(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
28 July 2005 (28.07.2005)

—
I\

A A
L)
LWIPO>

(10) International Publication Number

WO 2005/067614 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2005/000358

(22) International Filing Date: 7 January 2005 (07.01.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/534,875 7 January 2004 (07.01.2004) US

(71) Applicant (for all designated States except US):
MAXSPEED [US/US]; 3788 Fabian Way, Palo Alto,
CA 94303 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): CHING, Wei; 160
Hanna Way, Menlo Park, CA 94025 (US).

(74) Agent: OWENS, Jonathan, O.; Haverstock & Owens
LLP, 162 North Wolfe Road, Sunnyvale, CA 94086 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

101

Requester

1 New Commitment

s st

1 New Draft

V2.1
107 E

Submit

(54) Title: A SYSTEM AND METHOD OF COMMITMENT MANAGEMENT

100

New Draft |

V1.1
n 106

V3.0 }108

Renegotiate

J:
109

57067614 A2 | IV VY0 0 0 0 O

1 Renegotiate

(57) Abstract: The present invention discloses a system for and method of managing a project that includes one or more tasks. In
one embodiment the task comprises a first task dependent on a completion of a second task. The system and method allow a user to

& display the relationship between the tasks and scheduled completion dates. Those in charge of a task can thus be held accountable.
& The system comprises a server with a memory for storing a data structure corresponding to a commitment relationship for a task
between a requester and a performer, the data structure containing task data corresponding to a commitment date for completing
the task; a first host for use by the requester; the first host configured to exchange negotiation messages containing data related to
a proposed commitment date for completing the task; and a second host for use by the performer, the second host configured to
g exchange the negotiation messages through the server with the first host.

WO 2005/067614 PCT/US2005/000358

A SYSTEM AND METHOD OF COMMITMENT MANAGEMENT

RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119(e) of the co-pending U.S.
provisional application Serial Number 60/534,875 filed on January 7, 2004, and titled
“GENESIS: A UNIFIED COMMITMENT MANAGEMENT SOFTWARE METHOD.” The
provisional application Serial Number 60/534,875 filed on January 7, 2004, and titled
“GENESIS: A UNIFIED COMMITMENT MANAGEMENT SOFTWARE METHOD” is

hereby incorporated by reference.

FIELD OF THE INVENTION
The present invention is related to the field of project management. More specifically,
the present invention is related to managing and coordinating the completion of a project

containing one or more tasks.

BACKGROUND OF THE INVENTION

When a work project is small and staff members located near one another, those in
charge of the project can easily meet with the staff members to manage work schedules and
predict when individual tasks of the project, and thus the project as a whole, is to be
completed. Problems arise when projects are larger. These larger projects generally have
more staff members assigned to the individual tasks, staff members who are often located at
geographically remote locations or who otherwise find it difficult to meet. These individual
tasks are often related, with one task depending on the completion of another. A delay in
completing one task often has a cascading effect, delaying the completion of other tasks.
Moreover, because it is more difficult to meet with these staff members, those in charge have
" aharder time managing and keeping track of which tasks are behind schedule, negotiating to
get the schedule back on track, and therefore determining how long the project is delayed.

Prior art methods of tracking completion dates for tasks in a project include getting
verbal commitments from a task leader. These individual commitments were often recorded
in meeting minutes or e-mails. Coordinating these individual commitments to determine the
completion date for an entire project was thus time consuming and inexact. When the
completion date of one task slipped, the commitment dates for all the tasks dependent on it

had to be revised. To this end, task leaders for the dependent tasks were notified and

1

WO 2005/067614 PCT/US2005/000358

meetings were scheduled. During the meetings, managers asked for new completion dates
and task leaders asked for more resources, such as money or manpower, to complete the task.
After this negotiation process, individual completion dates for all the tasks in a chain of tasks
were revised. This entire process was repeated whenever another completion date slipped.
To avoid this lengthy process, task leaders often pushed out their completion dates, to
account for any delays that may arise. The resulting artificially extended completion dates
generated inaccurate predictions for the completion of the entire project, with the resultant

disadvantages in parts procurement, inventory management, marketing analyses, and the like.

SUMMARY OF THE INVENTION

A system and method in accordance with the present invention manage one or more
tasks that must be performed to complete a project. In accordance with the system and
method, a requester of a task and a performer of the task negotiate resources and a
corresponding commitment date to complete the task. The requester, performer, and selected
third parties are able to review the status of each task, the relationship of the tasks, and
scheduled completion dates for each task. The requester, performer, and selected third parties
are also able to query data relating to the tasks and generate reports from that data. The
system and method further allow the project to be coordinated so that changes in completion
dates for various tasks trigger notification messages to those responsible for other project
tasks, allowing those involved to renegotiate scheduled commitment dates. In accordance
with the present invention, a requester, a performer, or a third party is a person, an
organization, a department, or any other entity capable of requesting, performing, or viewing
a task.

In a first aspect of the present invention, a system for managing a task comprises a
server, a first host, and a second host. The server has a memory for storing a data structure
corresponding to a commitment relationship for a task between a requester and a performer.
The data structure contains task data corresponding to a commitment date for completing the
task. The first host is for use by the requester and is configured to exchange negotiation
messages through the server with a second host for use by the performer. The negotiation
messages contain data related to a proposed commitment date for completing the task. The
second host is for use by the performer and is configured to exchange the negotiation
messages through the server with the first host. Preferably, the server couples the first host to

the second host, thereby allowing the data structure and the task data to be accessed from both

2

WO 2005/067614 PCT/US2005/000358

the first host and the second host. This structure further allows negotiation messages to be
exchanged between the first host and the second host.

In one embodiment, the negotiation messages contain data corresponding to resources
for completing the task. The resources comprise any one or more of a budget for completing
the task and a number of workers for completing the task.

In another embodiment, the server further comprises a commitment management
service for exchanging negotiation messages between the first host and the second host; a
communications component for sending real-time notifications and instant user messages
between the first host and the second host; and a database for storing the task data. The
server further comprises a first server process operatively coupled to the first host, the first
server process for exchanging information related to the task with the first host; and a second
server process operatively coupled to the second host, the second server process for
exchanging information related to the task with the second host. The first server process and
the second server process are related by the data structure.

In another embodiment, the first host comprises an executing first agent process
configured to communicate with the first server process, and the second host comprises an
executing second agent process configured to communicate with the second server process.
Preferably, the first host and the second host are configured to communicate with the
commitment management service according to HTTP and with the communications
component according to TCP/IP.

In another embodiment, the data structure comprises a first record corresponding to
the requester of the task; a second record corresponding to the performer of the task; and a
commitment record corresponding to the task.

