br>Ser | CTT<br>Leu | CAT<br>His<br>735 | ATT<br>Ile | 2208 | | AAA<br>Lys | Thr | Asn | GAT<br>Asp<br>740 | Glu | Ile | Thr | Leu | Phe | Trp | Asp | Asp | Ile | Ser | ATA<br>Ile | ACA<br>Thr | 2256 | | GAT<br>Asp | GTA<br>Val | GCA<br>Ala<br>755 | TCA<br>Ser | ATA<br>Ile | AAA<br>Lys | CCG<br>Pro | GAA<br>Glu<br>760 | AAT<br>Asn | TTA<br>Leu | ACA<br>Thr | GAT<br>Asp | TCA<br>Ser<br>765 | GAA<br>Glu | ATT<br>Ile | AAA<br>Lys | 2304 | | CAG<br>Gln | ATT<br>Ile<br>770 | TAT<br>Tyr | AGT<br>Ser | AGG<br>Arg | TAT<br>Tyr | GGT<br>Gly<br>775 | ATT<br>Ile | AAG<br>Lys | TTA<br>Leu | GAA<br>Glu | GAT<br>Asp<br>780 | GGA<br>Gly | ATC<br>Ile | CTT<br>Leu | ATT<br>Ile | 2352 | | GAT<br>Asp<br>785 | AAA<br>Lys | AAA<br>Lys | GGT<br>Gly | GGG<br>Gly | ATT<br>Ile<br>790 | CAT<br>His | TAT<br>Tyr | GGT<br>Gly | GAA<br>Glu | TTT<br>Phe<br>795 | ATT<br>Ile | AAT<br>Asn | GAA<br>Glu | GCT<br>Ala | AGT<br>Ser<br>800 | 2400 | | TTT<br>Phe | AAT<br>Asn | ATT<br>Ile | GAA<br>Glu | CCA<br>Pro | TTG<br>Leu | CCA<br>Pro | AAT<br>Asn | TAT<br>Tyr | GTG<br>Val | ACC<br>Thr | AAA<br>Lys | TAT<br>Tyr | GAA<br>Glu | GTT<br>Val | ACT<br>Thr | 2448 | | | | | | 805 | | | | | 810 | | | | | 815 | | | |-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|-------------------|------------|-------------------|------| | TAT<br>Tyr | AGT<br>Ser | AGT<br>Ser | GAG<br>Glu<br>820 | TTA<br>Leu | GGA<br>Gly | CCA<br>Pro | AAC<br>Asn | GTG<br>Val<br>825 | AGT<br>Ser | GAC<br>Asp | ACA<br>Thr | CTT<br>Leu | GAA<br>Glu<br>830 | AGT<br>Ser | GAT<br>Asp | 2496 | | AAA<br>Lys | ATT<br>Ile | TAC<br>Tyr<br>835 | AAG<br>Lys | GAT<br>Asp | GGG<br>Gly | ACA<br>Thr | ATT<br>Ile<br>840 | AAA<br>Lys | TTT<br>Phe | GAT<br>Asp | TTT<br>Phe | ACC<br>Thr<br>845 | AAA<br>Lys | TAT<br>Tyr | AGT<br>Ser | 2544 | | AAA<br>Lys | AAT<br>Asn<br>850 | GAA<br>Glu | CAA<br>Gln | GGA<br>Gly | TTA<br>Leu | TTT<br>Phe<br>855 | TAT<br>Tyr | GAC<br>Asp | AGT<br>Ser | GGA<br>Gly | TTA<br>Leu<br>860 | AAT<br>Asn | TGG<br>Trp | GAC<br>Asp | TTT<br>Phe | 2592 | | AAA<br>Lys<br>865 | ATT<br>Ile | AAT<br>Asn | GCT<br>Ala | ATT<br>Ile | ACT<br>Thr<br>870 | TAT<br>Tyr | GAT<br>Asp | GGT<br>Gly | AAA<br>Lys | GAG<br>Glu<br>875 | ATG<br>Met | AAT<br>Asn | GTT<br>Val | TTT<br>Phe | CAT<br>His<br>880 | 2640 | | | TAT<br>Tyr | _ | | TAG | | | | | | | | | | | | 2655 | #### (2) INFORMATION FOR SEQ ID NO: 5: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 884 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: protein - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: - Met Lys Asn Met Lys Lys Leu Ala Ser Val Val Thr Cys Thr Leu - Leu Ala Pro Met Phe Leu Asn Gly Asn Val Asn Ala Val Tyr Ala Asp 20 25 30 - Ser Lys Thr Asn Gln Ile Ser Thr Thr Gln Lys Asn Gln Gln Lys Glu - Met Asp Arg Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe - Ser Asn Leu Thr Met Phe Ala Pro Thr Arg Asp Ser Thr Leu Ile Tyr 65 70 75 80 - Asp Gln Gln Thr Ala Asn Lys Leu Leu Asp Lys Lys Gln Gln Glu Tyr - Gln Ser Ile Arg Trp Ile Gly Leu Ile Gln Ser Lys Glu Thr Gly Asp - Phe Thr Phe Asn Leu Ser Glu Asp Glu Gln Ala Ile Ile Glu Ile Asn - Gly Lys Ile Ile Ser Asn Lys Gly Lys Glu Lys Gln Val Val His Leu Glu Lys Gly Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Thr Lys Phe Asn Ile Asp Ser Lys Thr Phe Lys Glu Leu Lys Leu Phe Lys Ile Asp Ser Gln Asn Gln Pro Gln Gln Val Gln Gln Asp Glu Leu Arg Asn Pro Glu Phe Asn Lys Lys Glu Ser Gln Glu Phe Leu Ala Lys Pro Ser Lys Ile Asn Leu Phe Thr Gln Xaa Met Lys Arg Glu Ile Asp Glu Asp Thr Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Glu Asn Gly Tyr Thr Ile Xaa Asn Arg Ile Ala Val Lys Trp Asp Asp Ser Leu Ala Ser Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu Ser His Thr Val Gly Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg Asp Leu Asp Leu Ser Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe 295 Pro Ser Val Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro Asn Glu Asn Leu Ser Asn Ser Val Glu Ser His Ser Ser Thr Asn Trp Ser Tyr Thr Asn Thr Glu Gly Ala Ser Val Glu Ala Gly Ile Gly Pro Lys Gly Ile Ser Phe Gly Val Ser Val Asn Tyr Gln His Ser Glu Thr Val Ala Gln Glu Trp Gly Thr Ser Thr Gly Asn Thr Ser Gln Phe Asn Thr Ala Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg Tyr Asn Asn Val Gly Thr Gly Ala Ile Tyr Asp Val Lys Pro Thr Thr Ser Phe Val Leu Asn Asn 410 Asp Thr Ile Ala Thr Ile Thr Ala Lys Ser Asn Ser Thr Ala Leu Asn Ile Ser Pro Gly Glu Ser Tyr Pro Lys Lys Gly Gln Asn Gly Ile Ala Ile Thr Ser Met Asp Asp Phe Asn Ser His Pro Ile Thr Leu Asn Lys Lys Gln Val Asp Asn Leu Leu Asn Asn Lys Pro Met Met Leu Glu Thr 470 Asn Gln Thr Asp Gly Val Tyr Lys Ile Lys Asp Thr His Gly Asn Ile Val Thr Gly Gly Glu Trp Asn Gly Val Ile Gln Gln Ile Lys Ala Lys Thr Ala Ser Ile Ile Val Asp Asp Gly Glu Arg Val Ala Glu Lys Arg Val Ala Ala Lys Asp Tyr Glu Asn Pro Glu Asp Lys Thr Pro Ser Leu 535 Thr Leu Lys Asp Ala Leu Lys Leu Ser Tyr Pro Asp Glu Ile Lys Glu Ile Glu Gly Leu Leu Tyr Tyr Lys Asn Lys Pro Ile Tyr Glu Ser Ser Val Met Thr Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Thr Lys Gln Leu Asn Asp Thr Thr Gly Lys Phe Lys Asp Val Ser His Leu Tyr Asp Val Lys Leu Thr Pro Lys Met Asn Val Thr Ile Lys Leu Ser Ile Leu 615 Tyr Asp Asn Ala Glu Ser Asn Asp Asn Ser Ile Gly Lys Trp Thr Asn Thr Asn Ile Val Ser Gly Gly Asn Asn Gly Lys Lys Gln Tyr Ser Ser Asn Asn Pro Asp Ala Asn Leu Thr Leu Asn Thr Asp Ala Gln Glu Lys Leu Asn Lys Asn Arg Asp Tyr Tyr Ile Ser Leu Tyr Met Lys Ser Glu 680 Lys Asn Thr Gln Cys Glu Ile Thr Ile Asp Gly Glu Ile Tyr Pro Ile Thr Thr Lys Thr Val Asn Val Asn Lys Asp Asn Tyr Lys Arg Leu Asp Ile Ile Ala His Asn Ile Lys Ser Asn Pro Ile Ser Ser Leu His Ile Lys Thr Asn Asp Glu Ile Thr Leu Phe Trp Asp Asp Ile Ser Ile Thr 745 Asp Val Ala Ser Ile Lys Pro Glu Asn Leu Thr Asp Ser Glu Ile Lys Gln Ile Tyr Ser Arg Tyr Gly Ile Lys Leu Glu Asp Gly Ile Leu Ile | Asp<br>785 | Lys | Lys | Gly | Gly | Ile<br>790 | His | Tyr | Gly | Glu | Phe<br>795 | Ile | Asn | Glu | Ala | Ser<br>800 | | | |-----------------|------------|----------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|----------------------------|------------------|-------------------------|------------|------------|------------|------------------|------------------|------------|-----|--| | Phe | Asn | Ile | Glu | Pro<br>805 | Leu | Pro | Asn | Tyr | Val<br>810 | Thr | Lys | Tyr | Glu | Val<br>815 | Thr | | | | Tyr | Ser | Ser | Glu<br>820 | Leu | Gly | Pro | Asn | Val<br>825 | Ser | Asp | Thr | Leu | Glu<br>830 | Ser | Asp | | | | Lys | Ile | Tyr<br>835 | Lys | Asp | Gly | Thr | Ile<br>840 | Lys | Phe | Asp | Phe | Thr<br>845 | Lys | Tyr | Ser | | | | Lys | Asn<br>850 | Glu | Gln | Gly | Leu | Phe<br>855 | Tyr | Asp | Ser | Gly | Leu<br>860 | Asn | Trp | Asp | Phe | | | | Lys<br>865 | Ile | Asn | Ala | Ile | Thr<br>870 | Tyr | Asp | Gly | Lys | Glu<br>875 | Met | Asn | Val | Phe | His<br>880 | | | | Arg | Tyr | Asn | Lys | | | | | | | | | | | | | | | | (2) | INF | ORMAI | rion | FOR | SEQ | ID N | 10: 6 | 5: | | | | | | | | | | | | | ()<br>(C<br>(I | A) LE<br>B) TY<br>C) SY<br>O) TO | CE CHENGTHE PROPERTY OF CHENT | i: 20<br>nucl<br>EDNE<br>GY: | 004 k<br>Leic<br>ESS:<br>line | ase<br>acio<br>sino<br>ear | pain<br>i<br>yle | | | | | | | | | | | | | | | LE TY | | | (ger | nomio | <b>:</b> ) | | | | | | | | | | | | | | ETICA | | 10 | | | | | | | | | | | | | | | | | ENSE: | | • | | | | | | | | | | | | | | (V1) | ( <i>P</i> | A) OF | AL SC<br>RGANI<br>RAIN<br>IDIVI | SM:<br>I: AE | Baci<br>378 | | | reus<br>RRL I | 3-210 | 058 | | | | | | | | | (ix) | (E | A) NA<br>B) LC<br>C) II | ME/F<br>CATI<br>ENTI<br>HER | ON:<br>FICA<br>INFO | 12<br>ATION<br>RMAN | MET<br>ON: | : /pi | : exp<br>roduc<br>ENTAI | t= ' | | | prote | ein V | /IP-1" | | | | | (xi) | SEÇ | UENC | E DE | SCRI | PTIC | on: S | SEQ I | D NO | ): 6: | : | | | | | | | | ATG<br>Met<br>1 | AAA<br>Lys | AGG<br>Arg | GAA<br>Glu | ATT<br>Ile<br>5 | GAT<br>Asp | GAA<br>Glu | GAC<br>Asp | ACG<br>Thr | GAT<br>Asp<br>10 | ACG<br>Thr | GAT<br>Asp | GGG<br>Gly | GAC<br>Asp | TCT<br>Ser<br>15 | ATT<br>Ile | 48 | | | CCT<br>Pro | GAC<br>Asp | CTT<br>Leu | TGG<br>Trp<br>20 | GAA<br>Glu | GAA<br>Glu | AAT<br>Asn | GGG<br>Gly | TAT<br>Tyr<br>25 | ACG<br>Thr | ATT<br>Ile | CAM<br>Xaa | AAT<br>Asn | AGA<br>Arg<br>30 | ATC<br>Ile | GCT<br>Ala | 96 | | | СΤΑ | AAG | TGG | GAC | GAT | TCT | CTA | GCA | AGT | AAA | GGG | TAT | ACG | AAA | TTT | GTT | 144 | | | Val | Lys | Trp<br>35 | | Asp | Ser | Leu | Ala<br>40 | Ser | Lys | Gly | Tyr | Thr<br>45 | | Phe | Val | | |-----|-----|-----------|-----|-----|-----|-----|-----------|-----|-----|-------------------|-----|-----------|-----|-----|------------|-----| | | | | | | | | | | | GAT<br>Asp | | | | | | 192 | | | | | | | | | | | | AAT<br>Asn<br>75 | | | | | | 240 | | | | | | | | | | | | AAT<br>Asn | | | | | | 288 | | | | | | | | | | | | AAT<br>Asn | | | | | | 336 | | | | | | | | | | | | GAA<br>Glu | | | | | GAA<br>Glu | 384 | | | | | | | | | | | | GGA<br>Gly | | | | | | 432 | | | | | | | | | | | | GGA<br>Gly<br>155 | | | | | | 480 | | | | | | | | | | | | TAT<br>Tyr | | | | | | 528 | | | | | | | | | | | | TAC<br>Tyr | | | | | | 576 | | | | | | | | | | | | GCA<br>Ala | | | | | | 624 | | | | | | | | | | | | GGA<br>Gly | | | | | | 672 | | | | | | | | | | | | ATG<br>Met<br>235 | | | | | | 720 | | | | | | | | | | | | GAT<br>Asp | | | | | | 768 | | | | | | | | | | | | GAT<br>Asp | | | | | | 816 | | AAA | GAT | ACA | CAT | GGA | TAA | ATA | GTA | ACT | GGC | GGA | GAA | TGG | AAT | GGT | GTC | 864 | | Lys | Asp | Thr<br>275 | | Gly | Asn | Ile | Val<br>280 | Thr | Gly | Gly | Glu | Trp<br>285 | Asn | Gly | Val | | |-----|-----|------------|-----|-----|-----|-------------------|------------|-----|-----|-----|-----|------------|-----|-----|-------------------|------| | | | Gln | | | | | | | | | | | | | GGG<br>Gly | 912 | | | Arg | | | | | CGT<br>Arg | | | | | | | | | CCA<br>Pro<br>320 | 960 | | | | | | | | TTA<br>Leu | | | | | | | | | | 1008 | | | | | | | | GAA<br>Glu | | | | | | | | | | 1056 | | | | | | | | AGC<br>Ser | | | | | | | | | | 1104 | | | | | | | | CAA<br>Gln<br>375 | | | | | | | | | | 1152 | | | Val | | | | | GAT<br>Asp | | | | | | | | | | 1200 | | | | | | | | CTT<br>Leu | | | | | | | | | | 1248 | | | | | | | | AAC<br>Asn | | | | | | | | | | 1296 | | | | | | | | TCT<br>Ser | | | | | | | | | | 1344 | | | | | | | | AAA<br>Lys<br>455 | | | | | | | | | | 1392 | | | | | | | | GAA<br>Glu | | | | | | | | | | 1440 | | | | | | | | ATC<br>Ile | | | | | | | | | | 1488 | | | | | | | | GAT<br>Asp | | | | | | | | | | 1536 | | CCA | ATT | TCT | TCA | CTT | CAT | ATT | AAA | ACG | AAT | GAT | GAA | ATA | ACT | TTA | TTT | 1584 | | Pro | Ile | Ser<br>515 | Ser | Leu | His | Ile | Lys<br>520 | Thr | Asn | Asp | Glu | 11e<br>525 | Thr | Leu | Phe | | |-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------| | TGG<br>Trp | GAT<br>Asp<br>530 | GAT<br>Asp | ATT<br>Ile | TCT<br>Ser | ATA<br>Ile | ACA<br>Thr<br>535 | GAT<br>Asp | GTA<br>Val | GCA<br>Ala | TCA<br>Ser | ATA<br>Ile<br>540 | AAA<br>Lys | CCG<br>Pro | GAA<br>Glu | AAT<br>Asn | 1632 | | TTA<br>Leu<br>545 | ACA<br>Thr | GAT<br>Asp | TCA<br>Ser | GAA<br>Glu | ATT<br>Ile<br>550 | AAA<br>Lys | CAG<br>Gln | ATT<br>Ile | TAT<br>Tyr | AGT<br>Ser<br>555 | AGG<br>Arg | TAT<br>Tyr | GGT<br>Gly | ATT<br>Ile | AAG<br>Lys<br>560 | 1680 | | | | | | | | | | | AAA<br>Lys<br>570 | | | | | | | 1728 | | GAA<br>Glu | TTT<br>Phe | ATT<br>Ile | AAT<br>Asn<br>580 | GAA<br>Glu | GCT<br>Ala | AGT<br>Ser | TTT<br>Phe | AAT<br>Asn<br>585 | ATT<br>Ile | GAA<br>Glu | CCA<br>Pro | TTG<br>Leu | CCA<br>Pro<br>590 | AAT<br>Asn | TAT<br>Tyr | 1776 | | GTG<br>Val | ACC<br>Thr | AAA<br>Lys<br>595 | TAT<br>Tyr | GAA<br>Glu | GTT<br>Val | ACT<br>Thr | TAT<br>Tyr<br>600 | AGT<br>Ser | AGT<br>Ser | GAG<br>Glu | TTA<br>Leu | GGA<br>Gly<br>605 | CCA<br>Pro | AAC<br>Asn | GTG<br>Val | 1824 | | AGT<br>Ser | GAC<br>Asp<br>610 | ACA<br>Thr | CTT<br>Leu | GAA<br>Glu | AGT<br>Ser | GAT<br>Asp<br>615 | AAA<br>Lys | ATT<br>Ile | TAC<br>Tyr | AAG<br>Lys | GAT<br>Asp<br>620 | GGG<br>Gly | ACA<br>Thr | ATT<br>Ile | AAA<br>Lys | 1872 | | TTT<br>Phe<br>625 | GAT<br>Asp | TTT<br>Phe | ACC<br>Thr | AAA<br>Lys | TAT<br>Tyr<br>630 | AGT<br>Ser | AAA<br>Lys | AAT<br>Asn | GAA<br>Glu | CAA<br>Gln<br>635 | GGA<br>Gly | TTA<br>Leu | TTT<br>Phe | TAT<br>Tyr | GAC<br>Asp<br>640 | 1920 | | AGT<br>Ser | GGA<br>Gly | TTA<br>Leu | AAT<br>Asn | TGG<br>Trp<br>645 | GAC<br>Asp | TTT<br>Phe | AAA<br>Lys | ATT<br>Ile | AAT<br>Asn<br>650 | GCT<br>Ala | ATT<br>Ile | ACT<br>Thr | TAT<br>Tyr | GAT<br>Asp<br>655 | GGT<br>Gly | 1968 | | | | | | | | | | | AAT<br>Asn | | TAG | | | | | 2004 | #### (2) INFORMATION FOR SEQ ID NO: 7: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 667 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: protein - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7: Met Lys Arg Glu Ile Asp Glu Asp Thr Asp Thr Asp Gly Asp Ser Ile 1 5 10 Pro Asp Leu Trp Glu Glu Asn Gly Tyr Thr Ile Xaa Asn Arg Ile Ala 20 25 30 Val Lys Trp Asp Asp Ser Leu Ala Ser Lys Gly Tyr Thr Lys Phe Val 35 | Ser | Asn<br>50 | | Leu | Glu | Ser | His<br>55 | Thr | Val | Gly | Asp | Pro<br>60 | _ | Thr | Asp | Ту | |------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Glu<br>65 | | Ala | Ala | Arg | Asp<br>70 | Leu | Asp | Leu | Ser | Asn<br>75 | Ala | Lys | Glu | Thr | Phe<br>80 | | Asn | Pro | Leu | Val | Ala<br>85 | Ala | Phe | Pro | Ser | Val<br>90 | Asn | Val | Ser | Met | Glu<br>95 | | | Val | Ile | Leu | Ser<br>100 | Pro | Asn | Glu | Asn | Leu<br>105 | Ser | Asn | Ser | Val | Glu<br>110 | Ser | His | | Ser | Ser | Thr<br>115 | Asn | Trp | Ser | Tyr | Thr<br>120 | Asn | Thr | Glu | Gly | Ala<br>125 | Ser | Val | Glu | | Ala | Gly<br>130 | Ile | Gly | Pro | Lys | Gly<br>135 | Ile | Ser | Phe | Gly | Val<br>140 | Ser | Val | Asn | Tyr | | Gln<br>145 | His | Ser | Glu | Thr | Val<br>150 | Ala | Gln | Glu | Trp | Gly<br>155 | Thr | Ser | Thr | Gly | Asn<br>160 | | Thr | Ser | Gln | Phe | Asn<br>165 | Thr | Ala | Ser | Ala | Gly<br>170 | Tyr | Leu | Asn | Ala | Asn<br>175 | Val | | Arg | Tyr | Asn | Asn<br>180 | Val | Gly | Thr | Gly | Ala<br>185 | Ile | Tyr | Asp | Val | Lys<br>190 | Pro | Thr | | Thr | Ser | Phe<br>195 | Val | Leu | Asn | Asn | Asp<br>200 | Thr | Ile | Ala | Thr | Ile<br>205 | Thr | Ala | Lys | | Ser | Asn<br>210 | Ser | Thr | Ala | Leu | Asn<br>215 | Ile | Ser | Pro | Gly | Glu<br>220 | Ser | Tyr | Pro | Lys | | Lys<br>225 | Gly | Gln | Asn | Gly | Ile<br>230 | Ala | Ile | Thr | Ser | Met<br>235 | Asp | Asp | Phe | Asn | Ser<br>240 | | His | Pro | Ile | Thr | Leu<br>245 | Asn | Lys | Lys | Gln | Val<br>250 | Asp | Asn | Leu | Leu | Asn<br>255 | Asn | | Lys | Pro | Met | Met<br>260 | Leu | Glu | Thr | Asn | Gln<br>265 | Thr | Asp | Gly | Val | Tyr<br>270 | Lys | Ile | | Lys | Asp | Thr<br>275 | His | Gly | Asn | Ile | Val<br>280 | Thr | Gly | Gly | Glu | Trp<br>285 | Asn | Gly | Val | | Ile | Gln<br>290 | Gln | Ile | Lys | Ala | Lys<br>295 | Thr | Ala | Ser | Ile | Ile<br>300 | Val | Asp | Asp | Gly | | Glu<br>305 | Arg | Val | Ala | Glu | Lys<br>310 | Arg | Val | Ala | Ala | Lys<br>315 | Asp | Tyr | Glu | Asn | Pro<br>320 | | Glu | Asp | Lys | Thr | Pro<br>325 | Ser | Leu | Thr | Leu | Lys<br>330 | Asp | Ala | Leu | Lys | Leu<br>335 | Ser | | Tyr | Pro | Asp | Glu<br>340 | Ile | Lys | Glu | Ile | Glu<br>345 | Gly | Leu | Leu | Tyr | Tyr<br>350 | Lys | Asn | | Lys | Pro | Ile<br>355 | Tyr | Glu | Ser | Ser | Val<br>360 | Met | Thr | Tyr | Leu | Asp<br>365 | Glu | Asn | Thr | Ala Lys Glu Val Thr Lys Gln Leu Asn Asp Thr Thr Gly Lys Phe Lys Asp Val Ser His Leu Tyr Asp Val Lys Leu Thr Pro Lys Met Asn Val Thr Ile Lys Leu Ser Ile Leu Tyr Asp