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SYSTEMAND METHOD FOR 
COORDINATION-CENTRIC DESIGN OF 

SOFTWARE SYSTEMS 

RELATED APPLICATIONS 

0001. This application is a continuation of U.S. Provi 
sional Application No. 60/213,496 filed Jun. 23, 2000, 
incorporated herein by reference. 

TECHNICAL FIELD 

0002 The present invention relates to a system and 
method for designing Software Systems using reusable Soft 
ware elements and communication protocols. 

BACKGROUND OF THE INVENTION 

0003 A System design and programming methodology is 
most effective when it is closely integrated and coheres 
tightly with its corresponding debugging techniques. In 
distributed and embedded System methodologies, the rela 
tionship between debugging approaches and design meth 
odologies has traditionally been one-sided in favor of the 
design and programming methodologies. Design and pro 
gramming methodologies are typically developed without 
any consideration for the debugging techniques that will 
later be applied to Software Systems designed using that 
design and programming methodology. While these typical 
debugging approaches attempt to exploit features provided 
by the design and programming methodologies, the debug 
ging techniques will normally have little or no impact on 
what the design and programming features are in the first 
place. This lack of input from debugging approaches to 
design and programming methodologies Serves to maintain 
the role of debugging as an afterthought, even though in a 
typical System design, debugging consumes a majority of 
the design time. The need remains for a design and pro 
gramming methodology that reflects input from, and con 
sideration of, potential debugging approaches in order to 
enhance the design and reduce the implementation time of 
Software Systems. 
0004: 1. Packaging of Software Elements 
0005 Packaging refers to the set of interfaces a software 
element presents to other elements in a System. Software 
packaging has many forms in modern methodologies. Some 
examples are programming language procedure call inter 
faces (as with libraries), TCP/IP socket interfaces with 
Scripting languages (as with mail and Web servers), and file 
formats. Several typical prior art packaging Styles are 
described below, beginning with packaging techniques used 
in object-oriented programming languages and continuing 
with a description of more generalized approaches to pack 
aging. 
0006 A. Object-Oriented Approaches to Packaging 
0007 One common packaging style is based on object 
oriented programming languages and provides procedure 
based (method-based) packaging for Software elements 
(objects within this framework). These procedure-based 
packages allow polymorphism (in which several types of 
objects can have identical interfaces) through Subtyping, and 
code sharing through inheritance (deriving a new class of 
objects from an already existing class of objects). In a 
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typical object-oriented programming language, an object's 
interface is defined by the object's methods. 
0008 Object-oriented approaches are useful in designing 
concurrent Systems (Systems with task level parallelism and 
multiple processing resources?) because of the availability 
of active objects (objects with a thread of control). Some 
common, concurrent object-oriented approaches are shown 
in actor languages and in concurrent Eiffel. 
0009 Early object-oriented approaches featured ano 
nymity of objects through dynamic typechecking. This ano 
nymity of objects meant that a first object did not need to 
know anything about a Second object in order to Send a 
message to the Second object. One unfortunate result of this 
anonymity of objects was that the Second object could 
unexpectedly respond to the first object that the Sent mes 
Sage was not understood, resulting in a lack of predictability, 
due to this disruption of System executions, for Systems 
designed with this object-oriented approach. 
0010 Most modern object-oriented approaches opt to 
Sacrifice the benefits flowing from anonymity of objects in 
order to facilitate stronger Static typing (checking to ensure 
that objects will properly communicate with one another 
before actually executing the Software System). The main 
result of Stronger Static typing is improved System predict 
ability. However, an unfortunate result of Sacrificing the 
anonymity of objects is a tighter coupling between those 
objects, whereby each object must explicitly classify, and 
include knowledge about, other objects to which it sends 
messages. In modern object-oriented approaches the pack 
age (interface) has become indistinguishable from the object 
and the System in which the object is a part. 
0011 The need remains for a design and programming 
methodology that combines the benefits of anonymity for 
the software elements with the benefits derived from strong 
Static typing of System designs. 
0012 B. Other Approaches to Packaging 
0013 Other packaging approaches provide higher 
degrees of Separation between Software elements and their 
respective packages than does the packaging in object 
oriented Systems. For example, the packages in event-based 
frameworks are interfaces with ports for transmitting and 
receiving events. These provide loose coupling for interele 
ment communication. However, in an event-based frame 
work, a Software designer must explicitly implement inter 
element State coherence between Software elements as 
communication between those Software elements. This 
means that a programmer must perform the error-prone task 
of designing, optimizing, implementing, and debugging a 
Specialized communication protocol for each State coher 
ence requirement in a particular Software System. 
0014. The common object request broker architecture 
(CORBA) provides an interface description language (IDL) 
for building packages around Software elements written in a 
variety of languages. These packages are remote procedure 
call (RPC) based and provide no support for coordinating 
State between elements. With flexible packaging, an 
element's package is implemented as a Set of co-routines 
that can be adapted for use with applications through use of 
adapters with interfaces complementary to the interface for 
the Software element. These adapters can be application 
Specific-used only when the elements are composed into a 
System. 
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0.015 The use of co-routines lets a designer specify 
transactions or Sequences of events as part of an interface, 
rather than just as atomic events. Unfortunately, co-routines 
must be executed in lock-Step, meaning a transition in one 
routine corresponds to a transition in the other co-routine. If 
there is an error in one or if an expected event is lost, the 
interface will fail because its context will be incorrect to 
recover from the lost event and the co-routines will be out 
of Sync. 

0016. The need remains for a design and programming 
methodology that provides Software packaging that Supports 
the implementation of State coherence in distributed con 
current Systems without packaging or interface failure when 
an error or an unexpected event occurs. 

0017 2. Approaches to Coordination 

0.018 Coordination, within the context of this applica 
tion, means the predetermined ways through which Software 
components interact. In a broader Sense, coordination refers 
to a methodology for composing concurrent components 
into a complete System. This use of the term coordination 
differs slightly from the use of the term in the parallelizing 
compiler literature, in which coordination refers to a tech 
nique for maintaining programwide Semantics for a Sequen 
tial program decomposed into parallel Subprograms. 

0.019 A. Coordination Languages 

0020 Coordination languages are usually a class of tuple 
Space programming languages, Such as Linda. A tuple is a 
data object containing two or more types of data that are 
identified by their tags and parameter lists. In tuple-Space 
languages, coordination occurs through the use of tuple 
Spaces, which are global multisets of tagged tuples Stored in 
shared memory. Tuple-Space languages extend existing pro 
gramming languages by adding Six operators: Out, in, read, 
eval, inp, and readp. The out, in, and read operators place, 
fetch and remove, and fetch without removing tuples from 
tuple Space. Each of these three operators blockS until its 
operation is complete. The out operator creates tuples con 
taining a tag and Several arguments. Procedure calls can be 
included in the arguments, but Since out blocks, the calls 
must be performed and the results stored in the tuple before 
the operator can return. 

0021. The operators eval, inp, and readpare nonblocking 
versions of out, in, and read, respectively. They increase the 
expressive power of tuple-space languages. Consider the 
case of eval, the nonblocking version of out. Instead of 
evaluating all arguments of the tuple before returning, it 
Spawns a thread to evaluate them, creating, in effect, an 
active tuple (whereas tuples created by out are passive). AS 
with out, when the computation is finished, the results are 
Stored in a passive tuple and left in tuple Space. Unlike out, 
however, the eval call returns immediately, So that Several 
active tuples can be left outstanding. 

0022 Tuple-space coordination can be used in concise 
implementations of many common interaction protocols. 
Unfortunately, tuple-space languages do not separate coor 
dination issues from programming issues. Consider the 
annotated Linda implementation of RPC in Listing 1. 
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rpcCall (args) { 
out ("RPCToServer", "Client", args . . . 
in ("Client, "Return FromServer", & return Value); 
return return Value: f8 C i? 

f8 C i? 
Server: 

while (true) { f8 C i? 
in("RPCToServer", &return Address, args . . . ); 
return Value = functionCall (args); f8 C i? 
out (returnAddress, "Return FromServer", return Value); 

f8 C i? 

0023 Listing 1: Linda Used to Emulate RPC 
0024. Although the implementation depicted in Listing 1 
is a compact representation of an RPC protocol, the imple 
mentation Still depends heavily on an accompanying pro 
gramming language (in this case, C). This dependency 
prevents designers from creating a new Linda RPC operator 
for arbitrary applications of RPC. Therefore, every time a 
designer uses Linda for RPC, they must copy the Source 
code for RPC or make a C-macro. This causes tight cou 
pling, because the client must know the name of the RPC 
Server. If the Server name is passed in as a parameter, 
flexibility increases; however, this requires a binding phase 
in which the name is obtained and applied outside of the 
Linda framework. 

0025 The need remains for a design and programming 
methodology that allows implementation of communication 
protocols without tight coupling between the protocol imple 
mentation and the Software elements with which the proto 
col implementation works. 
0026. A tuple space can require large quantities of 
dynamically allocated memory. However, most Systems, and 
especially embedded Systems, must operate within predict 
able and Sometimes Small memory requirements. Tuple 
Space Systems are usually not Suitable for coordination in 
Systems that must operate within Small predictable memory 
requirements because once a tuple has been generated, it 
remains in tuple Space until it is explicitly removed or the 
Software element that created it terminates. Maintaining a 
global tuple Space can be very expensive in terms of overall 
System performance. Although much work has gone into 
improving the efficiency of tuple-Space languages, System 
performance remains worse with tuple-Space languages than 
With message-passing techniques. 

0027. The need remains for a design and programming 
methodology that can effectively coordinate between Soft 
ware elements while respecting performance and predictable 
memory requirements. 

0028 B. Fixed Coordination Models 
0029. In tuple-space languages, much of the complexity 
of coordination remains entangled with the functionality of 
computational elements. An encapsulating coordination for 
malism decouples intercomponent interactions from the 
computational elements. 

0030 This type of formalism can be provided by fixed 
coordination models in which the coordination Style is 
embodied in an entity and Separated from computational 
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concerns. Synchronous coordination models coordinate 
activity through relative Schedules. Typically, these 
approaches require the coordination protocol to be manually 
constructed in advance. In addition, computational elements 
must be tailored to the coordination Style used for a par 
ticular System (which may require intrusive modification of 
the Software elements). 
0031. The need remains for a design and programming 
methodology that allows for coordination between software 
elements without tailoring the Software elements to the 
Specific coordination Style used in a particular Software 
System. 

Summary of the Invention 
0.032 The present invention provides a coordination 
centric design and programming methodology to facilitate 
both the design and the debugging of Software Systems. This 
approach includes an encapsulating formalism for coordi 
nation. In accordance with the present invention, coordina 
tion protocols are embodied in coordinators. Coordinators 
Serve to expose the workings of a coordination protocol and 
organize relevant System information in a meaningful man 
ner. This facilitates coordination-based debugging by letting 
designers focus on coordination as an entity Separate from 
computation and by Showing designers what is happening 
internally within a Software System. 
0033. In accordance with the present invention, func 
tional blocks, or Software elements, are represented as 
components. Components contain modes that define behav 
iors, actions that perform these behaviors, and coordination 
interfaces that connect components to other components 
through coordinators. Packaging Software elements in this 
fashion provides more modularity for the components than 
prior art design and programming methodologies. Coordi 
nation interfaces make both the data and control aspects of 
intercomponent interactions explicit, So that the control and 
data interactions can be adapted to a variety of interaction 
protocols without needing internal modifications to the 
components. The Same coordination interface type can be 
used by a variety of components. Any component in a 
Software System can be replaced by a new component 
having completely different functionality without any other 
components within the System needing to know that a 
change has been made, as long as the new component has a 
coordination interface appropriate for the coordinator in the 
Software System. 
0034. Both components and coordinators can be com 
posed hierarchically to form higher-order functionality and 
interaction protocols. This facilitates design complexity 
management. All pieces of the coordination-centric design 
methodology work together to provide both the software 
designers and the debugging tools with information about 
the software systems behavior and the behavior of the 
Software System's components. This information Serves to 
Simplify Software System design and Software System debug 
ging. The coordination interfaces expose control State and 
message traffic to Scrutiny by Software designers and debug 
ging tools. Meanwhile, coordinators expose interaction pro 
tocols to Scrutiny by Software designers and debugging 
tools. 

0035) In accordance with the present invention, the coor 
dination-centric design methodology treats design and 

Jan. 2, 2003 

debugging as interrelated issues and, as a result, makes 
complex embedded Software more debuggable and more 
easily designable. Debugging in fact dominates embedded 
System Software development time, and the debugging 
approach of the present invention facilitates the debugging 
of complex embedded Systems and makes other aspects of 
the design flow, Such as managing design complexity and 
reusing Software, easier than in prior art design and pro 
gramming methodologies. 

