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SCHEDULING CONTROL WITHIN A SYSTEM HAVING MIXED HARDWARE

AND SOFTWARE BASED INSTRUCTION EXECUTION

This invention relates to the field of data processing systems. More particular, this
invention relates to data processing systems having both a hardware based instruction
execution unit and a software based instruction execution unit and in which it is desired to

perform scheduling operations.

Within modern data processing systems the ability to reliably perform scheduling
between tasks or threads is an important capability. Multitasking operating systems require
processing resources to be shared between several different programs that may be
simultaneously active and multithreaded computer programs similarly require processing
resources to be shared between different active threads. It is known to control processing
operations using a counter based approach whereby program instructions being executed are
counted and a scheduling operation initiated each time a predetermined program instruction
count level is reached. An alternative approach is to adopt timer based scheduling in which a
scheduling operation is initiated at a regular time interval in a manner similar to servicing an

interrupt request.

In order to provide support for execution of higher level computer program languages,
it is known to use mixed hardware based execution units and software based execution units.
Simple instructions within a hardware based execution unit may be executed under control of
that hardware based execution unit, whereas more complex program instructions trigger the
execution of a software routine, typically written in a low level directly executable program
language, which interprets the complex instructions. Whilst such systems are able to provide
comprehensive and yet relatively high speed execution of high level program instructions,

they pose difficulties in also supporting scheduling.

A simple timer based scheduling approach may suffer from the disadvantage that
scheduling operations may be inappropriately triggered at points part way through the
software interpretation of a complex program instruction in a manner that could cause a loss
of data integrity should an inappropriate context switch occur. Counter based scheduling

systems suffer from the disadvantage of the need to provide for the exchange of counter
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values between hardware executed program instructions and software executed program

instructions. This represents a disadvantageous overhead.

Examples of known systems for translation between instruction sets and other
background information may be found in the following: US-A-5,805,895; US-A-3,955,180;
US-A-5,970,242; US-A-5,619,665; US-A-5,826,089; US-A-5,925,123; US-A-5,875,336; US-
A-5,937,193; US-A-5,953,520; US-A-6,021,469; US-A-5,568,646; US-A-5,758,115; IBM
Technical Disclosure Bulletin, March 1988, pp308-309, “System/370 Emulator Assist
Processor For a Reduced Instruction Set Computer”; IBM Technical Disclosure Bulletin, July
1986, pp548-549, “Full Function Series/l Instruction Set Emulator”; IBM Technical
Disclosure Bulletin, March 1994, pp605-606, “Real-Time CISC Architecture HW Emulator
On A RISC Processor”; IBM Technical Disclosure Bulletin, March 1998, p272, “Performance
Improvement Using An EMULATION Control Block™; IBM Technical Disclosure Bulletin,
January 1995, pp537-540, “Fast Instruction Decode For Code Emulation on Reduced
Instruction Set Computer/Cycles Systems”; IBM Technical Disclosure Bulletin, February
1993, pp231-234, “High Performance Dual Architecture Processor”; IBM Technical
Disclosure Bulletin, August 1989, pp40-43, “System/370 I/O Channel Program Channel
Command Word Prefetch”; IBM Technical Disclosure Bulletin, June 1985, pp305-306,
“Fully Microcode-Controlled Emulation Architecture”; IBM Technical Disclosure Bulletin,
March 1972, pp3074-3076, “Op Code and Status Handling For Emulation”; IBM Technical
Disclosure Bulletin, August 1982, pp954-956, “On-Chip Microcoding of a Microprocessor
With Most Frequently Used Instructions of Large System and Primitives Suitable for Coding
Remaining Instructions”; IBM Technical Disclosure Bulletin, April 1983, pp5576-5577,
“Emulation Instruction”; the book ARM System Architecture by S Furber and the book
Computer Architecture: A Quantitative Approach by Hennessy and Patterson.

The ability to reliably and efficiently support scheduling within mixed hardware and

software based instruction execution systems is strongly desirable.

Viewed from one aspect the present invention provides apparatus for processing data
operable to execute operations specified in a stream of program instructions, said apparatus
comprising:

a hardware based instruction execution unit operable to execute program instructions;

and
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a software based instruction execution unit operable to execute program instructions;
wherein

program instructions to be executed are sent to said hardware based execution unit for
execution;

program instructions received by said hardware based execution unit for which
execution is not supported by said hardware based execution unit are forwarded to said
software based execution unit for execution with control being returned to said hardware
based execution unit for a next program instruction to be executed; and

said hardware based execution unit includes scheduling support logic operable to
generate a scheduling signal for triggering a scheduling operation to be performed between
program instructions irrespective of whether a preceding program instruction was executed by
said hardware based execution unit or said software based execution unit. )

The invention simplifies the provision of scheduling support by providing a system in-
which program instructions are sent to the hardware based instruction execution unit and
forwarded from there to the software based instruction execution unit if they cannot be deal
with by the hardware based instruction execution unit. In this way, by routing all the program
instructions through the hardware based instruction execution unit, this unit is able to keep
track of the execution of instructions and accordingly generate a scheduling signal for
triggering a scheduling operation irrespective of whether the preceding instructions have been

executed by hardware or software.

In one preferred embodiment the scheduling support logic within the hardware based
instruction execution unit includes a counter that can count program instructions executed by
both the hardware and the software based approaches and generate an appropriate scheduling

signal to trigger a scheduling operation when a predetermined count value is reached.

Preferably the count value needed to trigger a scheduling operation may be user
programmed to fine-tune the scheduling operation concerned, or in some embodiments
provide a debugging tool by combining a debugging operation with a scheduling operation in

a manner that could, if desired, support single step debugging at one extreme.

In an alternative preferred embodiment a timer based approach may be used with the

signal generated by a timer being logically combined (“qualified”) with the scheduling signal
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generated within the hardware based instruction execution unit so as to ensure that scheduling

operations are started at safe points between the execution of program instructions.

The invention is particularly useful in embodiments in which the hardware based
instruction execution unit is a hardware instruction translator and the software based
instruction execution unit is a software interpreter. The use of hardware instruction
translation in combination with software based instruction interpretation provides accelerated
execution of high level program instructions whilst maintaining comprehensive support for
the more complex operations that may be specified within such high level program

instructions.

The instruction translation and interpretation operations could be simple, but often
require multiple lower level operations to be performed and in this context the accurate

control of points at which scheduling operations may be triggered is particularly significant.
Whilst the program instruction language within which scheduling is being supported
could take many different forms, the invention is particularly well suited to embodiments in

which the program is a Java Virtual Machine instruction program involving a mix of Java

bytecode hardware translation and Java bytecode software interpretation;

Embodiments of the invention will now be described, by way of example only, with

reference to the accompanying drawings in which:

Figures 1 and 2 schematically represent example instruction pipeline arrangements;

Figure 3 illustrates in more detail a fetch stage arrangement;

Figure 4 schematically illustrates the reading of variable length non-native instructions

from within buffered instruction words within the fetch stage;

Figure 5 schematically illustrates a data processing system for executing both

processor core native instructions and instructions requiring translation;
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Figure 6 schematically illustrates, for a sequence of example instructions and states
the contents of the registers used for stack operand storage, the mapping states and the

relationship between instructions requiring translation and native instructions;

Figure 7 schematically illustrates the execution of a non-native instruction as a

sequence of native instructions;

Figure 8 is a flow diagram illustrating the way in which the instruction translator may

operate in a manner that preserves interrupt latency for translated instructions;.

