(19) World Intellectual Property Organization International Bureau

PCT

(43) International Publication Date 28 December 2000 (28.12.2000)

(51)	International Patent Class	sification ⁷ :	A61K 3	5/00
(21)	International Application	Number:	PCT/IT00/0	0251
(22)	International Filing Date:	16 June	2000 (16.06.2	2000)
(25)	Filing Language:		En	glish
(26)	Publication Language:		En	glish
(30)	Priority Data:RM99A00040021	l June 1999	(21.06.1999)	IT
(71)	Applicant (for all designate S.R.L. [IT/IT]; Via Nuoro,		-	DES
(77)	Inventory and			

- (72) Inventor; and
- (75) Inventor/Applicant (for US only): DE SIMONE, Claudio [IT/IT]; Via Nuoro, 12, I-00040 Ardea (IT).
- (74) Agents: CAVATTONI, Fabio et al.; Cavattoni Raimondi, Viale dei Parioli, 160, I-00197 Roma (IT).

(10) International Publication Number WO 00/78322 A2

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMBINATION OF LACTIC ACID BACTERIA AND ITS USE FOR THE PREVENTION AND/OR TREATMENT OF INFECTIONS AND INFLAMMATORY CONDITIONS

(57) Abstract: The disclosure is of a combination of lactic acid bacteria comprising: (a) a first component consisting of at least one strain of H_2O_2 -producing lactic acid bacteria; and (b) a second component consisting of at least one strain of arginine-utilizing lactic acid bacteria. The disclosure is also of the use of this combination for making a food supplement, a hygiene product or a pharmaceutical preparation for the prevention and/or treatment of infections and inflammatory conditions caused by bacteria, viruses or fungi, especially in the mouth, vagina, urethra, nose, eyes and ears.

Combination of lactic acid bacteria and its use for the prevention and/or treatment of infections and inflammatory conditions

- 5 The present invention relates to a combination of lactic acid bacteria and its use for making a food supplement, a hygiene product or a pharmaceutical preparation for the prevention and/or treatment of infections and inflammatory conditions
- 10 caused by bacteria, viruses or fungi, especially in the mouth, vagina, urethra, nose, eyes and ears.

Lactic acid bacteria are Gram-positive bacteria that produce lactic acid by the fermentation of glucose. *Streptococcus thermophilus* is also included in this definition by convention.

It is well known that strains of lactic acid bacteria that produce H_2O_2 can act as regulators of the bacterial flora in body orifices and on mucous membranes. It has been demonstrated that H_2O_2 -producing

20 lactic acid bacteria can antagonize E. coli, N. gonorrhoea, G. vaginalis, C. trachomatis, U. urealyticum and B. bivius. However, these bacteria are only of limited benefit when used in medical practice. This can be seen from the fact that

25 preparations based on lactic acid bacteria (e.g. vaginal pessaries) intended for the treatment of infections by the above microorganisms (e.g. vaginitis) are not held in high regard by doctors, who prefer to

treat their patients with antibiotics or chemotherapeutic agents.

To the best of the inventor's knowledge, no antibacterial or flora-regulating action in body 5 orifices and on mucous membranes has been attributed to arginine-utilizing lactic acid bacteria.

It has now been found surprisingly that the activity of H_2O_2 -producing lactic acid bacteria is considerably potentiated by the addition of one or more

- 10 strains of lactic acid bacteria that are capable of utilizing arginine. Arginine forms part of various small peptides found in biological fluids and it also occurs as free arginine. Many bacterial species utilize it for their own nutrition and growth.
- 15 Arginine-utilizing lactic acid bacteria can therefore deprive other, pathogenic or potentially pathogenic bacteria of a certain quantity of arginine, which - though not enough to terminate their growth - makes them more susceptible to the action of the H₂O₂ produced 20 by the lactic acid bacteria.

The present invention therefore provides a combination of lactic acid bacteria comprising:

(a) a first component consisting of at least one strain of H_2O_2 -producing lactic acid bacteria, and

25

(b) a second component consisting of at leastone strain of arginine-utilizing lactic acid bacteria.

