
US 200300054O7A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0005407 A1

Hines (43) Pub. Date: Jan. 2, 2003

(54) SYSTEM AND METHOD FOR Publication Classification
COORDINATION-CENTRIC DESIGN OF
SOFTWARE SYSTEMS (51) Int. Cl. ... G06F 9/44

(52) U.S. Cl. .. 717/104; 717/107
(76) Inventor: Kenneth J. Hines, Bothell, WA (US)

Correspondence Address:
STOEL RIVES LLP (57) ABSTRACT
900 SW FIFTHAVENUE
SUTE 2600 Coordination-centric design methodology facilitates the
PORTLAND, OR 97204 (US) design and the debugging of Software Systems. Software

Systems comprise the following elements: components,
(21) Appl. No.: 09/881,391 coordinators and coordination interfaces. Components are
(22) Filed: Jun. 12, 2001 function blockS. Coordinators manage all control and data

flow interactions between components based on a predeter
Related U.S. Application Data mined protocol. Coordination interfaces connect compo

nents to coordinators and allow control and dataflow
(60) Provisional application No. 60/213,496, filed on Jun. information to be passed between components and coordi

23, 2000. natorS.

Coordination Interfaces

O O
121 OO

w

Corponent X :
as - a * -s, --

20e

. . : .

r i
i.

Patent Application Publication Jan. 2, 2003 Sheet 1 of 24 US 2003/0005407 A1

- Component (too)

Mode (102)

Action (IOP)

Figure 1

Patent Application Publication Jan. 2, 2003 Sheet 2 of 24 US 2003/0005407 A1

Coordination Interfaces

12 IOO ..., 2Ole

&
n

Figure 2

Patent Application Publication Jan. 2, 2003 Sheet 3 of 24 US 2003/0005407 A1

C
O

Ho
O)

a

- t
O
V
V
A)
U
U

V
s
Q

s
H

n. r O
S. S S S s

er

s 92
5,

S - • you
am O T
S V
O S QU

V

US 2003/0005407 A1

squod 93 essº W

Jan. 2, 2003 Sheet 4 of 24 Patent Application Publication

Patent Application Publication Jan. 2, 2003 Sheet 5 of 24 US 2003/0005407 A1

6O2.

Exported Imported Arbitrated
state port state port state port

2.
Output input
data port data port

Figure 5

US 2003/0005407 A1 Jan. 2, 2003 Sheet 6 of 24 Patent Application Publication

O 9 0

Patent Application Publication Jan. 2, 2003 Sheet 7 of 24 US 2003/0005407 A1

OO

in Controller
-interfaces

assasata

: : &

ass

Patent Application Publication Jan. 2, 2003 Sheet 8 of 24 US 2003/0005407 A1

Figure 8

Patent Application Publication Jan. 2, 2003 Sheet 9 of 24 US 2003/0005407 A1

a's
. . . . '8. :. . . 3. - - -

.
. . . ser ... "... .s.. . ::::::::::::::::::::, re.

* f.

8

Patent Application Publication Jan. 2, 2003 Sheet 10 of 24 US 2003/0005407 A1

Figure 10

Patent Application Publication Jan. 2, 2003 Sheet 11 of 24 US 2003/0005407 A1

e
Sl S.
S
a-ax g

: -
2

N
e

S.
S
\

als
l
S

C
r

. Y.

c S s
-g s

S g s
go se
e s
o en S
s cars

s A

s
ba
L
s
ana
s
al

US 2003/0005407 A1

{{ZI 0 InãIJVÕI ?InÃ¡
§§

Jan. 2, 2003 Sheet 12 of 24 Patent Application Publication

Patent Application Publication Jan. 2, 2003 Sheet 13 of 24 US 2003/0005407 A1

Patent Application Publication Jan. 2, 2003 Sheet 14 of 24 US 2003/0005407 A1

Figure 14

Patent Application Publication Jan. 2, 2003 Sheet 15 of 24 US 2003/0005407 A1

Patent Application Publication Jan. 2, 2003 Sheet 16 of 24 US 2003/0005407 A1

ill
&c'. Dedicated RPC GUI/Log Coordinator

FOR ill- (6a ill- le 1604

Uni-directional msg
Voice/Connection

Figure 16

US 2003/0005407 A1 Jan. 2, 2003 Sheet 17 of 24 Patent Application Publication

US 2003/0005407 A1 Jan. 2, 2003 Sheet 18 of 24 Patent Application Publication

88 I 9 InÃ¡

6 I Q.InõII

US 2003/0005407 A1 Jan. 2, 2003 Sheet 19 of 24 Patent Application Publication

Patent Application Publication Jan. 2, 2003 Sheet 20 of 24 US 2003/0005407 A1

US 2003/0005407 A1 Jan. 2, 2003. Sheet 21 of 24 Patent Application Publication

|ZWE|||| IZTE?OGUE/No.s??1.

Patent Application Publication Jan. 2, 2003 Sheet 22 of 24 US 2003/0005407 A1

cell phone 1 - TL LT
cellphone 2 LT

Signals cellphone 3 - LT-T
cellphone 4 - T - T -

frameo Frame
O f 3 O

cellphone 1 cell phone 2 cell phone 3 cellphone 4 cellphone 1

cellphone 1 signal - T - T
Result T-TTL-T

chips T. TT
cellphone 2 signal r

Result T T

chips TTT T.

cellphone 3 signal - T
Result - T-T T-IT

Chips - - - - -
cell phone 4 signal - T -

Figure 22

Patent Application Publication Jan. 2, 2003 Sheet 23 of 24 US 2003/0005407 A1

2300
y

25C2

Figure 23A

Patent Application Publication Jan. 2, 2003 Sheet 24 of 24 US 2003/0005407 A1

V
S

Cy C) s
CY

S. s 9.
s se

S.
O

.

r
CN
CD

CO
a pa

t

r
CN
()

re

& t
O

D

O
O
s

S

S.

US 2003/0005407 A1

SYSTEMAND METHOD FOR
COORDINATION-CENTRIC DESIGN OF

SOFTWARE SYSTEMS

RELATED APPLICATIONS

0001. This application is a continuation of U.S. Provi
sional Application No. 60/213,496 filed Jun. 23, 2000,
incorporated herein by reference.

TECHNICAL FIELD

0002 The present invention relates to a system and
method for designing Software Systems using reusable Soft
ware elements and communication protocols.

BACKGROUND OF THE INVENTION

0003 A System design and programming methodology is
most effective when it is closely integrated and coheres
tightly with its corresponding debugging techniques. In
distributed and embedded System methodologies, the rela
tionship between debugging approaches and design meth
odologies has traditionally been one-sided in favor of the
design and programming methodologies. Design and pro
gramming methodologies are typically developed without
any consideration for the debugging techniques that will
later be applied to Software Systems designed using that
design and programming methodology. While these typical
debugging approaches attempt to exploit features provided
by the design and programming methodologies, the debug
ging techniques will normally have little or no impact on
what the design and programming features are in the first
place. This lack of input from debugging approaches to
design and programming methodologies Serves to maintain
the role of debugging as an afterthought, even though in a
typical System design, debugging consumes a majority of
the design time. The need remains for a design and pro
gramming methodology that reflects input from, and con
sideration of, potential debugging approaches in order to
enhance the design and reduce the implementation time of
Software Systems.
0004: 1. Packaging of Software Elements
0005 Packaging refers to the set of interfaces a software
element presents to other elements in a System. Software
packaging has many forms in modern methodologies. Some
examples are programming language procedure call inter
faces (as with libraries), TCP/IP socket interfaces with
Scripting languages (as with mail and Web servers), and file
formats. Several typical prior art packaging Styles are
described below, beginning with packaging techniques used
in object-oriented programming languages and continuing
with a description of more generalized approaches to pack
aging.
0006 A. Object-Oriented Approaches to Packaging
0007 One common packaging style is based on object
oriented programming languages and provides procedure
based (method-based) packaging for Software elements
(objects within this framework). These procedure-based
packages allow polymorphism (in which several types of
objects can have identical interfaces) through Subtyping, and
code sharing through inheritance (deriving a new class of
objects from an already existing class of objects). In a

Jan. 2, 2003

typical object-oriented programming language, an object's
interface is defined by the object's methods.
0008 Object-oriented approaches are useful in designing
concurrent Systems (Systems with task level parallelism and
multiple processing resources?) because of the availability
of active objects (objects with a thread of control). Some
common, concurrent object-oriented approaches are shown
in actor languages and in concurrent Eiffel.
0009 Early object-oriented approaches featured ano
nymity of objects through dynamic typechecking. This ano
nymity of objects meant that a first object did not need to
know anything about a Second object in order to Send a
message to the Second object. One unfortunate result of this
anonymity of objects was that the Second object could
unexpectedly respond to the first object that the Sent mes
Sage was not understood, resulting in a lack of predictability,
due to this disruption of System executions, for Systems
designed with this object-oriented approach.
0010 Most modern object-oriented approaches opt to
Sacrifice the benefits flowing from anonymity of objects in
order to facilitate stronger Static typing (checking to ensure
that objects will properly communicate with one another
before actually executing the Software System). The main
result of Stronger Static typing is improved System predict
ability. However, an unfortunate result of Sacrificing the
anonymity of objects is a tighter coupling between those
objects, whereby each object must explicitly classify, and
include knowledge about, other objects to which it sends
messages. In modern object-oriented approaches the pack
age (interface) has become indistinguishable from the object
and the System in which the object is a part.
0011 The need remains for a design and programming
methodology that combines the benefits of anonymity for
the software elements with the benefits derived from strong
Static typing of System designs.
0012 B. Other Approaches to Packaging
0013 Other packaging approaches provide higher
degrees of Separation between Software elements and their
respective packages than does the packaging in object
oriented Systems. For example, the packages in event-based
frameworks are interfaces with ports for transmitting and
receiving events. These provide loose coupling for interele
ment communication. However, in an event-based frame
work, a Software designer must explicitly implement inter
element State coherence between Software elements as
communication between those Software elements. This
means that a programmer must perform the error-prone task
of designing, optimizing, implementing, and debugging a
Specialized communication protocol for each State coher
ence requirement in a particular Software System.
0014. The common object request broker architecture
(CORBA) provides an interface description language (IDL)
for building packages around Software elements written in a
variety of languages. These packages are remote procedure
call (RPC) based and provide no support for coordinating
State between elements. With flexible packaging, an
element's package is implemented as a Set of co-routines
that can be adapted for use with applications through use of
adapters with interfaces complementary to the interface for
the Software element. These adapters can be application
Specific-used only when the elements are composed into a
System.

US 2003/0005407 A1

0.015 The use of co-routines lets a designer specify
transactions or Sequences of events as part of an interface,
rather than just as atomic events. Unfortunately, co-routines
must be executed in lock-Step, meaning a transition in one
routine corresponds to a transition in the other co-routine. If
there is an error in one or if an expected event is lost, the
interface will fail because its context will be incorrect to
recover from the lost event and the co-routines will be out
of Sync.

0016. The need remains for a design and programming
methodology that provides Software packaging that Supports
the implementation of State coherence in distributed con
current Systems without packaging or interface failure when
an error or an unexpected event occurs.

0017 2. Approaches to Coordination

0.018 Coordination, within the context of this applica
tion, means the predetermined ways through which Software
components interact. In a broader Sense, coordination refers
to a methodology for composing concurrent components
into a complete System. This use of the term coordination
differs slightly from the use of the term in the parallelizing
compiler literature, in which coordination refers to a tech
nique for maintaining programwide Semantics for a Sequen
tial program decomposed into parallel Subprograms.

0.019 A. Coordination Languages

0020 Coordination languages are usually a class of tuple
Space programming languages, Such as Linda. A tuple is a
data object containing two or more types of data that are
identified by their tags and parameter lists. In tuple-Space
languages, coordination occurs through the use of tuple
Spaces, which are global multisets of tagged tuples Stored in
shared memory. Tuple-Space languages extend existing pro
gramming languages by adding Six operators: Out, in, read,
eval, inp, and readp. The out, in, and read operators place,
fetch and remove, and fetch without removing tuples from
tuple Space. Each of these three operators blockS until its
operation is complete. The out operator creates tuples con
taining a tag and Several arguments. Procedure calls can be
included in the arguments, but Since out blocks, the calls
must be performed and the results stored in the tuple before
the operator can return.

0021. The operators eval, inp, and readpare nonblocking
versions of out, in, and read, respectively. They increase the
expressive power of tuple-space languages. Consider the
case of eval, the nonblocking version of out. Instead of
evaluating all arguments of the tuple before returning, it
Spawns a thread to evaluate them, creating, in effect, an
active tuple (whereas tuples created by out are passive). AS
with out, when the computation is finished, the results are
Stored in a passive tuple and left in tuple Space. Unlike out,
however, the eval call returns immediately, So that Several
active tuples can be left outstanding.

0022 Tuple-space coordination can be used in concise
implementations of many common interaction protocols.
Unfortunately, tuple-space languages do not separate coor
dination issues from programming issues. Consider the
annotated Linda implementation of RPC in Listing 1.