Figure 9 schematically illustrates the translation of Java bytecodes into ARM opcodes

using hardware and software techniques; i

Figure 10 schematically illustrates the flow of control between a hardware based

translator, a software based interpreter and software based scheduling;

Figures 11 and 12 illustrate another way of controlling scheduling operations using a

timer based approach; and

Figure 13 is a signal diagram illustrating the signals controlling the operation of the

circuit of Figure 12.

Figure 1 shows a first example instruction pipeline 30 of a type suitable for use in an
ARM processor based system. The instruction pipeline 30 includes a fetch stage 32, a native
instruction (ARM/Thumb instructions) decode stage 34, an execute stage 36, a memory
access stage 38 and a write back stage 40. The execute stage 36, the memory access stage 38
and the write back stage 40 are substantially conventional. Downstream of the fetch stage 32,
and upstream of the native instruction decode stage 34, there is provided an instruction
translator stage 42. The instruction translator stage 42 is a finite state machine that translates
Java bytecode instructions of a variable length into native ARM instructions. The instruction
translator stage 42 is capable of multi-step operation whereby a single Java bytecode
instruction may generate a sequence of ARM instructions that are fed along the remainder of
the instruction pipeline 30 to perform the operation specified by the Java bytecode instruction.
Simple Java bytecode instructions may required only a single ARM instruction to perform

their operation, whereas more complicated Java bytecode instructions, or in circumstances
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where the surrounding system state so dictates, several ARM instructions may be needed to
provide the operation specified by the Java bytecode instruction. This multi-step operation
takes place downstream of the fetch stage 32 and accordingly power is not expended upon
fetching multiple translated ARM instructions or Java bytecodes from a memory system. The
Java bytecode instructions are stored within the memory system in a conventional manner
such that additional constraints are not provided upon the memory system in order to support

the Java bytecode translation operation.

As illustrated, the instruction translator stage 42 is provided with a bypass path. When
not operating in an instruction translating mode, the instruction pipeline 30 may bypass the
instruction translator stage 42 and operate in an essentially unaltered manner to provide
decoding of native instructions. )

In the instruction pipeline 30, the instruction translator stage 42 is illustrated as
generating translator output signals that fully represent corresponding ARM instructions and
are passed via a multiplexer to the native instruction decoder 34. The instruction translator 42
also generates some extra control signals that may be passed to the native instruction decoder
34. Bit space constraints within the native instruction encoding may impose limitations upon
the range of operands that may be specified by native instructions. These limitations are not
necessarily shared by the non-native instructions. Extra control signals are provided to pass
additional instruction specifying signals derived from the non-native instructions that would
not be possible to specify within native instructions stored within memory. As an example, a
native instruction may only provide a relatively low number of bits for use as an immediate
operand field within a native instruction, whereas the non-native instruction may allow an
extended range and this can be exploited by using the extra control signals to pass the
extended portion of the immediate operand to the native instruction decoder 34 outside of the

translated native instruction that is also passed to the native instruction decoder 34.

Figure 2 illustrates a further instruction pipeline 44. In this example, the system 18
provided with two native instruction decoders 46, 48 as well as a non-native instruction
decoder 50. The non-native instruction decoder 50 is constrained in the operations it can
specify by the execute stage 52, the memory stage 54 and the write back stage 56 that are
provided to support the native instructions. Accordingly, the non-native instruction decoder

50 must effectively translate the non-native instructions into native operations (which may be
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a single native operation or a sequence of native operations) and then supply appropriate
control signals to the execute stage 52 to carry out these one or more native operations. It will
be appreciated that in this example the non-native instruction decoder does not produce
signals that form a native instruction, but rather provides control signals that specify native
instruction (or extended native instruction) operations. The control signals generated may not

match the control signals generated by the native instruction decoders 46, 438.

In operation, an instruction fetched by the fetch stage 58 is selectively supplied to one
of the instruction decoders 46, 48 or 50 in dependence upon the particular processing mode

using the illustrated demultiplexer.

Figure 3 schematically illustrates the fetch stage of an instruction pipeline in more
detail. Fetching logic 60 fetches fixed length instruction words from a memory system and
supplies these to an instruction word buffer 62. The instruction word buffer 62 is a swing
buffer having two sides such that it may store both a current instruction word and a next
instruction word. Whenever the current instruction word has been fully decoded and
decoding has progressed onto the next instruction word, then the fetch logic 60 serves to
replace the previous current instruction word with the next instruction word to be fetched
from memory, i.e. each side of the swing buffer will increment by two in an interleaved

fashion the instruction words that they successively store.

In the example illustrated, the maximum instruction length of a Java bytecode
instruction is three bytes. Accordingly, three multiplexers are provided that enable any three
neighbouring bytes within either side of the word buffer 62 to be selected and supplied to the
instruction translator 64. The word buffer 62 and the instruction translator 64 are also

provided with a bypass path 66 for use when native instructions are being fetched and
decoded.

It will be seen that each instruction word is fetched from memory once and stored
within the word buffer 62. A single instruction word may have multiple Java bytecodes read
from it as the instruction translator 64 performs the translation of Java bytecodes into ARM
instructions. Variable length translated sequences of native instructions may be generated

without requiring multiple memory system reads and without consuming memory resource or
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imposing other constraints upon the memory system as the instruction translation operations

are confined within the instruction pipeline.

A program counter value is associated with each Java bytecode currently being
translated. This program counter value is passed along the stages of the pipeline such that
each stage is able, if necessary, to use the information regarding the particular Java bytecode
it is processing. The program counter value for a Java bytecode that translates into a
sequence of a plurality of ARM instruction operations is not incremented until the final ARM
instruction operation within that sequence starts to be executed. Keeping the program counter
value in a manner that continues to directly point to the instruction within the memory that is
being executed advantageously simplifies other aspects of the system, such as debugging and

branch target calculation.

Figure 4 schematically illustrates the reading of variable length Java bytecode
instructions from the instruction buffer 62. At the first stage a Java bytecode instruction
having a length of one is read and decoded. The next stage is a Java bytecode instruction that
is three bytes in length and spans between two adjacent instruction words that have been
fetched from the memory. Both of these instruction words are present within the instruction
buffer 62 and so instruction decoding and processing is not delayed by this spanning of a
variable length instruction between instruction words fetched. Once the three Java bytecodes
have been read from the instruction buffer 62, the refill of the earlier fetched of the instruction
words may commence as subsequent processing will continue with decoding of Java

bytecodes from the following instruction word which is already present.

The final stage illustrated in Figure 4 illustrates a second three bytecode instruction
being read. This again spans between instruction words. If the preceding instruction word
has not yet completed its refill, then reading of the instruction may be delayed by a pipeline
stall until the appropriate instruction word has been stored into the instruction buffer 62. In
some embodiments the timings may be such that the pipeline never stalls due to this type of
behaviour. It will be appreciated that the particular example is a relatively infrequent
occurrence as most Java bytecodes are shorter than the examples illustrated and accordingly
two successive decodes that both span between instruction words is relatively uncommon. A

valid signal may be associated with each of the instruction words within the instruction buffer
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62 in a manner that is able to signal whether or not the instruction word has appropriately

been refilled before a Java bytecode has been read from it.