The strain of lactic acid bacteria in component (a) is preferably chosen from a group made up of the strains of the species *Lactobacillus crispatus*,

Lactobacillus salivarius and Lactobacillus casei, while the strain of lactic acid bacteria in component (b) is chosen from a group made up of the strains of the species Lactobacillus brevis, Lactobacillus gasseri and

- 5 Lactobacillus fermentum. More especially, the strain of lactic acid bacteria in component (b) is the Lactobacillus brevis CD2 strain deposited in the DSM – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany, on February 6, 1998 with
- 10 access number DSM 11988 under the Budapest Treaty, or mutants or derivatives thereof.

The ratio of the number of bacteria in component (a) to the number of bacteria in component (b) is preferably from 1 : 100 to 100 : 1, and more 15 especially from 1 : 5 to 5 : 1, the most preferred ratio being 1 : 1.

The combination can be administered in the unit dosage form comprising from 1×10^2 to 5×10^{11} bacteria of component (a) and from 1×10^2 20 to 5×10^{11} bacteria of component (b), preferably 1×10^9 bacteria of component (a) and 3×10^9 bacteria of component (b).

The combination can also be administered in the form of tablets, sucking tablets, sweets, chewing 25 gum, gelatin capsules, pessaries, suppositories and micro-enemas, as well as pellets, dental creams and gels, denture powders, mouthwashes, dentifrices, sprays, suspensions and ointments.

According to another embodiment of the invention, the combination additionally comprises at least one other strain of lactic acid bacteria chosen from a group made up of:

- 5 Lactobacillus acidophilus, Lactobacillus buchneri, Lactobacillus casei, Lactobacillus catenaforme, Lactobacillus cellobiosus, Lactobacillus crispatus, Lactobacillus curvatus, Lactobacillus delbrueckii, Lactobacillus jensenii, Lactobacillus leichmannii,
- 10 Lactobacillus minutus, Lactobacillus plantarum, Lactobacillus salivarius, Lactobacillus brevis, Lactobacillus gasseri, Lactobacillus fermentum, Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium
- 15 breve, Bifidobacterium catenulatum, Bifidobacterium dentium, Bifidobacterium eriksonii, Bifidobacterium infantis, Bifidobacterium longum, Bifidobacterium plantarum and Streptococcus thermophilus.

The combination can also comprise vitamins, 20 quaternary ammonium bases, mineral salts, antioxidants and anti-plague agents.

The invention also relates to the use of a combination of lactic acid bacteria comprising:

(a) a first component consisting of at least one 25 strain of H_2O_2 -producing lactic acid bacteria and

(b) a second component consisting of at least one strain of arginine-utilizing lactic acid bacteria, for making a food supplement, a hygiene product or a pharmaceutical preparation for the prevention and/or

treatment of infections and inflammatory conditions caused by bacteria, viruses or fungi, especially in the mouth, vagina, urethra, nose, eyes and ears. These infections and inflammatory conditions include

- 5 gingivitis, periodontitis, mucositis and stomatitis caused by drugs and/or physical agents, Behçet's syndrome, diakeratosis of the oral cavity, glossitis, sore throat, sialadenitis, sialolithiasis, pemphigus, *Lichen planus*, Sjögren's syndrome, vaginosis,
- 10 vaginitis, urethritis, prostatitis, proctitis, otitis, conjunctivitis, rhinitis, sinusitis, leucoplakia, aphthae, herpes, and infections with *Helicobacter pilori* in the oral cavity.

The combination can also be used to advantage 15 for the treatment of the oral cavity as an oral deodorant, antiinflammatory, anti-caries and/or antiplaque agent.

The following examples serve to illustrate the various aspects of the invention in more detail but 20 should not be construed as in any way limiting the invention.

Example 1

The inhibitory effect of: H₂O₂-producing lactic acid bacteria (Component A); arginine-utilizing 25 lactic acid bacteria (Component B); and the combination of the two strains, specifically in the ratio 1 : 1 (Combination AB); on the growth of potentially pathogenic bacteria was evaluated.

