wo 2012/135041 A2 |11 0000 0000 OO A

(43) International Publication Date

Organization
International Bureau

—~
é

=

\

4 October 2012 (04.10.2012)

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

(10) International Publication Number

WO 2012/135041 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

74

International Patent Classification:
GO6F 9/46 (2006.01) GO6F 12/08 (2006.01)
GO6F 9/30 (2006.01)

International Application Number:
PCT/US2012/030383

International Filing Date:
23 March 2012 (23.03.2012)

Filing Language: English
Publication Language: English
Priority Data:

61/467,939 25 March 2011 (25.03.2011) US

Applicant (for all designated States except US): SOFT
MACHINES, INC. [US/US]; 3211 Scott Boulevard, Suite
202, Santa Clara, CA 95054 (US).

Inventor; and

Inventor/Applicant (for US only): ABDALLAH, Mo-
hammad [US/US]; 3868 Suncrest Avenue, San Jose, CA
95132 (US).

Agent: BARNES, Glenn, D.; Murabito Hao & Barnes
LLP, Two North Market Street, Third Floor, San Jose, CA
95113 (US).

(81) Designated States (uniess otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW,ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: REGISTER FILE SEGMENTS FOR SUPPORTING CODE BLOCK EXECUTION BY USING VIRTUAL CORES IN-
STANTIATED BY PARTITIONABLE ENGINES

Address Calculation
& Execution Units

Address Calculation
& Execution Units

Address Calculation
& Execution Units

Address Calculation
& Execution Units

| R — Execution Glpbal Interconnect -~ |
r 7777T777ﬁ|7777$777"777$7777”7777F7777
| L !
| Operand/Result || Operand/Result Operand/Result Operand/Result |
| Buffer | | Buffer Buffer | | Buffer |
|
! b ! ! P
| |l I ‘
[| h ‘
| | h ‘
| Register File | | Register File Register File : | Register File }
| | |
|
[|l h ‘
| |l b !
| Register Segment | | Register Segment Register Segment : | Register Segment }
L\ e -

(57) Abstract: A system for executing instructions using a plurality of register file segments for a processor. The system includes a
global front end scheduler for receiving an incoming instruction sequence, wherein the global front end scheduler partitions the in -
coming instruction sequence into a plurality of code blocks of instructions and generates a plurality of inheritance vectors describing
interdependencies between instructions of the code blocks. The system further includes a plurality of virtual cores of the processor
coupled to receive code blocks allocated by the global front end scheduler, wherein each virtual core comprises a respective subset
of resources of a plurality of partitionable engines, wherein the code blocks are executed by using the partitionable engines in ac -
cordance with a virtual core mode and in accordance with the respective inheritance vectors. A plurality register file segments are
coupled to the partitionable engines for providing data storage.

WO 2012/135041 PCT/US2012/030383

REGISTER FILE SEGMENTS FOR SUPPORTING CODE BLOCK EXECUTION BY
USING VIRTUAL CORES INSTANTIATED BY PARTITIONABLE ENGINES

This application claims the benefit co-pending commonly assigned US Provisional Patent
Application serial number 61/467,939, titled “REGISTER FILE SEGMENTS FOR
SUPPORTING CODE BLOCK EXECUTION BY USING VIRTUAL CORES
INSTANTIATED BY PARTITIONABLE ENGINES” by Mohammad A. Abdallah, filed on

March 25, 2011, and which is incorporated herein in its entirety.

CROSS REFERENCE TO RELATED APPLICATION

This application is related to co-pending commonly assigned US Patent Application serial
number 2009/0113170, titled “APPARATUS AND METHOD FOR PROCESSING AN
INSTRUCTION MATRIX SPECIFYING PARALLEL IN DEPENDENT OPERATIONS”
by Mohammad A. Abdallah, filed on April 12, 2007, and which is incorporated herein in its

entirety.

This application is related to co-pending commonly assigned US Patent Application serial
number 2010/0161948, titled “APPARATUS AND METHOD FOR PROCESSING
COMPLEX INSTRUCTION FORMATS IN A MULTITHREADED ARCHITECTURE
SUPPORTING VARIOUS CONTEXT SWITCH MODES AND VIRTUALIZATION
SCHEMES” by Mohammad A. Abdallah, filed on November 14, 2007, and which is

incorporated herein in its entirety.

FIELD OF THE INVENTION

[001] The present invention is generally related to digital computer systems, more
particularly, to a system and method for selecting instructions comprising an instruction

sequence.

BACKGROUND OF THE INVENTION

[002] Processors are required to handle multiple tasks that are either dependent or

totally independent. The internal state of such processors usually consists of registers that

WO 2012/135041 PCT/US2012/030383

might hold different values at each particular instant of program execution. At each instant of

program execution, the internal state image is called the architecture state of the processor.

[003] When code execution is switched to run another function (e.g., another thread,
process or program), then the state of the machine/processor has to be saved so that the new
function can utilize the internal registers to build its new state. Once the new function is
terminated then its state can be discarded and the state of the previous context will be restored
and execution resumes. Such a switch process is called a context switch and usually includes
10's or hundreds of cycles especially with modern architectures that employ large number of

registers (e.g., 64, 128, 256) and/or out of order execution.

[004] In thread-aware hardware architectures, it is normal for the hardware to
support multiple context states for a limited number of hardware-supported threads. In this
case, the hardware duplicates all architecture state elements for each supported thread. This
eliminates the need for context switch when executing a new thread. However, this still has
multiple draw backs, namely the area, power and complexity of duplicating all architecture
state elements (i.e., registers) for each additional thread supported in hardware. In addition, if
the number of software threads exceeds the number of explicitly supported hardware threads,

then the context switch must still be performed.

[005] This becomes common as parallelism is needed on a fine granularity basis
requiring a large number of threads. The hardware thread-aware architectures with duplicate
context-state hardware storage do not help non-threaded software code and only reduces the
number of context switches for software that is threaded. However, those threads are usually
constructed for coarse grain parallelism, and result in heavy software overhead for initiating
and synchronizing, leaving fine grain parallelism, such as function calls and loops parallel
execution, without efficient threading initiations/auto generation. Such described overheads
are accompanied with the difficulty of auto parallelization of such codes using sate of the art
compiler or user parallelization techniques for non-explicitly/easily parallelized/threaded

software codes.

WO 2012/135041 PCT/US2012/030383

SUMMARY OF THE INVENTION

[006] In one embodiment, the present invention is implemented as a system for
executing instructions using a plurality of register file segments for a processor. The system
includes a global front end scheduler for receiving an incoming instruction sequence, wherein
the global front end scheduler partitions the incoming instruction sequence into a plurality of
code blocks of instructions and generates a plurality of inheritance vectors describing
interdependencies between instructions of the code blocks. The system further includes a
plurality of virtual cores of the processor coupled to receive code blocks allocated by the
global front end scheduler, wherein each virtual core comprises a respective subset of
resources of a plurality of partitionable engines, wherein the code blocks are executed by
using the partitionable engines in accordance with a virtual core mode and in accordance with
the respective inheritance vectors. A plurality register file segments are coupled to the

partitionable engines for providing data storage.

[007] Other embodiments of the present invention utilize a common scheduler, a
common register file and a common memory subsystem to implement fragmented address
spaces for multiple partitionable engines of processor. The partitionable engines can be used
to implement a plurality of virtual cores. Fragmentation enables the scaling of
microprocessor performance by allowing additional virtual cores to cooperatively execute
instruction sequences. The fragmentation hierarchy can be the same across each cache
hierarchy (e.g., L1 cache, L2 cache, and the common register file). The fragmentation
hierarchy can divide the address space into fragments using address bits, where the address
bits are used such that the fragments are above cache line boundaries and below page

boundaries. Each fragment can be configured to utilize a multiport bank structure for storage.

[008] The foregoing is a summary and thus contains, by necessity, simplifications,
generalizations and omissions of detail; consequently, those skilled in the art will appreciate
that the summary is illustrative only and is not intended to be in any way limiting. Other
aspects, inventive features, and advantages of the present invention, as defined solely by the

claims, will become apparent in the non-limiting detailed description set forth below.

WO 2012/135041 PCT/US2012/030383

BRIEF DESCRIPTION OF THE DRAWINGS

[009] The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference numerals

refer to similar elements.

[010] Figure 1A shows an overview of the manner in which the global front end
generates code blocks and inheritance vectors to support the execution of code sequences on

their respective partitionable engines.

[011] Figure 1B shows an overview diagram of partitionable engines and their
components, including segmented scheduler and register files, global interconnects and a
fragmented memory subsystem for a multicore processor in accordance with one embodiment

of the present invention.

[012] Figure 2 shows a scheduler flow diagram in accordance with one embodiment

of the present invention.

[013] Figure 3 shows a diagram of exemplary hardware circuits that shows a
segmented register file storing operands and results with an interconnect in accordance with

one embodiment of the present invention.

