United States Patent [19]

Dixit

[54] AQUEOUS LIQUID AUTOMATIC DISHWASHING DETERGENT COMPOSITION WITH IMPROVED ANTI-FILMING AND ANTI-SPOTTING PROPERTIES

- [75] Inventor: Nagaraj S. Dixit, Kendall Park, N.J.
- [73] Assignce: Colgate-Palmolive Co., Piscataway, N.J.
- [21] Appl. No.: 344,934
- [22] Filed: Apr. 28, 1989
- [51] Int. Cl.⁵ C11D 3/08; C11D 3/12;

14

[58] Field of Search 252/140, 179, 174.25, 252/174.21, DIG. 14, 174.24

[56] References Cited

U.S. PATENT DOCUMENTS

3,755,180	8/1973	Austin 252/99
3,963,649	6/1976	Spadini et al 252/546
4,071,377	1/1978	Schwuger et al 134/29
4,446,035	5/1984	Barrat et al 252/8.8

[11] **Patent Number:** 4,971,717

[45] Date of Patent: Nov. 20, 1990

4,663,071	5/1987	Bush et al 252/174.19
4,714,562	12/1987	Roselle et al 252/94
4,752,409	6/1988	Drapier et al 252/94
4,801,395	1/1989	Chazard et al 252/99
4,824,590	4/1989	Roselle 252/90
4,836,946	6/1989	Dixit 252/97
4,857,226	8/1989	Drapier et al 252/174.25
4,859,358	8/1989	Gabriel et al 252/99

Primary Examiner—A. Lionel Clingman Assistant Examiner—James M. Silbermann Attorney, Agent, or Firm—Norman Blumenkopf; Richard E. Nanfeldt; Murray M. Grill

[57] ABSTRACT

Aqueous liquid automatic dishwashing detergent composition with improved anti-filming and anti-spotting properties and method of using the detergent composition. The detergent composition comprises aluminosilicate zeolite anti-filming and anti-spotting agent, inorganic or organic builder salts, chlorine bleach, bleachstable detergent and a thickener agent. The compositions provide reduced filming and spotting on dishware, glassware, china and the like, particularly in hard water, and remain stable against phase separation.

25 Claims, No Drawings

AQUEOUS LIQUID AUTOMATIC DISHWASHING DETERGENT COMPOSITION WITH IMPROVED ANTI-FILMING AND ANTI-SPOTTING PROPERTIES

FIELD OF THE INVENTION

The present invention relates to an aqueous liquid automatic dishwashing detergent composition with improved anti-filming and anti-spotting properties and ¹⁰ method of using the detergent composition to clean dishware, glassware, china and the like. The dishwashing composition contains aluminosilicate zeolite, as the anti-filming and anti-spotting agent, inorganic or organic builder salts, chlorine bleach and bleach stable ¹⁵ detergent.

The detergent dishwashing composition of the present invention reduces filming and spotting on dishware, glassware, china and the like, particularly in hard water, and remains stable against phase separation. 20

More specifically, the invention relates to the use of aluminosilicate zeolite as an anti-filming and anti-spotting agent in aqueous liquid dishwashing detergent compositions to reduce filming and spotting.

The detergent compositions do no require an added ²⁵ rinse aid, are stable in storage, do not settle and are readily redispersible and are pourable.

The present invention also relates to aqueous suspension with improved physical stability. The invention relates to the use of long chain fatty acids, metal salts of ³⁰ fatty acids and clay as thickening agents for forming stable gel-like liquid suspensions suitable for use as liquid automatic dishwasher detergent compositions.

The present invention specifically relates to aqueous liquid automatic dishwashing detergent compositions 35 having thixotropic properties, improved anti-filming and anti-spotting and physical stability properties, which are readily dispersible in the washing medium to provide effective cleaning of dishware, glassware, china and the like. 40

PRIOR ART

Commercially available household-machine dishwasher detergents provided in powder form have several disadvantages, e.g. non-uniform composition; 45 costly operations necessary in their manufacture; tendency to cake in storage at high humidities, resulting in the formation of lumps which are difficult to disperse; dustiness, a source of particular irritation to users who suffer allergies; and tendency to cake in the dishwasher 50 machine dispenser. Liquid forms of dishwashing compositions, however, generally cannot be used in automatic dishwashers due to high foam levels, unacceptably low viscosities and exceedingly high alkalinity.

In addition, the presently used formulated powder 55 detergents frequently require a separate step of hand towel wiping and drying of the dishware, glassware, china and the like to avoid leaving undesirable traces or film of precipitated calcium and magnesium salts. The use of liquid detergent compositions present other problems. The builder salts settle in storage and are not readily redispersed. The compositions also frequently become thicker in storage and are not readily pourable.

Recent research and development activity has focused on the gel or "thixotropic" form of such composi- 65 tions, however, such compositions have generally proven to be insufficiently viscous to remain "anchored" in the dispenser cup of the dishwasher, and

moreover yield spotty residues on dishware, glassware, china and the like. Ideally, thixotropic cleansing compositions should be highly viscous in a quiescent state, Bingham plastic in nature, and have relatively high yield values. When subjected to shear stresses, however, such as being shaken in a container or squeezed through an orifice, they should quickly fluidize and, upon cessation of the applied shear stress, quickly revert to the high viscosity/Bingham plastic state. Stability is likewise of primary importance, i.e. there should be no significant evidence of phase separation or leaking after long standing.

For effective use, it is generally recommended that the automatic dishwashing detergent, hereinafter also designated ADD, contain (1) sodium tripolyphosphate (NaTPP) to soften or tie up hard-water minerals and to emulsify and/or peptize soil; (2) sodium silicate to supply the alkalinity necessary for effective detergency and to provide protection for fine china glaze and pattern; (3) sodium carbonate, generally considered to be optional, to enhance alkalinity; (4) a chlorine-releasing agent to aid in the elimination of soil specks which lead to water spotting; and (5) defoamer/surfactant to reduce foam, thereby enhancing machine efficiency and supplying requisite detergency. See, for example, SDA Detergents in Depth, "Formulations Aspects of machine Dishwashing," Thomas Oberle (1974). Cleansers approximating to the afore-described compositions are mostly liquids or powders. Generally, such compositions omit hypochlorite bleach, since it tends to react with other chemically active ingredients, particularly surfactant, thereby degrading the suspending or thixotropic agent and impairing its effectiveness.

