
(19) United States
US 2005.02463O4A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0246304 A1
Knight et al. (43) Pub. Date: Nov. 3, 2005

(54) END-USERAPPLICATION CUSTOMIZATION
USING RULES

(75) Inventors: Holly Knight, Woodinville, WA (US);
Praveen Seshadri, Bellevue, WA (US);
Robert H. Gerber, Bellevue, WA (US);
Stephen E. Dossick, Redmond, WA
(US); Vincent H. Curley, Bellevue,
WA (US); Shyamalan Pather, Seattle,
WA (US)

Correspondence Address:
AMIN & TUROCY, LLP
24TH FLOOR, NATIONAL CITY CENTER
1900 EAST NINTH STREET
CLEVELAND, OH 44114 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 10/903,762

(22) Filed: Jul. 30, 2004

Related U.S. Application Data

(60) Provisional application No. 60/567,153, filed on Apr.
30, 2004. Provisional application No. 60/567,149,

filed on Apr. 30, 2004. Provisional application No.
60/567,165, filed on Apr. 30, 2004.

Publication Classification

(51) Int. Cl. G06F 17/00; G06F 7/00;
G06N 5/02; G06F 9/44

(52) U.S. Cl. .. 706/47; 717/110

(57) ABSTRACT

Rules architecture that facilitates data management of an
application Such that the application can be personalized by
the end-user for the end-user. Included is a customization
component that facilitates the exposing of an application
generated event to an end-user. A rules component allows
the end-user to create one or more rules to process the event,
which one or more rules facilitate the Submission of appli
cation data associated with the event for external and
internal processing.

4. 100

106

APPLICATION

RULES
COMPONENT

CUSTOMIZATION
COMPONENT

Patent Application Publication Nov. 3, 2005 Sheet 1 of 8 US 2005/0246304 A1

4. 100

106

RULES
COMPONENT

CUSTOMIZATION
COMPONENT

APPLICATION

F.G. 1

- 200
- 206

EXTERNAL
PROCESS SUBMIT STORE

EVENTS PROCESS

202 READ 204
RESULTS

208-1 PROCESS
BOUNDARY

FIG. 2

Patent Application Publication Nov. 3, 2005 Sheet 2 of 8 US 2005/0246304 A1

DecisionPoint

RuleSetDecision

RuleSetAttachment

RuleSetinputScope -O Input Scope

RuleDefinition

Rule

LEGEND
-) 1-to-many relationship
--> 1-to-1 relationship
-O optional

FIG. 3

Patent Application Publication Nov. 3, 2005 Sheet 3 of 8 US 2005/0246304 A1

LOOSELY
BOUND

REGISTER SET OF DECISION
POINTS TO SYSTEM AT 400

APPLICATION INSTALLATION

EXPOSE APPLICATION DECISION
POINTS AT WHICH APPLICATION 402

BEHAVIOR HAS BEEN CUSTOMIZED

INVOKE METHOD ON 404
DECISION POINT OBJECT

SUBMIT DECISION POINT 406
RULES TO RULES ENGINE

RECEIVE RULES 4.08
ENGINE RESULTS

STOP

FIG. 4

Patent Application Publication Nov. 3, 2005 Sheet 4 of 8 US 2005/0246304 A1

TIGHTLY
BOUND

APPLICATION CHOOSES RULESETS
FOR CUSTOMIZED EXECUTION

APPLICATION DIRECTLY EXECUTES THE
RULESETS TO PRODUCE APPLICATION

CUSTOMIZATION DECISION

DECISIONS SENT
TO RULES ENGINE

RECEIVE ENGINE
RESULTS

500

502

506

FIG.S

Patent Application Publication Nov. 3, 2005 Sheet 5 of 8 US 2005/0246304 A1

DECISION
POINT

APPLICATION DEFINES A 600
DECISION POINT

PROVIDE ANAME FOR 602
DECISION CONTEXT

PROVIDE A SIGNATURE THAT
DESCRIBES INPUT DATA TYPES Y'
AND EXPECTED RESULT TYPE

PROVIDE A CONSTRAINT, IF DESIRED, 606
ON KIND OF LOGICALLOWED

STOP

F.G. 6

Patent Application Publication Nov. 3, 2005 Sheet 6 of 8 US 2005/0246304 A1

MT 700

702

LEARNING
COMPONENT

RULES
COMPONENT

APPLICATION COMPONENT

FIG. 7

Patent Application Publication Nov. 3, 2005 Sheet 7 of 8 US 2005/0246304 A1

800

802 ^

PROCESSING
UNIT

HDD r

INPUT
DEVICE

INTERFACE REMOTE
COMPUTER(S)

850 NETWORK
ADAPTOR (WIRED/WIRELESS)

MEMORY/
STORAGE

FG. 8

Patent Application Publication Nov. 3, 2005 Sheet 8 of 8 US 2005/0246304 A1

a 900

CLIENT(S) SERVER(S)
COMMUNICATION
FRAMEWORK

CLIENT DATA STORE(S) SERVER DATA STORE(S)

FIG. 9

US 2005/0246304 A1

END-USERAPPLICATION CUSTOMIZATION
USING RULES

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001) This application clams the benefit of U.S. Provi
sional Patent Application Ser. No. 60/567,153 entitled
“END-USER APPLICATION CUSTOMIZATION USING
RULES", filed on Apr. 30, 2004, U.S. Provisional Patent
Application Serial No. 60/567,149 entitled “DERIVED
SET A RULES-BASED OUERY-LIKE MECHANISM
THAT DEFINES CONTENTS OF A COLLECTION fled
on Apr. 30, 2004, and U.S. Provisional Patent Application
Ser. No. 60/567,165, entitled “RULES FRAMEWORK
FOR DEFINITION AND EXECUTION OF END-USER
RULES LOGIC', filed on Apr. 30, 2004. This application is
also related to co-pending U.S. Patent Application Ser. No.

(Atty. Dkt. No. MSFTP668USA) entitled “RULES
FRAMEWORK FOR DEFINITION AND EXECUTION
OF END-USERRULES LOGIC' filed on Jul 30, 2004. The
entireties of the above-noted applications are incorporated
herein by reference.

TECHNICAL FIELD

0002 This invention is related to software that facilitates
application customization, and more specifically, a rules
abstraction architecture that facilitates application customi
Zation by an end-user.

