(12)公開特許公報(A)

(11) 特許出願公開番号

特開2009-15315

(P2009-15315A)

(43) 公開日 平成21年1月22日 (2009.1.22)

(51) Int.Cl.			FΙ			テーマコード (参考)
GO2B	5/1 8	(2006.01)	GO2B	5/18		2H249
HO1L	27/14	(2006.01)	HO1L	27/14	D	4M118
GO2B	3/08	(2006.01)	GO2B	3/08		5CO24
HO4N	<i>5/33</i> 5	(2006.01)	H O 4 N	5/335	U	

		審査請求	未請求	請求項の	D数 36	ΟL	(全	91 頁)
 (21)出願番号 (22)出願日 (31)優先権主張番号 (32)優先日 (33)優先権主張国 	特願2008-147145 (P2008-147145) 平成20年6月4日 (2008.6.4) 特願2007-148165 (P2007-148165) 平成19年6月4日 (2007.6.4) 日本国 (JP)	(71) 出願人 (74) 代理人 (72) 発明者 F <i>ターム</i> (参	000002 ソニー 東京都 1000862 弁理 戸京末社 東京会社	185 村 大 298 中 7 5 7 7 8 8 7 8 7 8 8 7 8 8 8 8 8 8 8 8	1 丁目 國則 f 1 丁目 AA18 AA64 CA04 GD04 CX35 GY31	7番1 7番1 AA33 AA65 CA32 GD10 CX41	号 メ AA44 GD20 DX01	二一株 AA55 FA33 EX43

(54) 【発明の名称】光学部材、固体撮像装置、製造方法

(57)【要約】

【課題】固体撮像装置と一体的に構成される光学レンズ が厚いことにより生じる問題を解決する。

【解決手段】光学長(レンズ長)に比べて相対的に薄く 、屈折率の大きい高屈折率層21と屈折率の小さい低屈 折率層20が光軸に対して横方向に交互に配列した交互 配置層2を設ける。高屈折率層21および低屈折率層2 0の各幅は、入射光の波長オーダーまたはそれより小さ くする。各高屈折率層20を、交互配置層2Aの機械的 な中心では密に配置し中心から離れるに従って疎になる ように、または低屈折率層20を、交互配置層2Aの機 械的な中心では粗に配置し中心から離れるに従って密に なるように、左右対称に配置して凸レンズにする。交互 配置層2Aは、光学長よりも短く、スネル則を利用した 屈折型レンズ構造のものよりも薄くできる。従来のよう な相対的に厚みのある構造のレンズで生じていた問題を 緩和・解消できる。 【選択図】図1A

(19) 日本国特許庁(JP)

(2)

【特許請求の範囲】

【請求項1】

それぞれ光学長に比べて相対的に薄い、屈折率の大きい高屈折率層と屈折率の小さい低 屈折率層が、光軸に対して横方向に交互に配列されており、

前記高屈折率層および前記低屈折率層の各幅は、入射光の波長オーダーまたはそれより小さい

- 光学部材。
- 【請求項2】
- 各前記高屈折率層は、部材の機械的な中心では密に配置され、前記中心から離れるに従って疎になるように、左右対称に配置されている

請求項1に記載の光学部材。

- 【請求項3】
- 各前記高屈折率層の幅が、部材の機械的な中心に向かって徐々に大きくなるように配置 されており、
- 各前記低屈折率層の幅が、部材の機械的な中心に向かって徐々に小さくなるように配置 されている
 - 請求項2に記載の光学部材。

【請求項4】

各前記高屈折率層の幅が、部材の機械的な中心に向かって徐々に大きくなるように配置 されており、

各前記低屈折率層が、等しい幅で配置されている

請求項2に記載の光学部材。

- 【請求項5】
- 各前記低屈折率層の幅が、部材の機械的な中心に向かって徐々に小さくなるように配置 されており、

各前記高屈折率層が、等しい幅で配置されている

請求項2に記載の光学部材。

【請求項6】

各前記高屈折率層は、部材の機械的な中心では粗に配置され、前記中心から離れるに従って密になるように、左右対称に配置されている

請求項1に記載の光学部材。

【請求項7】

各前記高屈折率層の幅が、部材の機械的な中心に向かって徐々に小さくなるように配置 されており、

各前記低屈折率層の幅が、部材の機械的な中心に向かって徐々に大きくなるように配置 されている

請求項6に記載の光学部材。

【請求項8】

各前記高屈折率層の幅が、部材の機械的な中心に向かって徐々に小さくなるように配置 されており、

各前記低屈折率層が、等しい幅で配置されている

請求項6に記載の光学部材。

【請求項9】

各前記低屈折率層の幅が、部材の機械的な中心に向かって徐々に大きくなるように配置 されており、

各前記高屈折率層が、等しい幅で配置されている

請求項6に記載の光学部材。

【請求項10】

前記高屈折率層および前記低屈折率層の少なくとも一方は、各幅が、前記横方向に非対称に配置されている

50

40

10

20

請求項1に記載の光学部材。

【請求項11】

- 各前記高屈折率層が、前記部材の一方の端から光学的な重心位置に向かって、幅が徐々 に大きくなるように配置されており、
- 各前記低屈折率層が、前記部材の一方の端から光学的な重心位置に向かって、幅が徐々 に小さくなるように配置されている

請求項10に記載の光学部材。

【請求項12】

- 各前記高屈折率層が、前記部材の一方の端から光学的な重心位置に向かって、幅が徐々 に大きくなるように配置されており、
 - 各前記低屈折率層が、等しい幅で配置されている

請求項10に記載の光学部材。

- 【請求項13】
- 各前記低屈折率層が、前記部材の一方の端から光学的な重心位置に向かって、幅が徐々 に小さくなるように配置されており、
- 各前記高屈折率層が、等しい幅で配置されている

請求項10に記載の光学部材。

【請求項14】

前記光学的な重心位置は、部材の他方の端に存在する

請求項11~13の内の何れか一項に記載の光学部材。

【請求項15】

- 各前記高屈折率層が、部材の機械的な中心では密に配置され、前記中心から離れるに従って疎になるように、左右対称に配置されている第1の光学部材を備えるとともに、
- 前記第1の光学部材の光入射側および光出射側の少なくとも一方に、前記光学的な重心位置が部材の他方の端に存在する第2の光学部材を備える
- 請求項14に記載の光学部材。

【請求項16】

- 各前記高屈折率層は、部材の機械的な中心では密に配置され、前記中心から離れるに従って疎になるように、左右非対称に配置されている
- 請求項11~13の内の何れか一項に記載の光学部材。
- 【請求項17】

各前記高屈折率層が、部材の機械的な中心では粗に配置され、前記中心から離れるに従って密になるように、左右対称に配置されている第1の光学部材を備えるとともに、

- 前 記 第 1 の 光 学 部 材 の 光 入 射 側 お よ び 光 出 射 側 の 少 な く と も 一 方 に 、 前 記 光 学 的 な 重 心 位 置 が 部 材 の 他 方 の 端 に 存 在 す る 第 2 の 光 学 部 材 を 備 え る
- 請求項14に記載の光学部材。
- 【請求項18】
- 各前記高屈折率層は、部材の機械的な中心では粗に配置され、前記中心から離れるに従って密になるように、左右非対称に配置されている
- 請求項11~13の内の何れか一項に記載の光学部材。

【請求項19】

各前記高屈折率層は、

- 主光線の斜め入射方向においては、前記光学的な重心の位置では幅が大きく、前記光学的な重心の位置から離れるに従って幅が狭く、かつ、
- 主光線の斜め入射に垂直な、前記低屈折率層と前記高屈折率層が交互に並べられる方向 と直交する方向のサイズは、前記交互に並べる方向と同程度の集光効果が得られるように 設定されている
- 請求項10~18の内の何れか一項に記載の光学部材。

【請求項20】

隣接する前記高屈折率層間の前記低屈折率層が配置される部分の一部には、前記隣接す 50

10

20

30

る高屈折率層同士を接続する前記高屈折率層がさらに設けられている

請求項19に記載の光学部材。

【請求項21】

それぞれ光学長に比べて相対的に薄い、屈折率の大きい高屈折率層と屈折率の小さい低 屈折率層が、光軸に対して横方向に交互に配列されており、かつ、前記高屈折率層および 前記低屈折率層の各幅は、入射光の波長オーダーまたはそれより小さい光学部材と、

前記光学部材を通した光を受光する受光部と

を備えたことを特徴とする固体撮像装置。

【請求項22】

複数の前記受光部が1次元状あるいは2次元状に配列されている画素アレイ部を備え、 前記受光部に対応する前記光学部材として、前記高屈折率層の各幅が前記横方向に対称 に配置されているものと、前記高屈折率層および前記低屈折率層の少なくとも一方の各幅 が前記横方向に非対称に配置されているものとが使用されており、

前記画素アレイ部の中心では前記対称に配置されている光学部材が使用され、前記画素アレイ部の端部になるほど前記非対称性が強くなる光学部材が使用されている

請求項21に記載の固体撮像装置。

【請求項23】

複数の前記受光部が1次元状あるいは2次元状に配列されている画素アレイ部を備え、 前記受光部に対応する前記光学部材として、前記高屈折率層の各幅が前記横方向に対称 に配置されているものと、前記高屈折率層および前記低屈折率層の少なくとも一方の各幅 が前記横方向に非対称に配置されているものとが使用されており、

前記画素アレイ部の中心では前記対称に配置されている光学部材が使用され、前記画素アレイ部の端部になるほど光学的な重心の位置が前記受光部の中心から前記画素アレイ部の中心方向にズレて配置されている

請求項21に記載の固体撮像装置。

【請求項24】

前記受光部に対応する前記光学部材ごとに、各前記高屈折率層は、

主光線の斜め入射方向においては、前記光学的な重心の位置では幅が大きく、前記光学的な重心の位置から離れるに従って幅が狭く、かつ、

主光線の斜め入射に垂直な、前記低屈折率層と前記高屈折率層が交互に並べられる方向 30 と直交する方向のサイズは、前記受光部のサイズと同程度かそれよりも少し短い

請求項22または23に記載の固体撮像装置。

【請求項25】

各前記高屈折率層は、前記直交する方向における前記受光部の中心に対して対称性を持っている

請求項24に記載の固体撮像装置。

【請求項26】

隣接する前記高屈折率層間の前記低屈折率層が配置される部分の一部には、前記隣接す る高屈折率層同士を接続する前記高屈折率層がさらに設けられている

請求項24または25に記載の固体撮像装置。

【請求項27】

前記画素アレイ部の中心では平面視でほぼ前記受光部のサイズと同程度かそれ以下の角形の前記高屈折率層が設けられており、

前記画素アレイ部の水平・垂直方向における前記受光部が配置される各位置では、前記 受光部に対応する前記光学部材ごとに、前記隣接する高屈折率層同士を接続する前記高屈 折率層の、前記低屈折率層と前記高屈折率層が交互に並べられる方向と直交する方向のサ イズが前記画素アレイ部の中心から離れるほど狭くなるように設定され、かつ、前記光学 部材の重心が前記画素アレイ部の中心から離れるほど前記画素アレイ部の中心とは反対側 により強く寄るように設定されている

請求項26に記載の固体撮像装置。

50

40

10

【請求項28】

前記画素アレイ部の中心に対する斜め方向における前記受光部が配置される各位置では、前記受光部に対応する前記光学部材ごとに、4つの前記高屈折率層が前記低屈折率層を 挟み、かつ、前記4つの高屈折率層同士が接触するように配列され、さらに、前記画素ア レイ部の中心から離れるほど、前記光学部材の重心が前記画素アレイ部の中心とは反対側 により強く片寄るように配置されている

請求項26または27に記載の固体撮像装置。

【請求項29】

前記高屈折率層の前記光学部材の外側の角は当該高屈折率層のサイズに応じた大きさで 斜めにカットされている

請求項24~28の内の何れか一項に記載の固体撮像装置。

【 請 求 項 3 0 】

屈折率の大きい高屈折率層および屈折率の小さい低屈折率層の何れか一方の膜を形成し

前記膜の横方向に複数の開口部を配列して形成し、

それぞれの前記開口部を、前記高屈折率層および前記低屈折率層の他方で埋め込み、

これにより、前記高屈折率層と前記低屈折率層が、光軸に対して横方向に交互に配列された光学部材を製造する

ことを特徴とする前記光学部材の製造方法。

【請求項31】

各前記光学部材を配列する際の平面視で前記高屈折率層を角形にし、

4つの前記高屈折率層が前記低屈折率層を挟み、かつ、前記4つの高屈折率層同士が接触するように配列し、さらに、斜め光の入射角が大きいほど、当該光学部材の重心が前記 斜め光側により強く片寄るように、横線、縦線、または斜め45度線を用いて、前記斜め 光の入射角に応じたそれぞれのマスクパターンを生成し、

この生成したマスクパターンをフォトリソグラフィに使って、前記斜め光の入射角に応 じた各光学部材を製造する

請求項30に記載の製造方法。

【請求項32】

受 光 部 が 形 成 さ れ て い る 半 導 体 基 板 上 に 屈 折 率 の 小 さ い 低 屈 折 率 層 を 形 成 し 、

前記低屈折率層上に屈折率の大きい高屈折率層を形成し、

前記屈折率層の前記受光部と対応する位置に複数の開口部を配列して形成し、

それぞれの前記開口部を、前記低屈折率層で埋め込み、

これにより、前記高屈折率層と前記低屈折率層が、光軸に対して横方向に交互に配列された光学部材を前記半導体基板と一体的に製造する

固体撮像装置の製造方法。

【請求項33】

各前記光学部材を、受光部の配列位置と斜め光の入射角に整合させて配列する際の平面 視で前記高屈折率層を角形にし、

4つの前記高屈折率層が前記低屈折率層を挟み、かつ、前記4つの高屈折率層同士が接 40 触するように配列し、さらに、斜め光の入射角が大きいほど、当該光学部材の重心が前記 斜め光側により強く片寄るように、横線、縦線、または斜め45度線を用いて、前記斜め 光の入射角に応じたそれぞれのマスクパターンを生成し、

この生成したマスクパターンをフォトリソグラフィに使って、前記斜め光の入射角に応じた各光学部材を、前記受光部の配列位置と整合するように配置する

請求項32に記載の固体撮像装置の製造方法。

【請求項34】

前記4つの高屈折率層の前記角形の形状と配置位置を、それぞれの頂点座標を使用する 関数式で表わし、当該関数式を規定する各頂点座標を示す一次式の係数を前記半導体基板 上における前記光学部材が配置される位置に応じて設定することで、前記斜め光の入射角 20

10

に応じた各光学部材用のマスクパターンのデータを生成する 請求項33に記載の固体撮像装置の製造方法。

【請求項35】

前記4つの高屈折率層の前記角形の形状は四角形であり、垂直光が入射する位置を原点 とする×y平面の前記光学部材と対応する前記検出部の配置される位置(×a, ya)の 前記光学部材ごとに、斜め光が入射する側とは反対側の角を原点とする新たな座標×, Y をとり、前記位置(×a, ya)の前記関数式をf(×a, ya)、各高屈折率層の4つ の頂点座標を(×1, Y1),(×2, Y1),(×2, Y2),(×1, Y2)とした とき、×1, Y1,×2, Y2を、下記式で規定することで、前記斜め光の入射角に応じ た各光学部材用のマスクパターンのデータを生成する 請求項34に記載の固体撮像装置の製造方法。

f (x a , y a) = { (X 1 , Y 1) , (X 2 , Y 1) , (X 2 , Y 2) , (X 1 , Y 2) }

- X 1 = s 1 x | x a | + s 2 x | y a | + c 1 Y 1 = s 3 x | x a | + s 4 x | y a | + c 2 X 2 = s 5 x | x a | + s 6 x | y a | + c 3 Y 2 = s 7 x | x a | + s 8 x | y a | + c 4 s 1 ~ s 8 は係数、 c 1 ~ c 4 は定数
- 【請求項36】

前記高屈折率層の前記光学部材の外側の角を当該高屈折率層のサイズに応じた大きさで ²⁰ 斜めにカットすることで、前記斜め光の入射角に応じた各光学部材用のマスクパターンの データを生成する

請求項35に記載の固体撮像装置の製造方法。

【発明の詳細な説明】

- 【技術分野】
- 【0001】

本発明は、光学部材およびこの光学部材を利用した固体撮像装置並びにそれらの製造方法に関する。

【背景技術】

[0002]

C C D (Charge Coupled Device) や C M O S (Complementary Metal-oxide Semiconductor) センサを始めとする固体撮像装置では、オンチップレンズ(O C L : On Chip Lenz : マイクロレンズとも称される) や層内レンズなどの光学部材を設け、入射光を受光部へ集光させるのが一般的である。ここで、前記光学部材としては、スネル則を利用した屈折型レンズ構造のものが用いられる。

[0003]

ところが、スネル則を利用した屈折型レンズ構造は、レンズそのものが1µm程度以上 で厚いため、固体撮像装置のオンチップレンズや層内集光レンズに応用するとデバイス上 層が厚くなってしまう。これによって、隣の画素からの好ましくない光入射(斜め入射光 と称する)が増加して、この斜め入射光による混色が増加して色再現性が悪くなる。 【0004】

また、従来のオンチップレンズや層内集光レンズの作製工程では、レジストをリフロー させるなど工程数が多く複雑でコストも高い。加えて、リフローで作製すると球面形状し か作製できず、たとえば横方向に変形した非対称なレンズ形状ができない。

【 0 0 0 5 】

さらに、外付けの結像系レンズの F値を小さくすると斜め入射光が増えるために上層が 厚くなることによって理想の感度からの低下が顕著になり、本来の感度が取れなくなる(F値光感度低下)。

【 0 0 0 6 】

また、従来のオンチップレンズでは、集光効率が信号光の入射角度に依存して低下する 50

(6)

。つまり、オンチップレンズに垂直に入射してくる光については高効率に集光することが できるが、斜め入射光に対しては集光効率が減少する。複数の画素が2次元配列されて構 成されている固体撮像装置では、広がり角を持つ入射光の場合、固体撮像装置の中央付近 の画素と周辺付近の画素とでは入射角が異なり、その結果、周辺付近の画素の集光効率が 中央付近のものより低下するという現象、つまり、デバイス中心に比べて端で感度が小さ くなる現象(シェーディング)も顕著にもなる。

斜め入射光に色再現性低下に関しては、色再現性を回復させるために演算処理を行なう ことも考えられるが、余分なノイズが発生して画質が劣化する弊害が懸念される。

 $\begin{bmatrix} 0 & 0 & 0 & 8 \end{bmatrix}$

10

さらに、外付けの結像系レンズのF値を小さくすると、斜め入射光が増えるために上層 が厚くなることによって理想の感度からの低下が顕著になり、本来の感度が取れなくなる F値光感度低下現象も生じる。

[0009]

これに対して、上層が厚くなる問題点や感度低下を解決する一手法として、フレネルレ ンズを利用した仕組みが提案されている(たとえば特許文献1,2を参照)。

[0010]

【特許文献1】特開2005-011969号公報

【特許文献 2 】特開 2 0 0 6 - 3 5 1 9 7 2 号公報

[0011]

たとえば、特許文献1に記載の仕組みは、オンチップレンズなどの上部レンズで収束さ れた光をさらに収束させて対応する光電変換部に入射させる層内集光レンズを、フレネル レンズをベースとして構成しているものである。屈折型レンズであるが、波型にすること でレンズを薄くできるようにしている点に特徴がある。

また、特許文献2に記載の仕組みは、集光素子を、入射光の波長と同程度かそれより短 い線幅で分割された同心構造の複数のゾーン領域の組み合わせによって構成されたものと している。2段同心円構造の分布屈折率レンズ(つまりフレネルレンズ)をベースとして いて、フレネルレンズと同じ屈折率分布となるような微細構造を作製して集光素子を構成 している(レンズとしている)点が特徴である。

しかしながら、特許文献1に記載の仕組みでは、フレネルレンズの考え方を基本として いるので、このフレネルレンズは屈折型であるために波長オーダーより薄くするのに限度 がある。

[0014]

また、このような波型を作製するのは通常の屈折型レンズの工程よりもさらに複雑な工 程となり、コストもさらにかかる。また、球面でしかレンズが作製できず、非対称性を入 れることができない。

[0015]

加えて、特許文献1,2の何れの仕組みにおいても、フレネルレンズをベースとするた め、ある領域に斜め入射した光において本来集光するポイントに集まらないことがある(詳細は後述する)。このことは、集光効率が低下してしまう上に、発散した光が隣の画素 に入射した場合には混色の原因になる。

[0016]

また、特許文献 2 の仕組みでは、微細画素、とりわけ 1 .5 μ m 以下の画素サイズにな ると、円形などの複雑な図形を画素内に入れる必要性から、画素ピッチに対する最小線幅 の割合いが1/10以下の微細ピッチが必要となる。たとえば最小線幅0.1μm以下の 微細ピッチのレンズ構造の作製が必要となる。この場合、プロセスにおいて埋め込みが容 易でないといった課題があり、たとえばフッ化アルゴン(ArF)エキシマレーザ(波長 193 nm)を用いた液浸スキャナーと言った高コストのArF液浸露光装置が必要にな 30

る。

【0017】

また、通常のマスク発生システムは、縦線または横線または斜め45度線で構成される 図形のみが許されていることが多く、このような状況でもマスク設計を低コストで可能に する新たなレンズ構造の開発が求められている。

【発明の開示】

【発明が解決しようとする課題】

【0018】

本発明は、上記事情に鑑みてなされたものであり、前述の各種の問題の少なくとも1つ を解消することのできる新たな光学部材の仕組みを提供することを目的とする。 【0019】

好ましくは、前述の各種の問題の少なくとも1つを解消するに当たり、微細画素の実現 に際しても、最小線幅をより大きくすることが可能な、つまり画素ピッチと最小線幅の割 合いに従来よりも余裕を持たせることができる仕組みを提供することを目的とする。 【0020】

好ましくは、前述の各種の問題の少なくとも1つを解消するに当たり、縦線または横線 または斜め45度線を構成する通常のマスク発生システムにより製造することができる仕 組みを提供することを目的とする。

【課題を解決するための手段】

[0021]

光学長(レンズ長)に比べて相対的に薄い高屈折率層と低屈折率層が光学部材の横方向 (光軸に対して垂直となる平面上の任意の方向)に交互に配列されている場合に、低屈折 率層や高屈折率層の各幅が入射光の波長オーダーより十分に大きいときには、光学部材を 通過する光の等位相面は、入射側の媒質での等位相面と同様に形成され、湾曲することは ない。

[0022]

ところが、低屈折率層や高屈折率層の各幅が入射光の波長オーダーと同程度かより小さ くなると、波動方程式の連続性により、低屈折率層内での波面と高屈折率層内での波面と が繋がり、その結果、全体の等位相面が湾曲する現象が生じる。

【0023】

本発明に係る光学部材は、前記知見に基づいてなされたものである。すなわち、本発明 に係る光学部材の一実施形態は、光学長(レンズ長)に比べて相対的に薄く、屈折率の大 きい高屈折率層と屈折率の小さい低屈折率層が光軸に対して横方向に交互に配列したもの とする。ここで、高屈折率層および低屈折率層の各幅は、入射光の波長オーダーまたはそ れより小さいものとする。

【0024】

波長オーダーまたはそれより小さい幅の低屈折率層と高屈折率層とを横方向に並べて光 学部材としての機能を持たせる際には、部材の中心と端部の高屈折率層の各密度の配置関 係を調整することで、等位相面の湾曲具合を調整することができる。

【0025】

これにより、凸レンズ機能(集光性)を持たせることもできれば、凹レンズ機能(拡散 性)を持たせることもできる。また、斜め入射光を垂直入射光に変換する機能(斜め光補 正機能)を持たせることもできる。低屈折率層と高屈折率層の各配列幅を調整することで 等位相面(波面)の湾曲状態を制御することのできる新たな仕組みの光学部材(光学レン ズ)が実現できることになる。このような仕組みの光学部材を波面制御レンズと呼ぶこと にする。

[0026]

たとえば、各高屈折率層を、部材の機械的な中心では密に配置し、中心から離れるに従って疎になるように、左右対称に配置すれば、凸レンズ機能(集光性)を果たすようになる。低屈折率層側から見れば、部材の機械的な中心では粗に配置し、中心から離れるに従

20

って密になるように、左右対称に配置すれば、凸レンズ機能(集光性)を果たすようにな る。

【0027】

各高屈折率層を、部材の機械的な中心では粗に配置し、中心から離れるに従って密になるように、左右対称に配置すれば、凹レンズ機能(発散性)を果たすようになる。低屈折率層側から見れば、部材の機械的な中心では密に配置し、中心から離れるに従って粗になるように、左右対称に配置すれば、凹レンズ機能(発散性)を果たすようになる。 【0028】

高屈折率層および低屈折率層の少なくとも一方を、各幅が、横方向に非対称に配置すれば、斜め光補正機能を果たすようになる。

[0029]