Thus, U.S. Pat. No. 3,985,668 describes abrasive scouring cleaners of gel-like consistency containing (1) suspending agent, preferably the Smectite and attapulgite types of clay; (2) abrasive, e.g. silica sand or perlite; and (3) filler comprising light density powdered polymers, expanded perlite and the like, which has a bouyancy and thus stabilizing effect on the composition in addition to serving as a bulking agent, thereby replacing water otherwise available for undesired supernatant layer formation due to leaking and phase destabilization. The foregoing are the essential ingredients. Optional ingredients include hypochlorite bleach, bleach stable surfactant and buffer, e.g. silicates, carbonates, and monophosphates. Builders, such as NaTPP, can be included as further optional ingredients to supply or supplement building function not provided by the buffer, the amount of such builder not exceeding 5% of the total composition, according to the patent. Maintenance of the desired (greater than) pH 10 levels is achieved by the buffer/builder components. High pH is said to minimize decomposition of chlorine bleach and undesired interaction between surfactant and bleach. When present, NaTPP is limited to 5%, as stated. Foam killer is not disclosed.

In U.K. Patent Application GB No. 2,116,199A and GB No. 2,140,450A, both of which are assigned to Colgate-Palmolive, liquid ADD compositions are disclosed which have properties desirably characterizing thixotropic, gel-type structure and which include each of the various ingredients necessary for effective detergency with an automatic dishwasher. The normally gel-like aqueous automatic dishwasher detergent composition having thixotropic properties includes the following ingredients, on a weight basis:

(a) 5 to 35% alkali metal tripolyphosphate;

(b) 2.5 to 20% sodium silicate;

- (c) 0 to 9% alkali metal carbonate;
- (d) 0.1 to 5% chlorine bleach stable, water dispersible organic detergent active material;
- (e) 0 to 5% chlorine bleach stable foam depressant;
- (f) chlorine bleach compound in an amount to provide about 0.2 to 4% of available chlorine;
- (g) thixotropic thickener in an amount sufficient to provide the composition with thixotropy index of about 10 grade or decompose in the presence of alkali and 2.5 to 10; and
- (h) sodium hydroxide, as necessary, to adjust pH.

ADD compositions so formulated are low-foaming; are readily soluble in the washing medium and most effective at pH values best conducive to improved 15 cleaning performance, viz, pH 10.5–13.5. The compositions are normally of gel consistency, i.e. a highly viscous, opaque jelly-like material having Bingham plastic character and thus relatively high yield values. Accordingly, a definite shear force is necessary to initiate or 20 increase flow, such as would obtain within the agitated dispenser cup of an energized automatic dishwasher. Under such conditions, the composition is quickly fluidized and easily dispersed. When the shear force is discontinued, the fluid composition quickly reverts to a 25 high viscosity, Bingham plastic state closely approximating its prior consistency.

U.S. Pat. No. 4,511,487 dated Apr. 16, 1985 describes a low-foaming detergent paste for dishwashers. The composition is based on a mixture of finely divided 30 hydrated sodium metasilicate, an active chlorine compound and a thickening agent which is a foliated silicate of the hectorite type. Small amount of nonionic tensides and alkali metal carbonates and/or hydroxides may be used. 35

A related copending application which is assigned to the common assignee is Ser. No. 816,535, filed Jan. 7, 1987. The copending application discloses thixotropic aqueous automatic dishwashing detergent composition which contains a long chain fatty acid as a thixotropic 40 thickener agent.

Another related copending application which is assigned to the common assignee is Ser. No. 102,205 filed Sept. 29, 1987. The copending application discloses thixotropic aqueous liquid automatic dishwashing deto tergent composition which contains silica as an antifilming agent, and clay, fatty acid and fatty acid metal salts as thixotropic thickening agents.

The related copending application Ser. No. 114,911, filed Oct. 30, 1987 also assigned to the common assignee 50 discloses thixotropic aqueous liquid automatic dishwashing detergent compositions which contain alumina or titanium dioxide as an anti-filming agent, and clay, fatty acid and fatty acid metal salts as thixotropic thickening agents. 55

The above three applications are incorporated herein in their entirety by reference thereto.

ADVANTAGES OVER THE PRIOR ART

The aqueous liquid detergent compositions of the 60 present invention overcome many of the prior art problems associated with powder and liquid detergents. Because of the addition of a small effective amount of an aluminosilicate zeolite anti-filming and anti-spotting agent to the composition an added rinse aid is not re- 65 quired and towel wiping and drying are not required to obtain dry sparkling clean dishes, glasses, cups and eating utensils. The thixotropic aqueous liquid deter-

gent composition has the additional advantages of being stable, non-settling in storage and readily redispersible. The liquid compositions of the present invention are easily pourable, easily measured and easily put into the dishwashing machines.

An additional advantage of adding the aluminosilicate zeolite anti-filming and anti-spotting agent to the detergent formulation is that the zeolite does not degrade or decompose in the presence of alkali and/or chlorine bleach within the shelf life of the product.

OBJECTS OF THE PRESENT INVENTION

It is an object of the present invention to provide an aqueous liquid automatic dishwasher detergent composition that has improved anti-filming and anti-spotting properties.

It is another object of the invention to provide a thickened aqueous liquid detergent composition which is stable in storage, does not degrade or decompose, is easily pourable and readily dispersible in the dishwashing water.

A further object of the invention is to provide a method of washing dishware, glassware, china and the like in an automatic dishwashing machine using a thickened aqueous liquid detergent composition in which a separate rinse aid is not added or needed.

A still further object of the invention is to provide a method of washing dishware, glassware, china and the like in an automatic washing machine using an aqueous liquid detergent composition by which method the dishware, glassware, china and the like are machine dried without leaving film or spots.

It is a further object of this invention to provide stable thixotropic aqueous liquid compositions, especially automatic dishwasher detergent compositions, by incorporating in the aqueous suspension a small effective amount of aluminosilicate zeolite anti-filming and antispotting agent. There is also added a minor amount of a fatty acid, metal salt of a fatty acid and/or clay thixotropic thickener effective to inhibit the settling of the suspended particles and to prevent phase separation.

DETAILED DESCRIPTION OF THE INVENTION

These and other objects of the invention which will become more readily understood from the following detailed description of the invention and preferred embodiments thereof which are achieved by incorporating in an aqueous liquid detergent composition a small but effective amount of an aluminosilicate zeolite anti-filming and anti-spotting agent. The physical stability of the composition is improved by the addition of a fatty acid, metal salt of a fatty acid and/or clay thixotropic thickener. More particularly, according to a preferred and specific embodiment of the invention, there is provided a normally gel-like automatic dishwasher detergent composition in which is incorporated from about 0.5 to 5% of an aluminosilicate zeolite anti-filming and antispotting agent. The zeolite anti-filming and anti-spotting agent has a particle size of about 0.1 to 10 microns. In a preferred embodiment of the invention there is added to the composition a sufficient amount of a long chain fatty acid or metal salt of a long chain fatty acid, or either of the foregoing in admixture with a clay thixotropic thickener to provide a thixotropic index of about 2.5 to 10 and to inhibit settling of the suspended particles, such as alkali metal builder salts, etc.