Jan. 2, 2003

rpcCall (args) {
out ("RPCToServer", "Client", args . . .
in ("Client, "Return FromServer", & return Value);
return return Value: f8 C i?

f8 C i?
Server:

while (true) { f8 C i?
in("RPCToServer", &return Address, args . . .);
return Value = functionCall (args); f8 C i?
out (returnAddress, "Return FromServer", return Value);

f8 C i?

0023 Listing 1: Linda Used to Emulate RPC
0024. Although the implementation depicted in Listing 1
is a compact representation of an RPC protocol, the imple
mentation Still depends heavily on an accompanying pro
gramming language (in this case, C). This dependency
prevents designers from creating a new Linda RPC operator
for arbitrary applications of RPC. Therefore, every time a
designer uses Linda for RPC, they must copy the Source
code for RPC or make a C-macro. This causes tight cou
pling, because the client must know the name of the RPC
Server. If the Server name is passed in as a parameter,
flexibility increases; however, this requires a binding phase
in which the name is obtained and applied outside of the
Linda framework.

0025 The need remains for a design and programming
methodology that allows implementation of communication
protocols without tight coupling between the protocol imple
mentation and the Software elements with which the proto
col implementation works.
0026. A tuple space can require large quantities of
dynamically allocated memory. However, most Systems, and
especially embedded Systems, must operate within predict
able and Sometimes Small memory requirements. Tuple
Space Systems are usually not Suitable for coordination in
Systems that must operate within Small predictable memory
requirements because once a tuple has been generated, it
remains in tuple Space until it is explicitly removed or the
Software element that created it terminates. Maintaining a
global tuple Space can be very expensive in terms of overall
System performance. Although much work has gone into
improving the efficiency of tuple-Space languages, System
performance remains worse with tuple-Space languages than
With message-passing techniques.

0027. The need remains for a design and programming
methodology that can effectively coordinate between Soft
ware elements while respecting performance and predictable
memory requirements.

0028 B. Fixed Coordination Models
0029. In tuple-space languages, much of the complexity
of coordination remains entangled with the functionality of
computational elements. An encapsulating coordination for
malism decouples intercomponent interactions from the
computational elements.

0030 This type of formalism can be provided by fixed
coordination models in which the coordination Style is
embodied in an entity and Separated from computational

US 2003/0005407 A1

concerns. Synchronous coordination models coordinate
activity through relative Schedules. Typically, these
approaches require the coordination protocol to be manually
constructed in advance. In addition, computational elements
must be tailored to the coordination Style used for a par
ticular System (which may require intrusive modification of
the Software elements).
0031. The need remains for a design and programming
methodology that allows for coordination between software
elements without tailoring the Software elements to the
Specific coordination Style used in a particular Software
System.

Summary of the Invention
0.032 The present invention provides a coordination
centric design and programming methodology to facilitate
both the design and the debugging of Software Systems. This
approach includes an encapsulating formalism for coordi
nation. In accordance with the present invention, coordina
tion protocols are embodied in coordinators. Coordinators
Serve to expose the workings of a coordination protocol and
organize relevant System information in a meaningful man
ner. This facilitates coordination-based debugging by letting
designers focus on coordination as an entity Separate from
computation and by Showing designers what is happening
internally within a Software System.
0033. In accordance with the present invention, func
tional blocks, or Software elements, are represented as
components. Components contain modes that define behav
iors, actions that perform these behaviors, and coordination
interfaces that connect components to other components
through coordinators. Packaging Software elements in this
fashion provides more modularity for the components than
prior art design and programming methodologies. Coordi
nation interfaces make both the data and control aspects of
intercomponent interactions explicit, So that the control and
data interactions can be adapted to a variety of interaction
protocols without needing internal modifications to the
components. The Same coordination interface type can be
used by a variety of components. Any component in a
Software System can be replaced by a new component
having completely different functionality without any other
components within the System needing to know that a
change has been made, as long as the new component has a
coordination interface appropriate for the coordinator in the
Software System.
0034. Both components and coordinators can be com
posed hierarchically to form higher-order functionality and
interaction protocols. This facilitates design complexity
management. All pieces of the coordination-centric design
methodology work together to provide both the software
designers and the debugging tools with information about
the software systems behavior and the behavior of the
Software System's components. This information Serves to
Simplify Software System design and Software System debug
ging. The coordination interfaces expose control State and
message traffic to Scrutiny by Software designers and debug
ging tools. Meanwhile, coordinators expose interaction pro
tocols to Scrutiny by Software designers and debugging
tools.

0035) In accordance with the present invention, the coor
dination-centric design methodology treats design and

Jan. 2, 2003

debugging as interrelated issues and, as a result, makes
complex embedded Software more debuggable and more
easily designable. Debugging in fact dominates embedded
System Software development time, and the debugging
approach of the present invention facilitates the debugging
of complex embedded Systems and makes other aspects of
the design flow, Such as managing design complexity and
reusing Software, easier than in prior art design and pro
gramming methodologies.

0036) Additional aspects and advantages of this invention
will be apparent from the following detailed description of
preferred embodiments thereof, which proceeds with refer
ence to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0037 FIG. 1 is a component in accordance with the
present invention.
0038 FIG. 2 is the component of FIG. 1 further having
a set of coordination interfaces.

0039 FIG. 3A is a prior art round-robin resource allo
cation protocol with a centralized controller.
0040 FIG. 3B is a prior art round-robin resource allo
cation protocol implementing a token passing Scheme.
0041 FIG. 4A is a detailed view of a component and a
coordination interface connected to the component for use in
round-robin resource allocation in accordance with the
present invention.
0042 FIG. 4B depicts a round-robin coordinator in
accordance with the present invention.
0043 FIG. 5 shows several typical ports for use in a
coordination interface in accordance with the present inven
tion.

0044 FIG. 6A is a unidirectional data transfer coordina
tor in accordance with the present invention.
004.5 FIG. 6B is a bidirectional data transfer coordinator
in accordance with the present invention.
0046 FIG. 6C is a state unification coordinator in accor
dance with the present invention.
0047 FIG. 6D is a control state mutex coordinator in
accordance with the present invention.
0048 FIG. 7 is a system for implementing Subsumption
resource allocation having components, a shared resource,
and a SubSumption coordinator.
0049 FIG. 8 is a barrier synchronization coordinator in
accordance with the present invention.
0050 FIG. 9 is a rendezvous coordinator in accordance
with the present invention.
0051 FIG. 10 depicts a dedicated RPC system having a
client, a Server, and a dedicated RPC coordinator coordinat
ing the activities of the client and the Server.
0.052 FIG. 11 is a compound coordinator with both
preemption and round-robin coordination for controlling the
access of a set of components to a shared resource.
0053 FIG. 12A is software system with two data transfer
coordinators, each having constant message consumption

US 2003/0005407 A1

and generation rules and each connected to a separate
data-generating component and connected to the same data
receiving component.

0054 FIG. 12B is the software system of FIG. 12A in
which the two data transfer coordinators have been replaced
with a merged data transfer coordinator.
0.055 FIG. 13 is a system implementing a first come, first
Served resource allocation protocol in accordance with the
present invention.
0056 FIG. 14 is a system implementing a multiclient
RPC coordination protocol formed by combining the first
come, first served protocol of FIG. 13 with the dedicated
RPC coordinator of FIG. 10.

0057 FIG. 15 depicts a large system in which the coor
dination-centric design methodology can be employed hav
ing a wireleSS device interacting with a cellular network.
0.058 FIG.16 shows a top-level view of the behavior and
components for a System for a cell phone.
0059 FIG. 17A is a detailed view of a GUI component
of the cell phone of FIG. 16.
0060 FIG. 17B is a detailed view of a call log compo
nent of the cell phone of FIG. 16.
0061 FIG. 18A is a detailed view of a voice subsystem
component of the cell phone of FIG. 16.
0062 FIG. 18B is a detailed view of a connection
component of the cell phone of FIG. 16.
0063 FIG. 19 depicts the coordination layers between a
wireleSS device and a base Station, and between the base
station and a Switching center, of FIG. 15.
0.064 FIG. 20 depicts a cell phone call management
component, a master Switching center call management
component, and a call management coordinator connecting
the respective call management components.
0065 FIG. 21A is a detailed view of a transport com
ponent of the connection component of FIG. 18B.
0.066 FIG. 21B is a CDMA data modulator of the
transport component of FIG. 18B.
0067 FIG. 22 is a detailed view of a typical TDMA and
a typical CDMA signal for the cell phone of FIG. 16.
0068 FIG. 23A is a LCD touch screen component for a
Web browser GUI for a wireless device.

0069 FIG. 23B is a Web page formatter component for
the Web browser GUI for the wireless device.

0070 FIG. 24A is a completed GUI system for a hand
held Web browser.

0071 FIG. 24B shows the GUI system for the handheld
Web browser combined with the connection subsystem of
FIG. 18B in order to access the cellular network of FIG. 15.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0072 FIG. 1 is an example of a component 100, which
is the basic Software element within the coordination-centric
design framework, in accordance with the present invention.
With reference to FIG. 1, component 100 contains a set of

Jan. 2, 2003

modes 102. Each mode 102 corresponds to a specific behav
ior associated with component 100. Each mode 102 can
either be active or inactive, respectively enabling or dis
abling the behavior corresponding to that mode 102. Modes
102 can make the conditional aspects of the behavior of
component 100 explicit. The behavior of component 100 is
encapsulated in a Set of actions 104, which are discrete,
event-triggered behavioral elements within the coordina
tion-centric design methodology. Component 100 can be
copied and the copies of component 100 can be modified,
providing the code-sharing benefits of inheritance.

0073) Actions 104 are enabled and disabled by modes
102, and hence can be thought of as effectively being
properties of modes 102. An event (not shown) is an
instantaneous condition, Such as a timer tick, a data depar
ture or arrival, or a mode change. Actions 104 can activate
and deactivate modes 102, thereby selecting the future
behavior of component 100. This is similar to actor lan
guages, in which methods are allowed to replace an object's
behavior.

0074. In coordination-centric design, however, all pos
sible behaviors must be identified and encapsulated before
runtime. For example, a designer building a user interface
component for a cell phone might define one mode for
looking up numbers in an address book (in which the user
interface behavior is to display complete address book
entries in formatted text) and another mode for displaying
the status of the phone (in which the user interface behavior
is to graphically display the Signal power and the battery
levels of the phone). The designer must define both the
modes and the actions for the given behaviors well before
the component can be executed.

0075 FIG. 2 is component 100 further including a first
coordination interface 200, a Second coordination interface
202, and a third coordination interface 204. Coordination
centric designs components 100 provide the code-sharing
capability of object-oriented inheritance through copying.
Another aspect of object-oriented inheritance is polymor
phism through shared interfaces. In object-oriented lan
guages, an object's interface is defined by its methods.
Although coordination-centric designs actions 104 are
Similar to methods in object-oriented languages, they do not
define the interface for component 100. Components interact
through explicit and Separate coordination interfaces, in this
figure coordination interfaces 200, 202, and 204. The shape
of coordination interfaces 200, 202, and 204 determines the
ways in which component 100 may be connected within a
Software system. The way coordination interfaces 200, 202,
and 204 are connected to modes 102 and actions 104 within
component 100 determines how the behavior of component
100 can be managed within a system. Systemwide behavior
is managed through coordinators (see FIG. 4B and Subse
quent).

0076 For our approach to be effective, several factors in
the design of Software elements must coincide: packaging,
internal organization, and how elements coordinate their
behavior. Although these are often treated as independent
issues, conflicts among them can exacerbate debugging. We
handle them in a unified framework that Separates the
internal activity from the external relationship of component
100. This lets designers build more modular components and
encourages them to specify distributable versions of coor

US 2003/0005407 A1

dination protocols. Components can be reused in a variety of
contexts, both distributed, and Single processor 1.
0077. 1. Introduction to Coordination
0078. Within this application, coordination refers to the
predetermined ways by which components interact. Con
sider a common coordination activity: resource allocation.
One simple protocol for this is round-robin: participants are
lined up, and the resource is given to each participant in turn.
After the last participant is served, the resource is given back
to the first. There is a resource-Scheduling period during
which each participant gets the resource exactly once,
whether or not it is needed.

007.9 FIG. 3A is prior art round-robin resource alloca
tion protocol with a centralized controller 300, which keeps
track of and distributes the shared resource (not shown) to
each of Software elements 302, 304, 306, 308, and 310 in
turn. With reference to FIG. 3A, controller 300 alone
determines which software element 302, 304,306, 308, or
310 is currently allowed to use the resource and which has
it next. This implementation of a round-robin protocol
permits software elements 302,304,306,308, and 310 to be
modular, because only controller 300 keeps track of the
Software elements. Unfortunately, when this implementation
is implemented on a distributed architecture (not shown),
controller 300 must typically be placed on a single proceSS
ing element (not shown). As a result, all coordination
requests must go through that processing element, which can
cause a communication performance bottleneck. For
example, consider the situation in which Software elements
304 and 306 are implemented on a first processing element
(not shown) and controller 300 is implemented on a second
processing element. Software element 304 releases the
shared resource and must Send a message indicating this to
controller 300. Controller 300 must then send a message to
Software element 306 to inform Software element 306 that it
now has the right to the Shared resource. If the communi
cation channel between the first processing resource and the
Second processing resource is in use or the Second proceSS
ing element is busy, then the shared resource must remain
idle, even though both the current resource holder and the
next resource holder (software elements 304 and 306 respec
tively) are implemented on the first processing element (not
shown). The shared resource must typically remain idle until
communication can take place and controller 300 can
respond. This is an inefficient way to control access to a
shared resource.

