«» UK Patent Application .,GB ,2518745 . A

(43)Date of A Publication 01.04.2015
(21) Application No: 1413935.6 (51) INT CL:
GOG6F 17/24 (2006.01)
(22) Date of Filing: 06.08.2014
(56) Documents Cited:

(30) Priority Data: None

(31) 61863792 (32) 08.08.2013 (33) US

(31) 61863814 (32) 08.08.2013 (33) US (58) Field of Search:

(31) 61909949 (32) 27.11.2013 (33) US Other: No search performed: Section 17(5)(b)

(31) 14148568 (32) 06.01.2014 (33) US

(71) Applicant(s):
Palantir Technologies Inc
100 Hamilton Avenue, Suite 300, Palo Alto 94301,
California, United States of America

(72) Inventor(s):
Andy Isaacson

(74) Agent and/or Address for Service:
Venner Shipley LLP
200 Aldersgate, LONDON, EC1A 4HD,
United Kingdom

(54) Title of the Invention: Template system for custom document generation
Abstract Title: User interface for custom document generation

(57) Man-machine interfaces (user interfaces) for generating
output custom documents (e.g. ‘law enforcement’
documents) and, more specifically, for receiving user
selections of data objects and templates to generate
documents comprises, a user creating a mockup and/or \
placeholder document in an editor of their choice and TI T L E _ H O L D E R
generating a template 300 by editing the mockup and/or
placeholder document by inserting executable code
instructions. The placeholder elements represent aspects
and/or features of the document that the human operator 306\ IMAGE-
desires to be dynamically populated and/or updated with {OLDER
properties from data objects and/or based on the
properties of data objects. For example, title-holder 304
may be a placeholder that is to be replaced with a title
associated with an object selected by the requester of a
document based on the template. For example, the title- 310
holder 304 may be replaced with the name of a person, 302 312 f
which may correspond to one or more name properties N /
associated with a person data object. Similarly, the other Height HEIGHT-HOLDER
placeholder elements, such as the image 306 and the
height-holder, contact-holder, and associates-holder in
table 302 should correspond to properties of one or more Associates ASSOCIATES-HOLDER
objects (e.g., person objects) selected by the requesting
human operator. The template may comprise an XML
based document format.

300 __
304

Contact Information CONTACT-HOLDER

FIG. 3A

V Gy/8lGC 89

1711

601

801

P01

|~

10SS220.4d @1e|dwal

ovL

|~

lun uoiv|es

32IA3(]

(epod a1ejdwa) s1sUl
Jojesado uewny “8°9)
Jojesauan ajejdwa]

walsAg alejdwa |

001

%

(3€ 24n814 “8'3)
ejep 193[qo
YUM Juswndop
woisn)

syalgo
L JETEREY

@ /isenbay

061

091
MHOMLAN

(gt @an814 “8-9)

€

[Ol4

— 0S1

JIA(Q
28e.015
L] (elo)

)

o€t

"

(V€ @24n814 “3'3)

uo|339|9s
91e|dwa}
pue 123[(q0
74} 4
921A3(
Q Sunndwo)
SEN|

01—

slapjoyade|d apod yum

jejdwa

OLL

2/11

202
P
RECEIVE ONE OR MORE
DATA OBJECTS.
i 204
RECEIVE A TEMPLATE.
206
——
PARSE INSTRUCTIONS FROM THE TEMPLATE.
2
l 208

EXECUTE INSTRUCTIONS FROM THE
TEMPLATE, ACCESS THE ONE OR MORE DATA
OBJECTS, AND GENERATE OUTPUT.

l 210

GENERATE CUSTOM DOCUMENT BY REPLACING
THE EXECUTABLE INSTRUCTIONS WITH THE
CORRESPONDING GENERATED OUTPUT.

FIG. 2

300

3/11

"
TITLE-HOLDER

310
302 /312 v/

Height HEIGHT-HOLDER

Contact Information CONTACT-HOLDER

Associates ASSOCIATES-HOLDER

FIG. 3A

4/11

<juawnoop/> m
_ |
! I
! I
! _
! I
I
<ydesBesed/> !
<a|qe1/> “
<mol/> |
<ejeQa|qel/>Y3IA10H-SILVIDOSSv<eleqajqel> !
<eleQgs|qel/>saielossy<elega|gel> “
<MoJ> !
<Mmol/> “
<eje?3|qe1/>Y3IAT10H-LIVINOI<EIEeaD|qel> !
<ele(s|qel/>uollew.ou] 1oeu0)<elega|qer> “
<MOJ> “
<mol/> “
<ejea|qe1/>Y3A10H-LHOIIH<EIEd?|qE)> !
<ejega|qel/>1ysiaH<elreqgs|qel> “
<Mmou> I
<a|qer> |
<ydeiSesed> |
<ydesBesed/> |
</ .8ud*43g10H-28ew), =oweu adew|> !
<ydesSesed> |
<yde.Sesed/> |
<1X31/>4IATOH-INVN<IX31> “
<ydesSesed> “
! “
| I
“ “
“ =
<juswnoop> m

YOIt

qg¢ Old

5/11

<% for each object in objects %>

<paragraph>
<text><%= print(object.getName) %></text>
</paragraph>
<paragraph>
<image name="<%= print{object.getPicture) %>" />
</paragraph>
<paragraph>
<table>
<row>
316 <tableData>Height</tableData>
<tableData>
<%
records = object.getRecords;
height = frequencyMap(records, “height”).getMostCommon;

print(height);
%>
</tableData>
</row>
<row>
312 <tableData>Contact Information</tableData>
<tableData>
<% \

if object.getPhoneNumber is not null
314 —— printin(“Phone Number: ” + object.getPhoneNumber);

if object.getEmail is not null
printin(“Email: ” + object.getEmail);

%>
</tableData>
</row>
<row>
<tableData>Associates</tableData>
<tableData><%= print{object.getAssociates.join
(“,”)) %></tableData>
</row>
</table>
</paragraph>
<% end %>
|
|
</document>

6/11

<ele@ajqel/>3joq AL ‘@0Q qog ‘@0Qq auef<eleqgs|qer>
<eje@go|qel/>sajeldossy <ejega|qei>

<ejeQa|qel/>TTTT-TTT (EZT) :43quinN suoyd <elegs|qel>
<ele(s|qel/>uopewsojul 1ejuo) <elegoajqel>

<ejegs|qe1/>,L,S<e1ega|qelr>
<ej1ea|qel/>YSI19H <eleqa|qer>

</ .8ud-aoquyol

<o|gey/>
<mol/>

<MoJ>
<Mmou/>

<Mmou>
<mol/>

<MOJ>

<juawnaop/>
|
I
I
1

<ydesSesed/>

<3|qe1>
<ydei8eied>
<ydes3esed/>

=aweu agdew >

<ydesSesed>
<ydesSesed/>

<1Xx91/>30(Q UYOo[<1Xal>

<ydes3esed>

<juawnoop>

—"0t¢
(¢ Ol

7/11

330

332

\
John Doe

334

336

~

Height 5'7"

Contact Information [Phone Number: (123) 111 - 1111

Associates Jane Doe, Bob Doe, Jerry Dole

8/11

vV Ol

XIOIE

YI4D3S 0] I49Y YO1])

ar

d13H SIONIYIJTUd

M3IA NOILVOILSIANI

{

=
]1j7

)
90y

9/11

qr OId

74 N\
=] 5/
A4 4
- N
oop-aje|dwa A J
|
m Hodx3 exeq
O |
"
|
[] |
|
|
|
|
@@D 124128 03 349 Y21 d13H SIONIFYIJT™d M3IA zo_Ew_mesE
j]
00% 0TH

Of OlA

9¢cp i

10/11

ev -

vey

1Nd1NO

1NdNI

XICIE

YI24D38 0] I43Y YO1])

d13H SIONIYI4T™d M3IIA NOILYOILSIANI

T

00y

11/11

vzs
(S)LSOH
_— . - - - |
— | 00T — _ —
V_m%\wﬂuz ANI _ uu/M_H_whz_ 705 _ wv SHMOU
|
MYOMLIN | NOLLYOINNIANGD (S)d0SsSID0NUd | HOSHD
_ _
_ _
_ _
_ | —
926 | — p—
_ ng Mv IDIA3Q
_ 1NdNI
_ _
_ _
_ _
8¢C¢ _ N /_ |
_ 0TS — 90§ _ e
— | | 3oA3a o AMOWIW | | JLV el
0€S _ IOVHOLS NIV _
(S)u3aANY3S _ _
L i

10

15

20

25

30

35

Template System For Custom Document Generation

Field

This invention relates to generating custom template-based documents.