Asn Ala Glu Ser Asn Asp Asn Ser Ile Gly Lys Trp Thr Asn Thr Asn Ile Val Ser Gly Gly Asn Asn Gly Lys Lys Gln Tyr Ser Ser Asn Asn Pro Asp Ala Asn Leu Thr Leu Asn Thr Asp Ala Gln Glu Lys Leu Asn Lys Asn Arg Asp Tyr Tyr Ile Ser Leu Tyr Met Lys Ser Glu Lys Asn Thr Gln Cys Glu Ile Thr Ile Asp Gly Glu Ile Tyr Pro Ile Thr Thr Lys Thr Val Asn Val Asn Lys Asp Asn Tyr Lys Arg Leu Asp Ile Ile Ala His Asn Ile Lys Ser Asn Pro Ile Ser Ser Leu His Ile Lys Thr Asn Asp Glu Ile Thr Leu Phe Trp Asp Asp Ile Ser Ile Thr Asp Val Ala Ser Ile Lys Pro Glu Asn 535 Leu Thr Asp Ser Glu Ile Lys Gln Ile Tyr Ser Arg Tyr Gly Ile Lys Leu Glu Asp Gly Ile Leu Ile Asp Lys Gly Gly Ile His Tyr Gly 565 570 575 Glu Phe Ile Asn Glu Ala Ser Phe Asn Ile Glu Pro Leu Pro Asn Tyr Val Thr Lys Tyr Glu Val Thr Tyr Ser Ser Glu Leu Gly Pro Asn Val Ser Asp Thr Leu Glu Ser Asp Lys Ile Tyr Lys Asp Gly Thr Ile Lys Phe Asp Phe Thr Lys Tyr Ser Lys Asn Glu Gln Gly Leu Phe Tyr Asp Ser Gly Leu Asn Trp Asp Phe Lys Ile Asn Ala Ile Thr Tyr Asp Gly Lys Glu Met Asn Val Phe His Arg Tyr Asn Lys 665 - (2) INFORMATION FOR SEQ ID NO: 8: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 16 amino acids - (B) TYPE: amino acid - (C) STRANDEDNESS: single - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: peptide - (iii) HYPOTHETICAL: NO - (v) FRAGMENT TYPE: N-terminal - (vi) ORIGINAL SOURCE: - (A) ORGANISM: Bacillus cereus(B) STRAIN: AB78 - (C) INDIVIDUAL ISOLATE: NRRL B-21058 - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..16 - (D) OTHER INFORMATION: /note= "N-terminal sequence of protein purified from strain AB78" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8: Lys Arg Glu Ile Asp Glu Asp Thr Asp Thr Asx Gly Asp Ser Ile Pro - (2) INFORMATION FOR SEQ ID NO: 9: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 21 base pairs(B) TYPE: nucleic acid - (C) STRANDEDNESS: single - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: DNA (genomic) - (iii) HYPOTHETICAL: NO - (iii) ANTI-SENSE: NO - (ix) FEATURE: - (A) NAME/KEY: misc\_feature - (B) LOCATION: 1..21 - (D) OTHER INFORMATION: /note= "Oligonucleotide probe based on amino acids 3 to 9 of SEQ ID NO:8, using codon usage of Bacillus thuringiensis" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9: GAAATTGATC AAGATACNGA T 21 - (2) INFORMATION FOR SEQ ID NO: 10: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 14 amino acids - (B) TYPE: amino acid - (C) STRANDEDNESS: single (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: peptide - (iii) HYPOTHETICAL: NO - (v) FRAGMENT TYPE: N-terminal - (vi) ORIGINAL SOURCE: - (A) ORGANISM: Bacillus thuringiensis - (B) STRAIN: AB88 - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..14 - (D) OTHER INFORMATION: /note= "N-terminal amino acid sequence of protein known as anion exchange fraction 23 (smaller)" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10: Xaa Glu Pro Phe Val Ser Ala Xaa Xaa Xaa Gln Xaa Xaa Xaa - (2) INFORMATION FOR SEQ ID NO: 11: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 13 amino acids - (B) TYPE: amino acid - (C) STRANDEDNESS: single (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: peptide - (iii) HYPOTHETICAL: NO - (v) FRAGMENT TYPE: N-terminal - (vi) ORIGINAL SOURCE: - (A) ORGANISM: Bacillus thuringiensis - (B) STRAIN: AB88 - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..13 - (D) OTHER INFORMATION: /note= "N-terminal amino acid sequence of protein known as anion exchange fraction 23 (larger)" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11: Xaa Glu Tyr Glu Asn Val Glu Pro Phe Val Ser Ala Xaa (2) INFORMATION FOR SEQ ID NO: 12: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 14 amino acids - (B) TYPE: amino acid (C) STRANDEDNESS: single - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: peptide - (iii) HYPOTHETICAL: NO - (v) FRAGMENT TYPE: N-terminal - (vi) ORIGINAL SOURCE: - (A) ORGANISM: Bacillus thurigiensis - (B) STRAIN: AB88 - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..14 - (D) OTHER INFORMATION: /note= "N-terminal sequence of 80 kDa VIP active against Agrotis ipsilon" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12: Met Asn Lys Asn Asn Thr Lys Leu Pro Thr Arg Ala Leu Pro 5 - (2) INFORMATION FOR SEQ ID NO: 13: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 15 amino acids (B) TYPE: amino acid - (C) STRANDEDNESS: single - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: peptide - (iii) HYPOTHETICAL: NO - (v) FRAGMENT TYPE: N-terminal - (vi) ORIGINAL SOURCE: - (A) ORGANISM: Bacillus thuringiensis - (B) STRAIN: AB88 - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..15 - (D) OTHER INFORMATION: /note= "N-terminal amino acid sequence of 35 kDa VIP active against Agrotis ipsilon" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13: Ala Leu Ser Glu Asn Thr Gly Lys Asp Gly Gly Tyr Ile Val Pro 10 (2) INFORMATION FOR SEQ ID NO: 14: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 9 amino acids(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear - (ii) MOLECULE TYPE: peptide - (iii) HYPOTHETICAL: NO - (v) FRAGMENT TYPE: N-terminal - (vi) ORIGINAL SOURCE: - (A) ORGANISM: Bacillus thuringiensis - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..9 - (D) OTHER INFORMATION: /note= "N-terminal sequence of a 130 kDa delta-endotoxin" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14: Met Asp Asn Asn Pro Asn Ile Asn Glu - (2) INFORMATION FOR SEQ ID NO: 15: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 9 amino acids - (B) TYPE: amino acid - (C) STRANDEDNESS: single (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: peptide - (iii) HYPOTHETICAL: NO - (v) FRAGMENT TYPE: N-terminal - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..9 - (D) OTHER INFORMATION: /note= "N-terminal sequence of 80 kDa delta-endotoxin" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: Met Asp Asn Asn Pro Asn Ile Asn Glu - (2) INFORMATION FOR SEQ ID NO: 16: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 11 amino acids (B) TYPE: amino acid | (C) | STRANDEDNE | ESS: | single | |-----|------------|------|--------| | (D) | TOPOLOGY: | line | ar | - (ii) MOLECULE TYPE: peptide - (iii) HYPOTHETICAL: NO - (v) FRAGMENT TYPE: N-terminal - (vi) ORIGINAL SOURCE: - (A) ORGANISM: Bacillus thuringiensis - (ix) FEATURE: - (A) NAME/KEY: Peptide - (B) LOCATION: 1..11 - (D) OTHER INFORMATION: /note= "N-terminal sequence from 60 kDa delta-endotoxin" - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16: Met Asn Val Leu Asn Ser Gly Arg Thr Thr Ile - (2) INFORMATION FOR SEQ ID NO: 17: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 2655 base pairs - (B) TYPE: nucleic acid (C) STRANDEDNESS: single - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: DNA (genomic) - (iii) HYPOTHETICAL: NO - (iii) ANTI-SENSE: NO - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17: | ATGAAGAACA | TGAAGAAGAA | GCTGGCCAGC | GTGGTGACCT | GCACCCTGCT | GGCCCCCATG | 60 | |------------|------------|------------|------------|------------|------------|-----| | TTCCTGAACG | GCAACGTGAA | CGCCGTGTAC | GCCGACAGCA | AGACCAACCA | GATCAGCACC | 120 | | ACCCAGAAGA | ACCAGCAGAA | GGAGATGGAC | CGCAAGGGCC | TGCTGGGCTA | CTACTTCAAG | 180 | | GGCAAGGACT | TCAGCAACCT | GACCATGTTC | GCCCCCACGC | GTGACAGCAC | CCTGATCTAC | 240 | | GACCAGCAGA | CCGCCAACAA | GCTGCTGGAC | AAGAAGCAGC | AGGAGTACCA | GAGCATCCGC | 300 | | TGGATCGGCC | TGATCCAGAG | CAAGGAGACC | GGCGACTTCA | CCTTCAACCT | GAGCGAGGAC | 360 | | GAGCAGGCCA | TCATCGAGAT | CAACGGCAAG | ATCATCAGCA | ACAAGGGCAA | GGAGAAGCAG | 420 | | GTGGTGCACC | TGGAGAAGGG | CAAGCTGGTG | CCCATCAAGA | TCGAGTACCA | GAGCGACACC | 480 | | AAGTTCAACA | TCGACAGCAA | GACCTTCAAG | GAGCTGAAGC | TTTTCAAGAT | CGACAGCCAG | 540 | | AACCAGCCCC | AGCAGGTGCA | GCAGGACGAG | CTGCGCAACC | CCGAGTTCAA | CAAGAAGGAG | 600 | |------------|------------|------------|------------|------------|------------|------| | AGCCAGGAGT | TCCTGGCCAA | GCCCAGCAAG | ATCAACCTGT | TCACCCAGCA | GATGAAGCGC | 660 | | GAGATCGACG | AGGACACCGA | CACCGACGGC | GACAGCATCC | CCGACCTGTG | GGAGGAGAAC | 720 | | GGCTACACCA | TCCAGAACCG | CATCGCCGTG | AAGTGGGACG | ACAGCCTGGC | TAGCAAGGGC | 780 | | TACACCAAGT | TCGTGAGCAA | CCCCTGGAG | AGCCACACCG | TGGGCGACCC | CTACACCGAC | 840 | | TACGAGAAGG | CCGCCCGCGA | CCTGGACCTG | AGCAACGCCA | AGGAGACCTT | CAACCCCCTG | 900 | | GTGGCCGCCT | TCCCCAGCGT | GAACGTGAGC | ATGGAGAAGG | TGATCCTGAG | CCCCAACGAG | 960 | | AACCTGAGCA | ACAGCGTGGA | GAGCCACTCG | AGCACCAACT | GGAGCTACAC | CAACACCGAG | 1020 | | GGCGCCAGCG | TGGAGGCCGG | CATCGGTCCC | AAGGGCATCA | GCTTCGGCGT | GAGCGTGAAC | 1080 | | TACCAGCACA | GCGAGACCGT | GGCCCAGGAG | TGGGGCACCA | GCACCGGCAA | CACCAGCCAG | 1140 | | TTCAACACCG | CCAGCGCCGG | CTACCTGAAC | GCCAACGTGC | GCTACAACAA | CGTGGGCACC | 1200 | | GGCGCCATCT | ACGACGTGAA | GCCCACCACC | AGCTTCGTGC | TGAACAACGA | CACCATCGCC | 1260 | | ACCATCACCG | CCAAGTCGAA | TTCCACCGCC | CTGAACATCA | GCCCCGGCGA | GAGCTACCCC | 1320 | | AAGAAGGGCC | AGAACGGCAT | CGCCATCACC | AGCATGGACG | ACTTCAACAG | CCACCCCATC | 1380 | | ACCCTGAACA | AGAAGCAGGT | GGACAACCTG | CTGAACAACA | AGCCCATGAT | GCTGGAGACC | 1440 | | AACCAGACCG | ACGGCGTCTA | CAAGATCAAG | GACACCCACG | GCAACATCGT | GACCGGCGGC | 1500 | | GAGTGGAACG | GCGTGATCCA | GCAGATCAAG | GCCAAGACCG | CCAGCATCAT | CGTCGACGAC | 1560 | | GGCGAGCGCG | TGGCCGAGAA | GCGCGTGGCC | GCCAAGGACT | ACGAGAACCC | CGAGGACAAG | 1620 | | ACCCCCAGCC | TGACCCTGAA | GGACGCCCTG | AAGCTGAGCT | ACCCCGACGA | GATCAAGGAG | 1680 | | ATCGAGGGCC | TGCTGTACTA | CAAGAACAAG | CCCATCTACG | AGAGCAGCGT | GATGACCTAT | 1740 | | CTAGACGAGA | ACACCGCCAA | GGAGGTGACC | AAGCAGCTGA | ACGACACCAC | CGGCAAGTTC | 1800 | | AAGGACGTGA | GCCACCTGTA | CGACGTGAAG | CTGACCCCCA | AGATGAACGT | GACCATCAAG | 1860 | | CTGAGCATCC | TGTACGACAA | CGCCGAGAGC | AACGACAACA | GCATCGGCAA | GTGGACCAAC | 1920 | | ACCAACATCG | TGAGCGGCGG | CAACAACGGC | AAGAAGCAGT | ACAGCAGCAA | CAACCCCGAC | 1980 | | GCCAACCTGA | CCCTGAACAC | CGACGCCCAG | GAGAAGCTGA | ACAAGAACCG | CGACTACTAC | 2040 | | ATCAGCCTGT | ACATGAAGAG | CGAGAAGAAC | ACCCAGTGCG | AGATCACCAT | CGACGGCGAG | 2100 | | ATATACCCCA | TCACCACCAA | GACCGTGAAC | GTGAACAAGG | ACAACTACAA | GCGCCTGGAC | 2160 | | ATCATCGCCC | ACAACATCAA | GAGCAACCCC | ATCAGCAGCC | TGCACATCAA | GACCAACGAC | 2220 | | GAGATCACCC | TGTTCTGGGA | CGACATATCG | ATTACCGACG | TCGCCAGCAT | CAAGCCCGAG | 2280 | | AACCTGACCG | ACAGCGAGAT | CAAGCAGATA | TACAGTCGCT | ACGGCATCAA | GCTGGAGGAC | 2340 | | GGCATCCTGA | TCGACAAGAA | GGGCGGCATC | CACTACGGCG | AGTTCATCAA | CGAGGCCAGC | 2400 | |------------|------------|------------|------------|------------|------------|------| | TTCAACATCG | AGCCCCTGCA | GAACTACGTG | ACCAAGTACG | AGGTGACCTA | CAGCAGCGAG | 2460 | | CTGGGCCCCA | ACGTGAGCGA | CACCCTGGAG | AGCGACAAGA | TTTACAAGGA | CGGCACCATC | 2520 | | AAGTTCGACT | TCACCAAGTA | CAGCAAGAAC | GAGCAGGGCC | TGTTCTACGA | CAGCGGCCTG | 2580 | | AACTGGGACT | TCAAGATCAA | CGCCATCACC | TACGACGGCA | AGGAGATGAA | CGTGTTCCAC | 2640 | | CGCTACAACA | AGTAG | | | | | 2655 | #### (2) INFORMATION FOR SEQ ID NO: 18: - (i) SEQUENCE CHARACTERISTICS: - (A) LENGTH: 2010 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single - (D) TOPOLOGY: linear - (ii) MOLECULE TYPE: DNA (genomic) - (iii) HYPOTHETICAL: NO - (iii) ANTI-SENSE: NO #### (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18: | GGATCCATGA | AGCGCGAGAT | CGACGAGGAC | ACCGACACCG | ACGGCGACAG | CATCCCCGAC | 60 | |------------|------------|------------|------------|------------|------------|-----| | CTGTGGGAGG | AGAACGGCTA | CACCATCCAG | AACCGCATCG | CCGTGAAGTG | GGACGACAGC | 120 | | CTGGCTAGCA | AGGGCTACAC | CAAGTTCGTG | AGCAACCCCC | TGGAGAGCCA | CACCGTGGGC | 180 | | GACCCCTACA | CCGACTACGA | GAAGGCCGCC | CGCGACCTGG | ACCTGAGCAA | CGCCAAGGAG | 240 | | ACCTTCAACC | CCCTGGTGGC | CGCCTTCCCC | AGCGTGAACG | TGAGCATGGA | GAAGGTGATC | 300 | | CTGAGCCCCA | ACGAGAACCT | GAGCAACAGC | GTGGAGAGCC | ACTCGAGCAC | CAACTGGAGC | 360 | | TACACCAACA | CCGAGGGCGC | CAGCGTGGAG | GCCGGCATCG | GTCCCAAGGG | CATCAGCTTC | 420 | | GGCGTGAGCG | TGAACTACCA | GCACAGCGAG | ACCGTGGCCC | AGGAGTGGGG | CACCAGCACC | 480 | | GGCAACACCA | GCCAGTTCAA | CACCGCCAGC | GCCGGCTACC | TGAACGCCAA | CGTGCGCTAC | 540 | | AACAACGTGG | GCACCGGCGC | CATCTACGAC | GTGAAGCCCA | CCACCAGCTT | CGTGCTGAAC | 600 | | AACGACACCA | TCGCCACCAT | CACCGCCAAG | TCGAATTCCA | CCGCCCTGAA | CATCAGCCCC | 660 | | GGCGAGAGCT | ACCCCAAGAA | GGGCCAGAAC | GGCATCGCCA | TCACCAGCAT | GGACGACTTC | 720 | | AACAGCCACC | CCATCACCCT | GAACAAGAAG | CAGGTGGACA | ACCTGCTGAA | CAACAAGCCC | 780 | | ATGATGCTGG | AGACCAACCA | GACCGACGGC | GTCTACAAGA | TCAAGGACAC | CCACGGCAAC | 840 | | ATCGTGACCG | GCGGCGAGTG | GAACGGCGTG | ATCCAGCAGA | TCAAGGCCAA | GACCGCCAGC | 900 | | ž | ATCATCGTCG | ACGACGGCGA | GCGCGTGGCC | GAGAAGCGCG | TGGCCGCCAA | GGACTACGAG | 960 | |---|------------|------------|------------|------------|------------|------------|------| | ž | AACCCCGAGG | ACAAGACCCC | CAGCCTGACC | CTGAAGGACG | CCCTGAAGCT | GAGCTACCCC | 1020 | | ( | GACGAGATCA | AGGAGATCGA | GGGCCTGCTG | TACTACAAGA | ACAAGCCCAT | CTACGAGAGC | 1080 | | 2 | AGCGTGATGA | CCTATCTAGA | CGAGAACACC | GCCAAGGAGG | TGACCAAGCA | GCTGAACGAC | 1140 | | 1 | ACCACCGGCA | AGTTCAAGGA | CGTGAGCCAC | CTGTACGACG | TGAAGCTGAC | CCCCAAGATG | 1200 | | 2 | AACGTGACCA | TCAAGCTGAG | CATCCTGTAC | GACAACGCCG | AGAGCAACGA | CAACAGCATC | 1260 | | ( | GCAAGTGGA | CCAACACCAA | CATCGTGAGC | GGCGGCAACA | ACGGCAAGAA | GCAGTACAGC | 1320 | | 2 | AGCAACAACC | CCGACGCCAA | CCTGACCCTG | AACACCGACG | CCCAGGAGAA | GCTGAACAAG | 1380 | | 2 | AACCGCGACT | ACTACATCAG | CCTGTACATG | AAGAGCGAGA | AGAACACCCA | GTGCGAGATC | 1440 | | 2 | ACCATCGACG | GCGAGATATA | CCCCATCACC | ACCAAGACCG | TGAACGTGAA | CAAGGACAAC | 1500 | | : | TACAAGCGCC | TGGACATCAT | CGCCCACAAC | ATCAAGAGCA | ACCCCATCAG | CAGCCTGCAC | 1560 | | 2 | ATCAAGACCA | ACGACGAGAT | CACCCTGTTC | TGGGACGACA | TATCGATTAC | CGACGTCGCC | 1620 | | 2 | AGCATCAAGC | CCGAGAACCT | GACCGACAGC | GAGATCAAGC | AGATATACAG | TCGCTACGGC | 1680 | | 2 | ATCAAGCTGG | AGGACGGCAT | CCTGATCGAC | AAGAAGGGCG | GCATCCACTA | CGGCGAGTTC | 1740 | | 2 | ATCAACGAGG | CCAGCTTCAA | CATCGAGCCC | CTGCAGAACT | ACGTGACCAA | GTACGAGGTG | 1800 | | 2 | ACCTACAGCA | GCGAGCTGGG | CCCCAACGTG | AGCGACACCC | TGGAGAGCGA | CAAGATTTAC | 1860 | | 2 | AAGGACGGCA | CCATCAAGTT | CGACTTCACC | AAGTACAGCA | AGAACGAGCA | GGGCCTGTTC | 1920 | | 7 | PACGACAGCG | GCCTGAACTG | GGACTTCAAG | ATCAACGCCA | TCACCTACGA | CGGCAAGGAG | 1980 | | 2 | ATGAACGTGT | TCCACCGCTA | CAACAAGTAG | | | | 2010 | ## INDICATIONS RELATING TO A DEPOSITED MICROORGANISM | A. The indications made below relate to the microorganism re on page 26 , line 1. | • | | | | | | | | | |-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|--| | | 2-14 | | | | | | | | | | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | | | | | | | | | Name of depositary institution Agricultural Resear<br>Collection (NRRL<br>International Depos | ) | | | | | | | | | | Address of depositary institution (including postal code and country | | | | | | | | | | | 1815 N. University<br>Peoria, IL 61604<br>USA | | | | | | | | | | | Date of deposit 18 March 1993 (18.03.93) | Accession Number NRRL B-21058 | | | | | | | | | | C. ADDITIONAL INDICATIONS (leave blank if not applicab | le) This information is continued on an additional sheet | | | | | | | | | | We request the Expert Solution where available | | | | | | | | | | | D. DESIGNATED STATES FOR WHICH INDICATIO | NS ARE MADE (if the indications are not for all designated States) | | | | | | | | | | | | | | | | | | | | | E. SEPARATE FURNISHING OF INDICATIONS (leave | blank if not applicable) | | | | | | | | | | The indications listed below will be submitted