Figure 5 shows a data processing system 102 including a processor core 104 and a
register bank 106. An instruction translator 108 is provided within the instruction path to
translate Java Virtual Machine instructions to native ARM instructions (or control signals
corresponding thereto) that may then be supplied to the processor core 104. The instruction
translator 108 may be bypassed when native ARM instructions are being fetched from the
addressable memory. The addressable memory may be a memory system such as a cache
memory with further off-chip RAM memory. Providing the instruction translator 108
downstream of the memory system, and particularly the cache memory, allows efficient use to
be made of the storage capacity of the memory system since dense instructions that require
translation may be stored within the memory system and only expanded into native

instructions immediately prior to being passed to the processor core 104.

The register bank 106 in this example contains sixteen general purpose 32-bit
registers, of which four are allocated for use in storing stack operands, i.e. the set of registers

for storing stack operands is registers RO, R1, R2 and R3.

The set of registers may be empty, partly filled with stack operands or completely
filled with stack operands. The particular register that currently holds the top of stack
operand may be any of the registers within the set of registers. It will thus be appreciated that
the instruction translator may be in any one of seventeen different mapping states
corresponding to one state when all of the registers are empty and four groups of four states
each corresponding to a respective different number of stack operands being held within the
set of registers and with a different register holding the top of stack operand. Table 1
illustrates the seventeen different states of the state mapping for the instruction translator 108.
It will be appreciated that with a different number of registers allocated for stack operand
storage, or as a result of constraints that a particular processor core may have in the way it can
manipulate data values held within registers, the mapping states can very considerably

depending upon the particular implementation and Table 1 is only given as an example of one

particular implementation.
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RO = EMPTY
R1 = EMPTY
R2 = EMPTY
R3 = EMPTY
STATE 00100 STATE 01000 STATE 01100 STATE 10000
RO = TOS RO = TOS RO = TOS RO = TOS
R1 = EMPTY R1 = EMPTY R1 = EMPTY R1 = TOS-3
R2 = EMPTY R2 = EMPTY R2 = TOS-2 R2 = TOS-2
R3 = EMPTY R3 = TOS-1 R3 = TOS-1 R3 = TOS-1
STATE 00101 STATE 01001 STATE 01101 STATE 10001
RO = EMPTY RO = TOS-1 RO = TOS-1 RO = TOS-1
R1 = TOS R1 = TOS R1 = TOS R1 = TOS
R2 = EMPTY R2 = EMPTY R2 = EMPTY R2 = TOS-3
R3 = EMPTY R3 = EMPTY R3 = TOS-2 R3 = TOS-2
STATE 00110 STATE 01010 STATE 01110 STATE 10010
RO = EMPTY RO = EMPTY RO = TOS-2 RO = TOS-2
R1 = EMPTY R1 = TOS-1 R1 = TOS-1 Rl = TOS-1
R2 = TOS R2 = TOS R2 = TOS R2 = TOS
R3 = EMPTY R3 = EMPTY R3 = EMPTY R3 = TOS-3
STATE 00111 STATE 01011 STATE 01111 STATE 10011
RO = EMPTY RO = EMPTY RO = EMPTY RO = TOS-3
R1 = EMPTY R1 = EMPTY Rl = TOS-2 R1 = TOS-2
R2 = EMPTY R2 = TOS-1 R2 = TOS-1 R2 = TOS-1
R3 = TOS R3 = TOS R3 = TOS R3 = TOS
TABLE 1

Within Table 1 it may be observed that the first three bits of the state value indicate
the number of non-empty registers within the set of registers. The final two bits of the state
value indicate the register number of the register holding the top of stack operand. In this
way, the state value may be readily used to control the operation of a hardware translator or a
software translator to take account of the currently occupancy of the set of registers and the

current position of the top of stack operand.

As illustrated in Figure S a stream of Java bytecodes J1, J2, J3 is fed to the instruction
translator 108 from the addressable memory system. The instruction translator 108 then
outputs a stream of ARM instructions (or equivalent control signals, possibly extended)
dependent upon the input Java bytecodes and the instantaneous mapping state of the
instruction translator 8, as well as other variables. The example illustrated shows Java

bytecode J1 being mapped to ARM instructions A'l and A'2. Java bytecode J2 maps to
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ARM instructions Azl, A% and A%3. Finally, Java bytecode J3 maps to ARM instruction
A31. Each of the Java bytecodes may require one or more stack operands as inputs and may
produce one or more stack operands as an output. Given that the processor core 104 in this
example is an ARM processor core having a load/store architecture whereby only data values
held within registers may be manipulated, the instruction translator 108 is arranged to
generate ARM instructions that, as necessary, fetch any required stack operands into the set of
registers before they are manipulated or store to addressable memory any currently held stack
operands within the set of registers to make room for result stack operands that may be
generated. It will be appreciated that each Java bytecode may be considered as having an
associated “require full” value indicating the number of stack operands that must be present
within the set of registers prior to its execution together with a “require empty” value
indicating the number of empty registers within the set of registers that must be available

prior to execution of the ARM instructions representing the Java opcode.

Table 2 illustrates the relationship between initial mapping state values, require full
values, final state values and associated ARM instructions. The initial state values and the
final state values correspond to the mapping states illustrated in Table 1. The instruction
translator 108 determines a require full value associated with the particular Java bytecode
(opcode) it is translating. The instruction translator (108), in dependence upon the initial
mapping state that it has, determines whether or not more stack operands need to be loaded
into the set of registers prior to executing the Java bytecode. Table 1 shows the initial states
together with tests applied to the require full value of the Java bytecode that are together
applied to determine whether a stack operand needs to be loaded into the set of registers using
an associated ARM instruction (an LDR instruction) as well as the final mapping state that
will be adopted after such a stack cache load operation. In practice, if more than one stack
operand needs to be loaded into the set of registers prior to execution of the Java bytecode,
then multiple mapping state transitions will occur, each with an associated ARM instruction
loading a stack operand into one of the registers of the set of registers. In different
embodiments it may be possible to load multiple stack operands in a single state transition

and accordingly make mapping state changes beyond those illustrated in Table 2.

INITIAL REQUIRE FINAL ACTIONS

STATE FULL STATE

00000 >0 00100 LDR RO, [Rstack, #-4]!
00100 >1 01000 LDR R3, [Rstack, #-4]!

01001 >2 01101 LDR R3, ([Rstack, #-4]!
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01110 >3 10010 LDR R3, [Rstack, #-4]!
01111 >3 10011 LDR RO, [Rstack, #-4]!
Q1100 >3 10000 LDR R1, [Rstack, #-4]!
01101 >3 10001 LDR R2, [Rstack, #-41!
01010 >2 01110 LDR RO, [Rstack, #-4]!
01011 >2 01111 LDR R1l, [Rstack, #-4]!
01000 >2 01100 LDR R2, [Rstack, #-4]!
00110 >1 01010 LDR R1, [Rstack, #-4]!
00111 >1 01011 LDR R2, [Rstack, #-4]!
00101 >1 01001 LDR RO, [Rstack, #-4]!
TABLE 2

As will be seen from Table 2, a new stack operand loaded into the set of registers
storing stack operands will form a new top of stack operand and this will be loaded into a

particular one of the registers within the set of registers depending upon the initial state.