Background

In many fields, computer programs may be written to programmatically generate
reports or documents from the electronic collections of data. This approach requires a
computer programmer to write a program to access electronic collections of data and
output the desired report or document. Typically, a computer programmer must
determine the proper format for the report or document from users or analysts that are
familiar with the report or document. Some man-machine interfaces for generating
reports or documents in this manner are software development tools that allow a
computer programmer to write and test computer programs. Following development
and testing of the computer program, the computer program must be released into a
production environment for use. Thus, this approach for generating reports or
documents may be inefficient because an entire software development life cycle (e.g.,
requirements gathering, development, testing, and release) may be required even if
only one element or graphic of the report or document requires changing. Furthermore,
this software development life cycle may be inefficient and consume significant

processing and/or memory resources.

Summary

The systems, methods, techniques, and devices described herein each have several
aspects, no single one of which is solely responsible for its desirable attributes. Without
limiting the scope of this disclosure, several non-limiting features will now be discussed

briefly.

Embodiments of the present disclosure relate to man-machine interfaces for generating
documents and, more specifically, for man-machine interfaces for receiving user
selections of data objects and templates to generate documents. In some embodiments,
the man-machine interfaces for generating template-based documents may include
fewer steps, result in faster creation of documents, consume less processing and/or
memory resources, permit users to have less knowledge of programming languages
and/or software development techniques, and/or allow less users or developers to

create documents than the man-machine interfaces described above. Thus, in some

10

15

20

25

30

35

embodiments, the man-machine interfaces described herein may be more efficient as
compared to the man-machine interfaces described above. For example, in some
embodiments, a user creates a mockup and/or placeholder document in an editor of
their choice and generates a template by editing the mockup and/or placeholder
document by inserting executable code instructions. Typically, users have a preferred
document editor that they are proficient and/or are comfortable with. The user may
then select one or more data objects and the template, via one or more man-machine
interfaces, which causes access of the one or more selected data objects through
execution of the code instructions in the template to generate the report. The methods
and systems described herein may advantageously reduce the steps and/or cognitive
burden of a user interacting with the man machine-interfaces because reports and/or
documents may be created according to certain specifications without the completion
of full software development life cycles and/or the use of software development tools
described above. Additionally, the man machine-interfaces described herein may use
less processing and/or memory resources than the tools used for traditional software
development because compilation and releases to production may not be necessary
following changes to a report. Also, the systems and methods described herein may use
less computational resources than traditional techniques for report generation because
sections of the template document can be ignored by the system since only the

executable code instructions in the template may need to be evaluated and/or executed.

In some embodiments, a computer system for generating custom template-based
documents comprises a template storage device. The computer system may further
comprise one or more hardware processors programmed via executable code
instructions. When executed, the executable code instructions may cause the computer
system to implement a template generator. The template generator may be configured
to access a placeholder template comprising one or more placeholders indicating
locations for insertion of executable instructions. The template generator may be
further configured to receive executable instructions to be included in the placeholder
template. The template generator may be further configured to store, in the template
storage device, a template including one or more sets of the received executable
instructions inserted into corresponding placeholders of the placeholder template.
When further executed, the executable code instructions may cause the computer
system to implement a template selection unit. The template selection unit may be
configured to receive a selection of the template and selection of one or more data

objects to include in a generated custom document based on properties of the one or

10

15

20

25

30

35

more data objects. When further executed, the executable code instructions may cause
the computer system to implement a template processor. The template processor may
be configured to parse the one or more sets of executable instructions included in the
template. The template processor may be further configured to execute each set of
executable instructions, wherein at least some sets of executable instructions include
instructions to access properties of the selected data objects stored in one or more data
sources. The template processor may be further configured to generate an output for
each set of executable instructions. The template processor may be further configured
to generate the custom document by replacing sets of executable instructions in the
template with the output generated by execution of corresponding sets of executable
instructions. At least some of the output include properties of the selected data objects

and/or summary data regarding the properties of the selected data objects.

In some embodiments, a method for generating custom template-based documents
may comprise receiving selection of a template, the template including one or more sets
of executable instructions. The method may further comprise receiving selection of one
or more data objects to access in response to executing the one or more sets of
executable instructions. The method may further comprise executing, by a computer
system having one or more computer processors and an electronic storage device, each
set of executable instructions, wherein at least some sets of executable instructions
include instructions to access properties of at least some of the selected data objects.
The method may further comprise generating an output for each set of executable
instructions. The method may further comprise generating a custom document by
replacing sets of executable instructions in the template with the corresponding
generated output, including properties of the selected data objects and/or summary

data regarding the properties of the selected data objects.

In some embodiments, a non-transitory computer storage comprises instructions for
causing a computer system to generate custom template-based documents. When
executed, the instructions may receive a template that was modified by replacing
placeholders with sets of executable instructions. When executed, the instructions may
receive a selection of the template. When executed, the instructions may receive
selection of one or more data objects to include in a generated custom document based
on properties of the one or more data objects. When executed, the instructions may
parse the one or more sets of executable instructions from the template by the

computer system. When executed, the instructions may execute each set of executable

10

15

20

25

30

35

instructions, wherein at least some sets of executable instructions include instructions
to access properties of the selected data objects stored from one or more data sources.
When executed, the instructions may generate an output for each set of executable
instructions. When executed, the instructions may generate a custom document by
replacing sets of executable instructions in the template with the corresponding
generated output, including properties of the selected data objects and/or summary

data regarding the properties of the selected data objects.

Advantageously, according to some embodiments, the disclosed techniques provide
more effective and/or efficient man-machine interfaces for generating reports. A user
may create a mockup and/or placeholder document in a document editor of their
choice. The user may then use one or more man-machine interfaces to insert executable
code instructions into the placeholder document. This approach for generating
templates for documents may reduce the amount of time and effort of the user because
the user may use document editors and document creation techniques they are familiar
with, and documents may be created dynamically and/or flexibly without the need to
release new versions of software. Users may select data objects and a template through
one or more graphical user interfaces to dynamically generate a report from the data
objects. Thus, the man-machine interfaces for selecting data objects and templates may
reduce the cognitive burden of users, reduce the number of steps to create documents,
and/or reduce the computational and/or memory resources for creating documents as

compared to traditional programmatic approaches for generating documents.

This application is related to but does not claim priority from U.S. Patent No.
8,489,623 entitled “Creating Data In A Data Store Using A Dynamic Ontology” filed
May 12, 2011, which is hereby incorporated by reference in its entirety and referred to

herein as the “Ontology reference.”

Brief Description of the Drawings
Certain aspects of the disclosure will become more readily appreciated as those aspects
become better understood by reference to the following detailed description, when

taken in conjunction with the accompanying drawings.

Figure 1 is a block diagram illustrating an example template system, according to some

embodiments of the present disclosure.

10

15

20

25

30

35

Figure 2 is a flowchart illustrating an example document generation process from a

template, according to some embodiments of the present disclosure.