[014] Figure 4 shows a diagram depicting a global front end Fetch & scheduler in

accordance with one embodiment of the present invention.

[015] Figure 5 shows an alternative implementation of the distribution of instructions

across many virtual cores in accordance with one embodiment of the present invention.

[016] Figure 6 shows a plurality of register segments with a corresponding plurality
of register files and operand & result buffers in accordance with one embodiment of the

present invention.

[017] Figure 7 shows a more detailed diagram of a fragmented memory subsystem

for a multicore processor in accordance with one embodiment of the present invention.

[018] Figure 8 shows a diagram depicting how bits of an address can be used by
address generation to enumerate fragments in accordance with one embodiment of the present

invention.

WO 2012/135041 PCT/US2012/030383

[019] Figure 9 shows a diagram of how loads and stores are handled by

embodiments of the present invention.

[020] Figure 10 shows the manner which fragments can be split into two or more

domains in accordance with one embodiment of the present invention.

[021] Figure 11 shows a mode of operation of the processor wherein Virtual cores
are configured as physical cores that correspond to logical cores in executing applications in

accordance with one embodiment of the present invention.

[022] Figure 12 shows a mode of operation of the processor wherein virtual cores
are configured as soft cores that correspond to logical cores in executing applications in

accordance with one embodiment of the present invention.

[023] Figure 13 shows a mode of operation of the processor wherein the virtual cores
are configured as soft cores that correspond to a single logical core in executing applications

in accordance with one embodiment of the present invention.

[024] Figure 14 shows an exemplary implementation of fragment segmentation
being used to support logical core and virtual core functionality in accordance with one

embodiment of the present invention.

[025] Figure 15 shows a fragment memory of an exemplary four fragment processor
implementing a many physicals to many logicals mode in accordance with one embodiment

of the present invention.

[026] Figure 16 shows a fragment memory of an exemplary four fragment processor
implementing a many physicals to many logicals mode in accordance with an alternative

embodiment of the present invention.

[027] Figure 17 shows a fragment memory of an exemplary four fragment processor
implementing a many soft cores to many logical cores mode in accordance with one

embodiment of the present invention.

[028] Figure 18 shows a fragment memory of an exemplary four fragment processor
implementing a many soft cores to one logical core mode in accordance with one embodiment

of the present invention.

WO 2012/135041 PCT/US2012/030383

[029] Figure 19 shows address calculation and execution units, operand/result
buffers, threaded register files, and common partition schedulers of an exemplary four
fragment processor implementing a physicals to logicals mode in accordance with one

embodiment of the present invention.

[030] Figure 20 shows an alternative implementation for the address calculation and
execution units, operand/result buffers, threaded register files, and common partition
schedulers of an exemplary four fragment processor to implement a many physicals to many

logicals mode in accordance with one embodiment of the present invention.

[031] Figure 21 shows address calculation and execution units, register files, and
common partition schedulers of an exemplary four fragment processor implementing a many
soft cores to many logicals mode in accordance with one embodiment of the present

invention.

[032] Figure 22 shows address calculation and execution units, register files, and
common partition schedulers of an exemplary four fragment processor implementing a many
soft cores to one logical core mode in accordance with one embodiment of the present

invention.

[033] Figure 23 shows a diagram of an exemplary microprocessor pipeline in

accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[034] Although the present invention has been described in connection with one
embodiment, the invention is not intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives, modifications, and equivalents as
can be reasonably included within the scope of the invention as defined by the appended

claims.

[035] In the following detailed description, numerous specific details such as specific
method orders, structures, elements, and connections have been set forth. It is to be
understood however that these and other specific details need not be utilized to practice

embodiments of the present invention. In other circumstances, well-known structures,

WO 2012/135041 PCT/US2012/030383

elements, or connections have been omitted, or have not been described in particular detail in

order to avoid unnecessarily obscuring this description.

[036] References within the specification to "one embodiment” or "an embodiment"
are intended to indicate that a particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one embodiment of the present
invention. The appearance of the phrase "in one embodiment” in various places within the
specification are not necessarily all referring to the same embodiment, nor are separate or
alternative embodiments mutually exclusive of other embodiments. Moreover, various
features are described which may be exhibited by some embodiments and not by others.
Similarly, various requirements are described which may be requirements for some

embodiments but not other embodiments.

[037] Some portions of the detailed descriptions, which follow, are presented in
terms of procedures, steps, logic blocks, processing, and other symbolic representations of
operations on data bits within a computer memory. These descriptions and representations
are the means used by those skilled in the data processing arts to most effectively convey the
substance of their work to others skilled in the art. A procedure, computer executed step,
logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of
steps or instructions leading to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not necessarily, these quantities take
the form of electrical or magnetic signals of a computer readable storage medium and are
capable of being stored, transferred, combined, compared, and otherwise manipulated in a
computer system. It has proven convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers,

or the like.

[038] It should be borne in mind, however, that all of these and similar terms are to
be associated with the appropriate physical quantities and are merely convenient labels
applied to these quantities. Unless specifically stated otherwise as apparent from the
following discussions, it is appreciated that throughout the present invention, discussions
utilizing terms such as "processing” or "accessing” or "writing" or "storing" or "replicating”
or the like, refer to the action and processes of a computer system, or similar electronic

computing device that manipulates and transforms data represented as physical (electronic)

WO 2012/135041 PCT/US2012/030383

quantities within the computer system's registers and memories and other computer readable
media into other data similarly represented as physical quantities within the computer system

memories or registers or other such information storage, transmission or display devices.

[039] Embodiments of the present invention utilize a common global front end
scheduler, a plurality of segmented register files, and a memory subsystem to implement
fragmented address spaces for multiple cores of a multicore processor. In one embodiment,
fragmentation enables the scaling of microprocessor performance by allowing additional
virtual cores (e.g., soft cores) to cooperatively execute instruction sequences comprising one
or more threads. The fragmentation hierarchy is the same across each cache hierarchy (e.g.,
L1 cache, L2 cache, and the common register file). The fragmentation hierarchy divides the
address space into fragments using address bits, where the address bits are used such that the
fragments are identified by bits that are above cache line boundaries and below page
boundaries. Each fragment is configured to utilize a multiport bank structure for storage.

Embodiments of the present invention are further described in the Figures 1A and 1B below.

[040] Figure 1A shows an overview diagram of a processor in accordance with one
embodiment of the present invention. As depicted in Figure 1A, the processor includes a

global front end fetch and scheduler 10 and a plurality of partitionable engines 11-14.

[041] Figure 1A shows an overview of the manner in which the global front end
generates code blocks and inheritance vectors to support the execution of code sequences on
their respective partitionable engines. Each of the code sequences 20-23 can belong to the
same logical core/thread or to different logical cores/threads, depending upon the particular
virtual core execution mode. The global front end fetch and scheduler will process the code
sequences 20-23 to generate code blocks and inheritance vectors. These code blocks and

inheritance vectors are allocated to the particular partitionable engines 11-14 as shown.

[042] The partitionable engines implement virtual cores, in accordance with a
selected mode. A partitionable engine includes a segment, a fragment and a number of
execution units. The resources within the partitionable engines can be used to implement
virtual cores that have multiple modes. As provisioned by the virtual core mode, one soft
core, or many soft cores, can be implemented to support one logical core/thread. In the
Figure 1A embodiment, depending on the selected mode, the virtual cores can support one

logical core/thread or four logical cores/threads. In an embodiment where the virtual cores

WO 2012/135041 PCT/US2012/030383

support four logical cores/threads, the resources of each virtual core are spread across each of
the partitionable engines. In an embodiment where the virtual cores support one logical
core/thread, the resources of all the engines are dedicated to that core/thread. The engines are
partitioned such that each engine provides a subset of the resources that comprise each virtual
core. In other words, a virtual core will comprise a subset of the resources of each of the
engines 11-14. Communication between the resources of each of the engines 11-14 is
provided by a global interconnection structure 30 in order to facilitate this process.
Alternatively, the engines 11-14 can be used to implement a physical mode where the
resources of the engines 11-14 are dedicated to support the execution of a dedicated
core/thread. In this manner, the soft cores implemented by the engines comprise virtual cores
that have resources spread across cach of the engines. The virtual core execution modes are

further described in the following figures below.

[043] It should be noted that in a conventional core implementation, only resources
within one core/engine is solely allocated to one logical thread/core. In contrast, in
embodiments of the present invention, the resources of any engine/core can be partitioned to,
collectively with other engine/core partitions, instantiate a virtual core that is allocated to one
logical thread/core. Additionally, embodiments of the present invention can implement
multiple virtual execution modes in which those same engines can be partitioned to support
many dedicated cores/threads, many dynamically allocated cores/threads, or an embodiment
where all of the resources of all engines support the execution of a single core/thread. These

embodiments are further described in the descriptions below.