0080 FIG. 3B is a prior art round-robin resource allo
cation protocol implementing a token passing Scheme. With
reference to FIG. 3B, this system consists of a shared
resource 311 and a set of Software elements 312, 314, 316,
318, 320, and 322. In this system a logical token 324
Symbolizes the right to access resource 311, i.e., when a
Software element holds token 324, it has the right to acceSS
resource 311. When one of Software elements 312,314,316,
318, 320, or 322 finishes with resource 311, it passes token
324, and with token 324 the access right, to a Successor. This
implementation can be distributed without a centralized
controller, but as shown in FIG. v3B, this is less modular,
because it requires each Software element in the Set to keep
track of a Successor.

0081) Not only must software elements 312, 314, 316,
318,320, and 322 keep track of Successors, but each must

Jan. 2, 2003

implement a potentially complicated and error-prone proto
col for transferring token 324 to its Successor. Bugs can
cause token 324 to be lost or introduce multiple tokens 324.
Since there is no formal connection between the physical
System and complete topology maps (diagrams that show
how each Software element is connected to others within the
System), Some Software elements might erroneously be
Serviced more than once per cycle, while others are com
pletely neglected. However, these bugs can be extremely
difficult to track after the system is completed. The protocol
is entangled with the functionality of each Software element,
and it is difficult to Separate the two for debugging purposes.
Furthermore, if a few of the Software elements are located on
the same machine, performance of the implementation can
be poor. The entangling of computation and coordination
requires intrusive modification to optimize the System.
0082) 2. Coordination-Centric Design's Approach to
Coordination

0083. The coordination-centric design methodology pro
vides an encapsulating formalism for coordination. Compo
nents Such as component 100 interact using coordination
interfaces, Such as first, Second, and third coordination
interfaces 200, 202, and 204, respectively. Coordination
interfaces preserve component modularity while exposing
any parts of a component that participate in coordination.
This technique of connecting components provides poly
morphism in a Similar fashion to Subtyping in object
oriented languages.
0084 FIG. 4A is a detailed view of a component 400 and
a resource access coordination interface 402 connected to
component 400 for use in a round-robin coordination pro
tocol in accordance with the present invention. With refer
ence to FIG. 4A, resource access coordination interface 402
facilitates implementation of a round-robin protocol that is
Similar to the token-passing round-robin protocol described
above. Resource acceSS coordination interface 402 has a
Single bit of control State, called access, which is shown as
an arbitrated control port 404 that indicates whether or not
component 400 is holding a virtual token (not shown).
Component 400 can only use a send message port 406 on
access coordination interface 402 when arbitrated control
port 404 is true. Access coordination interface 402 further
has a receive message port 408.

0085 FIG. 4B show a round-robin coordinator 410 in
accordance with the present invention. With reference to
FIG. 4B, round-robin coordinator 410 has a set of coordi
nator coordination interfaceS 412 for connecting to a set of
components 400. Each component 400 includes a resource
acceSS coordination interface 402. Each coordinator coordi
nation interface 412 has a coordinator arbitrated control port
414, an incoming Send message port 416 and an outgoing
receive message port 418. Coordinator coordination inter
face 412 in complimentary to resource acceSS coordination
interface 402, and Vice versa, because the ports on the two
interfaces are compatible and can function to transfer infor
mation between the two interfaces.

0086 The round-robin protocol requires round-robin
coordinator 410 to manage the coordination topology.
Round-robin coordinator 410 is an instance of more general
abstractions called coordination classes, in which coordina
tion classes define Specific coordination protocols and a
coordinator is a specific implementation of the coordination

US 2003/0005407 A1

class. Round-robin coordinator 410 contains all information
about how components 400 are supposed to coordinate.
Although round-robin coordinator 410 can have a distrib
uted implementation, no component 400 is required to keep
references to any other component 400 (unlike the distrib
uted round-robin implementation shown in FIG. 3B). All
required references are maintained by round-robin coordi
nator 410 itself, and components 400 do not even need to
know that they are coordinating through round-robin.
ReSource access coordination interface 402 can be used with
any coordinator that provides the appropriate complemen
tary interface. A coordinator's design is independent of
whether it is implemented on a distributed platform or on a
monolithic Single processor platform.
0087 3. Coordination Interfaces
0088 Coordination interfaces are used to connect com
ponents to coordinators. They are also the principle key to a
variety of useful runtime debugging techniques. Coordina
tion interfaces Support component modularity by exposing
all parts of the component that participate in the coordina
tion protocol. Ports are elements of coordination interfaces,
as are guarantees and requirements, each of which will be
described in turn.

0089 A. Ports
0090. A port is a primitive connection point for intercon
necting components. Each port is a five-tuple (T, A, Q, D;
R) in which:

0091 Trepresents the data type of the port. T can be
one of int, boolean, char, byte, float, double, or
cluster, in which cluster represents a cluster of data
types (e.g., an int followed by a float followed by two
bytes).

0092 A is a boolean value that is true if the port is
arbitrated and false otherwise.

0093 Q is an integer greater than Zero that repre
Sents logical queue depth for a port.

0094) D is one of in, out, inout, or custom and
represents the direction data flows with respect to the
port.

0095 R is one of discard-on-read, discard-on-trans
fer, or hold and represents the policy for data
removal on the port. Discard-on-read indicates that
data is removed immediately after it is read (and any
data in the logical queue are shifted), discard-on
transfer indicates that data is removed from a port
immediately after being transferred to another port,
and hold indicates that data should be held until it is
overwritten by another value. Hold is subject to
arbitration.

0.096 Custom directionality allows designers to specify
ports that accept or generate only certain specific values. For
example, a designer may want a port that allows other
components to activate, but not deactivate, a mode. While
many combinations of port attributes are possible, we nor
mally encounter only a few. The three most common are
message ports (output or input), State ports (output, input, or
both; Sometimes arbitrated), and control ports (a type of State
port). FIG. 5 illustrates the visual syntax used for several
common ports throughout this application. With reference to

Jan. 2, 2003

FIG. 5, this figure depicts an exported state port 502, an
imported State port 504, an arbitrated state port 506, an
output data port 508, and an input data port 510.
0097. 1. Message Ports
0098 Message ports (output and input) data ports 508
and 510 respectively) are either send (T; false; 1; out;
discard-on-transfer) or receive (T, false; Q; in; discard-on
read). Their function is to transfer data between components.
Data passed to a Send port is transferred immediately to the
corresponding receive port, thus it cannot be retrieved from
the Send port later. Receive data ports can have queues of
various depths. Data arrivals on these ports are frequently
used to trigger and pass data parameters into actions. Values
remain on receive ports until they are read.
0099 2. State Ports
0100 State ports take one of three forms:

0101 1. (T; false; 1; out; hold)
0102) 2. (T; false; 1; in; hold)
0103) 3. (T; true; 1; inout; hold)

0104 State ports, such as exported state port 502,
imported State port 504, and arbitrated state port 506, hold
persistent values, and the value assigned to a State port may
be arbitrated. This means that, unlike message ports, values
remain on the State ports until changed. When multiple
Software elements simultaneously attempt to alter the value
of arbitrated State port 506, the final value is determined
based on arbitration rules provided by the designer through
an arbitration coordinator (not shown).
0105 State ports transfer variable values between scopes,
as explained below. In coordination-centric design, all vari
ables referenced by a component are local to that compo
nent, and these variables must be explicitly declared in the
component's Scope. Variables can, however, be bound to
State ports that are connected to other components. In this
way a variable value can be transferred between components
and the variable value achieves the system-level effect of a
multivariable.

01.06 3. Control Ports
0107 Control ports are similar to state ports, but a control
port is limited to having the boolean data type. Control ports
are typically bound to modes. Actions interact with a control
port indirectly, by Setting and responding to the values of a
mode that is bound to the control port.
0.108 For example, arbitrated control port 404 shown in
FIG. 4A is a control port that can be bound to a mode (not
shown) containing all actions that send data on a shared
channel. When arbitrated control port 404 is false, the mode
is inactive, disabling all actions that Send data on the
channel.

0109 B. Guarantees
0110 Guarantees are formal declarations of invariant
properties of a coordination interface. There can be several
types of guarantees, Such as timing guarantees between
events, guarantees between control State (e.g., State A and
State B are guaranteed to be mutually exclusive), etc.
Although a coordination interface's guarantees reflect prop
erties of the component to which the coordination interface

US 2003/0005407 A1

is connected, the guarantees are not physically bound to any
internal portions of the component. Guarantees can often be
certified through Static analysis of the Software System.
Guarantees are meant to cache various properties that are
inherent in a component or a coordinator in order to Simplify
Static analysis of the Software System.
0111. A guarantee is a promise provided by a coordina
tion interface. The guarantee takes the form of a predicate
promised to be invariant. In principle, guarantees can
include any type of predicate (e.g., XZ3, in which X is an
integer valued State port, or ta-te-2 ms). Throughout the
remainder of this application, guarantees will be only event
ordering guarantees (guarantees that specify acceptable
orders of events) or control-relationship guarantees (guar
antees pertaining to acceptable relative component behav
iors).
0112 C. Requirements
0113. A requirement is a formal declaration of the prop
erties necessary for correct Software System functionality.
An example of a requirement is a required response time for
a coordination interface-the number of messages that must
have arrived at the coordination interface before the coor
dination interface can transmit, or fire, the messages. When
two coordination interfaces are bound together, the require
ments of the first coordination interface must be conserva
tively matched by the guarantees of the Second coordination
interface (e.g., x<7 as a guarantee conservatively matches
X-8 as a requirement). As with guarantees, requirements are
not physically bound to anything within the component
itself. Guarantees can often be verified to be sufficient for the
correct operation of the Software System in which the
component is used. In Sum, a requirement is a predicate on
a first coordination interface that must be conservatively
matched with a guarantee on a complementary Second
coordination interface.

0114 D. Conclusion Regarding Coordination Interfaces
0115) A coordination interface is a four-tuple (P, G; R; I)
in which:

0116 P is a set of named ports.
0.117) G is a set of named guarantees provided by the
interface.

0118 R is a set of named requirements that must be
matched by guarantees of connected interfaces.

0119)
0120 AS this definition shows, coordination interfaces
are recursive. Coordinator coordination interface 412,
shown in FIG. 4B, used for round-robin coordination is
called AccessInterface and is defined in Table 1.

I is a set of named coordination interfaces.

Constituent Value

ports P = {access: StatePort, s:OutMessagePort, rinMessagePort
guarantees G = { access > s.gen }
requirements R = ()
interfaces I =)

0121 Related to coordination interfaces is a recursive
coordination interface descriptor, which is a five-tuple (P,
G., R., I, N) in which:

Jan. 2, 2003

0.122 P, is a set of abstract ports, which are ports that
may be incomplete in their attributes (i.e., they do not
yet have a datatype).

0123 G is a set of abstract guarantees, which are
guarantees between abstract ports.

0124 R is a set of abstract requirements, which are
requirements between abstract ports.

0.125. It is a set of coordination interface descriptors.
0126 N is an element of QxQ, where Q={o}U Z+and
Z+denotes the set of positive integers. Nindicates the
number or range of numbers of permissible interfaces
(e.g., 2, 2, 30, etc.).

0127. Allowing coordination interfaces to contain other
coordination interfaces is a powerful feature. It lets design
erS use common coordination interfaces as complex ports
within other coordination interfaces. For example, the basic
message ports described above are nonblocking, but we can
build a blocking coordination interface (not shown) that
Serves as a blocking port by combining a wait State port with
a meSSage port.

0128 4. Coordinators
0129. A coordinator provides the concrete representa
tions of intercomponent aspects of a coordination protocol.
Coordinators allow a variety of Static analysis debugging
methodologies for Software Systems created with the coor
dination-centric design methodology. A coordinator contains
a set of coordination interfaces and defines the relationships
the coordination interfaces. The coordination interfaces
complement the component coordination interfaces pro
Vided by components operating within the protocol.
Through matched interface pairs, coordinators effectively
describe connections between message ports, correlations
between control States, and transactions between compo
nentS.

0.130 For example, round-robin coordinator 410, shown
in FIG. 4B, must ensure that only one component 400 has
its component control port 404's value, or its access bit, Set
to true. Round-robin coordinator 410 must further ensure
that the correct component 400 has its component control
port 404 set to true for the chosen sequence. This section
presents formal definitions of the parts that comprise coor
dinators: modes, actions, bindings, action triples, and con
straints. These definitions culminate in a formal definition of
coordinators.