BACKGROUND OF THE INVENTION

0.003 Computers and computing have always divided the
world of users into two classes: the knowledgeable “high
priests” who know how to use computers in complex ways,
to shape programs and enable behaviors that are valuable
and rich; and the novice users, who are at their mercy, denied
easy or cheap access to knowledge or information or the
education to make computerS Serve their needs well. How
ever, major breakthroughs in computing have occurred when
technology has broken down Some of these barriers to
CCCSS.

0004. In the world of the mainframe, computers were too
expensive for all but the largest businesses to afford. The
advent of mini-computers, and then personal computers
(PCs), broke down the cost barrier and made computers
available to Small businesses and individuals.

0005. In the 1980's, programmers struggled to build
graphical user interface (GUI) applications, and without rich
and consistent GUIs, were unable to build valuable appli
cations for PC users. The Visual Basic revolution and the use
of controls and event-based GUI construction enabled a
whole army of application developers who could easily
build rich applications. This also established a virtuous cycle
with many more end-users who could exploit these appli
cations.

0006. In the 1990's, end-users struggled to overcome a
lack of access to information. The growth of the Internet and
the web transformed this Space, making almost all valuable
information accessible to anyone with a browser. However,
there are still significant barriers to overcome.
0007 Computing is not personal. There is very little
about a PC that is truly “personal'. The data on the local disk

Nov. 3, 2005

is personal. But the behavior of the machine (what it does on
behalf of the user) is close to identical across millions of
users. Despite owning an amazingly powerful general pur
pose computer, the average user treats it as a Static tool,
useful as a communication end-point, useful as a Search
entry-point, useful to execute Some canned mass-market
applications, but otherwise incapable of any "personal com
puting in the true Sense of the word. The personalization
capabilities available in current applications just Scratch the
Surface of what is possible and desirable.
0008 Computing is manual. Consider the daily routine of
most typical computer end-users. The PC gathers informa
tion, reacts to communications, makes decisions and acts
upon them-initiates or responds to communications, orga
nizes information, buys and Sells goods, travel, etc. Com
puters have improved communication between people, and
have improved access to information. However, PCs have
done little to relieve the end-user's responsibility to make
decisions and act upon them at the right time. In the business
World, there are decision Support Systems for major organi
Zational decisions. Still Software does not help the average
PC user in the many everyday, yet important and personal
decisions.

0009 Computing is not contextual. Computer software
typically provides optional Settings that are rather Static and
unrelated to the actual context of the user (e.g., “Why should
I have the same Set of messaging buddies at work and at
home?").
0010 Thus, users are still in the “pre-industrial age” of
Software by being increasingly trapped in the tyranny of
manual information processing-spending hours every day
Sifting, Sorting, Searching, and reacting to e-mail, documents
and other personal data.
0011 End-user Software should be personalized, aware of
the needs and preferences of the end-user, acting Specifically
in a manner guided by those needs and by the user context.
Further, computer Systems and Software should provide
every end-user with a personal executive assistant who
WorkS 24 hours a day gathering and Sifting information of
interest to the end-user, and reacting to that information.
0012. The most valuable class of end-user computing
activity deals with information flows and Search, Such as
ensuring the end-user Sees relevant information (e.g., “Tell
me if there is a School closing due to bad weather.”),
enhancing perSon-to-person communication with personal
ized behavior (e.g., “If I'm out of the office when my wife
calls, let her know when I'll be back.'), ensuring important
information is not lost (e.g., “If there's an urgent e-mail,
make Sure it gets forwarded to me on my mobile device.”),
and automating the management of information (e.g., “AS
new photographs arrive, place them in the right folders and
shares based on their timestamp, GPS location, and any
relevant calendar entries.').
0013 The way to accomplish this is by allowing the
end-user to “program” the behavior of the computer. How
ever, traditional programming languages are clearly not the
answer, in that, the end-user is not (and cannot become) a
trained developer.

0014 What is needed is an improved mechanism that
allows an end-user to personalize an operating System and
an application.

US 2005/0246304 A1

SUMMARY OF THE INVENTION

0.015 The following presents a simplified summary of the
invention in order to provide a basic understanding of Some
aspects of the invention. This Summary is not an extensive
overview of the invention. It is not intended to identify
key/critical elements of the invention or to delineate the
Scope of the invention. Its Sole purpose is to present Some
concepts of the invention in a simplified form as a prelude
to the more detailed description that is presented later.
0016. The present invention disclosed and claimed
herein, in one aspect thereof, comprises architecture that
facilitates data management of an application. Applications
can now be personalized by the end-user for the end-user.
Included is a customization component that facilitates the
exposing of an application generated event to an end-user;
and a rules component that allows the end-user to create one
or more rules to associate with the event, which one or more
rules facilitate the Submission of application data associated
with the event for external processing. Since each rule
enabled feature of the application is defined by the decision
point, an event/trigger/change at the decision point can be
managed by the end-user for various purposes. Application
data exposed by the decision point can be processed exter
nally to return a result to the application that modifies
behavior of the application.
0017 Various functions of the application are rule-en
abled. The end-user can then create rules for those functions
to further manipulate data associated with the functions.
Two kinds of application customization are called loosely
bound and tightly bound customization. In a loosely-bound
customization, the application exposes an interceptor point,
or “decision point' at which the end-user can attach cus
tomization rules. A rules is associated with the decision point
by Setting up an attachment type. Multiple different rules can
be attached to a Single application customization decision
point using corresponding attachment types. The application
does not "know’ about the attached rules, but calls a method
on the decision point item, and then processes the results.
The method call causes a rules engine to be invoked on the
right rules.
0.018. In a tightly-bound customization, decision points
are not used. The application invokes the rules directly,
which allows greater control to the application on which the
rules will be invoked, and what types of rules are allowed
when the rule engine processes rules to return application
customization results. Thus, the tightly-bound application
identifies the correct rules for the rules-based decision and
user by issuing a file System query for the rules that
correspond to that application, user, decision and input, to be
provided with the rules. In contrast with the loosely-bound
application, the choice of rules based on the user, decision,
and input is determined by the rules platform whenever the
desision point input method is invoked by the calling
application.

0019. In another aspect of the present invention, a learn
ing component is provided that facilitates the application
learning end-user behavior, and captures the behavior in the
form of rules.

0020. To the accomplishment of the foregoing and related
ends, certain illustrative aspects of the invention are
described herein in connection with the following descrip

Nov. 3, 2005

tion and the annexed drawings. These aspects are indicative,
however, of but a few of the various ways in which the
principles of the invention can be employed and the present
invention is intended to include all Such aspects and their
equivalents. Other advantages and novel features of the
invention will become apparent from the following detailed
description of the invention when considered in conjunction
with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0021 FIG. 1 illustrates a system that facilitates applica
tion customization in accordance with the present invention.
0022 FIG. 2 illustrates a block diagram of a model for
interaction of a customized application with a rules engine
in accordance with the present invention.
0023 FIG. 3 illustrates a diagram of item types and their
relationships of the rules architecture.
0024 FIG. 4 illustrates a flow chart of application cus
tomization of a loosely bound model from a runtime per
Spective in accordance with the present invention.
0025 FIG. 5 illustrates a flow chart of a methodology for
a tightly bound model from a runtime perspective in accor
dance with the present invention.
0026 FIG. 6 illustrates a flow chart of one methodology
asSociated with instantiation of a decision point in accor
dance with the present invention.
0027 FIG. 7 illustrates a system that employs a learning
component in accordance with the present invention.
0028 FIG. 8 illustrates a block diagram of a computer
operable to execute the disclosed architecture.
0029 FIG. 9 illustrates a schematic block diagram of an
exemplary computing environment in accordance with the
present invention.

DETAILED DESCRIPTION OF THE
INVENTION

0030 The present invention is now described with ref
erence to the drawings, wherein like reference numerals are
used to refer to like elements throughout. In the following
description, for purposes of explanation, numerous specific
details are Set forth in order to provide a thorough under
Standing of the present invention. It may be evident, how
ever, that the present invention can be practiced without
these Specific details. In other instances, well-known Struc
tures and devices are shown in block diagram form in order
to facilitate describing the present invention.
0031 AS used in this application, the terms “component”
and “system” are intended to refer to a computer-related
entity, either hardware, a combination of hardware and
Software, Software, or Software in execution. For example, a
component can be, but is not limited to being, a process
running on a processor, a processor, an object, an executable,
a thread of execution, a program, and/or a computer. By way
of illustration, both an application running on a Server and
the Server can be a component. One or more components can
reside within a proceSS and/or thread of execution, and a
component can be localized on one computer and/or dis
tributed between two or more computers.

US 2005/0246304 A1

0032. As used herein, the term to “infer” or “inference”
refer generally to the process of reasoning about or inferring
States of the System, environment, and/or user from a set of
observations as captured via events and/or data. Inference
can be employed to identify a Specific context or action, or
can generate a probability distribution over States, for
example. The inference can be probabilistic-that is, the
computation of a probability distribution over states of
interest based on a consideration of data and events. Infer
ence can also refer to techniques employed for composing
higher-level events from a set of events and/or data. Such
inference results in the construction of new events or actions
from a set of observed events and/or Stored event data,
whether or not the events are correlated in close temporal
proximity, and whether the events and data come from one
or Several event and data Sources.

0033 Rules Architecture
0034. The rules architecture of the present invention is a
platform against which developerS can build applications
that run rich end-user logic in the form of rules. Application
customization provides the choice of a loosely-bound
model, a tightly-bound model, or both, which can be
employed in an application to Support data driven end-user
choices. An application can expose one or more triggering
events. If the application is using the tightly bound model
there may be no exposed triggering event- just a place in
the flow of logic in the application where the application
Supplies input to one or more rules, gets the results, and
processes those results. The rules Selected are queried for by
the application. In the loosely-bound model, the application
itself Supplies the rule triggering events (in the form of items
called decision points) as input to a rules engine. By
providing a decision point, the application gives the end
user the capability to control the application decision with
rules. The rules engine then evaluates rule conditions and
returns application Specific results for those rules whose
conditions evaluated to true. The results are then interpreted
by the rules customized application.

0035) Referring now to FIG. 1, there is illustrated a
system 100 that facilitates application customization for data
management in accordance with the present invention. The
system 100 includes a customization component 102 that
facilitates the exposing of an application generated event in
an application 104 to an end-user. A rules component 106
allows the end-user to create one or more rules to associate
with the event, which one or more rules facilitate the
submission of application data 108 associated with the event
for external processing. Various functions of the application
are rule-enabled. The end-user can then create rules for those
functions to further manipulate data associated with those
functions. Each rule-enabled feature of the application is
defined by a decision point, included as part of the customi
Zation component 102. Thus, an event/trigger/change at the
decision point can be managed by the end-user for various
purposes. Application data exposed by the decision point
can be processed externally to return a result to the appli
cation that modifies behavior of the application.

0036) Referring now to FIG. 2, there is illustrated a block
diagram of a model 200 for interaction of a customized
application 202 with a rules engine 204 in accordance with
the present invention. The rules architecture is a platform
against which developerS can build applications that run rich

Nov. 3, 2005

end-user logic in the form of rules. For application customi
Zation, the application itself Supplies rule triggering events
206 as input to the engine 204, the rules engine 204
evaluates rule conditions, and returns application specific
results 208 for those rules whose conditions evaluated to
true. The results are then interpreted by the rules customized
application. A process boundary Separates external process
(e.g., the application 202) from a store process in which the
rules engines 204 runs. The application 202 submits events
acroSS the process boundary to the rules engines 204, which
then returns results back acroSS the boundary that are run by
the external processes.
0037. The existence of the process boundary between the
application 202 and the rules engine 204 is merely an
implementation choice, as indicated by the dashed line.
Another implementation choice can be to embed the rules
engine 204 into the application 202 so that invoking it does
not cause a process Switch.
0038. The rules engine 204 Supports application customi
Zation. Application customization is the model that is used
to Support data driven end-user choices of what had tradi
tionally been relatively fixed option Settings in applications.
For example, today, most e-mail authoring applications
allow the user to specify a Single Signature file for all
outgoing e-mail. An example of application customization is
to employ rules that allow the user to Set the Signature file
for outgoing e-mail based on the recipient of the e-mail.
0039 The rules platform facilitates the use of one or both
of the following models for application customization: a first
model that called loosely bound, and a Second model that is
called tightly bound.
0040. Referring now to FIG. 3, there is illustrated a
diagram of item types and their relationships of the rules
architecture of the present invention. An end-user logic
“program' is a rule-a set of Statements. The rule is the
complete unit of logic. Each rule is a unit of authoring. Note
that the input to the rule is a data item. The rule is a
declarative Statement about an item of a particular item type.
As an extension to the basic model, non-item data (transient
data or XML) can be provided as a rule input. The items to
which the rules apply depends on the deployment of the
rules. The rule is the unit of deployable end-user logic. The
rules is deployed by attaching it to an item Scope (a source
of item inputs or decision points). This association is cap
tured in the file system as the RuleSetAttachment (RSA). An
RSA represents a connection between the Decision Point and
Rule items. These connections can be modeled either as
physical, Stored "Links', or as computed “common value
asSociations”. In either case, the function is the Same-the
connection from a Rule to the Decision Point for which is
was created. Rules are all file System items.
0041. The input scope is any item of any type. Input
Scopes are used by the operating System to limit the Scope of
rule evaluation to a specific item or folder, but are typically
not used by individual applications. The labels on the lines
in the above graphic show the names of the relationships
between items. The rule Set attachment item relates a deci
Sion point to a rule (and to an input Scope, if one exists). The
rule Set item contains relationships to Zero or more rule
Statements. Decision point items enable an application to use
the rules platform. Rules describes rule items, including
constraints, conditions, and results. Rules contain rule State

US 2005/0246304 A1

ments. Rule Statements are Statements of the form: on input,
if condition, then results. For application customization, the
results are defined by the application and consumed by the
application. Rule Set attachments items Store information
about the connection between a decision point and a rule Set.
The user attaches rules in a rule Set, and the application
provides input to the decision point to return results.
0.042 Referring now FIG. 4, there is illustrated a flow
chart of application customization of a loosely bound model
from an runtime perspective in accordance with the present
invention. While, for purposes of Simplicity of explanation,
the one or more methodologies shown herein, e.g., in the
form of a flow chart, are shown and described as a Series of
acts, it is to be understood and appreciated that the present
invention is not limited by the order of acts, as Some acts
may, in accordance with the present invention, occur in a
different order and/or concurrently with other acts from that
shown and described herein. For example, those skilled in
the art will understand and appreciate that a methodology
could alternatively be represented as a Series of interrelated
States or events, Such as in a State diagram. Moreover, not all
illustrated acts may be required to implement a methodology
in accordance with the present invention.
0043. At 400, the application registers a set of decision
points to the operating System during application installa
tion. Decision points are created by an application as a
mechanism to Submit input to the rules engine. By exposing
a decision point, the application gives the end-user the
ability to control an application decision with rules. Input
data flows to the rules engine (either directly or via a
decision point) to produce application customization results.
A decision point is only needed for loosely-bound applica
tion customization. At 402, application decision points are
exposed at which application behavior has been customized.
At 404, a method is invoked at each decision point object to
process the end-user customization at that decision point.
When the application code reaches a point at which a
decision needs to be made, it invokes a method on a decision
point object (item). This causes the rules engine to evaluate
appropriate end-user rules and return the expected results. At
406, the method submits the decision point rules to the rules
engine. At 408, the rules engine processes the rules and
Sends one or more results back to the application. The
application then processes the results in an application
Specific manner. The process then reaches a Stop block.
0044 AS indicated, for loosely bound application cus
tomization, the application does not know about the rules. It
Simply calls a method on the decision point item, and then
processes the returned results. The method call causes the
rules engine to be invoked on the right rules.
0045 Referring now to FIG. 5, there is illustrated a flow
chart of a methodology for a tightly bound model from a
runtime perspective in accordance with the present inven
tion. At 500, the application chooses rules for customized
execution. At 502, the application directly executes the rules
to produce an application customization decision. At 504,
the decision(s) are sent to the rules engine. At 506, the rules
engines processes the decisions, and returns the results back
to the application, where the application processes the
results in an application-specific manner. The process then
reaches a Stop block.
0.046 AS indicated, tightly bound applications are appli
cations that invoke rules directly, which allows greater

Nov. 3, 2005

control to the application on which rules will be invoked,
and what types of rules are allowed when the rule engine
processes rules to return application customization results.
This control places a greater burden on the tightly bound
application. Specifically, a tightly bound application identi
fies the correct rules for the rules-based decision and user by
issuing a query for the rules that correspond to the applica
tion and user, decision, and input to be provided to the rules.
Instead of using a decision point, the application directly
invokes an execute method on the rules, passing it the input
item and the rule constraint. The rule constraint is used to
identify the Subset of rules that should be applied to the
particular input.

0047 A rule constraint can more accurately be thought of
as a rule Signature. The Signature is used to filter which rules
run given a particular invocation with a particular input.
Rule constraints are Specified in two places: on each rule,
and on each Submission point. There are no rule constraints
on RSAS.

0048. On rules, the rule constraint is used for enforce
ment to ensure that the rule conforms to what it says it
conforms. The output of each action matches what the rule
constraint Says the output is. This is the same for the input.
The constraint on a rule dictates where it can be attached.
Validation will fail if inappropriate attachment of the rule is
attempted. Rules are attached to decision points. Only rules
consistent with the decision point constraints will be allowed
to be attached.

0049. To contrast this, for loosely bound applications, the
choice of rules based on user, decision, and input is per
formed by the platform whenever the decision point input
method is invoked by the calling application.

0050. One or more rules are associated with a decision
point by setting up the RSA. A particular RSA can be more
restrictive than the rule constraint provided by the decision
point. That is, it may specify that the rules should be applied
only for a Subset of the potential invocations of the decision
point by the application. Specifically, it can constrain the
rules along any of the following dimensions:

0051) User: every RSA is associated with a particular
user, and is only invoked for those decisions that are
requested on behalf of that user.

0052 Type: the RSA can specify that the attached rules
should only apply to inputs of a particular type.

0053 Input Scope: the RSA can, in general, specify
application-specific information that causes the rules to be
invoked only for a Subset of potential invocations. In the
case of the built-in application that allows control of changes
in the item store to be controlled by the user with rules, the
following kinds of input Scope are expected: an item defin
ing containment Scope for query or change eventing, and, if
the application Supports composite operations in a Single
decision point (e.g., New Item or Item Modified), then the
RSA can Specify a further constraint which can specify a
Subset of the operations.

0054 Input Content: the RSA can, in general, specify
content-based filters (e.g., only apply this rule to input items
owned by user). In one implementation, these filters could
be deduced from the attached rule.

US 2005/0246304 A1

0055. Note that based on this reasoning, there can be
multiple RSAS attached to an application customization
decision point, and the platform has to Support it.
0056 Referring now to FIG. 6, there is illustrated a flow
chart of one methodology associated with instantiating a
decision point in accordance with the present invention. At
600, the methodology is to define each decision point. At
602, the application provides a name. This identifies the
decision context (or nature) in which the end-user rules
should be applied. At 604, the application provides a Sig
nature (or application name) that identifies the owner of the
decision point in terms of input data types and the expected
result type. In one implementation, transient data is also
supported (via, for example, XML-eXtended Markup Lan
guage) to Support cases where the data does not naturally
live in the Storage System, and where the overhead of
persisting the data is unreasonable. At 606, the application
provides any constraint on the kind of rules logic allowed for
this decision. For example, Some conditions are allowed and
Some are not. In one implementation, the granularity of rule
constraints can be limited to entire item types (i.e., a rule
constraint can be expressed in terms of item types). The
process then reaches a Stop block.
0057 When a decision point is invoked with a particular
input of a particular type, only those RSAS whose con
Straints (user, type, Scope, content filter) match this input are
invoked. The results from all RSAa are aggregated into a
single ResultSetelement (RSE). This return value contains
the aggregate results (after conflict resolution) of all attached
rules.

0.058. The application should expect that all results cor
respond to the rule constraint defined in the decision point
and it is possible for the application to distinguish between
the results produced by each matching RSA.
0059. In accordance with one optimization, a rule is
allowed to have different kinds of rules, that is rules with
different constraints. The effect of this is that the rules engine
dynamically evaluates these rules constraints to decide
which of the rules should be applied. It also means that the
“direct” execution interface requires a rule constraint. If it
was required to only have rules of the same constraint within
it, then constraint checking can be performed at the time of
rule attachment and membership. However, this reduces the
flexibility of using a rule as an organizational device.
0060. The lack of a RuleConstraint in a tightly-bound
application does not mean that there is no end-user customi
Zation. The rules can be just as rich in tightly-bound, as in
loosely-bound Scenarios. What is missing from the tightly
bound scenario is the capability for a Universal Rules user
interface (UI) to present the customization options. There is
nothing for it to reflect on in order to determine those
options. It is up to the tightly-bound application to present
its custom UI for rules building. In this way it can control the
available conditions and actions.

0061 Rules Input/output (I/O) Model
0062) The rules engine receives input, evaluates rules
based on this input, and returns the results of any matched
rules as output to the calling application. To Support appli
cation customization and non-item data, the I/O model is
extended to return Application Views rather than RSE.
Application ViewS describes Structured data returned from

Nov. 3, 2005

rules evaluation. The action model is extended to execute
actions contained in an Application View. An RSE can be
optionally persisted if the application requests it, but it will
not be the expected pattern for customizing applications.

0063. Input to the rules engine consists of an operation
name and, optionally, can point to an item to which it is
related. Inputs can be thought of as “verbs”, like “item
created', which can have a pointer to the item which has
been “created”. For instance, given the Situation in which a
new MP3 file is created in a folder, the item creation is the
input operation, and the MP3 would be an item referenced
by this input Submission.

0064. In addition to support for referring to an item as
part of Submitting input to the rules engine, it is possible for
inputs to refer to XML data.

0065 Decision Point Items contain methods, for example,
Decision Point.Submit() and Decision Point.SubmitAnd
Wait() are used by developers to submit input into the rules
engine. Each Decision Point defines the operation name and
(optional) item type it accepts as Input.
0066. Submitting input that refers to existing types is thus
straightforward. When an application would like to Submit a
Set of data that is not Schematized, there are two possibili
ties: the developer defines a new item type using a custom
Schema, where this item type holds the proper information,
and instances of this type are Submitted to the rule engine;
and the developer uses XML support to submit the data. As
an example of the first option, consider that the developer of
an application wants to enable users to create rules around
the processing of one of the applications events (non
Schematized data). To clarify, a developer wants to craft a
type, and provide the type as input to a decision point via a
Submit. The developer then expects as a response one of the
methods on the type to be the action the end-user wants to
take. For example, if the object is a Soda can, and the
methods were Drink, CrushAnd Discard, and SetOnTable,
then the conditions would be if"empty” and “recycle bin
handy', then CrushAndDiscard. If “not empty”, and “not
thirsty”, then SetOnTable.
0067 Decision Points may optionally require “input
Scopes”. Certain decision points may involve rules con
Strained to a particular portion of the file System. These
Decision Points require that any rules attached to them
include a relationship to an Input Scope. For instance, the
hypothetical “Item Created” decision point above could
require an input Scope-and would thus be denoting that it
requires any rules attached to it to provide a Scope within the
file System where these item creation inputs would come
from.

0068 The logical building block in the rules-based archi
tecture is the collection. A collection is made up of a
"Scoping item and a relationship type. Any items that are
the targets of relationships of the Specified type emanating
from the “Scoping item are considered to be part of the
collection rooted at the Scoping item.

0069 RuleSetAttachment items contain methods used for
evaluating entire collections simultaneously (e.g.,
RuleSetAttachment.Evaluate() and RuleSetAttachment
EvaluateInto Collection()). These methods the items in the
attached input Scope as input for the engine to consider. The

US 2005/0246304 A1

items are evaluated as if they were submitted individually.
The rules engine does not treat collections Specially for
purposes of evaluation.

0070). Each call to one of the Decision Point submit()
methods or the RuleSetAttachment evaluate() methods will
cause one or more attached rules to be evaluated by the rule
engine. Results from these evaluations are written into a
Single Rule.SetEvaluation item per call.
0071. The RuleSetBvaluation item has a nested element
set of RuleResultElements. Each RuleResultElement carries
the result name and the Structured data necessary to describe
the result. These results are application-specific; that is, they
are expected to be understandable by the application
through/for which the Rule was created and Submitted the
event. In many cases, the result name carried within the
RuleResultElement may actually be a fully-qualified class
level (static) CLR (common language runtime) method
name, and the Structured data may correspond to parameters
for that method. The RuleResultElement type includes an
execute() method capable of taking this data, and, using
CLR reflections, call the named method with the proper
parameters. In one implementation, these are limited to
Setter/getter methods on the properties of the input item as
well as static methods found in libraries available within the
execution context of the rules customization application.
0.072 In another implementation, a new RuleSetBvalua
tion item is generated for each attachment to the decision
point to which the input was Submitted.
0.073 A FunctionInfo type is shared between the nested
types RuleResultElement and Action, the latter being part of
the Rule definition.

0.074 For those applications wishing to receive results in
an XML format, an alternate form of RuleResultElement is
provided that can contain the XML data of choice.
0075) Referring now to FIG. 7, there is illustrated a
system 700 that employs a learning component 702 in
accordance with the present invention. The system 700
includeds the customization component 102 that facilitates
the exposing of an application generated event in the appli
cation 104 to an end-user. The rules component 106 allows
the end-user to create one or more rules to associate with the
event, which one or more rules facilitate the Submission of
the application data 108 associated with the event for
external processing. Various functions of the application are
rule-enabled. The end-user can then create rules for those
functions to further manipulate data associated with those
functions. Each rule-enabled feature of the application is
defined by a decision point, which can be processed exter
nally to return a result to the application that modifies
behavior of the application.
0.076 The subject invention can employ various artificial
intelligence based Schemes for carrying out various aspects
of the Subject invention. For example, a process for deter
mining where to place a decision point can be facilitated via
an automatic classifier System and process. A classifier is a
function that maps an input attribute vector, X=(x1, x2, x3,
X4, Xin), to a confidence that the input belongs to a class, that
is, f(x)=confidence(class). Such classification can employ a
probabilistic and/or statistical-based analysis (e.g., factoring
into the analysis utilities and costs) to prognose or infer an
action that a user desires to be automatically performed.
0077. A support vector machine (SVM) is an example of
a classifier that can be employed. The SVM operates by

Nov. 3, 2005

finding a hyperSurface in the Space of possible inputs, which
hyperSurface attempts to Split the triggering criteria from the
non-triggering events. Intuitively, this makes the classifica
tion correct for testing data that is near, but not identical to
training data. Other directed and undirected model classifi
cation approaches include, e.g., naive Bayes, Bayesian net
Works, decision trees, and probabilistic classification models
providing different patterns of independence can be
employed. Classification as used herein also is inclusive of
Statistical regression that is utilized to develop models of
priority.
0078. As will be readily appreciated from the subject
Specification, the Subject invention can employ classifiers
that are explicitly trained (e.g., via a generic training data)
as well as implicitly trained (e.g., via observing user behav
ior, receiving extrinsic information). For example, SVM's
are configured via a learning or training phase within a
classifier constructor and feature Selection module. Thus, the
classifier(s) can be used to automatically perform a number
of functions, including but not limited to determining the
location of decision points based in the particular end-user
or the application to customized, determining where to place
the decision points based on end-user history of decision
point placement, and what decision points can be employed
based on the type of application. The classifier can be
employed to determine what rule to attach to a decision point
for a loosely bound model. Similar classifier operations
employed for decision points in the loosely bound model can
be applied to rules for the tightly bound model.
0079. In a more robust implementation, the classifier
performs the complete end-to-end application customization
process for the end-user based on end-user preferences and
past customizations. Further, the classifier can be used to
determine when to use a loosely bound or tightly bound
model of application customization and according to a given
end-user.

0080 Referring now to FIG.8, there is illustrated a block
diagram of a computer operable to execute the disclosed
architecture. In order to provide additional context for
various aspects of the present invention, FIG. 8 and the
following discussion are intended to provide a brief, general
description of a suitable computing environment 800 in
which the various aspects of the present invention can be
implemented. While the invention has been described above
in the general context of computer-executable instructions
that may run on one or more computers, those skilled in the
art will recognize that the invention also can be implemented
in combination with other program modules and/or as a
combination of hardware and Software.

0081 Generally, program modules include routines, pro
grams, components, data Structures, etc., that perform par
ticular tasks or implement particular abstract data types.
Moreover, those skilled in the art will appreciate that the
inventive methods can be practiced with other computer
System configurations, including Single-processor or multi
processor computer Systems, minicomputers, mainframe
computers, as well as personal computers, hand-held com
puting devices, microprocessor-based or programmable con
Sumer electronics, and the like, each of which can be
operatively coupled to one or more associated devices.
0082 The illustrated aspects of the invention may also be
practiced in distributed computing environments where cer
tain tasks are performed by remote processing devices that
are linked through a communications network. In a distrib
uted computing environment, program modules can be
located in both local and remote memory Storage devices.

US 2005/0246304 A1

0.083. A computer typically includes a variety of com
puter-readable media. Computer-readable media can be any
available media that can be accessed by the computer and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita
tion, computer readable media can comprise computer Stor
age media and communication media. Computer Storage
media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or tech
nology for Storage of information Such as computer readable
instructions, data Structures, program modules or other data.
Computer Storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital video disk (DVD) or other
optical disk Storage, magnetic cassettes, magnetic tape,
magnetic disk Storage or other magnetic Storage devices, or
any other medium which can be used to Store the desired
information and which can be accessed by the computer.

0084 Communication media typically embodies com
puter-readable instructions, data Structures, program mod
ules or other data in a modulated data Signal Such as a carrier
wave or other transport mechanism, and includes any infor
mation delivery media. The term “modulated data signal”
means a signal that has one or more of its characteristics Set
or changed in Such a manner as to encode information in the
Signal. By way of example, and not limitation, communi
cation media includes wired media Such as a wired network
or direct-wired connection, and wireleSS media Such as
acoustic, RF, infrared and other wireleSS media. Combina
tions of the any of the above should also be included within
the Scope of computer-readable media.

0085. With reference again to FIG. 8, there is illustrated
an exemplary environment 800 for implementing various
aspects of the invention that includes a computer 802, the
computer 802 including a processing unit 804, a system
memory 806 and a system bus 808. The system bus 808
couples System components including, but not limited to, the
system memory 806 to the processing unit 804. The pro
cessing unit 804 can be any of various commercially avail
able processors. Dual microprocessors and other multi
processor architectures may also be employed as the
processing unit 804.

0086) The system bus 808 can be any of several types of
bus Structure that may further interconnect to a memory bus
(with or without a memory controller), a peripheral bus, and
a local bus using any of a variety of commercially available
bus architectures. The system memory 806 includes read
only memory (ROM) 810 and random access memory
(RAM) 812. Abasic input/output system (BIOS) is stored in
a non-volatile memory 810 such as ROM, EPROM,
EEPROM, which BIOS contains the basic routines that help
to transfer information between elements within the com
puter 802, such as during start-up. The RAM 812 can also
include a high-speed RAM such as static RAM for caching
data.

0087. The computer 802 further includes an internal hard
disk drive (HDD) 814 (e.g., EIDE, SATA), which internal
hard disk drive 814 may also be configured for external use
in a Suitable chassis (not shown), a magnetic floppy disk
drive (FDD) 816, (e.g., to read from or write to a removable
diskette 818) and an optical disk drive 820, (e.g., reading a
CD-ROM disk 822 or, to read from or write to other high
capacity optical media such as the DVD). The hard disk
drive 814, magnetic disk drive 816 and optical disk drive
820 can be connected to the system bus 808 by a hard disk

Nov. 3, 2005

drive interface 824, a magnetic disk drive interface 826 and
an optical drive interface 828, respectively. The interface
824 for external drive implementations includes at least one
or both of Universal Serial Bus (USB) and IEEE 1394
interface technologies.
0088. The drives and their associated computer-readable
media provide nonvolatile Storage of data, data structures,
computer-executable instructions, and So forth. For the
computer 802, the drives and media accommodate the
Storage of any data in a Suitable digital format. Although the
description of computer-readable media above refers to a
HDD, a removable magnetic diskette, and a removable
optical media such as a CD or DVD, it should be appreciated
by those skilled in the art that other types of media which are
readable by a computer, Such as Zip drives, magnetic cas
Settes, flash memory cards, cartridges, and the like, may also
be used in the exemplary operating environment, and fur
ther, that any Such media may contain computer-executable
instructions for performing the methods of the present
invention.

0089. A number of program modules can be stored in the
drives and RAM 812, including an operating system 830,
one or more application programs 832, other program mod
ules 834 and program data 836. All or portions of the
operating System, applications, modules, and/or data can
also be cached in the RAM 812.

0090. It is appreciated that the present invention can be
implemented with various commercially available operating
Systems or combinations of operating Systems.
0091. A user can enter commands and information into
the computer 802 through one or more wired/wireless input
devices, e.g., a keyboard 838 and a pointing device, Such as
a mouse 840. Other input devices (not shown) may include
a microphone, an IR remote control, a joystick, a game pad,
a stylus pen, touch Screen, or the like. These and other input
devices are often connected to the processing unit 804
through an input device interface 842 that is coupled to the
system bus 808, but can be connected by other interfaces,
Such as a parallel port, an IEEE 1394 Serial port, a game port,
a USB port, an IR interface, etc.
0092. A monitor 844 or other type of display device is
also connected to the system bus 808 via an interface, such
as a video adapter 846. In addition to the monitor 844, a
computer typically includes other peripheral output devices
(not shown), Such as speakers, printers etc.
0093. The computer 802 may operate in a networked
environment using logical connections via wired and/or
wireleSS communications to one or more remote computers,
such as a remote computer(s) 848. The remote computer(s)
848 can be a WorkStation, a Server computer, a router, a
personal computer, portable computer, microprocessor
based entertainment appliance, a peer device or other com
mon network node, and typically includes many or all of the
elements described relative to the computer 802, although,
for purposes of brevity, only a memory storage device 850
is illustrated. The logical connections depicted include
wired/wireless connectivity to a local area network (LAN)
852 and/or larger networks, e.g., a wide area network
(WAN)854. Such LAN and WAN networking environments
are commonplace in offices, and companies, and facilitate
enterprise-wide computer networks, Such as intranets, all of
which may connect to a global communication network,
e.g., the Internet.
0094. When used in a LAN networking environment, the
computer 802 is connected to the local network 852 through

US 2005/0246304 A1

a wired and/or wireleSS communication network interface or
adapter 856. The adaptor 856 may facilitate wired or wire
less communication to the LAN 852, which may also
include a wireleSS acceSS point disposed thereon for com
municating with the wireless adaptor 856. When used in a
WAN networking environment, the computer 802 can
include a modem 858, or is connected to a communications
server on the LAN, or has other means for establishing
communications over the WAN 854, such as by way of the
Internet. The modem 858, which can be internal or external
and a wired or wireleSS device, is connected to the System
bus 808 via the serial port interface 842. In a networked
environment, program modules depicted relative to the
computer 802, or portions thereof, can be stored in the
remote memory/storage device 850. It will be appreciated
that the network connections shown are exemplary and other
means of establishing a communications link between the
computers can be used.
0.095 The computer 802 is operable to communicate with
any wireleSS devices or entities operatively disposed in
WireleSS communication, e.g., a printer, Scanner, desktop
and/or portable computer, portable data assistant, commu
nications Satellite, any piece of equipment or location asso
ciated with a wirelessly detectable tag (e.g., a kiosk, news
stand, restroom), and telephone. This includes at least Wi-Fi
and BluetoothTM wireless technologies. Thus, the commu
nication can be a predefined Structure as with conventional
network or simply an ad hoc communication between at
least two devices.

0096] Wi-Fi, or Wireless Fidelity, allows connection to
the Internet from a couch at home, a bed in a hotel room or
a conference room at work, without wires. Wi-Fi is a
wireleSS technology like a cell phone that enables Such
devices, e.g., computers, to Send and receive data indoors
and out; anywhere within the range of a base station. Wi-Fi
networks use radio technologies called IEEE 802.11 (a, b, g,
etc.) to provide Secure, reliable, fast wireless connectivity. A
Wi-Fi network can be used to connect computers to each
other, to the Internet, and to wired networks (which use
IEEE 802.3 or Ethernet). Wi-Fi networks operate in the
unlicensed 2.4 and 5 GHZ radio bands, with an 11 Mbps
(802.11a) or 54 Mbps (802.11b) data rate or with products
that contain both bands (dual band), So the networks can
provide real-world performance Similar to the basic
10BaseT wired Ethernet networks used in many offices.
0097. Referring now to FIG. 9, there is illustrated a
Schematic block diagram of an exemplary computing envi
ronment 900 in accordance with the present invention. The
system 900 includes one or more client(s) 902. The client(s)
902 can be hardware and/or software (e.g., threads, pro
cesses, computing devices). The client(s) 902 can house
cookie(s) and/or associated contextual information by
employing the present invention, for example. The System
900 also includes one or more server(s) 904. The server(s)
904 can also be hardware and/or software (e.g., threads,
processes, computing devices). The servers 904 can house
threads to perform transformations by employing the present
invention, for example. One possible communication
between a client 902 and a server 904 can be in the form of
a data packet adapted to be transmitted between two or more
computer processes. The data packet may include a cookie
and/or associated contextual information, for example. The
system 900 includes a communication framework 906 (e.g.,
a global communication network Such as the Internet) that
can be employed to facilitate communications between the
client(s) 902 and the server(s) 904.

Nov. 3, 2005

0098 Communications can be facilitated via a wired
(including optical fiber) and/or wireless technology. The
client(s) 902 are operatively connected to one or more client
data store(s) 908 that can be employed to store information
local to the client(s) 902 (e.g., cookie(s) and/or associated
contextual information). Similarly, the server(s) 904 are
operatively connected to one or more server data store(s)
910 that can be employed to store information local to the
Servers 904.

0099 What has been described above includes examples
of the present invention. It is, of course, not possible to
describe every conceivable combination of components or
methodologies for purposes of describing the present inven
tion, but one of ordinary skill in the art may recognize that
many further combinations and permutations of the present
invention are possible. Accordingly, the present invention is
intended to embrace all Such alterations, modifications and
variations that fall within the spirit and scope of the
appended claims. Furthermore, to the extent that the term
“includes” is used in either the detailed description or the
claims, Such term is intended to be inclusive in a manner
Similar to the term “comprising as “comprising” is inter
preted when employed as a transitional word in a claim.
What is claimed is:

1. A System that facilitates data management of an appli
cation, comprising:

a customization component that facilitates exposing of an
application-generated event to an end-user; and

a rules component that allows the end-user to create one
or more rules to process the event, which the one or
more rules facilitate the Submission of application data
asSociated with the event for processing.

2. The System of claim 1, the event is associated with a
rules-based decision point.

3. The System of claim 1, the application data is processed
at least one of externally and internally to return a result to
the application that modifies behavior of the application.

4. The System of claim 1, the end-user creates explicit
rules that define how the event will be processed and the
application customized.

5. The System of claim 1, further comprising a learning
component that facilitates the application learning end-user
behavior, and captures the behavior in the form of rules.

6. The System of claim 1, the end-user can explicitly
modify the one or more rules.

7. The System of claim 1, the application exposes an item
that is a decision point at which the end-user can customize
behavior of the application.

8. The System of claim 7, the application eXposes a name
that identifies context of the decision in which the one or
more rules are applied.

9. The System of claim 7, the application eXposes a
Signature that describes input data types and an expected
result type.

10. The system of claim 7, the decision point is registered
when the application is installed.

11. The System of claim 1, the customization component
facilitates Selection of one of a loosely-bound model and a
tightly-bound model for customization of the application.

12. The System of claim 1, wherein an application that is
tightly bound chooses a Subset of the one or more rules
created by the end-user, and directly executes the Subset to
produce a customization decision.

US 2005/0246304 A1

13. The system of claim 1, wherein the application
exposes a decision point that provides a name to identify the
nature of a decision that is to be made, an application name
that identifies the owning application, and a rule constraint
that identifies the kind of rules allowed for the decision
point.

14. A computer readable medium having Stored thereon
computer executable instructions for carrying out the System
of claim 1.

15. A computer readable medium having Stored thereon
the components of claim 1.

16. A computer that employs the System of claim 1.
17. A System that facilitates data management of an

application, comprising:

a customization component that facilitates customization
of the application by an end-user by exposing of an
application-generated decision point to the end-user;
and

a rules component that facilitates the creation of one or
more rules by the end-user to associate with the deci
Sion point, which one or more rules facilitate the
Submission of application data associated with the
decision point for external processing.

18. The system of claim 17, the end-user can explicitly
modify the one or more rules.

19. The system of claim 17, the application exposes a
name that identifies context of the decision point in which
the one or more rules are applied and a signature that
describes input data types and an expected result type.

20. The system of claim 17, wherein the application
directly executes the one or more rules to produce a cus
tomization decision.

21. The system of claim 17, wherein the application
identifies one or more correct rulesets in accordance with a
query for the one or more correct rulesets that correspond to
the application.

22. The System of claim 21, wherein the query corre
sponds to the application, user, decision, and input that is to
be provided to the one or more rules.

23. The system of claim 21, wherein the decision point is
asSociated with a decision point input method that is invoked
by a calling application.

24. The system of claim 17, the rules component facili
tates associating a rule constraint with the decision point,
which rule constraint filters which rules will run for a given
invocation and a particular input.

25. A computer-readable medium having computer-ex
ecutable instructions for performing a method of facilitating
end-user customization of an application, the method com
prising:

exposing an application-generated decision point of the
application;

creating one or more rules that operate on data of the
decision point;

asSociating the one or more rules with the decision point;
and

Nov. 3, 2005

processing the one or more rules to expose the data for
external processing.

26. The method of claim 25, further comprising directly
executing the one or more rules to produce a customization
decision.

27. The method of claim 25, further comprising querying
for one or more correct rules that correspond to the appli
cation.

28. The method of claim 25, wherein the end-user explic
itly modifies the one or more rules.

29. The method of claim 25, further comprising invoking
a decision point input method that is called by a calling
application.

30. The method of claim 25, further comprising filtering
which rules will run for a given invocation by processing a
rule constraint associated with the decision point.

31. The method of claim 25, further comprising exposing
a name that identifies context of the decision point in which
the one or more rules are applied and a signature that
describes input data types and an expected result type.

32. The method of claim 25, further comprising associ
ating a rule constraint with the decision point and one or
more of the rules.

33. The method of claim 25, further comprising the acts
of,

directly invoking an execute method on the one or more
rules,

passing an input item that is an input to the one or more
rules, and

passing a rule constraint that enforces an input and an
output.

34. A method of facilitating end-user customization of an
application, comprising:

exposing an application-generated decision point of the
application;

creating by an end-user one or more rules that operate on
data of the application;

in first mode, attaching the one or more rules to a decision
point and calling a method on an item of the decision
point to expose the data for processing, and

in a Second mode, identifying correct one or more rules
for the application, and processing the correct one or
more rules directly to expose the data for processing.

35. The method of claim 34, further comprising filtering
which of the one or more rules will run for a given
invocation by processing a rule constraint associated with
the decision point.

36. The method of claim 34, further comprising employ
ing both the first mode and the Second mode for end-user
customization of the application.