[044] Figure 1B shows an overview diagram of partitionable engines and their
components, including segmented scheduler and register files, global interconnects and a
fragmented memory subsystem for a multicore processor in accordance with one embodiment
of the present invention. As depicted in Figure 1, four fragments 101-104 are shown. The
fragmentation hierarchy is the same across each cache hierarchy (e.g., L1 cache, L2 cache,
and the load store buffer). Data can be exchanged between each of the L1 caches, each of the

L2 caches and each of the load store buffers via the memory global interconnect 110a.

[045] The memory global interconnect comprises a routing matrix that allows a
plurality of cores (e.g., the address calculation and execution units 121-124) to access data

that may be stored at any point in the fragmented cache hierarchy (e.g., L1 cache, load store

WO 2012/135041 PCT/US2012/030383

buffer and L2 cache). Figure 1 also depicts the manner whereby each of the fragments 101-
104 can be accessed by address calculation and execution units 121-124 via the memory

global interconnect 110a.

[046] The execution global interconnect 110b similarly comprises a routing matrix
allows the plurality of cores (e.g., the address calculation and execution units 121-124) to
access data that may be stored at any of the segmented register files. Thus, the cores have
access to data stored in any of the fragments and 2 data stored in any of the segments via the
memory global interconnect 110a or the execution global interconnect 110b. Additionally, it
should be noted that in one embodiment, another global interconnect exists between each of
the common partition fetch and schedulers. This is shown by the horizontal arrows between

and connecting each common partition fetch and scheduler.

[047] Figure 1B further shows a global front end Fetch & scheduler 150 which has a
view of the entire machine and which manages the utilization of the register files segments
and the fragmented memory subsystem. Address generation comprises the basis for fragment
definition. The global front end Fetch & scheduler functions by allocating instruction
sequences to each segment’s partition scheduler. The common partition scheduler then
dispatches those instruction sequences for execution on the address calculation and execution

units 121-124.

[048] It should be noted that in one embodiment, the functionality of the common
partition fetch and schedulers can be incorporated into the global front end scheduler 150. In
such an embodiment, the segments would not include respective common partition fetch and

schedulers, and there would be no need for an interconnect between them.

[049] Additionally, it should be noted that the partitionable engines shown in Figure
1A can be nested in a hierarchal way. In such an embodiment, a first level partitionable
engine would include a local front end fetch and scheduler and multiple secondary

partitionable engines connected to it.

[050] Figure 2 shows a scheduler flow diagram in accordance with one embodiment
of the present invention. As depicted in Figure 2, a bucket buffer is shown that includes
Speculative Thread Bucket-pointers, Bucket Sources and destinations lists. The scheduler

and execution buckets include a bucket dispatch selector and the virtual register match and

10

WO 2012/135041 PCT/US2012/030383

read, including the possibility of a register hierarchy and a register cache. The Back end is
where executed buckets are logged and exception ordering is enforced before retirement. The
register hierarchy/cache also serves as an intermediate storage for the executed bucket results
until they are non-speculative and can update the architecture state. The following discloses
one possible implementation of the front end, the dispatch stage and the backend where

executed buckets are logged.

[051] Figure 2 shows the manner in which the concept scales from a bucket buffer
managing a small number of closely coupled threads into hardware circuits that manage
multiple bucket buffers and threads. Those circuits that can be expanded to process larger
numbers of threads that might have less close interaction are describe as a global front end

(e.g., global front end scheduler 150 shown in Figure 1).

[052] The process starts by fetching a new thread Matrix/bucket/block, and then the
new thread bucket is assigned into a vacant bucket slot in the bucket buffer. Each of the
thread allocation pointers in the thread allocation pointer array 852 composes an interval of
buckets that the thread is allowed physically to place its blocks/buckets of instruction in it.
Each of those threads keeps allocating buckets into the bucket buffer array inside its
corresponding interval of contiguous space in round-robin fashion. The buckets/blocks inside
cach thread space get assigned a new number 852 that is incremented each time a new
bucket/block gets assigned. For each valid source in the bucket 850. The valid sources for
cach bucket has a valid read bit "Rv" indicating that this source is needed for the instructions
inside this bucket. By the same convention, each destination register that is to be written back
by instructions in this bucket has a valid bit "Wv" set in the bucket and it has a field in a
destination inheritance vector 853. When a new bucket is to be fetched into the bucket buffer
it inherits the destination inheritance vector from the previous allocated bucket pointed at by
the thread bucket allocation pointer 852. The inheritance vector is copied from the previously
allocated bucket and then it overwrites those valid destination fields that correspond to the
registers which will be updated by those bucket instructions. The valid destinations will be
labeled with the current bucket number, while the invalid destinations are copied from the
corresponding inheritance vector inside the bucket. Then the thread bucket pointer is updated

for the new fetched bucket by incrementing its pointer (it wraps around within its interval).

11

WO 2012/135041 PCT/US2012/030383

[053] In the bucket dispatch and execute stage, whenever a bucket is executed
without any exception handling, then the bucket execution flag (containing the bucket
number) 854 is set and broadcasted throughout the bucket buffer and is latched/monitored
within each bucket that has a source with that bucket number as a source. It is also possible to
pass other related information along the bucket number, such as information about virtual
registers locations. When all the execution flags of the sources buckets are set within a
bucket, then that bucket ready bit 855 is set and the bucket is ready to be dispatched and
executed. When the bucket executes without any exception and it is ready to update the
architecture state in the sequential order of the program, then it retires the bucket and the
retirement thread pointer 857 is incremented to the next bucket in the array. The retired

bucket location can be assigned to a new bucket.

[054] Those closely related threads can all coexist inside the Matrix/bucket/block
buffer; each thread will occupy an interval of consecutive buckets that belongs to that thread.
The allocation pointer of that thread moves inside this interval of buckets in a round robin
fashion fetching new instruction buckets and allocating them inside the thread interval in the
described round robin fashion. With such interval sectioning, the whole bucket buffer is

divided dynamically with different or equal interval lengths of buckets.

[055] The concept of inheritance vector is introduced here for the instruction bucket
as well as for the thread. Each instruction matrix/block/bucket writes into particular registers
among the architectural registers. Each new bucket upon allocation stage updates this
inheritance vector writing the thread and bucket number of its own into this vector leaving the
fields for the registers that it does not write into un-updated. This bucket inheritance vector
B _iv 856 is forwarded from each bucket to the next one in program order. In FIG. 8.b each
matrix writes its own number into the architecture destination registers if the instructions in
that matrix write into those registers, otherwise it inherits the value from the B_iv of the

previous bucket in that thread.

[056] Figure 3 shows a diagram of exemplary hardware circuits that shows a
segmented register file storing operands and results with an interconnect in accordance with
one embodiment of the present invention. Figure 3 shows an operand result buffer coupled

via the execution global interconnect to a plurality of execution units.

12

WO 2012/135041 PCT/US2012/030383

[057] Figure 4 shows a diagram depicting a global front end scheduler in accordance
with one embodiment of the present invention. The global front end scheduler is configured
to process larger numbers of threads that might have less close interaction (e.g., global front
in scheduler 150 shown in Figure 1). This diagram shows how a sequence of instructions
from one logical core is distributed across many virtual cores. This process would be
repeated for each logical core present in the machine. It should be noted that the Figure 4
“Engine” comprises the components of a virtual core, where the register file is explicitly

depicted to show aspects of inter virtual core communication at the register file level.

[058] For example, as depicted in Figure 4, the global front end scheduler can
process a thread header 902 but does not need to process the actual instructions within the
thread to enforce the dependency check across those distant threads. The header of the thread
and the sub headers of its buckets contain only information about the architecture registers
that those threads and buckets writes into (destination registers of those instructions) no need
in those headers to include actual instructions or sources of those instructions. Actually it is
enough to list those destination registers or a bit vector where each individual bit is set for
cach register that is a destination for an instruction. The header does not need to be
physically placed as a header for the instructions; it can be any formatted packet or compact
representation or of the destination registers of the instructions within the threads, which may

or may not be stored with the rest of the instructions information.