Table 3 in a similar manner illustrates the relationship between initial state, require
empty value, final state and an associated ARM instruction for emptying a register within the
set of registers to move between the initial state and the final state if the require empty value
of a particular Java bytecode indicates that it is necessary given the initial state before the
Java bytecode is executed. The particular register values stored off to the addressable
memory with an STR instruction will vary depending upon which of the registers is the

current top of stack operand.

INITIAL REQUIRE FINAL ACTIONS

STATE EMPTY STATE

00100 >3 00000 STR RO, ([Rstack], #4
01001 >2 00101 STR RO, [Rstack], #4
01110 >1 01010 STR RO, [Rstack], #4
10011 >0 01111 STR RO, [Rstack], #4
10000 >0 01100 STR R1, [Rstack], #4
10001 >0 01101 STR R2, [Rstack], #4
10010 >0 01110 STR R3, [Rstack], #4
01111 >1 01011 STR R1, [Rstack], #4
01100 >1 01000 STR R2, [Rstack], #4
01101 >1 01001 STR R3, [Rstack], #4
01010 >2 00110 STR R1, [Rstack], #4
01011 >2 00111 STR R2, [Rstack], #4
01000 >2 00100 STR R3, ([Rstack], #4
00110 >3 00000 STR R2, [Rstackl]l, #4
00111 >3 00000 STR R3, [Rstackl], #4
00101 >3 00000 STR R1, ([Rstack], #4

TABLE 3
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It will be appreciated that in the above described example system the require full and
require empty conditions are mutually exclusive, that is to say only one of the require full or
require empty conditions can be true at any given time for a particular Java bytecode which
the instruction translator is attempting to translate. The instruction templates used by the
instruction translator 108 together with the instructions it is chosen to support with the
hardware instruction translator 108 are selected such that this mutually exclusive requirement
may be met. If this requirement were not in place, then the situation could arise in which a
particular Java bytecode required a number of input stack operands to be present within the
set of registers that would not allow sufficient empty registers to be available after execution
of the instruction representing the Java bytecode to allow the results of the execution to be
held within the registers as required.

It will be appreciated that a given Java bytecode will have an overall nett stack action
representing the balance between the number of stack operands consumed and the number of
stack operands generated upon execution of that Java bytecode. Since the number of stack
operands consumed is a requirement prior to execution and the number of stack operands
generated is a requirement after execution, the require full and require empty values
associated with each Java bytecode must be satisfied prior to execution of that bytecode even
if the nett overall action would in itself be met. Table 4 illustrates the relationship between an
initial state, an overall stack action, a final state and a change in register use and relative
position of the top of stack operand (TOS). It may be that one or more of the state transitions
illustrated in Table 2 or Table 3 need to be carried out prior to carrying out the state
transitions illustrated in Table 4 in order to establish the preconditions for a given Java

bytecode depending on the require full and require empty values of the Java bytecode.

INITIAL STACK FINAL ACTIONS

STATE ACTION STATE

00000 +1 00101 Rl <- TOS

00000 +2 01010 Rl <- TOS-1, R2 <- TOS

00000 +3 01111 Rl «<- TOS-2, R2 <- TOS-1, R3 <- TOS
00000 +4 10000 RO <- TOS, Rl <- TOS-3, R2 <- TOS-2, R3 <- TOS-1
00100 +1 01001 Rl <- TOS

00100 +2 01110 R1 <- TOS-1, R2 <- TOS

00100 +3 10011 Rl «<- TOS-2, R2 <- TOS-1, R3 <- TOS
00100 -1 00000 RO «<- EMPTY

01001 +1 01110 R2 «<- TOS

01001 +2 10011 R2 <- TOS-1, R3 <- TOS

01001 -1 00100 R1 <- EMPTY
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01001

01110
01110
01110
01110

10011
10011
10011
10011

10000
10000
10000
10000

+1

-2
-3

-1
-2
-3

-1
-2
-3
-4

00000

10011
01001
00100
00000

01110
01001
00100
0Q000

01111
01010
00101
00000

RO

R3
R2
R1
RO

R3
R2
R1
RO

RO
RO
RO
RO

< -
< -
< -

& -

< -
< -

<-
<-
<-
<-
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EMPTY,

TOS
EMPTY
EMPTY,
EMPTY,

EMPTY

EMPTY,
EMPTY,
EMPTY,

EMPTY

EMPTY,
EMPTY,
EMPTY,

R1

R2
R1

R3
R2
R1

R3
R2
R1

< -
< -

< -
< -

& -
< -
< -

EMPTY

EMPTY
EMPTY,

EMPTY
EMPTY,
EMPTY,

EMPTY
EMPTY,
EMPTY,

R2

R3
R2

R3
R2

< -

EMPTY

EMPTY
EMPTY,

EMPTY
EMPTY,

R3 <-
EMPTY

R3 <«-
EMPTY
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10001
10001
10001
10001

10010
10010
10010
10010

01111
01111
01111
01111

01100
01100
01100
01100

01101
01101
01101
01101

01010
01010
01010
01010

01011
01011
01011
01011

01000
01000
01000
01000

00110
00110
00110
00110

00111
00111
00111
00111

00101
00101
00101
00101

-2
-3
-4

-1
-2
-3
-4

+1
-1
-2
-3

+1
-1
-2
-3

+1
-1
-2
-3

+1
+2
-1
-2

+1
+2
-1
-2

+1
+2
-1
-2

+1
+2
+3
-1

+1
+2
+3
-1

+1
+2
+3
-1

01100 R1
01011 RO
00110 RO
00000 RO
01101 R2
01000 R1
00111 RO
00000 RO
10000 RO
01010 R3
00101 R2
00000 R1
10001 R1
01011 RO
00110 RO
00000 RO
10010 R2
01000 R1
00111 RO
00000 RO
01111 R3
10000 R3
00101 R2
00000 R1
01100 RO
10001 RO
00110 R3
00000 R2
01101 R1
10010 R1
00111 RO
00000 RO
01011 R3
01100 RO
10001 R1
00000 R2
01000 RO
01101 RO
10010 RO
00000 R3
01010 R2
01111 R2
10000 R2
00000 R1
TABLE 4