In a second aspect of the present invention, a method of managing a task
corresponding to a commitment relationship between a requester and a performer of the task
comprises communicating between a first host corresponding to the requester and a second
host corresponding to the performer to negotiate a commitment for the task through a
commitment management service on a server; transmitting negotiation messages between the
first host and the second host to determine at least one of a completion date, required
resources, an acceptance of a negotiation message, and a declination of a commitment
relationship; storing in a database on the server a new version of task data comprising a
completion date and required resources; and repeating transmitting and storing until receiving

a message indicating either an acceptance or a declination of the commitment relationship.

3

WO 2005/067614 PCT/US2005/000358

In a third aspect of the present invention, a system for managing a project divisible
into a plurality of tasks is defined by an architecture. The architecture comprises a plurality
of objects related by a tree structure. Each object and its corresponding zero or more child
objects correspond respectively to a task and its corresponding zero or more component tasks.
Furthermore, each object and its corresponding child objects are configured for negotiating
resources and committing to a completion date of a corresponding component task.

In a fourth aspect of the present invention, a computer network for managing a project
comprising a task divisible into a plurality of tasks comprises a server executing a first
process and a second process. The first process corresponds toa requester of a task from the
plurality of tasks and the second process corresponds to a performer of the task. The server
stores an object used to display a commitment relationship between the requester and the
performer. The server further runs a commitment management service to enable the two
processes to negotiate on a completion date for completing the task. The two processes don’t
have to be running at the same time.

In a fifth aspect of the present invention, a method of managing ‘a project comprising
one or more tasks divisible into one or more final tasks comprises dividing each task into one
or more sub-tasks and negotiating with a plurality of entities each corresponding to one or
more of the sub-tasks and receiving a commitment from each of the entities for completing a
corresponding sub-task.

In a sixth aspect of the present invention, a method of managing a task comprises
dividing a first task into one or more component tasks; assigning the management of the one
or more component tasks to a corresponding one or more entities; negotiating with each of
the one or more entities a completion date for each of the corresponding tasks; and
automatically generating for display on a host system data illustrating the relationship
between the first task and each of the component tasks. |

In a seventh aspect of the present invention, a method of managing tasks relating to
persons from different organizations comprises storing on a server database commitment data
corresponding to a structure of an organization, data corresponding to employees of the
organization, and commitments between the employees; and sharing the commitment data,
thereby enabling a user on a first server to negotiate a commitment with a user on a second

SErver.

WO 2005/067614 PCT/US2005/000358

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a diagram showing negotiating steps between a requester of a task and a
performer of the task in accordance with the present invention.

Figure 2 is a data structure stored in memory and corresponding to the relationship
between the requester of the task and the performer of the task in Figure 1 in accordance with
the present invention.

Figure 3 is a portion of a database with records corresponding to the tasks associated
with writing a book.

Figure 4 is a screen shot of a display, showing the relationship between the tasks and
committed completion dates stored in the database of Figure 3.

Figure 5 shows a tree structure showing the relationship between requesters and
performers in accordance with the present invention.

Figure 6 shows a state diagram for a life cycle of a commitment in accordance with
the present invention.

Figure 7 shows a state diagram for a negotiation process shown in Figure 5 in
accordance with the present invention.

Figure 8 shows a state diagram for an execution process shown in Figure 5 in
accordance with the present invention.

Figure 9 is a diagram showing a tree structure having nodes that correspond to
requesters and performers of tasks that together produce the completion of a project in
accordance with the present invention.

Figure 10 shows a screen shot of a graphical user interface for a commitment
structure and templates in accordance with the present invention.

Figure 11 is a block diagram of two clients, each corresponding to a performer of a
task, and a server, for controlling tracking of tasks and communications between the clients in
accordance with the present invention.

Figure 12 shows a client-server architecture for managing commitments in accordance

with the present invention.

DETAILED DESCRIPTION OF THE INVENTION
A system and method in accordance with the present invention allows a project
requiring the completion of one or more tasks to be efficiently managed and tracked. In

accordance with one embodiment of the invention, parties negotiate the completion of a task,

5

WO 2005/067614 PCT/US2005/000358

including the resources needed to complete the task and a commitment date for completing
the task. Once a commitment date has been agreed to, the parties can view data showing the
relationship between the high-level tasks and any related component tasks and the completion
dates of each task.

In accordance with another embodiment, the parties can also use search terms to
generate reports used to track and otherwise manage the one or more tasks. The system is
also capable of notifying parties when a commitment date has slipped, allowing the parties to
renegotiate any affected commitment dates. The system and method of the present invention
are capable of managing projects having tasks related in complex ways such as by a tree
structure. Those in charge of the project can also select a structure or organization of the task,
defined by any one of a number of templates. Managers can thus oversee the status of an
entire project and allocate resources to bring about the most efficient and timely completion
of a project.

Figure 1 shows a diagram 100 of the steps of a negotiation process for managing a
task requested by a first entity 101 (the requester) to be performed by a second entity 102 (the
performer). In one embodiment, the requester 101 receives a first task that is divisible into
multiple tasks, each assigned to a performer. In one example, the requester 101 is a manager
of a department and the performer 102 is a member of that department. In another example,
the requester is an entire department or other organization.

Referring to Figure 1, in a step 103, the requester 101 generates a first version V0.1
and a second version V0.2 of a work (e.g., task) order, saving copies of both for future
reference. In this example, each task order V0.1 and V0.2 contains proposed terms of the
task: a description of the task (e.g., write a chapter of a document), a budget for completing
the task (e.g., $5,000), the number of workers to be assigned to the task (e.g., 2), and a date
for completing the task (e.g., January 1, 2005). The requester 101 then transmits the version
V0.1 to the performer 102, labeled on the performer 102 as V1.0. The performer receives the
task order V1.0 in the step 104.

The performer 102 is the able to accept the terms of version V1.0 of the task order or
create his own task order containing terms that he finds acceptable. For example, in the step
106, the performer 102 generates versions V1.1, V1.2, and V1.3 of the task order. Version
V1.1 contains one combination of his proposed terms: the same task (write a chapter of a
document), but with a budget of $6,000, more workers assigned to complete this task (3), and
a later completion date (February 1, 2005). In versions V1.2 and V1.3, the performer 102

6

WO 2005/067614 PCT/US2005/000358

proposes several different task orders with varying terms. The performer 102 then submits to
the requester 101 a version of his proposed task order (one of V1.1, V1.2, and V1.3). The
requester réceives this submitted task order, labeled on the requester side as V2.0, in the step
105.

As shown in Figure 1, submissions between the requester 101 and the performer 102
continue with the requester 101 generating drafts V2.1. V2.2, and V3.3 in the step 107 and
submitting a selected one of them to the performer 102. The performer 102 receives the
selected task order, labeled as V3.0 on the performer side, in the step 108. Next, in the step
110, the performer 102 generates versions V3.1, V3.2, and V3.3 in the step 110, and submits
a selected one of them to the requester 101, which the requester 101 ultimately uses to
generate versions V4.1 and V4.2 in the step 109. This negotiation process continues until
both the requester 101 and the performer 102 agree on acceptable task terms, including a
commitment date by which the performer 102 égrees to perform the task.