[059] This global front-end fetches only the headers of the threads/blocks in program
order and generates dynamic thread and/or bucket inheritance vectors 901 (Tiv and/or Biv).
Each time a new thread is allocated, those inheritance vectors are forwarded by keeping the
old fields that the current thread bucket will not write to or update as shown 903. Those
inheritance vectors are distributed to a large number of engines/cores or processors 904 each
of which might include a local front-end and a fetch unit (which will fetch and store the actual
instructions produce the dependency vector for each bucket) and a local matrix/block/bucket
buffer with local register files 905. The local front-ends then fetch the actual instructions and
use the information from the inheritance vectors obtained from the global front end to fill the
dependency information for the instruction sources of the instructions that are brought into
those engines for execution. Figure 3 illustrates a global front-end implementation and the
way it disseminates the inheritance vectors to the different engines 904 using only concise

information about the instructions (e.g., which is just the registers that those instructions write

13

WO 2012/135041 PCT/US2012/030383

into). Other information that is of help to place in the header is that information about a
change in the control path within or across the threads. A global branch predictor can be used
to predict the flow of control across those threads. So such headers can include the branching
destinations and offsets. In addition to the branch predictor to determine control flow, the
hardware/compiler can decide to dispatch independent threads across the 2 control paths of a
branch. In such case it will later merge the execution of those 2 paths using the inheritance
vector. Figure 3 also shows the forwarding process when a header of a new thread is fetched
by the global front, thread 2 (906) for example will update the corresponding inheritance
vector 901 that is forwarded to it resulting in vector 910 where registers 1, 2, 3, 4, 6, 0 and 7
are updated with T2 labels. Note that in 910 register 5 was not written by T2 buckets and thus

its label was inherited from a previous inheritance vector.

[060] One interesting observation is that the register files allow cross communication
among the cores/engines. An early request (to reduce the access latency) of the registers that
are needed from cross engines can be placed as soon as the instruction buckets of the thread
are fetched and allocated in the local bucket buffer at that time the source dependency
information is populated such that cross engine threads references can be issued at that time
probably long before the actual instructions are dispatched for execution. In any case, the
instruction will not be dispatched until the cross referenced source is forwarded and arrived.
This cross referenced source can be stored in the local multi-threaded register file or register
cache. Although this cross referenced source can be stored in a buffer similar to the load store
buffer (it can reuse the load store buffer physical storage and dependency check mechanisms
but as a register load instead of memory load). Many topologies can be used to connect the
register files across the engines/cores, which may be a ring topology or cross bar topology or

mesh routed interconnect.

[061] The following discussion can illustrate how register file segmentation can be
used inside an engine and also across engines. When the bucket is dispatched, its sources are
sent to both (simultaneously or sequentially) to the register file and the register cache. If the
register file is physically unified and has direct support for threading, then the operand is read
directly from the corresponding thread register section. If the register file is a virtual register,
including a physically segmented register file that uses tags, then a tag match has to be done
as a part of the virtual register read. If the tag matches, then the read happens from the

segmented register file.

14

WO 2012/135041 PCT/US2012/030383

[062] Disclosed is register architecture that supports software threads, hardware
generated threads, VLIW execution, SIMD & MIMD execution as well as emulation of out-
of-order super-scalar execution. Although it is physically segmented, it looks as a unified
architecture resource. This segmented register is part of the virtual register file which might
include a register hierarchy and a register cache as well as mechanisms to store and check
register tags. The tag access can be eliminated if we use a location based scheme that takes
advantage of the dependency inheritance vector. The scheme works such that when the
executed bucket number is broadcasted during dispatch stage all the sources of subsequent
instructions perform a CAM (content addressable match) which compares their sources
buckets with the just dispatched/executed bucket to set the ready flag for that source. Here the
physical location of where that bucket executed can also be propagated along with the register

number so that any ambiguity is resolved.

[063] For example, consider an implementation where there are 4 register file
segments, cach containing 16 registers. For example upon dispatching a bucket # x to section
2 the bucket number x is broadcasted to the bucket buffer and also the segment #2 is
broadcasted with it such that all sources that have a dependency on bucket x will record that it
wrote all its registers in segment 2. When time comes to dispatch those instructions, they
know that they need to read their register from segment 2 and not any other segment, even
though the same register number exists in the other segments. This also applies to the register
cache to avoid using tags. We can extend this concept to the global front end where in
addition to the thread information the inheritance vector can specify in which engine the

instruction bucket writing to this register was allocated.

[064] Figure 5 shows an alternative implementation of the distribution of instructions
across many virtual cores in accordance with one embodiment of the present invention.
Figure 5 shows a runtime optimizer scheduler 550 functioning by distributing inheritance
vectors encode segments to the virtual cores. In one embodiment, the optimizer looks at a
number of code blocks of instructions and reschedules instructions across all of the code
blocks to create code segments and inheritance vectors. The goal of the Optimizer would be
to maximize the efficiency of execution of the overlapped execution of code segments on

their respective virtual cores.

15

WO 2012/135041 PCT/US2012/030383

[065] Figure 6 shows a plurality of register segments with a corresponding plurality
of register files and operand result buffers in accordance with one embodiment of the present
invention. As depicted in Figure 6, and execution global interconnect connects cach register

segment to a plurality of address calculation and execution units.

[066] The register segments Figure 6 can be used to implement one of 3 execution
modes: either by being grouped together by the compiler/programmer to form a MIMD super
instruction matrix, or each matrix can be executed independently in a threaded mode where
separate threads execute simultaneously on each of the 4 hardware sections. The last
execution mode possible is the ability to dynamically execute 4 different instruction matrices
from a single thread using a hardware dependency check to insure no dependency exists
between those different matrices that execute simultancously on the 4 different hardware

sections

[067] The register files in Figure 6 may be alternately configured depending upon
the execution mode. In one mode, the register files are viewed as either an MIMD sectioned
register file serving a MIMD width of 4 sections or they serve as 4 individual register files,
cach serving a separate thread. The register files can also support a dynamic execution mode
where the 4 sections are one unified register file where data written to any register in a
particular section is accessible by all units in the other sections. Switching between those
modes can be scamless as different executing modes can alternate between individual thread

baseline instruction matrix and MIMD super instruction matrix threads.

[068] In a multithread execution mode, each register file and its execution unit that
executes a thread is totally independent of other register files and their threads. This is
similar to each thread having its own register state. However, dependency between those
threads can be specified. Each matrix that belongs to a thread will execute in the execution
unit of that thread's register file. If only one thread or non-threaded single program is
executed on the hardware, then the following method is used to allow parallel matrices
belonging to that single thread/program to be able to access the results written into the
registers in the other sections. The way this is done is by allowing any matrix writing results
into any one of the 4 register file sections to generate copies of those registers in the other
register file sections. Physically this is done by extending the write ports of each section into

the remaining sections. However, this is not scalable, as we cannot build an efficient register

16

WO 2012/135041 PCT/US2012/030383

file with each memory cell having as many as 4 times the write ports as needed for one
section alone. We present a mechanism where the register file is built such that it will not be

impacted with such single thread register-broadcast extension.

[069] Tt should be noted that additional aspects regarding register segments as used
in embodiments of the present invention can be found in US Patent Application serial number
2010/0161948, titled “APPARATUS AND METHOD FOR PROCESSING COMPLEX
INSTRUCTION FORMATS IN A MULTITHREADED ARCHITECTURE SUPPORTING
VARIOUS CONTEXT SWITCH MODES AND VIRTUALIZATION SCHEMES” by
Mohammad A. Abdallah, filed on November 14, 2007.

[070] Figure 7 shows a more detailed diagram of a fragmented memory subsystem
for a multicore processor in accordance with one embodiment of the present invention.
Figure 7 shows a comprehensive scheme and implementation of the synchronization scheme
among threads and/or among loads and stores in general. The scheme describes a preferred
method for synchronization and disambiguation of memory references across load/store
architectures and/or across memory references and/or threads' memory accesses. In Figure 2,
we show multiple segments of register files (address and or data registers), execution units,
address calculation units, and fragment s of level 1 caches and/or load store buffers and level
2 caches and address register interconnects 1200 and address calculation unit interconnects
1201. Those fragmented elements could be constructed within one core/processor by
fragmenting and distributing its centralized resources into several engines or they can be
constructed from elements of different cores/processors in multi-core/multi-processor
configurations. One of those fragments 1211 is shown in the figure as fragment number 1;
the fragments can be scaled to a large number (in general to N fragments as shown in the

figure).

[071] This mechanism also serves also as a coherency scheme for the memory
architecture among those engines/cores/processors. This scheme starts by an address request
from one of the address calculation units in one fragment/core/processor. For example,
assume the address is requested by fragment 1 (1211). It can obtain and calculate its address
using address registers that belong to its own fragment and or from registers across other
fragments using the address interconnect bus 1200. After calculating the address it creates the

reference address of either 32-bit address or 64-bit address that is used to access caches and

17

WO 2012/135041 PCT/US2012/030383

memory. This address is usually fragmented into a tag field and a set and line fields. This
particular fragment/engine/core will store the address into its load store buffer and/or L1
and/or L2 address arrays 1202, at the same time it will create a compressed version of the tag
(with smaller number of bits than the original tag field of the address) by using a compression

technique.

[072] More the different fragments/engines/cores/processors will use the set field or
a subset of the set field as an index to identify which fragment/core/processor the address is
maintained in. This indexing of the fragments by the address set field bits ensures
exclusiveness of ownership of the address in a particular fragment/core/engine even though
the memory data that corresponds to that address can live in another or multiple other
fragments/engines/cores/processors. Even though the address CAM/tag arrays 1202/1206 are
shown in each fragment to be coupled with the data arrays 1207, they might be only coupled
in physical proximity of placement and layout or even by the fact that both belongs to a
particular engine/core/processor, but there is no relation between addresses kept in the

address arrays and the data in the data arrays inside one fragment.