In accordance with this aspect, the present invention provides a normally gel-like aqueous liquid automatic dishwasher detergent composition having thixotropic properties which includes, on a weight basis:

(a) 5 to 35% alkali metal tripolyphosphate;

(b) 2.5 to 40% sodium silicate;

- (c) 0.5 to 5% aluminosilicate zeolite anti-filming and anti-spotting agent;
- (d) 0 to 9% alkali metal carbonate;
- organic detergent active material;
- (f) 0 to 5% chlorine bleach stable foam depressant;
- (g) chlorine bleach compound in an amount to provide about 0.2 to 4% of available chlorine;
- (h) thixotropic thickener in an amount sufficient to 15 provide a thixotropic index of about 2.5 to 10.
- (i) 0 to 8% sodium hydroxide; and

(j) balance water.

Also related to this specific aspect, the invention provides a method for cleaning dishware in an auto- 20 matic dishwashing machine with an aqueous wash bath containing an effective amount of the liquid automatic dishwasher detergent (LADD) composition as described above. According to this aspect of the invention, the LADD composition can be readily poured into 25 mula: the dispensing cup of the automatic dishwashing machine and will, within just a few seconds, promptly thicken to its normal gel-like or pasty state to remain securely within the dispensing cup until shear forces are again applied thereto, such as by the water spray from 30 from 1.5 to 3.5 or higher and preferably 2 to 3 and w is the dishwashing machine.

The invention will now be described in greater detail by way of specific embodiments thereof.

The LADD products of for example the prior disclosure in the aforementioned GB No. 2,116,199A and GB 35 No. 2,140,450A exhibit rheological properties as evaluated by testing product viscosity as a function of shear rate. The compositions exhibited higher viscosity at a low shear rate and lower viscosity at a high shear rate, the data indicating efficient fluidization and gellation 40 well within the shear rates extant within the standard dishwasher machine. In practical terms, this means improved pouring and processing characteristics as well as less leaking in the machine dispenser-cup, compared to prior liquid or gel ADD products. For applied 45 shear rates corresponding to 3 to 30 rpm, viscosities (Brookfield) correspondingly ranged from about 10,000 to 30,000 cps to about 3,000 to 7,000 cps, as measured at room temperature by means of an LVT Brookfield viscometer after 3 minutes using a No. 4 spindle. A 50 and more preferably 0.40 to 0.50 g/cc. shear rate of 7.4 sec $^{-1}$ corresponds to a spindle rpm of about 3. An approximate 10-fold increase in shear rate produces about a 3- to 9-fold reduction in viscosity. The compositions of the assignee's prior invention thus exhibit threshold fluidizations at lower shear rates and of 55 finely divided and can have a particle size of about 0.5 significantly greater extent in terms of incremental increases in shear rate versus incremental decrease in viscosity. This property of the LADD products of the prior invention is summarized in terms of a thixotropic index (TI) which is the ratio of the apparent viscosity at 60 3 rpm and at 30 rpm. The prior compositions have a TI of from 2 to 10. The LADD compositions should exhibit substantial and quick return to prior quiescent state consistency when the shear force is discontinued.

In terms of apparent viscosity, it has been ascertained 65 that so long as the viscosity at room temperature $(22^{\circ}\pm1^{\circ} \text{ C.})$ measured in a Brookfield Viscosimeter HATD, using a number 4 spindle at 20 rpm, is less than

about 20,000 cps, the composition can be readily shaken so that a thixotropic composition can be easily "fluidized" or "liquefied" to allow the product to be dispensed through a conventional squeeze tube bottle or other convenient dispenser.

The present invention is based upon the surprising discovery that substantially improved anti-filming and anti-spotting properties can be obtained by adding to an aqueous liquid detergent composition a small effective (e) 0.1 to 5% chlorine bleach stable, water dispersible 10 amount of an aluminosilicate zeolite anti-filming and anti-spotting agent. The physical stability, i.e., resistance to phase separation, settling, etc. can be achieved by adding to the composition a small effective amount of a thickener and stabilizing agent.

ANTI-FILMING AND ANTI-SPOTTING AGENTS

The aluminosilicate zeolite anti-filming and anti-spotting agent materials that can be used are water insoluble natural or synthetic zeolites. The water insoluble crystalline and amorphous aluminosilicate zeolites can be used in accordance with the present invention as antifilming and anti-spotting agents.

The aluminosilicate zeolites generally have the for-

$(M_2O)_x \cdot (Al_2O_3)_y \cdot (SiO_2)_z \cdot wH_2O$

wherein x is 1, y is from 0.8 to 1.2 and preferably 1, z is from 0 to 9, preferably 2.5 to 6 and M is preferably sodium. A typical zeolite is type A or similar structure, with type 4A particularly preferred. The preferred aluminosilicates have calcium ion exchange capacities of about 200 milliequivalents per gram or greater, e.g. 400 meq lg.

Various crystalline zeolites (i.e. alumino-silicates) that can be used are described in British Patent No. 1,504,168, U.S. Pat. No. 4,409,136 and Canadian Patent Nos. 1,072,835 and 1,087,477, all of which are hereby incorporated by reference for such descriptions. An example of amorphous zeolites useful herein can be found in Belgium Patent No. 835,351 and this patent too is incorporated herein by reference.

The aluminosilicate zeolites that are used can have a pore size of 3 to 8Å, preferably 3 to 6Å and more preferably about 4 to 5Å.

The aluminosilicate zeolite particles can have a density of 0.10 to 0.80 g/cc, preferably 0.30 to 0.60 g/cc

The particle size of the aluminosilicate zeolite material that is used is important in achieving the desired anti-filming and anti-spotting properties.

The aluminosilicate zeolite particles that are used are to 10 microns, preferably 1.0 to 8 microns and more preferably about 1.0 to 5.0 microns. The aluminosilicate zeolite particles of this size and the amount used herein are not abrasive.

The finely divided aluminosilicate zeolite material particles in the dishwashing wash act to coagulate and to adsorb proteinaceous particulate soils and keeps them in suspension to prevent them from depositing on the clean glass and dishware.