At the end of the negotiation process, both the requester 101 and the performer 102
are bound by (committed to) the negotiated terms: the requester 101 to supply the negotiated
resources and the performer 102 to perform the task by the committed completion date. It
will be appreciated that in other embodiments of the invention, the requester 101 does not
have to commit to supply resources; instead it is only the performer 102 who commits to
supply (e.g., complete) the task by a commitment date.

In accordance with the present invention, the requeéter 101 generates a task order,
éenerates new versions, submits task orders, and receives a task order, all on a requester host
(not shown), such as a personal computer, a personal digital assistant, or any other device that
supports a negotiation process such as described here. The performer 102 also negotiates
using a performer host (not shown) similar to the requester host. Preferably, the requester
host and the performer host are different hosts, though they may be the same host. Once the
performer 101 and the requester 102 agree on the terms of the task order, data corresponding
to the negotiation process is stored in a data structure that is accessible to both the performer
host and the requester host. Thus, users on both the performer host and the requester host can
thus access the data structure and related data and use them to generate reports showing the
relationship between the negotiated task and other tasks that together are required to complete
the project. In a preferred embodiment, such as described below, the data structure is stored
at a central location accessible to both the requester host and the performer host. In this way,

the requester host and the performer host both have the ability to display the relationship

7

WO 2005/067614 PCT/US2005/000358

between tasks, the completion date for each task, and the terms of each task. Additionally,
both the requester host and the performer host both have the ability to display reports relating
to the terms. Using these displays, managers are better able to track and otherwise manage
the completion of projects.

Figure 2 shows a memory 200 storing a structure 205 having a relationship that
mirrors the relationship between a requester 201 of a task and a performer 202 of the task.
The relationship of the structure is a simple parent-child relationship. It will be appreciated
that many relationships between a requester of a task and the performer of the task, including
one or more performers of the task’s components tasks, in accordance with the present
invention are possible. For example, in one embodiment, illustrated in Figure 8, the structure
is a tree structure, such as when one task comprises two or more component tasks. Thus,
within the tree structure, at least one task is both a child of another task and a parent to one or
more other tasks. In this and all the embodiments, each task corresponds to a user assigned to
manage or perform the task.

Figure 3 shows a database 300 for storing data related to the performance of a task
having three component tasks. The data, the structure between its elements (illustrated in
more detail in Figure 4), and the database are all able to be used, either alone or in
combination, to present to users a display depicting the relationship between tasks and
completion dates. The database 300 comprises a first row 301, a second row 302, a third row
303, and a fourth row 304. Each row contains information related to a particular task. The
database 300 also has a row 301 whose headings each describes task data: a first column 311
has the heading Task ID and stores task identifiers; a second column 312 has the heading
“Task Name”; a third column 313 has the heading “Requester”; a fifth column 314 has the
heading “Performer”; a sixth column 315 has the heading “Start” and contains start dates for
tasks; and a sixth column 316 has the heading “Finish” and contains finish dates for tasks.
The intersection of a particular row and column contains the task data for the Task ID for that
particular row. The second row 302 contains the Task ID “Task1”, the Task Name “Write
Chapter 17, the Requester “Mary”, the Performer “Bob”, the Start date “12/31/04”, and the
Finish date “2/1/05”. The third row 303 contains the Task ID “Task2”, the Task Name
“Write Chapter 2”, the Requester “Mary”, the Performer “Tim”, the Start date “12/30/04”,
and the Finish date “2/1/05”. The fourth row 304 contains the Task ID “Task3”, the Task
Name “Write Outline for Chapter 2”, the Requester “Tim”, the Performer “Teresa”, the Start
date “12/30/04”, and the Finish date “12/31/04”. Tt will be appreciated that the row 301 is

8

WO 2005/067614 PCT/US2005/000358

included merely to describe the data contained in each column of the database 300 and need
not be stored in the database 300. The row 301 is optionally stored if, for example, the
database 300 is a relational database.

In accordance with the present invention, if the Requestor Mary has a task (the parent
task) that depends on the completion of Task1 and Task2 (the component tasks of the parent
task), and Task 2 depends on the completion of Task3 (the component task of its parent task,
Task 2), the system and method of the present invention assure that the Finish dates of the
component tasks are not later than the completion date of a corresponding parent task.

In accordance with one embodiment of the present invention, a performer, a requester,
or even a third party is able to view the relationship between tasks and completion dates for
each task. Figure 4, for example, is a screen shot of a display 330 corresponding to the rows
301-304 of the database 300 and the relationship between them. The display 400 has rows
331-334 showing data corresponding to Task]1, Task2, Task3, and Task4. The display of the
data contained in the rows 331-334 is similar to that shown in the database 300 and will not
be described here. The row 331 has a “+” sign next to the entry “Mary”, indicating to a
viewer that “Mary” is a requester. The row 332 has a “-*
the row 333 has a “-“ sign next to the entry “Tim”. The rows 332 and 333 are both slightly

sign next to the entry “Bob”, and

right indented from the row 331, indicating that the Bob and Tim are both performers for the

[13K13

requestor Mary. The row 334 has a “-“ sign next to the entry “Teresa” and is slightly right
indented from the row 333, indicating that Teresa is a performer for the task requested by
Tim.

It will be appreciated that the display 400 is able to be shown to any performer of a
task or component task, any requester of a task or a component task, or any third party that is
granted permission to view the display 400. In one embodiment, the system described here
contains a user file containing a list of users and associated permissions. For example, a first
user in the user list is granted permission to view tasks and completion dates relating to the
user “Tim” but not those relating to the user “Bob”. A second user in the user list may not
have permission to view the names or status of any tasks.

Figure 5 illustrates a general structure 350 between requesters and performers and
their associated tasks, in accordance with one embodiment of the present invention. The
element 351 corresponds to a commitment CO between a requester RO and a performer PO for
completing a task. For the example illustrated in the structure 350, the performer PO

determines that to complete the task, he must get a commitment C1 from a performer P1, a

9

WO 2005/067614 PCT/US2005/000358

commitment C2 from a performer P2, and a commitment C3 from a performer P3. The
performer PO thus has two roles and two sets of negotiations: to R0, PO is a performer; and to
P1, P2, and P3, PO is a requester.

When negotiating completion dates, RO requests that PO finish CO before a date DO.
PO requests that P1, P2, and P3 finish their tasks based on the commitments C1, C2, and C3.
Thus, the completion date D1 for C1, the completion date D2 for C2, and the completion date
D3 for C3, must all come before DO.

While Figure 5 depicts a commitment tree with four elements 351-354, it will be
appreciated that smaller and larger commitment trees are able to be coordinated in accordance
with the present invention. Moreover, every participant in a commitment tree is able to use a
top-down or down-up style of completion date negotiation to ensure that a task having a
commitment is completed before an associated parent task.