<-
<-
<-
<-

<-
<~
<-
<-

& -
< -

< -

< -
& -
< -
& -

< -
< -
& -
< -

<-
<-
<-
<-

& -
< -
<& -
< -

< -
<~
< -
< -

<-
<-
<-
<-

<-
<-
<-
<-

<-
<-
<-
<-
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EMPTY

EMPTY, R1
EMPTY, R1
EMPTY, R1

EMPTY

EMPTY, R2
EMPTY, R1
EMPTY, Rl

TOS
EMPTY
EMPTY, R3
EMPTY, R2

TOS
EMPTY
EMPTY, R3
EMPTY, R2

TOS
EMPTY
EMPTY, R1
EMPTY, R1

TOS
TOS-1, RO
EMPTY
EMPTY, R2

TOS
TOS-1, R1
EMPTY
EMPTY, R3

TOS
TOS-1, R2
EMPTY
EMPTY, R3

TOS

TOS, R3 <-
TOS, RO <-
EMPTY

TOS
TOS-1, R1
TOS-2, R1
EMPTY

TOS
TOS-1, R3
TOS-2, R3
EMPTY

<- EMPTY
<- EMPTY, R3
<- EMPTY, R2

<- EMPTY
<- EMPTY, R2
<- EMPTY, R2

<- EMPTY
<- EMPTY, R3

<- EMPTY
<- EMPTY, R3

<- EMPTY
<- EMPTY, R3

<- TOS
<~- EMPTY
<- TOS
<- EMPTY
<- TOS
<~ EMPTY
TOS-1

TOS-1, R3 <-

<- TOS
<- TOS-1, R2

<- TOS
<- TOS-1, R1

< -
& -

< -

EMPTY
EMPTY,

EMPTY
EMPTY,

EMPTY

EMPTY

EMPTY

TOS-2

& -

< -

TOS

TOS

R3 <«-
EMPTY

R3 <-
EMPTY
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It will be appreciated that the relationships between states and conditions illustrated in
Table 2, Table 3 and Table 4 could be combined into a single state transition table or state

diagram, but they have been shown separately above to aid clarity.

The relationships between the different states, conditions, and nett actions may be
used to define a hardware state machine (in the form of a finite state machine) for controlling
this aspect of the operation of the instruction translator 108. Alternatively, these relationships

could be modelled by software or a combination of hardware and software.

There follows below an example of a subset of the possible Java bytecodes that
indicates for each Java bytecode of the subset the associated require full, require empty and

stack action values for that bytecode which may be used in conjunction with Tables 2, 3 and
4.

--- iconst_0
Operatiomn: Push int constant
Stack: =>
.. 0
Require-~Full = 0
Require-Empty = 1
Stack-Action = +1
--- iadd
Operation: Add int
" Stack: ..., valuel, value2 =>»
., result
Require-Full = 2
Require-Empty = 0
Stack-Action = -1
--- lload 0
Operation: Load long from local variable
Stack: L. o=>
., value.wordl, value.word2
Require-Full = 0
Require-Empty = 2
Stack-Action = +2
--- lastore

Operation: Store into long array
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Stack: ..., arrayref, index, value.wordl, value.word2 =>

Require-Full = 4

Require-Empty = 0
Stack-Action = -4
--- land
Operation Boolean AND long
Stack: ..., valuel.wordl, valuel.word2, value2.wordl,

value2.word2 =>
., result.wordl, result.word2

Require-Full = 4
Require-Empty = 0
Stack-Action = -2

--- ilastore ]
Operation: ~ Store into int array
Stack: ..., arrayref, index, value =>
Require-Full = 3
Require-Empty = 0
Stack-Action = -3
--- ineg
Operation: Negate int
Stack: ..., value =>

., result

Require-Full = 1
Require-Empty = 0
Stack-Action = 0

There also follows example instruction templates for each of the Java bytecode
instructions set out above. The instructions shown are the ARM instructions which
implement the required behaviour of each of the Java bytecodes. The register field “TOS-37,
“T0S-27", “TOS-17, “TOS”, “TOS+1” and “TOS+2” may be replaced with the appropriate
register specifier as read from Table 1 depending upon the mapping state currently adopted.
The denotation “TOS+n” indicates the Nth register above the register currently storing the top
of stack operand starting from the register storing the top of stack operand and counting
upwards in register value until reaching the end of the set of registers at which point a wrap is

made to the first register within the set of registers.
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iconst_0 MOV tos+l, #0
lload_0 LDR tos+2, [vars, #4]
LDR tos+1l, [vars, #0]
iastore LDR Rtmp2, f[tos-2, #4]
LDR Rtmpl, [tos-2, #0]
CMP tos-1, Rtmp2, LSR #5
BLXCS Rexc
STR tos, [Rtmpl, tos-1, LSL #2]
lastore LDR Rtmp2, [tos-3, #4]
LDR Rtmpl, f{tos-3, #0]
CMP tos-2, Rtmp2, LSR #5
BLXCS Rexc
STR tos-1, [Rtmpl, tos-2, LSL #3]!
STR tos, [Rtmpl, #4]
iadd ADD tos~1, tos-1, tos
ineg RSB tos, tos, #0
land AND tos-2, tos-2, tos
AND tos-3, tos-3, tos-1

An example execution sequence is illustrated below of a single Java bytecode
executed by a hardware translation unit 108 in accordance with the techniques described
above. The execution sequence is shown in terms of an initial state progressing through a
sequence of states dependent upon the instructions being executed, generating a sequence of
ARM instructions as a result of the actions being performed on each state transition, the

whole having the effect of translating a Java bytecode to a sequence of ARM instructions.

Initial state: 00000

Instruction: iadd (Require-Full=2, Require-Empty=0, Stack-Action=-
1)

Condition: Require-Full>0

State Transition: 00000 >0 00100

ARM Instruction(s) :
ILDR RO, [Rstack, #-4]!

Next state: 00100

Instruction: iadd (Require-Full=2, Require-Empty=0, Stack-Action=-
1)

Condition: Requite-Full>1l

State Transition: ‘00100 >1 01000

ARM Instructions(s):
LDR R3, [Rstack, #-4]!

Next state: 01000

Instruction: iadd (Require-Full=2, Require-Empty=0, Stack-Action=-
1)

Condition: Stack-Action=-1

State Transition: 01000 -1 00111

Instruction template:
ADD tos-1, tos-1, tos
ARM Instructions(s) (after substitution):
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ADD R3, R3, RO
Next state: 00111

Figure 6 illustrates in a different way the execution of a number of further Java
bytecode instructions. The top portion of Figure 6 illustrates the sequence of ARM
instructions and changes of mapping states and register contents that occur upon execution of
an iadd Java bytecode instruction. The initial mapping state is 00000 corresponding to all of
the registers within the set of registers being empty. The first two ARM instructions
generated serve to POP two stack operands into the registers storing stack operands with the
top of stack “TOS” register being R0O. The third ARM instruction actually performs the add
operation and writes the result into register R3 (which now becomes the top of stack operand)
whilst consuming the stack operand that was previously held within register R1, thus

producing an overall stack action of —1.

Processing then proceeds to execution of two Java bytecodes each representing a long
load of two stack operands. The require empty condition of 2 for the first Java bytecode is
immediately met and accordingly two ARM LDR instructions may be issued and executed.
The mapping state after execution of the first long load Java bytecode is 01101. In this state
the set of registers contains only a single empty register. The next Java bytecode long load
instruction has a require empty value of 2 that is not met and accordingly the first action
required is a PUSH of a stack operand to the addressable memory using an ARM STR
instruction. This frees up a register within the set of registers for use by a new stack operand
which may then be loaded as part of the two following LDR instructions. As previously
mentioned, the instruction translation may be achieved by hardware, software, or a
combination of the two. Given below is a subsection of an example software interpreter

generated in accordance with the above described techniques.