to the International I<br>Number of Deposit") | Bureau later (specify the general nature of the indications e.g., "Accession | | | | | | | | | | For receiving Office use only | For International Bureau use only | | | | | | | | | | This sheet was received with the international application | This sheet was received by the International Bureau on: Authorized officer | | | | | | | | | | A. The indications made below relate to the microorganism re | ferred to in the description | |----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------| | on page 41 , line 1- | <u>-3</u> . | | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | Name of depositary institution Agricultural Resear | | | Collection (NRRL | | | International Depos | WIA | | Address of depositary institution (including postal code and country | • | | 1815 N. University | Street | | Peoria, IL 61604<br>USA | | | USA | | | | | | Date of deposit | Accession Number | | 18 March 1993 (18.03.93) | NRRL B-21059 | | | | | C. ADDITIONAL INDICATIONS (leave blank if not applicab | ole) This information is continued on an additional sheet | | | | | We request the Expert Solution w | where available | | | | | | | | | | | | | | D DESIGNATED CTATES FOR WILLOW SINCE | | | D. DESIGNATED STATES FOR WHICH INDICATIO | NS ARE MADE (if the indications are not for all designated States) | | | | | | | | | | | | | | | | | | | | E. SEPARATE FURNISHING OF INDICATIONS (leave | blank if not applicable) | | The indications listed below will be submitted to the International I<br>Number of Deposit") | Bureau later (specify the general nature of the indications e.g., "Accession | | | | | | | | | / | | | l | | For receipting Officers 1 | | | For receiving Office use only | For International Bureau use only | | This sheet was received with the international application | This sheet was received by the International Bureau on: | | ( athy Williams | | | Authorized officer | Authorized officer | | | | | | | ### INDICATIONS RELATING TO A DEPOSITED MICROORGANISM | A. The indications made below relate to the microorganism referred to in the description | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--| | on page <u>48</u> , line <u>18</u> | 3–20 · | | | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | | Name of depositary institution Agricultural Research International Deposit | arch Culture Collection (NRRL) ository Authority | | | Address of depositary institution (including postal code and country | ) | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street . | | | Date of deposit | Accession Number | | | 18 March 1993 (18.03.93) | NRRL B-21060 | | | C. ADDITIONAL INDICATIONS (leave blank if not applicate | ole) This information is continued on an additional sheet | | | We request the Expert Solution where available | | | | D. DESIGNATED STATES FOR WHICH INDICATIO | ONS ARE MADE (if the indications are not for all designated States) | | | | | | | E. SEPARATE FURNISHING OF INDICATIONS (leav | e blank if not applicable) | | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | For receiving Office use only | For International Bureau use only | | | This sheet was received with the international application (atting Villiams Authorized officer | This sheet was received by the International Bureau on: Authorized officer | | | | | | | f | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------| | A. The indications made below on page | relate to the microorganism r | eferred to in the description -3 | | B. IDENTIFICATION OF I | DEPOSIT | Further deposits are identified on an additional sheet | | Name of depositary institution | Agricultural Research Collection (NRRI | <u>.</u> ) | | Address of depositary institution | (including postal code and countr | y) | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street | | Date of deposit 18 March 199 | 3 (18.03.93) | Accession Number NRRL B-21061 | | C. ADDITIONAL INDICAT | IONS (leave blank if not applica | ble) This information is continued on an additional sheet | | We request th | ne Expert Solution | where available | | D. DESIGNATED STATES I | FOR WHICH INDICATION | ONS ARE MADE (if the indications are not for all designated States) | | E. SEPARATE FURNISHING | G OF INDICATIONS (leav | e blank if not applicable) | | The indications listed below will be Number of Deposit") | submitted to the International | Bureau later (specify the general nature of the indications e.g., "Accession | | For receiving Office | ce use only | For International Bureau use only | | This sheet was received with which will with the will will with the will will will will will will will be a second with the will will be a second with the wi | the international application | This sheet was received by the International Bureau on: Authorized officer | # INDICATIONS RELATING TO A DEPOSITED MICROORGANISM | A. The indications made below relate to the microorganism referred to in the description on page 42, line 8-10. | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--| | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | | Name of depositary institution Agricultural Resea<br>International Depo | arch Culture Collection (NRRL) ository Authority | | | Address of depositary institution (including postal code and country, | | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street | | | Date of deposit | Accession Number | | | 09 March 1994 (09.03.94) | NRRL B-21221 | | | C. ADDITIONAL INDICATIONS (leave blank if not applicab | le) This information is continued on an additional sheet | | | We request the Expert Solution where available D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) | | | | E. SEPARATE FURNISHING OF INDICATIONS (leave | e blank if not applicable) | | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | For receiving Office use only | For International Bureau use only | | | This sheet was received with the international application Authorized officer | This sheet was received by the International Bureau on: Authorized officer | | | A. The indications made below relate to the microorganism referred to in the description | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------| | on page 42 | , line | -24 | | B. IDENTIFICATION OF DI | EPOSIT | Further deposits are identified on an additional sheet | | Name of depositary institution | Agricultural Resea<br>International Depo | arch Culture Collection (NRRL) sitory Authority | | Address of depositary institution ( | including postal code and country) | ) | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street | | Date of deposit | | Accession Number | | 09 March 199 | 94 (09.03.94) | NRRL B-21222 | | C. ADDITIONAL INDICATION | ONS (leave blank if not applicable | le) This information is continued on an additional sheet | | We request the Expert Solution where available | | | | D. DESIGNATED STATES F | OR WHICH INDICATIO | NS ARE MADE (if the indications are not for all designated States) | | | | | | E. SEPARATE FURNISHING | | | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | For receiving Office | e use only | For International Bureau use only | | This sheet was received with the Authorized officer | i | This sheet was received by the International Bureau on: Authorized officer | ### INDICATIONS RELATING TO A DEPOSITED MICROORGANISM | A. The indications made below relate to the microorganism ref<br>on page 43, line 15- | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--| | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | | Name of depositary institution Agricultural Resea<br>International Depo | erch Culture Collection (NRRL) sitory Authority | | | Address of depositary institution (including postal code and country) | | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street | | | Date