また、好ましくは、波面制御の仕組みに加えて、主光線の斜め入射に垂直な方向には、 構造体を画素サイズより短くかつ対称性を持たせて配置する構造にして集光効果(レンズ 機能)や斜め入射光補正機能を持たせるようにしてもよい。詳細は後述するが、このよう な構造を採ると、波面制御に加えて、ゾーンプレートの回折レンズ効果を入れた構造にで き、集光効率が高まる。加えて、マスクパターンは単純な垂直線と水平線または場合によ っては斜め45度線のみでよく、曲線を必要としない。微細画素でも、マスクパターンが 単純であるために、最小線幅に余裕を持たせることが可能になるし、マスク設計が容易に なる。

[0030]

このような光学部材は、独立した部材として、レーザ走査光学系などに用いられる従来 の一般的な光学レンズと置き換えて使用することができる。

【0031】

ただし、固体撮像装置との組合せにおいては、画素アレイ部などが形成される半導体基 板上に、光学部材を一体的に形成するのが好ましい。組合せ対象の固体撮像装置としては 、光電変換が行なわれるセンサ部が形成されている半導体基体の表面側に配線層や電極層 が形成され、その表面側から光を入射させる通常の表面照射型のものに限らず、表面側と は反対の裏面側から光を入射させる裏面照射型のもでもよい。裏面照射型でも、斜め光入 射による混色が問題となり得るが、本発明の光学部材による斜め光補正効果を機能させる ことで、この混色の問題が緩和される。

【0032】

また、固体撮像装置との組合せにおいては、導波路(導光路)と組み合わせる構造を採ってもよい。この場合、導波路の全反射条件を満たすように光を導波路に導入する必要が あるが、本発明の光学部材による集光効果や斜め光補正効果を機能させることで、光を導 波路に容易に導入でき、加えて、導波路の全反射条件を斜め光でも満たすことができる。 【0033】

固体撮像装置はワンチップとして形成された形態であってもよいし、撮像部と、信号処理部または光学系とが纏めてパッケージングされた、撮像機能を有するモジュール状の形態であってもよい。

【0034】

また、本発明は、固体撮像装置のみではなく、撮像装置にも適用可能である。この場合、撮像装置として、固体撮像装置と同様の効果が得られる。ここで、撮像装置は、たとえば、カメラ(あるいはカメラシステム)や撮像機能を有する携帯機器のことを示す。また「撮像」は、通常のカメラ撮影時の像の撮り込みだけではなく、広義の意味として、指紋検出なども含むものである。

【発明の効果】

【 0 0 3 5 】

本発明の一実施形態によれば、入射光の波長オーダーまたはそれより小さいレンズ長よりも薄い高屈折率層と低屈折率層を光軸に対して横方向に交互に配列して光学部材を構成したので、入射光が光学部材を通過するときに等位相面を、高屈折率層と低屈折率層の各

10

幅の配列状態に応じて湾曲させることができる。その結果、光学部材は、高屈折率層と低 屈折率層の各幅の配列状態に応じた光学特性(たとえば集光機能、発散機能、あるいは入 射角変換機能)を示すようになる。

【 0 0 3 6 】

このように高屈折率層と低屈折率層を交互に横方向に配列した光学部材は、光学長より も短く薄い部材にすることができ、従来のスネル則を利用した屈折型レンズ構造のものよ りも薄い部材にすることができる。その結果、従来のような相対的に厚みのある構造のレ ンズで生じていた問題を緩和・解消することができる。

【0037】

たとえば、撮像デバイスの上層が薄くなり、混色が減るので色再現性がよくなる。演算 10 処理による混色対策が不要になるので、余分なノイズ発生も少なくなる。またF値光感度 低下を防いだり、斜め入射光を垂直入射光に補正したりすることもでき、シェーディング 対策にもなる。

【 0 0 3 8 】

また、薄い低屈折率層と高屈折率層が交互に配列されて部材が構成されているので、フ レネルレンズのような大きい屈折率の段差はなく、斜め入射光に対しても反射や屈折によ る発散する光は少ない。その結果、集光効率を高めることができるし、斜め入射光による 混色の問題も解決できる。

【0039】

薄い低屈折率層と高屈折率層を横方向に交互に配列されたものとすればよく、半導体プ ²⁰ ロセスに準じた製造ができ、作製の工程が簡便でコストが低く抑えられる。

【0040】

低屈折率層と高屈折率層の各配列幅を調整することで光学特性を制御できるので、球面 レンズに比べて光学的に設計の幅が広がる利点もある。

【0041】

また、本発明に係る光学部材として、主光線の斜め入射に垂直な方向には、構造体を画 素サイズより短くかつ対称性を持たせて配置する構造にすれば、微細画素でも、最小線幅 に余裕を持った状態でも集光効果(レンズ機能)や斜め入射光補正機能を持たせることが 可能となる。

【0042】

また、このような構造にすることで、マスクパターンは、縦線または横線または斜め4 5度線で構成される図形のみでも可能になるので、通常のマスク発生システムにより、こ の構造の光学部材を製造することができる。特殊なマスク発生システムが不要である。 【0043】

また、マスクパターンを、円形(楕円を含む)や曲線を含まない、縦線または横線また は斜め45度線で構成される図形のみで構成することで、角形の頂点座標を指定する比較 的簡単な低次の関数式(一次方程式など)を用いた各画素位置のレンズ設計(マスクパタ ーン設計)も可能になる。このことは、設計から製造までの全体のコストを低減する上で も効果がある。

【発明を実施するための最良の形態】

[0044]

以下、図面を参照して本発明の実施形態について詳細に説明する。各機能要素について 実施形態別に区別する際には、A,B,C,…などのように大文字の英語の参照子を付し て記載し、特に区別しないで説明する際にはこの参照子を割愛して記載する。図面におい ても同様である。

【0045】

< 第1実施形態:凸レンズの基本 >

図1~図1Bは、光学レンズの第1実施形態の基本原理を説明する図である。ここで図 1および図1Aは等位相面を示す図であり、図1Bは第1実施形態の光学レンズの平面模 式図である。 30

[0046]

後述する他の実施形態も含めて、本実施形態の各光学レンズは、基本的には、光軸に対して横方向に、屈折率の大きい矩形状の層と小さい矩形状の層を交互に配列するとともに、それぞれの幅を波長オーダーまたはそれより小さい幅の構造を有するものとすることでレンズ機能を持たせる。

(11)

【0047】

たとえば、光リソグラフィならびに電子線リソグラフィに代表されるプレーナープロセス技術を利用して形成される、サブ波長の周期構造を有する集光素子(Subwave length Lens : S W L L)の仕組みを利用することで、「波長オーダーまたはそれより小さい幅の構造」を形成できる。

[0048]

SWLLを固体撮像装置用の集光素子に用いることで、一般的な半導体プロセスで、オンチップレンズを形成することができ、また、レンズの形状を自由に制御することができるようになる。

【0049】

ここで、第1実施形態は、集光効果を持つ凸レンズに関するものである。このため、屈 折率の大きい層を、板状に、かつ中心(レンズの機械的な中心:本例では光軸位置と一致)が密で中心から離れるに従って疎になる左右対称構造にする。屈折率の小さい層の側面 から言えば、各低屈折率層は、部材の機械的な中心では粗に配置され、中心から離れるに 従って密になる左右対称構造にする。レンズの左右が対称である(左右対称構造を持つ) 点で、後述する第2あるいは第3実施形態と相違する。

【 0 0 5 0 】

中心が密で中心から離れるに従って疎になる構造とすることで凸レンズ機能を持たせる には、たとえば、屈折率の大きい層の幅がレンズの中心に向かって徐々に大きくなる構造 を有するものとする第1の凸レンズ化手法、屈折率の小さい層の幅がレンズの中心に向か って徐々に小さくなる構造を有するものとする第2の凸レンズ化手法、あるいはこれら第 1および第2の凸レンズ化手法を併用した第3の凸レンズ化手法の何れかを採用するのが よい。集光効率の面では第3の凸レンズ化手法を適用するのが最も効果的である。 【0051】

先ず、図1に示すように、屈折率n0のみの板状の単一材層1が存在し、それ(詳しく 30 は位相面1_4側)に隣接して、屈折率n0の矩形状の層(低屈折率層と称する)20と屈 折率n0よりも高い(大きい)屈折率n1(n1>n0)の矩形状の層(高屈折率層と称 する)21とをそれぞれ横方向に交互に配列した板状の層(交互配置層と称する)2Aが 設けられているものとする。交互配置層2Aのさらに後方(光入射側とは反対側)には、 屈折率n0のみの板状の単一材層3が設けられると考えてよい。詳細は後述するが、交互 配置層2Aは、集光効果を持つ光学レンズ(凸レンズ)の機能をなす。 【0052】

交互配置層2Aにおいては、光学中心CLに対して右側のものには"R"と参照番号を、 左側のものには"L"と参照番号を付して示す。右側と左側の区別をしないときには、" R","L"を割愛して説明する。これらは、後述する他の例でも同様である。 【0053】

図示した第1実施形態の基本例の構成では、中心CLに対して左右対称に屈折率の大きい 矩形状の高屈折率層21が5層設けられ、その間に屈折率の小さい低屈折率層20が4層 設けられている。高屈折率層21R_1~21R_5,21L_1~21L_5の幅は、中心CLに 向かって徐々に大きくなる構造を有するとともに、低屈折率層20R_1~20R_4,20 L_1~20L_4の幅が中心CLに向かって徐々に小さくなる構造を有する。つまり、この第 1実施形態の基本例では、前述の第1および第2の凸レンズ化手法を併用した第3の凸レ ンズ化手法を採用したものである。

【0054】

交互配置層 2 A は、全体としては、屈折率の大きい高屈折率層 2 1 R_k , 2 1 L_k (本 ⁵⁰

40

例では k = 1 ~ 5)が、板状に、かつ中心が密で中心から離れるに従って疎になる構造に なっている。高屈折率層 1 2 1 に着目すれば、レンズの中心では幅広で周辺では幅狭の構 造になっている。

(12)

【 0 0 5 5 】

ここで、図1に示すように、光が屈折率n0のみの単一材層1側から入射したとする。 そのとき、光速cはc=c0/n1となる。ここでc0は真空中の光速である。したがっ て、板状の交互配置層2Aにおける高屈折率層21のそれぞれにおいて、その中では光速 が小さくなり、結果として図1のように、単一材層1と同様の等位相面(波面)が形成さ れると考えられる。しかしながら、高い屈折率n1の高屈折率層21やその横の屈折率の 小さい低屈折率層20の横方向の長さ(つまり幅)が波長オーダーより大きいときにはこ れが成り立つ。

【0056】

これに対して、高い屈折率n1の高屈折率層21やその横の屈折率の小さい低屈折率層 20の横方向の長さ(幅)が波長オーダー程度かまたはそれより短い場合には、単一材層 1と同様の等位相面(波面)が形成されず、高屈折率層21とその横の低屈折率層20の 幅の並び方に応じて波面が湾曲する。

【 0 0 5 7 】

具体的には、波動方程式の連続性により、低屈折率層20_j内での波面と高屈折率層2 1_k内での波面が連続的に繋がり、その結果、全体の等位相面が湾曲する。図1に示した ように、屈折率の大きい高屈折率層21_kが、板状に、かつ中心が密で中心から離れるに 従って疎になる構造を持つ場合、図1Aに示すようになる。屈折率が大きい所(高屈折率 層21)と小さい所(低屈折率層20)の光速が異なることが原因である。

[0058]

図から判るように、光の波面が交互配置層2Aによって凹面になり、それがさらに後方の屈折率n0のみの板状の単一材層3を通過していく。結果として、図示のように、レンズ中心を境に左右では中心側に入射光の経路を変換する機能が働き、集光性を持たせることができる。屈折率が大きい高屈折率層21と小さい低屈折率層20の光速が異なることと、波動関数の連続性を組み合わせることで、凸レンズ効果を享受できるようになる。 【0059】

以上から理解されるように、第1実施形態の光学レンズは、屈折率の大きい高屈折率層 30 21_kと、屈折率の小さい低屈折率層20_jとを矩形状で横方向に交互に配列するととも に、その幅を波長オーダーまたはそれより小さい幅の構造を有するものとし、この際に、 屈折率の大きい高屈折率層21_kを中心が密で中心から離れるに従って疎になる構造を持 つようにすることで、集光性を持つ凸レンズとして機能させることができる。 【0060】

高い屈折率n1の高屈折率層21とその横の屈折率の小さい低屈折率層20の幅の並び 方に応じて波面が湾曲するのであるから、それぞれの幅の並び方を調整することで光の波 面の湾曲具合を制御することができ、結果として、凸レンズの集光性を制御することがで きる。つまり、第1実施形態の交互配置層2Aは、波面制御の仕組みを利用した集光レン ズ(つまり凸レンズ)であると考えることができる。

[0061**]**

図1Aに示す構造から明らかなように、そのレンズ厚は、屈折率の大きい矩形状の高屈 折率層21_kと屈折率の小さい矩形状の低屈折率層20_jを横方向に交互に配列した交互 配置層2Aの厚さであるから、極めて薄い凸レンズにすることができる。たとえば、従来 のスネル則を利用した屈折型レンズ構造では1µm以上となってしまうものが、本実施形 態の仕組みの光学レンズとすることで、0.5µm以下までレンズを薄くできる。 【0062】

レンズ厚を薄くできれば、固体撮像装置に適用する場合、上層が薄くなることによって、 、混色が減るので色再現性がよくなる。また、混色が減るので色再現性を回復させるため の演算処理が不要となり、演算処理による余分なノイズ発生も少なくなる。また、レンズ 10

20

厚が薄いので、外付けの結像系レンズのF値を小さくする場合でも斜め入射光が増えることはなく、F値光感度低下の問題が起きない。

[0 0 6 3]

交互配置層2Aは、平面構造においても、当然に、中心が密で中心から離れるに従って 疎になる構造になっていればよく、その限りにおいて、様々な平面構造を採ることができ る。屈折率の大きい高屈折率層21_kと屈折率の小さい低屈折率層20_jのそれぞれの形 状は、円形、楕円形、正方形、長方形、三角形など、任意の形状とすることができる。そ して、これらの同一と見なし得る形状のものを環状とするものや、異なった形状のものを 組み合わせて、各リングの幅が上下左右で同一となるように環状とすればよい。 【0064】

たとえば、図1B(1)に示すように、高屈折率層21_kと低屈折率層20_jのそれぞれが円形または円形リング形状の、全体として環状となったものでもよい。図1B(2)に示すように、高屈折率層21_kと低屈折率層20_jのそれぞれが楕円または楕円形リング形状の、全体として環状となったものでもよい。図1B(3)に示すように、高屈折率層21_kと低屈折率層20_jのそれぞれが正方形または正方リング形状の、全体として環状となったものでもよい。図1B(4)に示すように、高屈折率層21_kと低屈折率層20_jのそれぞれが長方形または長方リング形状の、全体として環状となったものでもよい

[0065]

図示を割愛するが、高屈折率層21_kと低屈折率層20_jのそれぞれが三角形または三 角リング形状の、全体として環状となったものでもよい。また、図示を割愛するが、たと えば、中心では円形または円形リング形状のものとし、外周では四角リング形状とするな ど、中心側と外周側とで異なった形状のものを使用して、それらを組み合わせて、全体と して環状となるようにしてもよい。

【0066】

ただし、凸レンズとしての集光効果は交互配置層2Aの平面構造、すなわち高屈折率層 21と低屈折率層20の並び方の平面構造の影響を受けるので、固体撮像素子に応用する 場合には、図1Bに例示した平面構造、特に中心部の高屈折率層21_1の形状は、受光部 の平面形状に整合させるのがよい。

【0067】

< 第1 実施形態: 凸レンズの適用例1 >

図2 ~ 図2 D は、光学レンズの第1実施形態を適用した固体撮像装置の第1例(適用例 1)を説明する図である。ここで図2は適用例1の固体撮像装置の断面模式図であり、図 2 A は、第1実施形態(適用例1)の固体撮像装置のより具体的な断面図であり、図2 B ~ 図2 D は、その光学特性のシミュレーション結果を示す図である。 【0068】

第1実施形態(適用例1)の固体撮像装置100Aは、屈折率n3が4.1で消衰係数 (光の吸収と関連がある係数) k が 0.04のシリコンSiでなる半導体基板(以下シリ コン基板とも称する)102上に、屈折率n1が2.0のシリコンナイトライドSi3N 4(以下SiNと記す)の薄膜層130(厚さ=0.1µm)を有し、その上層に、図1 ~図1Bを用いて説明した構造(交互配置層112A)を主要部に持つ光学レンズ110 Aを有する。

[0069]

薄膜層130は、シリコン基板102に対する反射防止膜として設けられたものである 。これにより、有効に光をフォトダイオードなどの受光部に入射させることが可能となる 。たとえば、シリコンSiとシリコンナイトライドSiNと酸化シリコンSiO2の屈折 率をそれぞれn_Si,n_SiN,n_SiO2 とするとn_Si > n_SiN > n_ SiO2 となる関係がある。この場合、薄膜層130の厚みdが"d ×(m / 2 + 1 / 4) / n_SiN "の関係になることで、反射防止膜の機能が有効にでてくる。こ こで は光の波長で、mは0以上の整数である。 10

20

図2Aに示すように、シリコン基板102の光学レンズ110A側の境界近傍(基板表面)には、PN接合でなる光電変換部(受光部)104が所定の画素ピッチで配置される。固体撮像装置100Aは、複数(たとえば数百万個)の光電変換部104を縦横にあるいは斜め方向に規則的に配列してなる画素アレイ部を有する。

[0071]

光学レンズ110Aの光入射面側の上層には、カラーフィルタ106やオンチップレンズ108が必要に応じて設けられる。オンチップレンズ108は、スネル則を利用した屈 折型レンズ構造のものである。

【0072】

10

図2Aに示した例は、上層レンズ(表面レンズ)としてオンチップレンズ108を使用 し、層内集光レンズとして光学レンズ110Aの交互配置層112Aを使用する例で示し ているが、オンチップレンズ108を交互配置層112Aに置き換えることもできる。こ の場合、その交互配置層112Aは、デバイス上層内に埋め込まれたものではなく、デバ イスの最も上層にレンズ構造として配されたものとなり、その表面は空気と接することに なる。

[0073]

オンチップレンズ108は、スネル則を利用した屈折型レンズ構造のものであり、レン ズそのものが1μm程度で厚いため、デバイス上層が厚くなってしまい、斜め入射光によ る混色の問題が起こり得るが、交互配置層112Aに置き換えることでその問題を軽減で きる。

20

[0074]

図2Aに示した例は、画素アレイ部の周辺部の状態を示したもので、オンチップレンズ 108を通過した斜め入射光が交互配置層112Aの中心を通るように、オンチップレン ズ108の中心と光学レンズ110Aの1周期分の交互配置層112Aの中心とをずらし て配置している。画素アレイ部の中央部では、その必要がなく、オンチップレンズ108 の中心と光学レンズ110Aの1周期分の交互配置層112Aの中心とを一致させて配置 する。

[0075]

詳細な説明は割愛するが、交互配置層112Aとシリコン基板102の表面(薄膜層1 30 30側)との間には、配線層109が設けられる。配線層109では、各光電変換部10 4の電荷蓄積動作や信号読出し動作を制御するためのアルミニウム配線が、光電変換部1 04への光路を妨げないように設けられる。

[0076]

光学レンズ110Aは、屈折率n1が1.46の酸化シリコンSiO2の厚みのある層 (酸化シリコン層と称する)を媒質として有し、その光入射側の表面近傍に、図1~図1 Bを用いて説明した交互配置層2Aと同様の構造の交互配置層112Aを有する。交互配 置層112Aよりも光入射側が、図1~図1Bを用いて説明した単一材層1と同様の単一 材層111となり、交互配置層112Aよりもシリコン基板102側が、図1~図1Bを 用いて説明した単一材層3と同じ単一材層113となる。

【0077】

光学レンズ110Aの1周期(つまりレンズサイズ)を画素サイズ(=画素ピッチ)3 .6μmに整合させる。シリコン基板102の表面、すなわちシリコン基板102と薄膜 層130との境界面から交互配置層112Aまでの距離(厚さ:実質的なレンズ長)を3 .6μm、交互配置層112Aの厚さ(実質的なレンズ厚)を0.5μmとする。これか らも判るように、高屈折率層21_Kと低屈折率層20_jが交互に配列されて構成されてい る交互配置層112Aは、光学長(レンズ長)に比べて十分に薄く設定されている。 【0078】

交互配置層112Aは、屈折率n0が1.46の酸化シリコンSiO2の矩形状の低屈 折率層120と、屈折率n1が2.0のシリコンナイトライドSiNの矩形状の高屈折率

層121とを、高屈折率層121の幅がレンズの中心に向かって徐々に大きくなるととも に、低屈折率層120の幅がレンズの中心に向かって徐々に小さくなるように配置するこ とで、高屈折率層121を、板状に、かつ中心が密で中心から離れるに従って疎になる構 造にしている。

【0079】

第1実施形態(適用例1)において、1周期内における交互配置層112A内の低屈折率層120_jと高屈折率層121_k(何れも図示せず)の幅や境界距離(本例では隣接する低屈折率層120R_5,120L_5の合成幅)は以下のように設定する。

[0080]

10

高屈折	率	層	1	2	1	R _1	+	高	屈折	率 層	1	2	1	L_1 :	0	•	4	5	μ	m
高屈折	率	層	1	2	1	R _2	,	高	屈折	率 層	1	2	1	L_2 :	0	•	2	5	μ	m
高屈折	率	層	1	2	1	R _3	,	高	屈折	率 層	1	2	1	L_3 :	0	•	2	0	μ	m
高屈折	率	層	1	2	1	R _4	,	高	屈折	率 層	1	2	1	L_4 :	0	•	1	5	μ	m
高屈折	率	層	1	2	1	R _5	,	高	屈折	率 層	1	2	1	L_5 :	0	•	1	0	μ	m
低屈折	率	層	1	2	0	R _1	,	低	屈折	率 層	1	2	0	L_1 :	0	•	1	0	μ	m
低屈折	率	層	1	2	0	R _2	,	低	屈折	率 層	1	2	0	L_2 :	0	•	1	5	μ	m
低屈折	率	層	1	2	0	R _3	,	低	屈折	率 層	1	2	0	L_3 :	0	•	2	0	μ	m
低屈折	率	層	1	2	0	R _4	,	低	屈折	率 層	1	2	0	L_4 :	0	•	2	2	5	μm
低屈折	率	層	1	2	0	R _5	+	低	屈折	率 層	1	2	0	L_5 :	0	•	4	0	μ	m

[0081]

図から判るように、光学レンズ110Aの交互配置層112Aは、屈折率が1.46の 酸化シリコンSiO2の低屈折率層120と屈折率が2.0のシリコンナイトライドSi Nの高屈折率層121の周期構造によって入射光を湾曲させるSWLL構造の集光素子と なっている。本例では、シリコンナイトライドSiNおよび酸化シリコンSiO2の周期 構造を持つ交互配置層112Aは、低屈折率層120および高屈折率層121の何れも、 横方向の最小線幅を0.1µm、レンズの厚みを0.5µmとしている。

[0082]

図2Bは、図2に示した光学レンズ110Aを通過する波長 が540nmの緑色光に 関してのシミュレーション結果を示す。図中、cTは、光速cに時間Tを掛けたもので、 光が真空中を進んだ距離(単位μm)を表す。ここでは、シミュレーションに掛った時間 と捉えてもよい。

【 0 0 8 3 】

先ず図2B(1)は、図2に示した光学レンズ110Aの交互配置層112Aを通過した直後のシミュレーション結果である。この結果から、交互配置層112Aを通過した緑 色光のフロント(シリコン基板102側)の波面が凹面になっていることが判る。 【0084】

図2B(2)は、交互配置層112Aを通過し、さらにシリコン基板102(つまり光 電変換素子)の表面にほぼ到達したときのシミュレーション結果である。この結果から、 各光学レンズ110Aの中心に緑色光が集光しており、緑色光(= 540nm)に関し て凸レンズ効果があるのが判る。図示を割愛するが、近赤外光(= 780nm)、赤色 光(= 640nm)、青色光(= 460nm)についても、同様にレンズ効果がある

【0085】

図2 Cおよび図2 Dは、図2 に示した第1実施形態(適用例1)の光学レンズ110 A と同様の構造を持つ光学レンズを適用した第1実施形態(適用例1)の固体撮像装置10 0 A に関してのシミュレーション結果を示す図であり、それぞれ近赤外光(= 7 8 0 n m)、赤色光(= 6 4 0 n m)、緑色光(= 5 4 0 n m)、青色光(= 4 6 0 n m)の結果である。これらからも判るように、何れの波長の光も、光学レンズ110 A によ りで集光されていて、凸レンズ効果がある。 【0086】 20

図3~図3Bは、光学レンズの第1実施形態を適用した固体撮像装置の第2例(適用例 2)を説明する図である。ここで図3は第1実施形態(適用例2)の固体撮像装置の断面 模式図であり、図3Aおよび図3Bは、その光学特性のシミュレーション結果を示す図で ある。

【0087】

第1実施形態(適用例2)の固体撮像装置100Aは、基本的には、第1実施形態(適用例1)の固体撮像装置100Aと同様の構造にしつつ、横方向の最小線幅を0.1µm ではなく、0.2µmとしたものである。この横方向の最小線幅の変更に伴い、交互配置 層112A内の低屈折率層120_jと高屈折率層121_kの各数や幅や境界距離を調整す る。