Interpret LDRB Rtmp, [Rjpc, #1]l!
LDR pc, [pc, Rtmp, 1lsl #2]
DCD 0
DCD do_iconst_0 ; Opcode 0x03
DCD do_lload_o0 ; Opcode Oxle
DCD do_iastore ; Opcode Ox4f
DCD do_lastore i Opcode 0xS0

DCD do_iadd ; Opcode 0x60
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do iconst_0

do_lload_0

do_iastore

do_lastore

do_iadd

do_ineg

do_land

State_00000_Interpret

State_00000_do_iconst_0
State_00000_do_lload 0

State_00000_do_iastore

DCD
DCD
MOV
STR

LDMIA
STMIA

LDMDB
LDR
LDR
CMP
BCS
STR

LDMDB
LDR
LDR
CMP
BCS
STR
STR

LDMDB
STR

LDR
RSB
STR

B
LDMDB
AND
AND
STMIA
B

LDRB
LDR
DCD
DCD
DCD
DCD
DCD
DCD
DCD
DCD
MOV
B
LDMIA

B
LDMDB

20
do_ineg i
do_land ;

RO, #0

RO, [Rstackl],
Interpret
Rvars, {RO, R1}
Rstack!, {RO, R1}
Interpret

Rstack!, {RO, R1, R2}
Rtmp2, [r0, #4]

Rtmpl, [r0, #0]

R1l, Rtmp2, LSR #5
ArrayBoundException
R2, [Rtmpl, R1l, LSL #2]
Interpret

#4

Rstack!, {RO, R1, R2, R3}

Rtmp2,
Rtmpl, [r0, #0]

R1l, Rtmp2, LSR #5
ArrayBoundException

R2, [(Rtmpl, R1, LSL #3]!
R3, [Rtmpl, #4]
Interpret

Rstack!, {ro0, ril}

r0, r0, rl
r0, [Rstack],
Interpret

r0, [Rstack, #-41!
tos, tos, #0
r0, [Rstack],
Interpret

[ro, #4]

#4

#4

Rstack!, {r0, rl, r2, r3}

rl, rli, r3
x0, r0, r2
Rstack!, {ro0, r1}
Interpret

#1]!
1lsl #2]

Rtmp,

pc,
0

(Ripe,
(pc, Rtmp,
State_00000_do_iconst_0
State_00000_do_lload 0

State 00000_do_iastore
State_00000_do_lastore

State_00000_do_iadd
State_00000_do_ineg

State_00000_do_land

R1, #0
State_00101_Interpret
Rvars, {R1l, R2}

State_01010_Interpret
Rstack!, {RO, R1l, R2}

'

i

Opcode 0x74

Opcode 0x7f

; Opcode

Opcode

Opcode
Opcode

Opcode
Opcode

Opcode

0x03

Oxle

0x4f
0x50

0x60

0x74

Ox7f
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State 00000_do_lastore

State_00000_do_iadd

State_00000_do_ineg

State 00000_do_land

State_00100_Interpret

State_00100_do_iconst_0
State 00100_do_lload_o0

State_00100_do_iastore

State_00100_do_lastore

LDR
cMP
BCS
STR

LDMDB
LDR
LDR
cMP
BCS
STR
STR

LDMDB

LDR
RSB

LDR
LDMDB
AND
AND
B

LDRB
LDR
DCD

DCD
DCD
DCD
DCD
DCD
DCD
DCD
MOV

B
LDMIA
B
LDMDB
LDR
LDR
CMP
BCS
STR
B
LDMDB
LDR
LDR
cMmp
BCS

STR
STR

21

Rtmp2, ([rO0,
Rtmpl, ([ro0,
R1l, Rtmp2, LSR #5
ArrayBoundException
(Rtmpl, R1l, LSL #2]
State_00000_Interpret

R2,

Rstack!, {RO, R1, R2, R3}

#4]
#01]

Rtmp2, [xr0, #4]

Rtmpl, ([r0, #0]

R1, Rtmp2, LSR #5
ArrayBoundException

R2, [Rtmpl, R1, LSL #3]!
R3, [Rtmpl, #4]

State_00000_Interxpret
Rstack!, {R1l, R2}

rl,

rl, r2

State 00101 _Interpret
[Rstack, #-4]!

rl,
rl,

rli, #0

State_00101_Interpret
[Rstack, #-4]!
Rstack!, {ri, r2, r3}

r0,

r2,
rl,

r2, x0
rl, r3

State_01010_Interpret

Rtmp,

(Ripc, #1]!

pc, [pe, Rtmp, 1lsl #2]
0

State_00100_do_iconst_0

State_00100_do_lload_0

State 00100_do_iastore
State _00100_do_lastore

State_00100_do_iadd

State_00100_do_ineg

State_00100_do_land

R1, #0
State_01001_Interpret

Rvars, {rl, R2}

State_01110_Interpret
Rstack!, {r2, r3}

Rtmp2, [r2,
Rtmpl, (r2,
R3, Rtmp2,

RO,

[Rtmpl,

#4]
#01]

LSR #5
ArrayBoundException

R3,

1sl #2]

State_00000_Interpret
Rstack!, {rl, r2, r3}

Rtmp2, ([rl, #4]

Rtmpl, [rl, #0]

r2, Rtmp2, LSR #5
ArrayBoundException

r3, [Rtmpl, r2, 1lsl #3]1!
r0, [Rtmpl, #4]

i

7

1]

i

Opcode
Opcode

Opcode
Opcode

Opcode
Opcode

Opcode

0x03

Oxle

Ox4f
0x50

0x60

0x74

ox7£
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State 00100_do_iadd

State_00100_do_ineg

State 00100_do_land

State_01000_Interpret

State_01000_do_iconst_ 0

State_01000_do_lload 0

State 01000 _do_iastore

State_01000_do_lastore

State 01000_do_iadd
State_01000_do_ineg

State_01000_do_land

State 01100_Interpret
State_10000_Interpret
State_00101_Interpret
State_01001_Interpret
State_01101_Interpret

LDRB
LDR
DCD

DCD
DCD
DCD
DCD
DCD
DCD
DCD
MOV
B
LDMIA
B
LDR
LDR
LDR
CMP
BCS
STR
B
LDMDB
LDR
LDR
CMP
BCS
STR
STR
B
ADD
B
RSB
B
LDMDB
AND

AND
B

22

State_00000_Interpret

r3, [Rstack, #-4]!
r3, r3, ro
State_00111_Interpret
r0, r0, #0

State_00100_Interpret
Rstack!, {xr1, r2, r3}
r2, r2, ro0
rl, rl, r3
State_01010_Interpret

Rtmp, [Ripc, #1]!
pc., [pc, Rtmp, 1lsl #2]
0

State_01000_do_iconst_0

State_01000_do_lload 0

State_01000_do_iastore
State_01000_do_lastore

State_01000_do_iadd
State_01000_do_ineg
State_01000_do_land
R1, #0
State_ 01101 _Interpret

Rvars, {rl, r2}
State_10010_Interpret

rl, [Rstack, #-4]!
Rtmp2, (R3, #4]

Rtmpl, [R3, #0]

r0, Rtmp2, LSR #5
ArrayBoundException

rl, [Rtmpl, r0, lsl #2]