As will be described in more detail below, each task is managed by a process
executing on one of a requester host, a performer host, or another host. Processes as
described herein perform, at the least, any one or more of the following functions: accepts
data to generate messages for negotiating commitments, exchanges messages with other
processes, and stores data in and retrieves data from a database. Thus, in a preferred
embodiment, when a requester host and a performer host communicate, they do so through
their respective processes. Because the requester host and the performer host also correspond
to tasks, the processes related to the requester host and the performer host are also related by
the relationship of the tasks. Thus, in the preferred embodiment, if a first task corresponds to
a parent of a second task, the corresponding first process is a parent process of the second
task.

Figure 6 shows the steps 500 for making a commitment date for the completion of a
task. First, in the step 501, the task is generated. This is done in any number of ways. For
example, a manager is presented with a graphical user interface (requester GUI) for assigning
tasks to an employee (e.g., a performer). In one embodiment, this requester GUI is generated
by a process executing on the manager’s host computer (the parent process). When the
manager assigns the task, the parent process automatically creates a process corresponding to
the employee (a child process). In one embodiment, the parent process generates an e-mail
message notifying the employee that he has been assigned the task. The parent process and
the child process are then used to exchange negotiation messages between the manager and

the employee. Other processes are used to store data related to the negotiation process and

10

WO 2005/067614 PCT/US2005/000358

commitment dates in a memory and database, such as described above in relation to Figures 2
and 3.

Again referring to Figure 5, the manager and the employee then negotiate the task
terms in the step 502 and agree on the task terms including a commitment date, binding both
the manager and the employee in the step 520. From the step 530, either the step 510 is
returned to, with the parties renegotiating the task terms, or the task is started and then, in the
step 530, executed. From the step 530, either the step 510 is returned to (again, with the
parties renegotiating), or the task is delivered to the manager in the step 540, where it is
considered completed. From the step 540, either the parties return to the step 510 (again,
with the parties renegotiating), or the finish step 545 is entered.

Figures 7 and 8 show two of the individual processes of Figure 6 in more detail. Like-
numbered elements in Figures 6-8 refer to the same process step. Figure 7 shows the start
step 501 and details of the negotiation process 510 of Figure 6. First, in the step 511, the task
order is edited by the requester. In the step 512, the task order is submitted to the performer.
If the performer agrees to the task order, the process continues to the step 520. Otherwise, the
process continues to the step 513, where the performer either alters the task order and submits
a new version of the task order to the requester in the step 514, or the performer resets the
task order by returning to the step 512, alters it, thereby generating another version of the task
order, and returns to the step 513. This sequence of resetting the task order and altering it to
create additional versions of the task order can occur any number of times. In the step 514,
the process either continues to the step 520, in which the task order is committed, or the task
order is altered and the process continues to the step 511, from which the altered version can
be reset (e.g., the editing process is aborted and the version of the task order submitted by the
requester is accepted), or the process continues to the step S12.

Figure 8 is a diagram showing the committed step 520 of Figures 6 and 7, the
executing step 530 of Figure 6, 2 more detailed illustration of the completed step 540 of
Figure 6, and the end step 545, also of Figure 6. As shown in Figure 8, when the completed
step 540 is entered, the process enters a delivered step 541. In the delivered step 541, the task
order is either accepted, and the process continues to the step 542, or the task order is
rejected, and the process returns to the executing step 530. From the accepted step 542, the
process continues to the end step 545.

As explained above, embodiments of the present invention are well suited for

managing complex projects having a plurality of tasks. In the example illustrated in Figure 9,

11

WO 2005/067614 PCT/US2005/000358

the project has several tasks that comprise component tasks. Figure 9 shows a diagram 600
depicting the relationship between tasks for selling a book, the uppermost task 605
corresponding to the task of actually selling the book. The task 605 is divided into its first
component task 610 of binding the book and its second component task 630 of marketing the
book. In other words, when the two tasks of binding the book 610 and marketing the book
630 are both complete, the book is sold, completing the task 605. What is more, the two
tasks 610 and 630 can be performed independently of one another. The task 610 is divided
into its first component task 615 and its second component task 620. The task 615 is the task
of collecting materials to bind the book, such as collecting a dust jacket and covers; the task
620 is the task of editing the book. The task 620 has its first component task 622 of writing
the chapters of the book. The task 622 has its first component task 624 and its second
component task 626. The task 624 is the task of collecting materials to draft the chapters,
such as paper and a computer running a word processing program. The task 626 is the task of
researching material for the individual chapters.

The structure of the diagram 600 is of a tree, with the uppermost task 605
corresponding to the root node of the tree. To simplify the present discussion, each of the
elements 605, 610, 615, 620, 622, 624, 626, and 630 refers to a task, a node representing
completion of the task, and an entity responsible for completing that task.

Referring to Figure 9, it will be appreciated that a node can be both a child of one
node and a parent of another. Thus, for example, the node 610 is a child of the node 605 and
is also a parent of the node 615 and of the node 620. It is also clear that the task 610 cannot
be completed until its child tasks 615 and 620 are completed: a book cannot be bound until it
is written and the binding materials obtained. Thus, a completion date for the task 610
depends on (the later of) the completion dates of the tasks 615 and 620. When scheduling the
completion date of a project, the completion date of a task is first determined and used to
determine the completion date of the task’s parent task. A change in the completion date of
any task (e.g., task 620) will ultimately change the completion date of the task’s parent (e.g.,
task 610) and thus ultimately any descendant of the task (e.g., root task 605). The completion
date of the entire project is the completion date of the root task 605.

In accordance with a preferred embodiment of the present invention, the completion
date of the project 600 is determined in a top-down manner. In this embodiment, users
corresponding to tasks in an upper branch of the tree 600 agree to a completion date for a

task. This completion date is thus imposed on users responsible for tasks corresponding to

12

WO 2005/067614 PCT/US2005/000358

lower branches in the tree 600. Thus, for example, the user responsible for the task 610 and
the user responsible for the task 620 agree on a completion date for editing the book. The
user responsible for the task 620 then negotiates with the user responsible for the task 622 on
a completion date for writing the chapters in the book. This process continues until
completion dates for each task in the project are committed to. As described in more detail
below, as part of the negotiation between two users, a parent user responsible for a parent task
proposes a completion date to its child user responsible for the child task. The child user can
agree (e.g., commit) to the proposed completion date or he can propose another completion
date. The parent user and the child user continue to negotiate until they agree on a
completion date that the child user commits to. Preferably, the completion date is bounded by
a completion date negotiated between the parent user and the parent of the parent user.

In a second embodiment, the completion date of the project 600 is determined in a
bottom-up manner. In this embodiment, users corresponding to tasks in a lower branch of the
tree 600 agree to a completion date for a task. This completion date is thus imposed on users
responsible for tasks corresponding to upper branches in the tree 600. Thus, for example, the
user responsible for the task 620 and the user responsible for the task 622 agree on a
completion date for writing chapters in the book. The user responsible for the task 620 then
negotiates with the user responsible for the task 610 on a completion date for binding the
book. The process continues from lower nodes in the tree 600 to the upper nodes until
completion dates for each task in the project are committed to.