0131) A. Modes
0.132. A mode is a boolean value that can be used as a
guard on an action. In a coordinator, the mode is most often
bound to a control port in a coordination interface for the
coordinator. For example, in round-robin coordinator 410,
the modes of concern are bound to a coordinator control port
414 of each coordinator coordination interface 412.

0133 B. Actions
0.134. An action is a primitive behavioral element that
Ca

0135) Respond to events.
0.136 Generate events.
0137) Change modes.

0.138 Actions can range in complexity from simple
operations up to complicated pieces of Source code. An

US 2003/0005407 A1

action in a coordinator is called a transparent action because
the effects of the action can be precomputed and the internals
of the action are completely exposed to the coordination
centric design tools.
013:9 C. Bindings
0140 Bindings connect input ports to output ports, con
trol ports to modes, State ports to variables, and message
ports to events. Bindings are transparent and passive. Bind
ings are simply conduits for event notification and data
transfer. When used for event notification, bindings are
called triggers.

0141. D. Action Triples
0142. To be executed, an action must be enabled by a
mode and triggered by an event. The combination of a mode,
trigger, and action is referred to as an action triple, which is
a triple (m; t, a) in which:

0.143 m is a mode.
0144 t is a trigger.

0145 a is an action.
0146 The trigger is a reference to an event type, but it can
be used to pass data into the action. Action triples are
written: mode: trigger: action

0147 A coordinator's actions are usually either pure
control, in which both the trigger and action performed
affect only control state, or pure data, in which both the
trigger and action performed occur in the data domain. In the
case of round-robin coordinator 410, the following set of
actions is responsible for maintaining the appropriate State:

0148 access; :-access; +accessionedn
014.9 The symbol “+” signifies a mode's activation edge

(i.e., the event associated with the mode becoming true), and
the symbol “-” signifies its deactivation edge. When any
coordinator coordination interface 412 deactivates its arbi
trated control port 404's, access bit, the access bit of the next
coordinator coordination interface 412 is automatically acti
Vated.

0150 E. Constraints
0151. In this dissertation, constraints are boolean rela
tionships between control ports. They take the form:

0152 Condition =>Effect
0153. This essentially means that the Condition (on the
left side of the arrow) being true implies that Effect (on the
right side of the arrow) is also true. In other words, if
Condition is true, then Effect should also be true.

0154) A constraint differs from a guarantee in that the
guarantee is limited to communicating in-variant relation
ships between components without providing a way to
enforce the in-variant relationship. The constraint, on the
other hand, is a Set of instructions to the runtime System
dealing with how to enforce certain relationships between
components. When a constraint is violated, two corrective
actions are available to the System: (1) modify the values on
the left-hand Side to make the left-hand expression evaluate
as false (an effect termed backpressure in 27) or (2) alter

Jan. 2, 2003

the right-hand side to make it true. We refer to these
techniques as LHM (left-hand modify) and RHM (right
hand modify). For example, given the constraint X->y and
the value x^ y, with RHM semantics the runtime system
must respond by disabling y or Setting y to false. Thus the
value of y is set to true.
0155 The decision of whether to use LHM, to use RHM,
or even to Suspend enforcement of a constraint in certain
Situations can dramatically affect the efficiency and predict
ability of the Software System. Coordination-centric design
does not attempt to Solve Simultaneous constraints at runt
ime. Rather, runtime algorithms use local ordered constraint
Solutions. This, however, can result in Some constraints
being violated and is discussed further below.
0156 Round-robin coordinator 410 has a set of safety
constraints to ensure that there is never more than one token
in the System:

(O157 access,z,900W inaccess,
0158. The above equation translates roughly as access
implies not access; for the set of all access, where j is not
equal to i. Even this Simple constraint System can cause
problems with local resolution semantics (as are LHM and
RHM). If the runtime system attempted to fix all constraints
Simultaneously, all access modes would be shut down. If
they were fixed one at a time, however, any duplicate tokens
would be erased on the first pass, Satisfying all other
constraints and leaving a single token in the System.
0159. Since high-level protocols can be built from com
binations of lower-level protocols, coordinators can be hier
archically composed. A coordinator is a six-tuple (I; M, B;
N; A; X) in which:

0160
0161) M is a set of modes.

I is a set of coordination interfaces.

0162 B is a set of bindings between interface ele
ments (e.g., control ports and message ports) and
internal elements (e.g., modes and triggers).

0163 N is a set of constraints between interface
elements.

0.164 A is a set of action triples for the coordinator.

0.165 X is a set of Subcoordinators.

0166 FIGS. 6A, 6B, 6C, and 6D show a few simple
coordinators highlighting the bindings and constraints of the
respective coordinators. With reference to FIG. 6A, a uni
directional data transfer coordinator 600 transferS data in
one direction between two components (not shown) by
connecting incoming receive message port 408 to outgoing
receive message port 418 with a binding 602. With reference
to FIG. 6B, bidirectional data transfer coordinator 604
transferS data back and forth between two components (not
shown) by connecting incoming receive message port 408 to
outgoing receive message port 418 with binding 602 and
connecting Send message port 406 to incoming Send mes
sage port 416 with a second binding 602. Unidirectional data
transfer coordinator 600 and bidirectional data transfer coor
dinator 604 Simply move data from one message port to
another. Thus each coordinator consists of bindings between
corresponding ports on Separate coordination interfaces.

US 2003/0005407 A1

0167. With reference to FIG. 6C, state unification coor
dinator 606 ensures that a state port a 608 and a state port b
610 are always set to the same value. State unification
coordinator 606 connects state port a 608 to state port b 610
with binding 602. With reference to FIG. 6D, control state
mutex coordinator 612 has a first constraint 618 and a
Second constraint 620 as follows:

0168 (1)c=> d and
0169 (2)d=>-c.

0170 Constraints 618 and 620 can be restated as follows:
0171 (1) A state port c 614 having a true value
implies that a State port d 616 has a false value, and

0172 (2) State port d 616 having a true value
implies that State port c 614 has a false value.

0173 A coordinator has two types of coordination inter
faces: up interfaces that connect the coordinator to a Second
coordinator, which is at a higher level of design hierarchy
and down interfaces that connect the coordinator either to a
component or to a third coordinator, which is at a lower level
of design hierarchy. Down interfaces have names preceded
with . Round-robin coordinator 410 has six down coor
dination interfaces (previously referred to as coordinator
coordination interface 412), with constraints that make the
turning off of any coordinator control port 414 (also referred
to as access control port) turn on the coordinator control port
414 of the next coordinator coordination interface 412 in
line. Table 2 presents all constituents of the round-robin
coordinator.

Constituent Value

coordination interfaces I = AccessInterface
modes M = access
bindings B = Wisis (~AccessInterface access, access) U
constraints N = W1-1-(Wassocip access, alaccess;)
actions A = Weiss access;-access: +access mod 6
Subcoordinators X = ()

0.174. This tuple describes an implementation of a round
robin coordination protocol for a particular System with Six
components, as shown in round-robin coordinator 410. We
use a coordination class to describe a general coordination
protocol that may not have a fixed number of coordinator
coordination interfaces. The coordination class is a six-tuple
(Ic; Mc; Bc, Nc; Ac; Xc) in which:

0.175 Ic is a set of coordination interface descriptors
in which each descriptor provides a type of coordi
nation interface and Specifies the number of Such
interfaces allowed within the coordination class.

0176 Mc is a set of abstract modes that supplies
appropriate modes when a coordination class is
instantiated with a fixed number of coordinator coor
dination interfaces.

0177. Bc is a set of abstract bindings that forms
appropriate bindings between elements when the
coordination class is instantiated.

0.178 Nc is a set of abstract constraints that ensures
appropriate constraints between coordination inter
face elements are in place as Specified at instantia
tion.

Jan. 2, 2003

0179 Ac is a set of abstract action triples for the
coordinator.

0180 Xc is a set of coordination classes (hierarchy).
0181. While a coordinator describes coordination proto
col for a particular application, it requires many aspects,
Such as the number of coordination interfaces and datatypes,
to be fixed. Coordination classes describe protocols acroSS
many applications. The use of the coordination interface
descriptors instead of coordination interfaces lets coordina
tion classes keep the number of interfaces and datatypes
undetermined until a particular coordinator is instantiated.
For example, a round-robin coordinator contains a fixed
number of coordinator coordination interfaces with Specific
bindings and constraints between the message and State
ports on the fixed number of coordinator coordination inter
faces. A round-robin coordination class contains descriptors
for the coordinator coordination interface type, without
Stating how many coordinator coordination interfaces, and
instructions for building bindings and constraints between
ports on the coordinator coordination interfaces when a
particular round-robin coordinator is created.
0182 5. Components
0183) A component is a six-tuple (I; A; M; V; S; X) in
which:

0.184 I is a set of coordination interfaces.
0185. A is a set of action triples.
0186 M is a set of modes.
0187 V is a set of typed variables.
0188 S is a set of Subcomponents.
0189 X is a set of coordinators used to connect the
Subcomponents to each other and to the coordination
interfaces.

0.190 Actions within a coordinator are fairly regular, and
hence a large number of actions can be described with a few
Simple expressions. However, actions within a component
are frequently diverse and can require distinct definitions for
each individual action. Typically a component's action
triples are represented with a table that has three columns:
one for the mode, one for the trigger, and one for the action
code. Table 3 shows Some example actions from a compo
nent that can use round-robin coordination.

Mode Trigger Action

aCCCSS tick AccessInterface.s.send ("Test message');
-aCCCSS

access tick waitCount ++:

0191) A component resembles a coordinator in several
ways (for example, the modes and coordination interfaces in
each are virtually the same). Components can have internal
coordinators, and because of the internal coordinators, com
ponents do not always require either bindings or constraints.
In the following SubSections, various aspects of components
are described in greater detail. Theses aspects of components
include variable Scope, action transparency, and execution
Semantics for Systems of actions.

US 2003/0005407 A1

0192 A. Variable Scope
0193 To enhance a component's modularity, all variables
accessed by an action within the component are either local
to the action, local to the immediate parent component of the
action, or accessed by the immediate parent component of
the action via State ports in one of the parent component's
coordination interfaces. For a component's variables to be
available to a hierarchical child component, they must be
exported by the component and then imported by the child
of the component.
0194 B. Action Transparency
0.195 An action within a component can be either a
transparent action or an opaque action. Transparent and
opaque actions each have different invocation Semantics.
The internal properties, i.e. control Structures, variable,
changes in State, operators, etc., of transparent actions are
Visible to all coordination-centric design tools. The design
tools can Separate, observe, and analyze all the internal
properties of opaque actions. Opaque actions are Source
code. Opaque actions must be executed directly, and looking
at the internal properties of opaque actions can be accom
plished only through traditional, Source-level debugging
techniques. An opaque action must explicitly declare any
mode changes and coordination interfaces that the opaque
action may directly affect.

0196) C. Action Execution
0.197 An action is triggered by an event, such as data
arriving or departing a message port, or changes in value
being applied to a State port. An action can change the value
of a State port, generate an event, and provide a way for the
Software system to interact with low-level device drivers.
Since actions typically produce events, a single trigger can
be propagated through a Sequence of actions.

0198 6. Protocols Implemented with Coordination
Classes

0199. In this section, we describe several coordinators
that individually implement Some common protocols: Sub
Sumption, barrier Synchronization, rendezvous, and dedi
cated RPC.

0200 A. Subsumption Protocol
0201 A subsumption protocol is a priority-based, pre
emptive resource allocation protocol commonly used in
building Small, autonomous robots, in which the shared
resource is the robot itself.