State_00000_Interpret
Rstack!, {ri, r2}

Rtmp2, {r3, #4}

Rtmpl, {R3, #0}

r0, Rtmp2, LSR #5
ArrayBoundException

rl, {Rtmpl, r0, lsl #3]!
r2, [Rtmpl, #4]
State_00000_Interpret
r3, r3, xr0

State_00111_ Interpret
r0, r0, #0

State_01000_Interpret
Rstack!, {ri1, r2}

RO, RO, R2

R3, R3, R1
State_01000_Interpret

.

i

H

7

Opcode
Opcode

Opcode

; Opcode

Opcode
Opcode

Opcode

0x03

O0xle

ox4f
0x50

0x60

0x74

ox7f
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State_10001_Interpret
State 00110_Interpret
State_01010_Interpret
State_01110_Interpret
State_10010_Interpret
State_00111_Interpret
State_01011_Interpret

State 01111_Interpret
State_10011_Interpret

Figure 7 illustrates a Java bytecode instruction “laload” which has the function of
reading two words of data from within a data array specified by two words of data starting at
the top of stack position. The two words read from the data array then replace the two words

that specified their position and to form the topmost stack entries.

In order that the “laload” instruction has sufficient register space for the temporary
storage of the stack operands being fetched from the array without overwriting the input stack
operands that specify the array and position within the array of the data, the Java bytecode
instruction is specified as having a require empty value of 2, i.e. two of the registers within
the register bank dedicated to stack operand storage must be emptied prior to executing the
ARM instructions emulating the “laload” instruction. If there are not two empty registers
when this Java bytecode is encountered, then store operations (STRs) may be performed to
PUSH stack operands currently held within the registers out to memory so as to make space

for the temporary storage necessary and meet the require empty value for the instruction.

The instruction also has a require full value of 2 as the position of the data is specified
by an array location and an index within that array as two separate stack operands. The
drawing illustrates the first state as already meeting the require full and require empty
conditions and having a mapping state of “01001”. The “laload” instruction is broken down
into three ARM instructions. The first of these loads the array reference into a spare working
register outside of the set of registers acting as a register cache of stack operands. The second
instruction then uses this array reference in conjunction with an index value within the array
to access a first array word that is written into one of the empty registers dedicated to stack

operand storage.

It is significant to note that after the execution of the first two ARM instructions, the
mapping state of the system is not changed and the top of stack pointer remains where it

started with the registers specified as empty still being so specified.
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The final instruction within the sequence of ARM instructions loads the second array
word into the set of registers for storing stack operands. As this is the final instruction, if an
interrupt does occur during it, then it will not be serviced until after the instruction completes
and so it is safe to change the input state with this instruction by a change to the mapping state
of the registers storing stack operands. In this example, the mapping state changes to “01011”
which places the new top of stack pointer at the second array word and indicates that the input
variables of the array reference and index value are now empty registers, i.e. marking the

registers as empty is equivalent to removing the values they held from the stack.

It will be noted that whilst the overall stack action of the “laload” instruction has not
changed the number of stack operands held within the registers, a mapping state swap has
nevertheless occurred. The change of mapping state performed upon execution of the final
operation is hardwired into the instruction translator as a function of the Java bytecode being
translated and is indicated by the “swap” parameter shown as a characteristic of the “laload”

instruction.

Whilst the example of this drawing is one specific instruction, it will be appreciated
that the principles set out may be extended to many different Java bytecode instructions that

are emulated as ARM instructions or other types of instruction.

Figure 8 is a flow diagram schematically illustrating the above technique. At step 10 a
Java bytecode is fetched from memory. At step 12 the require full and require empty values
for that Java bytecode are examined. If either of the require empty or require full conditions
are not met, then respective PUSH and POP operations of stack operands (possibly multiple
stack operands) may be performed with steps 14 and 16. It is will be noted that this particular
system does not allow the require empty and require full conditions to be simultaneously

unmet. Multiple passes through steps 14 and 16 may be required until the condition of step

12 is met.

At step 18, the first ARM instruction specified within the translation template for the
Java bytecode concerned is selected. At step 20, a check is made as to whether or not the
selected ARM instruction is the final instruction to be executed in the emulation of the Java

bytecode fetched at step 10. If the ARM instruction being executed is the final instruction,
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then step 21 serves to update the program counter value to point to the next Java bytecode in
the sequence of instructions to be executed. It will be understood that if the ARM instruction
is the final instruction, then it will complete its execution irrespective of whether or not an
interrupt now occurs and accordingly it is safe to update the program counter value to the next
Java bytecode and restart execution from that point as the state of the system will have
reached that matching normal, uninterrupted, full execution of the Java bytecode. If the test
at step 20 indicates that the final bytecode has not been reached, then updating of the program

counter value is bypassed.

Step 22 executes the current ARM instruction. At step 24 a test is made as to whether
or not there are any more ARM instructions that require executing as part of the template. If
there are more ARM instructions, then the next of these is selected at step 26 and processing
is returned to step 20. If there are no more instructions, then processing proceeds to step 28 at
which any mapping change/swap specified for the Java bytecode concerned is performed in
order to reflect the desired top of stack location and full/empty status of the various registers

holding stack operands.

Figure 8 also schematically illustrates the points at which an interrupt if asserted is
serviced and then processing restarted after an interrupt. An interrupt starts to be serviced
after the execution of an ARM instruction currently in progress at step 22 with whatever is the
current program counter value being stored as a return point with the bytecode sequence. If
the current ARM instruction executing is the final instruction within the template sequence,
then step 21 will have just updated the program counter value and accordingly this will point
to the next Java bytecode (or ARM instruction should an instruction set switch have just been
initiated). If the currently executing ARM instruction is anything other than the final
instruction in the sequence, then the program counter value will still be the same as that
indicated at the start of the execution of the Java bytecode concerned and accordingly when a

return is made, the whole Java bytecode will be re-executed.

Figure 9 illustrates a Java bytecode translation unit 68 that receives a stream of Java
bytecodes and outputs a translated stream of ARM instructions (or corresponding control
signals) to control the action of a processor core. As described previously, the Java bytecode
translator 68 translates simple Java bytecodes using instruction templates into ARM instructions

or sequences of ARM instructions. When each Java bytecode has been executed, then a counter
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value within scheduling control logic 70 is decremented. When this counter value reaches 0,
then the Java bytecode translation unit 68 issues an ARM instruction branching to scheduling

code that manages scheduling between threads or tasks as appropriate.

Whilst simple Java bytecodes are handled by the Java bytecode translation umit 68 itself
providing high speed hardware based execution of these bytecodes, bytecodes requiring more
complex processing operations are sent to a software interpreter provided in the form of a
collection of interpretation routines (examples of a selection of such routines are given earlier in
this description). More specifically, the Java bytecode translation unit 68 can determined that the
bytecode it has received is not one which is supported by hardware translation and accordingly a
branch can be made to an address dependent upon that Java bytecode where a software routine
for interpreting that bytecode is found or referenced. This mechanism can also be employed
when the scheduling logic 70 indicates that a scheduling operation is needed to yield a branch to

the scheduling code.