of deposit | Accession Number | | | 09 March 1994 (09.03.94) | NRRL B-21223 | | | C. ADDITIONAL INDICATIONS (leave blank if not applicable | le) This information is continued on an additional sheet | | | We request the Expert Solution where available | | | | D. DESIGNATED STATES FOR WHICH INDICATION | NS ARE MADE (if the indications are not for all designated States) | | | | | | | E. SEPARATE FURNISHING OF INDICATIONS (leave | blank if not applicable) | | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | For receiving Office use only | For International Bureau use only | | | This sheet was received with the international application Authorized officer | This sheet was received by the International Bureau on: Authorized officer | | ### INDICATIONS RELATING TO A DEPOSITED MICROORGANISM | A. The indications made below relate to the microorganism ref<br>on page 53, line 18 | erred to in the description | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--| | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | | Name of depositary institution Agricultural Resea International Depo | rch Culture Collection (NRRL) sitory Authority | | | Address of depositary institution (including postal code and country) | | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street | | | Date of deposit | Accession Number | | | 09 March 1994 (09.03.94) | NRRL B-21224 | | | C. ADDITIONAL INDICATIONS (leave blank if not applicable | e) This information is continued on an additional sheet | | | We request the Expert Solution where available | | | | D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) | | | | | | | | E. SEPARATE FURNISHING OF INDICATIONS (leave | blank if not applicable) | | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | For receiving Office use only | For International Bureau use only | | | This sheet was received with the international application Authorized officer | This sheet was received by the International Bureau on: Authorized officer | | ## INDICATIONS RELATING TO A DEPOSITED MICROORGANISM | A. The indications made below relate to the microorganism referred to in the description on page 51, line 8-10. | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--| | | | | | | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | | | Name of depositary institution Agricultural Resea<br>International Depo | arch Culture Collection (NRRL) sitory Authority | | | | Address of depositary institution (including postal code and country, | | | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street . | | | | Date of deposit | Accession Number | | | | 09 March 1994 (09.03.94) | NRRL B-21225 | | | | C. ADDITIONAL INDICATIONS (leave blank if not applicable | le) This information is continued on an additional sheet | | | | We request the Expert Solution where available D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) | | | | | | | | | | E. SEPARATE FURNISHING OF INDICATIONS (leave | blank if not applicable) | | | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | | For receiving Office use only | For International Bureau use only | | | | This sheet was received with the international application Authorized officer | This sheet was received by the International Bureau on: Authorized officer | | | | A. The indications made below relate to the microorganism ref<br>on page 52, line 3- | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--| | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | | Name of depositary institution Agricultural Resea International Depo | orch Culture Collection (NRRL) sitory Authority | | | Address of depositary institution (including postal code and country) | | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street | | | Date of deposit | Accession Number | | | 09 March 1994 (09.03.94) | NRRL B-21226 | | | C. ADDITIONAL INDICATIONS (leave blank if not applicable | le) This information is continued on an additional sheet | | | We request the Expert Solution where available | | | | D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) | | | | | | | | E. SEPARATE FURNISHING OF INDICATIONS (leave | | | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | For receiving Office use only | For International Bureau use only | | | This sheet was received with the international application Authorized officer | This sheet was received by the International Bureau on: Authorized officer | | | A. The indications made below relate to the microorganism relate on page 52, line 3- | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--| | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | | Name of depositary institution Agricultural Resea<br>International Depo | erch Culture Collection (NRRL) sitory Authority | | | Address of depositary institution (including postal code and country, | 1 | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street | | | Date of deposit | Accession Number | | | 09 March 1994 (09.03.94) | NRRL B-21227 | | | C. ADDITIONAL INDICATIONS (leave blank if not applicable | le) This information is continued on an additional sheet | | | We request the Expert Solution where available D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) | | | | | | | | E. SEPARATE FURNISHING OF INDICATIONS (leave | | | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | For receiving Office use only | For International Bureau use only | | | This sheet was received with the international application Albu Williams Authorized efficer | This sheet was received by the International Bureau on: Authorized officer | | | A. The indications made below relate to the microorganism referred to in the description on page | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------| | B. IDENTIFICATION OF DI | EPOSIT | Further deposits are identified on an additional sheet | | Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority | | | | Address of depositary institution ( | including postal code and country | ) | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street | | Date of deposit | | Accession Number | | 09 March 199 | 94 (09.03.94) | NRRL B-21228 | | C. ADDITIONAL INDICATION | ONS (leave blank if not applicab | de) This information is continued on an additional sheet | | We request the Expert Solution where available D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) | | | | E. SEPARATE FURNISHING | OF INDICATIONS (leave | blank if not applicable) | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | Enganisia Offic | e use only | For International Bureau use only | | For receiving Office This sheet was received with the Authorized officer | | This sheet was received by the International Bureau on: Authorized officer | | A. The indications made below | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------| | on page52 | , line | 3-6 | | B. IDENTIFICATION OF I | DEPOSIT | Further deposits are identified on an additional sheet | | Name of depositary institution | • | esearch Culture Collection (NRRL) Depository Authority | | Address of depositary institution | (including postal code and cou | nuntry) | | | 1815 N. Univers:<br>Peoria, IL 61604<br>USA | • | | Date of deposit | | Accession Number | | <u>-</u> | 994 (09.03.94) | NRRL B-21229 | | C. ADDITIONAL INDICAT | | olicable) This information is continued on an additional sheet | | We request the Expert Solution where available | | | | D. DESIGNATED STATES | FOR WHICH INDICA | TIONS ARE MADE (if the indications are not for all designated States) | | | | | | E. SEPARATE FURNISHIN | G OF INDICATIONS ( | (leave blank if not applicable) | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., *Accession Number of Deposit*) | | | | For receiving Off | ice use only | For International Bureau use only | | This sheet was received with | | | | A The indicate