0202 FIG. 7 shows a set of coordination interfaces and
a coordinator for implementing the SubSumption protocol.
With reference to FIG. 7, a subsumption coordinator 700
has a set of SubSumption coordinator coordination interfaces
702, which have a Subsume arbitrated coordinator control
port 704 and an incoming subsume message port 706. Each
subsume component 708 has a subsume component coordi
nation interface 710. Subsume component coordination
interface 710 has a subsume arbitrated component control
port 712 and an outgoing SubSume message port 714.
Subsumption coordinator 700 and each subsume component
708 are connected by their respective coordination inter
faces, 702 and 710. Each subsumption coordinator coordi
nation interface 702 in Subsumption coordinator 700 is
associated with a priority. Each subsume component 708 has

Jan. 2, 2003

a behavior that can be applied to a robot (not shown). At any
time, any SubSume component 708 can attempt to assert its
behavior on the robot. The asserted behavior coming from
the subsume component 708 connected to the Subsumption
coordinator coordination interface 702 with the highest
priority is the asserted behavior that will actually be per
formed by the robot. Subsume components 708 need not
know anything about other components in the System. In
fact, each subsume component 708 is designed to perform
independently of whether their asserted behavior is per
formed or ignored.
0203 Subsumption coordinator 700 further has a slave
coordinator coordination interface 716, which has an out
going Slave message port 718. Outgoing Slave message port
718 is connected to an incoming slave message port 720.
Incoming Slave message port 720 is part of a Slave coordi
nation interface 722, which is connected to a slave 730.
When a subsume component 708 asserts a behavior and that
component has the highest priority, SubSumption coordinator
700 will control slave 730 (which typically controls the
robot) based on the asserted behavior.
0204. The following constraint describes the basis of the
subsumption coordinator 700's behavior:

p-l
Subsume => A - Subsume

i=l

0205 This means that if any subsume component 708 has
a Subsume arbitrated component control port 712 that has a
value of true, then all lower-priority Subsume arbitrated
component control ports 712 are set to false. An important
difference between round-robin and subsumption is that in
round-robin, the resource access right is transferred only
when Surrendered. Therefore, round-robin coordination has
cooperative release Semantics. However, in SubSumption
coordination, a subsume component 708 tries to obtain the
resource whenever it needs to and Succeeds only when it has
higher priority than any other subsume component 708 that
needs the resource at the same time. A lower-priority Sub
Sume component 708 already using the resource must Sur
render the resource whenever a higher-priority Subsume
component 708 tries to access the resource. Subsumption
coordination uses preemptive release Semantics, whereby
each subsume component 708 must always be prepared to
relinquish the resource.
0206 Table 4 presents the complete tuple for the Sub
Sumption coordinator.

Constituent Value

coordination interfaces I = (Subsume.) U (Output)
modes M = subsume
bindings B = Wi-i- (Subsume subsume, subsume)U
constraints N = Weisn (Weisi Subsume, Pllsubsume;)
actions A =)
Subcoordinators X =)

0207 B. Barrier Synchronization Protocol
0208. Other simple types of coordination that compo
nents might engage in enforce Synchronization of activities.

US 2003/0005407 A1

An example is barrier Synchronization, in which each com
ponent reaches a Synchronization point independently and
waits. FIG. 8 depicts a barrier synchronization coordinator
800. With reference to FIG. 8, barrier synchronization
coordinator 800 has a set of barrier synchronization coor
dination interfaces 802, each of which has a coordinator
arbitrated state port 804, named wait. Coordinator arbitrated
state port 804 is connected to a component arbitrated State
port 806, which is part of a component coordination inter
face 808. Component coordination interface 808 is con
nected to a component 810. When all components 810 reach
their respective Synchronization points, they are all released
from waiting. The actions for a barrier Synchronization
coordinator with n interfaces are:

A waii; : : Wo-j-, -waiti
Osian

0209. In other words, when all wait modes (not shown)
become active, each one is released. The blank between the
two colons indicates that the trigger event is the guard
condition becoming true.

0210 C. Rendezvous Protocol
0211) A resource allocation protocol similar to barrier
synchronization is called rendezvous. FIG. 9 depicts a
rendezvous coordinator 900 in accordance with the present
invention. With reference to FIG. 9, rendezvous coordinator
900 has a rendezvous coordination interface 902, which has
a rendezvous arbitrated State port 904. A set of rendezvous
components 906, each of which may perform different
functions or have vastly different actions and modes, has a
rendezvous component coordination interface 908, which
includes a component arbitrated state port 910. Rendezvous
components 906 connect to rendezvous coordinator 900
through their respective coordination interfaces, 908 and
902. Rendezvous coordinator 900 further has a rendezvous
resource coordination interface 912, which has a rendezvous
resource arbitrated State port 914, also called available. A
resource 916 has a resource coordination interface 918,
which has a resource arbitrated state port 920. Resource 916
is connected to rendezvous coordinator 900 by their comple
mentary coordination interfaces, 918 and 912 respectively.

0212. With rendezvous-style coordination, there are two
types of participants: resource 916 and Several resource
users, here rendezvous components 916. When resource 916
is available, it activates its resource arbitrated state port 920,
also referred to as its available control port. If there are any
waiting rendezvous components 916, one will be matched
with the resource; both participants are then released. This
differs from subsumption and round-robin in that resource
916 plays an active role in the protocol by activating its
available control port 920.

0213) The actions for rendezvous coordinator 900 are:

0214) available, wait. : :-available, -wait,
0215. This could also be accompanied by other modes
that indicate the status after the rendezvous. With rendez
Vous coordination, it is important that only one component
at a time be released from wait mode.

Jan. 2, 2003

0216 D. Dedicated RPC Protocol
0217. A coordination class that differs from those
described above is dedicated RPC. FIG. 10 depicts a dedi
cated RPC system. With reference to FIG. 10, a dedicated
RPC coordinator 1000 has an RPC server coordination
interface 1002, which includes an RPC server imported State
port 1004, an RPC server output message port 1006, and an
RPC server input message port 1008. Dedicated RPC coor
dinator 1000 is connected to a server 1010. Server 1010 has
a server coordination interface 1012, which has a server
exported state port 1014, a server input data port 1016, and
a server output data port 1018. Dedicated RPC coordinator
1000 is connected to server 1010 through their complemen
tary coordination interfaces, 1002 and 1012 respectively.
Dedicated RPC coordinator 1000 further has an RPC client
coordination interface 1020, which includes an RPC client
imported State port 1022, an RPC client input message port
1024, and an RPC client output message port 1026. Dedi
cated RPC coordinator 1000 is connected to a client 1028 by
connecting RPC client coordination interface 1020 to a
complementary client coordination interface 1030. Client
coordination interface 1030 has a client exported State port
1032, a client output message port 1034, and a client input
message port 1036.
0218. The dedicated RPC protocol has a client/server
protocol in which server 1010 is dedicated to a single client,
in this case client 1028. Unlike the resource allocation
protocol examples, the temporal behavior of this protocol is
the most important factor in defining it. The following
transaction listing describes this temporal behavior:
0219 Client 1028 enters blocked mode by changing the
value stored at client exported state port 1032 to true.
0220 Client 1028 transmits an argument data message to
server 1010 via client output message port 1034.
0221) Server 1010 receives the argument (labeled “a”)
data message via Server input data port 1016 and enters
Serving mode by changing the value Stored in Server
exported state port 1014 to true.
0222 Server 1010 computes return value.
0223 Server 1010 transmits a return (labeled “r”) mes
sage to client 1020 via server output data port 1018 and exits
Serving mode by changing the value Stored in Server
exported state port 1014 to false.
0224 Client 1028 receives the return data message via
client input message port 1036 and exits blocked mode by
changing the value Stored at client exported State port 1032
to false.

0225. This can be presented more concisely with an
expression describing causal relationships:

TRPC = + client.blocked - client.transmits ->

+server.Serving - Server..transmits ->

(-server.Serving || client.receives) - - client.blocked

0226. The transactions above describe what is supposed
to happen. Other properties of this protocol must be
described with temporal logic predicates.

US 2003/0005407 A1

0227
0228
0229)

0230. The r in server.r.output refers to the server output
data port 1018, also labeled as the revent port on the server,
and the a in Serving.a.input refers to Server input data port
1016, also labeled as the a port on the server (see FIG. 10).
0231. Together, these predicates indicate that (1) it is an
error for server 1010 to be in serving mode if client 1028 is
not blocked; (2) after server 1010 enters serving mode, a
response message is sent or else an error occurs; and (3)
server 1010 receiving a message means that server 1010
must enter Serving mode. Relationships between control
State and data paths must also be considered, Such as:

0232 (client.a =>client.blocked)
0233. In other words, client 1028 must be in blocked
mode whenever it sends an argument message.

Server. Serving =>client.blocked
Server. Serving =>F(server.r.output)
Server.a.input =>F(server. Serving)

0234. The first predicate takes the same form as a con
straint; however, since dedicated RPC coordinator 1000 only
imports the client:blocked and Server:Serving modes (i.e.,
through RPC client imported State port 1022 and RPC server
imported state port 1004 respectively), dedicated RPC coor
dinator 1000 is not allowed to alter these values to comply.
In fact, none of these predicates is explicitly enforced by a
runtime System. However, the last two can be used as
requirements and guarantees for interface type-checking.
0235 7. System-Level Execution
0236 Coordination-centric design methodology lets sys
tem Specifications be executed directly, according to the
Semantics described above. When components and coordi
nators are composed into higher-order Structures, however,
it becomes essential to consider hazards that can affect
System behavior. Examples include conflicting constraints,
in which local resolution Semantics may either leave the
System in an inconsistent State or make it cycle forever, and
conflicting actions that undo one another's behavior. In the
remainder of this Section, the effect of composition issueS on
System-level executions is explained.
0237 A. System Control Configurations
0238 A configuration is the combined control state of a
System-basically, the Set of active modes at a point in time.
In other words, a configuration in coordination-centric
design is a bit vector containing one bit for each mode in the
System. The bit representing a control State is true when the
control State is active and false when the control State is
inactive. Configurations representing the complete System
control State facilitate reasoning on System properties and
enable Several forms of Static analysis of System behavior.
0239 B. Action-Trigger Propagation
0240 Triggers are formal parameters for events. As men
tioned earlier, there are two types of triggers: (1) control
triggers, invoked by control events Such as mode change
requests, and (2) data flow triggers, invoked by data events
Such as message arrivals or departures. Components and
coordinators can both request mode changes (on the modes
visible to them) and generate new messages (on the message
ports visible to them). Using actions, these events can be
propagated through the components and coordinators in the

Jan. 2, 2003

System, causing a cascade of data transmissions and mode
change requests, Some of which can cancel other requests.
When the requests, and Secondary requests implied by them,
are all propagated through the System, any requests that have
not been canceled are confirmed and made part of the
System's new configuration.
0241 Triggers can be immediately propagated through
their respective actions or delayed by a Scheduling Step.
Recall that component actions can be either transparent or
opaque. Transparent actions typically propagate their trig
gers immediately, although it is not absolutely necessary that
they do so. Opaque actions typically must always delay
propagation.
0242 1. Immediate Propagation
0243 Some triggers must be immediately propagated
through actions, but only on certain types of transparent
actions. Immediate propagation can often involve Static
precomputation of the effect of changes, which means that
certain actions may never actually be performed. For
example, consider a System with a coordinator that has an
action that activates mode A and a coordinator with an action
that deactivates mode B whenever A is activated. Static
analysis can be used to determine in advance that any event
that activates A will also deactivate B; therefore, this effect
can be executed immediately without actually propagating it
through A.
0244 2. Delayed Propagation
0245 Trigger propagation through opaque actions must
typically be delayed, Since the System cannot look into
opaque actions to precompute their results. Propagation may
be delayed for other reasons, Such as System efficiency. For
example, immediate propagation requires tight Synchroni
Zation among Software components. If functionality is
Spread among a number of architectural components, imme
diate propagation is impractical.
0246 C. A Protocol Implemented with a Compound
Coordinator

0247 Multiple coordinators are typically needed in the
design of a System. The multiple coordinators can be used
together for a single, unified behavior. Unfortunately, one
coordinator may interfere with another's behavior.
0248 FIG. 11 shows a combined coordinator 1100 with
both preemption and round-robin coordination for control
ling access to a resource, as discussed above. With reference
to FIG. 11, components 1102, 1104, 1106, 1108, and 1110
primarily use round-robin coordination, and each includes a
component coordination interface 1112, which has a com
ponent arbitrated control port 1114 and a component output
message port 1116. However, when a preemptor component
1120 needs the resource, preemptor component 1120 is
allowed to grab the resource immediately. Preemptor com
ponent 1120 has a preemptor component coordination inter
face 1122. Preemptor component coordination interface
1122 has a preemptor arbitrated State port 1124, a preemptor
output message port 1126, and a preemptor input message
port 1128.
0249 All component coordination interfaces 1112 and
preemptor component coordination interface 1122 are con
nected to a complementary combined coordinator coordina
tion interface 1130, which has a coordinator arbitrated State

US 2003/0005407 A1

port 1132, a coordinator input message port 1134, and a
coordinator output message port 1136. Combined coordina
tor 1100 is a hierarchical coordinator and internally has a
round-robin coordinator (not shown) and a preemption coor
dinator (not shown). Combined coordinator coordination
interface 1130 is connected to a coordination interface to
round-robin 1138 and a coordination interface to preempt
1140. Coordinator arbitrated State port 1132 is bound to both
a token arbitrated control port 1142, which is part of
coordination interface to round-robin 1138, and to a preempt
arbitrated control port 1144, which is part of coordination
interface to preempt 1140. Coordinator input message port
1134 is bound to an interface to a round-robin output
message port 1146, and coordinator output message port
1136 is bound to an interface to round-robin input message
port 1148.
0250 Thus preemption interferes with the normal round
robin ordering of access to the resource. After a preemption
based access, the resource moves to the component that in
round-robin-ordered acceSS would be the Successor to pre
emptor component 1120. If the resource is preempted too
frequently, Some components may starve.
0251 D. Mixing Control and Data in Coordinators
0252 Since triggers can be control-based, data-based, or
both, and actions can produce both control and data events,
control and dataflow aspects of a System are coupled through
actions. Through combinations of actions, designers can
effectively employ modal data flow, in which relative sched
ules are Switched on and off based on the System configu
ration.