[073] Figure 8 shows a diagram depicting how bits of an address can be used by
address generation to enumerate fragments in accordance with one embodiment of the present
invention. In the present embodiment, fragments are defined by the address bits that are
above page boundaries and that are below cache line boundaries, as depicted in Figure 8. The
present invention advantageously stays above the page boundaries to avoid causing TLB
misses during the translation from the virtual addresses to physical addresses. The process
stays below the cache line boundary in order to have complete cache lines in order to
correctly fit within the hardware cache hierarchy. For example, in a system that employs 64
byte cache lines, the fragment boundary would avoid the last six address bits. In comparison,
a system that employs 32 byte cache lines, the fragment boundary would avoid the last five
bits. Once defined, the fragment hierarchy is the same across all cache hierarchies of the

Proccssor.

[074] Figure 9 shows a diagram of how loads and stores are handled by
embodiments of the present invention. As depicted in Figure 9, each fragment is associated
with its load store buffer and store retirement buffer. For any given fragment, loads and

stores that designate an address range associated with that fragment or another fragment are

18

WO 2012/135041 PCT/US2012/030383

sent to that fragment’s load store buffer for processing. It should be noted that they may
arrive out of order as the cores execute instructions out of order. Within each core, the core

has access to not only its own register file but each of the other cores’ register files.

[075] Embodiments of the present invention implement a distributed load store
ordering system. The system is distributed across multiple fragments. Within a fragment,
local data dependency checking is performed by that fragment. This is because the fragment
only loads and stores within the store retirement buffer of that particular fragment. This
limits the need of having to look to other fragments to maintain data coherency. In this

manner, data dependencies within a fragment are locally enforced.

[076] With respect to data consistency, the store dispatch gate enforces store
retirement in accordance with strict in-program order memory consistency rules. Stores
arrive out of order at the load store buffers. Loads arrive out of order also at the load store
buffers. Concurrently, the out of order loads and stores are forwarded to the store retirement
buffers for processing. It should be noted that although stores are retired in order within a
given fragment, as they go to the store dispatch gate they can be out of order from the
multiple fragments. The store dispatch gate enforces a policy that ensures that even though
stores may reside across store retirement buffers out of order, and even though the buffers
may forward stores to the store dispatch gate out of order with respect to other buffers’ stores,
the dispatch gate ensures that they are forwarded to fragment memory strictly in order. This
is because the store dispatch gate has a global view of stores retiring, and only allows stores
to leave to the global visible side of the memory in order across all the fragments, e.g.,
globally. In this manner, the store dispatch gate functions as a global observer to make sure

that stores ultimately return to memory in order, across all fragments.

[077] Figure 10 shows the manner which fragments can be split into two or more
domains in accordance with one embodiment of the present invention. Figure 10 shows the
manner in which a single fragment can be split into multiple domains. Domain splitting can
be implemented via the address generation process. Domain splitting changes the manner in
which load store checks have to be done within a fragment, since in this case they only have
to be done per domain, as opposed to across the entire fragment. Domain splitting also is
advantageous in that it can enable single ported memory to behave like multiport memory,

where the single port is accessed per different domain.

19

WO 2012/135041 PCT/US2012/030383

[078] Figure 11 shows a mode of operation of the processor wherein the hardware
resources of the partitionable engines are used to function like logical cores in executing
applications in accordance with one embodiment of the present invention. In this
embodiment, the hardware resources of the engines of the virtual cores are configured as
physical cores. In the Figure 11 mode, each physical core of is configured to function as a
logical core. Multithreaded applications and multithreaded functionality is up to the threaded

programmability of the software of the application.

[079] Figure 12 shows a mode of operation of the processor wherein soft cores are
used to function like logical cores in executing applications in accordance with one
embodiment of the present invention. In this embodiment, the partitionable engines of virtual
cores will support a plurality of soft cores. In the Figure 12 mode, each soft core is
configured to function as a logical core. Multithreaded applications and multithreaded

functionality is up to the threaded programmability of the software of the application.

[080] Figure 13 shows a mode of operation of the processor wherein the soft cores
are used to function like a single logical core in executing applications in accordance with one
embodiment of the present invention. In the Figure 13 mode, each soft core is configured to
function as a single logical core. In such an implementation, a single threaded application has
its instruction sequence divided up and allocated among the virtual cores where they are
cooperatively executed to achieve high single threaded performance. In this manner, single

threaded performance can scale with the addition of additional soft cores.

[081] A number of strategies can be used in choosing the operating mode of the
processor. For a processor having a large number of engines (e.g., 8 engines, 12 engines,
etc.), a number of soft cores can be configured to function as a single logical core, while the
remaining cores can operate in the other modes. This attribute allows an intelligent partition
of resources to ensure maximum utilization of the hardware and/or minimal wasted power
consumption. For example, in one embodiment, cores (e.g., soft or logical) can be allocated

on a per thread basis depending upon the type of application that is executing.

[082] Figure 14 shows an exemplary implementation of fragment segmentation
being used to support logical core and virtual core functionality in accordance with one

embodiment of the present invention. As described above, the fragment segmentation allows

20

WO 2012/135041 PCT/US2012/030383

the processor to be configured to support different virtual core execution modes, as described

above.

[083] The global interconnect allows cores' threads to access any of the ports1401. It
should be noted that the term "thread" as used herein refers to either a representation of
instruction sequences from different logical cores, instruction sequences from the same

logical core, or some mixture of the two.

[084] The manner in which the threads utilize one of the ports 1401 to access the
load store buffer is adjustable in accordance with the policies of the arbiters, as shown. Thus,
a thread using any one of the ports 1401 can have a greater or lesser amount of access to the
load store buffer via the ports 1402. The size of the allocation and the manner in which the
allocation is managed is controlled by the arbiter. The arbiter can dynamically allocate access

to the ports in accordance with demands of a particular thread.

[085] The load store buffer is configured to have a plurality of entries spread across
the ports. Access to the load store buffer is controlled by the arbiter. In this way, the arbiter

can dynamically allocate entries in the load store buffer to the different threads.

[086] Figure 14 also shows arbiters on the ports between load store buffer and the L1
cache. Thus, as with the load store buffer described above, a thread using any one of the ports
1403 can have a greater or lesser amount of access to the L1 cache via the ports 1404. The
size of the allocation and the manner in which the allocation is managed is controlled by the
arbiter. The arbiter can dynamically allocate access to the ports in accordance with demands

of a particular thread.

[087] The L1 cache is configured to have a plurality of ways spread across the ports.
Access to the L1 cache is controlled by the arbiter. In this way, the arbiter can dynamically

allocate entries in the L1 cache to the different threads.

[088] In one embodiment, the arbiters are configured to function with a plurality of
counters 1460 that are used for tracking functionality and a plurality of threshold limit
registers 1450 that provide a limiting function. The limiting function specifies the maximum
resource allocation percentage for a given thread. The tracking function tracks the actual
resources allocated to a given thread at any given time. These tracking and limiting

functionalities affect the allocation of the number of per thread entries, ways, or ports for the

21

WO 2012/135041 PCT/US2012/030383

load store buffer, L1 cache, L2 cache or the global interconnects. For example, the total
number of entries in the load store buffer allocated for each thread can be dynamically
checked against a variable threshold. This variable threshold can be updated in accordance
with a given thread's forward progress. For example, in one embodiment, threads that are
slowed down (e.g., large number or L2 misses, ctc.) are quantified as making slow forward
progress, and thus, their respective resource allocation thresholds are lowered, including the

entries thresholds, the ways thresholds and the ports thresholds.

[089] Figure 14 also shows a shared L2 cache. In the present embodiment, the
shared L2 cache has a fixed port arrangement without any arbitration between accesses
coming from the L1 cache. Threads executing on the processor would all share access to the

L2 cache and the resources of the L2 cache.

[090] Figure 15 shows a fragment memory of an exemplary four fragment processor
implementing a many physicals to many logicals mode in accordance with one embodiment

of the present invention.

[091] One example logical core and its relationship with the resources of the
processor is shown by the shading on Figure 15. In the Figure 11 mode of operation, the
many physical cores to many logical cores mode, wherein the physical cores are used to
function like logical cores in executing applications, each logical core will be configured to
have a fixed ratio of the resources of the load store buffer and the L1 cache. The ports can be
specifically assigned to each thread or core. Entries in the load store buffer can be
specifically reserved per thread or core. Ways within the L1 cache can be specifically
reserved per thread or core. Multithreaded applications and multithreaded functionality is up
to the threaded programmability of the software of the application. This is shown by the one
logical core having an allocated port and an allocated portion of the store buffer and the L1
cache of each of the fragments. In this manner, the logical core comprises a fixed allocated

slice of the resources of each fragment.