The amount of aluminosilicate zeolite anti-filming and anti-spotting agent that can be used to achieve the desired improvement in film will depend on the hardness of the water, detergent active compound, inorganic salts and other ADD ingredients. The aluminosilicate zeolite anti-filming and anti-spotting agent is particularly effective in hard wash water of, for example, 300 ppm hardness or more.

The amount of aluminosilicate zeolite anti-filming 5 and anti-spotting agent that is used can be about 0.5 to less than 5%, preferably about 1 to 4% and more preferably about 1.5 to 3% by weight based on the weight of the entire composition.

THIXOTROPIC THICKENERS

The thickeners or suspending agents that can be used in accordance with the present invention to provide the aqueous medium with thickened or thixotropic properties may be organic, for example, fatty acid or fatty acid 15 into consideration the toxicity of the metal. For this monovalent or polyvalent metal salts or inorganic colloid forming clay materials. The thixotropic thickeners should be stable to high alkalinity and stable to chlorine bleach compounds such as sodium hypochlorite. The preferred thickeners comprise the fatty acids, the fatty 20 acid monovalent or polyvalent metal salts and the inorganic, colloid-forming clays of smectite and/or attapulgite types. The amount of the thickener used will depend on the particular thickener used. Where a thixotropic composition is desired, sufficient thickener is 25 added to the formulation to provide the composition with a thixotropy index of about 2.5 to 10.

The preferred fatty acid thickeners are the higher aliphatic fatty monocarboxylic acids having from about 8 to about 22 carbon atoms, more preferably from about 30 10 to 20 carbon atoms, and especially preferably from about 12 to 18 carbon atoms, inclusive of the carbon atom of the carboxyl group of the fatty acid. The aliphatic radical may be saturated or unsaturated and may be straight or branched. Straight chain saturated fatty 35 acids are preferred. Mixtures of fatty acids may be used, such as those derived from natural sources, such as tallow fatty acid, coco fatty acid, soya fatty acid, etc., or from synthetic sources available from industrial manufacturing processes.

Thus, examples of the fatty acids which can be used as thickeners include, for example, decanoic acid, lauric acid, dodecanoic acid, palmitic acid, myristic acid, stearic acid, oleic acid, eicosanoic acid, tallow fatty acid, coco fatty acid, soya fatty acid and mixtures of these 45 acids. Stearic acid and mixed fatty acids, e.g. coco fatty acid, are preferred.

The amount of the fatty acid thickener to achieve the desired amount of thickening and physical stability will depend on such factors as the nature of the fatty acid, 50 detergent active compound, inorganic salts, especially TPP, other LADD ingredients, as well as the anticipated storage and shipping conditions.

Generally, however, amounts of the fatty acid thickener or thixotropic agent that can be used are in the 55 the desired enhancement of physical stability will derange of from about 0.03 to 0.5%, preferably from about 0.03 to 0.2%, especially preferably from about 0.05 to 0.15%, provide the desired long term stability and absence of phase separation.

The monovalent metal salts of the above fatty acids 60 that can be used are the alkali metal fatty acid salts. The sodium and potassium salts are preferred and the sodium salts are the most preferred.

The polyvalent metal salts of the above fatty acids can also be used in the present invention as thickener or 65 0.4%, provide the long term stability and absence of thixotropic agents. Suitable metal salt thickeners are disclosed in the prior application Ser. No. 903,924 filed Sept. 5, 1986, now U.S. Pat. No. 4,752,409, in the name

of Drapier et al., which is incorporated herein in its entirety by reference thereto.

The preferred metals are monovalent salts such as sodium and potassium and the polyvalent metals such as magnesium, calcium, aluminum and zinc.

Generally, the polyvalent metals may be present in the divalent to pentavalent state. Preferably, the metal salts are used in their higher oxidation states. Naturally, for LADD compositions, as well as any other applica-10 tions where the invention composition will or may come into contact with articles used for the handling, storage or serving of food products or which otherwise may come into contact with or be consumed by people or animals, the metal salt should be selected by taking purpose, the calcium and magnesium salts are especially highly preferred as generally safe food additives.

Many of these metal salts are commercially available. For example, the aluminum salts are available in the triacid form, e.g. aluminum stearate as aluminum tristearate, Al(C17-H35COO)3. The monoacid salts, e.g. aluminum monostearate, Al(OH)₂(C17H35COO) and diacid salts, e.g. aluminum distearate, Al(OH)C₁₇H₃. 5COO)₂, and mixtures of two or three of the mono-, diand triacid salts can be used for those metals, e.g. Al, with valences of +3, and mixtures of the mono- and diacid salts can be used for those metals, e.g. Zn, with valences of +2. It is more preferred that the diacids of the +2 valent metals and the triacids of the +3 valent metals, the tetraacids of the +4 metals, and the pentacids of the +5 valent metals, be used in predominant amounts. For example, at least 30%, preferably at least 50%, especially preferably from 80 to 100% of the total metal salt should be in the highest possible oxidation state, i.e. each of the possible valence sites is occupied by a fatty acid residue.

The metal salts, as mentioned above, are generally commercially available but can be easily produced by, for example, saponification of a fatty acid, e.g. animal 40 fat, stearic acid, etc., or the corresponding fatty acid ester, followed by treatment with an hydroxide or oxide of the polyvalent metal, for example, in the case of the aluminum salt, with alum, alumina, etc.

Calcium stearate, i.e. calcium distearate, magnesium stearate, i.e. magnesium distearate, aluminum stearate, i.e. aluminum tristearate, and zinc stearate, i.e. zinc distearate, are the preferred polyvalent fatty acid salt stabilizers. Mixed fatty acid metal salts, such as the naturally occurring acids, e.g. coco acid, as well as mixed fatty acids resulting from the commercial manufacturing process are also advantageously used as an inexpensive but effective source of the long chain fatty acid.

The amount of the fatty acid salt stabilizers to achieve pend on such factors as the nature of the fatty acid salt, the nature and amount of the thixotropic agent, detergent active compound, inorganic salts, especially TPP, other LADD ingredients, as well as the anticipated storage and shipping conditions.

Generally, however, amounts of the monovalent and polyvalent metal fatty acid salt stabilizing agents in the range of from about 0.02 to 1%, preferably from about 0.06 to 0.8%, especially preferably from about 0.08 to phase separation upon standing or during transport at both low and elevated temperatures as are required for a commercially acceptable product.

There may also be used in the present invention the conventional inorganic clay thickeners. The clay thickeners may be used in small amounts in combination with the fatty acid thickeners or in combination with fatty acid monovalent or polyvalent metal salt thickeners. 5 The clay thickeners, however, may be used by themselves as the thickeners.