[0088]

具体的には、第1実施形態(適用例2)において、光学レンズ110Aの1周期内における交互配置層112A内の低屈折率層120_jと高屈折率層121_k(何れも図示せず)の幅や境界距離(本例では隣接する高屈折率層121R_4,121L_4の合成幅)は以下のように設定する。

【0089】

高屈折率層 1 2 1 R_1 + 高屈折率層 1 2 1 L_1 : 0 . 7 5 µm 高屈折率層 1 2 1 R_2 , 高屈折率層 1 2 1 L_2 : 0 . 2 5 µm 高屈折率層 1 2 1 R_3 , 高屈折率層 1 2 1 L_3 : 0 . 2 5 µm 高屈折率層 1 2 1 R_4 + 高屈折率層 1 2 1 L_4 : 0 . 2 0 µm 低屈折率層 1 2 0 R_1 , 低屈折率層 1 2 0 L_1 : 0 . 2 0 µm 低屈折率層 1 2 0 R_2 , 低屈折率層 1 2 0 L_2 : 0 . 2 5 µm 低屈折率層 1 2 0 R_3 , 低屈折率層 1 2 0 L_3 : 0 . 3 7 5 µm

[0090]

図 3 A および図 3 B は、図 3 に示した第 1 実施形態 (適用例 2)の光学特性のシミュレーション結果を示す図であり、それぞれ近赤外光 (= 7 8 0 n m)、赤色光 (= 6 4 0 n m)、緑色光 (= 5 4 0 n m)、青色光 (= 4 6 0 n m)の結果である。 【 0 0 9 1 】

これらからも判るように、横方向の最小線幅を0.1µmから0.2µmと変更する場 ³⁰ 合でも、交互配置層112A内の低屈折率層120_jと高屈折率層121_kの各数や幅や 境界距離を適正に設定することで、何れの波長の光も、交互配置層112Aにより集光で き、凸レンズ効果がある。

[0092]

< 第1 実施形態: 凸レンズの適用例3 >

図 4 ~ 図 4 B は、光学レンズの第 1 実施形態を適用した固体撮像装置の第 3 例(適用例 3)を説明する図である。ここで図 4 は第 1 実施形態(適用例 3)の固体撮像装置の断面 模式図であり、図 4 A および図 4 B は、その光学特性のシミュレーション結果を示す図で ある。

【0093】

第1実施形態(適用例3)の固体撮像装置100Aは、基本的には、第1実施形態(適 用例1)の固体撮像装置100Aと同様の構造にしつつ、交互配置層112Aの厚さ(実 質的なレンズ厚)を、0.5µmではなく、より薄い0.3µmとしたものである。この レンズ厚の変更に伴い、必要に応じて、交互配置層112A内の低屈折率層120_jと高 屈折率層121_kの各数や幅や境界距離を調整する。本例では、第1実施形態(適用例1))と全く同じにしている。

【0094】

具体的には、第1実施形態(適用例3)において、1周期内における交互配置層112 A内の低屈折率層120_jと高屈折率層121_k(何れも図示せず)の幅や境界距離(本 例では隣接する低屈折率層120R_5,120L_5の合成幅)は以下のように設定する。 10

20

上述のように、第1実施形態(適用例1)に対して、縦方向の厚み寸法を0.5umから 0.3µmに変更しているが、横方向の幅寸法は同じである。 [0095]高屈折率層121R_1+高屈折率層121L_1:0.45µm 高屈折率層121R_2,高屈折率層121L_2:0.25µm 高屈折率層121R3,高屈折率層121L3:0.20µm 高屈折率層121R_4,高屈折率層121L_4:0.15µm 高屈折率層121R_5,高屈折率層121L_5:0.10µm 低屈折率層120R_1,低屈折率層120L_1:0.10µm 10 低屈折率層120R_2,低屈折率層120L_2:0.15µm 低屈折率層120R_3,低屈折率層120L_3:0.20µm 低屈折率層 1 2 0 R 4,低屈折率層 1 2 0 L 4:0,2 2 5 u m 低屈折率層120R_5+低屈折率層120L_5:0.40µm [0096] 図 4 A および図 4 B は、図 4 に示した第 1 実施形態 (適用例 3)の光学特性のシミュレ ーション結果を示す図であり、それぞれ近赤外光(= 780 nm)、赤色光(= 64 0 n m)、緑色光 (= 5 4 0 n m)、青色光 (= 4 6 0 n m)の結果である。 [0097]これらからも判るように、交互配置層112Aの厚さ(実質的なレンズ厚)を、0.5 20 μmから0.3μmと変更する場合でも、交互配置層112A内の低屈折率層120_jと 高屈折率層121_kの各数や幅や境界距離を適正に設定することで、何れの波長の光も、 交互配置層112Aにより集光でき、凸レンズ効果がある。 [0098]< 第1 実施形態: 凸レンズの適用例4> 図5~図5Cは、光学レンズの第1実施形態を適用した固体撮像装置の第4例(適用例 4)を説明する図である。ここで図5は第1実施形態(適用例4)の固体撮像装置の断面 模式図であり、図5Aは、より具体的な断面図であり、図5Bおよび図5Cは、その光学 特性のシミュレーション結果を示す図である。 [0099] 30 第1実施形態(適用例4)の固体撮像装置100Aは、基本的には、第1実施形態(適 用 例 1)の 固 体 撮 像 装 置 1 0 0 A と 同 様 の 構 造 に し つ つ 、 画 素 サ イ ズ ま た は レン ズ サ イ ズ を3.6µmではなく、より小さくして1.4µmとしたものである。この画素サイズま たはレンズサイズの変更に伴い、シリコン基板102と薄膜層130との境界面から交互 配置層112Aまでの距離(厚さ:実質的なレンズ長)および交互配置層112Aの厚さ (実質的なレンズ厚)、並びに、交互配置層112A内の低屈折率層120_jと高屈折率 層121_kの各数や幅や境界距離を調整する。 具体的には、第1実施形態(適用例4)において、先ず、交互配置層112Aの厚さ(実質的なレンズ厚)を0.5µmとする。光学レンズ110Aの1周期(つまりレンズサ 40 イズ)を画素サイズ(=画素ピッチ)1.4μmに整合させる。 **[**0 1 0 1 **]** 光 学 レンズ 1 1 0 A の 1 周 期 内 に お け る 交 互 配 置 層 1 1 2 A 内 の 低 屈 折 率 層 1 2 0 _ j と 高屈折率層121_k(何れも図示せず)の幅や境界距離(本例では隣接する低屈折率層1 20 R_3, 1 20 L_3の合成幅)は以下のように設定する。 高屈折率層121R_1+高屈折率層121L_1:0.25µm 高屈折率層121R_2,高屈折率層121L_2:0.15µm 高屈折率層121R3,高屈折率層121L3:0.10μm 低屈折率層120R_1,低屈折率層120L_1:0.10µm 50 低屈折率層120R_2,低屈折率層120L_2:0.13µm

低屈折率層 1 2 0 R_3 + 低屈折率層 1 2 0 L_3 : 0 . 1 9 µ m 【 0 1 0 3 】

また、光学レンズ110Aの主要部をなす交互配置層112Aのシリコンナイトライド SiNでなる各高屈折率層121_kの上下には、各高屈折率層121_kと同幅で、屈折率 n4が1.7のSiONの薄膜(厚さ=0.08μm)を反射防止膜124としてを付け る。反射防止膜124は、シリコンナイトライドSiNと酸化シリコンSiO2の間の中 間的な屈折率材料(本例では屈折率が1.7のSiON)の薄膜で、反射による光学的な ロスを少なくするためのものである。

[0104]

反射防止膜124は、薄膜であり、その厚さや幅に関わらず、付けても付けなくても、 10 交互配置層112Aのレンズ効果そのものには影響を与えない。もちろん、反射防止膜1 24は、この第1実施形態(適用例4)だけでなく、第1実施形態の適用例1~3にも付 けることができる。

[0105**]**

反射防止膜124を付ける場合のレンズ長は、シリコン基板102と薄膜層130との 境界面から反射防止膜124までの距離であり、本例では2.3µmに設定する。 【0106】

図 5 B および図 5 C は、図 5 に示した第 1 実施形態 (適用例 4)の光学特性のシミュレーション結果を示す図であり、それぞれ近赤外光 (= 7 8 0 n m)、赤色光 (= 6 4 0 n m)、緑色光 (= 5 4 0 n m)、青色光 (= 4 6 0 n m)の結果である。 【 0 1 0 7 】

これらからも判るように、画素サイズやレンズサイズを3.6µmから1.4µmと変 更する場合でも、レンズ長や、交互配置層112A内の低屈折率層120_jと高屈折率層 121_kの各数や幅や境界距離を適正に設定することで、何れの波長の光も、交互配置層 112Aにより集光でき、凸レンズ効果がある。

【0108】

< 第 1 比較例 >

図 6 は、第 1 実施形態の光学レンズ 1 1 0 A が備える交互配置層 1 1 2 A (単体としての交互配置層 2 A も)による凸レンズに対する第 1 比較例を説明する図である。

【 0 1 0 9 】

第1比較例の固体撮像装置100Aは、シリコン基板102上に配線層109を有し、 その配線層109の上層に層内集光レンズ105を有し、その層内集光レンズ105の上 層にカラーフィルタ106およびオンチップレンズ108を有する。

[0110]

層内集光レンズ105およびオンチップレンズ108は、何れもスネル則を利用した屈 折型レンズ構造のものである。このため、レンズそのものが1µm程度で厚く、シリコン 基板102の光入射側であるデバイス上層が厚くなってしまう。これによって、隣の画素 からの好ましくない斜め入射光が増加して、この斜め入射光による混色が増加して色再現 性が悪くなる。

[0111]

色再現性を回復させるためにマトリックス演算などの演算処理を行なうことも考えられ るが、余分なノイズが発生して画質が劣化する。

【0112】

外付けの結像系レンズの F 値を小さくすると、配線層 1 0 9 のメタル配線によるケラレ により斜め入射光が増えるために、上層が厚くなることによって理想の感度からの低下が 顕著になり、本来の感度が取れなくなる F 値光感度低下が生じる。

【0113】

光電変換部104が2次元状に配された画素アレイ部の中心に比べて端部で感度が小さ くなるいわゆるシェーディング現象も顕著にもなる。主光線が斜めに入射するためケラレ の影響がより大きくなるなどのためである。

30

20

10

30

[0114]

斜めに入射した光を垂直入射光に補正できるように各レンズを横方向に変形した非対称 なレンズ形状にすることも考えられる。しかしながら、製造プロセスの面では、たとえば リフローで各レンズを作製すると、重力や表面張力の影響を受けるので、球面形状しか作 製できない。換言すれば、リフローで球面レンズを作製するので、横方向に変形した構造 のレンズを作製することはできず、斜めに入射した光を垂直入射光に補正できるようなレ ンズを作製することができない。

【0115】

これに対して、第1実施形態の各光学レンズ110Aは、交互配置層112Aを主要部 として構成されており、集光効果を持つ凸レンズの機能を、極めて薄いレンズで実現する ことができる。これにより、デバイスの上層を薄くでき、混色が減るので色再現性がよく なるとともに、演算処理による余分なノイズ発生も少なくなる。またF値光感度低下も小 さくなる。

[0116]

さらに、光学レンズ110Aの主要部なす交互配置層112Aは、低屈折率層120と 高屈折率層121とを所定の幅で交互に配列した構造のものであり、リソグラフィ技術や RIE(Reactive Ion Etching)法などの単純で簡便な加工技術だけで作製できるために (詳細は後述する)、作製の工程が簡便でコストが低く抑えられる。

【0117】

また、適用例1~4で示したことから理解されるように、交互配置層112Aによる凸 ²⁰ レンズ効果は、矩形状の各低屈折率層120および各高屈折率層121の幅や配列数を調 整することで適宜変更が可能であり、球面レンズに比べて光学的に設計の幅が広がる。 【0118】

< 第 2 比較例 >

図 6 A は、第 1 実施形態の光学レンズ 1 1 0 A が備える交互配置層 1 1 2 A (単体としての交互配置層 2 A も)による凸レンズに対する第 2 比較例を説明する図である。

【 0 1 1 9 】

第2比較例の固体撮像装置100Aは、特開2005-011969号公報に記載され ているものである。簡単に言えば、オンチップレンズなどの上部レンズで収束された光を さらに収束させて対応する光電変換部に入射させる層内集光レンズを、フレネルレンズを ベースとして構成しているものである。

詳しくは、屈折型レンズであるが、波型にすることでレンズを薄くできるようにしている。しかしながら、このレンズは屈折型であるために波長オーダーより薄くするのに限度がある。また、このような波型を作製するのは通常の屈折型レンズの工程よりもさらに複雑な工程となり、コストもさらにかかる。また、球面でしかレンズが作製できず、非対称 性を入れることができない。

 $\begin{bmatrix} 0 & 1 & 2 & 1 \end{bmatrix}$

加えて、フレネルレンズの場合、ある領域に斜め入射した光において本来集光するポイ ントに集まらないことがある。たとえば図6Aにおいて、実線のようにレンズの曲面部に ⁴⁰ 光が入射した場合には集光するが、点線のように段差の壁に光が入射すると、壁で反射し たり屈折したりすることで、図のように集光せずに発散することになる。このことは、集 光効率が低下してしまう上に、発散した光が隣の画素に入射した場合には混色の原因にな る。

[0 1 2 2 **]**

< 第 3 比較例 >

図 6 B は、第 1 実施形態の光学レンズ 1 1 0 A が備える交互配置層 1 1 2 A (単体としての交互配置層 2 A も)による凸レンズに対する第 3 比較例を説明する図である。 【 0 1 2 3 】

第3比較例の固体撮像装置100Aは、特開2006-351972号公報に記載され 50

ているものである。集光素子(つまり凸レンズ)を、入射光の波長と同程度かそれより短 い線幅で分割された同心構造の複数のゾーン領域の組み合わせによって構成されたものと している。ここで、複数のゾーン領域のうち少なくとも1のゾーン領域は、第1線幅およ び第1膜厚の同心構造の下段光透過膜と、下段光透過膜の上位に構成される第2線幅およ び第2膜厚の同心構造の上段光透過膜とを含む。簡単に言えば、2段同心円構造の分布屈 折率レンズ(つまりフレネルレンズ)をベースとして集光素子を構成している。 【0124】

(20)

よって、特開2006-351972号公報に記載されている第3比較例の集光素子(凸レンズ)は屈折率レンズとなっているが、フレネルレンズをベースとしているので、特 開2005-011969号公報に記載されている第2比較例の層内集光レンズと同様な ことが生じる。図6Bにそれを示すが、各領域の境界付近の屈折率の段差に斜め入射光が 入ると、壁で反射したり屈折したりすることで、図のように集光せずに発散することにな る。このことは、集光効率が低下してしまう上に、発散した光が隣の画素に入射した場合 には混色の原因になる。

[0125]

これに対して、第1実施形態の交互配置層2A(交互配置層112A)では、屈折率の 大きい高屈折率層121と屈折率の小さい低屈折率層120が波長オーダー以下で幅が徐 々に変化するために、フレネルレンズのような大きい屈折率の段差はなく、斜め入射光に 対しても反射や屈折による発散する光は少ない。したがって、集光の劣化が少なく、効率 的に光を集めることができる。

[0126]

また、第1実施形態の112(交互配置層2A)の製造プロセスの方が、特開2005 -011969号公報に記載されている第2比較例の層内集光レンズや特開2006-3 51972号公報に記載されている第3比較例の集光素子の製造プロセスに比べて簡便で ある。たとえば、図6Bに示す構造を見ても判るように、2段階にエッチングするために 工程数が多くなり、結果としてコストが高くなる。また、このような複雑なエッチングに より再現性や均一性にも影響し、生産バラツキを生じ易くなる。

【0127】

第1実施形態の112(交互配置層2A)では、高屈折率層21(高屈折率層121) と低屈折率層20(低屈折率層120)を交互に横方向に配列したものであるので、基本 的には、高屈折率層21(高屈折率層121)の堆積および1回のエッチング、その後の 低屈折率層20(低屈折率層120)の堆積並びにリソグラフィ技術やRIE法などの単 純で簡便な加工技術だけで済むために工程数は少なく、低コストで、かつ再現性や均一性 もよくなる。

[0128]

以上のことから判るように、波面制御の仕組みを利用した集光レンズ(つまり凸レンズ)を層内集光レンズ(あるいは表面レンズ)として使用するものと考えることができる第 1 実施形態の交互配置層2A(交互配置層112A)と、第2比較例(特開2005-0 11969号公報)の層内集光レンズや第3比較例(特開2006-351972号公報)の集光素子とは、全く原理が異なる。第2比較例の層内集光レンズや第3比較例の集光 素子では、第1実施形態の交互配置層2A(交互配置層112A)が持つ効果を享受でき ない。

【0129】

< 第 4 比 較 例 >

図示を割愛するが、特開2005-252391号公報には、屈折率の大きい散乱体を 画素内上層に設ける構成(第4比較例と称する)が開示されている。しかしながら、第4 比較例の仕組みは、第1実施形態の交互配置層2A(交互配置層112A)のように、屈 折率の高い高屈折率層121を、板状に、かつ中心が密で中心から離れるに従って疎にな る構造、具体的には、屈折率の大きい高屈折率層121の幅が、レンズの中心に向かって 徐々に大きくなる構造、すなわち中心が幅広で周辺が幅狭の構造にはなっていない。 10

[0130]

加えて、第4比較例の仕組みでは、散乱効果によるローパスフィルター機能やMTF制 御機能であってレンズ機能ではない。この点は、第1実施形態の交互配置層2A(交互配 置層112A)は、屈折率が大きい高屈折率層21(高屈折率層121)と小さい低屈折 率層20(低屈折率層120)の光速が異なることと、波動関数の連続性を組み合わせる ことで、凸レンズ効果を享受するものであり、第4比較例の仕組みとは、原理や目的が全 く異なる。

【0131】

< 第 5 比較例 >

図示を割愛するが、特開2005-203526号公報には、レンズ基板に画素に対応 して形成された貫通孔に屈折率分布型レンズを埋め込み、貫通孔の径方向に変化した屈折 率を有するものとする構成(第5比較例と称する)が開示されている。しかしながら、第 5比較例の仕組みは、貫通孔の径方向すなわち横方向に屈折率分布を徐々に変化させるというもので、屈折率が大きい高屈折率層21(高屈折率層121)と小さい低屈折率層2 0(低屈折率層120)の光速が異なることと波動関数の連続性を組み合わせた交互配置 層2A(交互配置層112A)により凸レンズ効果を享受する第1実施形態の仕組みとは、基本的な構造のコンセプトが異なる。

【0132】

第5比較例の仕組みでは、屈折率の大きい層と低い層を順々に横方向に堆積させること も同時に述べているが、現実には横方向からのみならず下からも堆積してしまうために、 ²⁰ このような構造にはならず、横方向のみに屈折率の異なる多層構造には容易に作製できない。

【0133】

これに対して、第1実施形態の112(交互配置層2A)では、高屈折率層21(高屈 折率層121)と低屈折率層20(低屈折率層120)を交互に横方向に配列したもので あるので、基本的には、高屈折率層21(高屈折率層121)の堆積および1回のエッチ ング、その後の低屈折率層20(低屈折率層120)の堆積と言った縦方向の多層構造並 びにリソグラフィ技術やRIE法などのプロセスでよく、簡便かつ少ない工程数で作製で きる利点がある。

【0134】

< 第1 実施形態: 凸レンズの変形例1 >

図7および図7Aは、光学レンズの第1実施形態の第1の変形例(変形例1)を説明す る図である。ここで図7は変形例1の光学レンズを適用した変形例1の固体撮像装置を説 明する断面模式図である。図7Aは、その光学特性のシミュレーション結果(= 540 nm)を示す図である。

【0135】

第1実施形態の基本例では、中心が密で中心から離れるに従って疎になる構造とすることで凸レンズ機能を持たせるに当たり、第1および第2の凸レンズ化手法を併用した第3の凸レンズ化手法を採用していたが、変形例1では、屈折率の大きい層(高屈折率層12 1_k)の幅がレンズの中心に向かって徐々に大きくなる構造を有するものとする第1の凸レンズ化手法のみを適用したものである。屈折率の小さい層(低屈折率層120_j)に関しては全てを等幅にしている。

【0136】

シリコン基板102と薄膜層130との境界面から交互配置層112Aまでの距離(厚 さ:実質的なレンズ長)を3.6µm、交互配置層112Aの厚さ(実質的なレンズ厚) を0.5µmとする。光学レンズ110Aの1周期(つまりレンズサイズ)を画素サイズ (=画素ピッチ)3.25µmに整合させる。第1実施形態(適用例1)では、レンズサ イズや画素サイズを3.6µmにしていたのに対して若干の相違がある。画素サイズを前 例に対して多少変えているが、これは、高屈折率層121を適度な寸法(0.05µm単 位)にしつつ、低屈折率層120も適度な寸法(0.05µm単位)で等幅にする際の調 30

用例1)の固体撮像装置100Aと同様の構造にしつつ、低屈折率層120_jの幅を全て **[**0138**]** 具体的には、第1実施形態(変形例1)において、1周期内における交互配置層112 A内の低屈折率層120_iと高屈折率層121_k(何れも図示せず)の幅や境界距離(本 [0139]高屈折率層121R_1+高屈折率層121L_1:0.65µm 高屈折率層121R_2,高屈折率層121L_2:0.25µm 高屈折率層121R3,高屈折率層121L3:0.20μm 高屈折率層121R_4,高屈折率層121L_4:0.15µm 低屈折率層120R_1,低屈折率層120L_1:0.20µm 低屈折率層120R_2,低屈折率層120L_2:0.20µm 低屈折率層120R_3,低屈折率層120L_3:0.20µm 低屈折率層120R_4+低屈折率層120L_4:0.20µm [0140]屈折率の小さい低屈折率層120_jの幅が0.2µmで等幅になっていて、かつ屈折率 の大きい高屈折率層121_kの幅が0.65µm,0.25µm,0.2µm,0.15 µmと中心から端にいくほど徐々に小さくなっているのが判る。 $\begin{bmatrix} 0 & 1 & 4 & 1 \end{bmatrix}$ 図から判るように、第1実施形態(変形例1)においても、光学レンズ110Aの交互 率が2.0のシリコンナイトライドSiNの高屈折率層121の周期構造によって入射光 低屈折率層120の横方向の最小線幅を0.20μm、高屈折率層121の横方向の最小 図7Aは、図7に示した第1実施形態(変形例1)の光学特性のシミュレーション結果 を示す図であり、緑色光(=540nm)の結果である。これらからも判るように、屈 折率の小さい層(低屈折率層120_j)に関しては全てを等幅にしつつ、屈折率の大きい 高屈折率層121の幅がレンズの中心に向かって徐々に大きくなる構造を有するものとす ることでも、交互配置層112A内の低屈折率層120_jと高屈折率層121_kの各数や 幅や境界距離を適正に設定することで、緑色光(= 5 4 0 n m)を、交互配置層 1 1 2 Aにより集光でき、凸レンズ効果がある。 [0143] 図示を割愛するが、近赤外光(= 780 nm)、赤色光(= 640 nm)、青色光 (= 4 6 0 n m)についても、同様に凸レンズ効果がある。 [0144]このように、屈折率が小さな低屈折率層120_jが等幅でも、屈折率の大きい高屈折率 層121_kの幅がレンズの中心に向かって徐々に大きくなる構造を有する第1実施形態(変形例1)とすることで、屈折率の高い高屈折率層121_kを、板状に、かつ中心が密で 中心から離れるに従って疎になる構造にすることができ、第1実施形態(基本例およびそ の適用例1~4)と同様に、集光性が存在することが判る。 [0145]第1実施形態(変形例1)の構成では、レンズ作製が容易になる効果がある。すなわち

整によるものである。画素サイズを前例とできるだけ同じにしつつ低屈折率層120部分 を等幅にすることも可能である。

第1実施形態(変形例1)の固体撮像装置100Aは、基本的には、第1実施形態(適 同幅とする変更に伴い、交互配置層112A内の低屈折率層120 iと高屈折率層121 _kの各数や高屈折率層121_kの幅や境界距離を調整する。

10 例では隣接する低屈折率層120R_4,120L_4の合成幅)は以下のように設定する。

配置層112Aは、屈折率が1.46の酸化シリコンSiO2の低屈折率層120と屈折 を湾曲させるSWLL構造の集光素子となっている。本例では、交互配置層112Aは、 線幅を0.15μm、レンズの厚みを0.5μmとしている。

20

40

10

40

、低屈折率層120を埋め込むプロセス工程で、リソグラフの分解能が不十分で埋め込み 幅を狭くできなかったり、埋め込み幅を狭くするとボイドなどが発生して埋め込み性が悪 くなったりして困難な場合、リソグラフや埋め込み可能な幅で変形例1のように等幅にす ることで作製が可能となる。特に、この埋め込み可能な幅が波長オーダーぎりぎりでこれ 以上幅を広げると等位相面(波面)の連続性が失われるときに有効な手段となる。 【0146】