0036) Additional aspects and advantages of this invention 
will be apparent from the following detailed description of 
preferred embodiments thereof, which proceeds with refer 
ence to the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0037 FIG. 1 is a component in accordance with the 
present invention. 
0038 FIG. 2 is the component of FIG. 1 further having 
a set of coordination interfaces. 

0039 FIG. 3A is a prior art round-robin resource allo 
cation protocol with a centralized controller. 
0040 FIG. 3B is a prior art round-robin resource allo 
cation protocol implementing a token passing Scheme. 
0041 FIG. 4A is a detailed view of a component and a 
coordination interface connected to the component for use in 
round-robin resource allocation in accordance with the 
present invention. 
0042 FIG. 4B depicts a round-robin coordinator in 
accordance with the present invention. 
0043 FIG. 5 shows several typical ports for use in a 
coordination interface in accordance with the present inven 
tion. 

0044 FIG. 6A is a unidirectional data transfer coordina 
tor in accordance with the present invention. 
004.5 FIG. 6B is a bidirectional data transfer coordinator 
in accordance with the present invention. 
0046 FIG. 6C is a state unification coordinator in accor 
dance with the present invention. 
0047 FIG. 6D is a control state mutex coordinator in 
accordance with the present invention. 
0048 FIG. 7 is a system for implementing Subsumption 
resource allocation having components, a shared resource, 
and a SubSumption coordinator. 
0049 FIG. 8 is a barrier synchronization coordinator in 
accordance with the present invention. 
0050 FIG. 9 is a rendezvous coordinator in accordance 
with the present invention. 
0051 FIG. 10 depicts a dedicated RPC system having a 
client, a Server, and a dedicated RPC coordinator coordinat 
ing the activities of the client and the Server. 
0.052 FIG. 11 is a compound coordinator with both 
preemption and round-robin coordination for controlling the 
access of a set of components to a shared resource. 
0053 FIG. 12A is software system with two data transfer 
coordinators, each having constant message consumption 
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and generation rules and each connected to a separate 
data-generating component and connected to the same data 
receiving component. 

0054 FIG. 12B is the software system of FIG. 12A in 
which the two data transfer coordinators have been replaced 
with a merged data transfer coordinator. 
0.055 FIG. 13 is a system implementing a first come, first 
Served resource allocation protocol in accordance with the 
present invention. 
0056 FIG. 14 is a system implementing a multiclient 
RPC coordination protocol formed by combining the first 
come, first served protocol of FIG. 13 with the dedicated 
RPC coordinator of FIG. 10. 

0057 FIG. 15 depicts a large system in which the coor 
dination-centric design methodology can be employed hav 
ing a wireleSS device interacting with a cellular network. 
0.058 FIG.16 shows a top-level view of the behavior and 
components for a System for a cell phone. 
0059 FIG. 17A is a detailed view of a GUI component 
of the cell phone of FIG. 16. 
0060 FIG. 17B is a detailed view of a call log compo 
nent of the cell phone of FIG. 16. 
0061 FIG. 18A is a detailed view of a voice subsystem 
component of the cell phone of FIG. 16. 
0062 FIG. 18B is a detailed view of a connection 
component of the cell phone of FIG. 16. 
0063 FIG. 19 depicts the coordination layers between a 
wireleSS device and a base Station, and between the base 
station and a Switching center, of FIG. 15. 
0.064 FIG. 20 depicts a cell phone call management 
component, a master Switching center call management 
component, and a call management coordinator connecting 
the respective call management components. 
0065 FIG. 21A is a detailed view of a transport com 
ponent of the connection component of FIG. 18B. 
0.066 FIG. 21B is a CDMA data modulator of the 
transport component of FIG. 18B. 
0067 FIG. 22 is a detailed view of a typical TDMA and 
a typical CDMA signal for the cell phone of FIG. 16. 
0068 FIG. 23A is a LCD touch screen component for a 
Web browser GUI for a wireless device. 

0069 FIG. 23B is a Web page formatter component for 
the Web browser GUI for the wireless device. 

0070 FIG. 24A is a completed GUI system for a hand 
held Web browser. 

0071 FIG. 24B shows the GUI system for the handheld 
Web browser combined with the connection subsystem of 
FIG. 18B in order to access the cellular network of FIG. 15. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

0072 FIG. 1 is an example of a component 100, which 
is the basic Software element within the coordination-centric 
design framework, in accordance with the present invention. 
With reference to FIG. 1, component 100 contains a set of 
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modes 102. Each mode 102 corresponds to a specific behav 
ior associated with component 100. Each mode 102 can 
either be active or inactive, respectively enabling or dis 
abling the behavior corresponding to that mode 102. Modes 
102 can make the conditional aspects of the behavior of 
component 100 explicit. The behavior of component 100 is 
encapsulated in a Set of actions 104, which are discrete, 
event-triggered behavioral elements within the coordina 
tion-centric design methodology. Component 100 can be 
copied and the copies of component 100 can be modified, 
providing the code-sharing benefits of inheritance. 

0073) Actions 104 are enabled and disabled by modes 
102, and hence can be thought of as effectively being 
properties of modes 102. An event (not shown) is an 
instantaneous condition, Such as a timer tick, a data depar 
ture or arrival, or a mode change. Actions 104 can activate 
and deactivate modes 102, thereby selecting the future 
behavior of component 100. This is similar to actor lan 
guages, in which methods are allowed to replace an object's 
behavior. 

0074. In coordination-centric design, however, all pos 
sible behaviors must be identified and encapsulated before 
runtime. For example, a designer building a user interface 
component for a cell phone might define one mode for 
looking up numbers in an address book (in which the user 
interface behavior is to display complete address book 
entries in formatted text) and another mode for displaying 
the status of the phone (in which the user interface behavior 
is to graphically display the Signal power and the battery 
levels of the phone). The designer must define both the 
modes and the actions for the given behaviors well before 
the component can be executed. 

0075 FIG. 2 is component 100 further including a first 
coordination interface 200, a Second coordination interface 
202, and a third coordination interface 204. Coordination 
centric designs components 100 provide the code-sharing 
capability of object-oriented inheritance through copying. 
Another aspect of object-oriented inheritance is polymor 
phism through shared interfaces. In object-oriented lan 
guages, an object's interface is defined by its methods. 
Although coordination-centric designs actions 104 are 
Similar to methods in object-oriented languages, they do not 
define the interface for component 100. Components interact 
through explicit and Separate coordination interfaces, in this 
figure coordination interfaces 200, 202, and 204. The shape 
of coordination interfaces 200, 202, and 204 determines the 
ways in which component 100 may be connected within a 
Software system. The way coordination interfaces 200, 202, 
and 204 are connected to modes 102 and actions 104 within 
component 100 determines how the behavior of component 
100 can be managed within a system. Systemwide behavior 
is managed through coordinators (see FIG. 4B and Subse 
quent). 

0076 For our approach to be effective, several factors in 
the design of Software elements must coincide: packaging, 
internal organization, and how elements coordinate their 
behavior. Although these are often treated as independent 
issues, conflicts among them can exacerbate debugging. We 
handle them in a unified framework that Separates the 
internal activity from the external relationship of component 
100. This lets designers build more modular components and 
encourages them to specify distributable versions of coor 
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dination protocols. Components can be reused in a variety of 
contexts, both distributed, and Single processor 1. 
0077. 1. Introduction to Coordination 
0078. Within this application, coordination refers to the 
predetermined ways by which components interact. Con 
sider a common coordination activity: resource allocation. 
One simple protocol for this is round-robin: participants are 
lined up, and the resource is given to each participant in turn. 
After the last participant is served, the resource is given back 
to the first. There is a resource-Scheduling period during 
which each participant gets the resource exactly once, 
whether or not it is needed. 

007.9 FIG. 3A is prior art round-robin resource alloca 
tion protocol with a centralized controller 300, which keeps 
track of and distributes the shared resource (not shown) to 
each of Software elements 302, 304, 306, 308, and 310 in 
turn. With reference to FIG. 3A, controller 300 alone 
determines which software element 302, 304,306, 308, or 
310 is currently allowed to use the resource and which has 
it next. This implementation of a round-robin protocol 
permits software elements 302,304,306,308, and 310 to be 
modular, because only controller 300 keeps track of the 
Software elements. Unfortunately, when this implementation 
is implemented on a distributed architecture (not shown), 
controller 300 must typically be placed on a single proceSS 
ing element (not shown). As a result, all coordination 
requests must go through that processing element, which can 
cause a communication performance bottleneck. For 
example, consider the situation in which Software elements 
304 and 306 are implemented on a first processing element 
(not shown) and controller 300 is implemented on a second 
processing element. Software element 304 releases the 
shared resource and must Send a message indicating this to 
controller 300. Controller 300 must then send a message to 
Software element 306 to inform Software element 306 that it 
now has the right to the Shared resource. If the communi 
cation channel between the first processing resource and the 
Second processing resource is in use or the Second proceSS 
ing element is busy, then the shared resource must remain 
idle, even though both the current resource holder and the 
next resource holder (software elements 304 and 306 respec 
tively) are implemented on the first processing element (not 
shown). The shared resource must typically remain idle until 
communication can take place and controller 300 can 
respond. This is an inefficient way to control access to a 
shared resource. 

0080 FIG. 3B is a prior art round-robin resource allo 
cation protocol implementing a token passing Scheme. With 
reference to FIG. 3B, this system consists of a shared 
resource 311 and a set of Software elements 312, 314, 316, 
318, 320, and 322. In this system a logical token 324 
Symbolizes the right to access resource 311, i.e., when a 
Software element holds token 324, it has the right to acceSS 
resource 311. When one of Software elements 312,314,316, 
318, 320, or 322 finishes with resource 311, it passes token 
324, and with token 324 the access right, to a Successor. This 
implementation can be distributed without a centralized 
controller, but as shown in FIG. v3B, this is less modular, 
because it requires each Software element in the Set to keep 
track of a Successor. 

0081) Not only must software elements 312, 314, 316, 
318,320, and 322 keep track of Successors, but each must 
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implement a potentially complicated and error-prone proto 
col for transferring token 324 to its Successor. Bugs can 
cause token 324 to be lost or introduce multiple tokens 324. 
Since there is no formal connection between the physical 
System and complete topology maps (diagrams that show 
how each Software element is connected to others within the 
System), Some Software elements might erroneously be 
Serviced more than once per cycle, while others are com 
pletely neglected. However, these bugs can be extremely 
difficult to track after the system is completed. The protocol 
is entangled with the functionality of each Software element, 
and it is difficult to Separate the two for debugging purposes. 
Furthermore, if a few of the Software elements are located on 
the same machine, performance of the implementation can 
be poor. The entangling of computation and coordination 
requires intrusive modification to optimize the System. 
0082) 2. Coordination-Centric Design's Approach to 
Coordination 

0083. The coordination-centric design methodology pro 
vides an encapsulating formalism for coordination. Compo 
nents Such as component 100 interact using coordination 
interfaces, Such as first, Second, and third coordination 
interfaces 200, 202, and 204, respectively. Coordination 
interfaces preserve component modularity while exposing 
any parts of a component that participate in coordination. 
This technique of connecting components provides poly 
morphism in a Similar fashion to Subtyping in object 
oriented languages. 
0084 FIG. 4A is a detailed view of a component 400 and 
a resource access coordination interface 402 connected to 
component 400 for use in a round-robin coordination pro 
tocol in accordance with the present invention. With refer 
ence to FIG. 4A, resource access coordination interface 402 
facilitates implementation of a round-robin protocol that is 
Similar to the token-passing round-robin protocol described 
above. Resource acceSS coordination interface 402 has a 
Single bit of control State, called access, which is shown as 
an arbitrated control port 404 that indicates whether or not 
component 400 is holding a virtual token (not shown). 
Component 400 can only use a send message port 406 on 
access coordination interface 402 when arbitrated control 
port 404 is true. Access coordination interface 402 further 
has a receive message port 408. 

0085 FIG. 4B show a round-robin coordinator 410 in 
accordance with the present invention. With reference to 
FIG. 4B, round-robin coordinator 410 has a set of coordi 
nator coordination interfaceS 412 for connecting to a set of 
components 400. Each component 400 includes a resource 
acceSS coordination interface 402. Each coordinator coordi 
nation interface 412 has a coordinator arbitrated control port 
414, an incoming Send message port 416 and an outgoing 
receive message port 418. Coordinator coordination inter 
face 412 in complimentary to resource acceSS coordination 
interface 402, and Vice versa, because the ports on the two 
interfaces are compatible and can function to transfer infor 
mation between the two interfaces. 