Once completion dates for the component tasks and thus the final project are
committed to, a user may later need to revise his commitment date (e.g., to make it earlier or
later). The negotiation process is reopened, and all the completion dates depending on the
revised commitment date are also renegotiated to determine a new completion date for the
project. These renegotiations are initiated automatically. Preferably, users assigned to a
parent task of the delayed task are notified of the delay. These users are preferably notified
by e-mail, an icon displayed on a GUI generated on their host system, an audible alert, or by
some other means.

Alternatively, or additionally, resources available to a requester may change, either
increasing or decreasing. In this case, the system is configured to send a notification message
to the performer, and the requester and the performer are again able to negotiate a new
completion date that the performer will commit to.

As described below, this process of negotiation and commitment is performed using

13

WO 2005/067614 PCT/US2005/000358

processes that allow the division of a project into component tasks, the exchange of messages
containing proposals and commitments, the archiving of these messages to keep a record of
the negotiations, and the automatic updating of the completion schedules based on revised
completion dates.

In a preferred embodiment, the system of the present invention comprises a plurality
of hosts for use, for example, by performers, requesters, and third parties. A performer and a
requester use their hosts to exchange messages containing negotiating data. The performer,
the requester, and third parties use their hosts to, among other things, view commitment trees
and generate reports related to the project. In a preferred embodiment, the system also
comprises a server coupled to the performer, requester, and third party hosts. The server
stores a copy of the commitment tree and contains programs used to search data related to
tasks and generate reports. Using a server has several advantages. First, a central server
provides a central location from which third parties are able to access the commitment tree
and other data. Second, only the central server, and not the other hosts, needs the processing
power and memory for updating a commitment tree and generating reports. Third, the central
server is better able to update (e.g., coordinate) the commitment tree and related data.
Without the central server, the individual hosts would have to distribute its updates to the
commitment tree to the other hosts, difficult to coordinate, especially when the number of
hosts is large. Fourth, a central server allows processes to exchange messages using shared
memory, such as a message mailbox.

Figure 10 is a screen shot of a GUI 650 presented to a user of a system of the present
invention, such as a requester, a performer, or a third party, for managing and otherwise
coordinating tasks used to complete the project 600 shown in Figure 9. The GUI 650
comprises a first area 670, a second area 674, and a third area 675. The first area 670 depicts
the commitment tree related to the project 600. Each row of the first area 670 contains
information related to a specific task, with indentations showing the hierarchical relationship
between tasks, as described, for example, with reference to Figure 4. Each row of the first
area 670 has entries described by the titles in each column. For example, the first row of data
in the first area 670 has a first entry titled “Name” indicating that the name of this task is
“Sell 100,000 copies of book A”, a second entry titled “Requester” indicates that the person
requesting this task is “Jason”, a third entry titled “Performer” indicates that “Bill” will
perform this task, a fourth entry titled “Due Start” indicates that this task has a committed
start date of “2005-01-01”, and a fifth entry titled “Due Finish” indicates that this task has a

14

WO 2005/067614 PCT/US2005/000358

committed completion date of “2005-12-30”.

The first area 670 also contains tab buttons labeled “Task”, “Documents”,
“Resources”, and Log”. When the “Task” button is selected by a user, the task tree (such as
illustrated) is displayed. When the “Documents” button is selected, a list of documents
related to the tasks is displayed. Examples of these documents include, but are not limited to,
parts lists for a task, instructions manuals generated for a task, sales and marketing documents
for a task. When a particular document name included in the list is selected, the document is
displayed.

The first area 670 also contains a button labeled “Commitments”, which when
selected displays all the commitments stored in the system; a button labeled “Templates”,
which when selected allows a user to select the structure of (relationship between) tasks; and
a button labeled “Insert Root Commitment”, which when selected allows a user to insert a
root commitment, that is, select an overall manager of a project. The overall manager creates
the first task or set of tasks for completing a project.

The second area 674 shows all the projects that are managed by the system, one of
which is “Sell 100,000 copies of book A.” Each task shown in the second area 674 has a “+”
sign next to it, indicating that it is a parent task in a task chain. Selecting a task (by, for
example, moving a mouse pointer over it and then clicking the mouse pointer) will expand
the entry, thereby showing the child tasks associated with the parent task.

The third area 675 shows data fields and control buttons for entering and displaying
information related to the task. For example, the third area 675 shows the parent of the
current task (e.g., a task highlighted in the second area 674), the state of the task (whether the
parties are in the process of or have completed negotiating its terms), who is in control of the
task (e.g., the requester), the version of the task order, the latest version number of the task
order, the version history (showing the versions stored or submitted during the negotiation
process), general data, delivery data, and quotations, among other things. A user can also
provide comments related to the task.

Figure 11 is a block diagram showing the components of a system 800 in accordance
with one embodiment of the present invention. The system comprises a server 850 coupled to
a first host 805 (used, for example, by a manager or other requester) and a second host 825
(used, for example, by an employee or other performer). The server comprises a first client
agent 855, a message service component 885, and a workflow service component 890. The

message service 885 receives messages from a host (e.g., 805 and 825) and routes it to its

15

WO 2005/067614 PCT/US2005/000358

corresponding agent thread (e.g., 860 and 870, respectively). The workflow service
component 890 receives updates commitments to configure the commitment tree, thereby
updating the server’s 850 view of the relationships among tasks.

The first client agent 855 comprises (1) a connector 855A for connecting to the first
host 805 and the second host 825, (2) an active user list 855B containing names and login
information of users granted access to a commitment tree and related data stored on the server
850, (3) a control message transmitter 855C for transmitting control messages to hosts within
the same domain as the server 850, (4) a control message distributor for distributing control
messages to hosts outside the domain of the server 850, (5) a messenger service 685 for
queuing and otherwise controlling messages, (6) a workflow service for controlling the tasks
for a project, (7) a first agent thread 860 corresponding to the process relating to the first host
805, (8) a second agent thread 870 corresponding to the process relating to the second host
825, and (9) a third agent thread 880 corresponding to the process related to a third host (not
shown). The first agent thread 860 is exemplary of the second agent thread 870 and the third
agent thread 880. The first agent thread 860 comprises a sender component 860A for sending
messages to the first host 805 and a receiving component for receiving messages from the
first host 805.

The first host 805 is exemplary of the second host 825. The first host comprises a
client agent 810, a messenger client 811, and a workflow client 812. The client agent 810
comprises a connector 810A for connecting to the agent thread 860, a collaborator list 810B
containing the names of any employees assigned to the same task as the user on host 810, a
sender 810C, a receiver 810D, and a control message distributor 810E. The control message
distributor is configured to send messages to both the messenger client 811 and the workflow
client 812. The messenger client 811 and the workflow client 812 are both configured to
send messages to the sender 810C.