which had been also as the mineral state of the desired | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--| | A. The indications made below relate to the microorganism referred to in the description on page 53 line 1-4 | | | | | on page, line, | } | | | | B. IDENTIFICATION OF DEPOSIT | Further deposits are identified on an additional sheet | | | | Name of depositary institution Agricultural Resea<br>International Depo | erch Culture Collection (NRRL) ository Authority | | | | Address of depositary institution (including postal code and country | ) | | | | 1815 N. University<br>Peoria, IL 61604<br>USA | Street | | | | Date of deposit | Accession Number | | | | 09 March 1994 (09.03.94) | NRRL B-21230 | | | | C. ADDITIONAL INDICATIONS (leave blank if not applicable | le) This information is continued on an additional sheet | | | | We request the Expert Solution where available | | | | | D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States) | | | | | | | | | | E. SEPARATE FURNISHING OF INDICATIONS (leave | : blank if not applicable) | | | | The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications e.g., "Accession Number of Deposit") | | | | | | | | | | This sheet was received with the international application A the Walliams Authorized officer | For International Bureau use only This sheet was received by the International Bureau on: Authorized officer | | | #### What is claimed is: A substantially purified <u>Bacillus</u> strain which produces a pesticidal protein during vegetative growth. - 5 2. The <u>Bacillus</u> strain of claim 1 wherein said <u>Bacillus</u> is selected from a <u>Bacillus</u> species listed in Table 11. - 3. The <u>Bacillus</u> strain of claim 1 wherein said protein is capable of killing pests selected from insects, fungi, bacteria, nematodes, mites, ticks, protozoan pathogens, animal parasites, and the like. - The <u>Bacillus</u> strain of claim 3, wherein said protein is capable of killing insects selected from orders Coleoptera, Diptera, Hymenoptera, Lepidoptera, Homoptera, Hemiptera, Orthroptera, Thysanoptera, Dermaptera, Isoptera, Mallophaga, Anoplura, Siphonaptera, or Trichoptera. - 5. The <u>Bacillus</u> strain of claim 4, wherein said coleopteran species is a <u>Diabrotica</u>. - 15 6. The <u>Bacillus</u> strain of claim 5, wherein said <u>Diabrotica</u> is <u>Diabrotica virgifera virgifera</u> or <u>Diabrotica longicornis barberi</u>. - 7. The <u>Bacillus</u> strain of claim 4, wherein said lepidopteran species is an <u>Agrotis</u>. - 8. The <u>Bacillus</u> strain of claim 7, wherein said <u>Agrotis</u> is <u>Agrotis</u> ipsilon. - 9. The <u>Bacillus</u> strain of claim 2, wherein said <u>Bacillus</u> is <u>Bacillus</u> cereus. - 20 10. The <u>Bacillus</u> strain of claim 9, wherein said <u>Bacillus cereus</u> is <u>Bacillus cereus</u> having Accession No. NRRL B-21058. - 11. The Bacillus strain of claim 2, wherein said <u>Bacillus</u> is <u>Bacillus</u> thuringensis. - The <u>Bacillus</u> strain of claim 11, wherein said <u>Bacillus thuringensis</u> is <u>Bacillus</u> thuringensis having Accession No. NRRL B-21060. 13. The Bacillus strain of claim 2, wherein said protein has a molecular weight of 30 kDa or greater. - 14. The Bacillus strain of claim 13, wherein said protein has a molecular weight of about 60 to about 100 kDa. - 5 15. The <u>Bacillus</u> strain of claim 14, wherein said protein has a molecular weight of about 80 kDa. - The <u>Bacillus</u> strain of claim 15, wherein said protein has the sequence given in SEQ. ID. NO:7. - The <u>Bacillus</u> strain of claim 14, wherein said protein has a molecular weight of about 100 kDa. - The <u>Bacillus</u> strain of claim 17, wherein said protein has the sequence given in SEQ. ID. NO:5. - 19. A substantially pure pesticidal protein isolatable during the vegetative growth phase of <a href="Bacillus spp">Bacillus spp</a>, or analogs and active fragments thereof. - 15 20. The pesticidal protein of claim 19 wherein said <u>Bacillus</u> is selected from a <u>Bacillus</u> species listed in Table 11. - 21. The pesticidal protein of claim 20, wherein said insects are selected from orders Coleoptera, Diptera, Hymenoptera, Lepidoptera, Homoptera, Hemiptera, Orthroptera, Thysanoptera, Dermaptera, Isoptera, Mallophaga, Anoplura, Siphonaptera, or Trichoptera. - 22. The pesticidal protein of claim 21, wherein said coleopteran species is a Diabrotica. - 23. The pesticidal protein of claim 22, wherein said <u>Diabrotica</u> is <u>Diabrotica virgifera</u> <u>virgifera</u> or <u>Diabrotica longicornis barberi</u>. - 24. The pesticidal protein of claim 21, wherein said lepidopteran species is an Agrotis. - 25 25. The pesticidal protein of claim 24, wherein said Agrotis is Agrotis ipsilon. 20 26. The pesticidal protein of claim 19, wherein said <u>Bacillus</u> is <u>Bacillus</u> cereus. - 27. The pesticidal protein of claim 26, wherein said <u>Bacillus cereus</u> is <u>Bacillus cereus</u> having Accession No. B-21058. - 28. The pesticidal protein of claim 19, wherein said <u>Bacillus</u> is <u>Bacillus</u> thuringensis. - The pesticidal protein of claim 28, wherein said <u>Bacillus thuringensis</u> is <u>Bacillus thuringensis</u> is <u>Bacillus thuringensis</u> selected from Accession Numbers NRRL B-21060, NRRL B-21224, NRRL B-21225, NRRL B-21226 and NRRL B-21227. - 30. The pesticidal protein of claim 19, wherein said protein has a molecular weight of 30 kDa or greater. - 10 31. The pesticidal protein of claim 30, wherein said protein has a molecular weight of about 60 to about 100 kDa. - 32. The pesticidal protein of claim 31, wherein said protein has a molecular weight of about 80 kDa. - 33. The pesticidal protein of claim 32, wherein said protein has the sequence given in SEQ15 ID NO:7. - 34. The pesticidal protein of claim 31, wherein said protein has the sequence given in SEQ ID NO:5. - 35. The pesticidal protein of claim 19, wherein said protein comprises an N-terminal sequence as set forth in SEQ ID NOS:10 or 11. - 20 36. A substantially pure nucleotide sequence which encodes the protein of claim 19. - 37. A substantially pure nucleotide sequence which encodes the protein of claim 33. - 38. A substantially pure nucleotide sequence which encodes the protein of claim 34. - 39. A substantially pure nucleotide sequence which encodes the protein of claim 35. - 40. The nucleotide sequence of claim 36, wherein said sequence has been optimized for expression in a plant. 41. The nucleotide sequence of claim 40, wherein said plant is selected from maize, soybean, cotton, wheat, sunflower, tomato, potato, and oilseed rape. - 42. The nucleotide sequence of claim 37, wherein said sequence has been optimized for expression in a plant. - 5 43. The nucleotide sequence of claim 42, wherein said plant is selected from maize, soybean, cotton, wheat, sunflower, tomato, potato, and oilseed rape. - 44. The nucleotide sequence of claim 38, wherein said sequence has been optimized for expression in a plant. - 45. The nucleotide sequence of claim 44, wherein said sequence is set forth in SEQ ID NO: 10 18. - 46. The nucleotide sequence of claim 39, wherein said sequence has been optimized for expression in a plant. - 47. The nucleotide sequence of claim 46, wherein said sequence is set forth in SEQ ID NO: 17. - 15 48. The nucleotide sequence of claim 36, wherein said sequence has been optimized for expression in a microorganism. - 49. The nucleotide sequence of claim 48, wherein said microorganism is selected from Bacillus, Pseudomonas, Saccharomyces, Clavibacter, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Agrobacterium, insect pathogenic viruses, fungi, - 20 protozoans and nematodes. - 50. A plant which has been stably transformed with the nucleotide sequence of any one of claims 36-47 - 51. The plant of claim 48, wherein said plant is a maize plant. - 52. The nucleotide sequence of claim 36, wherein said sequence is essentially the sequence of E, coli clone P5-4 having Accession No. NRRL B-21059. 