< 第 1 実施形態: 凸レンズの変形例 2 >

図 8 および図 8 A は、光学レンズの第 1 実施形態の第 2 の変形例(変形例 2)を説明す る図である。ここで図 8 は変形例 2 の光学レンズを適用した変形例 2 の固体撮像装置を説 明する断面模式図である。図 8 A は、その光学特性のシミュレーション結果(= 5 4 0 n m)を示す図である。

【0147】

第1実施形態の基本例では、中心が密で中心から離れるに従って疎になる構造とすることで凸レンズ機能を持たせるに当たり、第1および第2の凸レンズ化手法を併用した第3の凸レンズ化手法を採用していたが、変形例3では、屈折率の小さい層(低屈折率層12 0_j)の幅がレンズの中心に向かって徐々に小さくなる構造を有するものとする第2の凸 レンズ化手法のみを適用したものである。屈折率の大きい層(高屈折率層121_k)に関 しては全てを等幅にしている。

[0148]

シリコン基板102と薄膜層130との境界面から交互配置層112Aまでの距離(厚
 20
 さ:実質的なレンズ長)を3.6µm、交互配置層112Aの厚さ(実質的なレンズ厚)
 を0.5µmとする。光学レンズ110Aの1周期(つまりレンズサイズ)を画素サイズ
 (=画素ピッチ)3.85µmに整合させる。第1実施形態(適用例1)では、レンズサイズや画素サイズを3.6µmにしていたのに対して若干の相違がある。画素サイズを前例に対して多少変えているが、これは、低屈折率層120を適度な寸法(0.05µm単位)にしつつ、高屈折率層121も適度な寸法(0.05µm単位)で等幅にする際の調整によるものである。画素サイズを前例とできるだけ同じにしつつ高屈折率層121部分を等幅にすることも可能である。

【0149】

第1実施形態(変形例2)の固体撮像装置100Aは、基本的には、第1実施形態(適 30 用例1)の固体撮像装置100Aと同様の構造にしつつ、高屈折率層121_kを全て同幅 とする変更に伴い、交互配置層112A内の低屈折率層120_jと高屈折率層121_kの 各数や高屈折率層121_kの幅や境界距離を調整する。

[0150]

具体的には、第1実施形態(変形例2)において、1周期内における交互配置層112 A内の低屈折率層120_jと高屈折率層121_k(何れも図示せず)の幅や境界距離(本 例では隣接する低屈折率層120R_5,120L_5の合成幅)は以下のように設定する。 【0151】

高屈折率層 1 2 1 R_1 + 高屈折率層 1 2 1 L_1 : 0 . 1 5 µm 高屈折率層 1 2 1 R_2 , 高屈折率層 1 2 1 L_2 : 0 . 1 5 µm 高屈折率層 1 2 1 R_3 , 高屈折率層 1 2 1 L_3 : 0 . 1 5 µm 高屈折率層 1 2 1 R_4 , 高屈折率層 1 2 1 L_4 : 0 . 1 5 µm 高屈折率層 1 2 1 R_5 , 高屈折率層 1 2 1 L_4 : 0 . 1 5 µm 低屈折率層 1 2 0 R_1 , 低屈折率層 1 2 0 L_1 : 0 . 1 5 µm 低屈折率層 1 2 0 R_2 , 低屈折率層 1 2 0 L_2 : 0 . 1 0 µm 低屈折率層 1 2 0 R_3 , 低屈折率層 1 2 0 L_3 : 0 . 3 0 µm 低屈折率層 1 2 0 R_5 + 低屈折率層 1 2 0 L_4 : 0 . 4 0 µm

【 0 1 5 2 】

屈折率の大きい高屈折率層121_kの幅が0.15µmで等幅になっていて、かつ屈折 50

率の小さい低屈折率層120_jの幅が0.10µm,0.20µm,0.30µm,0. 40µm,0.50µmと中心から端にいくほど徐々に大きくなっているのが判る。 【0153】

図から判るように、第1実施形態(変形例2)においても、光学レンズ110Aの交互 配置層112Aは、屈折率が1.46の酸化シリコンSiO2の低屈折率層120と屈折 率が2.0のシリコンナイトライドSiNの高屈折率層121の周期構造によって入射光 を湾曲させるSWLL構造の集光素子となっている。本例では、交互配置層112Aは、 高屈折率層121の横方向の最小線幅を0.10µm、高屈折率層121の横方向の最小 線幅を0.15µm、レンズの厚みを0.5µmとしている。

[0154**]**

図8Aは、図8に示した第1実施形態(変形例2)の光学特性のシミュレーション結果 を示す図であり、緑色光(= 540 nm)の結果である。これらからも判るように、屈 折率の大きい層(高屈折率層121_k)に関しては全てを等幅にしつつ、屈折率の小さい 低屈折率層120の幅がレンズの中心に向かっ徐々に小さくなる構造を有するものとする ことでも、交互配置層112A内の低屈折率層120_jと高屈折率層121_kの各数や幅 や境界距離を適正に設定することで、緑色光(= 540 nm)を、交互配置層112A により集光でき、凸レンズ効果がある。

【 0 1 5 5 】

図示を割愛するが、近赤外光(= 7 8 0 n m)、赤色光(= 6 4 0 n m)、青色光 (= 4 6 0 n m)についても、同様に凸レンズ効果がある。

[0156]

このように、屈折率が大きい高屈折率層121_kが等幅でも、屈折率の小さい低屈折率 層120_jの幅がレンズの中心に向かって徐々に小さくなる構造を有する第1実施形態(変形例2)とすることでも、屈折率の高い高屈折率層121_kを、板状に、かつ中心が密 で中心から離れるに従って疎になる構造にすることができ、第1実施形態(基本例および その適用例1~4)と同様に、集光性が存在することが判る。

【0157】

第1実施形態(変形例2)の構成では、レンズ作製が容易になる効果がある。すなわち、高屈折率層121をリソグラフでエッチングするプロセス工程で、リソグラフの分解能が不十分で狭くできなかったり、あるいはエッチング工程のときにサイドエッチングなどが発生して幅の制御性が悪くなったりすることで、狭い幅のリソグラフやエッチング工程が困難な場合、リソグラフやエッチングが可能な幅で変形例2のように等幅にすることで 作製が可能となる。特に、リソグラフやエッチングが可能な幅が波長オーダーぎりぎりでこれ以上幅を広げると等位相面(波面)の連続性が失われるときに有効な手段となる。 【0158】

< 第 2 実施形態:凸型レンズ+斜め入射光補正(別体型)>

図9~図10Cは、光学レンズの第2実施形態の基本原理を説明する図である。ここで 図9は、第1実施形態の構造(たとえば図2の適用例1)において、斜め入射光を入射し たときのシミュレーション結果を示す図である。図10は光学レンズの第2実施形態の基 本原理を説明するための等位相面を示す図である。図10Aは、固体撮像装置100Aの 受光光学系を説明する図である。図10Bは第2実施形態の光学レンズの1つ分の平面模 式図である。図10Cは、第2実施形態の光学レンズを固体撮像装置の画素アレイ部上に 適用した場合の平面概略図である。なお、図10Cでは、画素アレイ部全体おいて各画素 の交互配置層によるレンズ形状に関して、代表的な位置のみをピックアップして拡大して 示している。

【 0 1 5 9 】

第2実施形態のレンズ構造は、斜め入射光入射に対する補正機構を備えるようにした点に特徴を有する。後述する第3実施形態との相違点としては、凸レンズ機能を持つ交互配置層112Aに対して、斜め入射光補正機能を有する光学部材を別体で追加する(別の層に配置する)点である。

10

30

20

[0160]

第1実施形態の構造(たとえば図2の適用例1)において、斜め入射光を入射したとき には、図9に示すように、集光位置がレンズ中心に対して横方向に少しずれることが判る 。これは、通常の球面レンズでも生じる現象と共通する。このために、第1実施形態の光 学レンズの構成では、イメージセンサにおいては、隣の画素からの望ましくない斜め入射 光が入射することによる混色の問題や、画素アレイ部の端部で感度低下が顕著になるシェ ーディングの問題を引き起こす可能性がある。

【0161】

第2実施形態の光学レンズの構造では、これらの斜め入射光入射に起因する問題を小さ くするべく、斜め入射光を垂直入射光にする補正機能を持たせる。その補正機能の仕組み は、図10に示すように、レンズ中心を境に、片側(図示した例では左側)では高い屈折 率の高屈折率層21が割合で多く存在し、反対側(図示した例では右側)では割合で少な く存在する点に特徴を有する。当然に、レンズの左右が非対称である点で、前述の第1実 施形態と相違する。

[0162]

レンズ中心を境に、片側では高い屈折率の高屈折率層21が割合で多く存在し、反対側 では割合で少なく存在する構造とすることで斜め入射光入射に対する補正機能を持たせる には、たとえば、高屈折率層21に着目したとき、光学レンズの1周期(つまりレンズサ イズ)において、屈折率の大きい高屈折率層21が一方向に(図示した例では左側に)、 幅が徐々に大きくなる構造を有するものとする第1の斜め入射光補正手法を採ることがで きる。逆に、低屈折率層20に着目したとき、光学レンズの1周期(つまりレンズサイズ)において、屈折率の小さい低屈折率層20が一方向に(図示した例では右側に)、幅が 徐々に大きくなる構造を有するものとする第2の斜め入射光補正手法を採ることもできる 。さらに、これら第1および第2の斜め入射光補正手法を併用した第3の斜め入射光補正 手法を採用することもできる。補正効率の面では第3の斜め入射光補正手法を適用するの が最も効果的である。

[0163]

第2実施形態の光学レンズは、斜め入射光を垂直入射光に変換する機能(入射角変換機能と称する)を持つもので、非対称の重心が、光学レンズの端部(図10では左端の高屈 折率層21L_4の中心)になる点で、後述する第3実施形態と異なる。なお、「重心」の 定義については、第3実施形態で説明する。

【0164】

第1の斜め入射光補正手法は、後述する第3実施形態の構成説明を勘案して換言すれば、部材(レンズ:交互配置層2B)の一方の端部側から光学的な重心位置(本例の場合レンズの他方の端部側)に向かって、屈折率の大きい高屈折率層21の幅が徐々に大きくなる構造を有するものとする手法である。同様に、第2の斜め入射光補正手法は、後述する第3実施形態との相違を勘案して換言すれば、部材(レンズ:交互配置層2B)の一方の端部側から光学的な重心位置(本例の場合レンズの他方の端部側)に向かって、屈折率の小さい低屈折率層20の幅が徐々に小さくなる構造を有するものとする手法である。この説明から理解されるように、入射角変換機能の基本的な考え方は、第2および第3実施形態で相違はない。

【0165】

先ず、図10に示すように、光出力側には屈折率n0のみの板状の単一材層1が数層(図では1_1~1_6の6層)存在し、それ(詳しくは層1_6)に隣接して、屈折率n0の矩 形状の層(低屈折率層と称する)20と屈折率n0よりも高い(大きい)屈折率n1(n 1>n0)の矩形状の層(高屈折率層と称する)21とをそれぞれ横方向に交互に配列し た板状の層(交互配置層と称する)2Bが設けられているものとする。図示を割愛するが 、交互配置層2Bの光入射側には、屈折率n0のみの板状の単一材層が設けられると考え てよい。詳細は後述するが、交互配置層2Bは、斜め入射光を垂直入射光に変換する光学 レンズの機能をなす。

(25)

10

[0166]

図示した第2実施形態の基本例の構成では、中心CLに対して左側では、高い屈折率の高 屈折率層21が割合で多く存在し、右側側では割合で少なく存在する構造とするに当たり 、左側の高屈折率層21L_1~21L_4の幅は、中心CLに向かって徐々に小さくなる構造 を有するとともに、右側の高屈折率層21R_1~21R_4の幅は、中心CLに向かって徐々 に大きくなる構造を有し、屈折率の大きい高屈折率層21が右から左にかけて一方向に幅 が徐々に大きくなる構造を持つ。

【0167】

加えて、左側の低屈折率層20L_1~20L_3の幅は、中心CLに向かって徐々に大きくなる構造を有するとともに、右側の低屈折率層20R_1~20R_3の幅は、中心CLに向かって徐々に小さくなる構造を有を有し、屈折率の小さい低屈折率層20_jが右から左にかけて一方向に幅が徐々に小さくなる構造を持つ。

10

20

30

40

つまり、この第2実施形態の基本例では、前述の第1および第2の斜め入射光補正手法 を併用した第3の斜め入射光補正手法を採用したものである。これにより、図のように、 斜め入射光を垂直入射光に変換できることになる。

【0169】

[0168]

図1Aに示した第1実施形態の交互配置層2Aとの比較においては、交互配置層2Aの レンズ中心を境に、左右の何れか一方(図示した例では右側)のみの構造としたのが第2 実施形態の交互配置層2Bに相当することになる。第1実施形態の交互配置層2Aでは、 レンズ中心を境に左右では中心側に入射光の経路を変換する機能が働くのであるが、その 機能の片側のみを利用したのが第2実施形態の交互配置層2Bと考えることができる。 【0170】

このような交互配置層2Bを交互配置層2Aの光入射側あるいは光出射側あるいはその 双方に配置して固体撮像装置100Aに適用すれば、凸レンズ機能の集光ポイントを、画 素の中心または光電変換部104上に確実にもっていく機能を実現できる。

【 0 1 7 1 】

第2実施形態のレンズ構造においては、このような斜め入射光を垂直入射光に変換する 入射角変換機能を持つ交互配置層2Bを、集光効果を持つ光学レンズの機能をなす第1実 施形態の交互配置層2Aに積層する。その際には、光入射側に交互配置層2Bを配置する 構造、すなわち凸レンズ機能を持つ交互配置層2Aの上に入射角変換機能を持つ交互配置 層2Bを積層した構造としてもよい。

あるいは、光入射側に交互配置層2Aを配置する構造、すなわち凸レンズ機能を持つ交 互配置層2Aの下に入射角変換機能を持つ交互配置層2Bを積層した構造としてもよい。 さらには、光入射側と光出射側の双方に交互配置層2Bを配置する構造、すなわち凸レン ズ機能を持つ交互配置層2Aの上下双方に入射角変換機能を持つ交互配置層2Bを積層し た構造としてもよい。

[0173**]**

斜め入射光を垂直入射光に変換できれば、隣の画素からの光が入射する混色の問題や、 画素アレイ部の端部で感度低下が顕著になるシェーディングの問題を解決できることにな る。

[0174]

この効果は、たとえば、固体撮像装置100Aに適用した場合、図10Aに示すように、結像レンズからの主光線が画素アレイ部の端部にいくほど斜め入射になるので、画素アレイ部の中心は斜め補正機能を弱くして、画素アレイ部の端部になるほど補正機能を強くすることでより効果的になる。たとえば、画素アレイ部の端部になるほど、屈折率の大きい高屈折率層21の割合の非対称性を大きくする。

【0175】

図10に示す構造から明らかなように、そのレンズ厚は、屈折率の大きい矩形状の高屈 50

折率層21_kと屈折率の小さい矩形状の低屈折率層20_jを横方向に交互に配列した交互 配置層2Bの厚さであるから、極めて薄い入射角変換レンズ(斜め光補正レンズ)にする ことができる。たとえば、0.5μm以下までレンズを薄くできる。 【01.76】

(27)

【0176】

交互配置層2Bは、平面構造においても、当然に、レンズ中心を境に、片側では高い屈 折率の高屈折率層21が割合で多く存在し、反対側では割合で少なく存在する構造になっ ていればよく、その限りにおいて、様々な平面構造を採ることができる。 【0177】

たとえば図10Bに示すように、線状の低屈折率層20および高屈折率層21を、所定 幅で片方に寄せて配列した構造でもよい。また、図示を割愛するが、低屈折率層20およ ¹ び高屈折率層21は曲線状のものでもよい。

【0178】

凸レンズとしての交互配置層2Aと組み合わせて固体撮像装置100Aの画素アレイ部 に適用する場合、画素アレイ部の中心では斜め入射光入射が問題とならないので交互配置 層2Bが不要である。これに対して、画素アレイ部の端部に行くほど斜め入射光入射が問 題となる。このため、図10Cに示すように、たとえば、図10Bに示すような線状の低 屈折率層20および高屈折率層21を所定幅で片方に寄せて配列した構造を持つ交互配置 層2Bを、光軸が画素アレイ部の中心に向くように配置する。

【0179】

この際には、画素アレイ部の端部に行くほど入射角変換機能が強くなるように、画素ア ²⁰ レイ部の端部に行くほど低屈折率層 2 0 や高屈折率層 2 1 の割合の変化具合が強くなるよ うにする。つまり、画素アレイ部の中心では非対称性が無く、画素アレイ部の端部になる ほど非対称性が強くなる構造にするのがよい。

【 0 1 8 0 】

ここでは、光電変換素子(受光部)が2次元状に配列されている画素アレイ部の場合で 示したが、光電変換素子(受光部)が1次元状に配列されている画素アレイ部の場合でも 同様である。

[0 1 8 1 **]**

こうすることで、画素アレイ部の端部に行くほど主光線が斜め入射するのを補正して交 互配置層2Aによる各凸レンズの集光ポイントを画素中心に持っていくことができる。こ のようなレンズ形状を固体撮像装置100Bの内部に持つ(つまり固体撮像装置100B と一体的に形成する)ことで、瞳補正機構を設けなくても画素アレイ部の端部で起こる感 度低下(シェーデング)を小さくできるとともに、混色も減らすことができるので、色再 現性を改善することができる。

[0182]

< 第 2 実施形態: 入射角変換機能の適用例>

図11および図11Aは、光学レンズの第2実施形態を適用した固体撮像装置を説明す る図である。ここで図11は入射角変換機能を持つ交互配置層2Bを適用した固体撮像装 置の断面模式図であり、図11Aは、その光学特性のシミュレーション結果を示す図であ る。

【0183】

図11に示すように、第2実施形態の固体撮像装置100Bは、図2に示した第1実施 形態の交互配置層2Aの適用例1の固体撮像装置100Aをベースとしたもので、凸レン ズ機能を持つ交互配置層112Aの光入射側(紙面の下側)に入射角変換機能(斜め補正 機能)を持つ交互配置層112Bを配置した光学レンズ110Bを備える。このように、 第2実施形態の光学レンズ110Bは、交互配置層112Aによる凸レンズ機能と交互配 置層112Bによる斜め補正機能を別々に持たせた構造である。 【0184】

図11に示す交互配置層112Aと交互配置層112Bの配置関係は、紙面の右下側から光が入射する場合で示している。なお、交互配置層112Aによる凸レンズの中心に対

10

10

20

30

して、交互配置層112Bによる入射角変換レンズ(斜め光補正レンズ)の中心を若干紙 面の右側にずらしてある。 [0185] 第2実施形態(適用例)において、光学レンズ110Bは、1周期(画素サイズ=3. 6 μ m)内における交互配置層112 B内の低屈折率層120_jと高屈折率層121_k (何れも図示せず)の幅は以下のように設定する。 [0186]高屈折率層121R_4:0.45µm 高屈折率層121R_3:0.35µm 高屈折率層121R_2:0.25µm 高屈折率層121R_1+高屈折率層121L_1:0.20µm 高屈折率層121L2:0.15 um 高屈折率層121L_3:0.11µm 高屈折率層121L_4:0.10µm 低屈折率層120R3:0.10µm 低屈折率層120R_2:0.12µm 低屈折率層120R_1:0.185µm 低屈折率層120L_1:0.235µm 低屈折率層120L_2:0.260µm 低屈折率層120L_3:0.345µm 低屈折率層120L_4:0.745µm 図11Aは、図11に示した第2実施形態(適用例)の光学特性のシミュレーション結

果を示す図であり、緑色光(= 5 4 0 n m)の斜め入射光を固体撮像装置1 0 0 B に入 射した結果である。これらからも判るように、レンズ中心を境に、片側では高い屈折率の 高屈折率層1 2 1 が割合で多く存在し、反対側では割合で少なく存在する構造を持つ交互 配置層1 1 2 B を交互配置層1 1 2 A に重ねて配置することで、緑色光の斜め入射光を交 互配置層1 1 2 A による凸レンズのほぼ中心に集光させることができる。これは入射角変 換機能による斜め補正機能が効果的に働いていることを意味する。

【0188】

図示を割愛するが、近赤外光(= 7 8 0 n m)、赤色光(= 6 4 0 n m)、青色光 (= 4 6 0 n m)についても、同様に、斜め入射光を交互配置層 2 A による凸レンズの ほぼ中心に集光させる斜め補正機能効果がある。

【0189】

交互配置層112Aによる凸レンズ機能と交互配置層112Bによる入射角変換機能(斜め補正機能)を持つ固体撮像装置100Bとすることで、斜め入射光を垂直入射光に変換することができ、シェーディングや混色の低減にもなり高画質が達成できる。

【0190】

<第3実施形態:凸型レンズ+斜め入射光補正(一体型)>

図12~図12Cは、光学レンズの第3実施形態の基本原理を説明する図である。ここ 40 で図12は光学レンズの第3実施形態の基本原理を説明するための等位相面を示す図であ る。図12Aはレンズの重心を説明する図であり、図12Bおよび図12Cは光学レンズ の第3実施形態の平面模式図である。

【0191】

第3実施形態のレンズ構造は、斜め入射光入射に対する補正機構を備えるようにした点 に特徴を有し、この点においては第2実施形態と共通する。前述の第2実施形態との相違 点としては、凸レンズ機能と斜め入射光補正機能の両者を兼ね備えた交互配置層とする点 である。

[0192]

図12に示すように、第3実施形態の交互配置層2Cの基本的な考え方は、屈折率の大 ⁵⁰

きい層が、板状に、かつ中心が密で中心から離れるに従って疎になる左右対称構造を持つ 第1実施形態の交互配置層2Aをベースとして、レンズ中心を境に、片側では高い屈折率 の高屈折率層が割合で多く存在し、反対側では割合で少なく存在する左右非対称構造を持 つ第2実施形態の交互配置層2Bの仕組みを適用したものである。 【0193】

つまり、第3実施形態の交互配置層2Cは、幅が波長オーダーまたはそれより小さい幅の屈折率の大きい層が、板状に、かつ中心が密で中心から離れるに従って疎になる構造を 持つとともに、レンズ中心に対して横方向で非対称構造を有することで、凸レンズ機能と 入射角変換機能(斜め入射光補正機能)を同時に持つ点に特徴を有する。

【0194】

重心の左右どちらから見ても、非対称の重心に向かって、屈折率の大きい高屈折率層2 1の幅が徐々に大きくなる構造を有する。また、非対称の重心に向かって、屈折率の小さ い低屈折率層20の幅が徐々に小さくなる構造を有する。第1実施形態との相違は、レン ズの重心に対して、左右の一方では低屈折率層20と高屈折率層21の配列が粗であり、 他方側では密になる点である。

【0195】

左右対称構造を持つ交互配置層2Aに対して左右非対称構造を適用するには、たとえば、部材(レンズ:交互配置層2C)の一方の端部側から光学的な重心位置に向かって、屈折率の大きい高屈折率層21の幅が徐々に大きくなる構造を有するものとする、すなわち屈折率の大きい高屈折率層21の幅が非対称の重心に向かって徐々に大きくなる構造を有するものとする第1の非対称化手法を採用することができる。 【0196】

20

10

あるいは、部材(レンズ:交互配置層2C)の一方の端部側から光学的な重心位置に向 かって、屈折率の小さい低屈折率層20の幅が徐々に小さくなる構造を有するものとする 、すなわち屈折率の小さい低屈折率層20の幅が非対称の重心に向かって徐々に小さくな る構造を有するものとする第2の非対称化手法を採用することもできる。あるいはこれら 第1および第2の非対称化手法を併用した第3の非対称化手法を採用することもできる。 非対称化の効率の面では第3の非対称化手法を適用するのが最も効果的である。 【0197】

ここで、「重心」について、図12Aを参照して説明する。画素マトリクス内または― 30 定エリア面内において、屈折率の大きい高屈折率層21の屈折率をn1、屈折率の小さい 低屈折率層20の屈折率をn0とする。平面内の(x,y)座標において、下記の式(1)が成り立つ場合、その(x1,y1)の位置を光学的な重心と定義する。 【0198】

【数1】

$$\iint_{D} (x_{1} - x)(y_{1} - y)f(x, y)dxdy = 0 \quad \dots (1)$$

[0199]

これは、重心の位置において、周囲の屈折率の1次モーメントの積分が0であることを 意味する。図12Aは1次元の場合の重心の位置の概念図を示すが、実際には2次元とな るので、(×,y)座標となり、同時に(×,y)の積分が0になる条件を満たす位置が 2次元における重心となる。

[0200]

第1実施形態の場合には、屈折率の大きい高屈折率層21が、中心が密で中心から離れ るに従って疎になる左右対称構造を持つのでレンズの機械的な中心と重心とが一致する。 第2実施形態の場合には、左右対称構造を持つ第1実施形態の左右何れか一方のみを使用 したものと考えればよく、重心が、光学レンズの端部になる。つまり、非対称の重心とな る。 40

これに対して、第3実施形態の場合には、左右対称構造を持つ第1実施形態に対して第2実施形態を適用して屈折率の高い高屈折率層21の割合が左右で非対称となるようにしているので、レンズの機械的な中心に対して重心がズレ、非対称の重心となる。このことは、図12Bや図12Cに示す平面模式図からも明らかである。