0086 The round-robin protocol requires round-robin 
coordinator 410 to manage the coordination topology. 
Round-robin coordinator 410 is an instance of more general 
abstractions called coordination classes, in which coordina 
tion classes define Specific coordination protocols and a 
coordinator is a specific implementation of the coordination 
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class. Round-robin coordinator 410 contains all information 
about how components 400 are supposed to coordinate. 
Although round-robin coordinator 410 can have a distrib 
uted implementation, no component 400 is required to keep 
references to any other component 400 (unlike the distrib 
uted round-robin implementation shown in FIG. 3B). All 
required references are maintained by round-robin coordi 
nator 410 itself, and components 400 do not even need to 
know that they are coordinating through round-robin. 
ReSource access coordination interface 402 can be used with 
any coordinator that provides the appropriate complemen 
tary interface. A coordinator's design is independent of 
whether it is implemented on a distributed platform or on a 
monolithic Single processor platform. 
0087 3. Coordination Interfaces 
0088 Coordination interfaces are used to connect com 
ponents to coordinators. They are also the principle key to a 
variety of useful runtime debugging techniques. Coordina 
tion interfaces Support component modularity by exposing 
all parts of the component that participate in the coordina 
tion protocol. Ports are elements of coordination interfaces, 
as are guarantees and requirements, each of which will be 
described in turn. 

0089 A. Ports 
0090. A port is a primitive connection point for intercon 
necting components. Each port is a five-tuple (T, A, Q, D; 
R) in which: 

0091 Trepresents the data type of the port. T can be 
one of int, boolean, char, byte, float, double, or 
cluster, in which cluster represents a cluster of data 
types (e.g., an int followed by a float followed by two 
bytes). 

0092 A is a boolean value that is true if the port is 
arbitrated and false otherwise. 

0093 Q is an integer greater than Zero that repre 
Sents logical queue depth for a port. 

0094) D is one of in, out, inout, or custom and 
represents the direction data flows with respect to the 
port. 

0095 R is one of discard-on-read, discard-on-trans 
fer, or hold and represents the policy for data 
removal on the port. Discard-on-read indicates that 
data is removed immediately after it is read (and any 
data in the logical queue are shifted), discard-on 
transfer indicates that data is removed from a port 
immediately after being transferred to another port, 
and hold indicates that data should be held until it is 
overwritten by another value. Hold is subject to 
arbitration. 

0.096 Custom directionality allows designers to specify 
ports that accept or generate only certain specific values. For 
example, a designer may want a port that allows other 
components to activate, but not deactivate, a mode. While 
many combinations of port attributes are possible, we nor 
mally encounter only a few. The three most common are 
message ports (output or input), State ports (output, input, or 
both; Sometimes arbitrated), and control ports (a type of State 
port). FIG. 5 illustrates the visual syntax used for several 
common ports throughout this application. With reference to 
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FIG. 5, this figure depicts an exported state port 502, an 
imported State port 504, an arbitrated state port 506, an 
output data port 508, and an input data port 510. 
0097. 1. Message Ports 
0098 Message ports (output and input) data ports 508 
and 510 respectively) are either send (T; false; 1; out; 
discard-on-transfer) or receive (T, false; Q; in; discard-on 
read). Their function is to transfer data between components. 
Data passed to a Send port is transferred immediately to the 
corresponding receive port, thus it cannot be retrieved from 
the Send port later. Receive data ports can have queues of 
various depths. Data arrivals on these ports are frequently 
used to trigger and pass data parameters into actions. Values 
remain on receive ports until they are read. 
0099 2. State Ports 
0100 State ports take one of three forms: 

0101 1. (T; false; 1; out; hold) 
0102) 2. (T; false; 1; in; hold) 
0103) 3. (T; true; 1; inout; hold) 

0104 State ports, such as exported state port 502, 
imported State port 504, and arbitrated state port 506, hold 
persistent values, and the value assigned to a State port may 
be arbitrated. This means that, unlike message ports, values 
remain on the State ports until changed. When multiple 
Software elements simultaneously attempt to alter the value 
of arbitrated State port 506, the final value is determined 
based on arbitration rules provided by the designer through 
an arbitration coordinator (not shown). 
0105 State ports transfer variable values between scopes, 
as explained below. In coordination-centric design, all vari 
ables referenced by a component are local to that compo 
nent, and these variables must be explicitly declared in the 
component's Scope. Variables can, however, be bound to 
State ports that are connected to other components. In this 
way a variable value can be transferred between components 
and the variable value achieves the system-level effect of a 
multivariable. 

01.06 3. Control Ports 
0107 Control ports are similar to state ports, but a control 
port is limited to having the boolean data type. Control ports 
are typically bound to modes. Actions interact with a control 
port indirectly, by Setting and responding to the values of a 
mode that is bound to the control port. 
0.108 For example, arbitrated control port 404 shown in 
FIG. 4A is a control port that can be bound to a mode (not 
shown) containing all actions that send data on a shared 
channel. When arbitrated control port 404 is false, the mode 
is inactive, disabling all actions that Send data on the 
channel. 

0109 B. Guarantees 
0110 Guarantees are formal declarations of invariant 
properties of a coordination interface. There can be several 
types of guarantees, Such as timing guarantees between 
events, guarantees between control State (e.g., State A and 
State B are guaranteed to be mutually exclusive), etc. 
Although a coordination interface's guarantees reflect prop 
erties of the component to which the coordination interface 
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is connected, the guarantees are not physically bound to any 
internal portions of the component. Guarantees can often be 
certified through Static analysis of the Software System. 
Guarantees are meant to cache various properties that are 
inherent in a component or a coordinator in order to Simplify 
Static analysis of the Software System. 
0111. A guarantee is a promise provided by a coordina 
tion interface. The guarantee takes the form of a predicate 
promised to be invariant. In principle, guarantees can 
include any type of predicate (e.g., XZ3, in which X is an 
integer valued State port, or ta-te-2 ms). Throughout the 
remainder of this application, guarantees will be only event 
ordering guarantees (guarantees that specify acceptable 
orders of events) or control-relationship guarantees (guar 
antees pertaining to acceptable relative component behav 
iors). 
0112 C. Requirements 
0113. A requirement is a formal declaration of the prop 
erties necessary for correct Software System functionality. 
An example of a requirement is a required response time for 
a coordination interface-the number of messages that must 
have arrived at the coordination interface before the coor 
dination interface can transmit, or fire, the messages. When 
two coordination interfaces are bound together, the require 
ments of the first coordination interface must be conserva 
tively matched by the guarantees of the Second coordination 
interface (e.g., x<7 as a guarantee conservatively matches 
X-8 as a requirement). As with guarantees, requirements are 
not physically bound to anything within the component 
itself. Guarantees can often be verified to be sufficient for the 
correct operation of the Software System in which the 
component is used. In Sum, a requirement is a predicate on 
a first coordination interface that must be conservatively 
matched with a guarantee on a complementary Second 
coordination interface. 

0114 D. Conclusion Regarding Coordination Interfaces 
0115) A coordination interface is a four-tuple (P, G; R; I) 
in which: 

0116 P is a set of named ports. 
0.117) G is a set of named guarantees provided by the 
interface. 

0118 R is a set of named requirements that must be 
matched by guarantees of connected interfaces. 

0119) 
0120 AS this definition shows, coordination interfaces 
are recursive. Coordinator coordination interface 412, 
shown in FIG. 4B, used for round-robin coordination is 
called AccessInterface and is defined in Table 1. 

I is a set of named coordination interfaces. 

Constituent Value 

ports P = {access: StatePort, s:OutMessagePort, rinMessagePort 
guarantees G = { access > s.gen } 
requirements R = () 
interfaces I = ) 

0121 Related to coordination interfaces is a recursive 
coordination interface descriptor, which is a five-tuple (P, 
G., R., I, N) in which: 
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0.122 P, is a set of abstract ports, which are ports that 
may be incomplete in their attributes (i.e., they do not 
yet have a datatype). 

0123 G is a set of abstract guarantees, which are 
guarantees between abstract ports. 

0124 R is a set of abstract requirements, which are 
requirements between abstract ports. 

0.125. It is a set of coordination interface descriptors. 
0126 N is an element of QxQ, where Q={o}U Z+and 
Z+denotes the set of positive integers. Nindicates the 
number or range of numbers of permissible interfaces 
(e.g., 2, 2, 30, etc.). 

0127. Allowing coordination interfaces to contain other 
coordination interfaces is a powerful feature. It lets design 
erS use common coordination interfaces as complex ports 
within other coordination interfaces. For example, the basic 
message ports described above are nonblocking, but we can 
build a blocking coordination interface (not shown) that 
Serves as a blocking port by combining a wait State port with 
a meSSage port. 

0128 4. Coordinators 
0129. A coordinator provides the concrete representa 
tions of intercomponent aspects of a coordination protocol. 
Coordinators allow a variety of Static analysis debugging 
methodologies for Software Systems created with the coor 
dination-centric design methodology. A coordinator contains 
a set of coordination interfaces and defines the relationships 
the coordination interfaces. The coordination interfaces 
complement the component coordination interfaces pro 
Vided by components operating within the protocol. 
Through matched interface pairs, coordinators effectively 
describe connections between message ports, correlations 
between control States, and transactions between compo 
nentS. 

0.130 For example, round-robin coordinator 410, shown 
in FIG. 4B, must ensure that only one component 400 has 
its component control port 404's value, or its access bit, Set 
to true. Round-robin coordinator 410 must further ensure 
that the correct component 400 has its component control 
port 404 set to true for the chosen sequence. This section 
presents formal definitions of the parts that comprise coor 
dinators: modes, actions, bindings, action triples, and con 
straints. These definitions culminate in a formal definition of 
coordinators. 

0131) A. Modes 
0.132. A mode is a boolean value that can be used as a 
guard on an action. In a coordinator, the mode is most often 
bound to a control port in a coordination interface for the 
coordinator. For example, in round-robin coordinator 410, 
the modes of concern are bound to a coordinator control port 
414 of each coordinator coordination interface 412. 

0133 B. Actions 
0.134. An action is a primitive behavioral element that 
Ca 

0135) Respond to events. 
0.136 Generate events. 
0137) Change modes. 

0.138 Actions can range in complexity from simple 
operations up to complicated pieces of Source code. An 
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action in a coordinator is called a transparent action because 
the effects of the action can be precomputed and the internals 
of the action are completely exposed to the coordination 
centric design tools. 
013:9 C. Bindings 
0140 Bindings connect input ports to output ports, con 
trol ports to modes, State ports to variables, and message 
ports to events. Bindings are transparent and passive. Bind 
ings are simply conduits for event notification and data 
transfer. When used for event notification, bindings are 
called triggers. 

0141. D. Action Triples 
0142. To be executed, an action must be enabled by a 
mode and triggered by an event. The combination of a mode, 
trigger, and action is referred to as an action triple, which is 
a triple (m; t, a) in which: 

0.143 m is a mode. 
0144 t is a trigger. 

0145 a is an action. 
0146 The trigger is a reference to an event type, but it can 
be used to pass data into the action. Action triples are 
written: mode: trigger: action 

0147 A coordinator's actions are usually either pure 
control, in which both the trigger and action performed 
affect only control state, or pure data, in which both the 
trigger and action performed occur in the data domain. In the 
case of round-robin coordinator 410, the following set of 
actions is responsible for maintaining the appropriate State: 

0148 access; :-access; +accessionedn 
014.9 The symbol “+” signifies a mode's activation edge 

(i.e., the event associated with the mode becoming true), and 
the symbol “-” signifies its deactivation edge. When any 
coordinator coordination interface 412 deactivates its arbi 
trated control port 404's, access bit, the access bit of the next 
coordinator coordination interface 412 is automatically acti 
Vated. 

0150 E. Constraints 
0151. In this dissertation, constraints are boolean rela 
tionships between control ports. They take the form: 

0152 Condition =>Effect 
0153. This essentially means that the Condition (on the 
left side of the arrow) being true implies that Effect (on the 
right side of the arrow) is also true. In other words, if 
Condition is true, then Effect should also be true. 

0154) A constraint differs from a guarantee in that the 
guarantee is limited to communicating in-variant relation 
ships between components without providing a way to 
enforce the in-variant relationship. The constraint, on the 
other hand, is a Set of instructions to the runtime System 
dealing with how to enforce certain relationships between 
components. When a constraint is violated, two corrective 
actions are available to the System: (1) modify the values on 
the left-hand Side to make the left-hand expression evaluate 
as false (an effect termed backpressure in 27) or (2) alter 
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the right-hand side to make it true. We refer to these 
techniques as LHM (left-hand modify) and RHM (right 
hand modify). For example, given the constraint X->y and 
the value x^ y, with RHM semantics the runtime system 
must respond by disabling y or Setting y to false. Thus the 
value of y is set to true. 
0155 The decision of whether to use LHM, to use RHM, 
or even to Suspend enforcement of a constraint in certain 
Situations can dramatically affect the efficiency and predict 
ability of the Software System. Coordination-centric design 
does not attempt to Solve Simultaneous constraints at runt 
ime. Rather, runtime algorithms use local ordered constraint 
Solutions. This, however, can result in Some constraints 
being violated and is discussed further below. 
0156 Round-robin coordinator 410 has a set of safety 
constraints to ensure that there is never more than one token 
in the System: 

(O157 access,z,900W inaccess, 
0158. The above equation translates roughly as access 
implies not access; for the set of all access, where j is not 
equal to i. Even this Simple constraint System can cause 
problems with local resolution semantics (as are LHM and 
RHM). If the runtime system attempted to fix all constraints 
Simultaneously, all access modes would be shut down. If 
they were fixed one at a time, however, any duplicate tokens 
would be erased on the first pass, Satisfying all other 
constraints and leaving a single token in the System. 
0159. Since high-level protocols can be built from com 
binations of lower-level protocols, coordinators can be hier 
archically composed. A coordinator is a six-tuple (I; M, B; 
N; A; X) in which: 

0160 
0161) M is a set of modes. 