In operation, the agent threads 860, 870, and 880 each correspond to a task to be
managed by the host computers 805, 825, and a third host (not shown), respectively. The
agent threads 660, 670, and 680 (e.g., lightweight processes) are configured in a structure that
mirrors the relationships of the tasks. For example, referring to both Figures 9 and 11, if the
agent thread 860 corresponds to the process 622 (managed by a user on the host 605), the
agent 870 corresponds to the process 624 (managed by a user on the host 825), and the agent
thread 880 corresponds to the process 626 (managed by a user on a host not shown), then the

agent thread 660 will be a parent thread to the agent threads 870 and 880. Preferably, when

16

WO 2005/067614 PCT/US2005/000358

the user on the host 805 generates the tasks 624 and 625 (by, for example, completing data
fields in a graphical user interface to assigning the tasks to employees in his department), the
agenf thread 660 spawns the agent threads 870 and 880.

The components of the system 800 are able to be implemented in many ways. For
example, in one embodiment, the hosts 605 and 625 are implemented using Web services
such as the Simple Object Access Protocol (SOAP). In other embodiments, the server 650 is
implemented using the Microsoft® .NET framework, a database on the server 650 is
implemented to support ASP.NET. In still other embodiments, the hosts 605 and 625 and the
server 650 are all configured to communicate using a hyper-text transfer protocol (HTTP).

In a preferred embodiment, tasks are managed using processes or lightweight
processes (e.g., threads). Processes are configured so that their relationship mirrors that
between their corresponding tasks. As one example, a requester process on the server couples
the requester host system to the server. The process then exchanges negotiation and other
messages with a process corresponding to the performer host system. In this way, the
requester host system and the performer host system communicate.

In a preferred embodiment, when a requester accesses the server using a graphical
user interface and enters a field to assign a task to a performer, a process relating to the
requester task is automatically spawned. The relationship between the requester process (and
hence task) and the performer process (and hence) task is accordingly defined. A notification
is then transmitted from the requester process to the performer process and thus on to the
performer host system, notifying him that he has been assigned the task. The performer
process then creates a mirror process on the performer host system. The mirror process
allows the user to generate negotiation messages and the like on the performer host system.

Keeping a copy of the negotiation messages on the performer host has several
advantages. For example, a performer host system can be disconnected from the server host
for a variety of reasons, such as a broken Internet connection. The performer host system can
process negotiation commands and task order versions itself. When the connection with the
server host is reestablished, the negotiation commands and task order versions are transmitted
to the server. The performer host system is thus configured to work off line.

It will be appreciated that in other embodiments, the server 850 contains other
components, such as a document module containing documents or links (such as Web
addresses) to documents stored at remote locations. Preferably, all of the hosts and attached

servers in accordance with the present invention contain Web browsers and other modules

17

WO 2005/067614 PCT/US2005/000358

that allow them to communicate over the Internet and access documents such as those
formatted using hypertext markup language (HTML) and eXtensible markup language (XML)
and using protocols as transmission control protocol/Internet Protocol (TCP/IP).

Figure 12 shows an architecture 900 for a commitment application in accordance with
the present invention. The architecture 900 comprises server systems 901-904 and client
systems 905-913. The server system 901 is coupled to the server system 903 and the client
systems 905-907; the server system 902 is coupled to the server systems 903 and 904 and to
~ the client systems 908 and 909; the server system 903 is coupled to the server systems 901
and 902 and to the client systems 910-912; and the server system 904 is coupled to the server
system 902 and to the client system 913. It will be appreciated that server systems and client
systems can be coupled to one another in many configurations.

Each server system 901-904 stores at least three types of information: (1) information
of an organizational structure and many persons (users) inside it; (2) information of
commitments between the users, including the identities of requesters and performers,
completion dates, budgets, resources required to perform tasks, specifications relating to the
scopes of each task, and the relationship (e.g., parent-child) between commitments; and (3)
documents owned by the users and related to the commitments.

In operation, each server system 901-904 starts the client systems coupled to it. Thus,
for example, the server system 901 starts the clients 905-907 by starting a user session
between the server system and the client. During a user session, a user on a client system is
able to view and manage one or more commitments between the user and other users
identified on a GUI displayed on the client system. Each user session is able to support a user
session, potentially related to multiple commitments, not just a single one. Preferably, these
commitments are organized in a tree-like structure.

In the architecture 900, each server system 901-904 comprises a server-side
collaboration component, and each client system 905-913 comprises a client-side
collaboration component. Each server-side collaboration component and each client-side
collaboration component supports real-time communication between the server systems 901-
904 and any client system 905-913 that each is coupled to. These real-time communications
include notifications and instant user messages.

Each server system 901-904 is configured for server-to-server (peer-to-peer)

communications. Thus, each server system 901-904 is able to share person and organization

18

WO 2005/067614 PCT/US2005/000358

information with another server system, and also allows users to exchange and negotiate
commitments across server systems.

It will be readily apparent to one skilled in the art that other various modifications
may be made to the embodiments without departing from the spirit and scope of the invention

as defined by the appended claims.

19

WO 2005/067614 PCT/US2005/000358

CLAIMS
What is claimed is:
1. A system for managing a task comprising:

a. a server with a memory for storing a data structure corresponding to a
commitment relationship for a task between a requester and a performer, the
data structure containing task data corresponding to a commitment date for
completing the task;

b. a first host for use by the requester, the first host configured to exchange
negotiation messages through the server with a second host for use by the
performer, the negotiation messages containing data related to a proposed
commitment date for completing the task; and

c. a second host for use by the performer, the second host configured to exchange
the negotiation messages through the server with the first host.

2. The system of claim 1, wherein the server couples the first host to the second host,

thereby allowing the data structure and the task data to be accessed from both the first

host and the second host, and further allowing negotiation messages to be exchanged

between the first host and the second host.

3. The system of claim 1, wherein the negotiation messages contain data corresponding

to resources for completing the task.

4. The system of claim 3, wherein the resources comprise any one or more of a budget

for completing the task and a number of workers for completing the task.

5. The system of claim 1, wherein the server further comprises:

a.

a commitment management service for exchanging negotiation messages
between the first host and the second host;

a communications component for sending real-time notifications and instant
user messages between the first host and the second host; and

a database for storing the task data.

20

WO 2005/067614 PCT/US2005/000358

6.

10.

The system of claim 5, wherein the server further comprises:

a. a first server process operatively coupled to the first host, the first sever
process for exchanging information related to the task with the first host; and

b. a second server process operatively coupled to the second host, the second
server process for exchanging information related to the task with the second
host,
wherein the first server process and the second server process are related by

the data structure.

The system of claim 6, wherein the first host comprises an executing first agent
process configured to communicate with the first server process, and the second host
comprises an executing second agent process configured to communicate with the

second server process.
The system of claim 5, wherein first host and the second host are configured to
communicate with the commitment management service according to HTTP and with

the communications component according to TCP/IP.