【0202】

すなわち、第3実施形態の交互配置層2Cは、平面構造においても、当然に、第1実施 形態に対して第2実施形態を適用した構造をなす。たとえば、第1実施形態の交互配置層 2Aと同様に環状構造を持つものとする場合であれば、屈折率の大きい高屈折率層21_k と屈折率の小さい低屈折率層20_jのそれぞれの形状は、円形、楕円形、正方形、長方形 、三角形など、任意の形状とすることができる。そして、これらの同一と見なし得る形状 のものを環状とするものや、異なった形状のものを組み合わせて、各リングの幅が、レン ズ中心ではなく重心を境に、左右で段階的に異なるように環状とすればよい。 【0203】

たとえば、図12B(1)は、図1B(1)に対応するもので、高屈折率層21_kと低 屈折率層20_jのそれぞれが円形または円形リング形状で、各リングの幅が、レンズ中心 を境に、左側では低屈折率層20がレンズ中心に向かって段階的に狭くなり、かつ高屈折 率層21が重心に向かって段階的に太くなり、右側では低屈折率層20が重心に向かって 段階的に細くなり、かつ高屈折率層21がレンズ中心に向かって段階的に太くなり、かつ 左右でその各幅や変化度合いが異なる、非対称な円形または円形リング形状となったもの でもよい。

【0204】

図12B(2)は、図1B(2)に対応するもので、非対称な楕円形または楕円形の環 状としたものである。図12B(3)は、図1B(3)に対応するもので、非対称な正方 形または正方形の環状としたものである。図12B(4)は、図1B(4)に対応するも ので、非対称な長方形または長方形の環状としたものである。

【0205】

もちろん、各レンズのトータルの集光効果は交互配置層2Aの平面構造、すなわち高屈 折率層21と低屈折率層20の並び方の平面構造の影響を受けるので、固体撮像素子に応 用する場合には、図12Bに例示した平面構造、特に重心の高屈折率層21_1の形状は、 受光部の平面形状に整合させるのがよい。

[0206]

また、斜め入射光を垂直光に変換する機能は、重心に対して左側および右側の何れでも 存在するので、重心に対して左側および右側の何れか一方のみを使用する構造にすること もできる。たとえば、図12C(1)に示すように、図12B(1)に示す平面配置に対 して、屈折率の小さい円形状の低屈折率層20_jや屈折率の大きい円形状の高屈折率層2 1の一部が欠けて環状にならない構造のものでもよい。あるいは、図12C(2)に示す ように、図12B(3)に示す平面配置に対して、屈折率の小さい四角形状の低屈折率層 20_jや屈折率の大きい四角形状の高屈折率層21_kの一部が欠けて環状にならない構造 のものでもよい。

[0207]

固体撮像装置100Cの画素アレイ部に適用する場合、画素アレイ部の中心では斜め入 射光入射が問題とならないので斜め光補正効果が不要である。これに対して、画素アレイ 部の端部に行くほど斜め入射光入射が問題となる。このため、画素アレイ部の端部に行く ほど入射角変換機能が強くなるように、画素アレイ部の端部に行くほど低屈折率層20や 高屈折率層21の割合の変化具合が強くなるようにする。

【0208】

つまり、画素アレイ部の中心では非対称性が無く、画素アレイ部の端部になるほど非対称性が強くなる構造にするのがよい。見方を変えれば、画素アレイ部の端部になるほど非対称の重心の位置を画素(光電変換部、受光部)の中心から画素アレイ部の中心方向にず

10

らした構造にするのがよい。

【0209】

ここでは、光電変換素子(受光部)が2次元状に配列されている画素アレイ部の場合で 示したが、光電変換素子(受光部)が1次元状に配列されている画素アレイ部の場合でも 同様である。

[0210]

こうすることで、第2実施形態と同様に、画素アレイ部の端部に行くほど主光線が斜め 入射するのを補正して交互配置層2Aによる各凸レンズの集光ポイントを画素中心に持っ ていくことができる。このようなレンズ形状を固体撮像装置100Cの内部に持つ(つま り固体撮像装置100Cと一体的に形成する)ことで、画素アレイ部の端部で起こる感度 低下(シェーデング)を小さくできるとともに、混色も減らすことができるので、色再現 性を改善することができる。加えて、凸レンズ効果と斜め光補正効果とを1つの交互配置 層2Cで実現することで、構造をコンパクトにすることができる。

【0211】

< 第 3 実施形態: 凸レンズ機能 + 入射角変換機能の適用例 1 >

図13および図13Aは、光学レンズの第3実施形態を適用した固体撮像装置の第1例 (適用例1)を説明する図である。ここで図13は第3実施形態(適用例1)の固体撮像 装置の断面模式図であり、図13Aは、その光学特性のシミュレーション結果を示す図で ある。

【0212】

図13に示すように、第3実施形態(適用例1)の固体撮像装置100Cは、画素サイズやレンズサイズが1.4µmであり、図5に示した第1実施形態の交互配置層2Aの適用例4の固体撮像装置100Aをベースとしたものである。

【0213】

第3実施形態(適用例)において、光学レンズ110Cは、1周期内における交互配置 層112C内の低屈折率層120_jと高屈折率層121_k(何れも図示せず)の幅は以下 のように設定する。

[0214]

高屈折率層 1 2 1 R_1 + 高屈折率層 1 2 1 L_1 : 0 . 2 5 µm 高屈折率層 1 2 1 R_2 : 0 . 1 0 µm 高屈折率層 1 2 1 L_2 : 0 . 1 5 µm 高屈折率層 1 2 1 L_3 : 0 . 1 0 µm 低屈折率層 1 2 0 R_1 : 0 . 1 4 µm 低屈折率層 1 2 0 L_1 : 0 . 1 5 5 m 低屈折率層 1 2 0 L_2 : 0 . 1 9 5 µm

[0215]

また、光学レンズ110Cの主要部をなす交互配置層112Cのシリコンナイトライド SiNでなる各高屈折率層121_kの上下には、各高屈折率層121_kと同幅で、屈折率 n4が1.7のSiONの薄膜(厚さ=0.08µm)を反射防止膜124としてを付け る。この点は、第1実施形態の適用例4と同様である。 【0216】

図13Aは、図13に示した第3実施形態(適用例1)の光学特性のシミュレーション 結果を示す図であり、緑色光(= 540 n m)の斜め入射光を固体撮像装置1000Cに 入射した結果である。これらからも判るように、凸レンズ機能を持つ第1実施形態の交互 配置層112Aの仕組みと斜め入射角変換機能(光補正機能)を持つ第2実施形態の交互 配置層112Bの仕組みとを兼ね備えた1つの交互配置層112Cとする場合であっても 、緑色光の斜め入射光を交互配置層112Cによる凸レンズのほぼ中心に集光させること ができる。これは入射角変換機能による斜め補正機能が効果的に働いていることを意味す る。

【0217】

20

図示を割愛するが、近赤外光(= 780 nm)、赤色光(= 640 nm)、青色光 (= 460 nm)についても、同様に、斜め入射光を交互配置層2Cによる凸レンズの ほぼ中心に集光させる斜め補正機能効果がある。

【0218】

凸レンズ機能と入射角変換機能(斜め補正機能)を兼ね備えた交互配置層112Cを持つ固体撮像装置100Cとすることで、斜め入射光を垂直入射光に変換することができ、 シェーディングや混色の低減にもなり高画質が達成できる。

【0219】

現在、通常のイメージセンサ用のレンズはリフローで作製するが、表面張力によって必ず球面になるために非対称性を作ることができない。したがって上述のような効果は得ら ¹⁰れないことになる。

[0220]

< 第 3 実施形態:適用例 2 (C M O S 対応) >

図14および図14Aは、光学レンズの第3実施形態を適用した固体撮像装置の第2例 (適用例2)を説明する図である。ここで図14は、第3実施形態(適用例2)の固体撮 像装置の回路図である。図14Aは、第3実施形態(適用例2)の固体撮像装置における 画素アレイ部上に適用した交互配置層の平面概略図である。なお、図14Aでは、画素ア レイ部全体おいて各画素の交互配置層によるレンズ形状に関して、代表的な位置のみをピ ックアップして拡大して示している。

[0221]

第3実施形態(適用例2)の固体撮像装置は、CMOSセンサに応用したものである。 以下、CMOS固体撮像装置201と記す。この場合、画素アレイ部内の1つ1つの画素 (特に光電変換素子)に対してセルアンプを1つ持つ構造となる。画素信号はセルアンプ で増幅された後にノイズキャンセル回路などを通して出力される。 【0222】

図14(1)に示すように、CMOS固体撮像装置201は、入射光量に応じた信号を 出力する受光素子(電荷生成部の一例)を含む複数個の画素211が行および列に配列さ れた(すなわち2次元マトリクス状の)画素アレイ部210を有し、各画素211からの 信号出力が電圧信号であって、CDS(Correlated Double Sampling ; 相関2重サンプリ ング)処理機能部やデジタル変換部(ADC; Analog Digital Converter)などが列並列 に設けられている、いわゆる典型的なカラム型となっている。 【0223】

30

20

具体的には、図示のように、CMOS固体撮像装置201は、複数の画素211が行お よび列に配列された画素アレイ部210と、画素アレイ部210の外側に設けられた駆動 制御部207と、カラム処理部226と、出力回路228とを備えている。 【0224】

駆動制御部207は、画素アレイ部210の信号を順次読み出すための制御回路機能を 備えている。たとえば、駆動制御部207としては、列アドレスや列走査を制御する水平 走査回路(列走査回路)212と、行アドレスや行走査を制御する垂直走査回路(行走査 回路)214と、外部との間でのインタフェース機能や内部クロックを生成するなどの機 能を持つ通信・タイミング制御部220とを備えている。

【 0 2 2 5 】

水平走査回路212は、カラム処理部226からカウント値を読み出す読出走査部の機能を持つ。これらの駆動制御部207の各要素は、画素アレイ部210とともに、半導体 集積回路製造技術と同様の技術を用いて単結晶シリコンなどの半導体領域に一体的に形成 され、半導体システムの一例である固体撮像素子(撮像デバイス)として構成される。 【0226】

図14(1)では、簡単のため行および列の一部を省略して示しているが、現実には、 各行や各列には、数十から数千の画素211が配置される。この画素211は、典型的に は、受光素子(電荷生成部)などとも称される光電変換素子212と、増幅用の半導体素

(32)

子(たとえばトランジスタ)を有する画素内アンプ(セルアンプ;画素信号生成部)20 5とから構成される。画素内アンプ205としては、たとえばフローティングディフュー ジョンアンプ構成のものが用いられる。

[0227]

画素211は、行選択のための行制御線215を介して垂直走査回路214と、また垂 直信号線219を介してカラム処理部226と、それぞれ接続されている。ここで、行制 御線215は垂直走査回路214から画素に入る配線全般を示す。 【0228】

水平走査回路212や垂直走査回路214は、たとえばシフトレジスタやデコーダを含んで構成され、通信・タイミング制御部220から与えられる制御信号に応答してアドレス選択動作(走査)を開始するようになっている。このため、行制御線215には、画素211を駆動するための種々のパルス信号(たとえば、リセットパルスRST、転送パルスTRF、DRN制御パルスDRNなど)が含まれる。 【0229】

通信・タイミング制御部220は、図示しないが、各部の動作に必要なクロックや所定 タイミングのパルス信号を供給するタイミングジェネレータTG(読出アドレス制御装置 の一例)の機能ブロックと、端子220aを介してマスタークロックCLK0を受け取り、ま た端子220bを介して動作モードなどを指令するデータDATAを受け取り、さらにC MOS固体撮像装置201の情報を含むデータを端子220cを介して出力する通信イン タフェースの機能ブロックとを備える。

[0230]

画素211を2次元マトリックス状に配置してあるので、画素内アンプ(画素信号生成 部)205により生成され垂直信号線219を介して列方向に出力されるアナログの画素 信号を行単位で(列並列で)アクセスし取り込む(垂直)スキャン読みを行ない、この後 に、垂直列の並び方向である行方向にアクセスし画素信号(たとえばデジタル化された画 素データ)を出力側へ読み出す(水平)スキャン読みを行なうようにすることで、画素信 号や画素データの読出しの高速化を図るのがよい。もちろん、スキャン読みに限らず、読 み出したい画素211を直接にアドレス指定することで、必要な画素211の情報のみを 読み出すランダムアクセスも可能である。

【0231】

通信・タイミング制御部220では、端子220aを介して入力されるマスタークロック(マスタークロック)CLK0と同じ周波数のクロックCLK1や、それを2分周したクロックやより分周した低速のクロックをデバイス内の各部、たとえば水平走査回路212、垂直走査回路214、カラム処理部226などに供給する。

【0232】

垂直走査回路214は、画素アレイ部210の行を選択し、その行に必要なパルスを供給するものである。たとえば、垂直方向の読出行を規定する(画素アレイ部210の行を 選択する)垂直デコーダと、垂直デコーダにて規定された読出アドレス上(行方向)の画 素211に対する行制御線215にパルスを供給して駆動する垂直駆動回路とを有する。 なお、垂直デコーダは、信号を読み出す行の他に、電子シャッタ用の行なども選択する。 【0233】

水平走査回路212は、低速クロックCLK2に同期してカラム処理部226内の図示しな いカラム回路を順番に選択し、その信号を水平信号線(水平出力線)218に導くもので ある。たとえば、水平方向の読出列を規定する(カラム処理部226内の個々のカラム回 路を選択する)水平デコーダと、水平デコーダにて規定された読出アドレスに従って、選 択スイッチ227にてカラム処理部226の各信号を水平信号線218に導く水平駆動回 路とを有する。なお、水平信号線218は、たとえばカラムAD回路が取り扱うビット数 n(nは正の整数)分、たとえば10(=n)ビットならば、そのビット数分に対応して 10本配置される。

【0234】

20

10

このような構成のCMOS固体撮像装置201において、画素211から出力された画素信号は、垂直列ごとに、垂直信号線219を介して、カラム処理部226のカラム回路 に供給される。

(34)

【0235】

カラム処理部226の各カラム回路は、1列分の画素の信号を受けて、その信号を処理 する。たとえば、各カラム回路は、アナログ信号を、たとえば低速クロックCLK2を用いて 、たとえば10ビットのデジタルデータに変換するADC(Analog Digital Converter)回 路を持つ。

[0236]

カラム処理部226は、回路構成を工夫することでノイズキャンセル機能を持たせるこ¹⁰ とができ、垂直信号線219を介して入力された電圧モードの画素信号に対して、画素リ セット直後の信号レベル(ノイズレベル)と真の(受光光量に応じた)信号レベルVsig との差分をとる処理を行なうことができる。これにより、固定パターンノイズ(FPN; Fixed Pattern Noise)やリセットノイズといわれるノイズ信号成分を取り除くことがで きる。

[0237]

カラム処理部226で処理されたアナログの画素信号(あるいはデジタルの画素データ)は、水平走査回路212からの水平選択信号により駆動される水平選択スイッチ217 を介して水平信号線218に伝達され、さらに出力回路228に入力される。なお、10 ビットは一例であって、10ビット未満(たとえば8ビット)や10ビットを超えるビッ ト数(たとえば14ビット)など、その他のビット数としてもよい。 【0238】

20

30

40

このような構成によって、電荷生成部としての画素211が行列状に配された画素アレイ部210からは、行ごとに各垂直列について画素信号が順次出力される。そして、受光素子が行列状に配された画素アレイ部210に対応する1枚分の画像すなわちフレーム画像が、画素アレイ部210全体の画素信号の集合で示されることとなる。

【0239】

CMOS固体撮像装置201を使用したときの撮像装置200の構成例を図14(2) に示す。撮像装置200は、たとえば、カメラ(あるいはカメラシステム)や撮像機能を 有する携帯機器などに使用される。後述の撮像装置300でも同様である。 【0240】

CMOS出力(Vout)として出力回路228から導出された画素信号は、図14(2)に示す画像信号処理部240に入力される。CMOS固体撮像装置201の駆動制御部(駆動部の一例)207や、CMOS固体撮像装置201の後段に設けられた画像信号処理部240には、CPU(Central Processing Unit), ROM(Read Only Memory), RAM(Random Access Memory)などで構成される中央制御部242からの制御信号が入力されるようになっている。駆動制御部207は、中央制御部242からの制御信号に基づき駆動タイミングを決定する。CMOS固体撮像装置201の画素マトリクス部210(詳しくは画素211を構成するトランジスタ)は、駆動制御部207からの駆動パルスの元で駆動される。

[0241]

中央制御部242は、駆動制御部207を制御する他、画像信号処理部240における 信号処理や画像出力処理などを制御する。

【0242】

画像信号処理部140は、たとえば、各画素の撮像信号R,G,Bをデジタル化するA D変換処理、デジタル化された撮像データR,G,Bを同時化する同時化処理、スミア現 象やブルーミング現象によって生じる縦縞のノイズ成分を補正する縦縞ノイズ補正処理、 ホワイトバランス(WB;White Balance)調整を制御するWB制御処理、階調度合いを 調整するガンマ補正処理、電荷蓄積時間の異なる2画面の画素情報を利用してダイナミッ クレンジを拡大するダイナミックレンジ拡大処理、あるいは輝度データ(Y)や色データ (3)を生成する Y C 信号生成処理などを行なう。これにより、赤(R),緑(G),青 (B)の原色の撮像データ(R,G,Bの各画素データ)に基づく画像が得られる。 【0243】

このようにして生成された各画像は、図示しない表示部に送られ、操作者に可視画像として提示されたり、あるいはそのままハードディスク装置などの記憶装置に記憶・保存されたり、またはその他の機能部に処理済みデータとして送られる。 【0244】

ここで、第3実施形態(適用例2)のCMOS固体撮像装置201において、画素アレイ部210上には、レンズ中心が各画素211の中心に対応するように交互配置層2が設けられる。その平面状態は図14Aのようにする。集光効果を持ちかつ斜め入射に対する補正量の異なる各レンズを、撮像エリアにおいて入射角に適合する各画素位置に配置させることで、主光線が斜め入射する光を垂直に補正して、かつ、効率よく画素の中心に光を集めるようにすることを基本とする。

【0245】

すなわち、先ず、交互配置層2としては、図1B(1)や図12B(1)に示したよう な高屈折率層21_kと低屈折率層20_jのそれぞれが円形または円形リング形状であるも のを使用することを基本とする。そして、交互配置層2を、光軸が画素アレイ部210の 中心に向くように配置する。この際には、画素アレイ部210の端部に行くほど入射角変 換機能が強くなるように、画素アレイ部210の端部に行くほど低屈折率層20や高屈折 率層21の割合の変化具合が強くなるようにする。つまり、画素アレイ部210の中心で は非対称性が無い図1B(1)に示した交互配置層2Aを使用し、画素アレイ部210の 端部になるほど図12B(1)に示した交互配置層2Cの非対称性が強くなる構造にする のがよい。要するに、画素アレイ部210の中心では対称な円形または円形リング形状、 さらに画素アレイ部210の端部に行くほど非対称な構造にする。 【0246】

そのときの非対称の重心位置は画素アレイ部210の中心方向にずらしており、ずらし 量が端にいくほど大きくなるように設定する。こうすることで、画素アレイ部210の端 部に行くほど主光線が斜め入射するのを補正して各レンズの集光ポイントを画素2110 中心に持っていくことができる。このようなレンズ形状をCMOS固体撮像装置2010 内部(画素アレイ部210上)に持つことで、画素アレイ部210の端部で起こる感度低 下(シェーデング)が小さくなるとともに、混色が減るので色再現性がよくなることが判 った。

【0247】

< 第 3 実施形態: 適用例 3 (C C D 対応) >

図15~図15Bは、光学レンズの第3実施形態を適用した固体撮像装置の第3例(適 用例3)を説明する図である。ここで図15は、第3実施形態(適用例3)の固体撮像装 置の回路図である。図15Aは、第3実施形態(適用例3)の固体撮像装置の基板表面付 近の断面構造図である。図15Bは、第3実施形態(適用例3)の固体撮像装置における 画素アレイ部上に適用した交互配置層の平面概略図である。なお、図15Bでは、画素ア レイ部全体おいて各画素の交互配置層によるレンズ形状に関して、代表的な位置のみをピ ックアップして拡大して示している。

【0248】

第3実施形態(適用例3)の固体撮像装置は、インターライン転送方式のCCD固体撮 像装置(IT_CCDイメージセンサ)に応用したものである。以下、CCD固体撮像装 置301と記す。

[0249]

図14(1)に示すように、CCD固体撮像装置301は、入射光量に応じた信号を出 力する受光素子(電荷生成部の一例)を含む複数個の画素311(いわゆるセンサ部)が 行および列に配列された(すなわち2次元マトリクス状の)画素アレイ部310を有する 。画素アレイ部310は、詳しくは、入射光量に応じた信号を出力する受光素子(電荷生 10

(36)

成部)などとも称される光電変換素子312を有する。

【 0 2 5 0 】

また、光電変換素子312で生成された信号電荷を垂直転送する垂直転送CCD322 が垂直転送方向に複数本並べられて設けられている。直転送CCD322の電荷転送方向 すなわち画素信号の読出方向が縦方向(図中のX方向)である。

【0251】

図15(1)に示すCCD固体撮像装置301の構造においては、幾つかの画素311 だけを示しているが、実際にはこれを横方向に繰り返し、それをさらに縦方向に繰り返し た構造である。

10

さらに、垂直転送CCD322と各光電変換素子312との間には読出ゲート324を なすMOSトランジスタが介在し、また各ユニットセル(単位構成要素)の境界部分には 図示しないチャネルストップが設けられる。

【0253】

これら画素311の垂直列ごとに設けられ、各画素311から読出ゲート324によって読み出された信号電荷を垂直転送する複数本の垂直転送CCD322によって撮像エリアとしての画素マトリクス部310が構成される。

【0254】

画素311の光電変換素子312に蓄積された信号電荷は、読出ゲート324に読出パ ルスROGに対応するドライブパルス ROGが印加されることで、同一垂直列の垂直転 送CCD322に読み出される。垂直転送CCD322は、たとえば3相~8相などの垂 直転送クロックV×に基づくドライブパルス V×よって転送駆動され、読み出された信 号電荷を水平ブランキング期間の一部にて1走査線(1ライン)に相当する部分ずつ順に 垂直方向に転送(ラインシフトと称する)する。

【0255】

また、CCD固体撮像装置301には、複数本の垂直転送CCD322の各転送先側端 部すなわち、最後の行の垂直転送CCD322に隣接して、所定(たとえば左右)方向に 延在する水平転送CCD326(Hレジスタ部、水平転送部)が1ライン分設けられる。 この水平転送CCD326は、たとえば2相の水平転送クロックH1,H2に基づくドラ イプパルス H1, H2によって転送駆動され、複数本の垂直転送CCD322から転 送された1ライン分の信号電荷を、水平ブランキング期間後の水平走査期間において順次 水平方向に転送する。このため2相駆動に対応する複数本(2本)の水平転送電極が設け られる。

【0256】

水平転送CCD326の転送先の端部には、たとえばフローティング・ディフュージョン・アンプ(FDA)構成の電荷電圧変換部を有する出力アンプ328が設けられる。出 カアンプ328は、電荷電圧変換部において、水平転送CCD326によって水平転送さ れてきた信号電荷を順次電圧信号に変換し所定レベルに増幅して出力する。この電圧信号 は、被写体からの光の入射量に応じたCCD出力(Vout)として画素信号が導出される 。以上により、インターライン転送方式のCCD固体撮像装置301が構成される。 【0257】

CCD出力(Vout)として出力アンプ328から導出された画素信号は、図29(2)に示す画像信号処理部140に入力される。画像信号処理部140には、信号切替制御部の一例である画像切替制御部142からの画像切替制御信号が入力されるようになっている。CCD固体撮像装置301は、駆動制御部(駆動部の一例)146からの駆動パルスの元で駆動される。

【0258】

CCD固体撮像装置301を使用したときの撮像装置300の構成例を図15(2)に示す。基本的には、撮像デバイスをCMOS固体撮像装置201からCCD固体撮像装置 301に代えただけであり、図14(2)に示した構成と同様である。 20
【0259】

ここで、第3実施形態(適用例3)のCCD固体撮像装置301において、画素アレイ 部310上には、レンズ中心が各画素311の中心に対応するように交互配置層2が設け られている。つまり、撮像デバイス中に交互配置層2を利用したレンズ構造が存在する。 【0260】

たとえば、図15Aには、基板表面付近の断面構造図が示されている。入射光を受光す る画素311において、PN接合でなる光電変換素子312に対応させて交互配置層でな る光学レンズが層内集光レンズとして設けられ、その上に、色フィルタやオンチップレン ズが設けられている。