I is a set of coordination interfaces. 

0162 B is a set of bindings between interface ele 
ments (e.g., control ports and message ports) and 
internal elements (e.g., modes and triggers). 

0163 N is a set of constraints between interface 
elements. 

0.164 A is a set of action triples for the coordinator. 

0.165 X is a set of Subcoordinators. 

0166 FIGS. 6A, 6B, 6C, and 6D show a few simple 
coordinators highlighting the bindings and constraints of the 
respective coordinators. With reference to FIG. 6A, a uni 
directional data transfer coordinator 600 transferS data in 
one direction between two components (not shown) by 
connecting incoming receive message port 408 to outgoing 
receive message port 418 with a binding 602. With reference 
to FIG. 6B, bidirectional data transfer coordinator 604 
transferS data back and forth between two components (not 
shown) by connecting incoming receive message port 408 to 
outgoing receive message port 418 with binding 602 and 
connecting Send message port 406 to incoming Send mes 
sage port 416 with a second binding 602. Unidirectional data 
transfer coordinator 600 and bidirectional data transfer coor 
dinator 604 Simply move data from one message port to 
another. Thus each coordinator consists of bindings between 
corresponding ports on Separate coordination interfaces. 
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0167. With reference to FIG. 6C, state unification coor 
dinator 606 ensures that a state port a 608 and a state port b 
610 are always set to the same value. State unification 
coordinator 606 connects state port a 608 to state port b 610 
with binding 602. With reference to FIG. 6D, control state 
mutex coordinator 612 has a first constraint 618 and a 
Second constraint 620 as follows: 

0168 (1)c=> d and 
0169 (2)d=>-c. 

0170 Constraints 618 and 620 can be restated as follows: 
0171 (1) A state port c 614 having a true value 
implies that a State port d 616 has a false value, and 

0172 (2) State port d 616 having a true value 
implies that State port c 614 has a false value. 

0173 A coordinator has two types of coordination inter 
faces: up interfaces that connect the coordinator to a Second 
coordinator, which is at a higher level of design hierarchy 
and down interfaces that connect the coordinator either to a 
component or to a third coordinator, which is at a lower level 
of design hierarchy. Down interfaces have names preceded 
with . Round-robin coordinator 410 has six down coor 
dination interfaces (previously referred to as coordinator 
coordination interface 412), with constraints that make the 
turning off of any coordinator control port 414 (also referred 
to as access control port) turn on the coordinator control port 
414 of the next coordinator coordination interface 412 in 
line. Table 2 presents all constituents of the round-robin 
coordinator. 

Constituent Value 

coordination interfaces I = AccessInterface 
modes M = access 
bindings B = Wisis (~AccessInterface access, access) U 
constraints N = W1-1-(Wassocip access, alaccess;) 
actions A = Weiss access;-access: +access mod 6 
Subcoordinators X = () 

0.174. This tuple describes an implementation of a round 
robin coordination protocol for a particular System with Six 
components, as shown in round-robin coordinator 410. We 
use a coordination class to describe a general coordination 
protocol that may not have a fixed number of coordinator 
coordination interfaces. The coordination class is a six-tuple 
(Ic; Mc; Bc, Nc; Ac; Xc) in which: 

0.175 Ic is a set of coordination interface descriptors 
in which each descriptor provides a type of coordi 
nation interface and Specifies the number of Such 
interfaces allowed within the coordination class. 

0176 Mc is a set of abstract modes that supplies 
appropriate modes when a coordination class is 
instantiated with a fixed number of coordinator coor 
dination interfaces. 

0177. Bc is a set of abstract bindings that forms 
appropriate bindings between elements when the 
coordination class is instantiated. 

0.178 Nc is a set of abstract constraints that ensures 
appropriate constraints between coordination inter 
face elements are in place as Specified at instantia 
tion. 
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0179 Ac is a set of abstract action triples for the 
coordinator. 

0180 Xc is a set of coordination classes (hierarchy). 
0181. While a coordinator describes coordination proto 
col for a particular application, it requires many aspects, 
Such as the number of coordination interfaces and datatypes, 
to be fixed. Coordination classes describe protocols acroSS 
many applications. The use of the coordination interface 
descriptors instead of coordination interfaces lets coordina 
tion classes keep the number of interfaces and datatypes 
undetermined until a particular coordinator is instantiated. 
For example, a round-robin coordinator contains a fixed 
number of coordinator coordination interfaces with Specific 
bindings and constraints between the message and State 
ports on the fixed number of coordinator coordination inter 
faces. A round-robin coordination class contains descriptors 
for the coordinator coordination interface type, without 
Stating how many coordinator coordination interfaces, and 
instructions for building bindings and constraints between 
ports on the coordinator coordination interfaces when a 
particular round-robin coordinator is created. 
0182 5. Components 
0183) A component is a six-tuple (I; A; M; V; S; X) in 
which: 

0.184 I is a set of coordination interfaces. 
0185. A is a set of action triples. 
0186 M is a set of modes. 
0187 V is a set of typed variables. 
0188 S is a set of Subcomponents. 
0189 X is a set of coordinators used to connect the 
Subcomponents to each other and to the coordination 
interfaces. 

0.190 Actions within a coordinator are fairly regular, and 
hence a large number of actions can be described with a few 
Simple expressions. However, actions within a component 
are frequently diverse and can require distinct definitions for 
each individual action. Typically a component's action 
triples are represented with a table that has three columns: 
one for the mode, one for the trigger, and one for the action 
code. Table 3 shows Some example actions from a compo 
nent that can use round-robin coordination. 

Mode Trigger Action 

aCCCSS tick AccessInterface.s.send ("Test message'); 
-aCCCSS 

access tick waitCount ++: 

0191) A component resembles a coordinator in several 
ways (for example, the modes and coordination interfaces in 
each are virtually the same). Components can have internal 
coordinators, and because of the internal coordinators, com 
ponents do not always require either bindings or constraints. 
In the following SubSections, various aspects of components 
are described in greater detail. Theses aspects of components 
include variable Scope, action transparency, and execution 
Semantics for Systems of actions. 
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0192 A. Variable Scope 
0193 To enhance a component's modularity, all variables 
accessed by an action within the component are either local 
to the action, local to the immediate parent component of the 
action, or accessed by the immediate parent component of 
the action via State ports in one of the parent component's 
coordination interfaces. For a component's variables to be 
available to a hierarchical child component, they must be 
exported by the component and then imported by the child 
of the component. 
0194 B. Action Transparency 
0.195 An action within a component can be either a 
transparent action or an opaque action. Transparent and 
opaque actions each have different invocation Semantics. 
The internal properties, i.e. control Structures, variable, 
changes in State, operators, etc., of transparent actions are 
Visible to all coordination-centric design tools. The design 
tools can Separate, observe, and analyze all the internal 
properties of opaque actions. Opaque actions are Source 
code. Opaque actions must be executed directly, and looking 
at the internal properties of opaque actions can be accom 
plished only through traditional, Source-level debugging 
techniques. An opaque action must explicitly declare any 
mode changes and coordination interfaces that the opaque 
action may directly affect. 

0196) C. Action Execution 
0.197 An action is triggered by an event, such as data 
arriving or departing a message port, or changes in value 
being applied to a State port. An action can change the value 
of a State port, generate an event, and provide a way for the 
Software system to interact with low-level device drivers. 
Since actions typically produce events, a single trigger can 
be propagated through a Sequence of actions. 

0198 6. Protocols Implemented with Coordination 
Classes 

0199. In this section, we describe several coordinators 
that individually implement Some common protocols: Sub 
Sumption, barrier Synchronization, rendezvous, and dedi 
cated RPC. 

0200 A. Subsumption Protocol 
0201 A subsumption protocol is a priority-based, pre 
emptive resource allocation protocol commonly used in 
building Small, autonomous robots, in which the shared 
resource is the robot itself. 

0202 FIG. 7 shows a set of coordination interfaces and 
a coordinator for implementing the SubSumption protocol. 
With reference to FIG. 7, a subsumption coordinator 700 
has a set of SubSumption coordinator coordination interfaces 
702, which have a Subsume arbitrated coordinator control 
port 704 and an incoming subsume message port 706. Each 
subsume component 708 has a subsume component coordi 
nation interface 710. Subsume component coordination 
interface 710 has a subsume arbitrated component control 
port 712 and an outgoing SubSume message port 714. 
Subsumption coordinator 700 and each subsume component 
708 are connected by their respective coordination inter 
faces, 702 and 710. Each subsumption coordinator coordi 
nation interface 702 in Subsumption coordinator 700 is 
associated with a priority. Each subsume component 708 has 
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a behavior that can be applied to a robot (not shown). At any 
time, any SubSume component 708 can attempt to assert its 
behavior on the robot. The asserted behavior coming from 
the subsume component 708 connected to the Subsumption 
coordinator coordination interface 702 with the highest 
priority is the asserted behavior that will actually be per 
formed by the robot. Subsume components 708 need not 
know anything about other components in the System. In 
fact, each subsume component 708 is designed to perform 
independently of whether their asserted behavior is per 
formed or ignored. 
0203 Subsumption coordinator 700 further has a slave 
coordinator coordination interface 716, which has an out 
going Slave message port 718. Outgoing Slave message port 
718 is connected to an incoming slave message port 720. 
Incoming Slave message port 720 is part of a Slave coordi 
nation interface 722, which is connected to a slave 730. 
When a subsume component 708 asserts a behavior and that 
component has the highest priority, SubSumption coordinator 
700 will control slave 730 (which typically controls the 
robot) based on the asserted behavior. 
0204. The following constraint describes the basis of the 
subsumption coordinator 700's behavior: 

p-l 
Subsume => A - Subsume 

i=l 

0205 This means that if any subsume component 708 has 
a Subsume arbitrated component control port 712 that has a 
value of true, then all lower-priority Subsume arbitrated 
component control ports 712 are set to false. An important 
difference between round-robin and subsumption is that in 
round-robin, the resource access right is transferred only 
when Surrendered. Therefore, round-robin coordination has 
cooperative release Semantics. However, in SubSumption 
coordination, a subsume component 708 tries to obtain the 
resource whenever it needs to and Succeeds only when it has 
higher priority than any other subsume component 708 that 
needs the resource at the same time. A lower-priority Sub 
Sume component 708 already using the resource must Sur 
render the resource whenever a higher-priority Subsume 
component 708 tries to access the resource. Subsumption 
coordination uses preemptive release Semantics, whereby 
each subsume component 708 must always be prepared to 
relinquish the resource. 
0206 Table 4 presents the complete tuple for the Sub 
Sumption coordinator. 

Constituent Value 

coordination interfaces I = (Subsume.) U (Output) 
modes M = subsume 
bindings B = Wi-i- (Subsume subsume, subsume)U 
constraints N = Weisn (Weisi Subsume, Pllsubsume;) 
actions A = ) 
Subcoordinators X = ) 

0207 B. Barrier Synchronization Protocol 
0208. Other simple types of coordination that compo 
nents might engage in enforce Synchronization of activities. 
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An example is barrier Synchronization, in which each com 
ponent reaches a Synchronization point independently and 
waits. FIG. 8 depicts a barrier synchronization coordinator 
800. With reference to FIG. 8, barrier synchronization 
coordinator 800 has a set of barrier synchronization coor 
dination interfaces 802, each of which has a coordinator 
arbitrated state port 804, named wait. Coordinator arbitrated 
state port 804 is connected to a component arbitrated State 
port 806, which is part of a component coordination inter 
face 808. Component coordination interface 808 is con 
nected to a component 810. When all components 810 reach 
their respective Synchronization points, they are all released 
from waiting. The actions for a barrier Synchronization 
coordinator with n interfaces are: 

A waii; : : Wo-j-, -waiti 
Osian 

0209. In other words, when all wait modes (not shown) 
become active, each one is released. The blank between the 
two colons indicates that the trigger event is the guard 
condition becoming true. 