Figure 3A illustrates an example placeholder template, according to some embodiments

of the present disclosure.

Figure 3B illustrates an example Extensible Markup Language document of the

placeholder template, according to some embodiments of the present disclosure.

Figure 3Cillustrates an example Extensible Markup Language document of a template
with executable code instructions, according to some embodiments of the present

disclosure.

Figure 3D illustrates an example Extensible Markup Language document of an output
document following the execution of embedded code instructions, according to some

embodiments of the present disclosure.

Figure 3E illustrates an example custom document, according to some embodiments of

the present disclosure.

Figure 4A illustrates an example user interface of the template system for loading

and/or viewing data objects, according to some embodiments of the present disclosure.

Figure 4B illustrates an example user interface of the template system for selecting a

template, according to some embodiments of the present disclosure.

Figure 4C illustrates an example user interface of the template system for evaluating

code instructions, according to some embodiments of the present disclosure.

Figure 5 is a block diagram illustrating an example template system with which various

methods and systems discussed herein may be implemented.

Detailed Description
Reports and/or documents may be programmatically generated from structured data.
For example, a computer system may be programmed with code instructions to

uniformly generate reports and/or documents from structured data. To modify the

10

15

20

25

30

35

format of a report and/or document, a new software release may be required to make
changes to the report and/or document. In another example, a report and/or document
may be generated from the embedded features of a document processing application.
Microsoft Word may have built in functions for executing code instructions in a

document such as macros for executing Visual Basic.

In addition to computer systems programmed to generate uniform reports and/or the
embedded features of a document processing application, disclosed herein are systems,
methods, techniques, and devices for dynamically generating custom documents that
include information related to one or more data objects and/or properties of those data
objects. Using the techniques and systems described herein, computational and/or
memory efficient, flexible, scalable, and custom document generation may be achieved.
Furthermore, the man machine-interfaces described herein may advantageously reduce
the steps and/or cognitive burden of a user to customize reports based on data objects
without the need of additional software releases. In one particular example
implementation of the systems and methods discussed herein, custom documents may
be generated based on properties of one or more user-selected data objects and based
on Microsoft Word templates that include embedded executable code instructions that
may be evaluated outside of Microsoft Word. While certain examples herein refer to
Microsoft Word, the systems and methods are applicable to any data format and any

reading and/or editing software.

Example Template Generation

Figure 1 illustrates a template system, according to some embodiments of the present
disclosure. In the example embodiment of Figure 1, the template environment 190
comprises a network 160, a template system 100, a user computing device 102, and an
object storage device 130. Various communications between these devices are
illustrated. For example, communication of a placeholder template 110, data selection
120, object data 140, and a custom document 150 are illustrated in various actions 1-5
that are illustrated in the circled numbers in the Figure. In this embodiment, the
template system 100 includes a template generator 104, a template storage device 106,
a selection unit 108, and a template processor 109, each of which is described in further
detail below.

As shown in Figure 1, at action one, a template with code placeholders, which is

referred to herein as a “placeholder template,” is transmitted from the user computing

10

15

20

25

30

35

device 102 to the template generator 104 of the template system 100. In some
embodiments, the placeholder template 110 includes code placeholders, which indicate
locations in a template document where the user would like content to be added
dynamically based on the properties of one or more selected data objects. Figure 3A, for
example, illustrates an example placeholder template 300, with placeholders that have
been added and/or displayed through a document processing application. The
placeholder template 300 may correspond to the placeholder template 110 of Figure 1.
A human operator may have created the placeholder template 300 in a document
processing application, such as, but not limited to, Microsoft Word. The placeholder
template 300 may comprise static text and/or features that may be used in all of the
reports and/or documents generated from templates based on the placeholder template
300, such as static text 312. In other examples, the header or footer of the document

may contain the same information on all reports, such as a company logo.

The human operator may have created the placeholder template 300 to meet
specifications for a custom report. The layout may be customized to the specifications
of the report and/or to the preferences of the human operator. For example, the title
304 and/or the table 302, may be aligned, formatted, and/or in a font that matches the
human operator’s preferences. Similarly, the image 306 may be positioned and/or

aligned according to the human operator’s preferences.

Elements of the placeholder template 300, such as the title 304, the image 306, and/or
the table 302 may comprise placeholder elements. The placeholder elements represent
aspects and/or features of the document that the human operator desires to be
dynamically populated and/or updated with properties from data objects and/or based
on the properties of data objects. For example, title-holder 304 may be a placeholder
that is to be replaced with a title associated with an object selected by the requester of a
document based on the template. For example, the title-holder 304 may be replaced
with the name of a person, which may correspond to one or more name properties
associated with a person data object. Similarly, the other placeholder elements, such as
the image 306 and the height-holder, contact-holder, and associates-holder in table
302 should correspond to properties of one or more objects (e.g., person objects)

selected by the requesting human operator.

A template may be in various formats. For example, a template may comprise

documents and/or formats such as, but not limited to, Microsoft Word, Microsoft

10

15

20

25

30

35

PowerPoint, Microsoft Excel, Hyper Text Markup Language (“HTML”), a database
format, Extensible Markup Language (“XML”), JSON, delimited file formats, a file
format that is proprietary to the template system 100, and/or any other format. Figure
3B illustrates, for example, an XML document of a placeholder template in an XML
based document format. For example, the Microsoft Office document formats, such as,
but not limited to, Microsoft Word, PowerPoint, Excel, any other document format,
may comprise XML based document formats. In other words, for example, a Word
document may be an archive file, corresponding to, but not limited to, a ZIP format, of
XML documents. As such, a human operator, with the use of an archival application, or
some other application, may open a document file archive to view and/or edit the one

or more XML documents comprising the document.

The example XML document 310A may correspond to the placeholder template 300 of
Figure 3A, which may be in a document archive format comprising one or more XML
files, including the XML document 301A. The example tags in the XML document 310A

are illustrative and may not correspond to a specific document XML format.

As illustrated by the XML document 310A, a human operator, upon opening the XML
document 310A with a text editing application, XML editing application, and/or some
other application, may identify the placeholder elements. For example, “<text>NAME-
HOLDER</text>" may be identifiable because of the “HOLDER” text. Thus, a human
operator may search through one or more documents 310 that comprise the template
(e.g., there may be multiple XML and/or other document types that are part of a single
Microsoft Word document) for the particular character string used in the template to
identify placeholders. In the example of Figure 3, the human operator can search for
the character string “HOLDER” to easily identify files and/or locations in the files
where placeholders are present and where executable code should be inserted in order
to make those placeholders operable to obtain data associated with one or more objects.
Thus, the use of placeholders may be useful because the various files that make-up a
single output format (e.g., Microsoft Word document) may be very large, complex,
and/or otherwise difficult to navigate in order to identify the appropriate locations to
replace placeholders with executable code. For example, a single XML document may
be thousands of lines with hundreds of different tags. Thus, identifying portions of the
XML document may be achieved by searching for placeholders in the XML document.
Furthermore, a human operator may edit and/or modify the XML document without

fully understanding a complex XML based document format because the placeholders

10

15

20

25

30

35

may focus the human operator on the important sections of the XML for editing and/or
modifying.

While XML is shown in the document 310A, the template system may support other
previously mentioned document formats and/or any other document format. For
example, a HTML template may be used, and the placeholders may be placed in a
HTML document.