【0261】

図15Bには、その平面状態が示されている。基本的には、図14Aに示したCMOS 固体撮像装置201の場合と同様の考え方を適用する。先ず、交互配置層2としては、図 1B(3)や図12B(3)に示したような高屈折率層21_kと低屈折率層20_jのそれ ぞれが四角または四角リング形状であるものを使用することを基本とする。そして、交互 配置層2、光軸が画素アレイ部310の中心に向くように配置する。この際には、画素ア レイ部310の中心では非対称性が無い図1B(3)に示した交互配置層2Aを使用し、 画素アレイ部310の端部になるほど図12B(3)に示した交互配置層2Cの非対称性 が強くなる構造にするのがよい。要するに、画素アレイ部310の中心では対称な四角形 または四角形リング形状、さらに画素アレイ部310の端部に行くほど非対称な構造にす る。

[0262]

そのときの非対称の重心位置は画素アレイ部310の中心方向にずらしており、ずらし 量が端にいくほど大きくなるように設定する。こうすることで、画素アレイ部310の端 部に行くほど主光線が斜め入射するのを補正して各レンズの集光ポイントを画素311の 中心に持っていくことができる。このようなレンズ形状をCCD固体撮像装置301の内 部(画素アレイ部310上)に持つことにより、面内で非対称性を入れることで、画素ア レイ部310の端部で起こる感度低下(シェーデング)が小さくなるとともに、混色が減 るので色再現性がよく、高画質な装置になることが判った。

【0263】

<第3実施形態:凸レンズ+入射角変換の変形例>

第3実施形態の基本例では、左右対称構造を持つ交互配置層2Aに対して左右非対称構造を適用するために、第1および第2の非対称化手法を併用した第3の非対称化手法を採用していたが、その何れか一方のみを適用したものであってもよい。この点は、第1実施形態において、第1および第2の凸レンズ化手法を併用した第3の凸レンズ化手法に限らず、第1および第2の凸レンズ化手法の何れか一方のみを適用したものとしてもよいのと 共通する。

【0264】

たとえば、図示を割愛するが、屈折率の大きい層(高屈折率層21_k)の幅が非対称の 重心に向かって徐々に大きくなる構造を有するものとする第1の非対称化手法のみを適用 した変形例1とすることもできる。この場合、屈折率の小さい層(低屈折率層20_j)に 関しては全てを等幅にすればよい。この場合でも、重心の左右どちらから見ても、非対称 の重心に向かって、屈折率の大きい高屈折率層21_kの幅が徐々に大きくなる構造を有す る。

【0265】

また、図示を割愛するが、屈折率の小さい層(低屈折率層20_j)の幅が非対称の重心 に向かって徐々に小さくなる構造を有するものとする第2の非対称化手法のみを適用した 変形例2とすることもできる。この場合、屈折率の大きい層(高屈折率層21_k)に関し ては全てを等幅にすればよい。この場合でも、非対称の重心に向かって、屈折率の小さい 低屈折率層20_jの幅が徐々に小さくなる構造を有する。 【0266】

20

< 第4 実施形態: 凹レンズの基本 >

図16は、光学レンズの第4実施形態の基本原理を説明する図である。ここで図16は 第4実施形態の基本原理を説明するための等位相面を示す図である。

(38)

【0267】

前述の第1~第3実施形態は、集光効果を持つ凸レンズ機能を交互配置層2A~2Cな どに持たせていたが、この第4実施形態では、発散効果を持つ凹レンズ機能を交互配置層 2Dに持たせるようにした点に特徴を有する。

【0268】

発散効果を持つ凹レンズ機能を交互配置層2Dに持たせるべく、第4実施形態では、波 長オーダーまたはそれより小さい幅の屈折率の大きい層を、板状に、かつ中心が粗で中心 から離れるに従って密になる左右対称構造にする。つまり、屈折率の大きい層と屈折率の 小さい層の幅の関係を第1実施形態に対して逆転させることで、交互配置層2Dに凹レン ズ機能を持たせることができる。

【0269】

中心が粗で中心から離れるに従って密になる構造とすることで凹レンズ機能を持たせる には、たとえば、屈折率の大きい層の幅がレンズの中心に向かって徐々に小さくなる構造 を有するものとする第1の凹レンズ化手法、屈折率の小さい層の幅がレンズの中心に向か って徐々に大きくなる構造を有するものとする第2の凹レンズ化手法、あるいはこれら第 1および第2の凸レンズ化手法を併用した第3の凹レンズ化手法の何れかを採用するのが よい。

20

10

[0270]

発散効率の面では第3の凹レンズ化手法を適用するのが最も効果的である。これらの場合、波面は凸面となり、光に拡散性を持たせることができる。

【0271】

また、低屈折率層を埋め込むプロセス工程で、リソグラフの分解能が不十分で埋め込み 幅を狭くできなかったり、埋め込み幅を狭くするとボイドなどが発生して埋め込み性が悪 くなったりして困難な場合、リソグラフや埋め込み可能な幅で第4実施形態(変形例1) のように等幅にすることで作製が可能となる。特に、この埋め込み可能な幅が波長オーダ ーぎりぎりでこれ以上幅を広げると等位相面(波面)の連続性が失われるときに有効な手 段となる。

【0272】

また、高屈折率層をリソグラフでエッチングするプロセス工程で、リソグラフの分解能 が不十分で狭くできなかったり、あるいはエッチング工程のときにサイドエッチングなど が発生して幅の制御性が悪くなったりすることで、狭い幅のリソグラフやエッチング工程 が困難な場合、リソグラフやエッチングが可能な幅で第4実施形態(変形例2)のように 等幅にすることで作製が可能となる。特に、リソグラフやエッチングが可能な幅が波長オ ーダーぎりぎりでこれ以上幅を広げると等位相面(波面)の連続性が失われるときに有効 な手段となる。

[0273]

このような凹レンズの利点としては、たとえば、複数の配線を含む配線層上に高屈折率 40 層21_kをエッチングして形成した凹部を低屈折率層20_jで埋めるようにして、各光電 変換部(受光部)に対して層内発散レンズ(凹レンズ)を形成することができるので、配 線の凹凸に依存することなく適切な位置に層内発散レンズを配置することができる。これ によって、入射光を光電変換部へ最適に集光させることができる。

【0274】

層内発散レンズの中心を光電変換部の中心から画素アレイ部(撮像領域)の中心側に偏って形成するときは、斜め入射光によるシェーディングが改善され、瞳補正が可能になる。 複数のレンズの少なくとも1つが層内発散レンズの上方に形成されたオンチップレンズとすることにより、集光レンズとしてのオンチップレンズと層内発散レンズとの共同作業 により入射光を受光部へ集光させることができる。

[0275]

第4実施形態においても、第2実施形態のように、入射角変換機能(斜め光補正機能) を持つ交互配置層2Bを凹レンズ機能を持つ交互配置層2Dと組み合わせることもできる。また、第3実施形態のように、凹レンズ機能を持つ第4実施形態の交互配置層2Dをベ ースとして、レンズ中心を境に、片側では高い屈折率の高屈折率層が割合で多く存在し、 反対側では割合で少なく存在する左右非対称構造を持つ第2実施形態の交互配置層2Bの 仕組みを適用して、凹レンズ機能と斜め入射光補正機能の両者を兼ね備えた交互配置層2 Dとすることもできる。

[0276]

これらの説明から理解されるように、波長オーダーまたはそれより小さい幅の低屈折率 10 層20_jと高屈折率層21_kとを横方向に並べて光学部材としての機能を持たせる際に、 レンズ中心と端部の高屈折率層21_kの各密度の配置関係を調整することで、凸レンズ機 能(集光性)を持たせることもできれば、凹レンズ機能(拡散性)を持たせることもでき る。集光性を持たせたり、拡散性を持たせたりさせることで、固体撮像装置100やディ スプレイなどの光デバイスに応用可能となる。

【0277】

< < 製造プロセス > >

図17は、第1~第4実施形態の交互配置層2(2A~2D)を固体撮像装置と一体的 に形成する場合の本実施形態の製造プロセスを説明する概念図である。図17Aおよび図 17Bは、本実施形態の製造プロセスに対する比較例を説明する概念図である。ここで、 図17Aはインナーレンズの製造工程を示し、図17Bはオンチップレンズの製造工程を 示す。

[0278]

第1~第4実施形態の交互配置層2(2A~2D)を固体撮像装置と一体的に形成する 場合、先ず、画素部が形成済みのシリコン基板(図示を割愛する)の上層に光学レンズ1 10の媒質となる単一材層3をなす酸化シリコンSiO2(屈折率n1=1.46)を所 定の厚さに形成する。必要に応じて、シリコン基板(図示を割愛する)の上層に先ず薄膜 層130をなすシリコンナイトライドSiNの薄膜を形成し、その上層に光学レンズ11 0の媒質となる単一材層3をなす酸化シリコンSiO2を所定の厚さに形成する。ここで 、所定の厚さとは、シリコン基板の表面から後述する交互配置層2をなすシリコンナイト ライドSiNまでの距離(実質的なレンズ長)を意味する。

30

40

50

20

[0279]

この後、図17(1)に示すように、酸化シリコンSiO2でなる単一材層3の上層に 交互配置層2をなすシリコンナイトライドSiNを所定の厚さに積層する。ここで、所定 の厚さとは、交互配置層2の厚さ、すなわちレンズ厚を意味する。 【0280】

この後、図17(2)に示すレジストコート工程のように、シリコンナイトライドSi Nでなる交互配置層2の上層にレジスト膜を形成する。さらに、図17(3)に示す露光 ・現像工程のように、それぞれ段階的に変化する所定幅の各低屈折率層20_jと高屈折率 層21_kとが所定の順序に配列されるようなレジストパターンを使って、レジスト膜を露 光して、レジスト膜から低屈折率層20_jとなる部分に対応する部分を除去(エッチング)する。各低屈折率層20_jと高屈折率層21_kの配列箇所は画素(特に受光部)の位置 と対応する位置とするのは言うまでもない。

[0281**]**

交互配置層2をなすシリコンナイトライドSiNと図示を割愛したシリコン基板との間にはレンズ長に対応する厚さの酸化シリコンSiO2でなる単一材層3が存在するので、 シリコン基板表面近くまでエッチングすることによるダメージの問題は起きない。 【0282】

この後、図17(4)に示す開口(RIE加工)工程のように、低屈折率層20_jとなる部分に対応したレジスト膜の開口部を通して、RIE(Reactive Ion Etching)法など

(39)

(40)

を用いてエッチングすることで、交互配置層 2 A のシリコンナイトライド S i N に最下層の S i O 2 膜に達する開口部を設ける。

【0283】

この後、図17(5)に示すレジスト除去工程のように、交互配置層2をなすシリコン ナイトライドSiN上のレジスト膜を除去する。こうすることで、酸化シリコンSiO2 でなる単一材層3の上層には、低屈折率層20_jとなる部分に開口部が形成されている交 互配置層2が形成されることになる。

【0284】

さらに、インナーレンズへの適用の場合には、平坦化などのため、図17(6)に示す 埋込み工程のように、低屈折率層20_jとなる部分に開口部が形成されている交互配置層 2が形成されている酸化シリコンSiO2でなる単一材層3の上層に、たとえば再度CV Dなどを用いて、低屈折率層20_jとなるとともに交互配置層2の保護をなす酸化シリコ ンSiO2の膜を所定の厚さで形成する。こうすることで、開口部が形成されているシリ コンナイトライドSiNでなる交互配置層2の低屈折率層20_jとなる部分が酸化シリコ ンSiO2で埋め込まれるとともに、光入射側の媒質となる酸化シリコンSiO2の単一 材層1が所定の厚さで形成されることになる。

[0285]

図示を割愛するが、さらにその上に色フィルタやマイクロレンズを画素に対応するよう に形成してもよい。

[0286]

ー方、色フィルタ上に配置するオンチップレンズへの適用の場合には、図17(6)に 示す埋込み工程は不要である。

【0287】

なお、ここで示した製造プロセスでは、埋込み工程において、低屈折率層20_jとなる 部分を酸化シリコンSiO2で埋め込むだけでなく、低屈折率層20_jと高屈折率層21 _kが交互に配置された交互配置層2の上層に、さらに酸化シリコンSiO2の膜を形成し て単一材層1を形成していたが、単一材層1を形成することは必須ではない。また、極端 なケースでは、埋込み工程の全体を行なわなくてもよい。この場合、シリコンナイトライ ドSiNに設けられている開口部が酸化シリコンSiO2で埋め込まれないので、低屈折 率層20_jは空気となる。

【0288】

何れの場合にも、撮像デバイスの最上層に交互配置層 2 の仕組みを利用したオンチップ レンズを形成することになる。この場合、事実上、その表面は空気と接することになる。 【0289】

このように、本実施形態の製造プロセスでは、リフローの工程がなく、単純で簡便なリ ソグラフィとエッチングの加工技術だけで作製できるために、エッチバックなどの複雑な 工程がない簡便なプロセスにでき、工程数が少なくコストが少なくて済むだけでなく再現 性や均一性や量産性に優れる。

[0290]

さらにフォトレジストのマスク設計によって、それぞれ段階的に変化する所定幅の各低 屈折率層20_jと高屈折率層21_kとが所定の順序に配列されるようにすることができる。 交互配置層2によるレンズ効果は、矩形状の各低屈折率層20_jおよび各高屈折率層1 21_kの幅や配列数を調整することで適宜変更が可能である。面内方向に非対称な構造を 作製するのも容易であり、従来の球面レンズを製造する場合に比べて光学的に設計の幅が 広がる。

【0291】

一方、図17Aに示す比較例の製造プロセスにおいては、インナーレンズを形成する場合、先ず図17A(1)に示すように、酸化シリコンSiO2上にレンズの媒質となるシリコンナイトライドSiNを所定の厚さに形成する。所定の厚さは、最終的なインナーレンズの厚さよりも少し厚い程度である。

20

10

【 0 2 9 2 】

次に、図17A(2)に示すレジストコート工程のように、レンズ媒質層の上層にレジ スト膜を形成する。さらに、図17A(3)に示す露光・現像工程のように、レンズが所 定の順序に配列されるようなレジストパターンを使って、レジスト膜を露光して、レジス ト膜から隣接レンズとの間となる部分に対応する部分を除去(エッチング)する。 【0293】

この後、図17A(4)に示すリフロー工程のように、レジストを溶解してレンズ形状 を形成する。たとえば、ポストベークを150 にすることでレジストを溶解(リフロー)させ、レンズの形状を作る。そのため、レジストとしては耐熱性の弱い材料が必要とな る。

【0294】

この後、図17A(5)に示すエッチバック(RIE加工)工程のように、RIE(Re active Ion Etching)法などを用いてエッチングすることで、レジストを除去する。こう することで、図17A(6)に示すように、レンズ媒質層に凸レンズが形成される。この とき、ゲインが入って(デポ膜が形成されて)レンズ間ギャップが狭くなる問題を引き起 こす可能性がある。

【0295】

この後、表面を平坦にするべく、図17A(7)に示す埋込み工程のように、酸化シリコンSiO2の膜を所定の厚さで形成する。図示を割愛するが、さらにその上に色フィル タやマイクロレンズを画素に対応するように形成してもよい。

[0296]

一方、色フィルタ上に配置するオンチップレンズを形成する場合、先ず図17B(1) に示すように、シリコン基板102上のさらに上層に形成されるカラーフィルタの上層に レンズの媒質となるOPVなどの高分子材料を所定の厚さに形成する。所定の厚さは、最 終的なオンチップレンズの厚さよりも少し厚い程度である。

【0297】

以下、前述のインナーレンズを形成する場合と同様にして、図17B(5)に示すエッチバック(RIE加工)工程までを行なうことで、図17B(6)に示すように、凸レンズが形成される。

【0298】

オンチップレンズへの適用の場合には、インナーレンズ形成における図17A(6)に 示す埋込み工程は不要である。ただし、表面保護などの目的で場合によっては屈折率の低 い高分子材料でさらに埋め込んでもよい。

【0299】

このように、比較例の製造プロセスでは、インナーレンズ形成であるのかオンチップレンズ形成であるのかを問わず、リフローとエッチバックで凸レンズの形成が行なわれる。 レンズ形状の元となるレジストのリフローでは表面張力によって球状を作るために面内に おいて非対称な構造はできない。また工程数も多く、コストが掛る。

[0300]

< 第 5 実施形態 >

図18~図19Aは、光学レンズの第5実施形態を説明する図である。ここで、図18 は、第5実施形態に対する参考例の光学レンズのy断面・z断面の模式図であり、図18 Aおよび図18Bはその光学特性のシミュレーション結果を示す図である。図19は、第 5実施形態の光学レンズのy断面・z断面の模式図であり、図19Aはその光学特性の3 次元の波動シミュレーション結果を示す図である。

[0301]

前述の第3実施形態の適用例2(図14Aを参照)のように、波面制御型を適用してチップ全面の各画素について、斜め光補正と集光効果を実現しようとしたとき、屈折率の高い層が板状で、かつレンズ中心で、その層の幅が広く、中心から離れるに従って幅が狭くなる構造にする。このとき、たとえば、1.5µm以下の画素サイズ(受光部のサイズ)

10

などのように微細画素にすることを考えると、円形などの複雑な図形を画素内に入れる必要性が出てくるので、微細ピッチが必要となり、たとえば最小線幅0.1µm以下の微細 ピッチのレンズ構造の作製が必要となる。この場合、プロセスにおいて埋め込みが容易で ない、ArF液浸露光装置が必要になる、曲線図形に対応したマスク発生システムが必要 になるなど、設計・製造プロセス面において、特許文献2の仕組みが持つ問題と同様の難 点が出てくる。

(42)

【0302】

第5実施形態は、この難点を解消するための検討により考案されたものである。前述の 第1~第4実施形態の波面制御型に加えて、ゾーンプレートの回折レンズ効果を採り入れ た構造にする点に特徴がある。このような構造を採ることで、単純な垂直線と水平線のみ のマスクパターンで光学部材の製造ができるのでマスク設計・製造の低コスト化を可能に する。しかも、微細画素でも、マスクパターンが単純であるために、必ずしも最小線幅を 0.1 μm以下にする必要はなく、たとえば0.2~0.17μm幅程度でも集光効果や 斜め入射光補正効果を実現が可能となる。

図18(1)は、第5実施形態に対する参考例の光学レンズの y 断面(x - z 平面)の 模式図であり、図18(2)は、当該参考例の光学レンズの z 断面(x - y 平面)の模式 図である。ここで、 y 断面(x - z 平面)は、第1~第4実施形態において各種の光学レ ンズ110の断面図(たとえば図1,2,3,4,5,7,8,10,11,12,13 ,16など)を示したときの断面と同じである。 z 断面(x - y 平面)の模式図は、 y 断 面図において交互配置層112を通る断面線で切った状態の上面図である。 【0304】

図18(1)に示すように、 y 断面においては、参考例の光学レンズ110 Z では、第 1 実施形態と同様に、屈折率 n 1 が1.46の酸化シリコンS i O 2 の厚みのある酸化シ リコン層を媒質として有し、その光入射側の表面近傍に、交互配置層 1 1 2 Z を有する。 交互配置層 1 1 2 Z よりも光入射側が、単一材層 1 1 1 となり、交互配置層 1 1 2 Z より もシリコン基板 1 0 2 側が単一材層 1 1 3 となる。単一材層 1 1 3 側が光入射側となるの は前記各実施形態と同様である。

【0305】

画素ピッチ1.1μmの微細画素との組合せのために、光学レンズ110Zの1周期(
30
つまりレンズサイズ)を画素サイズ(=画素ピッチ)1.1μmに整合させる。高屈折率
層21_Kと低屈折率層20_jが交互に配列されて構成されている交互配置層112Zの厚
さ(実質的なレンズ厚)を0.5μmとする。交互配置層112Zは、第3実施形態と同様に、凸レンズ機能と斜め入射光補正機能の両者を兼ね備えたもので、光学長(レンズ長)に比べて十分に薄く設定される点は第1~第4実施形態と同様である。
【0306】

凸レンズ機能と斜め入射光補正機能の両者を兼ね備えるべく、交互配置層1122は、 左右非対称構造を持っている。重心よりも斜め入射光側においては、低屈折率層120の 幅が小さく(狭く)、かつ高屈折率層121の幅が大きい(広い)のに対して、重心より も斜め入射光側とは反対側においては、低屈折率層120の幅が大きく(広く)、かつ高 屈折率層121の幅が小さく(狭く)設定されている。低屈折率層120と高屈折率層1 21の数が少ないものの、斜め入射光側においては、高屈折率層121が割合で多く存在 しかつ低屈折率層120が割合で少なく存在し、反対側では高屈折率層121が割合で少 なくかつ低屈折率層120が割合で多く存在するようにしている点で、図12の状態と同 様になっている。

[0307]

光学レンズ110Zにおいて、1周期内における交互配置層112Z内の低屈折率層1 20_jと高屈折率層121_kの幅は以下のように設定する。ここでは、各屈折率層120 ,121や左右を区別せずに1周期の片端から順に参照子j,kを付して示す。 【0308】 10

高屈折率層121_1:0.25µm 低屈折率層120_2:0.17µm 高屈折率層121_3:0.17µm 低屈折率層120_4:0.51µm レンズ中心CLから高屈折率層121_1の最遠辺までの距離:0.65µm 【0309】 本例では、シリコンナイトライドSiNおよび酸化シリコンSiO2の周期構造を持つ

交互配置層112Zは、低屈折率層120および高屈折率層121の何れも、横方向(× 方向)の最小線幅を0.17μm、レンズの厚みを0.5μmとしている。すなわち、交 互配置層112Zは、画素サイズ1.1μmと整合するように、厚みが0.5μmで、か つ0.17μmと0.25μm幅の棒状のシリコンナイトライドSiN層が平行に並んだ 構造を有する。

(43)

【 0 3 1 0 】

図18Aおよび図18Bは、図18に示した参照例の光学レンズ110Zの光学特性の 3次元の波動シミュレーション結果を示す図であり、緑色光(= 550 n m)の斜め入 射光の場合である。光の入射方向は、チップ内×y平面の×方向での17deg (空気中換 算25deg)斜入射である。図18Aから判るように、緑色光の斜め入射光を交互配置層 112Zによる凸レンズのほぼ中心に集光させることができており、入射角変換機能によ る斜め補正機能が効果的に働いている。

[0311]

しかしながら、斜め光入射した光が垂直方向に曲げられて、かつ集光しているのである が、図18B(特に z 断面図)から判るように、画素の中心を通る線状(y 方向)に集光 している。 y 方向には集光効果がないと言ってよい。一般的なイメージセンサにおいて、 センサ部(フォトダイオード部)は画素の中心付近に孤立して存在することが多く、この ままであると、センサ部に入射しない光が存在することになり、ロスが発生してしまう。 【0312】

第5実施形態の光学レンズ110Eは、参照例の光学レンズ1102においてy方向に 線状に集光されてしまう点を解消するものである。その仕組みは、図19に示すように、 y断面(図19(1))は光学レンズ1102と同じであるが、z断面(図19(2)) において、y方向の高屈折率層121(シリコンナイトライドSiN層:Si3N4層) を、画素サイズと同等か画素サイズ内で断続的に切れた線分で、さらに好ましくは、この 方向では対称性がある構造にする。第1~第4実施形態や第5実施形態に対する参考例で は、z断面におけるy方向サイズについては特段の考慮がされておらず、特に説明はして いなかったが、画素サイズに比べると相当程度長くなっている。これを、第5実施形態で は、このy方向サイズを画素サイズと同程度かそれよりも少し短くし、さらに好ましくは 、そのy方向において画素中心に対して対称性を持たせるのである。

【0313】

なお、ここでは、×方向に低屈折率層120と高屈折率層121を交互に並べる場合で 説明したが、y方向に低屈折率層120と高屈折率層121を交互に並べる場合には、前 述のy方向サイズは×方向サイズに変更されるは言うまでもない。つまり、第5実施形態 は、主光線が入射する方向である低屈折率層120と高屈折率層121を交互に並べる方 向と直交する方向のサイズを、前記交互に並べる方向と同程度の集光効果が得られるよう に、画素サイズと同程度かそれよりも少し短くし、さらに好ましくは、その方向において 画素中心に対して対称性を持たせるものである。

[0314]

たとえば、 y 方向に延在する高屈折率層121_1,121_3の奥行き長さ(y 方向の長 さ)を、画素サイズ1.1µmよりも短い0.9µmに設定している。このような構造で は、 y 方向においてゾーンプレートの回折レンズ効果が機能するようになり、画素の中心 に比べて y 方向の画素の端における屈折率が低くなり、 y 方向で集光していなかった光は 、その屈折率差によって中心に集められるようになる。 10

20

 $\begin{bmatrix} 0 & 3 & 1 & 5 \end{bmatrix}$

図19のようなマスクパターンで作製された構造において、 × y 平面で × 方向における 斜め入射光を、比較的効率よく画素の中心に集光し垂直光に変換する。図から明らかなよ うに、ここでのマスクパターンは垂直線と水平線のみで形成されている。 【0316】

図19Aは、図19に示した第5実施形態の光学レンズ110Eの光学特性の3次元の 波動シミュレーション結果を示す図であり、緑色光(= 550 nm)の斜め入射光の場 合である。光の入射方向は、チップ内×y平面の×方向での17deg (空気中換算25de g)斜入射である。図19A(3)と図18B(2)の対比から判るように、第5実施形 態の光学レンズ110Eでは、y方向においても、緑色光の斜め入射光が画素の中心付近 に集光させることができており、入射角変換機能とゾーンプレートの回折レンズ効果が効 果的に働いている。ただし、y方向において画素の端部で光の漏れが発生しており、光の ロスが僅かではあるが残っている。