The preferred clay thickeners comprise the inorganic, colloid forming clays of smectite and/or attapulgite types.

Smectite clays include montmorillonite (bentonite), hectorite, attapulgite, smectite, saponite, and the like. Montmorillonite clays are preferred and are available under tradenames such as Thixogel (Registered Trademark) No. 1 and Gelwhite (Registered Trademark) GP, 15 H, etc., from Georgia Kaolin Company; and Eccagum (Registered Trademark) GP, H, etc., from Luthern Clay Products. Attapulgite clays include the materials commercially available under the tradename Attagel (Registered Trademark), i.e. Attagel 40, Attagel 50 and 20 Attagel 150 from Engelhard Minerals and Chemicals Corporation. Mixtures of smectite and attapulgite types in weight ratios of 4:1 to 1:5 are also useful herein. Thickening or suspending agents of the foregoing types are well known in the art, being described, for example, 25 in U.S. Pat. No. 3,985,668 referred to above.

Abrasives or polishing agents should be avoided in the LADD compositions as they may mar the surface of fine dishware, crystal and the like.

When used in combination with the fatty acids or the 30 fatty acid monovalent or polyvalent metal salts, the clay thickeners are used in amounts of 0.1 to 3%, preferably 0.1 to 2.5% and more preferably in amounts of 0.1 to 2%

When the clay thickeners are used alone as the thick- 35 ener agent they can be used in amounts of about 1.5 to 8%, preferably 2 to 5% by weight of the formulation.

Generally, LADD effectiveness is directly related to (a) available chlorine levels; (b) alkalinity; (c) solubility in washing medium; and (d) foam inhibition. It is pre- 40 ferred herein that the pH of the LADD composition be at least about 9.5, more preferably from about 10.5 to 13.5 and most preferably at least about 11.5. At the relatively lower pH values, the LADD product is too viscous, i.e. solid-like, and thus not readily fluidized 45 under the shear-force levels created within the dispenser cup under normal machine operating conditions. Addition of NaOH is thus often needed to increase the pH to within the above ranges, and to increase flowability properties. The presence of carbonate is also often 50 PAE), and especially the alkyl acid phosphate esters of needed herein, since it acts as a buffer helping to maintain the desired pH level. Excess carbonate is to be avoided, however, since it may cause the formation of needle-like crystals of carbonate, thereby impairing the stability, thixotropy and/or detergency of the LADD 55 product, as well as impairing the dispensibility of the product from, for example, squeeze tube bottles. Caustic soda (NaOH) serves the further function of neutralizing the phosphoric or phosphonic acid ester foam depressant when present. About 0.5 to 3 wt % of NaOH $\,60$ and about 2 to 9 wt % of sodium carbonate in the LADD composition are typical, although it should be noted that sufficient alkalinity may be provided by the NATPP and sodium silicate.

The compositions of the present invention can con- 65 tain inorganic builder salts such as NaTPP or organic builder salts such as the alkali metal salts of citric and tartaric acid.

The NaTPP may be employed in the LADD composition in a range of about 8 to 35 wt %, preferably about 20 to 30 wt %, and should preferably be free of heavy metal which tends to decompose or inactivate the preferred sodium hypochlorite and other chlorine bleach compounds. The NaTPP may be anhydrous or hydrated, including the stable hexahydrate with a degree of hydration of 6 corresponding to about 18% by weight of water or more. Actually, in view of the stability of the hexahydrate, the presence of some water of hydration is highly effective, serving it is thought to form seeds of the stable hexahydrate which expedites hydration and solubilization of the remaining NaTPP particles. If only the hexahydrate is used, the detergent product may be too liquid. Conversely, if only the anhydrous NaTPP is used, the product may, in some cases, be too thick and, therefore, unsuitable. Especially preferred LADD compositions are obtained, for example, when using a 0.5:1 to 2:1 weight ratio of anhydrous to hexahydrated NaTPP, values of about 1:1 being particularly preferred.

The NaTPP may be replaced in whole or in part by organic builder salts such as sodium or potassium citric or tartaric acid.

The sodium salts of citric and tartaric acids are preferred.

Foam inhibition is important to increase dishwasher machine efficiency and minimize destabilizing effects which might occur due to the presence of excess foam within the washer during use. Foam may be sufficiently reduced by suitable selection of the type and/or amount of detergent active material, the main foam-producing component. The degree of foam is also somewhat dependent on the hardness of the wash water in the machine whereby suitable adjustment of the proportions of NaTPP which has a water softening effect may aid in providing the desired degree of foam inhibition. However, it is generally preferred to include a chlorine bleach stable foam depressant or inhibitor. Particularly effective are the alkyl phosphonic acid esters of the formula

available for example from BASF-Wyandotte (PCUKthe formula

available, for example, from Hooker (SAP) and Knapsack (LPKN-158), in which one or both R groups in each type of ester may represent independently a C_{12-20} alkyl group. Mixtures of the two types, or any other chlorine bleach stable types, or mixtures of mono- and di-esters of the same type, may be employed. Especially preferred is a mixture of mono- and di-C₁₆₋₁₈ alkyl acid phosphate esters such as monosteary/distearyl acid phosphates 1.2/1 (Knapsack). When employed, proportions of 0.01 to 5 wt %, preferably 0.1 to 5 wt %, especially about 0.1 to 0.5 wt %, of foam depressant in the

composition is typical, the weight ratio of detergent active component to foam depressant generally ranging from about 10:1 to 1:1 and preferably about 4:1 to 1:1. Other defoamers which may be used include, for example, the known silicones.

Although any chlorine bleach compound may be employed in the compositions of this invention, such as dichloro-isocyanurate, dichloro-dimethyl hydantoin, or chlorinated TSP, alkali metal, e.g. potassium, lithium, magnesium and especially sodium hypochlorite is pre- 10 ferred. The composition should contain sufficient chlorine bleach compound to provide about 0.2 to 4.0% by weight of available chlorine, as determined, for example, by acidification of 100 parts of the composition with excess of hydrochloric acid. A solution containing 15 about 0.2 to 4.0% by weight of sodium hypochlorite contains or provides roughtly the same percentage of available chlorine. A solution containing about 0.8 to 1.6% by weight sodium hypochlorite contains about 0.8 to 1.6% by weight of available chlorine and is especially 20 preferred. For example, sodium hypochlorite (NaOCl) solution of from about 11 to about 13% available chlorine in amounts of about 3 to 20%, preferably about 7 to 12%, can be advantageously used.