0253) Relative scheduling is a form of coordination.
Recognizing this and understanding how it affects a design
can allow a powerful class of optimizations. Many data
centric Systems (or Subsystems) use conjunctive firing,
which means that a component bufferS messages until a
firing rule is matched. When matching occurs, the compo
nent fires, consuming the messages in its buffer that caused
it to fire and generating a message or messages of its own.
Synchronous data flow systems are those in which all
components have only firing rules with constant message
consumption and generation.
0254 FIG. 12A shows a system in which a component
N11200 is connected to a component N31202 by a data
transfer coordinator 1204 and a component N21206 is
connected to component N31202 by a second data transfer
coordinator 1208. Component N31202 fires when it accu
mulates three messages on a port c 1210 and two messages
on a port d 1212. On firing, component N31202 produces
two messages on a port o 1214. Coordination control State
tracks the logical buffer depth for these components. This is
shown with numbers representing the logical queue depth of
each port in FIG. 12.
0255 FIG. 12B shows the system of FIG. 12A in which
data transfer coordinator 1204 and second data transfer
coordinator 1208 have been merged to form a merged data
transfer coordinator 1216. Merging the coordinators in this
example provides an efficient Static Schedule for component
firing. Merged data transfer coordinator 1216 fires compo
nent N11200 three times and component N21206 twice.
Merged data transfer coordinator 1216 then fires component
N31202 twice (to consume all messages produced by com
ponent N11200 and component N21206).

Jan. 2, 2003

0256 Message rates can vary based on mode. For
example, a component may consume two messages each
time it fires in one mode and four each time it fires in a
Second mode. For a component like this, it is often possible
to merge Schedules on a configuration basis, in which each
configuration has Static consumption and production rates
for all affected components.

0257 E. Coordination Transformations
0258. In specifying complete Systems, designers must
often specify not only the coordination between two objects,
but also the intermediate mechanism they must use to
implement this coordination. While this intermediate
mechanism can be as simple as shared memory, it can also
be another coordinator; hence coordination may be, and
often is, layered. For example, RPC coordination often sits
on top of a TCP/IP stack or on an IrDA stack, in which each
layer coordinates with peer layerS on other processing
elements using unique coordination protocols. Here, each
layer provides certain capabilities to the layer directly above
it, and the upper layer must be implemented in terms of
them.

0259. In many cases, control and communication synthe
sis can be employed to automatically transform user-speci
fied coordination to a Selected Set of Standard protocols.
Designers may have to manually produce transformations
for nonstandard protocols.
0260 F. Dynamic Behavior with Compound Coordina
torS

0261) Even in statically bound systems, components may
need to interact in a fashion that appears dynamic. For
example, RPC-style coordination often has multiple clients
for individual Servers. Here, there is no apparent connection
between client and Server until one is forged for a transac
tion. After the connection is forged, however, the coordina
tion proceeds in the same fashion as dedicated RPC.
0262) Our approach to this is to treat the RPC server as
a shared resource, requiring resource allocation protocols to
control access. However, none of the resource allocation
protocols described thus far would work efficiently under
these circumstances. In the following SubSections, an appro
priate protocol for treating the RPC as a shared resource will
be described and how that protocol should be used as part of
a complete multiclient RPC coordination class-one that
uses the same RPC coordination interfaces described earlier
will be discussed.

0263 1. First Come/First Serve Protocol (FCFS)
0264 FIG. 13 illustrates a first come/first serve (FCFS)
resource allocation protocol, which is a protocol that allo
cates a shared resource to the requester that has waited
longest. With reference to FIG. 13, a FCFS component
interface 1300 for this protocol has a request control port
1302, an access control port 1304 and a component outgoing
message port 1306. A FCFS coordinator 1308 for this
protocol has a set of FCFS interfaces 1310 that are comple
mentary to FCFS component interfaces 1300, having a
FCFS coordinator request control port 1312, a FCFS coor
dinator access port 1314, and a FCFS coordinator input
message port 1316. When a component 1318 needs to access
a resource 1320, it asserts request control port 1302. When
granted access, FCFS coordinator 1308 asserts the appro

US 2003/0005407 A1

priate FCFS coordinator access port 1314, releasing FCFS
coordinator request control port 1312.
0265. To do this, FCFS coordinator 1308 uses a rendez
Vous coordinator and two round-robin coordinators. One
round-robin coordinator maintains a list of empty slots in
which a component may be enqueued, and the other round
robin coordinator maintains a list showing the next compo
nent to be granted access. When an FCFS coordinator
request control port 1312 becomes active, FCFS coordinator
1308 begins a rendezvous access to a binder action. When
activated, this action maps the appropriate component 1318
to a position in the round-robin queues. A separate action
cycles through one of the queues and Selects the next
component to access the Server. AS much as possible, FCFS
coordinator 1308 attempts to grant access to resource 1320
to the earliest component 1318 having requested resource
1320, with concurrent requests determined based on the
order in the rendezvous coordinator of the respective com
ponents 1318.
0266 2. Multiclient RPC
0267 FIG. 14 depicts a multiclient RPC coordinator
1400 formed by combining FCFS coordinator 1308 with
dedicated RPC coordinator 1000. With reference to FIG. 14,
a set of clients 1402 have a set of client coordination
interfaces 1030, as shown in FIG. 10. In addition, multicli
ent RPC coordinator 1400 has a set of RPC client coordi
nation interfaces 1020, as shown in FIG. 10. For each RPC
client coordination interface 1020, RPC client input message
port 1024, of RPC client coordination interface 1020, is
bound to the component outgoing message port 1306 of
FCFS coordinator 1308. Message transfer action 1403
Serves to transfer messages between RPC client input mes
Sage port 1024 and component outgoing message port 1306.
For coordinating the actions of multiple clients 1402, mul
ticlient RPC coordinator 1400 must negotiate accesses to a
server 1404 and keep track of the values returned by server
1404.

0268) F. Monitor Modes and Continuations
0269 Features such as blocking behavior and exceptions
can be implemented in the coordination-centric design meth
odology with the aid of monitor modes. Monitor modes are
modes that eXclude all but a Selected Set of actions called
continuations, which are actions that continue a behavior
Started by another action.
0270) 1. Blocking Behavior
0271. With blocking behavior, one action releases control
while entering a monitor mode, and a continuation resumes
execution after the anticipated response event. Monitor
mode entry must be immediate (at least locally), So that no
unexpected actions can execute before they are blocked by
Such a mode.

0272 Each monitor mode has a list of actions that cannot
be executed when it is entered. The allowed (unlisted)
actions are either irrelevant or are continuations of the action
that caused entry into this mode. There are other conditions,
as well. This mode requires an exception action if forced to
exit. However, this exception action is not executed if the
monitor mode is turned off locally.
0273 When components are distributed over a number of
processing elements, it is not practical to assume complete

Jan. 2, 2003

Synchronization of the control State. In fact, there are a
number of Synchronization options available as detailed in
Chou, P “Control Composition and Synthesis of Distributed
Real-Time Embedded Systems”, Ph.D. dissertation, Univer
sity of Washington, 1998.

0274) 2. Exception Handling

0275 Exception actions are a type of continuation. When
in a monitor mode, exception actions respond to unexpected
events or events that Signal error conditions. For example,
multiclient RPC coordinator 1400 can bind client.blocked
to a monitor mode and Set an exception action on--Serv
er.Serving. This will Signal an error whenever the Server
begins to work when the client is not blocked for a response.
0276 8. A Complete System Example

0277 FIG. 15 depicts a large-scale example system
under the coordination-centric design methodology. With
reference to FIG. 15, the large scale system is a bimodal
digital cellular network 1500. Network 1500 is for the most
part a simplified version of a GSM (global system for mobile
communications) cellular network. This example shows in
greater detail how the parts of coordination-centric design
work together and demonstrates a practical application of
the methodology. Network 1500 has two different types of
cells, a surface cell 1502 (also referred to as a base station
1502) and a satellite cell 1504. These cells are not only
differentiated by physical position, but by the technologies
they use to share network 1500. Satellite cells 1504 use a
code division multiple access (CDMA) technology, and
surface cells 1502 use a time division multiple access
(TDMA) technology. Typically, there are Seven frequency
bands reserved for TDMA and one band reserved for
CDMA. The goal is for as much communication as possible
to be conducted through the smaller TDMA cells, here
surface cells 1502, because power requirements for a CDMA
cells, here satellite cell 1504, increase with the number of
users in the CDMA cell. Mobile units 1506, or wireless
devices, can move between Surface cells 1502, requiring
horizontal handoffs between Surface cells 1502. Several
surface cells 1502 are typically connected to a Switching
center 1508. Switching center 1508 is typically connected to
a telephone network or the Internet 1512. In addition to
handoffs between Surface cells 1502, the network must be
able to hand off between Switching centers 1508. When
mobile units 1506 leave the TDMA region, they remain
covered by satellite cells 1504 via vertical handoffs between
cells. Since vertical handoffs require changing protocols as
well as changing base Stations and Switching centers, they
can be complicated in terms of control.

0278 Numerous embedded systems comprise the overall
system. For example, Switching center 1508 and base sta
tions, surface cells 1502, are required as part of the network
infrastructure, but cellular phones, handheld Web browsers,
and other mobile units 1506 may be supported for access
through network 1500. This section concentrates on the
Software systems for two particular mobile units 1506: a
simple digital cellular phone (shown in FIG. 16) and a
handheld Web browser (shown in FIG. 24). These examples
require a wide variety of coordinators and reusable compo
nents. Layered coordination is a feature in each System,
because a function of many Subsystems is to perform a
layered protocol. Furthermore, this example displayS how

US 2003/0005407 A1

the hierarchically constructed components can be applied in
a realistic System to help manage the complexity of the
overall design.
0279. To begin this discussion, we describe the cellular
phone in detail, focusing on its functional components and
the formalization of their interaction protocols. We then
discuss the handheld Web browser in less detail but highlight
the main ways in which its functionality and coordination
differ from those of the cellular phone. In describing the
cellular phone, we use a top-down approach to show how a
coherent System organization is preserved, even at a high
level. In describing the handheld Web browser, we use a
bottom-up approach to illustrate component reuse and bot
tom-up design.
0280 A. Cellular Phone
0281 FIG. 16 shows a top-level coordination diagram of
the behavior of a cellphone 1600. Rather than using a single
coordinator that integrates the components under a single
protocol, we use Several coordinators in concert. Interactions
between coordinators occur mainly within the components
to which they connect.
0282. With reference to FIG. 16, cell phone 1600 Sup
ports digital encoding of Voice Streams. Before it can be
used, it must be authenticated with a home master Switching
center (not shown). This authentication occurs through a
registered master Switch for each phone and an authentica
tion number from the phone itself. There are various authen
tication Statuses, Such as full access, grey-listed, or black
listed. For cell phone 1600, real-time performance is more
important than reliability. A dropped packet is not retrans
mitted, and a late packet is dropped since its omission
degrades the Signal less than its late incorporation.
0283 Each component of cellphone 1600 is hierarchical.
A GUI 1602 lets users enter phone numbers while displaying
them and query an address book 1604 and a logs component
1606. Address book 1604 is a database that can map names
to phone numbers and vice versa. GUI 1602 uses address
book 1604 to help identify callers and to look up phone
numbers to be dialed. Logs 1606 track both incoming and
outgoing calls as they are dialed. A voice component 1608
digitally encodes and decodes, and compresses and decom
presses, an audio signal. A connection component 1610
multiplexes, transmits, receives, and demultiplexes the radio
Signal and Separates out the Voice Stream and caller identi
fication information.

0284 Coordination among the above components makes
use of several of the coordinators discussed above. Between
connection component 1610 and a clock 1612, and between
logs 1606 and connection component 1610, are unidirec
tional data transfer coordinators 600 as described with
reference to FIG. 6A. Between voice component 1608 and
connection component 1610, and between GUI 1602 and
connection component 1610, are bidirectional data transfer
coordinators 604, as described with reference to FIG. 6B.
Between clock 1612 and GUI 1602 is a state unification
coordinator 606, as described with reference to FIG. 6G.
Between GUI 1602 and address book 1604 is a dedicated
RPC coordinator 1000 as described with reference to FIG.
10, in which address book 1604 has client 1028 and GUI
1602 has server 1010.

0285) There is also a custom GUI/log coordinator 1614
between logs 1606 and GUI 1602. GUI/log coordinator

Jan. 2, 2003

1614 lets GUI 1602 transfer new logged information
through an r output message port 1616 on a GUI coordina
tion interface 1618 to an r input message port 1620 on a log
coordination interface 1622. GUI/log coordinator 1614 also
lets GUI 1602 choose current log entries through a pair of c
output message ports 1624 on GUI coordination interface
1618 and a pair of c input message ports 1626 on log
coordination interface 1622. Logs 1606 continuously dis
play one entry each for incoming and outgoing calls.