Returning to Figure 1, at action two, the template generator 104 generates a template
by replacing the placeholders in the placeholder template 110 (or placeholder template
300 of Figure 3A) with code segments that are executable in order to obtain
replacement data for those placeholders. In some embodiments, some or all of the
embedded code instructions associated with placeholders may be placed and/or
included in the placeholder template 110 that is sent from the user computing device
102 to the template generator 104 through the network 160. For example, the user 102
may write the code segments based on using a programming interface provided by the
template generator 104, which may be implemented on the user computing device 102
partially and/or fully in various embodiments. Thus, the template generator 104 may
be configured to receive executable instructions to be included in a document template,
either by the user 102 and/or by another user that may have more programming skills
that are useful in writing and/or selecting code associated with each placeholder. For
example, the template generator 104 may be a text editing application operated by a
human operator that inserts the embedded code instructions based on the code
placeholders. In some embodiments, the template generator 104 may be an automated
process that receives the template 110 with code placeholders and automatically
replaces the code instruction placeholders with embedded instructions. In some
embodiments, template generation is automatic, manual, or some combination thereof.
The template generator 104 may output and/or store the generated template with

embedded code instructions in the template storage device 106.

Figure 3C illustrates the template with executable code instructions inserted, which
may be distinguished from the placeholder template (e.g., Figure 3B). The XML
document 310A of Figure 3B may have been modified to produce the coded XML
document 310B. The executable code instructions in the coded XML document 310 are
illustrative and, thus, may not correspond to any specific programming language or

include instructions that are syntactically complete and/or correct. The template

10

15

20

25

30

35

10

system may be configured to support one or more interpreted programming languages,
such as, but not limited to, embedded Ruby, JRuby, Groovy, BASIC, Perl, Python,
Jython, and/or LISP. The template system may also be configured to support other

programming languages, such as, but not limited to, Java, Lua, C, C++, and/or C#.

The use of embedded code instructions in the coded XML document 310B may allow
for dynamic document creation based on data objects. For example, the code
instruction, “<% print(object.getName) %>,” may cause the template system 100 of
Figure 1 (and/or the template processor 109 discussed further below) to retrieve the
name property of a selected object (or objects) and print that name property to the
document. As previously mentioned, the human operator and/or a template generator
may know where to insert the particular code instruction within that XML element
because of the “NAME-HOLDER” indicator from the XML document 310A in Figure
3B. Similarly, the human operator and/or template generator may add embedded code
instructions accessing data object properties based on the placeholders in the template

corresponding to the image 306, and/or the table 302 of Figure 3A.

In some embodiments, there may be some variations of how the embedded code
instructions are executed. For example, to execute interpreted programming languages,
such as, but not limited to, Ruby and/or Groovy, the template system 100 of Figure 1
(and/or the template processor 109 discussed further below) may execute the
embedded code instructions at runtime without compiling the embedded code
instructions. In some embodiments, to execute compiled or partially compiled
programming languages, such as, but not limited to, Java and/or C++, the template
system 100 of Figure 1 (and/or the template processor 109 discussed further below)
may comprise a compiler unit that compiles the extracted code instructions to be able

to execute those code instructions.

In some embodiments, the template generator 104 and/or template system 100 of
Figure 1 may comprise tools and/or applications for editing XML based document
formats and/or other document formats. For example, an XML based document
formatting application may allow a human operator to open an XML based document
format and edit the XML files of the XML based document format directly. As
previously illustrated, an XML based document format may comprise a file archive of
XML documents. Thus, without an XML based document formatting application

and/or tool, a human operator may have to open the XML based document file archive

10

15

20

25

30

35

-11 -

before editing the XML files and/or re-archive the XML files after making the XML
changes. An XML based document formatting application and/or tool may allow the
human operator to easily open, edit, and/or save XML documents within an XML
based document format by performing the archiving and/or re-archiving steps

automatically.

The use of embedded code instructions in the document 310B may allow for custom
programming logic for document generation. For example, the code instruction 312, “if
object.getPhoneNumber is not null,” includes an if-statement. Therefore, the following
code instruction 314, “println(‘Phone Number: + object.getPhoneNumber),” may only
be executed if the if-statement 312 evaluates to the boolean True. Thus, programming
logic in the document 310B may allow for conditional logic based on data object
properties. The code instruction block 316 may illustrate further programming logic.
For example, a person object may have multiple records associated with the person,
each record may have a height property, and, therefore, a person may have multiple
height properties. However, it may be desirable to display the most common height of a
person. Therefore, the code instruction “height = frequencyMap(records,
'height").getMostCommon” at 316 may determine the most common height property

that may be printed to the document.

The use of embedded code instructions in the document 310B may allow for efficient
custom document creation. For example, the first and last illustrated code instructions,
respectively, “<% for each object in objects %> and “<% end %>,” which may be
illustrative of a for loop, may cause the template processor 109, when executing the
code, to perform operations within the loop for each of the one or more data objects.
The use of a for loop may be efficient because the two lines of embedded code
instructions will cause the template system to loop over any number of objects and
repeat the static text and/or executable code instructions within the for loop. For
example, the for loop may enclose the respective elements corresponding to the title
304, image 306, and/or the table 302 of Figure 3A. Therefore, upon executing the
embedded code instructions within template, a page and/or section will be generated
per data object (each corresponding to one loop of the for loop). For example, if ten
person objects were selected, determined, accessed, and/or loaded and sent to the
template system, ten pages and/or sections each corresponding to one person object

may be generated.

10

15

20

25

30

35

-12 -

Example Selection and Execution of a Template

Returning to Figure 1, actions 1-2 describe operations that may be performed in
generating a coded template. Once a coded template is generated and stored in the
template storage device 106, that coded template can be selected by the human
operator and/or any other users for use in creating a document based on the template.
Actions 3-5 of Figure 1 illustrate example processes that may be performed by a user in
selecting a template, selecting one or more objects from which information is to be used
in the document generated based on the template, and generating that document based

on the object properties.

In action 3, the user of the user computing device 102 selects one or more objects to be
included in the document/report. For example, if the user is a law enforcement officer
and once a report including information on each of 10 suspects, those 10 suspects may
be selected. Referring to Figure 4A, for example, a user interface 400 of a software
application configured to provide data regarding objects and to allow the user to select
one or more of the data objects. The example user interface 400 comprises a search box
402, an object display area 404, and menu bar 406. A human operator, e.g., the user of
the user computing device 102, by typing and/or entering data into the search box 402
may load, lookup, and/or retrieve one or more data objects. For example, by typing the
name of a person, such as “John Doe,” the person object 410 may be displayed in the
object display area 404. The other person objects 412 (including objects 412A, 412B,
and/or 412C) may be displayed automatically and/or after user interaction by the
human operator with the person object 410. For example, a human operator may select
the person object 410 and select an option to display associates and/or persons related
to the person object 410. The links 414A, 414B, and/or 414C may display relationships
between the person object 410 and related person objects 412A, 412B, and/or 412C,
respectively. For example, the person objects 412 may be related to the person object
410, such as, but not limited to, associates, acquaintances, and/or family members. The
user interface 400 may be capable of displaying any type of data object and/or may not

be limited to displaying person data objects.

In some embodiments, the embedded code instructions may determine one or more
additional data objects based on the one or more selected objects. For example, known
associate objects and/or the arrest record objects for a selected person object may be
determined programmatically from the embedded code instructions, such as by using

techniques discussed in U.S. Patent Application Serial No. 13/968,265, and U.S. Patent

10

15

20

25

30

35

13

Application Serial No. 13/968,123, which are hereby incorporated by reference in their
entireties. For example, the selected person data object may be a starting point to
determine one or more additional related data objects. For example, a stolen vehicle
report object, which has color property of “red,” may be selected by the human
operator, and the embedded code instructions of a template may identify data objects
associated with pictures of red cars observed speeding nearby the location of the stolen

vehicle (e.g., as indicated in object properties of those data objects).

In some embodiments, the embedded code instructions may access data from other
servers and/or websites, either internally and/or externally from the template system.
For example, a Google Street View image may be access and/or loaded by the
embedded code instructions. The Google Street View image may be associated with the
location property of a data object. Other data may be accessed and/or loaded through
the execution of code instructions by the template system 100 of Figure 1 (and/or the
template processor 109 discussed further below), such as, but not limited to, currency

exchange rates, weather data, new reports, and/or any other available information.