The sodium silicate, which provides alkalinity and 25 protection of hard surfaces, such as fine china glaze and pattern, is employed in an amount ranging from about 2.5 to 40 wt %, preferably about 10 to 35 wt %, in the composition. The sodium silicate also protects the washing machine from corrosion. At the higher levels 30 specified herein for example at levels greater than about 10 wt % the silicate also provides increased antispotting action. The sodium silicate is generally added in the form of an aqueous solution, preferably having an Na₂O:SiO₂ ratio of about 1:2.2 to 1:2.8, for example, 35 1:2.4. Most of the other components of the composition, especially NaOH, sodium hypochlorite and foam depressant may also be added in the form of an aqueous dispersion or solution.

Detergent active material useful herein must be stable 40 in the presence of chlorine bleach, especially hypochlorite bleach, and those of the organic anionic, amine oxide, phosphine oxide, sulphoxide or betaine water dispersible surfactant types are preferred, the first mentioned anionics being most preferred. They are used in 45 amounts ranging from about 0.1 to 5% preferably about 0.3 to 2.0%. Particularly preferred surfactants herein are the linear or branched alkali metal mono- and/or di-(C8-14) alkyl diphenyl oxide mono and/or disulphonates, commercially available for example as DOWFAX 50 (Registered Trademark) 3B-2 and DOWFAX 2A-1.

In addition, the surfactant should be compatible with the other ingredients of the composition. Other suitable surfactants include the primary alkylsulphates, alkylsulphonates, alkylaryl-sulphonates and sec.-alkylsulphates. 55 Examples include sodium C_{10-18} alkylsulphates such as sodium dodecylsulphate and sodium tallow alcoholsulphate; sodium C₁₀₋₁₈ alkanesulphonates such as sodium hexadecyl-1-sulphonate and sodium C12-18 alkylbenzenesulphonates such as sodium dodecylbenzenesul- 60 phonates. The corresponding potassium salts may also be employed.

As other suitable surfactants or detergents, the amine oxide surfactants are typically of the structure R_2R^1NO , in which each R represents a lower alkyl 65 group, for instance, methyl, and R¹ represents a long chain alkyl group having from 8 to 22 carbon atoms, for instance a lauryl, myristyl, palmityl or cetyl group.

Instead of an amine oxide, a corresponding surfactant phosphine oxide R₂R¹PO or sulphoxide RR¹SO can be employed. Betaine surfactants are typically of the structure R_2R^1N — $R''COO^-$, in which each R represents a lower alkylene group having from 1 to 5 carbon atoms. Specific examples of these surfactants are lauryl-dimethylamine oxide, myristyldimethylamine oxide, the corresponding phosphine oxides and sulphoxides, and the corresponding betaines, including dodecyldimethylammonium acetate, tetradecyldiethylammonium pentanoate, hexadecyl-dimethylammonium hexanoate and the like. For biodegradability, the alkyl groups in these surfactants should be linear, and such compounds are preferred.

Surfactants of the foregoing type, all well known in the art, are described, for example, in U.S. Pat. Nos. 3,985,668 and 4,271,030.

The amount of water contained in these compositions should, of course, be neither so high as to produce unduly low viscosity and fluidity, nor so low as to produce unduly high viscosity and low flowability, thixotropic properties in either case being diminished or destroyed. Such amount is readily determined by routine experimentation in any particular instance, generally ranging from about 25 to 75 wt %, preferably about 50 to 65 wt %. The water should also be preferably deionized or softened. These amounts of water in the composition include the water added as parts of the liquid solutions of other ingredients, but do no include bound water, for example that in NaTPP hexahydrate.

Other conventional ingredients may be included in these compositions in small amounts, generally less than about 3 wt %, such as perfume, hydrotropic agents such as the sodium benzene, toluene, xylene and cumene sulphonates, preservatives, dyestuffs and pigments and the like, all of course being stable to chlorine bleach compound and high alkalinity (properties of all the components). Especially preferred for coloring are the chlorinated phthalocyanines and polysulphides of aluminosilicate which provide, respectively, pleasing green and blue tints.

The liquid ADD compositions of this invention are readily employed in known manner for washing dishes, glasses, cups, eating utensils and the like in an automatic dishwasher, provided with a suitable detergent dispenser, in an aqueous wash bath containing an effective amount of the composition.

In a preferred embodiment of the invention the aqueous liquid dishwashing detergent composition is formulated using the below named ingredients.

Component	Weight Percent
Water (Balance)	
Bleach Stable Foam Depressant	0.10-3
Fatty Acid Thickener	0.03-0.5
Chlorine Bleach Stable, Water Dispersible	0.5-3
Organic Detergent Active Material	
Alakli Metal Carbonate (anhydrous)	2-8
Sodium Hydroxide (50%)	2-6
Sodium Silicate (47.5%)	15-40
Inorganic or Organic Builder Salt	10-25
Bleach Compound	0.2-4
Aluminosilicate zeolite Anti-filming	1-4
and Anti-spotting Agent	

The thixotropic aqueous liquid automatic dishwashing detergent compositions of the present invention can contain conventional dishwashing detergent composition additives. The formulations can be prepared with

11

commercially available solid powder builders, and/or the ingredients can be mixed and the formulations ground to a desired particle size.

The invention may be put into practice in various ways and a number of specific embodiments will be ⁵ described to illustrate the invention with reference to the accompanying examples.

All amounts and proportions referred to herein are percent by weight of the composition unless otherwise indicated.

The present invention is further illustrated by the following examples.

EXAMPLE 1

In order to show the improvement in anti-filming and anti-spotting properties obtained in accordance with the present invention, formulations were prepared with and without applicant's aluminosilicate zeolite anti-filming and anti-spotting agent.

The compositions contain the following ingredients.