0286) 1.. GUI Component

0287 FIG. 17A is a detailed view of GUI component
1602, of FIG. 16. With reference to FIG. 17A, GUI com
ponent 1602 has two inner components, a keypad 1700 and
a text-based liquid crystal display 1702, as well as several
functions of its own (not shown). Each time a key press
occurs, it triggers an action that interprets the press, depend
ing on the mode of the System. Numeric presses enter values
into a shared dialing buffer. When a complete number is
entered, the contents of this buffer are used to establish a
new connection through connection component 1610. Table
5 shows the action triples for GUI 1602.

Mode Trigger Action

Idle numEBuffer.append(keypress.val)

Send radio.send(numBufferval)
+OutgoingCall

Disconnect N
Leftarrow AddressBook.forward()

+lookupMode
Rightarrow log.lasticall()

+Outlog
LookupMode Leftarrow AddressBook.forward()

Rightarrow AddressBook.backward()

0288 An “Addr Coord” coordinator 1704 includes an
address book mode (not shown) in which arrow key presses
are transformed into RPC calls.

0289 2. Logs Component

0290 FIG. 17B is a detailed view of logs component
1606, which tracks all incoming and outgoing calls. With
reference to FIG. 17B, both GUI component 1602 and
connection component 1610 must communicate with logs
component 1606 through specific message ports. Those
Specific message ports include a transmitted number mes
Sage port 1720, a received number message port 1722, a
change current received message port 1724, a change current
transmitted message port 1726, and two state ports 1728 and
1729 for presenting the current received and current trans
mitted values, respectively.

0291 Logs component 1606 contains two identical
Single-log components: a Send log 1730 for outgoing calls
and a receive log 1740 for incoming calls. The interface of
logs component 1606 is connected to the individual log
components by a pair of adapter coordinators, Adapl 1750
and Adap 21752. Adap11750 has an adapter receive inter
face 1754, which has a receive imported State port 1756 and
a receive output message port 1758. Adap11750 further has
an adapter send interface 1760, which has a send imported

US 2003/0005407 A1

state port 1762 and a send output message port 1764. Within
Adap1, state port 1728 is bound to receive imported State
port 1756, change current received message port 1724 is
bound to receive output message port 1758, received num
ber message port 1722 is bound to a received interface
output message port 1766 on a received number coordina
tion interface 1768, change current transmitted message port
1726 is bound to send output message port 1764, and state
port 1729 is bound to Up.rc is bound to send imported State
port 1762.
0292) 3. Voice Component
0293 FIG. 18A is a detailed view of voice component
1608 of FIG. 16. Voice component 1608 has a compression
component 1800 for compressing digitized Voice signals
before transmission, a decompression component 1802 for
decompressing received digitized voice Signals, and inter
faces 1804 and 1806 to analog transducers (not shown) for
digitizing Sound to be transmitted and for converting
received transmissions into Sound. Voice component 1608 is
a pure data flow component containing Sound generator
1808 which functions as a white-noise generator, a ring tone
generator, and which has a separate port for each on Sound
generator interface 1810, and Voice compression function
ality in the form of compression component 1800 and
decompression component 1802.
0294 4. Connection Component
0295 FIG. 18B is a detailed view of connection com
ponent 1610 of FIG. 16. With reference to FIG. 18B,
connection component 1610 coordinates with voice compo
nent 1608, logs component 1606, clock 1612, and GUI
1602. In addition, connection component 1610 is respon
sible for coordinating the behavior of cell phone 1600 with
a base station that owns the surface cell 1502 (shown in FIG.
15), a switching center 1508 (shown in FIG. 15), and all
other phones (not shown) within surface cell 1502. Connec
tion component 1610 must authenticate users, establish
connections, and perform handoffs as needed-including
appropriate changes in any low-level protocols (such as a
switch from TDMA to CDMA).
0296 FIG. 19 depicts a set of communication layers
between connection component 1610 of cellphone 1600 and
base station 1502 or switching center 1508. With reference
to FIG. 19, has several Subcomponents, or lower-level
components, each of which coordinates with an equivalent,
or peer, layer on either base station 1502 or Switching center
1508. The Subcomponents of connection component 1610
include a cell phone call manager 1900, a cell phone
mobility manager 1902, a cellphone radio resource manager
1904, a cell phone link protocol manager 1906, and a cell
phone transport manager 1908 which is responsible for
coordinating access to and transferring data through the
shared airwaves TDMA and CDMA coordination. Each
Subcomponent will be described in detail including how
each fits into the complete System.
0297 Base station 1502 has a call management coordi
nator 1910, a mobility management coordinator 1912, a
radio resource coordinator 1914 (BSSMAP 1915), a link
protocol coordinator 1916 (SCCO 1917), and a transport
coordinator 1918 (MTP 1919). Switching center 1508 has a
Switching center call manager 1920, a Switching center
mobility manager 1922, (a BSSMAP 1924, a SCCP 1926,
and an MTP 1928).

Jan. 2, 2003

0298)
0299 FIG. 20 is a detailed view of a call management
layer 2000 consisting of cell phone call manager 1900,
which is connected to Switching center call manager 1920 by
call management coordinator 1910. With reference to FIG.
20, call management layer 2000 coordinates the connection
between cell phone 1600 and switching center 1508. Call
management layer 2000 is responsible for dialing, paging,
and talking. Call management layer 2000 is always present
in cell phone 1600, though not necessarily in Internet
appliances (discussed later). Cell phone call manager 1900
includes a set of modes (not shown) for call management
coordination that consists of the following modes:

a. Call Management

0300 Standby
0301 Dialing
0302 RingingRemote

0303 Ringing
0304 CallInProgress

0305 Cell phone call manager 1900 has a cellphone call
manager interface 2002. Cell phone call manager interface
2002 has a port corresponding to each of the above modes.
The standby mode is bound to a standby exported state port
2010. The dialing mode is bound to a dialing exported State
port 2012. The RingingRemote mode is bound to a Ring
ingRemote imported State port 2014. The Ringing mode is
bound to a ringing imported state port 2016. The Call
InProgress mode is bound to a CallInProgress arbitrated
state port 2018.
0306 Switching center call manager 1920 includes the
following modes (not shown) for call management coordi
nation at the Switching center:

0307 Dialing

0308 Ringing Remote
0309 Paging
0310 CallInProgress

0311 Switching center call manager 1920 has a Switch
ing center call manager coordination interface 2040, which
includes a port for each of the above modes within Switching
center call manager 1920.
0312. When cell phone 1600 requests a connection,
Switching center 1508 creates a new switching center call
manager and establishes a call management coordinator
1910 between cell phone 1600 and Switching center call
manager 1920.
0313) b. Mobility Management
0314. A mobility management layer authenticates mobile
unit 1506 or cell phone 1600. When there is a surface cell
1502 available, mobility manager 1902 contacts the Switch
ing center 1508 for Surface cell 1502 and transfers a mobile
unit identifier (not shown) for mobile unit 1506 to Switching
center 1508. Switching center 1508 then looks up a home
motor Switching center for mobile unit 1506 and establishes
a set of permissions assigned to mobile unit 1506. This layer
also acts as a conduit for the call management layer. In
addition, the mobility management layer performs handoffs

US 2003/0005407 A1

between base stations 1502 and Switching centers 1508
based on information received from the radio resource layer.
0315 C. Radio Resource
0316. In the radio resource layer, radio resource manager
1904, chooses the target base station 1502 and tracks
changes in frequencies, time Slices, and CDMA codes. Cell
phones may negotiate with up to 16 base Stations Simulta
neously. This layer also identifies when handoffs are neces
Sary.

0317 d. Link Protocol
0318. The link layer manages a connection between cell
phone 1600 and base station 1502. In this layer, link protocol
manager 1906 packages data for transfer to base Station
1502 from cell phone 1600.
0319)
0320 FIG. 21A is a detailed view of transport compo
nent 1908 of connection component 1610. Transport com
ponent 1908 has two Subcomponents, a receive component
2100 for receiving data and a transmit component 2102 for
transmitting data. Each of these Subcomponents has two
parallel data paths a CDMA path 2104 and a TDMA/FDMA
path 2106 for communicating in the respective network
protocols.

0321 FIG.21B is a detailed view of a CDMA modulator
2150, which implements a synchronous data flow data path.
CDMA modulator 2150 takes the dot-product of an incom
ing data signal along path 2152 and a stored modulation
code for cell phone 1600 along path 2154, which is a
Sequence of chips, which are measured time Signals having
a value of -1 or +1.

0322 Transport component 1908 uses CDMA and
TDMA technologies to coordinate access to a resource
shared among Several cell phones 1600, i.e., the airwaves.
Transport components 1908 Supersede the FDMA technolo
gies (e.g., AM and FM) used for analog cellular phones and
for radio and television broadcasts. In FDMA, a signal is
encoded for transmission by modulating it with a carrier
frequency. A signal is decoded by demodulation after being
passed through a band pass filter to remove other carrier
frequencies. Each base station 1502 has a set of frequen
cies-chosen to minimize interference between adjacent
cells. (The area covered by a cell may be much Smaller than
the net range of the transmitters within it.)
0323 TDMA, on the other hand, coordinates access to
the airwaves through time slicing. Cell phone 1600 on the
network is assigned a Small time slice, during which it has
exclusive access to the media. Outside of the Small time
slice, cell phone 1600 must remain silent. Decoding is
performed by filtering out all signals outside of the Small
time slice. The control for this access must be distributed. As
Such, each component involved must be Synchronized to
observe the Start and end of the Small time slice at the same
instant.

0324) Most TDMA systems also employ FDMA, so that
instead of sharing a Single frequency channel, cell phones
1600 share several channels. The band allocated to TDMA
is broken into frequency channels, each with a carrier
frequency and a reasonable Separation between channels.
Thus user channels for the most common implementations

e. Transport

Jan. 2, 2003

of TDMA can be represented as a two-dimensional array, in
which the rows represent frequency channels and the col
umns represent time Slices.

0325 CDMA is based on vector arithmetic. In a sense,
CDMA performs inter-cell-phone coordination using data
flow. Instead of breaking up the band into frequency chan
nels and time slicing these, CDMA regards the entire band
as an n-dimensional vector Space. Each channel is a code
that represents a basis vector in this space. Bits in the Signal
are represented as either 1 or -1, and the modulation is the
inner product of this signal and a basis vector of mobile unit
1506 or cell phone 1600. This process is called spreading,
Since it effectively takes a narrowband Signal and converts it
into a broadband Signal.

0326 Demultiplexing is simply a matter of taking the
dot-product of the received signal with the appropriate basis
vector, obtaining the original 1 or -1. With fast computation
and the appropriate codes or basis vectors, the Signal can be
modulated without a carrier frequency. If this is not the case,
a carrier and analog techniques can be used to fill in where
computation fails. If a carrier is used, however, all units use
the same carrier in all cells.

0327 FIG.22 shows TDMA and CDMA signals for four
cell phones 1600. With reference to FIG. 22, for TDMA,
each cell phone 1600 is assigned a time slice during which
it can transmit. Cell phone 1 is assigned time slice t0, cell
phone 2 is assigned time Slice t1, cell phone 3 is assigned
time Slice t2, and cell phone 4 is assigned time slice t3. For
CDMA, each cell phone 1600 is assigned a basis vector that
it multiplies with its signal. Cell phone 1 is assigned the
Vector:

US 2003/0005407 A1

0330 Cell phone 4 is assigned the vector:

0331 Notice that these vectors form an orthogonal basis.
0332 B. Handheld Web Browser
0333. In the previous subsection, we demonstrated our
methodology on a cell phone with a top-down design
approach. In this SubSection, we demonstrate our method
ology with a bottom-up approach in building a handheld
Web browser.

0334 FIG. 23A is a LCD touchscreen component 2300
for a Web browser GUI (shown in FIG. 24A) for a wireless
device 1506. With reference to FIG. 23A, a LCD touch
screen component 2300, has an LCD screen 2302 and a
touch pad 2304.
0335 FIG. 23B is a Web page access component 2350
for fetching and formatting web pages. With reference to
FIG. 23B, web access component 2350 has a page fetch
Subcomponent 2352 and a page format Subcomponent 2354.
Web access component 2350 reads hypertext markup lan
guage (HTML) from a connection interface 2356, sends
word placement requests to a display interface 2358, and
sends image requests to the connection interface 2356. Web
access component 2350 also has a character input interface
to allow users to enter page requests directly and to fill out
forms on pages that have forms.
0336 FIG. 24A shows a completed handheld Web
browser GUI 2400. With reference to FIG. 24A, handheld
Web browser GUI 2400, has LCD touch screen component
2300, web access component 2350, and a pen stroke recog
nition component 2402 that translates pen Strokes entered on
touch pad 2304 into characters.
0337 FIG. 24B shows the complete component view of
a handheld Web browser 2450. With reference to FIG.24B,
handheld Web browser 2450 is formed by connecting hand
held Web browser GUI 2400 to connection component 1610
of cell phone 1600 (described with reference to FIG. 16)
with bidirectional data transfer coordinator 604 (described
with reference to FIG. 6B). Handheld Web browser 2450 is
an example of mobile unit 1506, and connects to the Internet
through the cellular infrastructure described above. How
ever, handheld Web browser 2450 has different access
requirements than does cell phone 1600. For handheld Web
browser 2450, reliability is more important than real-time
delivery. Dropped packets usually require retransmission, So
it is better to deliver a packet late than to drop it. Real-time
issueS primarily affect download time and are therefore
secondary. Despite this, handheld Web browser 2450 must
coordinate media access with cell phones 1600, and so it
must use the same protocol as cell phones 1600 to connect
to the network. For that reason, handheld Web browser 2450
can reuse connection component 1610 from cell phone
1600.