[092] In one embodiment, in the many physical cores to many logical cores mode,
the four fragments can be partitioned in accordance with the number of ports (e.g., ports
1401) that access each fragment. For example, in an embodiment where there are 6 ports per
fragment, the resources of each fragment, and hence the resources of each partition will

engine, can be divided in such a way to support 6 physical cores across the 4 fragments and

22

WO 2012/135041 PCT/US2012/030383

the 4 partition double engines. Each partition can be allocated its own port. Similarly, the
resources of the load store buffer and the L1 cache would be allocated in such a way to
support 6 physical cores. For example, in an embodiment where the load store buffer has 48
entries, the 48 entries can be allocated such that there are 12 entries per physical core to
support a mode where 4 physical cores are implemented, or they can be allocated such that

there are 8 entries per physical core disappointment where 6 physical cores are implemented.

[093] Figure 16 shows a fragment memory of an exemplary four fragment processor
implementing a many physicals to many logicals mode in accordance with an alternative

embodiment of the present invention.

[094] As with Figure 15, the one example logical core and its relationship with the
resources of the processor is shown by the shading on Figure 16. In the Figure 11 mode of
operation, the many physical cores to many logical cores mode, an entire partition table
engine is dedicated to support the execution of a single logical core. This is shown by the
shading in Figure 16. The physical resource is engine is used to function like logical core in

executing applications.

[095] Figure 17 shows a fragment memory of an exemplary four fragment processor
implementing a many soft cores to many logical cores mode in accordance with one

embodiment of the present invention.

[096] One example logical core and its relationship with the resources of the
processor is shown by the shading on Figure 17. In the Figure 12 mode of operation, the
many soft cores to many logicals mode, where virtual cores are used to function like logical
cores in executing applications, the size of the allocation of the resources of the load store
buffer and the manner in which the allocation is managed is controlled by the arbiter. The
arbiter can dynamically allocate access to the ports in accordance with demands of a
particular thread or core. Similarly, the size of the allocation of the resources of the L1 cache
and the manner in which the allocation is managed is controlled by the arbiter. The arbiter
can dynamically allocate access to the ports in accordance with demands of a particular thread
or core. Thus, at any given instance the logical thread/core (e.g. shaded) can use different

arbiters and different ports.

23

WO 2012/135041 PCT/US2012/030383

[097] In this manner, access to the resources of the load store buffer and access to
the resources of the L1 cache can be more policy driven and can be more based on the needs
of individuals threads or cores making forward progress. This is shown by the one logical
core having a dynamically allocated port and a dynamically allocated portion of the store
buffer and the L1 cache of each of the fragments. In this manner, the logical core comprises a

non-fixed, dynamically allocated slice of the resources of each fragment.

[098] Figure 18 shows a fragment memory of an exemplary four fragment processor
implementing a many soft cores to one logical core mode in accordance with one embodiment

of the present invention.

[099] In the Figure 13 mode of operation, the many soft cores to one logical core
mode, wherein the soft cores are used to function like a single logical core in executing
applications, each of the soft cores is configured to function cooperatively with the other soft
cores as a single logical core. A single thread or core has all the resources of the load store
buffers and all of the resources of the L1 caches. In such an implementation, a single
threaded application has its instruction sequence divided up and allocated among the soft
cores where they are cooperatively executed to achieve high single threaded performance. In
this manner, single threaded performance can scale with the addition of additional soft cores.
This is shown in Figure 17 where the one example logical core and its relationship with the

resources of the processor is shown by the shading of all of the resources of the processor.

[0100] Figure 19 shows address calculation and execution units, operand/result
buffers, threaded register files, and common partition schedulers of an exemplary four
fragment processor implementing a many physicals to many logicals mode in accordance with

one embodiment of the present invention.

[0101] One example logical core and its relationship with the resources of the
processor is shown by the shading on Figure 19. In the Figure 11 mode of operation, the
many physical cores to many logical cores mode, wherein the physical cores are used to
function like logical cores in executing applications, each logical core will be configured to
have a fixed ratio of the resources of the address calculation units, operand/result buffers,
threaded register files, and common partition scheduler. Multithreaded applications and
multithreaded functionality is up to the threaded programmability of the software of the

application. This is shown by the one logical core having an allocated address calculation and

24

WO 2012/135041 PCT/US2012/030383

execution unit, an allocated threaded register file and an allocated common partition
scheduler. In this manner, the logical core comprises a fixed allocated segment. However, in
one embodiment, in this mode of operation, the address calculation and execution units can

still be shared (e.g., meaning each of the address calculation and execution units would be un-
shaded).

[0102] Figure 20 shows an alternative implementation for the address calculation and
execution units, operand/result buffers, threaded register files, and common partition
schedulers of an exemplary four fragment processor to implement a many physicals to many

logicals mode in accordance with one embodiment of the present invention.

[0103] One example logical core and its relationship with the resources of the
processor is shown by the shading on Figure 20. In the figure 20 embodiment however, the
resources of a physical core is spread across each of the segments and each of the
partitionable engines. This is shown by the one logical core having an allocated portion of
the address calculation and execution units, an allocated portion of the threaded register files
and an allocated portion of common partition schedulers across each of the segments.
Additionally, figure 20 shows how the one logical core would have been allocated portion of
the resources of each of the address calculation execution units. In this manner, the logical

core comprises a fixed allocated portion of each of the segments.

[0104] Figure 21 shows address calculation and execution units, register files, and
common partition schedulers of an exemplary four fragment processor implementing a many
soft cores to many logical cores mode in accordance with one embodiment of the present

invention.

[0105] One example logical core and its relationship with the resources of the
processor is shown by the shading on Figure 21. In the Figure 12 mode of operation, the
many soft cores to many logical cores mode, wherein the soft cores are used to function like
logical cores in executing applications, each logical core will be configured to have a shared
access to any one the address calculation units, and a dynamic allocated portion of the
operand/result buffers, threaded register files, and common partition scheduler.
Multithreaded applications and multithreaded functionality is up to the threaded

programmability of the software of the application.

25

WO 2012/135041 PCT/US2012/030383

[0106] Figure 22 shows address calculation and execution units, register files, and
common partition schedulers of an exemplary four fragment processor implementing a many
soft cores to one logical core mode in accordance with one embodiment of the present

invention.

[0107] One example logical core and its relationship with the resources of the
processor is shown by the shading on Figure 22. In the Figure 13 mode of operation, the
many soft cores to one logical core mode, wherein the soft cores are used to function like a
single logical core in executing applications, each logical core will be configured to have a
shared access to all of the address calculation units, and all of the operand/result buffers,
threaded register files, and common partition schedulers. In such an implementation, a single
threaded application has its instruction sequence divided up and allocated among the virtual
cores where they are cooperatively executed to achieve high single threaded performance. In

this manner, single threaded performance can scale with the addition of additional soft cores.

[0108] Figure 23 shows a diagram of an exemplary microprocessor pipeline 2300 in
accordance with one embodiment of the present invention. The microprocessor pipeline 2300
includes a fetch module 2301 that implements the functionality of the process for identifying
and extracting the instructions comprising an execution, as described above. In the Figure 23
embodiment, the fetch module is followed by a decode module 2302, an allocation module
2303, a dispatch module 2304, an execution module 2305 and a retirement modules 2306. It
should be noted that the microprocessor pipeline 2300 is just one example of the pipeline that
implements the functionality of embodiments of the present invention described above. One
skilled in the art would recognize that other microprocessor pipelines can be implemented that

include the functionality of the decode module described above.

[0109] The foregoing description, for the purpose of explanation, has been described
with reference to specific embodiments. However, the illustrated discussions above are not
intended to be exhaustive or to limit the invention to the precise forms disclosed. Many
modifications and variations are possible in view of the above teachings. Embodiments were
chosen and described in order to best explain the principles of the invention and its practical
applications, to thereby enable others skilled in the art to best utilize the invention and various

embodiments with various modifications as may be suited to the particular use contemplated.

26

10

15

20

25

30

WO 2012/135041 PCT/US2012/030383

CLAIMS

What is claimed is:

1. A system for executing instructions using a plurality of register file segments for a
processor, comprising:

a global front end scheduler for receiving an incoming instruction sequence, wherein
the global front end scheduler partitions the incoming instruction sequence into a plurality of
code blocks of instructions and generates a plurality of inheritance vectors describing
interdependencies between instructions of the code blocks;

a plurality of virtual cores of the processor coupled to receive code blocks allocated by
the global front end scheduler, wherein each virtual core comprises a respective subset of
resources of a plurality of partitionable engines, wherein the code blocks are executed by
using the partitionable engines in accordance with a virtual core mode and in accordance with
the respective inheritance vectors; and

a plurality register file segments coupled to the partitionable engines for providing

data storage.