Component	Formulation A Control	Formulation B Invention	- -
Deionized Water	18.21	16.21	- 2
Foam Depressant ⁽¹⁾	0.16	0.16	
Aluminum Stearate Thixotropic	0.10	0.10	
Thickener			
Surfactant ⁽²⁾	0.80	0.80	
Clay ⁽³⁾	1.25	1.25	3
Sodium Carbonate (Anhydrous)	5.00	5.00	
Sodium Hydroxide (50%)	4.80	4.80	
Sodium Silicate (1/2.23, 47%)	36.68	36.68	
Sodium Tripolyphosphate	24.00	24.00	
(Anhydrous)			
Sodium Hypochlorite Bleach (11%	9.00	9.00	3
Aluminosilicate Zeolite Anti- filming and Anti-spotting Agent ⁽⁴⁾		2.00	
	100.00	100.00	

⁽¹⁾Knapsack LPKN-158, Mixture of mono and distearyl (C_{16} — C_{18}) alkyl esters of phosphoric acid, mole ratio 1:1.3. ⁽²⁾Drumfer 20:2 Normon and didenti diphonul ather dirulfonate (45% colution) 40

phosphoric acid, mole ratio 11.5. ⁽²⁾Dowfax 3B-2, Na mono and didecyl diphenyl ether disulfonate (45% solution). ⁴ ⁽³⁾Layered type clay, available from Southern Clay and marketed under the tradename Gel White GP.

name Gel White GP. $^{(4)}$ Average particle size 4.6 microns density 0.40–0.48 g/ml, pore size 4.2 Å, available from P.Q. Corp. and marketed under the tradename Valfor 100.

The inventive formulation B can be prepared using ⁴⁵ the following procedure. The clay is mixed with a small amount of water and thoroughly hydrated using a high speed dispenser. An aqueous solution of the LPKN foam depressant and an aqueous solution of the Dowfax 3B-2 surfactant are mixed together and then mixed with ⁵⁰ aluminum stearate to form an emulsion. The emulsion is added to the hydrated clay in the high speed disperser followed by the addition of an aqueous solution of the sodium hydroxide and the ingredients are mixed under high shear conditions to form a pre-mix. The addition of the sodium hydroxide results in a uniform dispersion having gel-like consistency.

The sodium carbonate, sodium silicate, sodium tripolyphosphate and the remaining water are added to $_{60}$ the pre-mix under low shear agitation. The typical temperature rise of the mixture is to about 115° to 130° F. The mixture is then cooled to about 80°-90° F., followed by the addition of the sodium hypochlorite bleach and the aluminosilicate zeolite anti-filming and 65 anti-spotting agent.

The formulation A control is prepared in the same manner except the aluminosilicate zeolite is omitted.

The formulations are tested by washing glassware at 132° F. in hard water (300 ppm hardness) using 70 g/wash of detergent composition.

The two above formulations (A) and (B) are tested and compared for anti-filming and anti-spotting performance. The formulations are tested in a General Electric automatic dishwasher using the procedure described in ASTMD 3566-79, except that only four
cleaning cycles are used. The filming and spotting are evaluated according to the following scales:

Film Rating Scale

1. Best, no apparent film

2. Filming slight, becoming apparent

3. Noticeable film, increasing

4. Continued increase of significant film

5. Filming becoming excessive

 $_{20}$ 6. Filming high, excessive buildup

7. Continued increase of excessive film.

Spot Rating Scale

A. Best----no spots

5 B. Very few spots apparent

C. Distinct

D. Significant coverage approximately 50%.

The results obtained in the four cycles are reported in the below Table 1.

_	•		TABLE 1		
		Formulation A (Control)		Formulation B (Invention)	
	Cycle	Spot	Film	Spot	Film
·- ··	1	A, B	3	A, B	3
	2	A, B	3, 4	A, B	3
	3	В	3, 4	A, B	3
	4	В	4	A, B	3

The above results show that the anti-filming and anti-spotting performance of the invention formulation (B) is significantly superior to the control formulation (A).

It is important to note that the performance of the invention formulation (B) does not vary with respect to the number of wash cycles, whereas the performance of the control formulation (A) is found to decrease with the increase in number of the wash cycles.

EXAMPLE 2

A thickened aqueous liquid automatic dishwashing detergent composition is formulated from the following 55 ingredients in the amounts specified.

Component	Weight Percent
Deionized Water	26.94
Foam Depressant	0.16
Stearic Acid Thickener	0.10
Surfactant	0.80
Sodium Carbonate (Anyhydrous)	5.00
Sodium Hydroxide (50%)	5.00
Sodium Silicate (1/2.23, 47%)	31.00
Trisodium Citrate	20.00
Sodium Hypochlorite Bleach (11%)	9.00
Aluminosilicate Zeolite Anti-filming	2.00
and Anti-spotting Agent ⁽³⁾	

CONTIN	med
COHUI	lucu

Component	Weight Percent	
	100.00	
1)Knanesck I PKN-158 mixture of m	and disteary (Creaters) alkyl esters of	

phosphoric acid, mole ratio 1:1.3. ⁽²⁾Dowfax 3B-2, Na mono and didecyl diphenyl ether disulfonate (45% solution). ⁽³⁾Particle size 4 micron, pore size 4Å available from P.Q. Corp. under the tradename of Valfor 100.

The stearic acid is first heated and melted. The ingre-10 dients are then added to the water in the order listed. The mixed ingredients are stirred at room temperatures until a homogeneous mixture is obtained. A portion of the composition is tested by washing glassware and dishware at a temperature of about 130° F. in hard 15 water (300 ppm hardness) in an automatic dishwashing machine. The clean and dried dishes are found to have substantially reduced film and spots.

EXAMPLE 3

A thixotropic aqueous liquid automatic dishwashing detergent composition is formulated from the following ingredients in the amounts specified.

		- 76
Component	Weight Percent	- 23
Deionized Water	32.58	_
Foam Depressant ⁽¹⁾	0.16	
Clay (Pharmagel H) Thixotropic Thickener	1.25	
Dowfax 3B-2 Surfactant	0.80	
Sodium Carbonate (anhydrous)	5.00	- 30
Sodium Hydroxide (50%)	5.00	
Sodium Silicate (1/2.4-47.5%)	19.60	
Sodium Tripolyphosphate (anhydrous)	12.00	
Sodium Tripolyphosphate (hexahydrate)	12.00	
Sodium Hypochlorite (11%)	7.61	
Aluminosilicate Zeolite Anti-filming Anti-Spotting Agent ⁽²⁾	4.00	35
	100.00	_

(1)1:1 mixture of LPKN-158 and PCUK-PAE.

⁽²⁾Average particle size was about 4 microns.

The ingredients are mixed in a conventional manner.

The formulation is tested by washing glassware at 130° F. in hard water (300 ppm hardness) in an automatic dishwashing machine. The clean and dried glassware are found to be significantly reduced in film and 45 spots.

The aqueous liquid automatic dishwashing detergent compositions of the present invention provide improved film and spot properties. The invention is not to be limited by the above disclosure and Examples which are given as illustrations only. The invention is to be 50 interpreted in accordance with the below claims.