In addition to visually searching and/or showing data objects and/or relationships
between data objects, the user interface 400 may allow various other manipulations.
For example, data objects may be inspected (e.g., by viewing properties and/or
associated data of the data objects), filtered (e.g., narrowing the universe of objects into
sets and subsets by properties or relationships), and statistically aggregated (e.g.,
numerically summarized based on summarization criteria), among other operations

and visualizations.

When a user has the appropriate objects selected for use in the generated document,
the user may then select one or more of several available templates to be used in
generating a document including properties of the selected objects. For example,
Figure 4B illustrates the user interface 400 of Figure 4A, with a particular template
selected for use in generating a document based on the selected objects (all of the
objects displayed in this embodiment). In this example, the human operator has
selected the template “MyTemplate” 426 by accessing an “INVESTIGATION” menu
420 selected, selecting the “Data Export” menu item 422, and then choosing the
template 426 from a list 424 of any templates available to the user. In some
embodiments, by selecting a particular template (e.g., “MyTemplate” 426), the process

of generating a custom document based on all of the data objects displayed in the

10

15

20

25

30

35

14

objects in the display area 404 is initiated. In some embodiments, the template user
interface 400 may allow the human operator to individually and/or in a group select
data objects, whether or not those objects remain viewable in the display area 404.
Thus, upon selecting the template menu item 426 a custom document may be

generated from the selected data objects.

In some embodiments, the template system may have an interface that accepts the
transmission and/or upload templates such that the templates may be present in the
menu list 424. For example, after the creation and/or generation of a template with
embedded code instructions, which may correspond to an XML based document format
comprising the XML document 310B in Figure 3C, a human operator may then upload
the template to the template system. The menu list 424 of the user interface may then

be automatically populated with the latest list of available templates.

Returning to Figure 1, once the template and objects to be included in the generated
document are selected, indications of those selections are transmitted to the template
system 100 for use by the selection unit 108 in obtaining properties of the selected
objects for use in the generated document and accessing the selected template. For
example, the data selections 120 may be sent from the user computing device 102 to the
selection unit 108 through the network 160. As noted above, the data selection 120 may
comprise one or more data object selections and/or template selections. The selection
unit 108 may load and/or retrieve the template from the template storage device 106
based on the data selection 120. The selection unit 108 may request, receive, and/or
load information and/or data regarding the data objects identified in the selection 120
from the object storage device 130. The selection unit 108 may send the template

and/or the data objects to the template processor 109.

In action 5, the template processor 109 generates the custom document 150 based on
the template with embedded executable instructions and the data objects 140 (and/or
properties of data objects) accessed at the object storage device 130. The custom
document 150 with properties from the data objects outputted from the template
processor 109 may be sent to the user computing device 120 through the network 160.
Thus, the template processor 109 is configured to identify executable code in the
template, access properties of the selected, determined, and/or loaded objects based on
the executable code, and replace the executable code with the output of the particular

executable code segment. Figure 3D illustrates the example XML document of Figure

10

15

20

25

30

35

15

3C with the embedded code instructions replaced with information regarding selected
data objects. The output XML document 320 may be configured for interpretation by
viewing software, such as a word processor (e.g., Microsoft Word), a browser, and/or

other software, in order to depict a custom document that includes the object data.

In this example, the element “<text>John Doe</text>" illustrates that what was
originally the TITLE-HOLDER of the placeholder template has been replaced with the
name property value of a person object that was accessed based on execution of the
executable code “<%= print(object.getName) %>" in the template. Similarly, an image
name corresponding to the John Doe person object is included in the output document
XML 320 in place of the Image placeholder. The other HOLDER elements of the table
302 have also been replaced with properties of the selected object, in response to
execution of the corresponding code segments that replaced the placeholders by the

template processor 109.

While the output document XML 320 illustrates output from executing embedded
instructions from a single person data object, the ellipsis 322 illustrates that multiple
person data objects may have been accessed and corresponding embedded code
instructions may have been executed. As a result, the ellipsis 322 may comprise
multiple sections and/or pages of the output document that may correspond to
multiple person data objects. For example, if the object selection 120 includes the four
person objects identified in Figure 4A, the output document XML 320 may include
separate sections (e.g., corresponding to separate sections of a document, pages of the

document, or separate documents) for each of the selected objects.

Figure 3E illustrates an example custom document that may be returned to a user, such
as the custom document 150 of Figure 1. In one embodiment, the custom document
330 is generated by the template processor 109, which is discussed further with
reference to block 210 of Figure 2.The example custom document 330 illustrates how
an output custom document may be perceived by a human operator viewing the custom
document 330 in a document processing application (e.g., the user of the user
computing device 102 viewing the document in a word processor). For example, the
title 332, image 334, and/or the table 336 correspond to the XML elements of the
custom document XML 320 of Figure 3D. As illustrated, the custom document 330

comprises multiple pages, which may correspond to multiple person objects being

10

15

20

25

30

35

-16 -

processed by the template system, such as the four example objects selected in the user

interface of Figure 4A.

The template system may efficiently output the custom document 330 because it may
be based on a template. For example, the template system may execute and/or replace
the embedded code instructions of the template document as shown by the modified
XML document 310B. Thus, the template system may reuse all of the static text and/or
everything but the embedded instructions of the template document to generate the
custom document. Furthermore, the template system may be agnostic as to the specific
details of a particular document format, such as, but not limited to, Microsoft Word.
Similar to a template that may comprise a XML based document format, the custom
document 330 may also comprise an XML based document format. Thus, the custom

document 330 may comprise the custom document XML 320 of Figure 3D.

The template system may output the custom document 330 populated with properties
from data objects and/or matching the document format, editing, layout, etc. matching
the template document 300 from Figure 3A the human operator may have originally

created.

In some embodiments, the user computing device 102, the template system 100, and
the object storage device 130 may be on the same computing device or multiple
computing devices. In some embodiments, communication between the user
computing device 102, the template system 100, and object storage device 130 may
occur without the use of the network 160. For example, if the user computing device
102, the template system 100, and object storage device 130 were on the same

computing device, communication may occur without the use of a network.

Data Objects
In some embodiments, data is conceptually structured according to an object data

model represented by an ontology. The conceptual data model may be independent of
any particular and/or specific type of data store. For example, each object of the
conceptual data model may correspond to one or more rows in a relational database

and/or an object in an in-memory cache.

In some embodiments, an ontology, as noted above, may include stored information

providing a data model for storage of data in a data store. The ontology may be defined

10

15

20

25

30

35

17

by one or more object types, which may each be associated with one or more property
types. At the highest level of abstraction, a data object is a container for information
representing things in the physical world. For example, a data object may represent an
entity such as a person, a place, an organization, a market instrument, and/or some
other noun. Data objects may represent an event that happens at a point in time and/or
for a duration. Data objects may represent a document and/or other unstructured data
source such as an e-mail message, a news report, a written paper, and/or a written
article. Each data object may be associated with a unique identifier that uniquely

identifies the data object within the data store.

Different types of data objects may have different property types. For example, a
“Person” data object might have an “Eye Color” property type and an “Event” data
object might have a “Date” property type. Each property as represented by data in the
data store may have a property type defined by the ontology used by the data store.

Objects may be instantiated in the data store in accordance with the corresponding
object definition for the particular object in the ontology. For example, a specific
monetary payment (e.g., an object of type “event”) of US$30.00 (e.g., a property of type
“currency”) taking place on 3/27/2009 (e.g., a property of type “date”) may be stored in
the data store as an event object with associated currency and date properties as

defined within the ontology.