0338. It will be obvious to those having skill in the art
that many changes may be made to the details of the

Jan. 2, 2003

above-described embodiments of this invention without
departing from the underlying principles thereof. The Scope
of the present invention should, therefore, be determined
only by the following claims.

1. A methodology for designing a Software System inde
pendent of a target hardware implementation, the method
ology comprising designing the Software System as com
prising

a first component for realizing a predetermined function
ality,

a first coordinator for managing interactions between the
first component and a Second component, and

a first pair of coordination interfaces comprising a first
and a Second coordination interface for implementing a
connection between the first component and the first
coordinator So as to preserve component modularity
while exposing only the parts of the component that
participate in coordination.

2. A method according to claim 1 wherein the first
coordinator implements a predetermined coordination pro
tocol.

3. A method according to claim 2 wherein the first pair of
coordination interfaces includes a pair of complimentary
ports to transfer information between the coordination inter
faces.

4. A method according to claim 3 wherein a first port of
the pair of complimentary ports has a combination of
attributes realizing an output message port and the other port
of the pair of complimentary ports has a combination of
attributes realizing an input message port.

5. A method according to claim 3 wherein the a first port
of the pair of complimentary ports has a combination of
attributes realizing an exported State port and the other port
of the pair of complimentary ports has a combination of
attributes realizing an imported State port.

6. A method according to claim 3 wherein a first port of
the pair of complimentary ports has a combination of
attributes realizing a first control port, and the other port of
the pair of complimentary ports has a combination of
attributes realizing a Second control port that is complimen
tary to the first control port.

7. A method according to claim 3 wherein a first port of
the pair of complimentary ports has a combination of
attributes realizing a first arbitrated State port, and the other
port of the pair of complimentary ports has a combination of
attributes realizing a Second arbitrated State port that is
complimentary to the first arbitrated State port.

8. A method according to claim 3 wherein each port of the
pair of complimentary ports is defined by a five-tuple (T, A,
Q, D, R) where:
T represents a datatype of the port;

A is a Boolean value that is true if and only if the port is
arbitrated;

Q is a predetermined integer greater than Zero that rep
resents logical queue depth of the port;

D represents a directionality of data flows with respect to
the port; and

R represents a policy for data removal on the port.

US 2003/0005407 A1

9. A method according to claim 8 wherein D is one of in,
out, inout representing data flow into the port, out of the
port, or bi-directional, respectively.

10. A method according to claim 9 wherein D is one of
{in, out, inout or custom, where custom directionality
permits restricting the port to accept or to generate only
certain Specific predetermined values.

11. A method according to claim 2 wherein the first
coordination interface implements a predetermined guaran
tee of a Selected invariant interface property of the first
component.

12. A method according to claim 11 wherein the guarantee
Specifies a predetermined event ordering.

13. A method according to claim 11 wherein the guarantee
Specifies an acceptable relative behavior between the first
and Second component.

14. A method according to claim 2 wherein the first
coordination interface includes a Specified requirement and
the Second coordination interface includes a specified guar
antee that Satisfies the Specified requirement of the first
coordination interface.

15. A computer Software design methodology comprising
a coordination interface for Software packaging, wherein the
coordination interface comprises at least one named port.

16. A method according to claim 15 wherein the coordi
nation interface further comprises:

a set of at least one named guarantee provided by the
interface;

a Set of at least one named requirement that must be
matched by a guarantee of a connected interface

17. A method according to claim 16 wherein the coordi
nation interface further comprises a set of coordination
interfaces including at least a Second coordination interface,
thereby making coordination interfaces hierarchical.

18. A method according to claim 15 wherein the named
port is defined by a five-tuple (T, A, Q, D, R) where:
T represents a datatype of the port;

A is a Boolean value that is true if and only if the port is
arbitrated;

Q is a predetermined integer greater than Zero that rep
resents logical queue depth of the port;

D represents a directionality of data flows with respect to
the port; and

R represents a policy for data removal on the port.
19. A software system for execution on a hardware

platform, the Software System comprising:
a first component having a first coordination interface;
a Second component having a Second coordination inter

face; and
a coordinator for coordinating control and data flow
between the first and Second components and having a
third coordination interface that is complimentary to
the first coordination interface and a fourth coordina
tion interface that is complimentary to the Second
coordination interface.

20. A software system according to claim 19 wherein the
first coordination interface includes a first port as a connec
tion point to a Second port included on the third coordination
interface.

Jan. 2, 2003

21. A method according to claim 20 wherein the first port
has a combination of attributes realizing a first message port.

22. A method according to claim 21 wherein the Second
port has a combination of attributes realizing a Second
message port that is complimentary to the first message port.

23. A method according to claim 20 wherein the first port
has a combination of attributes realizing a first State port.

24. A method according to claim 22 wherein the Second
port has a combination of attributes realizing a Second State
port that is complimentary to the first message port.

25. A method according to claim 20 wherein the first port
has a combination of attributes realizing a first control port.

26. A method according to claim 25 wherein the first port
has a combination of attributes realizing a Second control
port that is complimentary to the first control port.

27. A method for designing Software Systems comprising:
designing a first Software component for performing a

first predetermined functionality that when activated
produces a defined result,

designing a first coordination interface for logically con
necting the first component to the first coordination
interface in order to export the result produced by the
first component;

designing a Second component for performing a Second
predetermined functionality that can respond to the
defined result produced by the first component;

designing a Second coordination interface for logically
connecting the Second component to the Second coor
dination interface in order to importing the result
produced by the first Software component;

designing a coordinator with a third coordination interface
that is complimentary to the first coordination interface
and a fourth coordination interface that is complimen
tary to the Second coordination interface, for transfer
ring the result exported by the first coordination inter
face from the first coordination interface to the Second
coordination interface.

28. A method according to claim 27 in which the first
coordination interface has a first port for exporting the result
produced by the first component.

29. A method according to claim 28 in which the second
coordination interface has a Second port for importing the
result produced by first component.

30. A method according to claim 29 in which the third
coordination interface has a third port that is complimentary
to the first port for importing the result exported by the first
port, and in which the fourth coordination interface has a
fourth port that is complimentary to the Second port for
exporting the result imported by the third port.

31. A method according to claim 30 in which the third
coordination interface is bound to the fourth coordination
interface in a manner that implements a predetermined
coordination protocol.

32. A method according to claim 27 in which the first
component comprises a first action, for implementing the
first predetermined functionality, a first mode for imple
menting a boolean guard on the first action, and a first event
to Serve as a trigger for initiating the first action.

33. A method according to claim 32 in which the second
component comprises a Second action, for implementing the
Second predetermined functionality, a Second mode for

US 2003/0005407 A1

implementing a boolean guard on the Second action, and a
Second event to Serve as a trigger for initiating the Second
action.

34. A method according to claim 33 in which the coor
dinator comprises a binding between the third and fourth
coordination interfaces for transferring the result from the
third coordination interface to the fourth coordination inter
face.

35. A method according to claim 33 in which the coor
dinator comprises a coordinator action which performs a
predetermined coordinator function, and a mode which
Serves as a boolean guard on the coordinator action.

36. A method according to claim 35 in which the coor
dinator further comprises a constraint which Serves to
enforce a predetermined relationship between a pair of
control ports.

37. A method for designing a Software program without
reference to a target System architecture comprising:

creating a first component comprising Software code for
performing a first function and a first coordination
interface for Sending and receiving Separate control and
dataflow information;

creating a Second component comprising Software code
for performing a Second function and a Second coor
dination interface for Sending and receiving Separate
control and dataflow information;

creating a coordinator to manage control interactions and
dataflow interactions between the first component and
the second component comprising a third coordination
interface for logically connecting to the first coordina
tion interface, and a fourth coordination interface for
logically connecting to the Second coordination inter
face.

38. The method of claim 37 in which the coordination
interfaces each comprise a port for transferring information.

39. The method of claim 38 in which the first coordination
interface and the third coordination interface have corre
sponding ports and complimentary requirements and guar
antees, and the Second coordination interface and the fourth
coordination interface have corresponding ports and com
plimentary requirements and guarantees.

40. The method of claim 39 in which the first component
further comprises a first mode and a first action.

41. The method of claim 40 in which the second compo
nent further comprises a Second mode and a Second action.

42. The method of claim 41 in which the coordinator
further comprises a third action and a third mode.

43. The method of claim 42 in which the coordinator
further comprises a first binding which connects a first port
on the third coordination interface to a Second port on the
fourth coordination interface

44. The method of claim 43 in which the first port is an
input data port and the Second port is an output data port.

45. The method of claim 42 in which the coordinator
further comprises a Second binding which connects a third
port on the third coordination interface to the third mode.

46. The method of claim 42 in which the coordinator
further comprises a third binding which connects a fourth
port on the fourth coordination interface to a first variable.

47. The method of claim 42 in which the coordinator
further comprises a fourth binding which connects a fifth
port on the third coordination interface to a first event.

20
Jan. 2, 2003

48. A Software System comprising:
a first Software component comprising a first action;
a Second Software component comprising a Second action;

and

a coordinator for implementing a communication protocol
between the first Software component and the Second
Software component and connected to the first Software
component and the Second Software component.

49. The software system of claim 48 in which the first
Software component further comprises:

a first mode connected to the first action;
a first trigger connected to the first action; and
a first coordination interface comprising a first port.
50. The software system of claim 49 in which the second

Software component further comprises,
a Second mode connected to the Second action;
a first trigger connected to the first action; and
a Second coordination interface comprising a Second port.
51. The software system of claim 50 in which the coor

dinator comprises:
a third action for implementing the communication pro

tocol;
a third mode connected to the third action;
a third trigger connected to the third action;
a third coordination interface comprising a third port and

connected to the first coordination interface; and
a fourth coordination interface comprising a fourth port

and connected to the Second coordination interface.
52. The software system of claim 51 in which the first

Software component further comprises a first binding.
53. The software system of claim 52 in which the second

Software component further comprises a Second binding.
54. The software system of claim 53 in which the coor

dinator further comprises a third binding.
55. The software system of claim 54 in which the first

coordination interface further comprises a fourth port and a
fourth binding.

56. The software system of claim 55 in which the first
binding connects the first port to the first mode and the
fourth binding connects the fourth port with the first trigger.

57. A method for designing a Software System comprising:
creating a first Software component comprising a first

action, a first mode and a first coordination interface;
creating a Second Software component comprising a Sec

ond action, a Second mode and a Second coordination
interface; and

creating a coordinator, to implement a predetermined
communication protocol between the first and Second
component by coordinating control and dataflow inter
actions between the first component and the Second
component, comprising:
a third action;
a third mode,
a third coordination interface connected to the first

coordination interface; and

US 2003/0005407 A1

a fourth coordination interface connected to the Second
coordination interface.

58. A Software System comprising;

in components, where n is an integer greater than Zero,
each component designed to perform a predetermined
functionality;

m coordinators, where m is an integer greater than Zero,
each coordinator designed to implement a predeter
mined coordination protocol between a set of the n
components,

in coordination interface pairs, each coordination interface
pair designed to logically connect a component to a
coordinator for transferring information between the
component and the coordinator.

59. The software system of claim 58 wherein each com
ponent of the n components comprises:

an action to perform a predetermined function;

a mode to act as a boolean guard on the action;

a trigger which when activated causes the action to
perform the predetermined function when the mode has
a value of true.

60. The software system of claim 59 wherein a component
of the n components further comprises:

Jan. 2, 2003

a set of Sub-components,
a set of internal coordinators, each internal coordinator

designed to implement a predetermined coordination
protocol between a Subset of the Set of Sub-compo
nents,

a Set internal coordination interface pairs for logically
connecting the Sub-components to the internal coordi
natorS.

61. The Software system of claim 59 wherein each coor
dinator of the m coordinators comprises:

an action an action to perform a predetermined function;
a mode to act as a boolean guard on the action;
a trigger which when activated causes the action to

perform the predetermined function when the mode has
a value of true.

62. The Software system of claim 61 wherein a coordi
nator of the m coordinators further comprises:

a set of Sub-coordinators, each Sub-coordinator designed
to implement a predetermined coordination protocol
between a Subset of any of the n coordination interface
pairs that are logically connected to the coordinator;

a set of internal coordination interface pairs, each internal
coordination interface pair designed to logically con
nect the Sub-coordinators to one coordination interface
of the coordination interface pairs that are logically
connected to the coordinator.

k k k k k