The system of claim 1, wherein the data structure comprises:

a. a first record corresponding to the requester of the task;
b. a second record corresponding to the performer of the task; and
C. a commitment record corresponding to the task.

A method of managing a task corresponding to a commitment relationship between a

requester and a performer of the task, the method comprising:

a. communicating between a first host corresponding to the requester and a
second host corresponding to the performer to negotiate a commitment for the
task through a commitment management service on a server;

b. transmitting negotiation messages between the first host and the second host to
determine at least one of a completion date, required resources, an acceptance
of a negotiation message, and a declination of a commitment relationship;

c. storing in a database on the server a new version of task data comprising a

completion date and required resources; and

21

WO 2005/067614 PCT/US2005/000358

11.

12.

13.

14.

15.

16.

17.

d. repeating transmitting ans storing until receiving a message indicating either

an acceptance or a declination of the commitment relationship.

The method of claim 10, wherein the server further comprises a search engine for
searching through the database using search criteria and formatting a corresponding

search result for display on one of the first host and the second host.

The method of claim 10 further comprising storing on a document module coupled to

the server documents related to the task.

The method of claim 10, wherein the first host and the second host both comprise a
corresponding graphical user interface for accessing and displaying data on the

database.

A system for managing a project divisible into a plurality of tasks, the system defined
by an architecture comprising a plurality of objects related by a tree structure, wherein
each object and its corresponding zero or more child objects correspond respectively
to a task and its corresponding zero or more component tasks, and further wherein
each object and its corresponding child objects are conﬁgured for negotiating

resources and committing to a completion date of a corresponding component task.

The system of claim 14, wherein the resources comprise any one or more of a number
of employees to staff a component task and a budget for completing the component

task.

The system of claim 15, wherein each object is configured to transmit and receive
messages relating to resources, a completion date, or both for a component task

corresponding to the object.
The system of claim 16, wherein one object from the plurality of objects is configured

to automatically exchange messages with its parent object when a completion date

corresponding to the object is modified.

22

WO 2005/067614 PCT/US2005/000358

18.

19.

20.

21.

22.

23.

24.

25.

The system of claim 14, further comprising a server having a server memory, wherein

each object corresponds to a data record stored in the server memory.

The system of claim 18, wherein the server memory stores a commitment tree having
a plurality of nodes, each node corresponding to an object from the plurality of

objects, its corresponding resources, and its corresponding completion date.

The system of claim 19, wherein the server further comprises a database management
system coupled to a database, the database management system for storing into and
retrieving from the database data corresponding to each object, and further wherein
the database stores an organization structure and one or more data records, wherein

each requester and performer of an object corresponds to a data record.

The system of claim 18, further comprising a plurality of hosts, each host operatively
coupled to the server through one of a plurality of processes executing in the server

memory.

The system of claim 21, wherein each host system comprises a client portion for
receiving real-time notifications and transmitting and receiving instant user messages

related to commitments of a user on a host.

The system of claim 19, wherein the server is configured to update the commitment

tree based on the commitment between a source host and a destination host.

The system of claim 21, wherein each host is configured to perform at least one of
displaying a graphical user interface used to transmit and receive messages and

viewing a commitment tree.

The system of claim 21, wherein the server comprises a commitment management
system and a communications component, and further wherein each host is configured
to communicate with the commitment management service according to HTTP and

with the communications component according to TCP/IP.

23

WO 2005/067614 PCT/US2005/000358

26.

27.

28.

29.

30.

31.

32.

A computer network for managing a project comprising a task divisible into a
plurality of tasks, the network comprising:

a server executing a first process and a second process, the first process corresponding
to requester of a task from the plurality of tasks, the second process corresponding to
performer of the task, wherein the server stores an object used to display a
commitment relationship between the requester and the performer, and the server
further runs a commitment management service to enable the two processes to
negotiate on a completion date for completing the task. The two processes don’t have

to be running at the same time.

The computer network of claim 26, wherein the first process and the second process

are configured to run concurrently and non-concurrently.

The computer network of claim 26, wherein the server comprises a document module.

The computer network of claim 27, further comprising:
a. a first host coupled to the server by the first process; and

b. a second host coupled to the server by the second process.

The computer network of claim 29, further comprising a plurality of hosts coupled to
the server and a plurality of processes executing on the server, wherein the plurality of
hosts comprise the first host and the second host and the plurality of processes
comprise the first process and the second process, wherein each host from the
plurality of hosts is coupled to the server by a respective one of the plurality of

processes.

The computer network of claim 30, wherein each of the plurality of processes

corresponds to an actively connected user sessions.
The computer network of claim 28, wherein the first host is configured to display a

graphical user interface used to allow a first user on the first host to negotiate with a

second user on a second host.

24

WO 2005/067614 PCT/US2005/000358

33.

34.

35.

36.

37.

38.

39.

40.

A method of managing a project comprising one or more tasks divisible into one or

more final tasks, the method comprising:

a. dividing each task into one or more sub-tasks; and

b. negotiating with a plurality of entities each corresponding to one or more of
the sub-tasks and receiving a commitment from each of the entities for

completing a corresponding sub-task.

The method of claim 33, further comprising repeating dividing and negotiating until

each sub-task is a final task.
The method of claim 34, wherein at least one sub-task is also a task.

The method of claim 33, wherein negotiating with a plurality of entities comprises:

a. negotiating with each entity to receive a commitment for completing the
corresponding sub-task;

b. negotiating with a requester for a commitment for completing the project; and

c. repeating steps a through b until a completion date for each sub-task is before
a completion date for the project, and the requestor for the project has accepts

the commitment date.

The method of claim 33, wherein dividing each task into one or more sub-tasks

comprises creating one or more corresponding nodes in the commitment tree.

The method of claim 37, further comprising relating each of the created node to two

persons, one for the requester and the other for the performer.‘

The method of claim 38, further comprising storing a commitment tree corresponding

to the messages and completion dates for each of the tasks.

The method of claim 39, wherein the connection and the transmissions of messages

are both according to HTTP.

25

WO 2005/067614 PCT/US2005/000358

41.

42.

43.

44,

45.

46.

The method of claim 37, wherein negotiating comprises exchanging real-time

notifications and instant user messages.

The method of claim 33, wherein data corresponding to each node in the commitment

tree and requester and performer of the node is stored in a database.

The method of claim 39, further comprising presenting to a user on the host a

graphical user interface for transmitting and receiving messages.

A method of managing a task, the method comprising:
dividing a first task into one or more component tasks;

b. assigning the management of the one or more component tasks to a
corresponding one or more entities;

c. negotiating with each of the one or more entities a completion date for each of
the corresponding tasks; and

d. automatically generating for display on a host system data illustrating the

relationship between the first task and each of the component tasks.