Figure 10 illustrates the operation of the embodiment of Figure 9 in more detail and the
split of tasks between hardware and software. All Java bytecodes are received by the Java
bytecode translation unit 68 and cause the counter to be decremented at step 72. At step 74 a
check is made as to whether or not the counter value has reached 0. If the counter value has
reached 0 (counting down from either a predetermined value hardwired into the system or a
value that fnay be user controlled/programmed), then a branch is made to scheduling code at step
76. Once the scheduling code has completed at step 76, control is returned to the hardware and
processing proceeds to step 72, where the next Java bytecode is fetched and the counter again
decremented. Since the counter reached 0, then it will now roll round to a new, non-zero value.
Alternatively, a new value may be forced into the counter as part of the exiting of the scheduling

process at step 76.

If the test at step 74 indicated that the counter did not equal 0, then step 78 fetches the
Java bytecode. At step 80 a determination is made as to whether the fetched bytecode is a simple
bytecode that may be executed by hardware translation at step 82 or requires more complex
processing and accordingly should be passed out for software interpretation at step 84. If
processing is passed out to software interpretation, then once this has completed control is
returned to the hardware where step 72 decrements the counter again to take account of the

fetching of the next Java bytecode.
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Figure 11 illustrates an alternative control arrangement. At the start of processing at step
86 an instruction signal (scheduling signal) is deasserted. At step 88, a fetched Java bytecode is
examined to see if it is a simple bytecode for which hardware translation is supported. If
hardware translation is not supported, then control is passed out to the interpreting software at
step 90 which then executes a ARM instruction routine to interpret the Java bytecode. If the
bytecode is a simple one for which hardware translation is supported, then processing proceeds
to step 92 at which one or more ARM instructions are issued in sequence by the Java bytecode
translation unit 68 acting as a form of multi-cycle finite state machine. Once the Java bytecode
has been properly executed either at step 90 or at step 92, then processing proceeds to step 94 at
which the instruction signal is asserted for a short period prior to being deasserted at step 86.
The assertion of the instruction signal indicates to external circuitry that an appropriate safe_point
has been reached at which a timer based scheduling interrupt could take place without risking a

loss of data integrity due to the partial execution of an interpreted or translated instruction.

Figure 12 illustrates example circuitry that may be used to respond to the instruction
signal generated in Figure 11. A timer 96 periodically generates a timer signal after expiry of a
given time period. This timer signal is stored within a latch 98 until it is cleared by a clear timer
interrupt signal. The output of the latch 98 is logically combined by an AND gate 100 with the
instruction signal asserted at step 94. When the latch is set and the instruction signal is asserted,
then an interrupt is generated as the output of the AND gate 100 and is used to trigger an
interrupt that performs scheduling operations using the interrupt processing mechanisms
provided within the system for standard interrupt processing. Once the interrupt signal has been

generated, this in turn triggers the production of a clear timer interrupt signal that clears the latch

98 until the next timer output pulse occurs.

Figure 13 is a signal diagram illustrating the operation of the circuit of Figure 12. The
processor core clock signals occur at a regular frequency. The timer 96 generates timer signals at
predetermined periods to indicate that, when safe, a scheduling operation should be initiated.
The timer signals are latched. Instruction signals are generated at times spaced apart by intervals
that depend upon how quickly a particular Java bytecode was executed. A simple Java bytecode
may execute in a single processor core clock cycle, or more typically two or three, whereas a
complex Java bytecode providing a high level management type function may take several

hundred processor clock cycles before its execution is completed by the software interpreter. In
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either case, a pending asserted latched timer signal is not acted upon to trigger a scheduling
operation until the instruction signal issues indicating that it is safe for the scheduling operation
to commence. The simultaneous occurrence of a latched timer signal and the instruction signal
triggers the generation of an interrupt signal followed immediately thereafter by a clear signal

that clears the latch 98.
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CLAIMS

L. Apparatus for processing data operable to execute operations specified in a stream of
program instructions, said apparatus comprising:

a hardware based instruction execution unit operable to execute program instructions;
and

a software based instruction execution unit operable to execute program instructions;
wherein

program instructions to be executed are sent to said hardware based execution unit for
execution;

program instructions received by said hardware based execution unit for which
execution is not supported by said hardware based execution unit are forwarded to said
software based execution unit for execution with control being returned to said hardware
based execution unit for a next program instruction to be executed; and

said hardware based execution unit includes scheduling support logic operable to
generate a scheduling signal for triggering a scheduling operation to be performed between
program instructions irrespective of whether a preceding program instruction was executed by

said hardware based execution unit or said software based execution unit.

2. Apparatus as claimed in claim 1, wherein said scheduling support logic includes a
counter with a value that is changed in response to a program instruction sent to said hardware

based execution unit.

3. Apparatus as claimed in claim 2, wherein said counter triggers generation of said

scheduling signal when a predetermined count value is reached.

4, Apparatus as claimed in claim 3, wherein said counter may be programmed to start

from a user programmable start value.

5. Apparatus as claimed in claim 3, wherein said counter counts up to said predetermined

value.
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6. Apparatus as claimed in claim 3, wherein said counter counts down to said

predetermined value.

7. Apparatus as claimed in claim 1, wherein a debug operation is triggered by said

scheduling signal.

8. Apparatus as claimed in claim 1, further comprising timer logic operable to generate a

timer signal indicative of a time since a last scheduling operation.

9. Apparatus as claimed in claim 8, wherein said scheduling signal is combined with said
timer signal to trigger said scheduling operation.

10.  Apparatus as claimed in claim 8, wherein a scheduling operation is triggered upon
generation of said scheduling signal after said timer signal has reached a predetermined value

indicating a predetermined period time since a last scheduling operation has expired.

11.  Apparatus as claimed in claim 1, further comprising a processor core operable to

execute operations as specified by instructions of a first instruction set.

12.  Apparatus as claimed in claim 11, where said hardware based instruction execution
unit includes an instruction translator operable to translate instructions of a second instruction

set into translator output signals corresponding to instructions of said first instruction set.

13.  Apparatus as claimed in claim 12, wherein

at least one instruction of said second instruction set specifies a multi-step operation
that requires a plurality of operations that may be specified by instructions of said first
instruction set in order to be performed by said processor core; and

said instruction translator is operable to generate a sequence of translator output

signals to control said processor core to perform said multi-step operation.

14.  Apparatus as claimed in claim 1, wherein said software based execution unit is a

software based interpreter.
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15. Apparatus as claimed in claim 1, wherein said program instructions are Java Virtual

Machine instructions.

16. A method of processing data by executing operations specified in a stream of program
instructions, said method comprising the steps of:

executing program instructions with a hardware based instruction execution unit; and

executing program instructions with a software based instruction execution unit;
wherein

program instructions to be executed are sent to said hardware based execution unit for
execution;

program instructions received by said hardware based execution unit for which
execution is not supported by said hardware based execution unit are forwarded to said _
software based execution unit for execution with control being returned to said hardware
based execution unit for a next program instruction to be executed; and

said hardware based execution unit generates a scheduling signal for triggering a
scheduling operation to be performed between program instructions irrespective of whether a
preceding program instruction was executed by said hardware based execution unit or said

software based execution unit.
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