【0317】

なお、「y方向のサイズや対称性」に関しては、必ずしも画素サイズより短くなくても よく、画素サイズと同等程度でもよい。これは、本実施形態の仕組みを適用しないとその 方向には線状に集光されるのに対して、画素サイズと同等程度にすることで、その方向で は本実施形態を適用しない場合よりも画素中心側に集光される効果が得られるからである 。また、多少画素中心からずれていてもよい。その場合、y方向の集光効果や光の漏れが 、画素中心に対して偏りが生じる点を考慮すればよい。対称性がないときには集光中心が 画素中心からずれるが、対称性を持たせることでy方向での集光中心と画素中心を一致さ せることができる。

[0318]

< 第 5 実 施 形 態 : 変 形 例 >

図20は、光学レンズの第5実施形態(変形例)を説明する図(z断面の模式図)であ る。この変形例の光学レンズ110Eaは、図19に示した第5実施形態の光学レンズ1 10Eをベースにして、高屈折率層121のz断面の四隅が斜め45度線で斜めにカット された状態にしている点に特徴がある。カット部分をどの程度の大きさにするかは、斜め 入射光の入射角(つまり画素アレイ上の画素位置)に依存せず一定にすることも考えられ るし、斜め入射光の入射角(画素位置)によって調整することも考えられる。後者は、入 射角(画素位置)に応じて設定される高屈折率層121の形状・サイズ(つまり幅、長さ)に応じて、散乱ロス抑制効果を勘案して、カット部分の大きさを適当なものにするとい う趣旨である。

【0319】

たとえば、光学レンズ110を固体撮像装置に適用する場合、画素アレイ部の中心では 光は垂直に入射するので斜め入射を考慮する必要はなく、中心以外の部分で第5実施形態 の光学レンズ110Eを適用する場合でも、高屈折率層121は0.9µm四方の正方形 になる(後述する図25Aを参照)。その四隅を45度線でカットすると、一辺が0.3 7µmの八角形になる。これをベースにして、斜め入射光の入射角に適合するように、つ まり、第5実施形態の光学レンズ110Eが配置される画素位置に適合するように、各高 屈折率層121のコーナーを45度線でカットする。

たとえば、図20に示すように、第5実施形態(変形例)の光学レンズ110Eaでは、第5実施形態の光学レンズ110Eをベースに、高屈折率層121_1については高屈折 率層121_3と反対側の上下コーナーを一辺が0.37μmのサイズでカットする。高屈 折率層121_3については高屈折率層121_3と反対側の上下コーナーをその幅0.17 μmに合わせて、0.17μmの略中心から45度線でカットする。高屈折率層121_1 へのカット部分と高屈折率層121_3へのカット部分を合わせて全体として見たとき、大 局的には八角形が形成されるようにする。 【0321】 10

図19に示した第5実施形態の光学レンズ110Eの場合、ゾーンプレートの回折レンズ効果が得られる反面、高屈折率層121の2断面は四角形となりそれが画素サイズ内に存在する。そのため、その四隅(直角部分)の全部または一部が画素サイズ内に存在することになり、その部分を起因とする散乱ロスの発生とそれによる画質劣化が懸念される。そこで、変形例の光学レンズ110Eaでは、高屈折率層121の2断面における角を適当な形状・大きさでカットすることで、散乱ロスの発生を抑制する。適当な形状にするときの最も単純な手法として斜め45度でカットすることより、高屈折率層121の2断面形状を、レンズ全体として見たときに八角形にすることにした。

(45)

【0322】

このような変形例の光学レンズ110Eaのマスク製造には、単純な垂直線と水平線に 10 加えて、斜め45度線が必要になるが、一般的なマスクパターン発生装置で対処可能な範 囲であるので、マスク製造コストをアップさせることはないと考えてよい。

【0323】

< 第 6 実施形態: 第 1 例 >

図 2 1 および図 2 1 A は、光学レンズの第 6 実施形態(第 1 例)を説明する図である。 ここで、図 2 1 は、第 6 実施形態(第 1 例)の光学レンズの z 断面の模式図であり、図 2 1 A はその光学特性の 3 次元の波動シミュレーション結果を示す図である。

【0324】

第6実施形態(第1例)の光学レンズ110Fは、第5実施形態の光学レンズ110E においてy方向において画素の端部で発生する光の漏れを解消するものである。その仕組 みは、図21に示すように、z断面は、隣接する高屈折率層121_1,121_3が連続的 に繋がるまたは接触するように、同一材質の高屈折率材料の板(高屈折率層121_0)を 構造体の中心付近に配置する構造を採っている。具体的には、高屈折率層121_0の奥行 き長さを、低屈折率層120_2の幅と同じ0.17µmに設定している。このような構造 では、y方向においてゾーンプレートの回折レンズ効果が高屈折率層121_0でも機能す るようになり、y方向の集光効果がより高まる。

【0325】

図21のようなマスクパターンで作製された構造において、 × y 平面で × 方向における 斜め入射光を、比較的効率よく画素の中心に集光し垂直光に変換する。図から明らかなよ うに、ここでのマスクパターンは垂直線と水平線のみで形成されている。 【0326】

図21Aは、図21に示した第6実施形態(第1例)の光学レンズ110Fの光学特性 の3次元の波動シミュレーション結果を示す図であり、緑色光(= 550nm)の斜め 入射光の場合である。光の入射方向は、チップ内×y平面の×方向での17deg (空気中 換算25deg)斜入射である。第6実施形態(第1例)の光学レンズ110Fでは、第5 実施形態の光学レンズ110Eにおいて図19A(3)で見られるようなy方向での画素 の端部における光の漏れが、図21A(3)から判るように、少なくなっており、高集光 になっている。このことは画素中心で集光効率が高くなっていることを示す。実際に画素 中心では5%ほどの集光効率の上昇が見られた。

【0327】

< 第6 実施形態: 第2 例 >

図 2 2 および図 2 2 A は、光学レンズの第 6 実施形態(第 2 例)を説明する図である。 ここで、図 2 2 は、第 6 実施形態(第 2 例)の光学レンズの z 断面の模式図であり、図 2 2 A はその光学特性の 3 次元の波動シミュレーション結果を示す図である。

【0328】

第6実施形態(第1例)の光学レンズ110Fは、光の入射方向がチップ内×y平面の ×方向での斜入射に対して、y方向において集光効果を高め画素端部で光の漏れを防止す るものであった。これに対して、第6実施形態(第2例)の光学レンズ110Gは、×y 平面で45度の斜め方向における斜入射に対応するものである。 【0329】

30

40

第6実施形態(第1例)の光学レンズ110Fでは、高屈折率層121_1,121_3は、 y方向に画素端部近傍まで延在していたが、これらをy方向にそれぞれ2つ(高屈折率 層121_1a,121_1b,121_3a,121_3bに分け、その内の45度の斜め入射 と反対側となる部分(高屈折率層121_3b)を取り外している。さらに、全体として、 光入射側に高屈折率層がより多く配置されるように、高屈折率層121_0を含む残りの高 屈折率層121_1a,121_1b,121_3aのサイズや配置を調整する。 【0330】

なお、ここでは、高屈折率層121_3bを取り外すような見方をしたが、元々の高屈折 率層121_1,121_3の取り方を90度回転させた見方をすれば、 高屈折率層121_ 1bを取り外しているという見方をすることもできる。

【0331】

何れにしても、4つの高屈折率層121を低屈折率層120を挟むように配列し、かつ 、それらが接触(一部が接続・重なる)するようにし、さらに、レンズ中心に対して、光 入射側にレンズ重心が片寄るように配置すればよい。レンズ重心の片寄り度合いは斜め入 射角に応じて設定される。斜め入射角が大きいほど(たとえば固体撮像装置との組合せで あれば画素アレイ部の中心から離れるほど)、レンズ重心の片寄り度合いが強くなるよう にする(後述する図25Aを参照)。

たとえば、光学レンズ110Gにおいて、1周期内における交互配置層112G内の低 屈折率層120_jと高屈折率層121_kの幅は以下のように設定する。チップ内xy平面 のy方向でのz軸に対して8.5度の角度で斜め入射(空気中換算12.5deg)に対応 するものとする。ここでは、各屈折率層120,121や左右を区別せずに1周期の片端 から順に参照子j,kを付して示す。

【0333】

高屈折率層121_0 : 0.30µm(×方向の幅),0.30µm(y方向の幅) 高屈折率層121_1a : 0.30µm(×方向の幅),0.30µm(y方向の幅) 高屈折率層121_1b : 0.30µm(×方向の幅),0.23µm(y方向の幅) 高屈折率層121_1a,121_1b の間隔:0.2µm(y方向の幅) 低屈折率層120_2 : 0.20µm(×方向の幅) 高屈折率層121_3a : 0.23µm(×方向の幅),0.30µm(y方向の幅) 低屈折率層121_3a : 0.23µm(×方向の幅),0.30µm(y方向の幅) 高屈折率層121_3a : 0.23µm(×方向の幅),0.37µm(×方向の幅) 高屈折率層121_0と高屈折率層121_1a の重なり:0.10µm(x,y方向) 高屈折率層121_0の接触・重なりのないコーナーの画素中心からのズレ:0.20µ m(x,y方向)

【0334】

斜め補正機能の考え方に従い、×y平面で45度の斜め方向における斜め入射側におい て、高屈折率層121が割合で多く存在しかつ低屈折率層120が割合で少なく存在し、 反対側では高屈折率層121が割合で少なくかつ低屈折率層120が割合で多く存在する ようにしているのである。画素中央部の高屈折率層121_0は、画素中心よりも斜め入射 側に配置位置がシフトしており、その方向のコーナーは高屈折率層121_1aと重なるが 、その他のコーナーは高屈折率層121_1bや高屈折率層121_3aと接触するようにし ている。元々取り外した高屈折率層121_3bとの接触があり得ないのは言うまでもない 。このような構造では、×y平面で45度の斜め方向における斜め入射光に対して、×, y,z各方向の集光効果が高まる。効率よく画素の中心に光を集めて、かつ斜め光を垂直 光に変換することができる。

【0335】

図22のようなマスクパターンで作製された構造において、×y平面で45度の斜め方向における斜め入射光を、比較的効率よく画素の中心に集光し垂直光に変換する。図から明らかなように、ここでのマスクパターンは垂直線と水平線のみで形成されている。 【0336】 10

図22Aは、図22に示した第6実施形態(第2例)の光学レンズ110Gの光学特性 の3次元の波動シミュレーション結果を示す図であり、緑色光(= 550 n m)の斜め 入射光の場合である。光の入射方向は、チップ内×y平面の45度斜め方向でのz軸に対 して11.3度の角度で斜め入射(空気中換算16.5deg)である。図から判るように 、第6実施形態(第2例)の光学レンズ110Gでは、z軸に対して11.3度の斜め入 射光が、効率的に画素の中心に集まっている。

【0337】

< 第 6 実 施 形 態 : 第 3 例 >

図 2 3 および図 2 3 A は、光学レンズの第 6 実施形態(第 3 例)を説明する図である。 ここで、図 2 3 は、第 6 実施形態(第 3 例)の光学レンズの z 断面の模式図であり、図 2 10 3 A はその光学特性の 3 次元の波動シミュレーション結果を示す図である。

【0338】

第6実施形態(第1例)の光学レンズ110Fは、光の入射方向がチップ内×y平面の ×方向での斜入射に対して、y方向において集光効果を高め画素端部で光の漏れを防止す るものであった。これに対して、第6実施形態(第3例)の光学レンズ110Hは、×y 平面でy方向における斜入射に対応するものである。×y平面の×方向を×y平面のy方 向に変更する訳なので、基本的には、低屈折率層120と高屈折率層121の配置関係は 、紙面を90度回転させた状態と同じになる。

【0339】

× y 平面の y 方向において、重心よりも斜め入射光側においては、低屈折率層 1 2 0 の 幅が小さく(狭く)、かつ高屈折率層 1 2 1 の幅が大きい(広い)のに対して、重心より も斜め入射光側とは反対側においては、低屈折率層 1 2 0 の幅が大きく(広く)、かつ高 屈折率層 1 2 1 の幅が小さく(狭く)設定されている。斜め入射光側においては、高屈折 率層 1 2 1 が割合で多く存在しかつ低屈折率層 1 2 0 が割合で少なく存在し、反対側では 高屈折率層 1 2 1 が割合で少なくかつ低屈折率層 1 2 0 が割合で多く存在するようにして いる点で、図 1 2 の状態と同様になっている。加えて、 z 断面は、隣接する高屈折率層 1 2 1_1, 1 2 1_3が連続的に繋がるまたは接触するように、同一材質の高屈折率材料の板 (高屈折率層 1 2 1_0)を構造体の中心付近に配置する構造を採っている。 【 0 3 4 0 】

光学レンズ110Hにおいて、1周期内における交互配置層112H内の低屈折率層1 30 20_jと高屈折率層121_kの幅は以下のように設定する。チップ内×y平面のy方向で のz軸に対して8.5度の角度で斜め入射(空気中換算12.5deg)に対応するものと する。ここでは、各屈折率層120,121や左右を区別せずに1周期の片端から順に参 照子j,kを付して示す。

【0341】

高屈折率層121_0:0.20µm(y方向の幅),0.50µm(x方向の幅) 高屈折率層121_1:0.30µm(y方向の幅),0.80µm(x方向の幅) 低屈折率層120_2:0.20µm(y方向の幅) 高屈折率層121_3:0.25µm(y方向の幅),0.80µm(x方向の幅) 低屈折率層120_4:0.35µm(y方向の幅) レンズ中心CLから高屈折率層121_30最遠辺までの距離:0.1985µm

[0342]

本例では、シリコンナイトライドSiNおよび酸化シリコンSiO2の周期構造を持つ 交互配置層112Hは、低屈折率層120および高屈折率層121の何れも、y方向の最 小線幅を0.20µmとし、画素サイズ1.1µmと整合するように、0.25µmと0 .3µm幅の棒状のシリコンナイトライドSiN層が平行に並び、かつ、それらの長手方 向(x方向)の中心でシリコンナイトライドSiN層で接続された構造を有する。 【0343】

斜め補正機能の考え方に従い、×y平面でy方向における斜め入射側において、高屈折 率層121が割合で多く存在しかつ低屈折率層120が割合で少なく存在し、反対側では

高屈折率層121が割合で少なくかつ低屈折率層120が割合で多く存在するようにして いるのである。このような構造では、×y平面でy方向における斜め入射光に対して、× ,y,z各方向の集光効果が高まる。効率よく画素の中心に光を集めて、かつ斜め光を垂 直光に変換することができる。

【0344】

図 2 3 のようなマスクパターンで作製された構造において、 × y 平面で y 方向における 斜め入射光を、比較的効率よく画素の中心に集光し垂直光に変換する。図から明らかなよ うに、ここでのマスクパターンは垂直線と水平線のみで形成されている。

【0345】

図23Aは、図23に示した第6実施形態(第3例)の光学レンズ110Hの光学特性 10 の3次元の波動シミュレーション結果を示す図であり、緑色光(= 550nm)の斜め 入射光の場合である。光の入射方向は、チップ内×y平面のy方向でのz軸に対して8. 5度の角度で斜め入射(空気中換算12.5deg)である。図から判るように、第6実施 形態(第3例)の光学レンズ110Hでは、z軸に対して8.5度の斜め入射光が、効率 的に画素の中心に集まっている。

[0346]

< 第 6 実施形態: 変形例 >

図24、図24A、図24Bは、光学レンズの第6実施形態(変形例)を説明する図(z断面の模式図)である。この変形例の光学レンズ110Fa,110Ga,110Ha は、図21、図22、図23に示した第6実施形態(各例)の光学レンズ110F,11 ²⁰ 0G,110Hをベースにして、高屈折率層121のz断面の四隅が斜め45度線で斜め にカットされた状態にしている点に特徴がある。

[0347]

第6実施形態(各例)の光学レンズ110F,110G,110Hは、×y平面における×方向、斜め45度方向、y方向におけるz軸に対する斜め入射に対応したものであり、ここでの変形例では、その相違と散乱ロス抑制効果を勘案して、カット部分の大きさを設定する例で説明する。

【0348】

変形の目的・効果や手法の基本的な考え方は、第5実施形態(変形例)と同様である。 すなわち、各高屈折率層121へのカット部分を合わせてレンズ全体として見たとき、大 ³⁰ 局的には八角形が形成されるようにする。

【0349】

たとえば、図24に示すように、第6実施形態(第1例の変形例)の光学レンズ110 Faでは、第6実施形態(第1例)の光学レンズ110Fをベースに、高屈折率層121 _1,121_3に第5実施形態(変形例)と同様のサイズで角を45度線でカットする。高 屈折率層121_1へのカット部分と高屈折率層121_3へのカット部分を合わせて全体と して見たとき、大局的には八角形が形成されるようにするので、高屈折率層121_0につ いてはカット対象とする必要はない。

図24Aに示すように、第6実施形態(第2例の変形例)の光学レンズ110Gaでは 40 、第6実施形態(第2例)の光学レンズ110Gをベースに、高屈折率層121_1a,1 21_1b,121_3aについて、それらへのカット部分を合わせてレンズ全体として見た とき、大局的には八角形が形成されるようにする。高屈折率層121_0についてはカット 対象とする必要はない。

[0351]

図24Bに示すように、第6実施形態(第3例の変形例)の光学レンズ110Haでは、第6実施形態(第3例)の光学レンズ110Hをベースに、高屈折率層121_1,12 1_3について、それらへのカット部分を合わせてレンズ全体として見たとき、大局的には 八角形が形成されるようにする。高屈折率層121_0についてはカット対象とする必要は ない。 [0352]

このように、 z 断面において各高屈折率層 1 2 1 をレンズ全体として見たときの四隅(直角部分)を適当な大きさで斜め 4 5 度でカットすることにより、散乱ロスの発生を抑制 することができる。このような変形例の光学レンズ 1 1 0 F a , 1 1 0 G a , 1 1 0 H a のマスク製造には、単純な垂直線と水平線に加えて、斜め 4 5 度線が必要になるが、一般 的なマスクパターン発生装置で対処可能な範囲であるので、マスク製造コストをアップさ せることはないと考えてよい。

[0353]

< 第 6 実 施 形 態 : 適 用 例 1 >

図25および図25Aは、第6実施形態の光学レンズを適用した固体撮像装置(適用例 10 1)を説明する図である。ここで、図25は第6実施形態の光学レンズを固体撮像装置に 適用するに当たっての基本概念を説明する図である。図25Aは、図14Aや図15Bと 同様に、固体撮像装置における画素アレイ部上に適用した交互配置層の平面概略図を示し ている。なお、図25Aでは、画素アレイ部全体おいて各画素の交互配置層によるレンズ 形状に関して、代表的な位置のみをピックアップして拡大して示している。適用される固 体撮像装置100FはCMOSセンサおよびCCDの何れでもよい。

【0354】

図25に示すように、第6実施形態を適用した適用例1の固体撮像装置100Fは、基本的には、図14Aや図15Bに示したCMOS固体撮像装置201やCCD固体撮像装置301の場合と同様の考え方を適用する。図21、図22、図23に示した第6実施形態(各例)の光学レンズ110F,110G,110Hで斜め光を垂直光に変換する。集光効果を持ちかつ斜め入射に対する補正量の異なる各レンズを、撮像エリアにおいて入射角に適合する各画素位置に配置させることで、主光線が斜め入射する光を垂直に補正して、かつ、効率よく画素の中心に光を集めるようにすることを基本とする。

【 0 3 5 5 】

4 つの高屈折率層121を低屈折率層120を挟むように配列し、かつ、それらが接触 (一部が接続・重なる)するようにし、さらに、レンズ中心に対して、光入射側にレンズ 重心が片寄るように配置すればよい。斜め入射角が大きいほど、つまり画素アレイ部の中 心から離れるほど、画素アレイ部の中心とは反対側へのレンズ重心の片寄り度合いが強く なるようにする。なお、画素アレイ部の中心では斜め光ではなく垂直光になるので、平面 視(×y平面)でほぼ光電変換部104(受光部)のサイズと同程度かそれ以下の角形の 高屈折率層121にすればよい。

[0356]

先ず、交互配置層112としては、第6実施形態の光学レンズ110F~110Hの仕 組みを適用することを基本とし、交互配置層112を、光軸が画素アレイ部210の中心 に向くように配置する。この際には、画素アレイ部210の中心では非対称性が無い中心 に高屈折率層121が存在するものを使用し、画素アレイ部210の端部になるほど交互 配置層112の非対称性が強くなる構造にする。そのときの非対称の重心位置は画素アレ イ部210の中心方向にずらしており、ずらし量が端にいくほど大きくなるように設定す る。

[0357]

× , y方向に着目したとき、画素アレイ部の水平・垂直方向における光電変換部104 (受光部)が配置される各位置では、光電変換部104に対応する光学レンズ110ごと に、隣接する高屈折率層121_1,121_3同士を接続する高屈折率層121_0の、12 0と高屈折率層121が交互に並べられる方向と直交する方向のサイズが、画素アレイ部 の中心から離れるほど狭くなるように設定され、かつ、光学レンズ110の重心が画素ア レイ部の中心により強く寄るように設定する。こうすることで、画素アレイ部210の端 部に行くほど主光線が斜め入射するのを補正して各レンズの集光ポイントを画素2110 中心に持っていくことができる。

50

40

20

図21、図22、図23に示した第6実施形態(各例)の光学レンズ110F,110 G,110Hを利用する場合に則してさらに詳しく説明すると次の通りである。すなわち 、図25Aに示す画素アレイ部210の上面図のように、これらの光学レンズ110F, 110G,110Hを入射角に適合する位置に配置させることで、主光線が斜め入射する 光を垂直に補正して、かつ、効率よく画素の中心に光を集めるようにする。 【0359】

たとえば、図25Aに示すように、画素アレイ部の中心と着目画素の座標位置との関係 から、たとえば、y方向下側(左端でエリア中央側)に変化させたときの、各高屈折率層 121の変化状況(×方向に変化なしとする エンド点は図中の下5つの内の左端の状態 になる)、×方向右側(上端でエリア中央側)に変化させたときの各高屈折率層121の 変化状況(y方向に変化なし エンド点は図中の右上の状態になる)について考察する。 ×方向に変化させたときの状況とy方向に変化させたときの状況との組合せにより、斜め 方向変化での状況も特定される。具体的には、次の通りである。 【0360】

図25Aの点線矢印で示されるように、×方向の変化、たとえば左の画素から中心の画 素への変化(第2・第3象限の境界上で原点側への変化)は、構造体(高屈折率層121)がこの図の左下に示されるように伸びて変化することで可能となる。すなわち、中央左 端のものをスタートとして画素位置がエリア中央部に進むほど、高屈折率層121_0,1 21_1,121_3は全体的に左側にシフトしつつ、高屈折率層121_1は幅が狭くなり、 高屈折率層121_3は幅が広くなり、高屈折率層121_0は幅が広くかつy方向に長くな る。そして、エリア中央部では、高屈折率層121_0の長さが高屈折率層121_1,12 1_3の長さと同一となり、かつ3つの高屈折率層121_0,121_1,121_3が接触・ 重なることで一体化され図のように四角形となる。

【0361】

また、 y 方向の変化も同様に、この図の左に示されるように変化することで可能となる。たとえば、左下側(第3象限)のより少し中央よりのものをスタートとして上側に進む ほど、高屈折率層121_0,121_1a,121_1b,121_3aは全体的に下側にシフ トする。サイズ的には、高屈折率層121_1aは不変で、高屈折率層121_1bはy方向 下側に伸び、高屈折率層121_3aはy方向下側に伸び、高屈折率層121_0は×方向左 右に伸びる。

【0362】

図示するように、撮像エリア中心(画素アレイ部210の中央部)では対称な四角形状 、さらに撮像エリアの端に行くほど主光線の斜め入射方向に非対称な構造で、それと垂直 な方向には対象構造としている。さらに、構造体(高屈折率層121)は、マスクパター ンでは、垂直線または水平線で形成される図形にしている。そのときの非対称の重心位置 は撮像エリア中心方向にずらしており、ずらし量が端にいくほど大きくなるようにしてい る。こうすることで、撮像エリアの端に行くほど主光線が斜め入射するのを補正して各レ ンズの集光ポイントを画素中心に持っていくことができる。このようなレンズ形状を固体 撮像装置100F(イメージセンサ内部)に持つことで、画素アレイ部210の端部で起 こる感度低下(シェーデング)が小さくなるとともに、混色が減るので色再現性がよくな ることが判った。

【0363】

< 第 6 実 施 形 態 : 適 用 例 2 >

図25Bは、第6実施形態(変形例)の光学レンズを適用した固体撮像装置(適用例2)を説明する図である。この適用例2の固体撮像装置100Faは、適用例1の固体撮像 装置100Fに対して、光学レンズ110F,110G,110Hを、それらの変形例で ある図24、図24A、図24Bに示した第6実施形態(各例の変形例)の光学レンズ1 10Fa,110Ga,110Haを利用するように変形したものである。よって、構造 体(高屈折率層121)は、z断面の四隅が斜め45度線で斜めにカットされた状態にな る。その他の点は、適用例1の固体撮像装置100Fと同様である。 10

