(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 108957709 B (45) 授权公告日 2021.01.26

- (21)申请号 201710350671.4
- (22)申请日 2017.05.18
- (65) 同一申请的已公布的文献号 申请公布号 CN 108957709 A
- (43) 申请公布日 2018.12.07
- (73) 专利权人 信泰光学(深圳)有限公司 地址 518000 广东省深圳市光明新区公明 办事处李松荫社区李松荫工业区期尾 工业园第1、2、3栋

专利权人 亚洲光学股份有限公司

- (72)发明人 陈建宏 张锡龄 梁沅汎
- (74) 专利代理机构 深圳市顺天达专利商标代理 有限公司 44217

代理人 高占元

(54) 发明名称

广角镜头

(57)摘要

本发明涉及一种广角镜头,沿着光轴从物侧 至像侧依序包括第一透镜、第二透镜、第三透镜、 第四透镜、第五透镜及第六透镜。第一透镜具有 屈光力。第二透镜包括凸面朝向物侧。第三透镜 具有正屈光力,此第三透镜包括凸面朝向像侧。 第四透镜具有屈光力。第五透镜包括凹面朝向像侧。 第六透镜包括凹面朝向像侧。广角镜头满足 以下条件: $1.54 \leq |f_6/f| \leq 13.37$;其中, f_6 为该 第六透镜的有效焦距,f为该广角镜头的有效焦 距。 (51) Int.Cl.

G02B 13/06 (2006.01)

审查员 靳亚粉

权利要求书2页 说明书18页 附图13页

CN 108957709 B

1.一种广角镜头,其特征在于,沿着光轴从物侧至像侧依序由以下透镜组成:

第一透镜,具有屈光力;

第二透镜,具有负屈光力,该第二透镜包括凸面朝向该物侧;

第三透镜,具有正屈光力,该第三透镜包括凸面朝向该像侧;

第四透镜,具有正屈光力;

第五透镜,具有负屈光力,该第五透镜包括凹面朝向该物侧;以及

第六透镜,该第六透镜包括凹面朝向该像侧;

该广角镜头满足以下条件:

 $12.84 \le |f_6/f| \le 13.37;$

其中,f₆为该第六透镜的有效焦距,f为该广角镜头的有效焦距。

2.如权利要求1所述的广角镜头,其特征在于,更包括光圈,设置于该第二透镜与该第 三透镜之间,其中:

该第二透镜更包括凹面朝向该像侧;

该第三透镜更包括凸面朝向该物侧;

该第四透镜包括凸面朝向该物侧;

该第六透镜包括凹面朝向该像侧;以及

该广角镜头满足以下条件:

0.5<SL/TTL<0.8;

其中,SL为该光圈至成像面于该光轴上的间距,TTL为该第一透镜的物侧面至该成像面 于该光轴上的间距。

3.如权利要求1至2任一项所述的广角镜头,其特征在于,该广角镜头满足以下条件:

 $0.62 < (R_{41} - R_{42}) / (R_{41} + R_{42}) < 5.60;$

其中,R₄₁为该第四透镜之一物侧面之一曲率半径,R₄₂为该第四透镜的像侧面的一曲率 半径。

4. 如权利要求1至2中任一项所述的广角镜头,其特征在于,该广角镜头满足以下条件:

 $1.00 \le (Nd_1 \times Vd_1) / (Nd_3 \times Vd_3) < 1.29;$

其中,Nd1为该第一透镜的折射率,Vd1为该第一透镜的阿贝系数,Nd3为该第三透镜的折射率,Vd3为该第三透镜的阿贝系数。

5.如权利要求1至2中任一项所述的广角镜头,其特征在于,该广角镜头满足以下条件: 0≤ |Vd1-Vd2 |<36;

其中,Vd1为该第一透镜的阿贝系数,Vd2为该第二透镜的阿贝系数。

6.如权利要求1至2中任一项所述的广角镜头,其特征在于,该广角镜头满足以下条件: 0.6<(Vd1+Vd2)/Vd6<5.5;