PCT/IT00/00251

6

Briefly, the culture of lactic acid bacteria to be tested was first adjusted to a neutral pH, because an acidic pH itself inhibits bacterial growth. The suspension was subjected to sterile filtration, and

- 5 the filtrate was used to impregnate a number of discs of absorbent paper (30 μ l of filtrate per disc). The discs were placed on a plate of selective growth medium that had been inoculated with 0.1 ml of *Gardnerella vaginalis* (a strain which causes vaginosis and which
- 10 was isolated in a laboratory) together with a control disc that was impregnated only with 30 μ l of distilled water. After incubation for 24 h at 37°C, the inhibition of the growth of the pathogens was evaluated by measuring the diameter of the halo around the disc
- 15 in millimetres.

A second series of tests was carried out with Streptococcus mutans as the target pathogen, this species being the causative agent of dental plaque and caries.

- 20 The characterization of the bacteria as H_2O_2 producers was done by a classical benzidine peroxidase reaction, which reveals H_2O_2 -producing colonies of bacteria by a blue coloration. The activity of arginine dehydrolase was determined to evaluate the
- 25 ability of the lactic acid bacteria to utilize arginine (M.C. Manca de Nadra, Milchwissenschaft, 37 (1982) pp. 669-670].

The lactic acid bacteria were obtained from the American Type Culture Collection (ATCC), Rockville, USA.

PCT/IT00/00251

Bacterial strain Halo of inhibition (anti-G. vaginalis activity, mm) H₂O₂ producer (Component A) Lactobacillus crispatus (ATCC 39197) 75 Lactobacillus salivarius (ATCC 11741) 60 Lactobacillus crispatus + Lactobacillus salivarius 63 Arginine utilizer (Component B) Lactobacillus brevis (ATCC 14869) 0 Lactobacillus fermentum (ATCC 14931) 2 Lactobacillus brevis + Lactobacillus fermentum 0 Combination AB (ratio of A to B 1:1Lactobacillus crispatus + Lactobacillus brevis 112 Lactobacillus crispatus + Lactobacillus fermentum 100

Lactobacillus salivarius +	
Lactobacillus brevis	117
Lactobacillus salivarius +	
Lactobacillus fermentum	104

Bacterial strain	Halo of inhibition
	(anti-S. mutans
	activity, mm)
H ₂ O ₂ producer (Component A)	
Lactobacillus crispatus (ATCC 39197)	98
Lactobacillus salivarius (ATCC 11741)	102
Lactobacillus crispatus +	
Lactobacillus salivarius	99

Arginine utilizer (Component B)

Lactobacillus brevis (ATCC 14869)	0
Lactobacillus fermentum (ATCC 14931)	1
Lactobacillus brevis + Lactobacillus	
fermentum	1

Combination AB (ratio of A to B 1 : 1)

Lactobacillus crispatus +	
Lactobacillus brevis	118
Lactobacillus crispatus +	
Lactobacillus fermentum	126
Lactobacillus salivarius +	
Lactobacillus brevis	121
Lactobacillus salivarius +	
Lactobacillus fermentum	120

Example 2

Sucking tablets with the following unit composition were prepared:

5

Combination AB	4000 million		
(Lactobacillus salivarius +			
Lactobacillus brevis, ratio 1 : 1)			
Mannitol	400 mg		
Saccharin	5 mg		
Polyoxyethylene	50 mg		
Mg stearate	15 mg		
Talc	25 mg		
Silica	5 mg		

These tablets were administered to four volunteers who were told not to clean their teeth or use chewing gum during the previous week. The subjects 10 took three tablets a day for one week, after meals,

allowing the tablets to dissolve in their mouth. Clinical evaluations were performed for both the dental plaque index and the gingival plaque index.

For the dental plaque the following scoring 5 system was used on six teeth (first upper molar on the right; upper central incisor on the left; first upper premolar on the left; first lower molar on the left; lower central incisor on the right; first lower premolar on the right):

10

0 - no plaque at all no visible plaque 1 -- visible plaque 2 very obvious plaque. 3

15

The following scoring system was adopted for evaluating the gingival plaque, using the margin of the six teeth mentioned above:

20

- no inflammation 0

- slight inflammation 1

- moderate inflammation, with bleeding on 2 contact

3 marked inflammation, with a tendency to _ spontaneous bleeding.