What is claimed is:

1. An anti-filming and anti-spotting automatic dishwashing detergent composition comprising water, at least one ingredient selected from the group consisting 55 of organic detergent, bleach, detergent builder, sequestering agent, foam inhibitors, and mixtures thereof, and from and 0.5 to 5% of an aluminosilicate zeolite antifilming and anti-spotting agent having the formula 60

 $(M_2O)_x \cdot (Al_2O_3)_y \cdot (SiO_2)_z \cdot wH_2O$

wherein x is 1, y is from 0.8 to 1.2, z is from 1.5 to 3.5 and w is from 0 to 9 and M is sodium, and having a particle size of 0.5 to 10 microns.

2. The composition of claim 1 wherein the aluminosilicate zeolite anti-filming and anti-spotting agent is in an amount of 1 to 4%.

3. An anti-filming and anti-spotting aqueous liquid automatic dishwasher composition comprising approximately by weight:

- (a) 5 to 35% inorganic or organic detergent builder; (b) 2.5 to 40% sodium silicate;
- (c) 0.5 to less than 5% of aluminosilicate zeolite antifilming agent having the formula

 $(M_2O)_x \cdot (Al_2O_3)_y \cdot (SiO_2)_z \cdot wH_2O$

wherein x is 1, y is from 0.8 to 1.2, z is from 1.5 to 3.5 and w is from 0 to 9 and M is sodium, and having a particle size of about 0.1 to 10 microns; (d) 0 to 9% alkali metal carbonate;

- (e) 0.1 to 5% chlorine bleach stable, water-dispersible organic detergent active material;
- (f) 0 to 5% chlorine bleach stable foam depressant;
- (g) chlorine bleach compound in an amount to provide about 0.2 to 4% of available chlorine;
- (h) 0 to 8% of sodium hydroxide; and

(i) balance water.

4. The composition of claim 3 comprising a long chain fatty acid thickener in an amount of about 0.03 to 0.5%.

5. The composition of claim 3 comprising a monovalent or polyvalent metal salt of a long chain fatty acid thickener in an amount of about 0.02 to 1.0%.

6. The composition of claim 4 additionally comprising a clay thickener in an amount of about 0.1 to 3.0%. 7. The composition of claim 5 additionally compris-

ing a clay thickener in an amount of about 0.1 to 3.0%.

8. The composition of claim 3 wherein the aluminosilicate zeolite anti-filming and anti-spotting agent has a particle size fo about 0.5 to 8.0 microns.

9. The composition of claim 3 wherein the aluminosilicate is water insoluble.

10. The composition of claim 3 wherein in the aluminosilicate formula w is 2.5 to 6.

11. The composition of claim 3 wherein the alumino-40 silicate particles are 1 to microns in size.

12. A thixotropic aqueous liquid automatic dishwasher composition comprising approximately by weight:

(a) 5 to 35% alkali metal tripolyphosphate;

- (b) 2.5 to 40% sodium silicate;
- (c) 1 to 4% aluminosilicate zeolite anti-filming and anti-spotting agent having the formula

 $(M_2O)_x.(Al_2O_3)_y.(SiO_2)_z.wH_2O$

wherein x is 1, y is from 0.8 to 1.2, z is from 1.5 to 3.5 and w is from 2.5 to 6.0 and M is sodium, and having a particle size of about 0.5 to 8.0 microns; (d) 0 to 9% alkali metal carbonate;

- (e) 0.1 to 5% chlorine bleach stable, water dispersible organic detergent active material;
- (f) 0 to 5% chlorine bleach stable foam depressant;
- (g) chlorine bleach compound in an amount to provide about 0.2 to 4% of available chlorine;
- (h) a sufficient amount of a thixotropic thickener to provide a thixotropic index of about 2.5 to 10;
- (i) 0 to 8% of sodium hydroxide; and

(i) balance water.

13. The composition of claim 12 wherein the thixo-65 tropic thickener comprises a clay thickener in an amount of about 1.5 to 8%.

14. The composition of claim 12 wherein the aluminosilicate zeolite has a particle size of about 1 to 5 microns.

15. The composition of claim 12 wherein the thixotropic thickener comprises a long chain fatty acid having C₁₆ to C₂₀ carbon atoms in an amount of about 0.03 to 0.20%.

16. The composition of claim 15 additionally com-⁵ prising a clay thixotropic thickener in an amount of about 0.1 to 2.5%.

17. The composition of claim 12 wherein the thixotropic thickener comprises a monovalent or polyvalent 10 metal salt of a long chain fatty acid having C₁₆ to C₂₀ carbon atoms in an amount of about 0.06 to 0.8%.

18. The composition of claim 17 wherein the monovalent metal is one of sodium or potassium.

19. The composition of claim 17 wherein the polyva- 15 lent metal is one of aluminum, calcium, zinc and magnesium.

20. The composition of claim 17 additionally comprising a clay thixotropic thickener in an amount of about 0.1 to 2.5%.

21. The composition of claim 12 wherein the aluminosilicate particles are water insoluble.

22. A Thixotropic aqueous liquid automatic dishwasher composition comprising approximately by 25 weight:

(a) 5 to 35% alkali metal tripolyphosphate;

(b) 2.5 to 40% sodium silicate;

(c) 1 to less than 4% of a water insoluble aluminosilihaving the formula

(M2O)x.(Al2O3)y.(SiO2)z.wH2O

wherein x is 1, y is from 0.8 to 1.2, z is from 2 to 3 and w is from 2.5 to 6 and M is sodium, and having a particle size of about 1.0 to 5.0 microns;

- (d) 0 to 9% alkali metal carbonate;
- (e) 0.1 to 5% chlorine bleach stable, water dispersible organic detergent active material;
- (f) 0 to 5% chlorine bleach stable foam depressant;
- (g) chlorine bleach compound in an amount to provide about 0.2 to 4% of available chlorine;

(h) a sufficient amount of a thixotropic thickener to provide a thixotropic index of about 2.5 to 10;

(i) 0 to 8% of sodium hydroxide; and

(j) balance water.

23. The composition of claim 22 containing 1.5 to 3.0% aluminosilicate.

24. A method for cleaning soiled glassware and dish-20 ware which comprises contacting the soiled dishware in an automatic dishwashing machine in an aqueous washbath having dispersed therein an effective amount of the composition of claim 1 to obtain clean glassware and dishware of substantially reduced film and spots.

25. A method for cleaning soiled dishware which comprises contacting the soiled glassware and dishware in an automatic dishwashing machine in an aqueous washbath having dispersed therein an effective amount of the composition of claim 9 to obtain clean glassware cate zeolite anti-filming and anti-spotting agent 30 and dishware of substantially reduced film and spots. * *

35

40

45

50

55

65

60