其中,Vd1为该第一透镜的阿贝系数,Vd2为该第二透镜的阿贝系数,Vd6为该第六透镜的 阿贝系数。

7.一种广角镜头,沿着光轴从物侧至像侧依序由以下透镜组成:

第一透镜具有屈光力;

第二透镜,具有负屈光力,该第二透镜为弯月型透镜,包括凸面朝向该物侧,凹面朝向 该像侧;

第三透镜具有正屈光力,该第三透镜为双凸透镜,包括凸面朝向该物侧,凸面朝向该像侧;

光圈;

第四透镜具有正屈光力;

第五透镜,具有负屈光力,该第五透镜包括凹面朝向该物侧;以及

第六透镜具有屈光力;

该广角镜头满足以下条件:

0.4<SL/TTL<0.8;

其中,SL为该光圈至成像面于该光轴上的间距,TTL为该第一透镜的物侧面至该成像面于该光轴上的间距。

8. 如权利要求7所述的广角镜头,其特征在于,其中:

该第一透镜具有负屈光力,该第一透镜包括凸面朝向该物侧;

该第四透镜包括凸面朝向该像侧;

该第五透镜更包括凹面朝向该像侧;

该第六透镜具有正屈光力,该第六透镜包括凸面朝向该像侧。

9. 如权利要求7至8任一项所述的广角镜头,其特征在于,该广角镜头满足以下条件:

 $1.54 \leq |f_6/f| \leq 13.37;$

其中,f6为该第六透镜的有效焦距,f为该广角镜头的有效焦距。

10. 如权利要求7所述的广角镜头,其特征在于,该广角镜头满足以下条件:

 $0.65 < |f_{456}/f_{123}| < 1.95;$

其中,f₄₅₆为该第四透镜、该第五透镜以及该第六透镜的组合的有效焦距,f₁₂₃为该第一 透镜、该第二透镜以及该第三透镜的组合的有效焦距。

11. 如权利要求7所述的广角镜头,其特征在于,该广角镜头满足以下条件:

4.4<TTL/EPP<6.2;

其中,TTL为该第一透镜的物侧面至成像面于该光轴上的间距,EPP为该广角镜头的入 瞳间距。

广角镜头

技术领域

[0001] 本发明有关于一种广角镜头。

背景技术

[0002] 现今的广角镜头的发展趋势,除了不断朝向大视角发展外,随着不同的应用需求, 还需同时具备小型化及高分辨率的能力,已知的广角镜头已经无法满足现今的需求,需要 有另一种新架构的广角镜头,才能同时满足大视角、小型化及高分辨率的特性。

发明内容

[0003] 本发明要解决的技术问题在于,针对现有技术中的广角镜头无法同时具备小型化 及高分辨率的能力的缺陷,提供一种广角镜头,其具备大视角、小型化及高分辨率的特性, 但是仍具有良好的光学性能。

[0004] 本发明为解决其技术问题所采用的技术方案是,提供一种广角镜头,沿着光轴从物侧至像侧依序包括第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜。第一透镜具有屈光力。第二透镜包括凸面朝向物侧。第三透镜具有正屈光力,此第三透镜包括凸面朝向像侧。第四透镜具有屈光力。第五透镜包括凹面朝向物侧。第六透镜包括凹面朝向像侧。广角镜头满足以下条件:1.54≤|f6/f|≤13.37;其中,f6为该第六透镜的有效焦距,f为该广角镜头的有效焦距。

[0005] 本发明的广角镜头的另一实施例沿着光轴从物侧至像侧依序包括第一透镜、第二 透镜、第三透镜、光圈、第四透镜、第五透镜及第六透镜。第一透镜具有屈光力。第二透镜包 括凸面朝向物侧。第三透镜具有正屈光力,此第三透镜包括凸面朝向像侧。第四透镜具有屈 光力。第五透镜包括凹面朝向物侧。第六透镜具有屈光力。广角镜头满足以下条件:0.4< SL/TTL<0.8;其中,SL为该光圈至一成像面于该光轴上的间距,TTL为该第一透镜之物侧面 至该成像面于该光轴上的间距。