0210 C. Rendezvous Protocol 
0211) A resource allocation protocol similar to barrier 
synchronization is called rendezvous. FIG. 9 depicts a 
rendezvous coordinator 900 in accordance with the present 
invention. With reference to FIG. 9, rendezvous coordinator 
900 has a rendezvous coordination interface 902, which has 
a rendezvous arbitrated State port 904. A set of rendezvous 
components 906, each of which may perform different 
functions or have vastly different actions and modes, has a 
rendezvous component coordination interface 908, which 
includes a component arbitrated state port 910. Rendezvous 
components 906 connect to rendezvous coordinator 900 
through their respective coordination interfaces, 908 and 
902. Rendezvous coordinator 900 further has a rendezvous 
resource coordination interface 912, which has a rendezvous 
resource arbitrated State port 914, also called available. A 
resource 916 has a resource coordination interface 918, 
which has a resource arbitrated state port 920. Resource 916 
is connected to rendezvous coordinator 900 by their comple 
mentary coordination interfaces, 918 and 912 respectively. 

0212. With rendezvous-style coordination, there are two 
types of participants: resource 916 and Several resource 
users, here rendezvous components 916. When resource 916 
is available, it activates its resource arbitrated state port 920, 
also referred to as its available control port. If there are any 
waiting rendezvous components 916, one will be matched 
with the resource; both participants are then released. This 
differs from subsumption and round-robin in that resource 
916 plays an active role in the protocol by activating its 
available control port 920. 

0213) The actions for rendezvous coordinator 900 are: 

0214) available, wait. : :-available, -wait, 
0215. This could also be accompanied by other modes 
that indicate the status after the rendezvous. With rendez 
Vous coordination, it is important that only one component 
at a time be released from wait mode. 
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0216 D. Dedicated RPC Protocol 
0217. A coordination class that differs from those 
described above is dedicated RPC. FIG. 10 depicts a dedi 
cated RPC system. With reference to FIG. 10, a dedicated 
RPC coordinator 1000 has an RPC server coordination 
interface 1002, which includes an RPC server imported State 
port 1004, an RPC server output message port 1006, and an 
RPC server input message port 1008. Dedicated RPC coor 
dinator 1000 is connected to a server 1010. Server 1010 has 
a server coordination interface 1012, which has a server 
exported state port 1014, a server input data port 1016, and 
a server output data port 1018. Dedicated RPC coordinator 
1000 is connected to server 1010 through their complemen 
tary coordination interfaces, 1002 and 1012 respectively. 
Dedicated RPC coordinator 1000 further has an RPC client 
coordination interface 1020, which includes an RPC client 
imported State port 1022, an RPC client input message port 
1024, and an RPC client output message port 1026. Dedi 
cated RPC coordinator 1000 is connected to a client 1028 by 
connecting RPC client coordination interface 1020 to a 
complementary client coordination interface 1030. Client 
coordination interface 1030 has a client exported State port 
1032, a client output message port 1034, and a client input 
message port 1036. 
0218. The dedicated RPC protocol has a client/server 
protocol in which server 1010 is dedicated to a single client, 
in this case client 1028. Unlike the resource allocation 
protocol examples, the temporal behavior of this protocol is 
the most important factor in defining it. The following 
transaction listing describes this temporal behavior: 
0219 Client 1028 enters blocked mode by changing the 
value stored at client exported state port 1032 to true. 
0220 Client 1028 transmits an argument data message to 
server 1010 via client output message port 1034. 
0221) Server 1010 receives the argument (labeled “a”) 
data message via Server input data port 1016 and enters 
Serving mode by changing the value Stored in Server 
exported state port 1014 to true. 
0222 Server 1010 computes return value. 
0223 Server 1010 transmits a return (labeled “r”) mes 
sage to client 1020 via server output data port 1018 and exits 
Serving mode by changing the value Stored in Server 
exported state port 1014 to false. 
0224 Client 1028 receives the return data message via 
client input message port 1036 and exits blocked mode by 
changing the value Stored at client exported State port 1032 
to false. 

0225. This can be presented more concisely with an 
expression describing causal relationships: 

TRPC = + client.blocked - client.transmits -> 

+server.Serving - Server..transmits -> 

(-server.Serving || client.receives) - - client.blocked 

0226. The transactions above describe what is supposed 
to happen. Other properties of this protocol must be 
described with temporal logic predicates. 
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0227 
0228 
0229) 

0230. The r in server.r.output refers to the server output 
data port 1018, also labeled as the revent port on the server, 
and the a in Serving.a.input refers to Server input data port 
1016, also labeled as the a port on the server (see FIG. 10). 
0231. Together, these predicates indicate that (1) it is an 
error for server 1010 to be in serving mode if client 1028 is 
not blocked; (2) after server 1010 enters serving mode, a 
response message is sent or else an error occurs; and (3) 
server 1010 receiving a message means that server 1010 
must enter Serving mode. Relationships between control 
State and data paths must also be considered, Such as: 

0232 (client.a =>client.blocked) 
0233. In other words, client 1028 must be in blocked 
mode whenever it sends an argument message. 

Server. Serving =>client.blocked 
Server. Serving =>F(server.r.output) 
Server.a.input =>F(server. Serving) 

0234. The first predicate takes the same form as a con 
straint; however, since dedicated RPC coordinator 1000 only 
imports the client:blocked and Server:Serving modes (i.e., 
through RPC client imported State port 1022 and RPC server 
imported state port 1004 respectively), dedicated RPC coor 
dinator 1000 is not allowed to alter these values to comply. 
In fact, none of these predicates is explicitly enforced by a 
runtime System. However, the last two can be used as 
requirements and guarantees for interface type-checking. 
0235 7. System-Level Execution 
0236 Coordination-centric design methodology lets sys 
tem Specifications be executed directly, according to the 
Semantics described above. When components and coordi 
nators are composed into higher-order Structures, however, 
it becomes essential to consider hazards that can affect 
System behavior. Examples include conflicting constraints, 
in which local resolution Semantics may either leave the 
System in an inconsistent State or make it cycle forever, and 
conflicting actions that undo one another's behavior. In the 
remainder of this Section, the effect of composition issueS on 
System-level executions is explained. 
0237 A. System Control Configurations 
0238 A configuration is the combined control state of a 
System-basically, the Set of active modes at a point in time. 
In other words, a configuration in coordination-centric 
design is a bit vector containing one bit for each mode in the 
System. The bit representing a control State is true when the 
control State is active and false when the control State is 
inactive. Configurations representing the complete System 
control State facilitate reasoning on System properties and 
enable Several forms of Static analysis of System behavior. 
0239 B. Action-Trigger Propagation 
0240 Triggers are formal parameters for events. As men 
tioned earlier, there are two types of triggers: (1) control 
triggers, invoked by control events Such as mode change 
requests, and (2) data flow triggers, invoked by data events 
Such as message arrivals or departures. Components and 
coordinators can both request mode changes (on the modes 
visible to them) and generate new messages (on the message 
ports visible to them). Using actions, these events can be 
propagated through the components and coordinators in the 
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System, causing a cascade of data transmissions and mode 
change requests, Some of which can cancel other requests. 
When the requests, and Secondary requests implied by them, 
are all propagated through the System, any requests that have 
not been canceled are confirmed and made part of the 
System's new configuration. 
0241 Triggers can be immediately propagated through 
their respective actions or delayed by a Scheduling Step. 
Recall that component actions can be either transparent or 
opaque. Transparent actions typically propagate their trig 
gers immediately, although it is not absolutely necessary that 
they do so. Opaque actions typically must always delay 
propagation. 
0242 1. Immediate Propagation 
0243 Some triggers must be immediately propagated 
through actions, but only on certain types of transparent 
actions. Immediate propagation can often involve Static 
precomputation of the effect of changes, which means that 
certain actions may never actually be performed. For 
example, consider a System with a coordinator that has an 
action that activates mode A and a coordinator with an action 
that deactivates mode B whenever A is activated. Static 
analysis can be used to determine in advance that any event 
that activates A will also deactivate B; therefore, this effect 
can be executed immediately without actually propagating it 
through A. 
0244 2. Delayed Propagation 
0245 Trigger propagation through opaque actions must 
typically be delayed, Since the System cannot look into 
opaque actions to precompute their results. Propagation may 
be delayed for other reasons, Such as System efficiency. For 
example, immediate propagation requires tight Synchroni 
Zation among Software components. If functionality is 
Spread among a number of architectural components, imme 
diate propagation is impractical. 
0246 C. A Protocol Implemented with a Compound 
Coordinator 

0247 Multiple coordinators are typically needed in the 
design of a System. The multiple coordinators can be used 
together for a single, unified behavior. Unfortunately, one 
coordinator may interfere with another's behavior. 
0248 FIG. 11 shows a combined coordinator 1100 with 
both preemption and round-robin coordination for control 
ling access to a resource, as discussed above. With reference 
to FIG. 11, components 1102, 1104, 1106, 1108, and 1110 
primarily use round-robin coordination, and each includes a 
component coordination interface 1112, which has a com 
ponent arbitrated control port 1114 and a component output 
message port 1116. However, when a preemptor component 
1120 needs the resource, preemptor component 1120 is 
allowed to grab the resource immediately. Preemptor com 
ponent 1120 has a preemptor component coordination inter 
face 1122. Preemptor component coordination interface 
1122 has a preemptor arbitrated State port 1124, a preemptor 
output message port 1126, and a preemptor input message 
port 1128. 
0249 All component coordination interfaces 1112 and 
preemptor component coordination interface 1122 are con 
nected to a complementary combined coordinator coordina 
tion interface 1130, which has a coordinator arbitrated State 
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port 1132, a coordinator input message port 1134, and a 
coordinator output message port 1136. Combined coordina 
tor 1100 is a hierarchical coordinator and internally has a 
round-robin coordinator (not shown) and a preemption coor 
dinator (not shown). Combined coordinator coordination 
interface 1130 is connected to a coordination interface to 
round-robin 1138 and a coordination interface to preempt 
1140. Coordinator arbitrated State port 1132 is bound to both 
a token arbitrated control port 1142, which is part of 
coordination interface to round-robin 1138, and to a preempt 
arbitrated control port 1144, which is part of coordination 
interface to preempt 1140. Coordinator input message port 
1134 is bound to an interface to a round-robin output 
message port 1146, and coordinator output message port 
1136 is bound to an interface to round-robin input message 
port 1148. 
0250 Thus preemption interferes with the normal round 
robin ordering of access to the resource. After a preemption 
based access, the resource moves to the component that in 
round-robin-ordered acceSS would be the Successor to pre 
emptor component 1120. If the resource is preempted too 
frequently, Some components may starve. 
0251 D. Mixing Control and Data in Coordinators 
0252 Since triggers can be control-based, data-based, or 
both, and actions can produce both control and data events, 
control and dataflow aspects of a System are coupled through 
actions. Through combinations of actions, designers can 
effectively employ modal data flow, in which relative sched 
ules are Switched on and off based on the System configu 
ration. 

0253) Relative scheduling is a form of coordination. 
Recognizing this and understanding how it affects a design 
can allow a powerful class of optimizations. Many data 
centric Systems (or Subsystems) use conjunctive firing, 
which means that a component bufferS messages until a 
firing rule is matched. When matching occurs, the compo 
nent fires, consuming the messages in its buffer that caused 
it to fire and generating a message or messages of its own. 
Synchronous data flow systems are those in which all 
components have only firing rules with constant message 
consumption and generation. 
0254 FIG. 12A shows a system in which a component 
N11200 is connected to a component N31202 by a data 
transfer coordinator 1204 and a component N21206 is 
connected to component N31202 by a second data transfer 
coordinator 1208. Component N31202 fires when it accu 
mulates three messages on a port c 1210 and two messages 
on a port d 1212. On firing, component N31202 produces 
two messages on a port o 1214. Coordination control State 
tracks the logical buffer depth for these components. This is 
shown with numbers representing the logical queue depth of 
each port in FIG. 12. 
0255 FIG. 12B shows the system of FIG. 12A in which 
data transfer coordinator 1204 and second data transfer 
coordinator 1208 have been merged to form a merged data 
transfer coordinator 1216. Merging the coordinators in this 
example provides an efficient Static Schedule for component 
firing. Merged data transfer coordinator 1216 fires compo 
nent N11200 three times and component N21206 twice. 
Merged data transfer coordinator 1216 then fires component 
N31202 twice (to consume all messages produced by com 
ponent N11200 and component N21206). 
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0256 Message rates can vary based on mode. For 
example, a component may consume two messages each 
time it fires in one mode and four each time it fires in a 
Second mode. For a component like this, it is often possible 
to merge Schedules on a configuration basis, in which each 
configuration has Static consumption and production rates 
for all affected components. 

0257 E. Coordination Transformations 
0258. In specifying complete Systems, designers must 
often specify not only the coordination between two objects, 
but also the intermediate mechanism they must use to 
implement this coordination. While this intermediate 
mechanism can be as simple as shared memory, it can also 
be another coordinator; hence coordination may be, and 
often is, layered. For example, RPC coordination often sits 
on top of a TCP/IP stack or on an IrDA stack, in which each 
layer coordinates with peer layerS on other processing 
elements using unique coordination protocols. Here, each 
layer provides certain capabilities to the layer directly above 
it, and the upper layer must be implemented in terms of 
them. 