The data objects defined in the ontology may support property multiplicity. For
example, a data object may be allowed to have more than one property of the same
property type. For example, a “Person” data object might have multiple “Address”

properties or multiple “Name” properties.
In some embodiments, the data objects the template system receives may correspond to
an ontology according to the systems, methods, and/or techniques disclosed in the

Ontology reference.

Example Document Generation Process

Figure 2 is a flowchart illustrating a document generation process from a template,
according to some embodiments of the present disclosure. The method of Figure 2 may
be performed by the template system 100 of Figure 1, such as the various components

of Figure 1 that are discussed above, including the template processor 109. Depending

10

15

20

25

30

35

-18 -

on the embodiment, the method of Figure 2 may include fewer or additional blocks

and/or the blocks may be performed in order different than is illustrated.

Beginning at block 202, properties of one or more data objects are accessed. For
example, a person object, including some or all of the properties of that person object,
may be received by the template system 100. The person object may possess one or

more properties, such as, one or more, names, addresses, and other data.

At block 204, a template is received and/or accessed. The template may correspond to
one or more of the previously illustrated formats. For example, the template may be a

Word Document.

At block 206, executable code instructions are parsed from the template. One or more
escape characters may be used to indicate an executable code instruction block in the
template. For example, the “<%” and “%>” characters may respectively indicate the
beginning and end of an executable code instruction block and/or a set of executable
code instructions. Other escape characters and/or tags may be used to indicate
executable code instructions in a template. The executable code instructions may

correspond to one or more programming languages.

At block 208, the executable code instructions from the template are executed. Data
objects and/or properties of the data objects may be accessed by the executable code
instructions. The executable code instructions may also contain programming logic. For
example, executable code instructions may access a person object, check for properties

such as residences, and/or only print the most recent resident address.

At block 210, a custom document is generated. The custom document may include
properties of the received data objects and/or summary data regarding the properties
of the received data objects. The document may correspond to the same format and/or
type as the format and/or type of the template. For example, if the template was a Word
Document, the document may also be a Word Document. The document may be
generated by replacing the executable code instructions in the template with the
corresponding generated output. The actual template document may not be modified.
For example, a copy of the template document may be made, and the executable code

instructions in the copy template may be replaced.

10

15

20

25

30

35

19

Making Changes to a Complete Template

A human operator may desire, want, and/or need to modify the look, design,
formatting, and/or layout of a complete template after the embedded instructions have
been added to the template. For example, the human operator may modify the original
placeholder template, which did not contain any of the embedded code instructions, in
a word processing application, such as, but not limited to, Microsoft Word. The human
operator, or an automated process and/or tool, may then copy the embedded
instructions from the existing template to the new placeholder template. As a result, a
new template with the design, formatting, and/or layout changes in the updated
document format, but still including the proper embedded code instructions, is created.
Thus, a human operator may make the necessary changes in the word processing
application, which may alleviate the need for the human operator to understand and/or
have to make changes to a complex document format, such as, but not limited to, an
XML based document format.

Example User Interfaces

Figures 4A, 4B, and 4C illustrate example user interfaces of the template system, or a
subset thereof, according to some embodiments of the present disclosure. In some
embodiments, the user interfaces described above and below may be displayed in any
suitable computer system and/or application, for example, in a web browser window
and/or a standalone software application, among others. Additionally, the functionality
and/or user interfaces of the system as shown in Figures 4A, 4B, and/or 4C may be
implemented in one or more computer processors and/or computing devices, as is
described with reference to Figure 5. As noted above, in some embodiments the user
interface 400 may be used for the object and data selection 120 illustrated in Figure 1.
In some embodiments, upon selecting a specific template menu item 426, a custom
document including object data associated with the selected objects, is generated. As
noted above, Figure 4A illustrate the user interface 400 displaying several objects 410,
412, and associations 414 between the objects. Depending on the software application
(e.g., Palantir’s Gotham software), objects may be selected in various manners. Also as
discussed above, Figure 4B illustrates example menu options that may be used to select
a particular template to be used in generating an output document including

information regarding the selected objects.

Moving to Figure 4C, the example user interface 400 comprises an evaluation tool 430,

which includes an input box 432, an execute button 434, and/or an output box 436. A

10

15

20

25

30

35

20

human operator may use the evaluation tool 430 to evaluate and/or test executable
code instructions to view their sample print output before embedding those and/or

similar instructions in a template.

An example use case and/or scenario for the evaluation tool 430 may be the following.
As previously illustrated, a human operator may load and/or retrieve data objects 410
and/or 412, and then select none, one, some, or all of the data objects. A human
operator may then type and/or insert code instructions into the input box 432. For
example, some or all of the code instructions from Figure 3C and/or any other code
instructions may be entered into the input box 432. A human operator may then click,
tap, and/or touch the execute button 432, which may cause the template system to
execute the code instructions in the input box 432. In some embodiments, after the
template system executes the code instructions, the output box may be automatically
populated with the output of the executed code instructions. For example, if the code
instructions in the input box 432 were “<%= print(object.getName) %>,” the output
box 436 might display “John Doe,” which may correspond to the name property of a
selected data object. In some embodiments, the template processor 109 of Figure 1 may

execute the code instructions from the input box 432.

In some embodiments, a human operator may use the evaluation tool 430 to generate a
template document efficiently. For example, a human operator may test, experiment,
and/or preview code instructions by seeing what the output of those code instructions
might look like before embedding those instructions in a template. The evaluation tool
430 may allow the human operator to fix issues and/or problems with the code
instructions before uploading a template into the template system. Without the
evaluation tool 430, a human operator would need to generate a template, upload it to
the template system, and then execute the template on data objects to see what the
output of those code instructions would look like. Thus, the evaluation tool 430 may

save the human operator time and/or reduce the time it takes to generate a template.

Snippets
In some embodiments, the template system may be used to insert snippets into a

custom document according to the systems, methods, and/or techniques disclosed in
the Snippet references. For example, the embedded code instructions of a template may
be evaluated in order to import into the document data related to snippet objects, such

as importing the text portion of the returned snippets into the report body, and/or the

10

15

20

25

30

35

-921-

citation portion of the snippet into a footnote. In this way, each snippet may be
automatically added to the report (and future reports based on the same template)

automatically without human intervention.

Implementation Mechanisms
The various computing device(s) discussed herein, such as the template system 100 of

Figure 1, are generally controlled and coordinated by operating system software, such
as, but not limited to, 10S, Android, Chrome OS, Windows XP, Windows Vista,
Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux, SunOS, Solaris,
Macintosh OS X, VxWorks, or other compatible operating systems. In other
embodiments, the computing devices may be controlled by a proprietary operating
system. Conventional operating systems control and schedule computer processes for
execution, perform memory management, provide file system, networking, I/0
services, and provide a user interface functionality, such as a graphical user interface
(“GUT”), among other things. The template system 100 may be hosted and/or executed
on one or more computing devices with one or more hardware processors and with any

of the previously mentioned operating system software.

Figure 5 is a block diagram that illustrates example components of the template system
100. While Figure 5 refers to the template system 100, any of the other computing

devices discussed herein may have some or all of the same or similar components.

The template system 100 may execute software, e.g., standalone software applications,
applications within browsers, network applications, etc., whether by the particular
application, the operating system, or otherwise. Any of the systems discussed herein
may be performed by the template system 100 and/or a similar computing system

having some or all of the components discussed with reference to Figure 5.

The template system 100 includes a bus 502 or other communication mechanism for
communicating information, and a hardware processor, or multiple processors, 504
coupled with bus 502 for processing information. Hardware processor(s) 504 may be,

for example, one or more general purpose microprocessors.