2. The system of claim 1 wherein the plurality register file segments implement an
execution mode wherein a subset of physical resources of each register file segment are

allocated to support execution of a single logical thread of a logical core.

3. The system of claim 2, each register file segment implements a portion of a

plurality of logical cores.

4. The system of claim 1, wherein the plurality of register file segments implement an
execution mode wherein physical resources of each register file segment are dynamically
allocated in accordance with an adjustable threshold to support execution of a single logical

thread of a single logical core.

5. The system of claim 4, wherein the plurality of register file segments implement a

portion of a plurality of logical cores.

27

10

15

20

25

30

WO 2012/135041 PCT/US2012/030383

6. The system of claim 1, wherein the plurality of register file segments implement an
execution mode wherein the set of physical resources of each register file segment are

allocated to support execution of a single logical thread.

7. The system of claim 1, wherein each register file segment further comprises a

common partition scheduler, an operand and result buffer and a threaded register file.

8. The system of claim 1, wherein an interconnect links each of the plurality of

register file segments to each of the plurality of execution units.

9. A processor for executing instructions using a plurality of register file segments,
comprising:

a global front end scheduler for receiving an incoming instruction sequence, wherein
the global front end scheduler allocates incoming the instruction sequence into a plurality of
code segments of instructions, and generates a plurality of inheritance vectors describing
interdependencies between instructions of the code segments;

a plurality execution units coupled to the global front scheduler for executing the code
segments in accordance with respective inheritance vectors; and

a plurality register file segments coupled to the execution units for providing data

storage.

10. The processor of claim 9 wherein the plurality register file segments implement
an execution mode wherein a subset of physical resources of each register file segment are

allocated to support execution of a single logical thread of a logical core.

11. The processor of claim 10, each register file segment implements a portion of a

plurality of logical cores.

12. The processor of claim 9, wherein the plurality of register file segments
implement an execution mode wherein physical resources of each register file segment are
dynamically allocated in accordance with an adjustable threshold to support execution of a

single logical thread of a single logical core.

28

10

15

20

25

30

WO 2012/135041 PCT/US2012/030383

13. The processor of claim 12, wherein the plurality of register file segments

implement a portion of a plurality of logical cores.

14. The processor of claim 9, wherein the plurality of register file segments
implement an execution mode wherein the set of physical resources of each register file

segment are allocated to support execution of a single logical thread.

15. The processor of claim 9, wherein each register file segment further comprises a

common partition scheduler, an operand and result buffer and a threaded register file.

16. The processor of claim 9, wherein an interconnect links each of the plurality of

register file segments to each of the plurality of execution units.

17. A system for executing instructions using a plurality of register file segments for a
processor, comprising:

a global front end scheduler for receiving an incoming instruction sequence, wherein
the global front end scheduler partitions the incoming instruction sequence into a plurality of
code blocks of instructions;

a plurality of virtual cores of the processor coupled to receive code blocks allocated by
the global front end scheduler, wherein each virtual core comprises a respective subset of
resources of a plurality of partitionable engines, wherein the code blocks are executed by
using the partitionable engines in accordance with a virtual core mode; and

a plurality register file segments coupled to the partitionable engines for providing

data storage.
18. The system of claim 17 wherein the plurality register file segments implement an
execution mode wherein a subset of physical resources of each register file segment are

allocated to support execution of a single logical thread of a logical core.

19. The system of claim 18, each register file segment implements a portion of a

plurality of logical cores.

29

10

15

WO 2012/135041 PCT/US2012/030383

20. The system of claim 17, wherein the plurality of register file segments implement
an execution mode wherein physical resources of cach register file segment are dynamically
allocated in accordance with an adjustable threshold to support execution of a single logical

thread of a single logical core.

21. The system of claim 20, wherein the plurality of register file segments implement

a portion of a plurality of logical cores.
22. The system of claim 17, wherein the plurality of register file segments implement
an execution mode wherein the set of physical resources of each register file segment are

allocated to support execution of a single logical thread.

23. The system of claim 17, wherein each register file segment further comprises a

common partition scheduler, an operand and result buffer and a threaded register file.

24. The system of claim 17, wherein an interconnect links each of the plurality of

register file segments to each of the plurality of execution units.

30

PCT/US2012/030383

WO 2012/135041

1/24

108uU02J8)Y| [eqol) OF

|
|
A aulbu3 s|jqeuonied d—
@ |
|
|
suibu3 e|qeuoniped ™
v) _
|
|
I> _
aulbu3 s|jqeuonied
Tr

\J auibug sjgeuoniied

S840 [eNLIA

Vi Old

auiBu3 siy} 0} pajesolly %00l
P07 pUE SIOJSA S2UEB)LIBYU|

suiBu3 siy} 0} pajeso|ly %00l
9pO7) pUE SI0JISA SOUEB)LIBYU|

auiBu3 siy} 0} pajesolly %00l
P07 pUE SIOJSA S2UEB)LIBYU|

auiBu3 siy} 0} pajesolly %00l
P07 pUE SIOJSA S2UEB)LIBYU|

(e1eMJOS 1O 2lempleH)

Jg|npayosg
® Udjo4 puz juold |Beqo|D

0l

aousnbag
SpoD

[%4

aousnbag
8poD

44

aousnbag
SpoD

¥4

aousnbag
8poD

0¢

Common Partition

Common Partition

WO 2012/135041 PCT/US2012/030383
2/24
7Y A 102 ||_____1L_||-____i_i
Fragment		Fragment		_ Fragment	_ Fragment							
L2cache	1	L2cache	Il	L2cache	I'	L2cCache						
L1 Cache		L1 Cache			L1 Cache			L1 Cache				
	Load Store				LoadStore				Load Store			Load Store
Buffer		Buffer		Buffer		Buffer						
L b - b - I _l												
-4——p Memory Global Interconnect g———p 110a												
) 1))												
Address Calculation & Address Calculation & Address Calculation & Address Calculation &												
Execution Units 121 Execution Units 122 EXECUt‘iOH Units 123 Execution Units 124												
-4——p Execution Global Interconnect 4¢———p 110b												
A A A I A
[————— B intutuie I [—— = B ARt A A I ututute . Antafatatet
1 |l 1
Register file | | | | Register file :: Register file : || Regigter file
[: [
[:| [
[! [
[! [
[| [

Fetch &
Scheduler

Scheduler

Y Y
Common Partition Common Partition
Fetch & ! Fetch &]

Scheduler

Fetch &
Scheduler

Segment

Global Front End Fetch & Scheduler

FIG. 1B

PCT/US2012/030383

WO 2012/135041

3/24

R N T

o TN,

ez

muod g Tyy

dpad g Y

PR R P s

pudEA Tt adzanadane

ol oy

wh

S

¥
Bt STE

N

Lr s ok 2 b poe,

SEMe R AT AL P e pad A v ntnn s

Bhii

A LIt LR LR TR

g Seve s e

R

SXTHA D2 KXE KR 3 £

SNTANS 22N LiRa e Avu PAAN

R

SN

o

S

PCT/US2012/030383

WO 2012/135041

4/24

SHuN uolindosx3

Anuo 91 |Anud 9]

PCT/US2012/030383

WO 2012/135041

5/24

| ————————————— -
| |
_ t |
| |
_ !
{ _
| ¥
aubus ‘. |
il e ha A A kA ek A =R
2 9 vup ey [oY
| 1 | .
_ 1 _ 7
| | I ﬂ
w_.‘xmcm W Mumumkvmfmgl \ ﬁaﬁwwwmﬂm.mwwm \\\L_
- & e T wm.w £d 2y | by am ,
A _ 01§ 908

Bupinmio g

£06 - N | 2 lomiL
; oy - - -3 £ = 3
P NI
4.11&..1&\L_ i s, m_ummﬁmggw Sr M Mm)
_ | ...* | 8 Qg 0L
\ \\x _ B IW GN&
. | \ ‘WﬂD‘mﬂW&u ﬂ _ . \t....\.‘w 44444 g
505 _ 206
| | {siois1B81 LY Ecsmmvv 18pEeBH
|
_
$2.100) [BNUIA | _ J18|Npayos

pu3z juol4 [eqo|9

qoLl JosUUGdIBU| [BGO|S UOIN3SX] m . mv _ m

PCT/US2012/030383

6/24

WO 2012/135041

18INPaYDS UOILE]

oll4
sisiboy AN mc_mcm A._I 1 | uowwon siy} 0} psyeoo|y yoo|g
: _ 9pOD PUE SIOJOBA SoUB)LIBYU|
_ aousnbag
9po)
_ 18INPayoS UoNNIE]
oy HIH < uoLWoY SIY) 0} Pajeoo|ly Yool
LEw_.mmm mc_mcm P07 pUB SI0JISA SOUBILIBYU|
_ aousnbag
\J 8poD
_ Js|npayos
_ faziundo swnuny
_ g9 aouenbeg
> _ 9po)
ol To[NpaY0S UOHIE] UOWIWIOD
orsibost T 1T aulbug Jl — SIY} 0} PaIESO|IY %00l
15165y .
P00 PUE SIOJ0BA SoUBLIBYY|
_ aousnbag
_ 9p00
_ To[NpaY0S UOHIE] UOWIWIOD
old el — SIY} O} pa1Ed0||Y %20|9
Io)s16oy \ mc_mcm _ 9pOD PUE SIOJOBA SoUBLIBYY|