25

The combined data obtained for the six teeth of the four volunteers were as follows:

WO 00/78322

5

20

Subject		Dental	plaque index	Gingival	plaque index
		0	7 days	0	7 days
No.	1	8	2	7	1
No.	2	9	3	10	3
No.	3	15	5	6	2
No.	4	15	7	8	3

Example 3

Four subjects with a clinical and histological diagnosis of recurrent aphthous ulcers were treated for ten days with six sucking tablets a day, whose composition is given in Example 2.

All the patients treated showed a complete 10 cure of the ulcers at the end of the ten-day course, and none of them had new ulcers during the following month.

To improve the flavour and appearance of the bacterial combination AB, suitable colouring agents and

15 sweeteners such as saccharin, mint oil and xylitol can be added, as is customary and well known to those skilled in the art.

The combination AB can be administered in the form of pellets, sweets, chewing gum, gelatin capsules, dental creams and gels, denture powders, mouthwashes,

dentifrices, tablets, pessaries, suppositories, sprays, suspensions and micro-enemas.

Example 4

Preparation of a toothpaste

Toothpaste base

5	Percentage composition:	
	Calcium phosphate dihydrate	37.5%
	Glycerol (85% in water)	30.0%
	Flavour (peppermint oil)	1.0%
	Sodium carboxymethylcellulose	1.0%
10	Purified water	20.8%
	Sodium saccharin (1% aq. solution)	2.5%
	Sodium lauryl sulphate	2.0%
	Purified water	5.2%
		100.0%
15	Composition by weight:	
	Calcium phosphate dihydrate	337.5 g
	Glycerol (85% in water)	270.0 g
	Flavour (peppermint oil)	9.0 g
	Sodium carboxymethylcellulose	9.0 g
20	Purified water	187.2 g
	Sodium saccharin (1% aq. solution)	22.5 g
	Sodium lauryl sulphate	18.0 g
	Purified water	48,8 g
		900.0 g

25

The glycerol was added to the calcium phosphate dihydrate, which had been ground and passed through a 50-mesh screen. The mixture was allowed to undergo hydration, giving a dense homogeneous paste.

The flavour (1% of peppermint oil) was added at this point.

The sodium carboxymethylcellulose was hydrated in water overnight (concentration of 4.6% in 5 purified water).

The solution of sodium saccharin was added to the resulting thick gel.

The polymer gel was poured into a mortar already containing the calcium phosphate that had been

10 hydrated with glycerol, and the components were vigorously mixed.

An approximately 28% solution of sodium lauryl sulphate in purified water was prepared separately.

15 The sodium lauryl sulphate solution was then added to the thick dicalcium phosphate paste.

The resulting thick homogeneous paste, which had good rheological properties, was mixed for a few minutes and then refined by passing it through a

20 refiner with rollers. This gave a snow-white homogeneous paste with a pleasant mint aroma.

38.5 g of lyophilized lactic acid bacteria (L. *salivarius* + *L. brevis*, 1 : 1; 10^{10} CFU/g) were passed through a 50-mesh screen and added in small

25 portions to the rest (770 g) of the above toothpaste base. The resulting homogeneous paste had a slightly pale brown colour and a mint odour.

Stearic acid

Example 5

Preparation of fast-release vaginal tablets

Vaginal tablets coated with an effervescent layer were prepared by wet granulation. The tablets

5 weighed 2100 mg each and contained 100 mg of the combination of lactic acid bacteria as the active substance.

Each vaginal tablet had the following composition:

- 10 Lyophilized and screened lactic acid bacteria $(30 \times 10^9 \text{ of } L. \text{ brevis,}$ 30 x 10 9 of *L. salivarius* and 90 x 10 9 of *L. plantarum* per gram) 100.0 mg Lactose 1368.0 mg 15 Cornstarch 246.0 mg Adipic acid 192.0 mg Sodium bicarbonate 150.0 mg Magnesium stearate 30.0 mg
- 9.0 mg 20 Colloidal silica 5.0 mg 2100.0 mg

CLAIMS

 Combination of lactic acid bacteria comprising

- 5 (a) a first component consisting of at least one strain of H_2O_2 -producing lactic acid bacteria, and (b) a second component consisting of at least one strain of arginine-utilizing lactic acid bacteria.
- Combination according to Claim 1, in
 which the strain of lactic acid bacteria in component

 (a) is chosen from a group made up of the strains of
 the species Lactobacillus crispatus, Lactobacillus
 salivarius and Lactobacillus casei, while the strain of
 lactic acid bacteria in component (b) is chosen from a
- 15 group made up of the strains of the species Lactobacillus brevis, Lactobacillus gasseri and Lactobacillus fermentum.