0259. In many cases, control and communication synthe 
sis can be employed to automatically transform user-speci 
fied coordination to a Selected Set of Standard protocols. 
Designers may have to manually produce transformations 
for nonstandard protocols. 
0260 F. Dynamic Behavior with Compound Coordina 
torS 

0261) Even in statically bound systems, components may 
need to interact in a fashion that appears dynamic. For 
example, RPC-style coordination often has multiple clients 
for individual Servers. Here, there is no apparent connection 
between client and Server until one is forged for a transac 
tion. After the connection is forged, however, the coordina 
tion proceeds in the same fashion as dedicated RPC. 
0262) Our approach to this is to treat the RPC server as 
a shared resource, requiring resource allocation protocols to 
control access. However, none of the resource allocation 
protocols described thus far would work efficiently under 
these circumstances. In the following SubSections, an appro 
priate protocol for treating the RPC as a shared resource will 
be described and how that protocol should be used as part of 
a complete multiclient RPC coordination class-one that 
uses the same RPC coordination interfaces described earlier 
will be discussed. 

0263 1. First Come/First Serve Protocol (FCFS) 
0264 FIG. 13 illustrates a first come/first serve (FCFS) 
resource allocation protocol, which is a protocol that allo 
cates a shared resource to the requester that has waited 
longest. With reference to FIG. 13, a FCFS component 
interface 1300 for this protocol has a request control port 
1302, an access control port 1304 and a component outgoing 
message port 1306. A FCFS coordinator 1308 for this 
protocol has a set of FCFS interfaces 1310 that are comple 
mentary to FCFS component interfaces 1300, having a 
FCFS coordinator request control port 1312, a FCFS coor 
dinator access port 1314, and a FCFS coordinator input 
message port 1316. When a component 1318 needs to access 
a resource 1320, it asserts request control port 1302. When 
granted access, FCFS coordinator 1308 asserts the appro 
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priate FCFS coordinator access port 1314, releasing FCFS 
coordinator request control port 1312. 
0265. To do this, FCFS coordinator 1308 uses a rendez 
Vous coordinator and two round-robin coordinators. One 
round-robin coordinator maintains a list of empty slots in 
which a component may be enqueued, and the other round 
robin coordinator maintains a list showing the next compo 
nent to be granted access. When an FCFS coordinator 
request control port 1312 becomes active, FCFS coordinator 
1308 begins a rendezvous access to a binder action. When 
activated, this action maps the appropriate component 1318 
to a position in the round-robin queues. A separate action 
cycles through one of the queues and Selects the next 
component to access the Server. AS much as possible, FCFS 
coordinator 1308 attempts to grant access to resource 1320 
to the earliest component 1318 having requested resource 
1320, with concurrent requests determined based on the 
order in the rendezvous coordinator of the respective com 
ponents 1318. 
0266 2. Multiclient RPC 
0267 FIG. 14 depicts a multiclient RPC coordinator 
1400 formed by combining FCFS coordinator 1308 with 
dedicated RPC coordinator 1000. With reference to FIG. 14, 
a set of clients 1402 have a set of client coordination 
interfaces 1030, as shown in FIG. 10. In addition, multicli 
ent RPC coordinator 1400 has a set of RPC client coordi 
nation interfaces 1020, as shown in FIG. 10. For each RPC 
client coordination interface 1020, RPC client input message 
port 1024, of RPC client coordination interface 1020, is 
bound to the component outgoing message port 1306 of 
FCFS coordinator 1308. Message transfer action 1403 
Serves to transfer messages between RPC client input mes 
Sage port 1024 and component outgoing message port 1306. 
For coordinating the actions of multiple clients 1402, mul 
ticlient RPC coordinator 1400 must negotiate accesses to a 
server 1404 and keep track of the values returned by server 
1404. 

0268) F. Monitor Modes and Continuations 
0269 Features such as blocking behavior and exceptions 
can be implemented in the coordination-centric design meth 
odology with the aid of monitor modes. Monitor modes are 
modes that eXclude all but a Selected Set of actions called 
continuations, which are actions that continue a behavior 
Started by another action. 
0270) 1. Blocking Behavior 
0271. With blocking behavior, one action releases control 
while entering a monitor mode, and a continuation resumes 
execution after the anticipated response event. Monitor 
mode entry must be immediate (at least locally), So that no 
unexpected actions can execute before they are blocked by 
Such a mode. 

0272 Each monitor mode has a list of actions that cannot 
be executed when it is entered. The allowed (unlisted) 
actions are either irrelevant or are continuations of the action 
that caused entry into this mode. There are other conditions, 
as well. This mode requires an exception action if forced to 
exit. However, this exception action is not executed if the 
monitor mode is turned off locally. 
0273 When components are distributed over a number of 
processing elements, it is not practical to assume complete 
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Synchronization of the control State. In fact, there are a 
number of Synchronization options available as detailed in 
Chou, P “Control Composition and Synthesis of Distributed 
Real-Time Embedded Systems”, Ph.D. dissertation, Univer 
sity of Washington, 1998. 

0274) 2. Exception Handling 

0275 Exception actions are a type of continuation. When 
in a monitor mode, exception actions respond to unexpected 
events or events that Signal error conditions. For example, 
multiclient RPC coordinator 1400 can bind client.blocked 
to a monitor mode and Set an exception action on--Serv 
er.Serving. This will Signal an error whenever the Server 
begins to work when the client is not blocked for a response. 
0276 8. A Complete System Example 

0277 FIG. 15 depicts a large-scale example system 
under the coordination-centric design methodology. With 
reference to FIG. 15, the large scale system is a bimodal 
digital cellular network 1500. Network 1500 is for the most 
part a simplified version of a GSM (global system for mobile 
communications) cellular network. This example shows in 
greater detail how the parts of coordination-centric design 
work together and demonstrates a practical application of 
the methodology. Network 1500 has two different types of 
cells, a surface cell 1502 (also referred to as a base station 
1502) and a satellite cell 1504. These cells are not only 
differentiated by physical position, but by the technologies 
they use to share network 1500. Satellite cells 1504 use a 
code division multiple access (CDMA) technology, and 
surface cells 1502 use a time division multiple access 
(TDMA) technology. Typically, there are Seven frequency 
bands reserved for TDMA and one band reserved for 
CDMA. The goal is for as much communication as possible 
to be conducted through the smaller TDMA cells, here 
surface cells 1502, because power requirements for a CDMA 
cells, here satellite cell 1504, increase with the number of 
users in the CDMA cell. Mobile units 1506, or wireless 
devices, can move between Surface cells 1502, requiring 
horizontal handoffs between Surface cells 1502. Several 
surface cells 1502 are typically connected to a Switching 
center 1508. Switching center 1508 is typically connected to 
a telephone network or the Internet 1512. In addition to 
handoffs between Surface cells 1502, the network must be 
able to hand off between Switching centers 1508. When 
mobile units 1506 leave the TDMA region, they remain 
covered by satellite cells 1504 via vertical handoffs between 
cells. Since vertical handoffs require changing protocols as 
well as changing base Stations and Switching centers, they 
can be complicated in terms of control. 

0278 Numerous embedded systems comprise the overall 
system. For example, Switching center 1508 and base sta 
tions, surface cells 1502, are required as part of the network 
infrastructure, but cellular phones, handheld Web browsers, 
and other mobile units 1506 may be supported for access 
through network 1500. This section concentrates on the 
Software systems for two particular mobile units 1506: a 
simple digital cellular phone (shown in FIG. 16) and a 
handheld Web browser (shown in FIG. 24). These examples 
require a wide variety of coordinators and reusable compo 
nents. Layered coordination is a feature in each System, 
because a function of many Subsystems is to perform a 
layered protocol. Furthermore, this example displayS how 
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the hierarchically constructed components can be applied in 
a realistic System to help manage the complexity of the 
overall design. 
0279. To begin this discussion, we describe the cellular 
phone in detail, focusing on its functional components and 
the formalization of their interaction protocols. We then 
discuss the handheld Web browser in less detail but highlight 
the main ways in which its functionality and coordination 
differ from those of the cellular phone. In describing the 
cellular phone, we use a top-down approach to show how a 
coherent System organization is preserved, even at a high 
level. In describing the handheld Web browser, we use a 
bottom-up approach to illustrate component reuse and bot 
tom-up design. 
0280 A. Cellular Phone 
0281 FIG. 16 shows a top-level coordination diagram of 
the behavior of a cellphone 1600. Rather than using a single 
coordinator that integrates the components under a single 
protocol, we use Several coordinators in concert. Interactions 
between coordinators occur mainly within the components 
to which they connect. 
0282. With reference to FIG. 16, cell phone 1600 Sup 
ports digital encoding of Voice Streams. Before it can be 
used, it must be authenticated with a home master Switching 
center (not shown). This authentication occurs through a 
registered master Switch for each phone and an authentica 
tion number from the phone itself. There are various authen 
tication Statuses, Such as full access, grey-listed, or black 
listed. For cell phone 1600, real-time performance is more 
important than reliability. A dropped packet is not retrans 
mitted, and a late packet is dropped since its omission 
degrades the Signal less than its late incorporation. 
0283 Each component of cellphone 1600 is hierarchical. 
A GUI 1602 lets users enter phone numbers while displaying 
them and query an address book 1604 and a logs component 
1606. Address book 1604 is a database that can map names 
to phone numbers and vice versa. GUI 1602 uses address 
book 1604 to help identify callers and to look up phone 
numbers to be dialed. Logs 1606 track both incoming and 
outgoing calls as they are dialed. A voice component 1608 
digitally encodes and decodes, and compresses and decom 
presses, an audio signal. A connection component 1610 
multiplexes, transmits, receives, and demultiplexes the radio 
Signal and Separates out the Voice Stream and caller identi 
fication information. 

0284 Coordination among the above components makes 
use of several of the coordinators discussed above. Between 
connection component 1610 and a clock 1612, and between 
logs 1606 and connection component 1610, are unidirec 
tional data transfer coordinators 600 as described with 
reference to FIG. 6A. Between voice component 1608 and 
connection component 1610, and between GUI 1602 and 
connection component 1610, are bidirectional data transfer 
coordinators 604, as described with reference to FIG. 6B. 
Between clock 1612 and GUI 1602 is a state unification 
coordinator 606, as described with reference to FIG. 6G. 
Between GUI 1602 and address book 1604 is a dedicated 
RPC coordinator 1000 as described with reference to FIG. 
10, in which address book 1604 has client 1028 and GUI 
1602 has server 1010. 

0285) There is also a custom GUI/log coordinator 1614 
between logs 1606 and GUI 1602. GUI/log coordinator 
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1614 lets GUI 1602 transfer new logged information 
through an r output message port 1616 on a GUI coordina 
tion interface 1618 to an r input message port 1620 on a log 
coordination interface 1622. GUI/log coordinator 1614 also 
lets GUI 1602 choose current log entries through a pair of c 
output message ports 1624 on GUI coordination interface 
1618 and a pair of c input message ports 1626 on log 
coordination interface 1622. Logs 1606 continuously dis 
play one entry each for incoming and outgoing calls. 

0286) 1.. GUI Component 

0287 FIG. 17A is a detailed view of GUI component 
1602, of FIG. 16. With reference to FIG. 17A, GUI com 
ponent 1602 has two inner components, a keypad 1700 and 
a text-based liquid crystal display 1702, as well as several 
functions of its own (not shown). Each time a key press 
occurs, it triggers an action that interprets the press, depend 
ing on the mode of the System. Numeric presses enter values 
into a shared dialing buffer. When a complete number is 
entered, the contents of this buffer are used to establish a 
new connection through connection component 1610. Table 
5 shows the action triples for GUI 1602. 

Mode Trigger Action 

Idle numEBuffer.append(keypress.val) 

Send radio.send(numBufferval) 
+OutgoingCall 

Disconnect N 
Leftarrow AddressBook.forward() 

+lookupMode 
Rightarrow log.lasticall() 

+Outlog 
LookupMode Leftarrow AddressBook.forward() 

Rightarrow AddressBook.backward() 

0288 An “Addr Coord” coordinator 1704 includes an 
address book mode (not shown) in which arrow key presses 
are transformed into RPC calls. 

0289 2. Logs Component 

0290 FIG. 17B is a detailed view of logs component 
1606, which tracks all incoming and outgoing calls. With 
reference to FIG. 17B, both GUI component 1602 and 
connection component 1610 must communicate with logs 
component 1606 through specific message ports. Those 
Specific message ports include a transmitted number mes 
Sage port 1720, a received number message port 1722, a 
change current received message port 1724, a change current 
transmitted message port 1726, and two state ports 1728 and 
1729 for presenting the current received and current trans 
mitted values, respectively. 