The method of claim 43, further comprising:

a. renegotiating a completion date between the first task and one of the
component tasks to determine a revised completion date;

b. notifying the first task of the revised completion date; and

c. using the revised completion date to renegotiate a completion date for the first

task.

A method of managing tasks relating to persons from different organizations

comprising:

a. storing on a server database commitment data corresponding to a structure of
an organization, data corresponding to employees of the organization, and
commitments between the employees; and

b. sharing the commitment data, thereby enabling a user on a first server to

negotiate a commitment with a user on a second server.

26

PCT/US2005/000358

1/12

WO 2005/067614

€EA .
011 _I_N.m> 1814 TYA

T'EA I'YA

601

91B1039UY 4

_Im.m>
waﬁ 0€A ~— S [TeA LO1
['CTA
BI(T M2 q
CIA el MIN
901 CIA TS > 0'CA Wmoﬁ
I'TA
el MaN CO0A
701) - I'0A €01
01A - uqgns
JUQUIIUIUIO) MIN q
IQWIOJIS] 1o180nboy

o1 _\ 10T

001

WO 2005/067614

2/12

200

//

Requester

201

202

Performer

Fig. 2

PCT/US2005/000358

PCT/US2005/000358

WO 2005/067614

3/12

vO/TE/CT| $0/1€/C1 ©SAIO, wil |z widey) 1oy suIpnO AJIM | €Sl
So/1/¢| ¥0/0€/CT wiy, AN zodeyd oyum | ZIISEL
So/1/¢| ¥0/1€/Tl qog AN [1oydey) oyIp | [IseL
Usturg 11e1s IOUWLIOTId] H@umuﬂdoﬁ JuwreN JseJ, | dI>se],

91¢ 1€ v1€ 13 Ti¢ 1€

4

00¢

PCT/US2005/000358

WO 2005/067614

4/12

b "SI

7 1dey) 01
SO/LT/T| $0/1€/CT uonONPOIU] SILIM | BSISL-
SO0/1/T| ¥0/0€/C1 7 @dey) sjup | wir-
S0/1/T| ¥0/1€/CT 1 ydey) UM | qog-
§0/0Z/T| ¥0/01/C1 ATeN +

s

0ce

WO 2005/067614 PCT/US2005/000358

5/12

350

Co

RO-=P0

352 Cl /CZ\ = 354

PO—=P1 PO-—=P2 PO ->P3

353

Fig. 5

WO 2005/067614 PCT/US2005/000358

6/12
500
501 7
Create (Renegotiate)
510{ Negotiating’ ‘{/Agh(Committed)’\/520
i
(Renegotiate) (Renegotiate) | Start

C Completed li Delivety Y Executing)’\/530

540

545

Fig. 6

WO 2005/067614

510~

PCT/US2005/000358
7/12
/\} 50
(O~—so1
Create
Y _
511 Being Bdited \ Submit _/~ Submitted Agree
By Requester J '\ By Requester
A A Q
R Alt
eset er 512
Alter v v Reset
514 Submitted ~ _ Submit /~ Being Edited
By Performer J - \ By Performer
Agree 513

Fig. 7

:(Com@tted t
520

WO 2005/067614

8/12

570

el

520 530

¢ C

(Committed) Start _~ Executing)

PCT/US2005/000358

J _ :
Delivery ‘
Y Reject
(Accepted } Accept C Delivered)
542 541

~—540

@"))%545
Fig. 8

WO 2005/067614 PCT/US2005/000358

9/12
/}0 O
605
610 630
615 620
622
624 626

Fig. 9

PCT/US2005/000358

WO 2005/067614

10/12

dpyg Dzo uwwpy oMg

[]
0L9 01 "S1q
\ H A |Jusunrumo)) 300y Hosu] sojedwoy, | SIUSUBIULO))
/ <] [>]
/ A~
\ _—
/
0€-21-S00T | 10-10-500C wif| WelIm 3]00q JOMIBIA
50-20-500¢ | 10-10-5002 9]09IN] uyog S[BLISIRUIL (OIBOSaY
50-10-500¢ | 10-10-500¢ KoueN]| Kpueg| s[eLojew SunyeIp 109100
10-40-500C | 10-10-5002 BN 012D s1aydeyo o |
10-90-500Z | 10-10-500T Auog, wif 009 3IpH _
10-10-500 | 10-10-500C Auoy, suef S[eLoyEW SUIpUIq 109[J0))
Z1-10-500C | 10-10-500C uesng nd Jood purgd |
0€-21-500T | 10-10-S00C g uose[W 3j00q Jo sardod 000°001 [1°S
ysturg and | ¥e)s ang Jowroya g .—OumOSUOM QuIeN A
| 8077| soomosay | swsumoo(| yseL
BRGNS
I sjuomrtio)
10159nbay 0} S[qISIA 108IUOD I =l
G Jwmawa [f_Jwmsoa B[] 1500 -
[_Juwmawmoo A Jwmswomued (&[] osone o :
_ | 1owog1ag [| 101s0mboy | & |
G o
[v 3004 jo sardoo 000°001 11°S_ |4 lal 2] |oureN &
[
Po010J® S[qenoSoN t_ IoWIoyd © 1sonbay i ® _ m.
ad£J, 1sanboy Ioyenuy ° =g
8
[[moyejond) [edoueIoAn([[eseuen || ° @ |
° Q
[A301SIH UOISIoA | [|uomswp sy [1°0]uoiszop juerm) g
U w 2 Owo SJUBWINIOP SI[BS AeIdUDL) G H m
_ 1oysonbot se Jried _ Jonuoe) o ﬁ unen Z_ K|S syyoxd Suryoel; I0J 91eM}JOS 9SNOY-U 9JeIaUsL) O M w,
_ _ uaIed || PpaleyjIell $)00q 8103 JO IoquUInU 9Y3 35BaIoU] O H e
v V¥ jooq yo s21dod 000001 [19S Av H (&

[

{
CLY

050

WO 2005/067614 PCT/US2005/000358
11/12
800
805 850
c c
Client 310 Server
J 855
Client Agent :
& Client Agent 855A
Connector [~-810A —
; Active
Collaborator List [~810B .]
Connector User List 855B
Sender —~—810C
§§J6O
i - 860A
Recetver & \\ Agent Thread
Control -1 _310E [T Sender Control [T~855C
Message .
Co g ™ 860BT~ Receiver Messa,ge
Distributor Transmitter
870
_ c
Messenger Client Agent Thread
Workﬂo% Client Sender
1/ (Receiver
812 811 g5 \\ A
. 2 q §§0 Control L esp
Client / Message
Agent Thread .
- Distributor
Client Agent Sender
Connector Receiver
Collaborator List \
/ Sender Messenger Service —~- 885
Receiver >§
Control _
Message N / Workflow Service -~ 890
Distributor /
Messenger Client
Workflow Client

Fig. 11

WO 2005/067614 PCT/US2005/000358

12/12

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