[0006] 其中可更包括光圈,设置于第二透镜与第三透镜之间,其中第二透镜可更包括凹面朝向像侧,第三透镜可更包括凸面朝向物侧,第四透镜包括凸面朝向物侧,第六透镜包括凹面朝向像侧,广角镜头满足以下条件:0.4<SL/TTL<0.8;其中,SL为光圈至成像面于光轴上的间距,TTL为第一透镜的物侧面至成像面于光轴上的间距。

[0007] 其中第一透镜具有负屈光力,此第一透镜包括凸面朝向物侧,第二透镜具有负屈 光力,此第二透镜可更包括凹面朝向像侧,第三透镜可更包括凸面朝向物侧,第四透镜具有 正屈光力,此第四透镜包括凸面朝向像侧,第五透镜具有负屈光力,此第五透镜可更包括凹 面朝向像侧,第六透镜具有正屈光力,此第六透镜包括凸面朝向像侧,广角镜头满足以下条 件:0.62<(R₄₁-R₄₂)/(R₄₁+R₄₂)<5.60;其中,R₄₁为该第四透镜的物侧面的一曲率半径,R₄₂为 该第四透镜的像侧面的曲率半径。。

[0008] 其中广角镜头满足以下条件:1.54≤|f₆/f|≤13.37;其中,f₆为第六透镜的有效焦距,f为广角镜头的有效焦距。

[0009] 其中广角镜头满足以下条件:1.00 < (Nd₁×Vd₁) / (Nd₃×Vd₃) <1.29;其中,Nd₁为第 一透镜的折射率,Vd₁为第一透镜的阿贝系数,Nd₃为第三透镜的折射率,Vd₃为第三透镜的阿 贝系数。

[0010] 其中广角镜头满足以下条件:0≤ |Vd1-Vd2| <36; 其中, Vd1为第一透镜的阿贝系数, Vd2为第二透镜的阿贝系数。

[0011] 其中广角镜头满足以下条件:0.6<(Vd1+Vd2)/Vd6<5.5;其中,Vd1为第一透镜的 阿贝系数,Vd2为第二透镜的阿贝系数,Vd6为第六透镜的阿贝系数。

[0012] 其中广角镜头满足以下条件:0.65< |f₄₅₆/f₁₂₃| <1.95;其中,f₄₅₆为第四透镜、第 五透镜及第六透镜的组合的有效焦距,f₁₂₃为第一透镜、第二透镜及第三透镜的组合的有效 焦距。