0291 Logs component 1606 contains two identical 
Single-log components: a Send log 1730 for outgoing calls 
and a receive log 1740 for incoming calls. The interface of 
logs component 1606 is connected to the individual log 
components by a pair of adapter coordinators, Adapl 1750 
and Adap 21752. Adap11750 has an adapter receive inter 
face 1754, which has a receive imported State port 1756 and 
a receive output message port 1758. Adap11750 further has 
an adapter send interface 1760, which has a send imported 
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state port 1762 and a send output message port 1764. Within 
Adap1, state port 1728 is bound to receive imported State 
port 1756, change current received message port 1724 is 
bound to receive output message port 1758, received num 
ber message port 1722 is bound to a received interface 
output message port 1766 on a received number coordina 
tion interface 1768, change current transmitted message port 
1726 is bound to send output message port 1764, and state 
port 1729 is bound to Up.rc is bound to send imported State 
port 1762. 
0292) 3. Voice Component 
0293 FIG. 18A is a detailed view of voice component 
1608 of FIG. 16. Voice component 1608 has a compression 
component 1800 for compressing digitized Voice signals 
before transmission, a decompression component 1802 for 
decompressing received digitized voice Signals, and inter 
faces 1804 and 1806 to analog transducers (not shown) for 
digitizing Sound to be transmitted and for converting 
received transmissions into Sound. Voice component 1608 is 
a pure data flow component containing Sound generator 
1808 which functions as a white-noise generator, a ring tone 
generator, and which has a separate port for each on Sound 
generator interface 1810, and Voice compression function 
ality in the form of compression component 1800 and 
decompression component 1802. 
0294 4. Connection Component 
0295 FIG. 18B is a detailed view of connection com 
ponent 1610 of FIG. 16. With reference to FIG. 18B, 
connection component 1610 coordinates with voice compo 
nent 1608, logs component 1606, clock 1612, and GUI 
1602. In addition, connection component 1610 is respon 
sible for coordinating the behavior of cell phone 1600 with 
a base station that owns the surface cell 1502 (shown in FIG. 
15), a switching center 1508 (shown in FIG. 15), and all 
other phones (not shown) within surface cell 1502. Connec 
tion component 1610 must authenticate users, establish 
connections, and perform handoffs as needed-including 
appropriate changes in any low-level protocols (such as a 
switch from TDMA to CDMA). 
0296 FIG. 19 depicts a set of communication layers 
between connection component 1610 of cellphone 1600 and 
base station 1502 or switching center 1508. With reference 
to FIG. 19, has several Subcomponents, or lower-level 
components, each of which coordinates with an equivalent, 
or peer, layer on either base station 1502 or Switching center 
1508. The Subcomponents of connection component 1610 
include a cell phone call manager 1900, a cell phone 
mobility manager 1902, a cellphone radio resource manager 
1904, a cell phone link protocol manager 1906, and a cell 
phone transport manager 1908 which is responsible for 
coordinating access to and transferring data through the 
shared airwaves TDMA and CDMA coordination. Each 
Subcomponent will be described in detail including how 
each fits into the complete System. 
0297 Base station 1502 has a call management coordi 
nator 1910, a mobility management coordinator 1912, a 
radio resource coordinator 1914 (BSSMAP 1915), a link 
protocol coordinator 1916 (SCCO 1917), and a transport 
coordinator 1918 (MTP 1919). Switching center 1508 has a 
Switching center call manager 1920, a Switching center 
mobility manager 1922, (a BSSMAP 1924, a SCCP 1926, 
and an MTP 1928). 
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0298) 
0299 FIG. 20 is a detailed view of a call management 
layer 2000 consisting of cell phone call manager 1900, 
which is connected to Switching center call manager 1920 by 
call management coordinator 1910. With reference to FIG. 
20, call management layer 2000 coordinates the connection 
between cell phone 1600 and switching center 1508. Call 
management layer 2000 is responsible for dialing, paging, 
and talking. Call management layer 2000 is always present 
in cell phone 1600, though not necessarily in Internet 
appliances (discussed later). Cell phone call manager 1900 
includes a set of modes (not shown) for call management 
coordination that consists of the following modes: 

a. Call Management 

0300 Standby 
0301 Dialing 
0302 RingingRemote 

0303 Ringing 
0304 CallInProgress 

0305 Cell phone call manager 1900 has a cellphone call 
manager interface 2002. Cell phone call manager interface 
2002 has a port corresponding to each of the above modes. 
The standby mode is bound to a standby exported state port 
2010. The dialing mode is bound to a dialing exported State 
port 2012. The RingingRemote mode is bound to a Ring 
ingRemote imported State port 2014. The Ringing mode is 
bound to a ringing imported state port 2016. The Call 
InProgress mode is bound to a CallInProgress arbitrated 
state port 2018. 
0306 Switching center call manager 1920 includes the 
following modes (not shown) for call management coordi 
nation at the Switching center: 

0307 Dialing 

0308 Ringing Remote 
0309 Paging 
0310 CallInProgress 

0311 Switching center call manager 1920 has a Switch 
ing center call manager coordination interface 2040, which 
includes a port for each of the above modes within Switching 
center call manager 1920. 
0312. When cell phone 1600 requests a connection, 
Switching center 1508 creates a new switching center call 
manager and establishes a call management coordinator 
1910 between cell phone 1600 and Switching center call 
manager 1920. 
0313) b. Mobility Management 
0314. A mobility management layer authenticates mobile 
unit 1506 or cell phone 1600. When there is a surface cell 
1502 available, mobility manager 1902 contacts the Switch 
ing center 1508 for Surface cell 1502 and transfers a mobile 
unit identifier (not shown) for mobile unit 1506 to Switching 
center 1508. Switching center 1508 then looks up a home 
motor Switching center for mobile unit 1506 and establishes 
a set of permissions assigned to mobile unit 1506. This layer 
also acts as a conduit for the call management layer. In 
addition, the mobility management layer performs handoffs 
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between base stations 1502 and Switching centers 1508 
based on information received from the radio resource layer. 
0315 C. Radio Resource 
0316. In the radio resource layer, radio resource manager 
1904, chooses the target base station 1502 and tracks 
changes in frequencies, time Slices, and CDMA codes. Cell 
phones may negotiate with up to 16 base Stations Simulta 
neously. This layer also identifies when handoffs are neces 
Sary. 

0317 d. Link Protocol 
0318. The link layer manages a connection between cell 
phone 1600 and base station 1502. In this layer, link protocol 
manager 1906 packages data for transfer to base Station 
1502 from cell phone 1600. 
0319) 
0320 FIG. 21A is a detailed view of transport compo 
nent 1908 of connection component 1610. Transport com 
ponent 1908 has two Subcomponents, a receive component 
2100 for receiving data and a transmit component 2102 for 
transmitting data. Each of these Subcomponents has two 
parallel data paths a CDMA path 2104 and a TDMA/FDMA 
path 2106 for communicating in the respective network 
protocols. 

0321 FIG.21B is a detailed view of a CDMA modulator 
2150, which implements a synchronous data flow data path. 
CDMA modulator 2150 takes the dot-product of an incom 
ing data signal along path 2152 and a stored modulation 
code for cell phone 1600 along path 2154, which is a 
Sequence of chips, which are measured time Signals having 
a value of -1 or +1. 

0322 Transport component 1908 uses CDMA and 
TDMA technologies to coordinate access to a resource 
shared among Several cell phones 1600, i.e., the airwaves. 
Transport components 1908 Supersede the FDMA technolo 
gies (e.g., AM and FM) used for analog cellular phones and 
for radio and television broadcasts. In FDMA, a signal is 
encoded for transmission by modulating it with a carrier 
frequency. A signal is decoded by demodulation after being 
passed through a band pass filter to remove other carrier 
frequencies. Each base station 1502 has a set of frequen 
cies-chosen to minimize interference between adjacent 
cells. (The area covered by a cell may be much Smaller than 
the net range of the transmitters within it.) 
0323 TDMA, on the other hand, coordinates access to 
the airwaves through time slicing. Cell phone 1600 on the 
network is assigned a Small time slice, during which it has 
exclusive access to the media. Outside of the Small time 
slice, cell phone 1600 must remain silent. Decoding is 
performed by filtering out all signals outside of the Small 
time slice. The control for this access must be distributed. As 
Such, each component involved must be Synchronized to 
observe the Start and end of the Small time slice at the same 
instant. 

0324) Most TDMA systems also employ FDMA, so that 
instead of sharing a Single frequency channel, cell phones 
1600 share several channels. The band allocated to TDMA 
is broken into frequency channels, each with a carrier 
frequency and a reasonable Separation between channels. 
Thus user channels for the most common implementations 

e. Transport 
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of TDMA can be represented as a two-dimensional array, in 
which the rows represent frequency channels and the col 
umns represent time Slices. 

0325 CDMA is based on vector arithmetic. In a sense, 
CDMA performs inter-cell-phone coordination using data 
flow. Instead of breaking up the band into frequency chan 
nels and time slicing these, CDMA regards the entire band 
as an n-dimensional vector Space. Each channel is a code 
that represents a basis vector in this space. Bits in the Signal 
are represented as either 1 or -1, and the modulation is the 
inner product of this signal and a basis vector of mobile unit 
1506 or cell phone 1600. This process is called spreading, 
Since it effectively takes a narrowband Signal and converts it 
into a broadband Signal. 

0326 Demultiplexing is simply a matter of taking the 
dot-product of the received signal with the appropriate basis 
vector, obtaining the original 1 or -1. With fast computation 
and the appropriate codes or basis vectors, the Signal can be 
modulated without a carrier frequency. If this is not the case, 
a carrier and analog techniques can be used to fill in where 
computation fails. If a carrier is used, however, all units use 
the same carrier in all cells. 

0327 FIG.22 shows TDMA and CDMA signals for four 
cell phones 1600. With reference to FIG. 22, for TDMA, 
each cell phone 1600 is assigned a time slice during which 
it can transmit. Cell phone 1 is assigned time slice t0, cell 
phone 2 is assigned time Slice t1, cell phone 3 is assigned 
time Slice t2, and cell phone 4 is assigned time slice t3. For 
CDMA, each cell phone 1600 is assigned a basis vector that 
it multiplies with its signal. Cell phone 1 is assigned the 
Vector: 
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0330 Cell phone 4 is assigned the vector: 

0331 Notice that these vectors form an orthogonal basis. 
0332 B. Handheld Web Browser 
0333. In the previous subsection, we demonstrated our 
methodology on a cell phone with a top-down design 
approach. In this SubSection, we demonstrate our method 
ology with a bottom-up approach in building a handheld 
Web browser. 

0334 FIG. 23A is a LCD touchscreen component 2300 
for a Web browser GUI (shown in FIG. 24A) for a wireless 
device 1506. With reference to FIG. 23A, a LCD touch 
screen component 2300, has an LCD screen 2302 and a 
touch pad 2304. 
0335 FIG. 23B is a Web page access component 2350 
for fetching and formatting web pages. With reference to 
FIG. 23B, web access component 2350 has a page fetch 
Subcomponent 2352 and a page format Subcomponent 2354. 
Web access component 2350 reads hypertext markup lan 
guage (HTML) from a connection interface 2356, sends 
word placement requests to a display interface 2358, and 
sends image requests to the connection interface 2356. Web 
access component 2350 also has a character input interface 
to allow users to enter page requests directly and to fill out 
forms on pages that have forms. 
0336 FIG. 24A shows a completed handheld Web 
browser GUI 2400. With reference to FIG. 24A, handheld 
Web browser GUI 2400, has LCD touch screen component 
2300, web access component 2350, and a pen stroke recog 
nition component 2402 that translates pen Strokes entered on 
touch pad 2304 into characters. 
0337 FIG. 24B shows the complete component view of 
a handheld Web browser 2450. With reference to FIG.24B, 
handheld Web browser 2450 is formed by connecting hand 
held Web browser GUI 2400 to connection component 1610 
of cell phone 1600 (described with reference to FIG. 16) 
with bidirectional data transfer coordinator 604 (described 
with reference to FIG. 6B). Handheld Web browser 2450 is 
an example of mobile unit 1506, and connects to the Internet 
through the cellular infrastructure described above. How 
ever, handheld Web browser 2450 has different access 
requirements than does cell phone 1600. For handheld Web 
browser 2450, reliability is more important than real-time 
delivery. Dropped packets usually require retransmission, So 
it is better to deliver a packet late than to drop it. Real-time 
issueS primarily affect download time and are therefore 
secondary. Despite this, handheld Web browser 2450 must 
coordinate media access with cell phones 1600, and so it 
must use the same protocol as cell phones 1600 to connect 
to the network. For that reason, handheld Web browser 2450 
can reuse connection component 1610 from cell phone 
1600. 

0338. It will be obvious to those having skill in the art 
that many changes may be made to the details of the 
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above-described embodiments of this invention without 
departing from the underlying principles thereof. The Scope 
of the present invention should, therefore, be determined 
only by the following claims. 