 Combination according to Claim 2, in which the strain of lactic acid bacteria in component
 (b) is the Lactobacillus brevis CD2 strain deposited in the DSM - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany, on February
 1998 with access number DSM 11988 under the Budapest Treaty, or mutants or derivatives thereof.

25 4. Combination according to any one of Claims 1-3, in which the ratio of the number of bacteria in component (a) to the number of bacteria in component (b) is from 1 : 100 to 100 : 1. WO 00/78322

5

PCT/IT00/00251

16

5. Combination according to Claim 4, in which the said ratio is from 1 : 5 to 5 : 1.

6. Combination according to Claim 5, in which the said ratio is 1 : 1.

7. Combination according to any one of the previous claims in unit dosage units comprising from 1×10^2 to 5×10^{11} bacteria of component (a) and from 1×10^2 to 5×10^{11} bacteria of component (b).

8. Combination according to Claim 7,
10 comprising 1 x 10⁹ bacteria of component (a) and 3 x 10⁹ bacteria of component (b).

 9. Combination according to Claim 7 or 8, in the form of tablets, sucking tablets, sweets, chewing gum, gelatin capsules, pessaries, suppositories
 15 and micro-enemas.

10. Combination according to any one of Claims 1-6, in the form of pellets, dental creams and gels, denture powders, mouthwashes, dentifrices, sprays, suspensions and ointments.

20 11. Combination according to any one of the previous claims, additionally comprising at least one other strain of lactic acid bacteria, chosen from a group made up of Lactobacillus acidophilus, Lactobacillus buchneri, Lactobacillus casei,

25 Lactobacillus catenaforme, Lactobacillus cellobiosus, Lactobacillus crispatus, Lactobacillus curvatus, Lactobacillus delbrueckii, Lactobacillus jensenii, Lactobacillus leichmannii, Lactobacillus minutus, Lactobacillus plantarum, Lactobacillus salivarius,

Lactobacillus brevis, Lactobacillus gasseri, Lactobacillus fermentum, Bifidobacterium adolescentis, Bifidobacterium angulatum, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium catenulatum,

5 Bifidobacterium dentium, Bifidobacterium eriksonii, Bifidobacterium infantis, Bifidobacterium longum, Bifidobacterium plantarum and Streptococcus thermophilus.

12. Combination according to any one of the 10 previous claims, additionally comprising vitamins, quaternary ammonium bases, mineral salts, antioxidants and anti-plaque agents.

13. Use of a combination of lactic acid bacteria comprising:

- (a) a first component consisting of at least one strain of H₂O₂-producing lactic acid bacteria; and
 (b) a second component consisting of at least one strain of arginine-utilizing lactic acid bacteria, for making a food supplement, a hygiene product or a
- 20 pharmaceutical preparation for the prevention and/or treatment of infections and inflammatory conditions caused by bacteria, viruses or fungi, especially in the mouth, vagina, urethra, nose, eyes and ears.

14. Use according to Claim 13, in which the infections and inflammatory conditions include gingivitis, periodontitis, mucositis and stomatitis caused by drugs and/or physical agents, Behçet's syndrome, diakeratosis of the oral cavity, glossitis, sore throat, sialadenitis, sialolithiasis, pemphigus, Lichen planus, Sjögren's syndrome, vaginosis, vaginitis, urethritis, prostatitis, proctitis, otitis, conjunctivitis, rhinitis, sinusitis, leucoplakia, aphthae, herpes, and infections with *Helicobacter*

5 *pilori* in the oral cavity.

15. Use according to Claim 13 or 14 for the treatment of the oral cavity as a deodorant, antiinflammatory, anti-caries and/or anti-plaque agent.