The template system 100 also includes a main memory 506, such as a random access
memory (RAM), cache and/or other dynamic storage devices, coupled to bus 502 for

storing information and instructions to be executed by processor(s) 504. Main memory

10

15

20

25

30

35

-929 -

506 also may be used for storing temporary variables or other intermediate information
during execution of instructions to be executed by processor(s) 504. Such instructions,
when stored in storage media accessible to processor(s) 504, render the template
system 100 into a special-purpose machine that is customized to perform the
operations specified in the instructions. Such instructions, as executed by hardware
processors, may implement the methods and systems described herein for sharing

security information.

The template system 100 further includes a read only memory (ROM) 508 or other
static storage device coupled to bus 502 for storing static information and instructions
for processor(s) 504. A storage device 510, such as a magnetic disk, optical disk, or USB
thumb drive (Flash drive), etc., is provided and coupled to bus 502 for storing
information and instructions. The template storage device 106 and/or the object
storage device 130 of Figure 1 may be stored on the main memory 506 and/or the

storage device 510.

In some embodiments, the template storage device 106 and/or the object storage device
130 of Figure 1 is a file system, relational database such as, but not limited to, MySq],
Oracle, Sybase, or DB2, and/or a distributed in memory caching system such as, but

not limited to, Memcache, Memcached, or Java Caching System.

The template system 100 may be coupled via bus 502 to a display 512, such as a cathode
ray tube (CRT) or LCD display or touch screen, for displaying information to a
computer user. An input device 514 is coupled to bus 502 for communicating
information and command selections to processor 504. One type of input device 514 is
a keyboard including alphanumeric and other keys. Another type of input device 514 is
a touch screen. Another type of user input device is cursor control 516, such as a mouse,
a trackball, a touch screen, or cursor direction keys for communicating direction
information and command selections to processor 504 and for controlling cursor
movement on display 512. This input device may have two degrees of freedom in two
axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify
positions in a plane. In some embodiments, the same direction information and
command selections as cursor control may be implemented via receiving touches on a

touch screen without a cursor.

10

15

20

25

30

35

23

The template system 100 may include a user interface unit to implement a GUI, for
example, Figures 4A, 4B, and/or 4C, which may be stored in a mass storage device as
executable software codes that are executed by the computing device(s). This and other
units may include, by way of example, components, such as software components,
object-oriented software components, class components and task components,
processes, functions, attributes, procedures, subroutines, segments of program code,
drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays,

and variables.

In general, the word “instructions,” as used herein, refers to logic embodied in
hardware or firmware, or to a collection of software units, possibly having entry and
exit points, written in a programming language, such as, but not limited to, Java, Lua,
C, C++, or C#. A software unit may be compiled and linked into an executable program,
installed in a dynamic link library, or may be written in an interpreted programming
language such as, but not limited to, BASIC, Perl, or Python. It will be appreciated that
software units may be callable from other units or from themselves, and/or may be
invoked in response to detected events or interrupts. Software units configured for
execution on computing devices by their hardware processor(s) may be provided on a
computer readable medium, such as a compact disc, digital video disc, flash drive,
magnetic disc, or any other tangible medium, or as a digital download (and may be
originally stored in a compressed or installable format that requires installation,
decompression or decryption prior to execution). Such software code may be stored,
partially or fully, on a memory device of the executing computing device, for execution
by the computing device. Software instructions may be embedded in firmware, such as
an EPROM. It will be further appreciated that hardware modules may be comprised of
connected logic units, such as gates and flip-flops, and/or may be comprised of
programmable units, such as programmable gate arrays or processors. Generally, the
instructions described herein refer to logical modules that may be combined with other

modules or divided into sub-modules despite their physical organization or storage.

The template system 100, or components of it, such as selection unit 108 and/or
template processor 109 of Figure 1, may be programmed, via executable code

instructions, in a programming language.

The term “non-transitory media,” and similar terms, as used herein refers to any media

that store data and/or instructions that cause a machine to operate in a specific fashion.

10

15

20

25

30

35

24

Such non-transitory media may comprise non-volatile media and/or volatile media.
Non-volatile media includes, for example, optical or magnetic disks, such as storage
device 510. Volatile media includes dynamic memory, such as main memory 506.
Common forms of non-transitory media include, for example, a floppy disk, a flexible
disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage
medium, a CD-ROM, any other optical data storage medium, any physical medium with
patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other

memory chip or cartridge, and networked versions of the same.

Non-transitory media is distinct from but may be used in conjunction with
transmission media. Transmission media participates in transferring information
between nontransitory media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that comprise bus 502.
Transmission media can also take the form of acoustic or light waves, such as those

generated during radio-wave and infra-red data communications.

Various forms of media may be involved in carrying one or more sequences of one or
more instructions to processor(s) 504 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid state drive of a remote computer. The
remote computer may load the instructions into its dynamic memory and send the
instructions over a telephone or cable line using a modem. A modem local to the
template system 100 may receive the data on the telephone or cable line and use an
infra-red transmitter to convert the data to an infra-red signal. An infra-red detector
can receive the data carried in the infra-red signal and appropriate circuitry can place
the data on bus 502. Bus 502 carries the data to main memory 506, from which the
processor(s) 504 retrieves and executes the instructions. The instructions received by
main memory 506 may retrieve and execute the instructions. The instructions received
by main memory 506 may optionally be stored on storage device 510 either before or

after execution by processor(s) 504.

The template system 100 also includes a communication interface 518 coupled to bus
502. Communication interface 518 provides a two-way data communication coupling to
a network link 520 that is connected to a local network 522. For example,
communication interface 518 may be an integrated services digital network (ISDN)
card, cable modem, satellite modem, or a modem to provide a data communication

connection to a corresponding type of telephone line. As another example,

10

15

20

25

30

35

25

communication interface 518 may be a local area network (LAN) card to provide a data
communication connection to a compatible LAN (or WAN component to be
communicated with a WAN). Wireless links may also be implemented. In any such
implementation, communication interface 518 sends and receives electrical,
electromagnetic or optical signals that carry digital data streams representing various

types of information.

Network link 520 typically provides data communication through one or more
networks to other data devices. For example, network link 520 may provide a
connection through local network 522 to a host computer 524 or to data equipment
operated by an Internet Service Provider (ISP) 526. ISP 526 in turn provides data
communication services through the world wide packet data communication network
now commonly referred to as the “Internet” 528. Local network 522 and Internet 528
both use electrical, electromagnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on network link 520 and
through communication interface 518, which carry the digital data to and from the

template system 100, are example forms of transmission media.

A network, such as the network 160 of Figure 1, may comprise, but is not limited to, one
or more local area networks, wide area network, wireless local area network, wireless

wide area network, the Internet, or any combination thereof.

The template system 100 can send messages and receive data, including program code,
through the network(s), network link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested code for an application
program through Internet 528, ISP 526, local network 522 and communication

interface 518.

The received code may be executed by processor(s) 504 as it is received, and/or stored

in storage device 510, or other non-volatile storage for later execution.

Embodiments of the present disclosure have been described that relate to man-
machine interfaces for generating documents and, more specifically, for man-machine
interfaces for receiving user selections of data objects and templates to more efficiently
generate documents. In some embodiments, the man-machine interfaces described

herein include fewer steps, consume less processing and/or memory resources, permit

10

15

20

25

30

35

-926 -

users to have less knowledge of programming languages and/or software development
techniques, allow less users or developers to create documents, and/or are more
efficient than traditional programmatic approaches to generating reports and/or their
corresponding man-machine interfaces. The man machine-interfaces described herein
may advantageously reduce the steps and/or cognitive burden of a user because reports
and/or documents may be dynamically created according to certain specifications with
the use of familiar document editors for mocking up templates and/or through
graphical user interfaces of selecting data objects and/or templates. Furthermore, the
techniques described herein may permit more efficient and/or faster document
generation by consuming less processing and/or memory resources than traditional
report generation techniques because there are less computational steps to modify a
report and/or only executable code instructions may have to be evaluated and/or

executed in the template.

Each of the processes, methods, and algorithms described in the preceding sections
may be embodied in, and fully or partially automated by, code instructions executed by
one or more computer systems or computer processors comprising computer hardware.
The processes and algorithms may be implemented partially or wholly in application-

specific circuitry.

The various features and processes described above may be used independently of one
another, or may be combined in various ways. All possible combinations and
subcombinations are intended to fall within the scope of this disclosure. In addition,
certain method or process blocks may be omitted in some implementations. The
methods and processes described herein are also not limited to any particular
sequence, and the blocks or states relating thereto can be performed in other sequences
that are appropriate. For example, described blocks or states may be performed in an
order other than that specifically disclosed, or multiple blocks or states may be
combined in a single block or state. The example blocks or states may be performed in
serial, in parallel, or in some other manner. Blocks or states may be added to or
removed from the disclosed example embodiments. The example systems and
components described herein may be configured differently than described. For
example, elements may be added to, removed from, or rearranged compared to the

disclosed example embodiments.

10

15

20

25

30

27

Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless
specifically stated otherwise, or otherwise understood within the context as used, is
generally intended to convey that certain embodiments include, while other
embodiments do not include, certain features, elements and/or steps. Thus, such
conditional language is not generally intended to imply that features, elements and/or
steps are in any way required for one or more embodiments or that one or more
embodiments necessarily include logic for deciding, with or without user input or
prompting, whether these features, elements and/or steps are included or are to be

performed in any particular embodiment.

Any process descriptions, elements, or blocks in the flow diagrams described herein
and/or depicted in the attached figures should be understood as potentially
representing units, segments, or portions of code which include one or more executable
instructions for implementing specific logical functions or steps in the process.
Alternate implementations are included within the scope of the embodiments described
herein in which elements or functions may be deleted, executed out of order from that
shown or discussed, including substantially concurrently or in reverse order, depending

on the functionality involved, as would be understood by those skilled in the art.

It should be emphasized that many variations and modifications may be made to the
above-described embodiments, the elements of which are to be understood as being
among other acceptable examples. All such modifications and variations are intended
to be included herein within the scope of this disclosure. The foregoing description
details certain embodiments of the invention. It will be appreciated, however, that no
matter how detailed the foregoing appears in text, the invention can be practiced in
many ways. As is also stated above, it should be noted that the use of particular
terminology when describing certain features or aspects of the invention should not be
taken to imply that the terminology is being re-defined herein to be restricted to
including any specific characteristics of the features or aspects of the invention with
which that terminology is associated. The scope of the invention should therefore be

construed in accordance with the appended claims and any equivalents thereof.

10

15

20

25

30

35

-28 -

Claims

1. A computer system for generating custom template-based documents, the
computer system comprising:

a template storage device; and

one or more hardware processors programmed, via executable code
instructions, to implement:

a template generator configured to:

access a placeholder template comprising one or more placeholders
indicating locations for insertion of executable instructions;

receive executable instructions to be included in the placeholder
template; and

store, in the template storage device, a template including one or more
sets of the received executable instructions inserted into corresponding placeholders of
the placeholder template;

a template selection unit configured to receive a selection of the template
and selection of one or more data objects to include in a generated custom document
based on properties of the one or more data objects;

a template processor configured to:

parse the one or more sets of executable instructions included in
the template;

execute each set of executable instructions, wherein at least some
sets of executable instructions include instructions to access properties of the selected
data objects stored in one or more data sources;

generate an output for each set of executable instructions; and

generate the custom document by replacing sets of executable
instructions in the template with the output generated by execution of corresponding
sets of executable instructions, at least some of the output including properties of the
selected data objects and/or summary data regarding the properties of the selected data

objects.

2. The system of claim 1, wherein the template comprises an XML based document

format.

3. The system of claim 1 or claim 2, wherein the custom document comprises a law

enforcement document.

10

15

20

25

30

35

29

4. The system of any preceding claim, wherein the placeholder template
comprises:

a name placeholder;

an image placeholder;

a contact information placeholder; and

an address placeholder.

5. The system of claim 4, wherein the placeholder template further comprises:
an alias placeholder;
an associates placeholder; and

a prior arrests placeholder.

6. The system of any preceding claim, wherein the template processor comprises:

a code interface configured to parse code in multiple programming languages.

7. The system of claim 6, wherein the code interface is configured for Groovy.

8. The system of any preceding claim, wherein the data objects comprise snippet

objects, wherein the snippet objects comprise data properties for citations.

9. The system of any preceding claim, further comprising:
a user interface unit configured to generate one more user interfaces configured
to display one or more selectable data objects, wherein the selection of the one or more

data objects to include in the custom document is received via the one or more user

interfaces.
10. The system of claim 9, wherein the one or more user interfaces are configured
to:

receive executable code instructions from an interactive command line, wherein
at least some of the executable code instructions are configured to cause the system to
access properties of the selected data objects when executed; and

display output of the received executable code instructions in response to input

from the interactive command line.

11. The system of claim 2 or any claim dependent on claim 2, further comprising:

10

15

20

25

30

35

30

an XML document editor, wherein the XML document editor is configured to

receive user input to modify the XML documents of an XML based document.

12. A method for generating custom template-based documents, the method
comprising:

receiving selection of a template, the template including one or more sets of
executable instructions;

receiving selection of one or more data objects to access in response to
executing the one or more sets of executable instructions;

executing, by a computer system having one or more computer processors and
an electronic storage device, each set of executable instructions, wherein at least some
sets of executable instructions include instructions to access properties of at least some
of the selected data objects;

generating an output for each set of executable instructions; and

generating a custom document by replacing sets of executable instructions in
the template with the corresponding generated output, including properties of the
selected data objects and/or summary data regarding the properties of the selected data

objects.

13. The method of claim 12, wherein the template comprises an XML based

document format.

14. The method of claim 13, further comprising:

providing an XML editing user interface to a user of the computer system,
wherein the XML editing user interface is configured to receive user input to modify the
XML documents of an XML based document;

receiving input from the user of static text in a placeholder template, the static
text to be included in the generated custom document;

receiving input of a placeholder character string at a particular location of a
placeholder template;

providing an XML view of the placeholder template, the XML view including
elements usable by a word processor to generate a depiction of the placeholder
template;

providing identifiers to locate the placeholder character string in the XML view;

receiving a first set of executable instructions replacing the placeholder

character string in the XML view;

10

15

20

25

30

31

storing, as the template, the placeholder template with the first set of executable

instructions replacing the placeholder character string.

15. The method of any of claims 12 to 14, wherein the selection of the one or more
data objects to include in the custom document is received via one or more user

interfaces.

16. The method of any of claims 12 to 15, wherein the custom document comprises a

rap sheet including criminal history information regarding an individual.

17. Non-transitory computer storage comprising instructions for causing a
computer system to generate custom template-based documents by:

receiving a template that was modified by replacing placeholders with sets of
executable instructions;

receiving a selection of the template;

receiving selection of one or more data objects to include in a generated custom
document based on properties of the one or more data objects;

parsing the one or more sets of executable instructions from the template by the
computer system;

executing each set of executable instructions, wherein at least some sets of
executable instructions include instructions to access properties of the selected data
objects stored from one or more data sources;

generating an output for each set of executable instructions; and

generating a custom document by replacing sets of executable instructions in
the template with the corresponding generated output, including properties of the
selected data objects and/or summary data regarding the properties of the selected data

objects.

18. The non-transitory computer storage of claim 17, wherein the template

comprises an XML based document format.

19. The non-transitory computer storage of claim 17 or claim 18, wherein the

custom document comprises a law enforcement document.

32

20. The non-transitory computer storage of any of claims 17 to 19, wherein the
selection of the one or more data objects to include in the custom document is received

via one or more user interfaces.

	Front Page
	Drawings
	Description
	Claims