【0364】

図示するように、撮像エリア中心(画素アレイ部210の中央部)では対称な八角形状 、さらに撮像エリアの端に行くほど主光線の斜め入射方向に非対称な構造で、それと垂直 な方向には対象構造としている。さらに、構造体(高屈折率層121)は、マスクパター ンでは、垂直線、水平線、または斜め45度の線で形成される図形にしている。そのとき の非対称の重心位置は撮像エリア中心方向にずらしており、ずらし量が端にいくほど大き くなるようにしている。

[0365]

適用例2の固体撮像装置100Faでは、基本的な仕組みは適用例1の固体撮像装置1 00Fと同様であり、先ず同様の効果が得られるとともに、特有の利点として、高屈折率 ¹⁰ 層121のz断面の四隅を斜め45度線でカットしているので散乱ロスの問題を解消でき る。

[0366]

< 第 5 ・第 6 実施形態: 凹レンズへの適用 >

図示を割愛するが、第4実施形態で説明したように、凸レンズに係る第1~第3実施形 態に対して光学的な数値条件を逆に設定することで凹レンズに係る第4実施形態を導出で きるように、凸レンズに係る第5・第6実施形態に対して光学的な数値条件(屈折率の大 きい層と屈折率の小さい層の幅の関係)を逆に設定することで凹レンズにすることができ るのは言うまでもない。

【0367】

<マスクパターンの製法>

図26~図26Cは、本実施形態の光学レンズの製法(特にマスクパターンの設計手法)を説明する図である。ここで、図26は、マスクパターン設計における座標と原点の関係を説明する図である。図26Aは、第6実施形態(第2例)の光学レンズ110Gに着目した設計式を説明する図である。図26Bおよび図26Cは、設計式における係数の符号の決定方法を説明する図である。

[0368]

図14Aや図15Bあるいは図25Aや図25Bにおいては、「集光効果を持ちかつ斜 め入射に対する補正量の異なる各レンズを、撮像エリアにおいて入射角に適合する各画素 位置に配置させる」ことが必要になる。各実施形態の何れの構造の光学レンズ1100を使 用する場合であっても、画素位置ごとに入射角が異なるので、画素位置ごとに最適化され たものを使用する必要がある。実際には、そのような光学レンズ110のマスクパターン を1つ1つ設計することは、その設計の作業に時間が掛かることになる。

【0369】

その解決手法の1つとしては、たとえば、撮像エリアの四隅(の何れかでもよい)に配置されるものを基本として、×方向・y方向における画素位置のシフトに合わせて、非対称の重心位置・構造体の形状・位置・サイズなどの変更量を数式化しておくことが考えられる。

【 0 3 7 0 】

特に、第5・第6実施形態(その変形例も含む)では、各光学レンズ110の構造体(40 高屈折率層121)は、四角形や八角形であるので、頂点座標を指定する関数式(基本的 には1次式でよい)にすることで、各画素位置における各光学レンズ110を構成する各 高屈折率層121の配置地位・形状・サイズを特定できる利点がある。1つ1つの画素の パターン変化を、数式で表すことで、容易に全画素位置のマスクデータを入力できる。低 次の式であれば、その算術演算も簡単である。

【0371】

図25Aや図25Bに示されるような各画素位置での高屈折率層121の構造変化を数 式化することで、撮像エリア全面についての各レンズのマスクパターン設計を容易に実現 できるようになる。たとえば、図21、図22、図23に示した第6実施形態(各例)の 光学レンズ110F,110G,110Hで斜め光を垂直光に変換するに当たり、それぞ 20

れの図形を数式を定義して連続的に繋げることが容易になる。マスクパターンは垂直線(縦線)と水平線(横線)と、場合によっては斜め45度線で形成されるし、微細画素でも 、マスクパターンが単純である。必ずしも最小線幅を0.1µm以下にする必要はなく、 たとえば0.2~0.17µm幅程度でも集光効果や斜め入射光補正効果を実現が可能な レンズを、低コストのリソグラフで作製可能となる。

[0372]

たとえば第6実施形態の光学レンズ110F~Hのマスクパターン設計の数式化に当たっては、次のような手法を採るのがよい。先ず、原点の画素をどこかに決める。たとえば図26に示すように(図25も参照)、原点の画素を画素アレイ部の中心(×,y)=(0,0)とする。すなわち、原点の座標(×a,ya)を(0,0)として、その右隣の画素の座標を(1,0)、さらにその右隣の座標を(2,0)のように、すべての各画素の座標を決めることができる。

【0373】

さらに図26に示すように、画素ごとに、計算用のX軸とY軸を決める。各画素のX, Yの原点の取り方は第1~第4象限で異なる。第1象限では画素の右上の角、第2象限で は画素の左上の角、第3象限では画素の左下の角、第4象限では画素の右下の角を、それ ぞれXY原点とする。このようにすることで、図25からも推測されるように、画素アレ イ部の全面では、左右対称性や上下対称性が保たれる。

【0374】

たとえば、第3象限の左下コーナー寄りに存在することになると考えられる図26Aに 20 示すような(×a, ya)の画素に対して、構造体(高屈折率層121)の4つの部分(高屈折率層121_0,121_1a,121_1b,121_3a)に分けて、それぞれを、頂 点座標を使って数式化する。たとえば、高屈折率層121_0の部分に着目したとき、4つ の頂点座標を(×1, Y1),(×2, Y1),(×2, Y2),(×1, Y2)とし、 高屈折率層121_0(×a, ya)を規定する設計式f_0(×a, ya)を式(2)のよ うに定義する。なお、係数s1,s2,s3,s4,s5,s6,s7,s8,c1,c 2,c3,c4は定数となる。また、 | ×a | , | ya | は、それぞれ×a, yaの絶対 値を示す。

【0375】

【数 2 】

 $f_{0}(xa, ya) = \{ (X1, Y1), (X2, Y1), (X2, Y2), (X1, Y2) \} \dots (2-1) \}$ $X1 = s1 \times |xa| + s2 \times |ya| + c1 \dots (2-2)$ $Y1 = s3 \times |xa| + s4 \times |ya| + c2 \dots (2-3)$ $X2 = s5 \times |xa| + s6 \times |ya| + c3 \dots (2-4)$ $Y2 = s7 \times |xa| + s8 \times |ya| + c4 \dots (2-5)$

【 0 3 7 6 】

ここで、図26Aの(×a,ya)の画素の、1つ上側の画素(×a,ya+1)を考 えてみる。高屈折率層121_0の部分に着目したとき、4つの頂点座標を(×1', Y1 '),(×2',Y1'),(×2',Y2'),(×1',Y2')とすると、高屈折 4 率層121_0(×a,ya+1)を規定する設計式f_0(×a,ya+1)は式(3)の ように定義される。 【0377】 【数3】

 $\begin{array}{l} f_{0}(xa, ya+1) = \{(X1', Y1'), (X2', Y1'), (X2', Y2'), (X1', Y2')\} \cdots (3-1) \\ X1' = s1 \times |xa| + s2 \times |ya+1| + c1 \cdots (3-2) \\ Y1' = s3 \times |xa| + s4 \times |ya+1| + c2 \cdots (3-3) \\ X2' = s5 \times |xa| + s6 \times |ya+1| + c3 \cdots (3-4) \\ Y2' = s7 \times |xa| + s8 \times |ya+1| + c4 \cdots (3-5) \end{array} \right\} \cdots (3-1)$

10

10

20

30

[0378] この場合、図26B(1)に示すように、画素(xa,ya+1)は、画素(xa,y a)に対して、構造体全体(高屈折率層121_0,121_1a ,121_1b ,121_3a)が下にシフトして、かつ、高屈折率層121_0が左右に伸びることになる。また、第3 象限の画素(xa,ya)であるからyaは負の値であるので、その1つ上側の画素(x a, y a + 1)との関係においては、絶対値 | y a + 1 | は | y a | に比べて小さい。 したがって、図26B(2)に示すことから判るように、高屈折率層121_0(xa, ya)と高屈折率層121_0(xa, ya+1)との間には、式(4)の関係がある。こ れより、s2,s4,s8が正の値で、かつ、s6が負の値であれば、成り立つことにな る。 [0379] 【数4】 [0380]さらに、図26Aの(xa,ya)の画素の、1つ右側の画素(xa+1,ya)を考 えてみる。高屈折率層121_0の部分に着目したとき、4つの頂点座標を(X1",Y1 "),(X2",Y1"),(X2",Y2"),(X1",Y2")とすると、高屈折 率 層 1 2 1_0 (x a + 1, y a)を規定する設計式 f_0 (x a + 1, y a) は式 (5)の ように定義される。 $\begin{bmatrix} 0 & 3 & 8 & 1 \end{bmatrix}$ 【数5】 $f0(xa+1, ya) = \{(X1", Y1"), (X2", Y1"), (X2", Y2"), (X1", Y2")\} \dots (5-1)$ $X1''=s1 \times |xa+1| + s2 \times |ya| + c1 \cdots (5-2)$ -...(5) $Y1'' = s3 \times |xa+1| + s4 \times |ya| + c2 \cdots (5-3)$ $X2''=s5 \times |xa+1| + s6 \times |ya| + c3 \cdots (5-4)$ $Y2'' = s7 \times |xa+1| + s8 \times |ya| + c4 \cdots (5-5)$ [0382] この場合、図26C(1)に示すように、画素(xa+1,ya)は、画素(xa,y

a)に対して、構造体全体(高屈折率層 1 2 1_0, 1 2 1_1a , 1 2 1_1b , 1 2 1_3a)が左にシフトして、かつ、高屈折率層 1 2 1_0が上下に伸びることになる。また、第 3 象限の画素(x a , y a)であるから x a は負の値であるので、その 1 つ右側の画素(x a + 1 , y a)との関係においては、絶対値 | x a + 1 | は | x a | に比べて小さい。 【 0 3 8 3】

したがって、図26C(2)に示すことから判るように、高屈折率層121_0(×a, y a)と高屈折率層121_0(×a+1,y a)との間には、式(6)の関係がある。こ 40 れより、s1,s3,s5が正の値で、かつ、s7が負の値であれば、成り立つことにな る。

[0384]

【数6】

このような方程式を、全ての構造体(高屈折率層121_0,121_1a,121_1b, 50

121_3a)で、矛盾なく成り立つようにする。なお、ここで示した例は、あくまでも一 例であって、さらに他の方法で数式化することは可能である。 [0385] たとえば、高屈折率層121_1aの設計式 f _1a (x a , y a) 、高屈折率層121_1 b の設計式 f_1b (xa,ya)、高屈折率層 1 2 1_3a の設計式 f_3a (xa,ya) についても、高屈折率層121_0の設計式 f_0 (xa, ya) と同様の係数を使って、式 (2)と同様に定義付けることができる。この場合、係数はそれぞれの設計式 f_0, f_1 a , f_1b , f_3a で独立となる。 [0386] 10 また、各象限において、図26に示したようなX,Y座標の原点・方向の取り方をする と、象限に関わらず、各設計式fの係数sの正負の関係は、以下の通りとなる。つまり、 係数 s や正負の符号関係は、全ての象限で同じで成り立つ。これは、画素のシフト方向に 着目したとき、画素アレイ部の四隅から中央の原点(xa,ya)=(0,0)に画素位 置をシフトさせる設計式であるので、そのシフト方向に沿ってX,Y座標の原点・方向を 取ることで、左右対称性や上下対称性が保たれることに起因する。 * 高屈折率層121_0の設計式 f_0 (x a , y a) 正の値:s1,s2,s3,s4,s5,s8 負の値: s 6 , s 8 20 * 高屈折率層 1 2 1_1a の設計式 f_1a (xa,ya) 正の値: s 1 , s 4 , s 5 , s 8 負の値:なし s 2 = 0s 3 = 0s 6 = 0* 高屈折率層 1 2 1_1b の設計式 f_1b (x a , y a) 正の値: s 1 , s 4 , s 5 , s 8 負の値:なし s 2 = 030 s 3 = 0 s 6 = 0* 高屈折率層121_3aの設計式 f_3a (x a , y a) 正の値: s 1 , s 4 , s 5 , s 8 負の値:なし s 2 = 0s 3 = 0s 6 = 0[0388] < その他の適用例: 導波路との組合せ > 40 図27および図27Aは、本実施形態の光学レンズ110を固体撮像装置に適用するに 当たり、導波路(導光路)とも組み合わせる適用例を説明する図である。ここで、図27 は画素アレイ部の中央部で主光線 が垂直(入射角 0 deg)に入射する状態を示し、図 2 7Aは画素アレイ部の端部で主光線 が斜め(入射角25deg 程度)に入射する状態を示 す。 [0389] 図示のように、本例の固体撮像装置100」は、光電変換部104(センサ部,画素) が配置されるシリコン基板102上に導波路部410、入射レンズ420、本実施形態の 光学レンズ110が設けられている。光学レンズ110の光入射面側の上層には、酸化シ リコン S i O 2 でなる単一材層 1 1 1 、カラーフィルタ 1 0 6 、オンチップレンズ 1 0 8

がこの順に設けられている。図2Aでも説明したように、オンチップレンズ108を本実

50

(54)

施形態の交互配置層112に置き換えることもできる。

[0390]

導波路部410は、導光路412となる内側媒質は屈折率n1が1.64または1.7 のSiONで内径が480nmに設定され、その外側媒質414は屈折率n2が1.45 の酸化シリコンSiO2である。SiONと酸化シリコンSiO2との間における全反射 条件は図示の通りである。

【0391】

導波路部410の上層には屈性率の異なる層の積層構造により形成された入射レンズ420が設けられている。この入射レンズ420は、導波路部410側の屈性率層422は 屈折率n1が1.64または1.7のSiONであり、光学レンズ110側の屈性率層4 24は屈折率n2が1.45の酸化シリコンSiO2である。入射レンズ420は、光学 レンズ110で集光される光を導波路部410側に導き、導光路412の入射端に集光ス ポット(エアリーディスク:Airy disc)を形成する。導光路412内に導光された光は 全反射条件を満たす限りにおいて導光路412内をほぼロスなく進行し光電変換部104 の中心に入射する。

図27Aに示すように、画素アレイ部の端部では主光線 が斜め(入射角25deg 程度)に入射し、オンチップレンズ108により入射角17deg 程度になる。この斜め入射分を補正しなければ、導光路412内で全反射条件を満たすことができない。斜め入射光に対する補正機能を持つ第2・第3・第5・第6実施形態の光学レンズ110を使用することで、この対策になる。

【0393】

すなわち、固体撮像装置と導波路を組み合わせる構造にする場合、画素アレイ部の中央 部だけでなく端部でも、導波路の全反射条件を満たすように光を導波路に導入する必要が あるが、通常は、端部では光の入射方向が斜めになるので、その条件を満たすことが困難 になる。これに対して、斜め入射補正機能や集光効果を持つ本実施形態の光学レンズ11 0を使用することで、光を導波路の中央部に容易に導入でき、かつ、導波路の全反射条件 を斜め光でも満たすことができるようになる。

[0394]

< その他の適用例:裏面照射型との組合せ >

図28は、本実施形態の光学レンズ110を裏面照射型の固体撮像装置に適用する例を 説明する図である。本例の固体撮像装置100Kは、光電変換部104が形成されるシリ コン基板102の表面上に電極や配線やカラーフィルタ、レンズなどを形成し、その上方 から光を照射させる表面照射型構造ではなく、電極や配線が形成される配線層側(表面側)とは反対の裏面側から光を照射させる裏面照射型構造である。この場合、カラーフィル タやレンズなども裏面側に配置される。

【 0 3 9 5 】

表面照射型構造では、固体撮像装置の微細化が進むと、配線ピッチが狭くなる、配線層の多層化が進むなどのため、レンズと光電変換部のフォトダイオードとの距離が広がり、 斜め入射光の一部が配線層に遮られ実効開口率が低下する。画素アレイ部の中央部と端部 では、実効開口率や感度に大幅な差が生じ、シェーディングなどの問題が出てくる。この ような問題を解消しようとするのが裏面照射型構造である。 【0396】

たとえば、図28(1)に示す参考例の固体撮像装置100Zでは、シリコン基板10 2の裏面側を薄く削り、その光入射側にオンチップレンズ108とカラーフィルタ106 が形成されている。このような裏面照射型構造では、入射光はオンチップレンズ108を 通してシリコン基板102に形成された光電変換部104に入射するようになっている。 図示を割愛した配線層が形成される側を表面側と称すると、光は裏面側から光電変換部1 04に入射するので、裏面照射型構造と称される。裏面照射型構造を採ると、入射光は、 配線層により遮られることがないので、斜め入射光の実効開口率を100%にすることも 10

30

40

でき、感度向上やシェーディング防止ができる。 [0397] ただし、図28(1)に示すように、オンチップレンズ108を利用する参考例では、 画素アレイ部の端部では、斜め入射光(入射角25deg程度)が隣接画素に侵入してしま い、この斜め入射光による混色・色再現性の低下の問題は依然として残る。 [0398] これに対して、図28(2)に示すように、裏面照射型構造を採る本例の固体撮像装置 100Kは、光電変換部104が形成されるシリコン基板102の裏面側を薄く削り、そ の光入射側のカラーフィルタ106と光電変換部104との間に、斜め入射補正機能や集 光効果を持つ本実施形態の光学レンズ110が設けられている。斜め入射光に対する補正 機能を持つ第2・第3・第5・第6実施形態の光学レンズ110を使用することで、画素 アレイ部の端部において斜め入射光(入射角25deg程度)がシリコン基板102の裏面 から入射しても、その斜め入射光を垂直光に変換することができ、混色・色再現性の低下 の問題を解消できる。 【図面の簡単な説明】 [0399]【図1】光学レンズの第1実施形態の基本原理を説明するための等位相面を示す図(その 1)である。 【図1A】光学レンズの第1実施形態の基本原理を説明するための等位相面を示す図(そ の2)である。 【図1B】第1実施形態の光学レンズの平面模式図である。 【図2】光学レンズの第1実施形態を適用した固体撮像装置の第1例(適用例1)を説明 する断面模式図である。 【図2A】第1実施形態(適用例1)の固体撮像装置のより具体的な断面図である。 【図2B】第1実施形態(適用例1)のシミュレーション結果を示す図(途中過程のもの) である。 【図2C】第1実施形態(適用例1)のシミュレーション結果を示す図(=780,6 40nm)である。 【図2D】第1実施形態(適用例1)のシミュレーション結果を示す図(= 540,4 80nm)である。 【図3】光学レンズの第1実施形態を適用した固体撮像装置の第2例(適用例2)を説明 する断面模式図である。 【図3A】第1実施形態(適用例2)のシミュレーション結果を示す図(=780,6 40nm)である。 【図3B】第1実施形態(適用例2)のシミュレーション結果を示す図(= 540,4 80nm)である。 【図4】光学レンズの第1実施形態を適用した固体撮像装置の第3例(適用例3)を説明 する断面模式図である。 【図4A】第1実施形態(適用例3)のシミュレーション結果を示す図(=780,6 40nm)である。 【図4B】第1実施形態(適用例3)のシミュレーション結果を示す図(=540,4 80nm)である。 【図5】光学レンズの第1実施形態を適用した固体撮像装置の第4例(適用例4)を説明 する断面模式図である。 【図5A】第1実施形態(適用例4)の固体撮像装置のより具体的な断面図である。 【図5B】第1実施形態(適用例4)のシミュレーション結果を示す図(=780,6 40nm)である。 【図5C】第1実施形態(適用例4)のシミュレーション結果を示す図(=540,4 80nm)である。 【図6】第1実施形態の交互配置層による凸レンズに対する第1比較例を説明する図であ

(56)

10

20

30

z

(57)

(58)

【図18】第5実施形態に対する参考例の光学レンズのy断面・z断面の模式図である。 【図18A】第5実施形態に対する参考例の光学特性のシミュレーション結果を示す図(= 5 5 0) である。 【図18B】第5実施形態に対する参考例の光学特性のシミュレーション結果を示す図(= 5 5 0) である。 【図19】第5実施形態の光学レンズのv断面・z断面の模式図である。 【図19A】第5実施形態の光学特性のシミュレーション結果を示す図(= 550)で ある。 【図20】光学レンズの第5実施形態(変形例)を説明する図(z断面の模式図)である 10 【図21】第6実施形態(第1例)の光学レンズのz断面の模式図である。 【図21A】第6実施形態(第1例)の光学特性の3次元の波動シミュレーション結果を 示す図である。 【図22】第6実施形態(第2例)の光学レンズのz断面の模式図である。 【図22A】第6実施形態(第2例)の光学特性の3次元の波動シミュレーション結果を 示す図である。 【図23】第6実施形態(第3例)の光学レンズのz断面の模式図である。 【図23A】第6実施形態(第3例)の光学特性の3次元の波動シミュレーション結果を 示す図である。 20 【図24】光学レンズの第6実施形態(第1例の変形例)を説明する図(z断面の模式図)である。 【図24A】光学レンズの第6実施形態(第2例の変形例)を説明する図(z断面の模式 図)である。 【図24B】光学レンズの第6実施形態(第3例の変形例)を説明する図(z断面の模式 図)である。 【図25】第6実施形態の光学レンズを固体撮像装置に適用するに当たっての基本概念を 説明する図である。 【図25A】第6実施形態の光学レンズを適用した固体撮像装置(適用例1)を説明する 図である。 30 【図25B】第6実施形態(変形例)の光学レンズを適用した固体撮像装置(適用例2) を説明する図である。 【図26】本実施形態の光学レンズの製法(特にマスクパターンの設計手法)における座 標と原点の関係を説明する図である。 【図26A】第6実施形態(第2例)の光学レンズに着目した設計式を説明する図である 【図26B】設計式における係数の符号の決定方法を説明する図(y方向シフトの場合) である。 【図26C】設計式における係数の符号の決定方法を説明する図(×方向シフトの場合) である。 40 【図27】本実施形態の光学レンズを導波路および固体撮像装置と組み合わせる適用例を 説明する図(その1)である。 【図27A】本実施形態の光学レンズを導波路および固体撮像装置と組み合わせる適用例 を説明する図(その2)である。 【図28】本実施形態の光学レンズを裏面照射型の固体撮像装置に適用する例を説明する 図である。 【符号の説明】 [0400]1 , 3 , 1 1 1 , 1 1 3 ... 単一材層、 2 , 1 1 2 ... 交互配置層、 2 0 , 1 2 0 ... 低屈折 率 層 、 2 1 , 1 2 1 … 高 屈 折 率 層 、 1 0 0 … 固 体 撮 像 装 置 、 1 0 2 … シ リ コ ン 基 板 、 1 0

4 … 光 電 変 換 部 、 1 0 5 … 層 内 集 光 レンズ 、 1 0 6 … カ ラ ー フィ ル タ 、 1 0 8 … オン チ ッ 50

プレンズ、109…配線層、110…光学レンズ、124…反射防止膜、130…薄膜層 、200,300…撮像装置、201…CMOS固体撮像装置、210,310…画素ア レイ部、211,311…画素

(60)

【図6】

〇 混色が多い

O 小さいF値の光に対して理論感度より低下

Oリフローで球面レンズを作製するために 横方向に変形した構造を作れない

○ 画素マトリクス部の端部でシェーディングが生じる

【図10C】

【図10B】

斜め補正機能

112A 交互配置層 () 112B 交互配置層

n=2.0

Si₃N

光

. . .

111 単一材層

(黄位: μm)

2B 交互配置層 2B 交互配置層 2B 画素 画素アレイ部 配置しない 2B 2B 2B 2B 交互配置層

n=4.1 k=0.04

ŝ

130 薄膜層

113 单一材層

斜め光対策

102 シリコン基板>

【図12】

【図14】

【図15】

【 図 1 4 A 】 <第3実施形態(適用例2)>

【図15A】

<第3実施形態(適用例3)>

オンチップレンズ 2C 交互配置層へ (凸)レンズ カラーフィルタ ₿ 800 Z-AI 7///// -SiO2 Polv-Si Р Ν Р Ν P-Well P-Well N P-Well N-Sub Vsub

【図17】

<本実施形態の製造プロセス>

【図17A】

【図17B】

<比較例の製造プロセス:オンチップレンズ> (2) レジスト (1)

【図19】

【図20】

<第5実施形態(変形例)>

【図21】

【 図 2 4 】 <第6実施形態(第1例:変形例)>

【図24A】

【図25A】

【図25B】

【図 2 6 B】

(2) 121_0(xa, ya)と121_0(xa, ya+1)を重ねたとき

【図26C】

(2) 121_0(xa, ya)と121_0(xa+1, ya)を重ねたとき

【図3A】

(1)

(2)

-1.0

9

<第1実施形態(適用例3)>

レンズ集光特性

0.3 m m 厚 み

(2)

【図4B】

【図 5 B】

【図 5 C】

【図9】

<第1実施形態(適用例1)>

斜め入射光のとき

【図11A】

<第2実施形態(適用例)>

【図13A】

<第3実施形態(適用例1)>

【図18B】

<第5実施形態の参考例>

(1) x断面

Contour Map of Ex at X=0.0125

(2)本実施形態:裏面照射型+光学レンズ110