53. The nucleotide sequence of claim 36, wherein said sequence is essentially the sequence of E. coli clone P3-12 having Accession No. NRRL B-21061. - 54. The nucleotide sequence of claim 36, wherein said sequence is contained in <u>E. coli</u> clone pCIB 6022 having Accession No. NRRL B-21222. - 5 55. The nucleotide sequence of claim 54 wherein said sequence is given as VIP-1 in SEQ ID NO:1. - 56. An auxiliary protein which enhances the pesticidal activity of a pesticidal protein. - 57. The auxiliary protein of claim 56 wherein said pesticidal protein is from <u>Bacillus</u>. - 58. The auxiliary protein of claim 57 wherein said pesticidal protein is from B. cereus. - 10 59. The auxiliary protein of claim 58 wherein said pesticidal protein is from strain AB78. - 60. The auxiliary protein of claim 56 wherein said auxiliary protein is from <u>Bacillus</u>. - 61. The auxiliary protein of claim 60 wherein said auxiliary protein is from B. cereus. - 62. The auxiliary protein of claim 61 wherein said auxiliary protein is from strain AB78. - 63. A substantially pure nucleotide sequence which encodes the auxiliary protein of any one of claims 56, 60, 61, and 62. 15 - 64. The nucleotide sequence of claim 63 wherein said sequence is contained in <u>E. coli</u> clone pCIB6022 having Accession No. NRRL B-21222. - 65. The <u>Bacillus</u> strain of claim 1 wherein said strain is AB88 having Accession No. NRRL B-21225. - 20 66. The <u>Bacillus</u> strain of claim 1 wherein said strain is AB289 having Accession No. NRRL B-21227. - 67. The <u>Bacillus</u> strain of claim 1 wherein said strain is AB294 having Accession No. NRRL B-21229. - 68. The <u>Bacillus</u> strain of claim 1 wherein said strain is AB359 having Accession No. NRRL B-21226. 69. The <u>Bacillus</u> strain of claim 1 wherein said strain is AB59 having Accession No. NRRL B-21228. 70. The <u>Bacillus</u> strain of claim 1 wherein said strain is AB256 having Accession No. NRRLB-21230. #### INTERNATIONAL SEARCH REPORT Ir ational Application No PCT/US 94/03131 A. CLASSIFICATION OF SUBJECT MATTER IPC 5 C12N15/31 C12N15/32 C12N15/82 A01H5/00 A01N63/00 C12P1/04 C12N1/21 //C12Q1/68,C12P21/08,(C12P1/04, C12R1:07), (C12N1/21, C12R1:07, 1:19) According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C12P A01N C07K IPC 5 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category \* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X WO, A, 91 16434 (ECOGEN, INC.) 31 October 1-4,11, 13-15, 19-21, 28, 30-32, 35,36, 39-41, 46,48-50 see page 11, line 31 - page 13, line 15 see page 23, line 20 - page 24, line 3 see page 28, line 1 - page 29, line 25 see examples 9-11 see figure 2 X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 2 2, 07, 94 21 June 1994 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Andres, S Fax: (+31-70) 340-3016 Form PCT/ISA/210 (second sheet) (July 1992) , 1 In :tional Application No PCT/US 94/03131 | | ation) DOCUMENTS CONSIDERED TO BE RELEVANT | | |------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------| | Category * | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | | X | WO,A,88 08880 (ECOGEN, INC.) 17 November 1988 see page 7, line 5 - page 8, line 9 see page 18, line 21 - page 20, line 10 | 1-4,9,<br>13,14,<br>19-21,<br>26,30,<br>31,36,<br>48-50 | | | see page 41 - page 42<br> | | | X | CURR MICROBIOL 17 (6). 1988. 347-350 SEKAR, V. 'THE INSECTICIDAL CRYSTAL PROTEIN GENE IS EXPRESSED IN VEGETATIVE CELLS OF BACILLUS -THURINGIENSIS-VAR- TENEBRIONIS.' | 1-4,11,<br>13,14,<br>19-21,<br>28,30,<br>31,36 | | Y | see the whole document | 5,6,40,<br>41 | | Y | BIOTECHNOLOGY vol. 11 , February 1993 , NEW YORK US pages 194 - 200 KOZIEL, M. ET AL. 'Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis' see the whole document | 40,41 | | X | WO,A,90 13651 (IMPERIAL CHEMICAL<br>INDUSTRIES PLC) 15 November 1990 | 19-23,<br>28,<br>30-32,<br>35,36,<br>39-41,51 | | Y | see page 4, line 17 - line 30<br>see page 5, line 36 - page 7, line 17<br>see examples 9-21 | 5,6 | | x | BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY vol. 56, no. 9 , September 1992 pages 1429 - 1433 YOSHISUE, H. ET AL. 'Effects of Bacillus thuringiensis var. israelensis 20-kDa protein on production of the Bti 130-kDa crystal protein in Escherichia coli' see abstract | 56,57,<br>60,63 | | K | PLASMID vol. 16, no. 3 , November 1986 page 230 SHIVAKUMAR, A. ET AL. 'Cloned crystal protein genes express vegetatively in Bacillus subtilis' see abstract | 1,2 | | | -/ | | 1 #### INTERNATIONAL SEARCH REPORT In tional Application No PCT/US 94/03131 | CIC | (Continuation) DOCUMENTS CONSTRUCTED TO BE BEY SYLVEN | | PCT/US 94/03131 | | | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-----------------------|--|--|--| | C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. | | | | | | | | Cawgory | case of document, with murcauon, where appropriate, of the relevant passages | | Relevant to claim No. | | | | | A | WO,A,91 16432 (PLANT GENETIC SYSTEMS, N.V.) 31 October 1991 cited in the application see page 6, line 14 - page 7 see examples see claims | | 40,41 | | | | | <b>A</b> | MICROBIOLOGICAL REVIEWS vol. 53, no. 2 , June 1989 , WASHINGTON DC, US pages 242 - 255 HÖFTE, H. & WHITELEY, H. 'Insecticidal crystal proteins of Bacillus thuringiensis' | | · | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - 1 international application No. #### INTERNATIONAL SEARCH REPORT PCT/US 94/03131 | Box I | Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet) | | | | | | |------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|--| | This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: | | | | | | | | 1. | Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: | | | | | | | 2. X | Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: Claim 51 relating to an engineered plant refers to claim 48 relating to an engineered microorganism. Therefore, claim 51 has been searched independently of claim 48. | | | | | | | 3. | Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). | | | | | | | Box II | Observations where unity of invention is lacking (Continuation of item 2 of first sheet) | 1 | | | | | | This In | sternational Searching Authority found multiple inventions in this international application, as follows: | 1 | | | | | | | | | | | | | | 1. | As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. | | | | | | | 2. | As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee. | | | | | | | 3. | As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: | | | | | | | 4. | No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: | | | | | | | Remark | on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees. | | | | | | ### INTERNATIONAL SEARCH REPORT information on patent family members Intr onal Application No PC I'/US 94/03131 | Patent document cited in search report | Publication date 31-10-91 | Patent family member(s) | | Publication date | | |----------------------------------------|---------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------------|--| | WO-A-9116434 | | AU-B-<br>AU-A-<br>EP-A- | 647121<br>7687391<br>0528823 | 17-03-94<br>11-11-91<br>03-03-93 | | | WO-A-8808880 | 17-11-88 | US-A-<br>AU-B-<br>AU-A-<br>EP-A-<br>JP-T- | 5024837<br>617110<br>1782388<br>0359771<br>2501439 | 18-06-91<br>21-11-91<br>06-12-88<br>28-03-90<br>24-05-90 | | | WO-A-9013651 | 15-11-90 | AU-B-<br>AU-A-<br>EP-A-<br>JP-T- | 629349<br>5630390<br>0474662<br>4505250 | 01-10-92<br>29-11-90<br>18-03-92<br>17-09-92 | | | WO-A-9116432 | 31-10-91 | AU-A-<br>EP-A- | 7695391<br>0528819 | 11-11-91<br>03-03-93 | |