1. A methodology for designing a Software System inde 
pendent of a target hardware implementation, the method 
ology comprising designing the Software System as com 
prising 

a first component for realizing a predetermined function 
ality, 

a first coordinator for managing interactions between the 
first component and a Second component, and 

a first pair of coordination interfaces comprising a first 
and a Second coordination interface for implementing a 
connection between the first component and the first 
coordinator So as to preserve component modularity 
while exposing only the parts of the component that 
participate in coordination. 

2. A method according to claim 1 wherein the first 
coordinator implements a predetermined coordination pro 
tocol. 

3. A method according to claim 2 wherein the first pair of 
coordination interfaces includes a pair of complimentary 
ports to transfer information between the coordination inter 
faces. 

4. A method according to claim 3 wherein a first port of 
the pair of complimentary ports has a combination of 
attributes realizing an output message port and the other port 
of the pair of complimentary ports has a combination of 
attributes realizing an input message port. 

5. A method according to claim 3 wherein the a first port 
of the pair of complimentary ports has a combination of 
attributes realizing an exported State port and the other port 
of the pair of complimentary ports has a combination of 
attributes realizing an imported State port. 

6. A method according to claim 3 wherein a first port of 
the pair of complimentary ports has a combination of 
attributes realizing a first control port, and the other port of 
the pair of complimentary ports has a combination of 
attributes realizing a Second control port that is complimen 
tary to the first control port. 

7. A method according to claim 3 wherein a first port of 
the pair of complimentary ports has a combination of 
attributes realizing a first arbitrated State port, and the other 
port of the pair of complimentary ports has a combination of 
attributes realizing a Second arbitrated State port that is 
complimentary to the first arbitrated State port. 

8. A method according to claim 3 wherein each port of the 
pair of complimentary ports is defined by a five-tuple (T, A, 
Q, D, R) where: 
T represents a datatype of the port; 

A is a Boolean value that is true if and only if the port is 
arbitrated; 

Q is a predetermined integer greater than Zero that rep 
resents logical queue depth of the port; 

D represents a directionality of data flows with respect to 
the port; and 

R represents a policy for data removal on the port. 
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9. A method according to claim 8 wherein D is one of in, 
out, inout representing data flow into the port, out of the 
port, or bi-directional, respectively. 

10. A method according to claim 9 wherein D is one of 
{in, out, inout or custom, where custom directionality 
permits restricting the port to accept or to generate only 
certain Specific predetermined values. 

11. A method according to claim 2 wherein the first 
coordination interface implements a predetermined guaran 
tee of a Selected invariant interface property of the first 
component. 

12. A method according to claim 11 wherein the guarantee 
Specifies a predetermined event ordering. 

13. A method according to claim 11 wherein the guarantee 
Specifies an acceptable relative behavior between the first 
and Second component. 

14. A method according to claim 2 wherein the first 
coordination interface includes a Specified requirement and 
the Second coordination interface includes a specified guar 
antee that Satisfies the Specified requirement of the first 
coordination interface. 

15. A computer Software design methodology comprising 
a coordination interface for Software packaging, wherein the 
coordination interface comprises at least one named port. 

16. A method according to claim 15 wherein the coordi 
nation interface further comprises: 

a set of at least one named guarantee provided by the 
interface; 

a Set of at least one named requirement that must be 
matched by a guarantee of a connected interface 

17. A method according to claim 16 wherein the coordi 
nation interface further comprises a set of coordination 
interfaces including at least a Second coordination interface, 
thereby making coordination interfaces hierarchical. 

18. A method according to claim 15 wherein the named 
port is defined by a five-tuple (T, A, Q, D, R) where: 
T represents a datatype of the port; 

A is a Boolean value that is true if and only if the port is 
arbitrated; 

Q is a predetermined integer greater than Zero that rep 
resents logical queue depth of the port; 

D represents a directionality of data flows with respect to 
the port; and 

R represents a policy for data removal on the port. 
19. A software system for execution on a hardware 

platform, the Software System comprising: 
a first component having a first coordination interface; 
a Second component having a Second coordination inter 

face; and 
a coordinator for coordinating control and data flow 
between the first and Second components and having a 
third coordination interface that is complimentary to 
the first coordination interface and a fourth coordina 
tion interface that is complimentary to the Second 
coordination interface. 

20. A software system according to claim 19 wherein the 
first coordination interface includes a first port as a connec 
tion point to a Second port included on the third coordination 
interface. 
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21. A method according to claim 20 wherein the first port 
has a combination of attributes realizing a first message port. 

22. A method according to claim 21 wherein the Second 
port has a combination of attributes realizing a Second 
message port that is complimentary to the first message port. 

23. A method according to claim 20 wherein the first port 
has a combination of attributes realizing a first State port. 

24. A method according to claim 22 wherein the Second 
port has a combination of attributes realizing a Second State 
port that is complimentary to the first message port. 

25. A method according to claim 20 wherein the first port 
has a combination of attributes realizing a first control port. 

26. A method according to claim 25 wherein the first port 
has a combination of attributes realizing a Second control 
port that is complimentary to the first control port. 

27. A method for designing Software Systems comprising: 
designing a first Software component for performing a 

first predetermined functionality that when activated 
produces a defined result, 

designing a first coordination interface for logically con 
necting the first component to the first coordination 
interface in order to export the result produced by the 
first component; 

designing a Second component for performing a Second 
predetermined functionality that can respond to the 
defined result produced by the first component; 

designing a Second coordination interface for logically 
connecting the Second component to the Second coor 
dination interface in order to importing the result 
produced by the first Software component; 

designing a coordinator with a third coordination interface 
that is complimentary to the first coordination interface 
and a fourth coordination interface that is complimen 
tary to the Second coordination interface, for transfer 
ring the result exported by the first coordination inter 
face from the first coordination interface to the Second 
coordination interface. 

28. A method according to claim 27 in which the first 
coordination interface has a first port for exporting the result 
produced by the first component. 

29. A method according to claim 28 in which the second 
coordination interface has a Second port for importing the 
result produced by first component. 

30. A method according to claim 29 in which the third 
coordination interface has a third port that is complimentary 
to the first port for importing the result exported by the first 
port, and in which the fourth coordination interface has a 
fourth port that is complimentary to the Second port for 
exporting the result imported by the third port. 

31. A method according to claim 30 in which the third 
coordination interface is bound to the fourth coordination 
interface in a manner that implements a predetermined 
coordination protocol. 

32. A method according to claim 27 in which the first 
component comprises a first action, for implementing the 
first predetermined functionality, a first mode for imple 
menting a boolean guard on the first action, and a first event 
to Serve as a trigger for initiating the first action. 

33. A method according to claim 32 in which the second 
component comprises a Second action, for implementing the 
Second predetermined functionality, a Second mode for 
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implementing a boolean guard on the Second action, and a 
Second event to Serve as a trigger for initiating the Second 
action. 

34. A method according to claim 33 in which the coor 
dinator comprises a binding between the third and fourth 
coordination interfaces for transferring the result from the 
third coordination interface to the fourth coordination inter 
face. 

35. A method according to claim 33 in which the coor 
dinator comprises a coordinator action which performs a 
predetermined coordinator function, and a mode which 
Serves as a boolean guard on the coordinator action. 

36. A method according to claim 35 in which the coor 
dinator further comprises a constraint which Serves to 
enforce a predetermined relationship between a pair of 
control ports. 

37. A method for designing a Software program without 
reference to a target System architecture comprising: 

creating a first component comprising Software code for 
performing a first function and a first coordination 
interface for Sending and receiving Separate control and 
dataflow information; 

creating a Second component comprising Software code 
for performing a Second function and a Second coor 
dination interface for Sending and receiving Separate 
control and dataflow information; 

creating a coordinator to manage control interactions and 
dataflow interactions between the first component and 
the second component comprising a third coordination 
interface for logically connecting to the first coordina 
tion interface, and a fourth coordination interface for 
logically connecting to the Second coordination inter 
face. 

38. The method of claim 37 in which the coordination 
interfaces each comprise a port for transferring information. 

39. The method of claim 38 in which the first coordination 
interface and the third coordination interface have corre 
sponding ports and complimentary requirements and guar 
antees, and the Second coordination interface and the fourth 
coordination interface have corresponding ports and com 
plimentary requirements and guarantees. 

40. The method of claim 39 in which the first component 
further comprises a first mode and a first action. 

41. The method of claim 40 in which the second compo 
nent further comprises a Second mode and a Second action. 

42. The method of claim 41 in which the coordinator 
further comprises a third action and a third mode. 

43. The method of claim 42 in which the coordinator 
further comprises a first binding which connects a first port 
on the third coordination interface to a Second port on the 
fourth coordination interface 

44. The method of claim 43 in which the first port is an 
input data port and the Second port is an output data port. 

45. The method of claim 42 in which the coordinator 
further comprises a Second binding which connects a third 
port on the third coordination interface to the third mode. 

46. The method of claim 42 in which the coordinator 
further comprises a third binding which connects a fourth 
port on the fourth coordination interface to a first variable. 

47. The method of claim 42 in which the coordinator 
further comprises a fourth binding which connects a fifth 
port on the third coordination interface to a first event. 
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48. A Software System comprising: 
a first Software component comprising a first action; 
a Second Software component comprising a Second action; 

and 

a coordinator for implementing a communication protocol 
between the first Software component and the Second 
Software component and connected to the first Software 
component and the Second Software component. 

49. The software system of claim 48 in which the first 
Software component further comprises: 

a first mode connected to the first action; 
a first trigger connected to the first action; and 
a first coordination interface comprising a first port. 
50. The software system of claim 49 in which the second 

Software component further comprises, 
a Second mode connected to the Second action; 
a first trigger connected to the first action; and 
a Second coordination interface comprising a Second port. 
51. The software system of claim 50 in which the coor 

dinator comprises: 
a third action for implementing the communication pro 

tocol; 
a third mode connected to the third action; 
a third trigger connected to the third action; 
a third coordination interface comprising a third port and 

connected to the first coordination interface; and 
a fourth coordination interface comprising a fourth port 

and connected to the Second coordination interface. 
52. The software system of claim 51 in which the first 

Software component further comprises a first binding. 
53. The software system of claim 52 in which the second 

Software component further comprises a Second binding. 
54. The software system of claim 53 in which the coor 

dinator further comprises a third binding. 
55. The software system of claim 54 in which the first 

coordination interface further comprises a fourth port and a 
fourth binding. 

56. The software system of claim 55 in which the first 
binding connects the first port to the first mode and the 
fourth binding connects the fourth port with the first trigger. 

57. A method for designing a Software System comprising: 
creating a first Software component comprising a first 

action, a first mode and a first coordination interface; 
creating a Second Software component comprising a Sec 

ond action, a Second mode and a Second coordination 
interface; and 

creating a coordinator, to implement a predetermined 
communication protocol between the first and Second 
component by coordinating control and dataflow inter 
actions between the first component and the Second 
component, comprising: 
a third action; 
a third mode, 
a third coordination interface connected to the first 

coordination interface; and 
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a fourth coordination interface connected to the Second 
coordination interface. 

58. A Software System comprising; 

in components, where n is an integer greater than Zero, 
each component designed to perform a predetermined 
functionality; 

m coordinators, where m is an integer greater than Zero, 
each coordinator designed to implement a predeter 
mined coordination protocol between a set of the n 
components, 

in coordination interface pairs, each coordination interface 
pair designed to logically connect a component to a 
coordinator for transferring information between the 
component and the coordinator. 

59. The software system of claim 58 wherein each com 
ponent of the n components comprises: 

an action to perform a predetermined function; 

a mode to act as a boolean guard on the action; 

a trigger which when activated causes the action to 
perform the predetermined function when the mode has 
a value of true. 

60. The software system of claim 59 wherein a component 
of the n components further comprises: 
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a set of Sub-components, 
a set of internal coordinators, each internal coordinator 

designed to implement a predetermined coordination 
protocol between a Subset of the Set of Sub-compo 
nents, 

a Set internal coordination interface pairs for logically 
connecting the Sub-components to the internal coordi 
natorS. 

61. The Software system of claim 59 wherein each coor 
dinator of the m coordinators comprises: 

an action an action to perform a predetermined function; 
a mode to act as a boolean guard on the action; 
a trigger which when activated causes the action to 

perform the predetermined function when the mode has 
a value of true. 

62. The Software system of claim 61 wherein a coordi 
nator of the m coordinators further comprises: 

a set of Sub-coordinators, each Sub-coordinator designed 
to implement a predetermined coordination protocol 
between a Subset of any of the n coordination interface 
pairs that are logically connected to the coordinator; 

a set of internal coordination interface pairs, each internal 
coordination interface pair designed to logically con 
nect the Sub-coordinators to one coordination interface 
of the coordination interface pairs that are logically 
connected to the coordinator. 

k k k k k 