$8107D) |[eNUIA

PCT/US2012/030383

9 Old

7/24

9] Je)siboy

a4 Jeysibay

9|4 Ja)s16oy

9] Je)siboy

H

:

:

:

Jayng Jayng Jayng Jayng
ynsay/puesado Jnsay/pueladp ynsay/puetadp ynsay/puesado
S ||||ﬁ|||-|||ﬁ||||r||¢ |||||
<« 109UU02JBJU| [Bqd|S UOIINJSX] >

WO 2012/135041

SHUN UoNNJ9X3 %R
uonenoe) ssalppy

'

'

SJUN uonnNoox3 %
uonenoe) ssalppy

SJUN UoNNJ9X3 %
uonenoe) ssalippy

SHUN UoNNJ9X3 %R
uonenoe) ssalppy

xﬁﬁ@@@@x@@ﬁ

PCT/US2012/030383

gyl sswipy

8/24

WO 2012/135041

sty
cQﬁumxm

waoﬁ R

B

Ao
S

O NP ST R S

B N BB WeD 504

BET pis 901 B ,sm\ﬁ WY 569
e L4 2L

WO 2012/135041 PCT/US2012/030383

9/24

address

fragments

Cache line boundary

Page boundary

FIG. 8

WO 2012/135041 PCT/US2012/030383
10/24
r— 17— ———71 [771 - — 7 /1
| Fragment 1 : | Fragment 2 : | Fragment 3 : | Fragment 4 :
| | |
_____ N - _ _ _ - _ _ 4
A , A
Store dispatch
gate
Store Store Store Store
retirement retirement retirement retirement
buffer 1 buffer 2 buffer 3 buffer 4
Load store Load store Load store Load store
buffer 1 buffer 2 buffer 3 buffer 4

*

*

*

*

Global Interconnect

*

*

*

*

Segment plus
execution units

Segment plus
execution units

Segment plus
execution units

Segment plus
execution units

FIG. 9

WO 2012/135041 PCT/US2012/030383

fragment

Domain 1

Domain 2

Domain 3

FIG. 10

WO 2012/135041

Logical core
functions

12/24

Logical core
functions

Logical core
functions

PCT/US2012/030383

Logical core
functions

Physical
core

Physical Physical
core core

Physical
core

FIG. 11

WO 2012/135041 PCT/US2012/030383

13/24

Logical core Logical core Logical core
functions functions functions

Logical core
functions

FIG. 12

WO 2012/135041 PCT/US2012/030383

14/24

Logical core
functions

FIG. 13

WO 2012/135041 PCT/US2012/030383

15/24

1450
| _ Global Interconnect |

1401 I A/
ort 2 0 [.
k» > @ @ @ | Threshold registers u—u 1)460
Arbiter | I ITracking counters u—u
1402
—
coleplentan
entries T I
T T T T
N, [T Ioat $torefuffer
It T~ |—T =T T 7
1403 l l [[[[l [[[
\> o Po@ Po
Arbiter Arbiter
1404
—
ways — T 1T "] EEXEZ=ZLEZE
N T Tiachd —|] T TiGachd —|-
L4 Cache LR Cache
Fragment 0 Fragment 1

FIG. 14

WO 2012/135041 PCT/US2012/030383

16/24

Many Physical Cores

Virtual Cores Mode: to Many Logical Cores

Global Interconnect |

Arbiter

Arbiter Arbiter

Arbiter

Port 1 Port2 Port 3

Fragment O Fragment 1 Fragment 2 Fragment 3

FIG. 15

WO 2012/135041

Virtual Cores Mode:

17/24

Many Physical Cores
to Many Logical Cores

PCT/US2012/030383

Memory Global Interconnect

— CachE — — Cachie —|1 & CachE —
L2 Caghe L2|Cache L2 Caghe
Fragment Frag1ment Fragment Frag1ment
0 0

FIG. 16

WO 2012/135041 PCT/US2012/030383

18/24

Many Soft Cores to
Many Logical Cores

Virtual Cores Mode:

Global Interconnect_

Port Q Port 2 Port 3

Arbiter Arbiter Arbiter

Port 1 Port 2 Port 3 Port 0 Port 1

Arbiter Arbiter Arbiter Arbiter

Paort 1 Port2 Port 3 Port Q Port 1 Port 2 Port 3 Port 0 Port 1 Port 2

Fragment O Fragment 1 Fragment 2 Fragment 3

FIG. 17

WO 2012/135041 PCT/US2012/030383
19/24

Many Soft Cores to

Virtual Cores Mode: .
One Logical Core

Global Interconnect

Arbiter Arbiter Arbiter

Fragment O Fragment 1 Fragment 2 Fragment 3

FIG. 18

PCT/US2012/030383

WO 2012/135041

20/24

wewbog

Juswbog

19|Npayos uoliped uowwo)

L I
I | I
A “ I A _ I A
|
_ Iy _ I _ |
| | | | | I
| Iy l _ |
ol D aij L oI
Jo)siBay popeaiy | | _ Jeys1Bay pppeaiy] | _ ioisibey pepesiy
I |
Lo I
[| [
I | I
I | [
I | [
[| [
I | I
Jayrig “ I Jsynyg _ | Jayng
jInsay/pyeiadQ I _ JInsay/puklado I _ }Insay/puelsdp
| I
|||||||| H| 1 _r||||||||xH| | _r|||||||ﬁ|.-|||||||
y V y 4
qoll +——p 109UU02IBU| [B]O|D) UOIINDSXT
7T ~—r) 24
S}IUM UOIINDSX] ¢l syun uonnoaxg Sjiun uolnaaxg
Q UOlje|NojeD SSaIppY » UolB|NJBD SSaIppY g uohe|nde) ssalppy
eQLL > 108UU02I8)U| [eqo|) Alowd >

sa109) |eaibo] Auep o1
s8109) |eoIsAyd Aue

‘OO $9100) [BNUIA

PCT/US2012/030383

WO 2012/135041

21/24

juswbeg

Ja[npayos uoljijied uowwon

21odO

jnsay/pue

ynsay/pupiado

JINsay/pue

> 108UU0DJB)U| [EQO[D)

4

i

S)iuMN UonnNoaxg
9 Uolje|nojen ssalppy

!

;

\j

¢l syun uonnosxg

¥ uolje|noje) ssalppy

cl

H

S)IUMN UoINoBXg
uofe|nojen ssal

!

'

1

bel S)iuMN UonnNoaxg
9 Uolje|noje) ssalppy

!

109UU02JBIU| [BeCO|D) -

s8109) |ea1b607 Augly 01

S8109) |eaIsAud Auepy

:9POI\ $8100) [BNUIA

PCT/US2012/030383

22/24

WO 2012/135041

juswbog

Ja[npayos uoljijied UowLwoD

SlE|

all4 |
Jeysibay papeaiy]

Joysibay popeaiy] 4 ie)siBay mwvmmgc 1

| T

H

[E Jodnh & 185y o — Eladng E1 isyng
jnsay/pyelado [] WEPY/PUBIEEO L .::wm&:@;mao 0 m::wmm\g
o H I dol H- L w! |||||||||||||||| wl | i

y v Y Y J

qoll - > 109UU02IBIU| [B]OID - >
S}lun uonpnoaxy ¢l syun uonnoaxg Sjun uonndsxy Sjun uonndsxy
Q Uolje|noje) Ssalppy Q Uolje|noje) Ssalppy g UolE|NJBD SSAIPPY ® uolje|ndjed ssalppy

e0LL - > 109UU02IBIU| [B]O|D - >

S840 |e21607 Auey
0] Sa109) oS Aue ‘8POIA $8107 [ENLIA

PCT/US2012/030383

WO 2012/135041

23/24

juswbeg Juowbag

juswbeg

qoll - > 109UU02J8JU| [BCO|S) UOIINJ8X] -

! H

H

v v

'

e0Ll - > 109UU02J8]U| |BQO|S) AIOWD|N -

3109 |ealbo] suQ “9POI S8100 [enLIA
0] S8107) 1Jos Aue

WO 2012/135041 PCT/US2012/030383
24/24

Microprocessor pipeline

2301

\

Fetch module

¢ 2302

Decode module

l 2303

Allocation module

\

\

* 2304

\

Dispatch module

¢ 2305

Execution module

¢ 2306

Retirement module

\

\

FIG. 23

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings

