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PRIORITIZATION OF GENETIC MODIFICATIONS TO INCREASE
THROUGHPUT OF PHENOTYPIC OPTIMIZATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 62/516,053, filed

June 6, 2017, which is incorporated by reference in its entirety herein.
BACKGROUND

Field of the Disclosure

[0002] The disclosure relates generally to the fields of metabolic and genomic engineering, and

more particularly to the field of high throughput (“HTP”) genetic modification of microbial

strains to produce products of interest.

Description of Related Art

[0003] The subject matter discussed in the background section should not be assumed to be prior

art merely as a result of its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the subject matter of the background
section should not be assumed to have been previously recognized in the prior art. The
subject matter in the background section merely represents different approaches, which in

and of themselves may also correspond to implementations of the claimed technology.

[0004] Genetically optimizing an organism to exhibit a desired phenotype is a well-known

problem. The two main sub-problems that confront the metabolic engineer are: (1) of all the
possible modifications that might be made to the organism, which should be attempted to
maximize output of the desired compound; and (2) once a set of modifications has been

decided on, in which order should they be performed to maximize the rate of progress?

[0005] Conventionally, the genes targeted for modification are those genes that are judged to be

“on-pathway,” i.e., the genes for the metabolic enzymes known to be part of, or branching
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into or off of, the biosynthetic pathway for the molecule of interest (Keasling, JD.
“Manufacturing molecules through metabolic engineering.” Science, 2010). Methods such
as flux balance analysis (“FBA”) (Segre et al, “Analysis of optimality in natural and
perturbed metabolic networks.” PNAS, 2002) are known that can automate the discovery of
such genes. While it is clear that modifications to the genes identified this way often result in
improved strain performance, it is also true that even the simplest microbes remain poorly
understood. Applicants have discovered that modification of other genes not directly
involved in such pathways can produce significant improvements to strain performance,
suggesting the need to investigate other genes in the genome. However, modifying every
gene in a genome, even the relatively small genomes of bacteria, remains an expensive and
time-consuming endeavor. It is desired to speed up the process of identifying target genes
and the modifications to be made to those target genes that are useful for optimizing the

production of a molecule of interest.
SUMMARY OF THE DISCLOSURE

[0006] Embodiments of the present disclosure overcome the drawbacks of conventional
techniques by prioritizing the genes to be modified and the modifications to be made to those

genes.

[0007] The basic approach of some embodiments of the disclosure is to divide the genes of the
genome into priority levels, called “shells,” and then implement planned modifications on
those shells in order. In embodiments, shells can be designed by algorithms that leverage
existing datasets relating to metabolic networks, gene ontology, or the performance of
modifications made to corresponding genes in another organism or with another target
product, or both, in mind. The exact nature of the modifications to be performed can also be
prioritized; for example, changing to weaker promoters tends to provide fewer improvements
than stronger promoters, which, according to experiments performed by the inventors,
provide fewer improvements than medium-strength promoters. In some instances, swapping
in weak promoters may down-regulate the production of compounds that interfere with
production of the desired product of interest. As an optimization effort progresses, data can

be collected about which classes of modifications provide the best performance
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improvements, which can then be fed back in an “online,” dynamic, iterative fashion for
prioritizing the next round of modifications. Such datasets can also be applied toward
prioritizing the types of gene modifications (e.g., promoter or SNP modifications) for

optimizations of new phenotypes and/or organisms.

[0008] The shell metaphor for target prioritization of genes to be modified is based on the
hypothesis that only a handful of primary genes are responsible for most of a particular
aspect of a host cell’s performance (e.g., production of a single biomolecule). These primary
genes are located at the core of the shell, followed by secondary effect genes in the second
layer, tertiary effects in the third shell, and so on. For example, in one embodiment the core
of the shell may comprise genes encoding biosynthetic enzymes directly involved in a
selected metabolic pathway (e.g., production of citric acid). Genes located on the second
shell might comprise genes encoding for other enzymes within the biosynthetic pathway
responsible for product diversion or feedback signaling. Third tier genes under this
illustrative metaphor would likely comprise regulatory genes responsible for modulating
expression of the biosynthetic pathway, or for regulating general carbon flux within the host

cell.

[0009] Embodiments of the disclosure provide systems, methods, and computer-readable media
for developing a prioritization for applying modifications to genes within at least one
microbial strain to improve phenotypic performance. Embodiments of the disclosure provide
a computer-implemented method, as well as systems and non-transitory computer-readable
media for implementing the method. According to embodiments, the method comprises
accessing first phenotypic performance data based at least in part upon first gene
modifications made to a first set of genes in at least one microbial strain; predicting second,
predicted phenotypic performance of second gene modifications based at least in part upon
the first phenotypic performance data and at least one modification feature that is common to
the first gene modifications and the second gene modifications; and prioritizing the second
gene modifications to be applied to a second set of genes based at least in part upon the
second phenotypic performance. Based at least in part upon the prioritizing, second gene
modifications may be applied to genes within at least one microbial strain. A modification

feature is a parameter considered to be of possible utility in predictive modeling, e.g.,
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machine learning. Modification features may be expressed as categorical features (e.g., a
type), continuous (e.g., a number), or ordinal features (e.g., discrete groups, such as better or

worse).

[0010] According to embodiments of the disclosure, the gene modifications and the at least one
modification feature may relate to the genes to be modified or to the types of modifications to
be made to those genes. For example, the at least one modification feature may include class
including ontological class, such as class related to GO classification, or to the type of
modification, such as a promoter swap (e.g., a promoter modification, including insertion,
deletion, or replacement of a promoter), or a SNP (single nucleotide polymorphism) swap
(e.g., a single base pair modification, including insertion, deletion or replacement of a single
base pair), as described in copending U.S. Patent Application No. 15/396230, U.S.
Publication No. US20170159045, filed December 30, 2016, which is incorporated by

reference herein 1n its entirety.

[0011] The modification feature may be related to the strength of the promoter, such as weak,
strong, or medium strength. Experiments by the inventors have shown instances where
medium strength promoters generated a greater likelihood of performance (e.g., yield,
productivity) improvement by the microbial strain than did weak or strong promoters. Thus,
embodiments of the disclosure may weight medium-strength promoters more heavily than
strong or weak promoters into the predicted phenotypic performance. Embodiments of the
disclosure may weight weak promoters less heavily than strong and medium-strength

promoters.

[0012] In general, embodiments may weight known beneficial effects more heavily into the
predicted phenotypic performance than lesser effects. Conversely, embodiments may assign
low weighting to known negative or less beneficial effects in the predicted phenotypic
performance than more beneficial effects. As another example, in embodiments predicting
second phenotypic performance of second gene modifications is based at least in part upon at
least one modification feature including modifications of one or more types (e.g., promoter
swap, SNP swap) to at least two genes in a strain. In this manner, the method accounts for

epistatic effects arising from the phenotypic effects of making two or more gene
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modifications to the same strain. In such embodiments, predicting may more heavily weight,
into the predicted phenotypic performance, modifications of one or more types that yield

positive epistatic effects.

[0013] In embodiments, the at least one modification feature includes different levels of
abstraction within a gene ontology classification. In embodiments, the at least one
modification feature includes classification based upon metabolic network. In embodiments,
the second set of genes includes no genes within the first set of genes. In embodiments, genes
within the second set of genes are each a member of multiple classes, and a composite
performance prediction for a given gene can be generated from the combination of
predictions applying to each class to which it belongs. In embodiments, genes within the
second set of genes share membership in at least one common class, and such genes are all
assigned the same predicted performance if the common class is the only class to which each
gene belongs. In embodiments, genes within the second set of genes may each be a member
of only a single class. In embodiments, genes in the first and second sets may share class

membership with each other and such genes may each belong to multiple classes.

[0014] In embodiments, the at least one modification feature includes first ontological classes
from a first classification system and second ontological classes from a second classification
system. If, for example, a gene is a member of multiple classes from different classification
systems (e.g., GO, KEGG, gene or gene-product sequence similarity, protein domain) and
those classes have been observed or predicted to yield performance improvements, then the
method may favorably weight the predicted phenotypic performance of that gene as a
candidate for modification (thereby increasing its chance of being assigned a high priority),

according to embodiments of the disclosure.

[0015] In embodiments, the at least one modification feature includes a characteristic of the
product produced by at least one microbial strain. For example, the characteristic of the
product may be related to the same metabolic pathway or ontological class. If the first set or a
gene from the first set are associated with a performance improvement, then it is likely that a
gene from the second set along the same metabolic pathway or within the same ontological

class would also give rise to a performance improvement. Thus, the method may favorably
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weight the predicted phenotypic performance of that gene as a candidate for modification
(thereby increasing its chance of being assigned a high priority), according to embodiments

of the disclosure.

[0016] Alternatively, if multiple strain-product combinations are used as modification features of
phenotypic performance data, characteristics of the product may be used to weight the
relevance of data relating to an input strain-product combination to the target strain-product
combination. Inputs that share more characteristics with the target product are more likely to
yield useful predictions. In embodiments, those product characteristics may include number
of constituent atoms, structure, atomic content, being produced from closely related (either
by content or distance to nearest common precursor) metabolic pathways, or the like, with

the first product.

[0017] In embodiments, predicting second phenotypic performance may employ genes from the
first set of genes as a training set in a machine learning predictive model to predict the

second phenotypic performance of the second gene modifications.

[0018] In embodiments, predicting second phenotypic performance comprises predicting per-
class enrichment probabilities for the second gene modifications based at least in part upon
the first, observed phenotypic performance data, and prioritizing the second, predicted gene
modifications based at least in part upon a ranking of the predicted per-class enrichment
probabilities. Embodiments of the disclosure may prioritize at least one candidate gene for
testing within a class if the predicted enrichment for the class exceeds a threshold

enrichment.

[0019] Applicants have further surprisingly discovered that individual gene performance can be
context dependent, i.e., that the ability of a modification to a gene to improve strain
performance can depend on the genetic makeup (including previously introduced
modifications) of the strain. For example, whereas a particular gene modification may
initially be predicted to have no, little, or even a negative effect on strain performance, the
introduction of the same modification in a different genetic background can produce a
different and even opposite effect. Thus, in embodiments of the disclosure, the method may

comprise iteratively updating prioritization of subsets of the second gene modifications to be
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applied to subsets of genes within the second set of genes based upon phenotypic
performance data observed from iterative application of one or more gene modifications of
the second gene modifications to genes within the second set of genes. Such iterative
updating may comprise obtaining updated phenotypic performance data based at least in part
upon application of one or more gene modifications of the second gene modifications to
genes within the second set of genes, predicting updated second phenotypic performance of a
subset of the second gene modifications based at least in part upon the updated first
phenotypic performance data and at least one modification feature, and prioritizing the subset
of the second gene modifications to be applied to a subset of genes within the second set of
genes based at least in part upon the updated second phenotypic performance. Note that the
application of one or more gene modifications of the second gene modifications to genes
within the second set of genes effectively moves those modified genes from within the
second set of genes to the first set of genes, for which performance data may now be

obtained, according to embodiments of the disclosure.

[0020] In embodiments, the at least one modification feature relates to a characteristic of
microbial strain. Such features may include phylogenetic or taxonomic features, including
genomic sequence similarity, domain (Archaea, Bacteria, or Eukarya), Gram positive or
negative (for the bacteria), genus, species, and the like; ecological and physiological features,
including features of the native environment (e.g., pH, temperature, salinity, pressure),
metabolic features (e.g., preferred growth substrates, possible growth substrates, waste
products), and the like; or other features. For example, if a modification to a set of genes in a
first strain provides a performance improvement, then it is likely that a similar modification
to a similar set of genes in a similar, second strain would also give rise to a performance
improvement. “Similar set of genes” here may be defined as, e.g., genes belonging to the
same gene ontology class, belonging to a metabolic pathway having the same product,
sequence similarity, similarity in expression profile or regulation, or the like. “Similar”
strains may be characterized by phylogentic similarity, similarlity in genetic lineage; whether
the strains are prokaryotic or eukaryotic, consume similar feedstock, produce the similar
metabolites, or are similar in other modification features. Thus, the method may favorably

weight the predicted phenotypic performance of genes within that similar set in the second
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strain as candidates for modification by the same or a similar modification, according to

embodiments of the disclosure.

[0021] In embodiments, the second set of genes resides within at least one microbial strain
different from the at least one microbial strain in which the first set of genes resides. In those
embodiments and others, the first phenotypic performance data may relate to at one or more
characteristics of a first product produced by the at least one microbial strain, and the second,
predicted phenotypic performance may relate to one or more characteristics of a second
product that is different from the first product, and produced by the same strain or another
strain sharing common features. In embodiments, the second product may share common
features, such as number of constituent atoms, structure, atomic content, being produced
from closely related (either by content or distance to nearest common precursor) metabolic

pathways, or the like, with the first product.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] Figure 1 illustrates a client-server computer system for implementing embodiments of the

disclosure.

[0023] Figure 2 illustrates the fraction of modifications whose level of improvement exceeds a
noise threshold for phenotypes representing productivity and yield of a target product across

different promoter strengths, according to embodiments of the disclosure.

[0024] Figure 3 illustrates a modification of Figure 2, aggregated by library goal—

diversification or consolidation.

[0025] Figure 4 illustrates subsets of the data from Figure 2 that are designed to even out the bias
in frequency across the different promoter levels, according to embodiments of the

disclosure.

[0026] Figure 5 illustrates the fraction of modifications whose level of improvement is above a

noise threshold for phenotypes of productivity and yield of a target product according to
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selection by a skilled human or an algorithm (FBA), aggregated by library goal, according to

embodiments of the disclosure.

[0027] Figure 6 illustrates an example of a subgraph from the Gene Ontology, showing gene

classes enriched for improved yield.
[0028] Figure 7 illustrates a breakdown of genes in the enriched GO Slims of Table 2.

[0029] Figure 8 illustrates the breakdown of the subset of genes in enriched GO slims whose
modification via promoter swap has been demonstrated to improve a desired phenotype,

according to embodiments of the disclosure.

[0030] Figure 9 is a flowchart illustrating a method for prioritizing modifications for application

to genes within at least one microbial strain to improve phenotypic performance.

[0031] Figure 10 illustrates a cloud computing environment according to embodiments of the

disclosure.

[0032] Figure 11 illustrates an example of a computer system that may be used to execute

program code to implement embodiments of the disclosure

[0033] Figure 12 is a diagram of the layout of the tables of Figures 12A-12L, which together
form a table illustrating attributes involved in the production of particular amino acid in a

particular microbial host organism.
DETAILED DESCRIPTION

[0034] The present description is made with reference to the accompanying drawings, in which
various example embodiments are shown. However, many different example embodiments
may be used, and thus the description should not be construed as limited to the example
embodiments set forth herein. Rather, these example embodiments are provided so that this
disclosure will be thorough and complete. Various modifications to the exemplary
embodiments will be readily apparent to those skilled in the art, and the generic principles
defined herein may be applied to other embodiments and applications without departing from

the spirit and scope of the disclosure. Thus, this disclosure is not intended to be limited to
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the embodiments shown, but is to be accorded the widest scope consistent with the principles

and features disclosed herein.

[0035] Figure 1 illustrates a distributed system 100 of embodiments of the disclosure. A user
interface 102 includes a client-side interface such as a text editor or a graphical user interface
(GUI). The user interface 102 may reside at a client-side computing device 103, such as a
laptop or desktop computer. The client-side computing device 103 is coupled to one or more

servers 108 through a network 106, such as the Internet.

[0036] The server(s) 108 are coupled locally or remotely to one or more databases 110, which
may include one or more corpora of libraries including data such as genome data, genetic
modification data (e.g., promoter ladders), and phenotypic performance data that may

represent microbial strain performance in response to genetic modifications.

[0037] In embodiments, the server(s) 108 includes at least one processor 107 and at least one
memory 109 storing instructions that, when executed by the processor(s) 107, predict
phenotypic performance of gene modifications and prioritize their application to genes,
thereby acting as a “prioritization engine” according to embodiments of the disclosure.
Alternatively, the software and associated hardware for the prioritization engine may reside
locally at the client 103 instead of at the server(s) 108, or be distributed between both client
103 and server(s) 108. In embodiments, all or parts of the prioritization engine may run as a

cloud-based service, depicted further in Figure 10.

[0038] The database(s) 110 may include public databases, as well as custom databases generated
by the user or others, e.g., databases including molecules generated via synthetic biology
experiments performed by the user or third-party contributors. The database(s) 110 may be

local or remote with respect to the client 103 or distributed both locally and remotely.

[0039] The most conceptually simple way to modulate flux and yield to a desired molecule is by
changing the amounts of gene products that affect that flux by changing the strength of the
relevant gene promoters. This can be accomplished systematically by building a promoter
ladder, a collection of promoters that can be applied to any gene and that have a range of

strengths from weak to strong. Ideally, the promoters placed in the ladder have been shown

10
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to lead to highly variable expression across multiple genomic loci, but the only requirement

is that they perturb gene expression in some way.

[0040] The promoter ladders are further described in International Application Serial No.
PCT/US16/65464, W0O2017/100376, filed on December 7, 2016, which is incorporated by
reference in its entirety. In embodiments, promoter ladders are created by: identifying
natural, native, or wild-type promoters associated with the target gene of interest and then
mutating at least one promoter to derive multiple mutated promoter sequences. Each of these
mutated promoters is tested for effect on target gene expression. In some embodiments, the
edited promoters are tested for expression activity across a variety of conditions, such that
each promoter variant’s activity is documented/characterized/annotated and stored in a
database. The resulting edited promoter variants are subsequently organized into “ladders”
arranged based on the strength of their expression (e.g., with highly expressing variants near

the top, and attenuated expression near the bottom, therefore leading to the term “ladder”).

[0041] The process of changing the native promoter to one of the promoters from the ladder is
called “promoter swapping.” Experimental data indicates that medium and strong promoter
swaps are more likely to result in improvements in the desired phenotype than weak

promoter swaps as shown in Figure 2.

[0042] Figure 2 illustrates the fraction of modifications (here, promoter swaps) whose level of
improvement is above a noise threshold for phenotypes representing productivity and yield of
a target product across different promoter strengths (1 being the weakest and 8 being the
strongest). Note that the number of attempted modifications is not even across promoters;

the total counts, in order from strength 1 to 8, are 532, 22, 422, 61, 68, 415, 108, and 3274.

[0043] There are several ways to define “weak,” “medium,” and “strong” in reference to
promoters. In the embodiments here, these definitions are best understood within the context
of an eight-promoter ladder designed to cover the majority of feasible expression levels in the

cell, from low to high.

[0044] To evaluate the activity of promoters in the ladder, a set of plasmid based fluorescence

reporter constructs was designed. In one example experiment, each promoter in the ladder

11
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was cloned in front of eyfp, a gene encoding yellow fluorescent protein in the shuttle vector
pK18rep. These plasmids were transformed into C. glutamicum NRRL B-11474 and
promoter activity was assessed by measuring the accumulation of YFP protein by

spectrometry.

[0045] Purified reporter construct plasmids were transformed into C. glutamicum NRRL B-
11474 by electroporation (Haynes et al., Journal of General Microbiology, 1990).
Transformants were selected on BHI agar plus 25 pg/mL Kanamycin. For each
transformation, multiple single colonies were picked and inoculated into individual wells of a
96 mid-well block containing 300 uL of BHI media plus 25 ug/mL Kanamycin. The cells
were grown to saturation by incubation for 48 h at 30°C shaking at 1,000 rpm. After
incubation, cultures were centrifuged for 5 min at 3,500 rpm and the media was removed by
aspiration. Cells were washed once by resuspension in 300 uL. of PBS and centrifugation for
5 min at 3,500 rpm followed by aspiration of the supernatant and a final resuspension in 300
uL of PBS. A 20 pL aliquot of this mixture was transferred to a 96-well full area black clear
bottom assay plate containing 180 uL. of PBS. The optical density of the cells at 600 nm was
measured with the SpectraMax M5 microplate reader and the fluorescence was measured
with the TECAN M1000 microplate leader by exciting at 514 nm and measuring emission at
527 nm. For each well a normalized fluorescence activity was calculated by dividing
fluorescence by optical density. The parent plasmid pK18rep acted as a negative control.
Normalized fluorescence activity was compared between reporter constructs and between
biological replicates. A numerical summary of promoter activity is presented in Table 1

below.

12
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Promoter | No. of Mean Standard | Standard | 95% Relative
level Replicates | Activity | Deviation | Error of | Confidence | Expression
Mean Interval
8 12 114402 | 52987.9 15296 80735- 1167
148069
7 19 89243 16162.2 3708 81453- 911
97033
6 19 44527 18110.3 4155 35798- 454
53256
5 10 43592 3643 1152 40986- 445
46198
4 11 11286 10459.4 3154 4260-18313 | 115
3 19 4723 1854.3 425 3829-5617 | 48
2 18 661 731.9 173 297-1025 7
1 14 98 537.5 144 —212-409 1
No 20 -45 214.9 48 —145-56
promoter

Table 1: Recombinant C. glutamicum Expressing Yellow Fluorescent Protein Under the

Control of Promoters

[0046] Promoters levels 1-3 are considered “weak,” promoter levels 4—6 are considered

“medium,” and promoter levels 7 and 8 are considered “strong.” In absolute terms, weak

13
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promoters here are those with a mean activity less than 6,000; medium promoters have a
mean activity of at least 6,000 and no more than 60,000; and strong promoters have a mean
activity of more than 60,000. Given that such units are specific both to the species and to the
device, relative units have wider applicability. One standard, used in the “Relative
Expression” column of Table 1, is that of the weakest promoter in the ladder, assumed to
have a mean activity of less than 500 in assays such as those performed here. Weak
promoters are those with a relative expression ranging from at least 1 to no more than 60
times the level of the weakest promoter; medium promoters are those with a relative
expression ranging from more than 60 to no more than 600 times the level of the weakest
promoter; and strong promoters are those with a relative expression of more than 600 times
the level of the weakest promoter. Expression levels relative to the characteristics of the cell
in which expression takes place are widely applicable across different contexts. For instance,
promoters having medium strength can be defined as having at least 20% and no more than
200% of the mean protein expression level within the cell, or as at least 100-fold lower and
no more than 10-fold lower than the maximum protein expression level within the cell, where
weak and strong promoters are those whose expression level are lower and higher,
respectively, than these ranges. Alternatively and more generally, a “medium” promoter
could be any that is stronger than the weakest promoter used and weaker than the strongest

promoter used.

[0047] The metric under consideration in this and other examples is fraction of candidates for
improvement, or “hit rate,” which is the fraction of modifications whose measured level of
improvement is above a noise threshold in one or more phenotypes of interest. The threshold
may be set based on the noise (e.g., root mean squared error) in predicting performance at
scale (i.e., larger than small scale) relative to performance at a small, high-throughput scale,
and also represents a minimum threshold for what can be considered a substantive
improvement in phenotype once confirmed. In embodiments, these cutoffs are 10% above
the unmodified parent genome for the productivity model and 3% above parent for the yield

model.

[0048] Adding a modification into a new strain background is typically done with one of two

goals: diversification (search) or consolidation (application). A genetic background strain

14



WO 2018/226717 PCT/US2018/036096

may be a wild-type strain, or a mutated, engineered strain that contains one or more
mutations relative to the wild-type strain. Diversification is the process of attempting as
many different modifications as possible in a single strain background, whereas consolidation
is the process of applying potentially useful modifications, as identified during the
diversification process, to one or more strains backgrounds of interest based on phenotypic
performance in the phenotypes of interest (which are productivity and yield in this
embodiment), and not necessarily to all that we possibly could. It is useful to consider these
two cases separately, since the meaning of a higher or lower fraction of modifications leading
to a performance increase above the noise threshold of a phenotype (i.e., hit rate) is different
for the two cases. Modifications employed in consolidation are the subset of the best-
performing modifications from diversification. A high hit rate in diversification means that
improvements are relatively easy to find in a given library, whereas a high hit rate in
consolidation means that improvements are consistently valuable in a given library. In other
words, during diversification, priority is given to trying as many different modifications as
possible in one strain background in order to identify modifications that may be useful in
many different backgrounds. A class enriched for hits in diversification means that, in the
background used, gene modifications that improved performance were relatively easily
found. After potentially useful modifications are identified during diversification,
consolidation involves attempting these modifications in multiple backgrounds of interest.
Some of these modifications may not prove to be of consistent use in other backgrounds and
will not regularly come out as hits. Thus those modifications or classes of modifications that
are enriched for hits during consolidation are those that were hits repeatedly in many

different strain backgrounds.

[0049] As used herein, the term “library” refers to collections of genetic modifications according
to the present disclosure. In some embodiments, the libraries of the present invention may
manifest as 1) a collection of sequence information in a database or other computer file, i1) a
collection of genetic constructs encoding for a series of genetic elements, or iii) cell strains
comprising said genetic elements. In some embodiments, the libraries of the present
disclosure may refer to collections of individual elements (e.g., collections of promoters for
PRO swap libraries, or collections of SNPs for SNP swap libraries). In other embodiments,

the libraries of the present disclosure may refer to combinations of genetic elements, such as
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combinations of promoter::genes. In some embodiments, the libraries of the present
disclosure may comprise meta data associated with the effects of applying each member of
the library in host organisms. For example, a library as used herein can include a collection
of promoter::gene sequence combinations, together with the resulting effect of those
combinations on one or more phenotypes in a particular species, thus improving the future

predictive value of using said combination in future promoter swaps.

[0050] Breaking out Figure 2 by diversification and consolidation yields Figure 3. Figure 3 is a
modification of Figure 2, aggregated by library goal—diversification or consolidation.
Modifications employed in consolidation are the subset of the best-performing modifications

from diversification.

[0051] In general, consolidation is the best measure of the value of a library, because success in
consolidation results from repeated, consistent utility of a gene modification across multiple
backgrounds. In Figure 3, the differences between promoter strengths are smaller in

consolidation than diversification, but the weak promoters still perform most poorly.

[0052] The evidence of medium-strength promoter swaps yielding higher hit rates than strong
promoters is particularly demonstrated when the data is limited only to loci that have been
subject to medium-strength promoter swaps or loci that have been subjected to more than
half (i.e., at least five) of the promoters in the ladder, as shown in Figure 4. Figure 4
illustrates subsets of the data from Figure 2 that are designed to even out the bias in

frequency across the different promoter levels.

[0053] Thus, the data suggests that medium-strength promoter swaps are more generally useful
than strong promoters, which are more useful than weak promoters. Conventional practice in
the field is typically to maximize or minimize expression, but such extreme approaches may
prove overly taxing to the cell, particularly with respect to modulating essential cellular

function.

[0054] A number of other modifications are possible beyond promoter swaps. Foreign genes can

be inserted or used to replace native genes, single nucleotide polymorphisms (including start
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codon modifications, such as from ATG to TTG) can be employed, and random mutagenesis

via UV, transposons, or other mutagens can also be applied.
[0055] Prioritizing gene targets across a genome

[0056] Beyond the nature of what types of modifications should be made, the question of what
loci the modifications should be applied to is also addressed in embodiments of the
disclosure. Conventionally, metabolic engineers focus their efforts on the metabolic pathway
genes. These genes are of obvious importance, and an approach to organizing a genome into
shells is start with these genes as “Shell 1.” To define these genes, the collected knowledge

of the biosynthesis of the target may be examined to create a list of genes in Shell 1.

[0057] In embodiments, an optimization-driven algorithmic method such as flux balance
analysis (“FBA”) may be employed to identify genes that will have the maximal impact on
diverting the metabolic flux of the organism towards the target product. In such an approach,
a genome-scale metabolic model (here, a directed graph of the cellular metabolites connected
by gene-catalyzed reactions) of the organism is used to contrast the metabolic phenotype of a
strain maximizing the yield of a product in comparison to another phenotype maximizing
cellular growth (e.g., base metabolism). The contrast reveals a subset of genes that should be
modified (e.g., up-regulated or down-regulated from their expression levels) to alter the base
metabolism to a product-maximizing strain. The formal steps of performing the analysis

include:

¢ A Linear Programming (LP) optimization problem is formulated to compute,
alternatively, the maximum production flux of the target chemical (henceforth the
production phenotype) or the maximum cellular growth rate (henceforth the native
phenotype) under the assumptions of a metabolic steady state (i.e., the exponential
growth phase where there is a net zero rate of accumulation of an intermediate
metabolite). The structure of the LP problem is shown below.

Maximize

vj vtarget product Or Veettular growth

subject to:
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Z S;jv; =0, for all metabolites i (steady — state assumption)

jejl

LB; <v; < UB;, forallreactionsj € ] (limits on reaction flux)
where S;; is the matrix representation of the topology of the genome-scale metabolic
model containing the stoichiometric coefficient of metabolite 1 taking part in reaction j.

The lower LB; and upper UB; limits on the reaction fluxes are imposed based on

thermodynamic feasibility that allows reaction to be reversible or restricted to one

particular direction. On solving the LP problems, the maximum values for product flux

max

vproduct »

and cellular growth vegiiiar growen 15 saved for the second step.

e In the second step, the maximum and minimum feasible flux bound for each reaction j is
identified for both the production and native phenotypes.by solving a series of LP
problems. All the constraints of the previous problem are imposed, along with an

additional constraint restricting minimum flux of the target product and cellular growth to

max
product

max

and Vcellular growth

the optimum values v respectively. The structure of the LP

problem is shown below.

Maximize/Minimize o
. v; for each reactionj € ]
g
subject to:
Z Sijv; =0, for all metabolites i
JjeJ

LB; < v; < UBj, for all reactionsj € ]

max max
vtarget product = vproduct OT Ucettular growth = Vcellular growth

On solving the LP problems for each of the two phenotypes, the set of feasible flux

roduction phenotype roduction phenotype
ranges {Lij p rpe Uij p P }and

native phenotype native phenotype
{LB] ,UB]

] } are saved.

e Contrasting the feasible ranges for each reaction reveals which subset of reactions needs
to be up-regulated or down-regulated in its flux capacity to transform the native

phenotype towards the production phenotype. In addition, the comparison also provides a
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quantitative estimate of the level of up/down-regulation required in flux. Gene-reaction
maps convey the reaction-level categorization information to identify gene-level

manipulations.

[0058] A comparison of the performance of gene modifications determined by these two
approaches for the case of optimizing a desired amino acid product yield and productivity in

a given microbial strain (e.g., C. glutamicum) is given in Figure 5.

[0059] Figure 5 illustrates the fraction of modifications whose level of improvement is above a
noise threshold for phenotypes of productivity and yield of a target product according to
selection by a skilled human or an algorithm (FBA), aggregated by library goal.
Modifications employed in consolidation are the subset of the best-performing modifications

from diversification obtained during experimentation.

[0060] The algorithm recommends more potentially useful changes in the course of
diversification, but the rates of valuable changes in consolidation are similar. Another
observation is that the algorithm clearly performed better at identifying changes that improve

yield or both yield and productivity.

[0061] To fully exploit the capacity of an organism for producing a desired product, all its genes
should be considered for modification. However, technological limitations still make it
difficult to, for example, apply promoter swaps to every gene in a bacterial genome. Thus,
embodiments of the disclosure classify and prioritize genes beyond the known on-pathway
enzymes for testing. When it comes to genes to target, embodiments of the disclosure
determine how to prioritize the genes for modification. One goal of prioritization is to
maximize the rate of progress toward a desired performance improvement in the strain of

interest.

[0062] Another approach to prioritizing genes into shells is via Gene Ontology (GO), according
to embodiments of the disclosure. The Gene Ontology classification provides controlled
vocabularies of defined terms representing gene product properties. These cover three
domains: Cellular Component, the parts of a cell or its extracellular environment; Molecular

Function, the elemental activities of a gene product at the molecular level, such as binding or
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catalysis; and Biological Process, operations or sets of molecular events with a defined
beginning and end, pertinent to the functioning of integrated living units: cells, tissues,

organs, and organisms.

[0063] The GO classification system is structured as a directed acyclic graph where each term
has defined relationships to one or more other terms in the same domain, and sometimes to
other domains. The GO vocabulary is designed to be species-agnostic, and includes terms
applicable to prokaryotes and eukaryotes, and single and multicellular organisms. (See

http://gencontology.org/page/ontology-documentation, which is incorporated by reference in

its entirety herein).

[0064] The Gene Ontology defines the universe of concepts relating to gene functions (GO
terms), and how these functions are related to each other (“relations”). It is revised and
expanded as biological knowledge accumulates. The GO describes function with respect to
three aspects: molecular function (molecular-level activities performed by gene
products), cellular component (the locations relative to cellular structures in which a gene
product performs a function), and biological process (the larger processes, or “biological

programs” accomplished by multiple molecular activities).

[0065] Ongoing revisions to the ontology are managed by a team of senior ontology editors with
extensive experience in both biology and computational knowledge representation. Ontology
updates are made collaboratively between the Gene Ontology Consortium ontology team and
scientists who request the updates. Most requests come from scientists making GO
annotations (these typically impact only a few terms each), and from domain experts in
particular areas of biology (these typically revise an entire “branch” of the ontology

comprising many terms and relations).

[0066] In an example of GO annotation, the gene product "cytochrome c¢" can be described by
the Molecular Function term "oxidoreductase activity"”, the Biological Process term
"oxidative phosphorylation", and the Cellular Component terms "mitochondrial matrix" and

"mitochondrial inner membrane".
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[0067] Ontologies
[0068] Molecular Function

[0069] A molecular process that can be carried out by the action of a single macromolecular
machine, usually via direct physical interactions with other molecular entities. Function in
this sense denotes an action, or activity, that a gene product (or a complex) performs. These
actions are described from two distinct but related perspectives: (1) biochemical activity, and

(2) role as a component in a larger system/process.
[0070] Cellular Component

[0071] These terms describe a location, relative to cellular compartments and structures,
occupied by a macromolecular machine when it carries out a molecular function. There are
two ways in which biologists describe locations of gene products: (1) relative to cellular
structures (e.g., cytoplasmic side of plasma membrane) or compartments (e.g.,
mitochondrion), and (2) the stable macromolecular complexes of which they are parts (e.g.,
the ribosome). Unlike the other aspects of GO, cellular component concepts refer not to

processes but rather a cellular anatomy.
[0072] Biological Process

[0073] A biological process represents a specific objective that the organism is genetically
programmed to achieve. Biological processes are often described by their outcome or ending
state, e.g., the biological process of cell division results in the creation of two daughter cells
(a divided cell) from a single parent cell. A biological process is accomplished by a particular
set of molecular functions carried out by specific gene products (or macromolecular

complexes), often in a highly regulated manner and in a particular temporal sequence.

[0074] Figure 6 illustrates an example of a subgraph from the Gene Ontology, with gene classes
602, 604 and 606 enriched for improved yield. In this grouping, gene sets are associated
with specific terms in the ontology (and all ancestral terms). All terms (other than the
root terms representing each namespace, above) have a sub-class relationship to another

term.

21



WO 2018/226717 PCT/US2018/036096

[0075] The following is an example of a GO term taken from the OBO format file.

1d: GO:0016049

name: cell growth

namespace: biological process

def: "The process in which a cell irreversibly increases in size over time by accretion and
biosynthetic production of matter similar to that already present.” [GOC:ai]
subset: goslim_generic

subset: goslim_plant

subset: gosubset prok

synonym: "cell expansion" RELATED []

synonym: "cellular growth" EXACT []

synonym: "growth of cell" EXACT []

is_a: GO:0009987 ! cellular process

is_a: GO:0040007 ! growth

relationship: part of GO:0008361 ! regulation of cell size

http://geneontology.org/page/ontology-structure

[0076] Gene ontologies can be “rolled up” into various levels of abstraction and aggregation
using GO Slims, which are subsets of GO terms that give a more general overview of gene

classification (see http://gencontology.org/page/go-slim-and-subset-guide). In this case, to

“roll up” a GO term means to start from classification of genes according to a specific GO
term and move “up” the graph from that more specific term to classify those genes under a
more general GO term of which the specific term is a subset. The “roll up” process can
continue from there, moving from the general GO term to an even more general GO term that
incorporates this. This process continues until one or more GO terms that are contained
within a much smaller list of general GO terms is reached. In this way, each specific GO
term is converted into a more general GO term contained within the limited list of GO terms
within the GO Slim ontology file. The use of GO Slims is of most potential use for

prioritizing a genome into shells.

[0077] Algorithmically defining a GO SLIM mapping may include methods such as rolling all
GO terms up three levels, or doing an iterative rollup until hitting a “sweet spot” in terms of
number of total GO terms, or number of genes assigned per given GO term. Embodiments of
the disclosure may define the “sweet spot” approach algorithmically so that GO terms are

stepwise rolled up until all pools of GO Slims reach a defined size, or the pool of unique GO
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terms has been reduced by a specific amount. These approaches have the advantage of being

easily extensible to many other cases.

GO ID Name Yield enriched? |Productivity
enriched?
G0O:0003677 |DNA binding Yes Yes
GO:0006810 [transport Yes No
GO:0006091 |generation of precursor Yes No
metabolites and energy
G0:0042592 |homeostatic process Yes Yes
G0:0044281 |small molecule metabolic Yes Yes
process
GO:0008150 [biological process Yes Yes
GO:0009058 [biosynthetic process Yes Yes
G0O:0006259 |DNA metabolic process No Yes
GO:0006950 [response to stress No Yes
Table 2

[0078] Table 2 shows GO Slim terms enriched for a desired amino acid yield and productivity in
a given microbial strain based on experimentation. For each GO term, the number of genes
resulting in a yield or productivity improvement above a preset threshold were compared to
the number that would be expected to be seen by chance. This table is for consolidation and

diversification combined, and is dominated by diversification experiments.

[0079] Once a gene classification scheme has been decided upon, the next step is to explain the
structure of experimental effect in terms of the classification; i.e., determine which
subclasses are most useful for improving the target phenotype, to guide subsequent rounds of
modification, or to apply analogously to another target and/or organism. Statistical or

machine learning approaches may be employed to identify these subclasses.

[0080] Among statistical approaches, Gene Set Enrichment Analysis (“GSEA”) may be
employed in embodiments of the disclosure. (See GSEA; Subramanian A., et al. “Gene set
enrichment analysis: A knowledge-based approach for interpreting genome-wide expression
profiles,” PNAS, 2005, incorporated by reference in its entirety herein.) GSEA attempts to

identify a subset of gene classes within an ontology that are overrepresented among a set of
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candidate genes. This analysis typically provides two types of output: an enrichment score ES
indicating the degree of enrichment, and a p-value indicating the significance of the

result. Statistical methods may be employed to correct for multi-hypothesis testing.

[0081] While the completion of the Human Genome Project gifted researchers with an enormous
amount of new information, it also left them with the problem of how to interpret and
analyze the incredible amount of resulting data. To seck out genes associated with diseases,
researchers utilized DNA microarrays, which measure the amount of gene expression in
different cells. Researchers performed these microarrays on thousands of different genes, and
compare the results of two different cell categories, e.g. normal cells versus cancerous cells.
However, this method of comparison is not sensitive enough to detect the subtle differences
between the expression of individual genes, because diseases typically involve entire groups
of genes. Multiple genes are linked to a single biological pathway, and so it is the additive
change in expression within gene sets that leads to the difference in phenotypic expression.
Gene Set Enrichment Analysis focuses on the changes of expression in groups of genes, and
by doing so, this method resolves the problem of the undetectable, small changes in the

expression of single genes.

[0082] Gene set enrichment analysis uses a priori gene sets that have been grouped together by
their involvement in the same biological pathway, or by proximal location on a
chromosome—all of which may serve as modification features. In embodiments of the
disclosure, a database of these predefined sets may be found at The Molecular Signatures
Database (MSigDB). In GSEA, DNA microarrays, or now RNA-Seq (whole transcriptome
shotgun sequencing) may be performed and compared between two cell categories, but
instead of focusing on individual genes in a long list, the focus is on a gene set. Researchers
analyze whether the majority of genes in the set fall in the extremes of this list: the top and
bottom of the list correspond to the largest differences in expression between the two cell
types. If the gene set falls at either the top (over-expressed) or bottom (under-expressed), it is

thought to be related to the phenotypic differences.

[0083] Genome-wide association studies may be employed, for example, in comparisons

between healthy and disease genotypes to try to find SNPs that are overrepresented in the
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disecase genomes, and might be associated with that condition. Before GSEA, the accuracy of
genome-wide SNP association studies was severely limited by a high number of false
positives. The GSEA-SNP method is based on the theory that the SNPs contributing to a
disecase tend to be grouped in a set of genes that are all involved in the same biological
pathway. This application of GSEA not only aids in the discovery of disease-associated

SNPs, but helps illuminate the corresponding pathways and mechanisms of the diseases.

[0084] Alternatively, embodiments of the disclosure may apply machine learning (“ML”)
techniques to learn the relationship between the given classes (features) of an ontology and
observed outcomes. In this framework, embodiments may use standard ML models, e.g.
Decision Trees, to determine feature importance. Because of the hierarchical nature of
ontology classes, features are often correlated or redundant, which can lead to ambiguous
model fitting and feature inspection. To address this issue, dimensional reduction may be
performed on input features via principal component analysis. Alternatively, feature
trimming may be performed based on information gained from child to parent ontology

classes.

[0085] In general, machine learning may be described as the optimization of performance
criteria, e.g., parameters, techniques or other features, in the performance of an informational
task (such as classification or regression) using a limited number of examples of labeled data,
and then performing the same task on unknown data. In supervised machine learning such as
an approach employing linear regression, the machine (e.g., a computing device) learns, for
example, by identifying patterns, categories, statistical relationships, or other attributes,
exhibited by training data. The result of the learning is then used to predict whether new data

will exhibit the same patterns, categories, statistical relationships or other attributes.

[0086] Embodiments of the disclosure may employ other supervised machine learning
techniques when training data is available. In the absence of training data, embodiments may
employ unsupervised machine learning. Alternatively, embodiments may employ semi-
supervised machine learning, using a small amount of labeled data and a large amount of
unlabeled data. Embodiments may also employ feature selection to select the subset of the

most relevant features to optimize performance of the machine learning model. Depending
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upon the type of machine learning approach selected, as alternatives or in addition to linear
regression, embodiments may employ for example, logistic regression, neural networks,
support vector machines (SVMs), decision trees, hidden Markov models, Bayesian networks,
Gram Schmidt, reinforcement-based learning, cluster-based learning including hierarchical
clustering, genetic algorithms, and any other suitable learning machines known in the art. In
particular, embodiments may employ logistic regression to provide probabilities of
classification (e.g., classification of genes into different functional groups) along with the
classifications themselves. See, e.g., Shevade, A simple and efficient algorithm for gene
selection using sparse logistic regression, Bioinformatics, Vol. 19, No. 17 2003, pp. 2246-
2253, Leng, et al., Classification using functional data analysis for temporal gene expression
data, Bioinformatics, Vol. 22, No. 1, Oxford University Press (2006), pp. 68-76, all of which

are incorporated by reference in their entirety herein.

[0087] Embodiments may employ graphics processing unit (GPU) accelerated architectures that
have found increasing popularity in performing machine learning tasks, particularly in the
form known as deep neural networks (DNN). Embodiments of the disclosure may employ
GPU-based machine learning, such as that described in GPU-Based Deep Learning
Inference: A Performance and Power Analysis, NVidia Whitepaper, November 2015, Dahl,
et al., Multi-task Neural Networks for QSAR Predictions, Dept. of Computer Science, Univ.
of Toronto, June 2014 (arXiv:1406.1231 [stat. ML]), all of which are incorporated by
reference in their entirety herein. Machine learning techniques applicable to embodiments of
the disclosure may also be found in, among other references, Libbrecht, et al., Machine
learning applications in genetics and genomics, Nature Reviews: Genetics, Vol. 16, June
2015, Kashyap, et al., Big Data Analytics in Bioinformatics: A Machine Learning
Perspective, Journal of Latex Class Files, Vol. 13, No. 9, Sept. 2014 (arXiv:1506.05101),
Prompramote, et al., Machine Learning in Bioinformatics, Chapter 5 of Bioinformatics
Technologies, pp. 117-153, Springer Berlin Heidelberg 2005, all of which are incorporated

by reference in their entirety herein.
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[0088] GSEA for strain optimization — Learning new ontological classes

[0089] In embodiments, GSEA may be used in the context of a strain optimization problem to
learn novel ontological classes based on a set of historical data, and to use those learned
classes to predict new candidate changes that are likely to improve performance. GSEA may
be used to determine target genes, and it may also be combined with other information (such
as knowledge of optimum promoter strength levels) to select the modifications to be

performed.

[0090] Embodiments of the disclosure make predictions for untested genes. For instance, the
present strain optimization project made use of human experts-to prioritize the genome into
four shells, consisting of 26, 81, 415, and 2107 genes. Currently the first three shells are
complete, and approximately one half of the last (fourth) shell has been completed. The last
shell represents the remaining ~80% of the genome that was not obvious to a human expert
as important to optimizing the target yield and productivity phenotypes. However, progress
to date through the last shell by the assignee of the invention has resulted in numerous useful
phenotypic improvements, and thus better prioritizing these genes is a priority. “Progress”
here refers to the fraction of Shell 4 genes that have actually had modifications applied to
them. The correspondence of enriched GO slims from Table 2 to the human-defined shells is

given in Figure 7.

[0091] Figure 7 illustrates a breakdown of genes in the enriched GO Slims of Table 2, by

correspondence to human prioritized shells of all genes in a strain genome of interest.

[0092] Under one approach, embodiments of the disclosure prioritize the last shell by focusing
on those GO slims that are highly represented in the last shell. Examples from Figure 7
include “DNA binding,” “DNA metabolic processes,” and “response to stress.” Thus,
embodiments of the disclosure prioritize the application of gene modifications to genes

within those GO slims before performing gene modifications on genes in other GO slims.

[0093] Embodiments of the disclosure may also consider where useful modifications have

previously come from. For example, Figure 8 shows which human-designed shells include
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the modifications to date judged to be “hits” (candidate phenotypic improvements above

noise) that correspond to the GO slims shown in Figure 8.

[0094] Figure 8 illustrates the breakdown of the subset of genes in enriched GO slims whose
modification via promoter swap has been demonstrated to improve a desired phenotype, by
correspondence to human prioritized shells of all genes in the exemplary strain genome of

interest.

[0095] Embodiments of the disclosure consider those GO slims that have led to useful
improvements in Shell 4 as likely to continue to produce useful improvements. Examples
from Figure 8 include “DNA metabolic process” and “response to stress.” These two GO
slims represent 91 genes, 46 of which have previously been targets of modification; the

remaining 45 genes can thus be considered high priority targets for the next phase.

[0096] Embodiments of the disclosure employ machine learning approaches to evaluate the

utility of the above approach retrospectively. An example process is:

e Split historical data into training and test sets

e Compute per-class enrichment probability using the fraining data set, e.g., using
GSEA.

e Predict enrichment probability for all gene class instances not present in the training
set (1.e., the test data set).

e Compare predicted vs. observed per-class enrichment probabilities with respect to the
test data set.

¢ Tune any hyperparameters, e.g., decision tree parameters in an ML algorithm, as
needed.

[0097] Online learning

[0098] In consideration of the above, embodiments of the disclosure may initially prioritize
genes as candidates for modification, categorized into shells, in the following descending

order:

1. Genes identified as targets by FBA or another metabolic model, or combination thercof
(including metabolism maps and literature consulted by expert humans)
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2. GO slims identified as useful in previous genome-wide metabolic optimization projects
efforts that seem applicable (e.g., DNA metabolism, gene regulation, stress response), as well
as any GO slims judged likely to be important by expert humans

3. Other genes

[0099] After the initial shells have been completed and some progress has been made in the last
shell, embodiments of the disclosure may iteratively perform an automated GSEA or other
analysis, and re-prioritize the remaining final-shell genes. In embodiments, the prioritization
engine may rely on experimental outcomes to force the weighting of certain features in the
prediction algorithm. For example, weights may be assigned to the following gene sets in the

following order from heaviest to lightest weighting:

1. Genes in enriched GO slims that have previously generated useful improvements from
among final-shell genes

2. Genes in enriched GO slims that are well-represented in the final shell

3. Other genes in enriched GO slims

4. Other genes

[00100] In embodiments, medium-strength promoter swaps may be attempted first,
followed by strong promoters, with weak promoters receiving the lowest priority. Note also
that in cases where a gene belongs to multiple classes, either because classes are overlapping
or because multiple classification systems have been employed, a weighted predicted
performance can be assigned for each gene based on the combination of predicted
performance pertaining to each of the classes to which it belongs. Weighting the predicted
performance would affect the corresponding prioritization accordingly. In the simplest case,
the mean class-based predicted performance of each gene could be used. Another example
would be a mean class-based predicted performance weighted according to the size or known

utility of each relevant class.

[00101] As new sets of gene modifications are predicted, applied and tested, data can be
collected about which classes of modifications are most useful, which can then be fed back in
“online” fashion to prioritizing the next round of modifications. In more algorithmic terms,
GSEA models can be iteratively updated via Thompson sampling to efficiently learn the
most relevant (i.e., hit-enriched) ontological classes, as described below. This technique
adjusts the proportional sampling of classes based upon past per-class success (e.g.,

performance improvement hits).
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¢ Assume an ontology O of classes C; and a mapping between ontology classes and
genes. Assume per-cycle strain-build capacity N (e.g., number of strains built per cycle)

e Initialize
o j=0. Here j is the main while loop counter.
O Jmaxthe maximum number of runs to perform.

o prior ontology class expected enrichment rates P;(C;), where j is the iteration and i is
the index identifying the ontology class, based upon prior knowledge from
experimental data, other techniques such as the FBA or other metabolic models, or
other techniques discussed above with respect to initial prioritization.

o strain performance goal yqoa= 0, and current parent strain performance yu = 0, as the
baseline, k represents the k'™ strain built in round j.

e While max(yijx) < ygoal OF j < Jmax

o Sample N genes g at random from ontology classes C; in proportion to P;y(C;). That is,
perform Thompson Sampling from the ontology classes. Sampling may be performed
with or without replacement. One skilled in the art may recognize that other learning
policies such as the Knowledge Gradient policy may alternatively be employed.

o Apply one of the gene perturbation techniques, such as promoter swapping, targeting
genes gy identified in the previous step. This results in new strains s

o Measure the phenotypic performance of the new strains: yje = f{sj)

o Determine updated ontology class enrichment rate Pj+1(C;i) based on new
measurement results using GSEA or other techniques described above.

o Incrementj = j+/

[00102] According to embodiments, referring to Figure 9, the prioritization engine
accesses first phenotypic performance data based at least in part upon first gene
modifications made to a first set of genes in at least one microbial strain (902); predicts
second, predicted phenotypic performance of second gene modifications based at least in part
upon the first phenotypic performance data and at least one modification feature that is
common to the first gene modifications and the second gene modifications (904); and
prioritizes the second gene modifications to be applied to a second set of genes based at least
in part upon the second phenotypic performance (906). Based at least in part upon the
prioritizing, second gene modifications may be applied to genes within at least one microbial
strain. A modification feature is a parameter considered to be of possible utility in predictive
modeling, e.g., machine learning. Modification features may be expressed as categorical
features (e.g., a type), continuous (e.g., a number), or ordinal features (e.g., discrete groups,

such as better or worse).
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[00103] The prioritization engine may iteratively update prioritization of subsets of the
second gene modifications to be applied to subsets of genes within the second set of genes
based upon phenotypic performance data observed from iterative application of one or more

gene modifications of the second gene modifications to genes within the second set of genes.

[00104] In embodiments, the prioritization engine may obtain updated first, observed
phenotypic performance data based at least in part upon application of one or more gene
modifications of the second gene modifications to genes within the second set of genes (908),
and predict updated second phenotypic performance of a subset of the second gene
modifications based at least in part upon the updated first phenotypic performance data (904).
The prioritization engine may then update the prioritization of the subset of the second gene
modifications to be applied to a subset of genes within the second set of genes based at least
in part upon the updated second phenotypic performance (906). Note that the application of
one or more gene modifications of the second gene modifications to genes within the second
set of genes effectively moves those modified genes from within the second set of genes to
the first set of genes, for which performance data may now be obtained, according to
embodiments of the disclosure. According to embodiments of the disclosure, any
combination of the embodiments described herein may be used to produce microbial strains
using the prioritized genetic modifications. According to embodiments of the disclosure, a
microbial strain is produced to comprise a first gene modification applied to a gene in the
first set of genes. According to embodiments, such a microbial strain may further comprise a
second gene modification that is prioritized above a threshold prioritization and applied to at
least one gene in the second set of genes, wherein the applied gene modification is prioritized
higher in response to the prioritization being based on the predicted updated second
phenotypic performance than in response to being based on the predicted second phenotypic

performance.

[00105] According to embodiments of the disclosure, the gene modifications and the at
least one modification feature may relate to the genes to be modified or to the types of
modifications to be made to those genes. For example, the at least one modification feature
may include class, including ontological class, such as class related to GO classification, or

the type of modification, such as a promoter swap (e.g., a promoter modification, including
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insertion, deletion, or replacement of a promoter), or a SNP (single nucleotide
polymorphism) swap (e.g., a single base pair modification, including insertion, deletion or

replacement of a single base pair).

[00106] The modification feature may be related to the strength of the promoter, such as
weak, strong, or medium strength. Experiments by the inventors have shown instances where
medium strength promoters generated a greater likelihood of performance (e.g., yield,
productivity) improvement by the microbial strain than did weak or strong promoters. Thus,
the prioritization engine may weight medium-strength promoters more heavily than strong or
weak promoters into the predicted phenotypic performance. In embodiments of the
disclosure, the prioritization engine may weight weak promoters less heavily than strong and

medium-strength promoters.

[00107] In general, the prioritization engine may weight known beneficial effects more
heavily into the predicted phenotypic performance than lesser effects. Conversely, in
embodiments the prioritization engine may assign low weighting to known negative or less
beneficial effects in the predicted phenotypic performance than more beneficial effects. As
another example, in embodiments predicting second phenotypic performance of second gene
modifications is based at least in part upon at least one modification feature including
modifications of one or more types (€.g., promoter swap, SNP swap) to at least two genes in
a strain. In this manner, the method accounts for epistatic effects arising from the phenotypic
effects of making two or more gene modifications to the same strain. In such embodiments,
predicting may more heavily weight, into the predicted phenotypic performance,

modifications of one or more types that yield positive epistatic effects.

[00108] In embodiments, the at least one modification feature includes different levels of
abstraction within a gene ontology classification. In embodiments, the at least one
modification feature includes classification based upon metabolic network. In embodiments,
the second set of genes includes no genes within the first set of genes. In embodiments, genes
within the second set of genes are each a member of multiple classes, and a composite
performance prediction for a given gene can be generated from the combination of

predictions applying to each class to which it belongs. In embodiments, genes within the
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second set of genes share membership in at least one common class, and such genes are all
assigned the same predicted performance if the common class is the only class to which each
gene belongs. In embodiments, genes within the second set of genes may each be a member
of only a single class. In embodiments, genes in the first and second sets may share class

membership with each other and such genes may each belong to multiple classes.

[00109] In embodiments, the at least one modification feature includes first ontological
classes from a first classification system and second ontological classes from a second
classification system. If, for example, a gene is a member of multiple classes from different
classification systems (e.g., GO, KEGG, gene or gene-product sequence similarity, protein
domain) and those classes have been observed or predicted to yield performance
improvements, then the the prioritization engine may favorably weight the predicted
phenotypic performance of that gene as a candidate for modification (thereby increasing its

chance of being assigned a high priority), according to embodiments of the disclosure.

[00110] In embodiments, the at least one modification feature includes a characteristic of
the product produced by at least one microbial strain. For example, the characteristic of the
product may be related to the same metabolic pathway or ontological class. If the first set or a
gene from the first set are associated with a performance improvement, then it is likely that a
gene from the second set along the same metabolic pathway or within the same ontological
class would also give rise to a performance improvement. Thus, the the prioritization engine
may favorably weight the predicted phenotypic performance of that gene as a candidate for
modification (thereby increasing its chance of being assigned a high priority), according to

embodiments of the disclosure.

[00111] Alternatively, if multiple strain-product combinations are used as modification
features of phenotypic performance data, characteristics of the product may be used to weight
the relevance of data relating to an input strain-product combination to the target strain-
product combination. Inputs that share more characteristics with the target product are more
likely to yield useful predictions. In embodiments, those product characteristics may include

number of constituent atoms, structure, atomic content, being produced from closely related
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(either by content or distance to nearest common precursor) metabolic pathways, or the like,

with the first product.

[00112] In embodiments, the prioritization engine may employ machine learning using
genes from the first set of genes as a training set in a machine learning predictive model to

predict the second phenotypic performance of the second gene modifications.

[00113] In embodiments, the prioritization engine may predict second phenotypic
performance by predicting per-class enrichment probabilities for the second gene
modifications based at least in part upon the first, observed phenotypic performance data, and
prioritizing the second, predicted gene modifications based at least in part upon a ranking of
the predicted per-class enrichment probabilities. In embodiments of the disclosure, the
prioritization engine may prioritize at least one candidate gene for testing within a class if the

predicted enrichment for the class exceeds a threshold enrichment.

[00114] In embodiments, the at least one modification feature relates to a characteristic of
microbial strain. Such features may include phylogenetic or taxonomic features, including
genomic sequence similarity, domain (Archaea, Bacteria, or Eukarya), Gram positive or
negative (for the bacteria), genus, species, and the like; ecological and physiological features,
including features of the native environment (e.g., pH, temperature, salinity, pressure),
metabolic features (e.g., preferred growth substrates, possible growth substrates, waste
products), and the like; or other features. For example, if a modification to a set of genes in a
first strain provides a performance improvement, then it is likely that a similar modification
to a similar set of genes in a similar, second strain would also give rise to a performance
improvement. “Similar set of genes” here may be defined as, e.g., genes belonging to the
same gene ontology class, belonging to a metabolic pathway having the same product,
sequence similarity, similarity in expression profile or regulation, or the like. “Similar”
strains may be characterized by phylogentic similarity, similarlity in genetic lineage; whether
the strains are prokaryotic or eukaryotic, consume similar feedstock, produce the similar
metabolites, or are similar in other modification features. Thus, the method may favorably

weight the predicted phenotypic performance of genes within that similar set in the second
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strain as candidates for modification by the same or a similar modification, according to

embodiments of the disclosure.

[00115] In embodiments, the second set of genes resides within at least one microbial
strain different from the at least one microbial strain in which the first set of genes resides. In
those embodiments and others, the first phenotypic performance data may relate to at one or
more characteristics of a first product produced by the at least one microbial strain, and the
second, predicted phenotypic performance may relate to one or more characteristics of a
second product that is different from the first product, and produced by the same strain or
another strain sharing common features. In embodiments, the second product may share
common features, such as number of constituent atoms, structure, atomic content, being
produced from closely related (either by content or distance to nearest common precursor)

metabolic pathways, or the like, with the first product.

[00116] Figure 12 is a diagram that serves as a guide to the layout of the table segments of
Figures 12A-12L. Figures 12A-12L together form a table of experimental data illustrating
attributes involved in the production of particular amino acid in a particular microbial host
organism. (The table can also be pieced together without the guide of Figure 12 by reference
to the row and column numbers in each of Figures 12A-12L.) Reading across the column
headings (identified in parentheses) for any row, one can see the change (A) (identified by a
change identifier) that affects the host gene (C), under standard nomenclature (also identified
by locus_id (B) under ngcl nomenclature referenced in M. Ikeda, et al., The Corynebacterium
glutamicum genome: features and impacts on biotechnological processes, Appl Microbiol
Biotechnol. 2003 Aug; 62(2-3):99-109. Epub 2003 May 13, incorporated by reference in its
entirety herein), the type of change (D) (e.g., deletion, promoter swap (“proswp”), start
codon swap (“scswp”), replacement (“gene_repl”))(most are promoter swaps), the shell
number (E), and the shell subclass (F) (e.g., on-pathway, transport, other, TCA, transcription,
PTS). Shells 3 and 4 are generally off the biosynthetic pathway. Shell subclass “other”
generally corresponds to an unexpected, off-pathway result that may be of interest for further
exploration because there is no known biological relationship between the change and the
product of interest. Other shell subclasses (some of which are recited in the table of Figures

12A-L) are explained below:
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[00117] on-pathway: on the biosynthetic pathway to the product

[00118] transport: ion channels, transporters, and other proteins responsible for transport

of molecules in and out of the cell

[00119] transcription: transcription factors and other transcriptional regulators

[00120] TCA: tricarboxylic acid cycle, also known as the citric acid cycle

[00121] PTS: phosphotransferase system, responsible for importing sugars into bacteria
[00122] For a particular change (A), the table shows the change in productivity (G) in

units of grams/liter/hour and the change in yield (H), the percentage weight ratio in units of

grams glucose/grams of product of interest x 100.

[00123] The promoter (I) identifies the promoter that replaces the native promoter of the
gene affected by the change (A). The identifier in the table of the replacement promoter (1)
references the gene from which the replacement promoter was derived. If “native” is

indicated, then no replacement was made.

[00124] The protein names (J) identify the protein made by the gene that was modified
(e.g., an enzyme that was increased by a promoter change). Note that the protein made is
generally not the product of interest, but rather a protein made by the organism that is

affected by the change.

[00125] Column K lists the “GO Terms” associated with the genes that were affected by
the changes. As discussed elsewhere herein, the GO Terms associated with Shells 3 and 4 are

of particular interest for further exploration as high priority targets for potential modification.

[00126] A list of the Shell 4 GO Terms from the table of Figures 12A-L follows:
[00127] de novo CTP biosynthetic process,

[00128] 3-isopropylmalate dehydratase activity,

[00129] 4 iron,
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[00130]

[00131]

[00132]

[00133]

[00134]

[00135]

[00136]

[00137]

[00138]

[00139]

[00140]

[00141]

[00142]

[00143]

[00144]

[00145]

[00146]

[00147]

[00148]

[00149]

4 sulfur cluster binding,

ATP binding,

DNA binding,

DNA topoisomerase activity,

DNA topoisomerase type I activity,

DNA topological change,

DNA-templated,

L-aspartate:2-oxoglutarate aminotransferase activity,

L-phenylalanine:2-oxoglutarate aminotransferase activity,

NADH dehydrogenase activity,

UMP kinase activity,

acetolactate synthase activity,

adenylate cyclase activity,

alcohol dehydrogenase (NAD) activity,

amino acid binding,

aromatic compound biosynthetic process,

biosynthetic process,

branched-chain amino acid biosynthetic process,

cAMP biosynthetic process,

catalytic activity,
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[00150]

[00151]

[00152]

[00153]

[00154]

[00155]

[00156]

[00157]

[00158]

[00159]

[00160]

[00161]

[00162]

[00163]

[00164]

[00165]

[00166]

[00167]

[00168]

[00169]

cellular amino acid biosynthetic process,

cellular component organization or biogenesis,

cellular macromolecule biosynthetic process,

cellular nitrogen compound biosynthetic process,

cellular process,

chromosome organization,

codon specific,

cyclic nucleotide biosynthetic process,

heterocycle biosynthetic process,

intracellular signal transduction,

ion transport,

iron-sulfur cluster binding,

isomerase activity,

kinase activity,

leucine biosynthetic process,

lyase activity,

metabolic process,

metal ion binding,

nucleotide binding,

nucleotide phosphorylation,
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[00170]

[00171]

[00172]

[00173]

[00174]

[00175]

[00176]

[00177]

[00178]

[00179]

[00180]

[00181]

[00182]

[00183]

[00184]

[00185]

[00186]

[00187]

[00188]

[00189]

organic acid biosynthetic process,

oxidation-reduction process,

oxidoreductase activity,

phosphorus-oxygen lyase activity,

phosphorylation,

potassium ion transport,

proteolysis,

purine-containing compound metabolic process,

pyridoxal phosphate binding,

pyrimidine nucleotide biosynthetic process,

pyrimidine-containing compound metabolic process,

regulation of cellular biosynthetic process,

regulation of transcription,

sequence-specific DNA binding,

serine-type endopeptidase activity,

signal transducer activity,

signal transduction,

small molecule metabolic process,

transaminase activity,

transcription,
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[00190] transcription factor activity,

[00191] transferase activity,

[00192] translation,

[00193] translation release factor activity,

[00194] translational termination,

[00195] transport,

[00196] uridylate kinase activity,

[00197] DNA metabolic process,

[00198] biosynthetic process,

[00199] cellular amino acid metabolic process,

[00200] metabolic process,

[00201] nucleobase-containing compound metabolic process,
[00202] translation,

[00203] transport.

[00204] Figure 10 illustrates a cloud computing environment according to embodiments of

the present disclosure. In embodiments of the disclosure, the prioritization engine software
1010 may be implemented in a cloud computing system 1002, to enable multiple users to
prioritize gene modifications according to embodiments of the present disclosure. Client
computers 1006, such as those illustrated in Figure 7, access the system via a network 1008,
such as the Internet. The system may employ one or more computing systems using one or
more processors, of the type illustrated in Figure 7. The cloud computing system itself
includes a network interface 1012 to interface the software 1010 to the client computers

10010 via the network 1008. The network interface 1012 may include an application
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programming interface (API) to enable client applications at the client computers 1006 to
access the system software 1010. In particular, through the API, client computers 1006 may

access the prioritization engine.

[00205] A software as a service (SaaS) software module 1014 offers the system software
1010 as a service to the client computers 1006. A cloud management module 10110 manages
access to the system 1010 by the client computers 1006. The cloud management module
1016 may enable a cloud architecture that employs multitenant applications, virtualization or

other architectures known in the art to serve multiple users.

[002006] Figure 11 illustrates an example of a computer system 1100 that may be used to
execute program code stored in a non-transitory computer readable medium (e.g., memory)
in accordance with embodiments of the disclosure. The computer system includes an
input/output subsystem 1102, which may be used to interface with human users and/or other
computer systems depending upon the application. The I/O subsystem 1102 may include,
¢.g., a keyboard, mouse, graphical user interface, touchscreen, or other interfaces for input,
and, e.g., an LED or other flat screen display, or other interfaces for output, including
application program interfaces (APIs). Other elements of embodiments of the disclosure,
such as the prioritization engine may be implemented with a computer system like that of

computer system 1100.

[00207] Program code may be stored in non-transitory media such as persistent storage in
secondary memory 1110 or main memory 1108 or both. Main memory 1108 may include
volatile memory such as random access memory (RAM) or non-volatile memory such as
read only memory (ROM), as well as different levels of cache memory for faster access to
instructions and data. Secondary memory may include persistent storage such as solid state
drives, hard disk drives or optical disks. One or more processors 1104 reads program code
from one or more non-transitory media and executes the code to enable the computer system
to accomplish the methods performed by the embodiments herein. Those skilled in the art
will understand that the processor(s) may ingest source code, and interpret or compile the

source code into machine code that is understandable at the hardware gate level of the
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processor(s) 1104. The processor(s) 1104 may include graphics processing units (GPUs) for

handling computationally intensive tasks.

[00208] The processor(s) 1104 may communicate with external networks via one or more
communications interfaces 1107, such as a network interface card, WiFi transceiver, etc. A
bus 1105 communicatively couples the I/0 subsystem 1102, the processor(s) 1104,
peripheral devices 1106, communications interfaces 1107, memory 1108, and persistent
storage 1110. Embodiments of the disclosure are not limited to this representative
architecture. Alternative embodiments may employ different arrangements and types of

components, ¢.g., separate buses for input-output components and memory subsystems.

[00209] Those skilled in the art will understand that some or all of the clements of
embodiments of the disclosure, and their accompanying operations, may be implemented
wholly or partially by one or more computer systems including one or more processors and
one or more memory systems like those of computer system 1100. In particular, the elements
of the prioritization engine and any other automated systems or devices described herein may
be computer-implemented. Some elements and functionality may be implemented locally
and others may be implemented in a distributed fashion over a network through different
servers, €.g., in client-server fashion, for example. In particular, server-side operations may
be made available to multiple clients in a software as a service (SaaS) fashion, as shown in

Figure 10.

[00210] Those skilled in the art will recognize that, in some embodiments, some of the
operations described herein may be performed by human implementation, or through a
combination of automated and manual means. When an operation is not fully automated,
appropriate components of the prioritization engine may, for example, receive the results of
human performance of the operations rather than generate results through its own operational

capabilities.
INCORPORATION BY REFERENCE

[00211] All references, articles, publications, patents, patent publications, and patent

applications cited herein are incorporated by reference in their entireties for all purposes. In
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particular, this application incorporates by reference U.S. provisional application No.
62/264,232, filed on December 07, 2015, U.S. nonprovisional application No. 15/140,296,
filed on April 27, 2016, and U.S. provisional application No. 62/368,786, filed on July 29,

2016, each of which is hereby incorporated by reference in their entirety.

[00212] However, mention of any reference, article, publication, patent, patent
publication, and patent application cited herein is not, and should not be taken as an
acknowledgment or any form of suggestion that they constitute valid prior art or form part of

the common general knowledge in any country in the world, or that they are disclose

essential matter.
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EMBODIMENTS

1. A computer-implemented method for determining modifications to apply to genes
within at least one microbial strain to improve phenotypic performance, the
method comprising:

accessing first phenotypic performance data based at least in part upon first
gene modifications made to a first set of genes in at least one microbial strain;

predicting, using a computing device, second phenotypic performance of
second gene modifications, based at least in part upon the first phenotypic
performance data and at least one modification feature that is common to the first
gene modifications and the second gene modifications; and

prioritizing, using a computing device, the second gene modifications to be
applied to a second set of genes based at least in part upon the second phenotypic
performance,

wherein, based at least in part upon the prioritizing, at least a subset of the
second gene modifications may be applied to genes within at least one microbial
strain.

2. The method of embodiment 1, wherein the at Icast one modification feature
includes ontological class.

3. The method of any one of embodiments 1 or 2, wherein the at least one
modification feature includes gene modification type.

4. The method of embodiment 3, wherein the modification type includes a promoter
swap.

5. The method of embodiment 3 or 4, wherein the modification type includes
promoter strength of promoter swaps.

6. The method of any one of embodiments 1-5, wherein the predicting more heavily
weights medium-strength promoters than strong or weak promoters.

7. The method of any one of embodiments 1-5, wherein the predicting weights weak
promoters less heavily than strong and medium-strength promoters.

8. The method of any one of embodiments 3-5, wherein the modification type is a

SNP swap.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

The method of any one of embodiments 1-8, wherein the at least one modification
feature includes modifications of one or more types to at least two genes in the at
least one strain.

The method of any one of embodiments 1-9, wherein the predicting more heavily
weights the modifications of one or more types that yield positive epistatic
effects.

The method of any one of embodiments 1-10, wherein the second set of genes
includes no genes within the first set of genes.

The method of any one of embodiments 1-11, wherein genes within a subset of
genes within the second set of genes are each a member of multiple classes, and
predicting second phenotypic performance comprises predicting a composite
second phenotypic performance based upon a combination of predicted
phenotypic performance for each of the classes to which each gene belongs.

The method of any one of embodiments 1-12, wherein genes within the second set
of genes share membership in at least one common class, and predicting
comprises assigning the same second phenotypic performance to all genes within
a common class if the common class is the only class to which such genes belong.
The method of any one of embodiments 1-13, wherein genes within the second set
of genes are each a member of only a single class.

The method of any one of embodiments 1-14, wherein at least one modification
feature includes first ontological classes from a first classification system and
second ontological classes from a second classification system.

The method of any one of embodiments 1-15, wherein the at least one
modification feature includes a characteristic of a product synthesized by at least
one microbial strain.

The method of any one of embodiments 1-16, wherein predicting second
phenotypic performance employs genes from the first set of genes as a training set
in a machine learning predictive model.

The method of any one of embodiments 1-17, wherein
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19.

20.

21.

22.

23.

24.

predicting second phenotypic performance comprises predicting per-class
enrichment probabilities for the second gene modifications based at least in part
upon the first phenotypic performance data; and
prioritizing the second gene modifications is based at least in part upon a
ranking of the predicted per-class enrichment probabilities.
The method of any one of embodiments 1-18, further comprising:
obtaining updated first phenotypic performance data based at least in part
upon application of one or more gene modifications of the second gene
modifications to genes within the second set of genes; and
predicting updated second phenotypic performance of a subset of the
second gene modifications, based at least in part upon the updated first
phenotypic performance data; and
prioritizing the subset of the second gene modifications to be applied to a
subset of the second set of genes based at least in part upon the updated second
phenotypic performance.
The method of any one of embodiments 1-19, comprising iteratively updating
prioritization of subsets of modifications of the second gene modifications to be
applied to subsets of genes within the second set of genes based upon phenotypic
performance data obtained from iterative application of one or more gene
modifications of the second gene modifications to genes within the second set of
genes.
The method of any one of embodiments 1-20, wherein the at least one
modification feature includes different levels of abstraction within a gene
ontology classification.
The method of any one of embodiments 1-21, wherein the at least one
modification feature includes classification based upon metabolic network.
The method of any one of embodiments 1-22, wherein the at least one
modification feature relates to at least one microbial strain characteristic.
The method of any one of embodiments 1-23, wherein the second set of genes
resides within at least one microbial strain different from the at least one

microbial strain in which the first set of genes resides.
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25.

26.

27.

28.

29.

30.

31.

The method of any one of embodiments 1-24, wherein the first phenotypic
performance data relates to at least one characteristic of a first product produced
by the at least one microbial strain in which the first set of genes reside, and the
second phenotypic performance relates to at least one characteristic of a second
product that is different from the first product.
The method of embodiment 25, wherein the second product is produced by at
least one microbial strain different from the at least one microbial strain in which
the first set of genes resides.
A microbial strain comprising one or more second gene modifications prioritized
according to any one of embodiments 1-26.
A microbial strain comprising a first gene modification applied to a gene in the
first set of genes of any one of embodiments 1-27.
The microbial strain of any one of embodiments 1-28, further comprising a
second gene modification that is prioritized above a threshold prioritization and
applied to at least one gene in the second set of genes.
The microbial strain of embodiment 29 wherein the applied gene modification is
prioritized higher in response to the prioritization being based on the predicted
updated second phenotypic performance than in response to being based on the
predicted second phenotypic performance.
The method of any one of embodiments 1-30, wherein the at least one
modification feature represents at least one of the following ontological classes:
de novo CTP biosynthetic process,
3-isopropylmalate dehydratase activity,
4 iron,
4 sulfur cluster binding,
ATP binding,
DNA binding,
DNA topoisomerase activity,
DNA topoisomerase type I activity,
DNA topological change,
DNA-templated,
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L-aspartate:2-oxoglutarate aminotransferase activity,
L-phenylalanine:2-oxoglutarate aminotransferase activity,
NADH dehydrogenase activity,

UMP kinase activity,

acetolactate synthase activity,

adenylate cyclase activity,

alcohol dehydrogenase (NAD) activity,

amino acid binding,

aromatic compound biosynthetic process,
biosynthetic process,

branched-chain amino acid biosynthetic process,
cAMP biosynthetic process,

catalytic activity,

cellular amino acid biosynthetic process,

cellular component organization or biogenesis,
cellular macromolecule biosynthetic process,
cellular nitrogen compound biosynthetic process,
cellular process,

chromosome organization,

codon specific,

cyclic nucleotide biosynthetic process,
heterocycle biosynthetic process,

intracellular signal transduction,

ion transport,

iron-sulfur cluster binding,

isomerase activity,

kinase activity,

leucine biosynthetic process,

lyase activity,

metabolic process,

metal ion binding,
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nucleotide binding,

nucleotide phosphorylation,

organic acid biosynthetic process,
oxidation-reduction process,
oxidoreductase activity,
phosphorus-oxygen lyase activity,
phosphorylation,

potassium ion transport,

proteolysis,

purine-containing compound metabolic process,
pyridoxal phosphate binding,

pyrimidine nucleotide biosynthetic process,
pyrimidine-containing compound metabolic process,
regulation of cellular biosynthetic process,
regulation of transcription,
sequence-specific DNA binding,
serine-type endopeptidase activity,

signal transducer activity,

signal transduction,

small molecule metabolic process,
transaminase activity,

transcription,

transcription factor activity,

transferase activity,

translation,

translation release factor activity,
translational termination,

transport,

uridylate kinase activity,

DNA metabolic process,

biosynthetic process,
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cellular amino acid metabolic process,

metabolic process,

nucleobase-containing compound metabolic process,
translation, or

transport.
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CLAIMS
What is claimed is:

1. A computer-implemented method for determining modifications to apply to genes
within at least one microbial strain to improve phenotypic performance, the
method comprising:

accessing first phenotypic performance data based at least in part upon first
gene modifications made to a first set of genes in at least one microbial strain;

predicting, using a computing device, second phenotypic performance of
second gene modifications, based at least in part upon the first phenotypic
performance data and at least one modification feature that is common to the first
gene modifications and the second gene modifications; and

prioritizing, using a computing device, the second gene modifications to be
applied to a second set of genes based at least in part upon the second phenotypic
performance,

wherein, based at least in part upon the prioritizing, at least a subset of the
second gene modifications may be applied to genes within at least one microbial
strain.

2. The method of claim 1, wherein the at least one modification feature includes
ontological class.

3. The method of any one of claims 1 or 2, wherein the at least one modification
feature includes gene modification type.

4. The method of claim 3, wherein the modification type includes a promoter swap.

5. The method of claim 3, wherein the modification type includes promoter strength
of promoter swaps.

6. The method of claim 5, wherein the predicting more heavily weights medium-
strength promoters than strong or weak promoters.

7. The method of claim 5, wherein the predicting weights weak promoters less
heavily than strong and medium-strength promoters.

8. The method of claim 3, wherein the modification type is a SNP swap.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

The method of any one of claims 1 or 2, wherein the at least one modification
feature includes modifications of one or more types to at least two genes in the at
least one strain.
The method of claim 9, wherein the predicting more heavily weights the
modifications of one or more types that yield positive epistatic effects.
The method any one of claims 1 or 2, wherein the second set of genes includes no
genes within the first set of genes.
The method of claim 2, wherein genes within a subset of genes within the second
set of genes are each a member of multiple classes, and predicting second
phenotypic performance comprises predicting a composite second phenotypic
performance based upon a combination of predicted phenotypic performance for
cach of the classes to which each gene belongs.
The method of any one of claims 2 or 12, wherein genes within the second set of
genes share membership in at least one common class, and predicting comprises
assigning the same second phenotypic performance to all genes within a common
class if the common class is the only class to which such genes belong.
The method of claim 2, wherein genes within the second set of genes are each a
member of only a single class.
The method of claim 2, wherein at least one modification feature includes first
ontological classes from a first classification system and second ontological
classes from a second classification system.
The method of claim 1, wherein the at least one modification feature includes a
characteristic of a product synthesized by at least one microbial strain.
The method of claim 1, wherein predicting second phenotypic performance
employs genes from the first set of genes as a training set in a machine learning
predictive model.
The method of any one of claims 1 or 2, wherein

predicting second phenotypic performance comprises predicting per-class
enrichment probabilities for the second gene modifications based at least in part

upon the first phenotypic performance data; and
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19.

20.

21.

22.

23.

24.

25.

prioritizing the second gene modifications is based at least in part upon a
ranking of the predicted per-class enrichment probabilities.
The method of claim 1, further comprising:
obtaining updated first phenotypic performance data based at least in part
upon application of one or more gene modifications of the second gene
modifications to genes within the second set of genes; and
predicting updated second phenotypic performance of a subset of the
second gene modifications, based at least in part upon the updated first
phenotypic performance data; and
prioritizing the subset of the second gene modifications to be applied to a
subset of the second set of genes based at least in part upon the updated second
phenotypic performance.
The method of claim 1, comprising iteratively updating prioritization of subsets of
modifications of the second gene modifications to be applied to subsets of genes
within the second set of genes based upon phenotypic performance data obtained
from iterative application of one or more gene modifications of the second gene
modifications to genes within the second set of genes.
The method of claim 2, wherein the at least one modification feature includes
different levels of abstraction within a gene ontology classification.
The method of claim 2, wherein the at least one modification feature includes
classification based upon metabolic network.
The method of claim 1, wherein the at least one modification feature relates to at
least one microbial strain characteristic.
The method of claim 1, wherein the second set of genes resides within at least one
microbial strain different from the at least one microbial strain in which the first
set of genes resides.
The method of claim 24, wherein the first phenotypic performance data relates to
at least one characteristic of a first product produced by the at least one microbial
strain in which the first set of genes reside, and the second phenotypic
performance relates to at least one characteristic of a second product that is

different from the first product.
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26.

27.

28.

29.

30.

31.

The method of claim 25, wherein the second product is produced by at least one
microbial strain different from the at least one microbial strain in which the first
set of genes resides.
A microbial strain comprising one or more second gene modifications prioritized
by the method of any one of claims 1-26.
A microbial strain comprising a first gene modification applied to a gene in the
first set of genes of claim 19.
The microbial strain of claim 28 further comprising a second gene modification
that is prioritized above a threshold prioritization and applied to at least one gene
in the second set of genes.
The microbial strain of claim 29 wherein the applied gene modification is
prioritized higher in response to the prioritization being based on the predicted
updated second phenotypic performance than in response to being based on the
predicted second phenotypic performance.
The method of claim 1, wherein the at least one modification feature represents at
least one of the following ontological classes:
de novo CTP biosynthetic process,
3-isopropylmalate dehydratase activity,
4 iron,
4 sulfur cluster binding,
ATP binding,
DNA binding,
DNA topoisomerase activity,
DNA topoisomerase type I activity,
DNA topological change,
DNA-templated,
L-aspartate:2-oxoglutarate aminotransferase activity,
L-phenylalanine:2-oxoglutarate aminotransferase activity,
NADH dehydrogenase activity,
UMP kinase activity,

acetolactate synthase activity,
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adenylate cyclase activity,

alcohol dehydrogenase (NAD) activity,

amino acid binding,

aromatic compound biosynthetic process,
biosynthetic process,

branched-chain amino acid biosynthetic process,
cAMP biosynthetic process,

catalytic activity,

cellular amino acid biosynthetic process,
cellular component organization or biogenesis,
cellular macromolecule biosynthetic process,
cellular nitrogen compound biosynthetic process,
cellular process,

chromosome organization,

codon specific,

cyclic nucleotide biosynthetic process,
heterocycle biosynthetic process,

intracellular signal transduction,

ion transport,

iron-sulfur cluster binding,

isomerase activity,

kinase activity,

leucine biosynthetic process,

lyase activity,

metabolic process,

metal ion binding,

nucleotide binding,

nucleotide phosphorylation,

organic acid biosynthetic process,
oxidation-reduction process,

oxidoreductase activity,
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phosphorus-oxygen lyase activity,
phosphorylation,

potassium ion transport,

proteolysis,

purine-containing compound metabolic process,
pyridoxal phosphate binding,

pyrimidine nucleotide biosynthetic process,
pyrimidine-containing compound metabolic process,
regulation of cellular biosynthetic process,
regulation of transcription,

sequence-specific DNA binding,

serine-type endopeptidase activity,

signal transducer activity,

signal transduction,

small molecule metabolic process,

transaminase activity,

transcription,

transcription factor activity,

transferase activity,

translation,

translation release factor activity,

translational termination,

transport,

uridylate kinase activity,

DNA metabolic process,
biosynthetic process,

cellular amino acid metabolic process,

metabolic process,

nucleobase-containing compound metabolic process,
translation, or

transport.
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A B C D E F G H
1|change locus_id |Gene |change_ |Shell [shell_ productivity_ |yield_

type subclass change change
2|ncgl1409_deletion ncgl1409 [ndh |deletion 4|other -1.20 3.86
3|pcg0007_39-phou ncgl2482 [phoU |proswp 3|transport -1.09 2.71
4|pcg0007_39-cg2766 ncgl2425 proswp 3|transcription -0.70 2.29
5|pcg0007_39-ncgl1262 ncgl1262 |leuC |proswp 4|other -0.81 2.15
6|pcg0007_39-ncgl0767 ncgl0767 |prfB |proswp 4|other -1.09 2.02
7|pcg3121-cg1081 ncgl0909 proswp 3|transport -0.31 1.89
8|pcg0007_39-azic ncgl2977 |azlC |proswp 3|transport -1.34 1.75
9|pcg0007_39-ncgl0304 ncgl0304 |topA |proswp 4|other -0.58 1.73
10|pcg0007_39-cg1349 ncgl1147 proswp 3|transport -0.82 1.44

Fig. 12A
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A [ J
1|change promoter Protein names
2|ncgl1409_deletion native NADH dehydrogenase, FAD-containing subunit
(EC 1.6.99.3)
3|pcg0007_39-phou pcg0007_39 Phosphate-specific transport system accessory
protein PhoU
4|pcg0007_39-cg2766 pcg0007_39 Transcriptional regulators
5|pcg0007_39-ncgl1262 pcg0007_39 3-isopropylmalate dehydratase large subunit (EC
4.2.1.33) (Alpha-IPM isomerase) (IPMI)
(Isopropylmalate isomerase)
6|pcg0007_39-ncgl0767 pcg0007_39 Peptide chain release factor 2 (RF-2)
7|pcg3121-cg1081 pcg3121 ABC-type transporter, ATPase component
8|pcg0007_39-azic pcg0007_39 Predicted branched-chain amino acid permease
(Azaleucine resistance)
9|pcg0007_39-ncgl0304 pcg0007_39 DNA topoisomerase 1 (EC 5.99.1.2) (DNA
topoisomerase |)
10|pcg0007_39-cg1349 pcg0007_39 Uncharacterized CBS domain-containing proteins

Fig. 12B
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A K
1|change GO Terms
2|ncgl1409_deletion metabolic process, NADH dehydrogenase activity, oxidoreductase

activity, oxidoreductase activity, oxidation-reduction process,
oxidation-reduction process

w

pcg0007_39-phou

transport, cellular process, homeostatic process, negative regulation
of biological process, transport, phosphate ion transport, cellular
phosphate ion homeostasis, negative regulation of phosphate
metabolic process

=

pcg0007_39-cg2766

nucleobase-containing compound metabolic process, heterocycle
biosynthetic process, aromatic compound biosynthetic process,
regulation of cellular biosynthetic process, cellular macromolecule
biosynthetic process, cellular nitrogen compound biosynthetic
process, DNA binding, transcription factor activity, sequence-specific
DNA binding, transcription, DNA-templated, regulation of
transcription, DNA-templated, regulation of transcription, DNA-
templated

wn

pcg0007_39-ncgl1262

cellular amino acid metabolic process, metabolic process, organic
acid biosynthetic process, 3-isopropylmalate dehydratase activity, 3-
isopropylmalate dehydratase activity, metabolic process, cellular
amino acid biosynthetic process, branched-chain amino acid
biosynthetic process, leucine biosynthetic process, leucine
biosynthetic process, leucine biosynthetic process, lyase activity,
metal ion binding, iron-sulfur cluster binding, 4 iron, 4 sulfur cluster
binding, 4 iron, 4 sulfur cluster binding

)

pcg0007_39-ncgl0767

translation, cellular component organization or biogenesis,
translation release factor activity, translation, translational
termination, translation release factor activity, codon specific

~

pcg3121-c¢g1081

unknown function, nucleotide binding, nucleotide binding, ATP
binding, ATP binding, ATP binding, ATPase activity

00

pcg0007_39-azic

unknown function

pcg0007_39-ncgl0304

DNA metabolic process, chromosome organization, DNA binding,
DNA binding, DNA topoisomerase activity, DNA topoisomerase
activity, DNA topoisomerase type | activity, DNA topoisomerase type
| activity, DNA topoisomerase type | activity, DNA topological
change, DNA topological change, isomerase activity, metal ion
binding

10

pcg0007_39-cg1349

metabolic process, catalytic activity, oxidoreductase activity, acting
on CH-OH group of donors, flavin adenine dinucleotide binding,
oxidation-reduction process

Fig. 12C
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A B C D E F G H
1|change locus_id |Gene |change_ |Shell [shell_ productivity_ |yield_
type subclass change change
11|pcg0007_39-cg1486 ncgl1261 proswp 3|transcription -0.20 1.39
12|pcg0007_39-cg1383 ncgll1179 proswp 3|transport -0.26 1.33
13|pcg3381-ncgl0743 ncgl0743 proswp 4|other -0.17 1.04
14|pcg0007_39-cg0800_539 ncgl0668 proswp 3|transcription 0.75 0.85
15|pcg0007_39-cg0725 ncgl0601 proswp 3|transcription -0.15 0.68
16|pcg0007_39-ncgl1948 ncgl1948 |pyrH |proswp 4|other -0.22 0.16
17|ncgl1223_deletion ncgl1223 |ilvH |deletion 4|other -1.03 0.13

Fig. 12D
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A I J
1|change promoter Protein names
1|pcg0007_39-cg1486 pcg0007_39 Transcriptional regulator
2|pcg0007_39-cg1383 pcg0007_39 ABC-type transporter, ATPase component
pcg3381-ncgl0743 pcg3381 Kef-type K+ transport systems, predicted NAD-
binding component
pcg0007_39-cg0800_539 pcg0007_39 Predicted transcriptional regulators
5|pcg0007_39-cg0725 pcg0007_39 Transcriptional regulators
6|pcg0007_39-ncgl1948 pcg0007_39 Uridylate kinase (UK) (EC 2.7.4.22) (Uridine
monophosphate kinase) (UMP kinase) (UMPK)
7|ncgl1223_deletion native Acetolactate synthase, small subunit (EC 2.2.1.6)
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18/24
A K
1|change GO Terms
11|pcg0007_39-cg1486 nucleobase-containing compound metabolic process, heterocycle

biosynthetic process, aromatic compound biosynthetic process,
regulation of cellular biosynthetic process, cellular macromolecule
biosynthetic process, cellular nitrogen compound biosynthetic
process, DNA binding, DNA binding, DNA binding, transcription, DNA-
templated, transcription, DNA-templated, regulation of
transcription, DNA-templated, regulation of transcription, DNA-
templated, regulation of transcription, DNA-templated

1

N

pcg0007_39-cg1383

unknown function, nucleotide binding, nucleotide binding, ATP
binding, ATP binding, ATP binding, ATPase activity

13

pcg3381-ncgl0743

transport, transport, ion transport, potassium ion transport

14

pcg0007_39-cg0800_539

unknown function, DNA binding, regulation of transcription, DNA-
templated, sequence-specific DNA binding

1

wn

pcg0007_39-cg0725

nucleobase-containing compound metabolic process, heterocycle
biosynthetic process, aromatic compound biosynthetic process,
regulation of cellular biosynthetic process, cellular macromolecule
biosynthetic process, cellular nitrogen compound biosynthetic
process, DNA binding, transcription factor activity, sequence-specific
DNA binding, transcription, DNA-templated, regulation of
transcription, DNA-templated, regulation of transcription, DNA-
templated

1

)

pcg0007_39-ncgl1948

nucleobase-containing compound metabolic process, metabolic
process, cellular process, heterocycle biosynthetic process, aromatic
compound biosynthetic process, cellular nitrogen compound
biosynthetic process, small molecule metabolic process, pyrimidine-
containing compound metabolic process, nucleotide binding, ATP
binding, pyrimidine nucleotide biosynthetic process, pyrimidine
nucleotide biosynthetic process, uridylate kinase activity, kinase
activity, phosphorylation, transferase activity, UMP kinase activity,
UMP kinase activity, 'de novo' CTP biosynthetic process, nucleotide
phosphorylation, nucleotide phosphorylation

1

~

ncgl1223_deletion

cellular amino acid metabolic process, metabolic process, organic
acid biosynthetic process, acetolactate synthase activity,
acetolactate synthase activity, metabolic process, branched-chain
amino acid biosynthetic process, amino acid binding, transferase
activity

Fig. 12F



WO 2018/226717 PCT/US2018/036096
19/24
A B C D E F G H
1|change locus_id |Gene |change_ |Shell [shell_ productivity_ |yield_
type subclass change change
18|pcg0755_promoter- ncgl1850 |oxyR |proswp 4|other 0.24 0.03
ncgl1850
19|pcg0007_39-ncgl0034 ncgl0034 proswp 4|other 0.20 -0.14
20|pcg0007_39-ncgl2449 ncgl2449 proswp 4|other -0.50] -0.33
21|pcg0007_39-cg2899 ncgl2527 proswp 3|transcription 0.29 -0.47
22|ncgl2510_deletion ncgl2510 deletion 4|other -0.43 -0.54
23|pcg0007_39-opca_4 ncgl1515 |opcA |gene_repl 4|other 0.28 -0.58
24|pcg0007_39-ptsx’ ncgl2614 |ptsX' |proswp 3|PTS 0.06] -0.58
25|pcg0755_promoter- ncgl1599 proswp 4|other 0.43 -0.84
ncgl1599

Fig. 12G
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A I J
1|change promoter Protein names
18|pcg0755_promoter- pcg0755_promoter |Transcriptional regulator

ncgl1850

19|pcg0007_39-ncgl0034 pcg0007_39 Uncharacterized membrane protein (Homolog of
Drosophila rhomboid)
20|pcg0007_39-ncgl2449 pcg0007_39 NADPH:quinone reductase and related Zn-
dependent oxidoreductases (EC 1.1.1.1)
21|pcg0007_39-cg2899 pcg0007_39 Transcriptional regulator
22|ncgl2510_deletion native PLP-dependent aminotransferases (EC 2.6.1.1)
23|pcg0007_39-opca_4 pcg0007_39 Uncharacterized BCR, stimulates glucose-6-P
dehydrogenase activity
24|pcg0007_39-ptsx’ pcg0007_39 Phosphotransferase system IIC components,
glucose/maltose/N-acetylglucosamine-specific
25|pcg0755_promoter- pcg0755_promoter |Probable transcriptional regulatory protein

ncgl1599

Cgl1663/cg1872

Fig. 12H
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A K
1|change GO Terms
18|pcg0755_promoter- nucleobase-containing compound metabolic process, heterocycle

ncgl1850

biosynthetic process, aromatic compound biosynthetic process,
regulation of cellular biosynthetic process, cellular macromolecule
biosynthetic process, cellular nitrogen compound biosynthetic
process, DNA binding, DNA binding, transcription factor activity,
sequence-specific DNA binding, transcription, DNA-templated,
transcription, DNA-templated, regulation of transcription, DNA-
templated, regulation of transcription, DNA-templated, regulation of
transcription, DNA-templated

19

pcg0007_39-ncgl0034

metabolic process, serine-type endopeptidase activity, proteolysis

20

pcg0007_39-ncgl2449

metabolic process, alcohol dehydrogenase (NAD) activity,
oxidoreductase activity, oxidoreductase activity, oxidation-reduction
process, oxidation-reduction process

2

=

pcg0007_39-cg2899

nucleobase-containing compound metabolic process, heterocycle
biosynthetic process, aromatic compound biosynthetic process,
regulation of cellular biosynthetic process, cellular macromolecule
biosynthetic process, cellular nitrogen compound biosynthetic
process, DNA binding, DNA binding, transcription factor activity,
sequence-specific DNA binding, transcription, DNA-templated,
transcription, DNA-templated, regulation of transcription, DNA-
templated, regulation of transcription, DNA-templated, regulation of
transcription, DNA-templated

2

N

ncgl2510_deletion

biosynthetic process, catalytic activity, L-aspartate:2-oxoglutarate
aminotransferase activity, transaminase activity, biosynthetic
process, transferase activity, pyridoxal phosphate binding, L-
phenylalanine:2-oxoglutarate aminotransferase activity

2

w

pcg0007_39-opca_4

unknown function

24

pcg0007_39-ptsx’

unknown function, transferase activity

2

wn

pcg0755_promoter-
ncgl1599

nucleobase-containing compound metabolic process, heterocycle
biosynthetic process, aromatic compound biosynthetic process,
regulation of cellular biosynthetic process, cellular macromolecule
biosynthetic process, cellular nitrogen compound biosynthetic
process, DNA binding, transcription, DNA-templated, regulation of
transcription, DNA-templated

Fig. 121
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A B C D E F G H
1|change locus_id |Gene |change_ |Shell [shell_ productivity_ |yield_
type subclass change change

26|pcg0007_39-tyra ncgl0223 |tyrA |proswp 3|transcription -0.18 -1.16
27|pcg3381-cg1410 ncgl1203 proswp 3|transcription 0.91 -1.70
28|pcg0755_promoter-cg2468 |ncgl2169 proswp 3|transport 0.93 -1.84
29|pcg0007_39-ncgl0306 ncgl0306 |cyaB |proswp 4|other 0.84] -3.30
30|pcg0007_39-hspr ncgl2699 |hspR |proswp 3|transcription 0.86| -5.77

Fig. 12]
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A I J
1|change promoter Protein names
26|pcg0007_39-tyra pcg0007_39 Prephenate dehydrogenase
27|pcg3381-cg1410 pcg3381 Transcriptional regulators

28

pcg0755_promoter-cg2468

pcg0755_promoter

ABC-type transporter, permease components

29|pcg0007_39-ncgl0306 pcg0007_39 Adenylate cyclase, family 3 (Some proteins
contain HAMP domain) (EC 4.6.1.1)
30|pcg0007_39-hspr pcg0007_39 Predicted transcriptional regulators

Fig. 12K
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A K
1|change GO Terms
26|pcg0007_39-tyra cellular amino acid metabolic process, metabolic process, organic

acid biosynthetic process, aromatic compound biosynthetic process,
prephenate dehydrogenase (NADP+) activity, tyrosine biosynthetic
process, prephenate dehydrogenase (NAD+) activity, oxidation-
reduction process

27

pcg3381-c¢g1410

nucleobase-containing compound metabolic process, heterocycle
biosynthetic process, aromatic compound biosynthetic process,
regulation of cellular biosynthetic process, cellular macromolecule
biosynthetic process, cellular nitrogen compound biosynthetic
process, DNA binding, DNA binding, DNA binding, transcription, DNA-
templated, transcription, DNA-templated, regulation of
transcription, DNA-templated, regulation of transcription, DNA-
templated, regulation of transcription, DNA-templated

28

pcg0755_promoter-cg2468

transport, transporter activity, transport, transport

29

pcg0007_39-ncgl0306

nucleobase-containing compound metabolic process, signal
transduction, heterocycle biosynthetic process, aromatic compound
biosynthetic process, cellular nitrogen compound biosynthetic
process, small molecule metabolic process, purine-containing
compound metabolic process, adenylate cyclase activity, signal
transducer activity, cAMP biosynthetic process, signal transduction,
cyclic nucleotide biosynthetic process, lyase activity, phosphorus-
oxygen lyase activity, intracellular signal transduction

30

pcg0007_39-hspr

regulation of cellular biosynthetic process, DNA binding, regulation
of transcription, DNA-templated

Fig. 12L
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