[0013] 其中广角镜头满足以下条件:4.4<TTL/EPP<6.2;其中,TTL为第一透镜的物侧面 至成像面于光轴上的间距,EPP为广角镜头的入瞳间距。

[0014] 其中第一透镜、第二透镜、第三透镜、第四透镜、第五透镜及第六透镜由塑料材质制成。

[0015] 其中第一透镜及第三透镜由玻璃材质制成,第二透镜、第四透镜、第五透镜及第六 透镜由塑料材质制成。

[0016] 实施本发明的广角镜头,具有以下有益效果:其具备大视角、小型化及高分辨率的 特性,但是仍具有良好的光学性能。

附图说明

- [0017] 图1是依据本发明的广角镜头的第一实施例的透镜配置示意图。
- [0018] 图2A是图1的广角镜头的场曲 (Field Curvature)图。
- [0019] 图2B是图1的广角镜头的畸变(Distortion)图。
- [0020] 图2C是图1的广角镜头的调变转换函数 (Modulation Transfer Function)图。
- [0021] 图3是依据本发明的广角镜头的第二实施例的透镜配置示意图。
- [0022] 图4A是图3的广角镜头的场曲 (Field Curvature)图。
- [0023] 图4B是图3的广角镜头的畸变(Distortion)图。
- [0024] 图4C是图3的广角镜头的调变转换函数 (Modulation Transfer Function)图。
- [0025] 图5是依据本发明的广角镜头的第三实施例的透镜配置示意图。
- [0026] 图6A是图5的广角镜头的场曲 (Field Curvature)图。
- [0027] 图6B是图5的广角镜头的畸变(Distortion)图。
- [0028] 图6C是图5的广角镜头的调变转换函数 (Modulation Transfer Function)图。
- [0029] 图7是依据本发明的广角镜头的第四实施例的透镜配置示意图。
- [0030] 图8A是图7的广角镜头的纵向像差(Longitudinal Aberration)图。
- [0031] 图8B是图7的广角镜头的场曲 (Field Curvature)图。
- [0032] 图8C是图7的广角镜头的畸变(Distortion)图。
- [0033] 图8D是图7的广角镜头的横向色差(Lateral Color)图。
- [0034] 图8E是图7的广角镜头的调变转换函数 (Modulation Transfer Function)图。

具体实施方式

[0035] 请参阅图1,图1是依据本发明的广角镜头的第一实施例的透镜配置示意图。广角镜头1沿着光轴OA1从物侧至像侧依序包括第一透镜L11、第二透镜L12、光圈ST1、第三透镜L13、第四透镜L14、第五透镜L15、第六透镜L16及滤光片OF1。成像时,来自物侧的光线最后成像于成像面IMA1上。

[0036] 第一透镜L11为弯月型透镜,具有负屈光力,由塑料材质制成,其物侧面S11为凸面,像侧面S12为凹面,物侧面S11与像侧面S12皆为非球面表面。

[0037] 第二透镜L12为弯月型透镜,具有正屈光力,由塑料材质制成,其物侧面S13为凸面,像侧面S14为凹面,物侧面S13与像侧面S14皆为非球面表面。

[0038] 第三透镜L13为双凸透镜,具有正屈光力,由塑料材质制成,其物侧面S16为凸面, 像侧面S17为凸面,物侧面S16与像侧面S17皆为非球面表面。

[0039] 第四透镜L14为弯月型透镜,具有负屈光力,由塑料材质制成,其物侧面S18为凸面,像侧面S19为凹面,物侧面S18与像侧面S19皆为非球面表面。

[0040] 第五透镜L15为弯月型透镜,具有正屈光力,由塑料材质制成,其物侧面S110为凹面,像侧面S111为凸面,物侧面S110与像侧面S111皆为非球面表面。

[0041] 第六透镜L16为双凹透镜,具有负屈光力,由塑料材质制成,其物侧面S112为凹面, 像侧面S113为凹面,物侧面S112与像侧面S113皆为非球面表面。

[0042] 滤光片0F1其物侧面S114与像侧面S115皆为平面。

[0043] 另外,第一实施例中的广角镜头1满足底下六条件中任一条件:

 $[0044] \quad 0.62 < (R1_{41} - R1_{42}) / (R1_{41} + R1_{42}) < 5.60 \quad (1)$

[0045] 0.4<SL1/TTL1<0.8 (2)

 $[0046] \quad 1.54 \leq |f_{16}/f_1| \leq 13.37 \quad (3)$

 $[0047] \quad 1.00 \leq (Nd1_1 \times Vd1_1) / (Nd1_3 \times Vd1_3) < 1.29 \quad (4)$

 $[0048] \quad 0 \leq |Vd1_1 - Vd1_2| < 36$ (5)

 $[0049] \quad 0.6 < (Vd1_1 + Vd1_2) / Vd1_6 < 5.5 \quad (6)$

[0050] 其中,R1₄₁为第四透镜L14的物侧面S18的曲率半径,R1₄₂为第四透镜L14的像侧面S19的曲率半径,SL1为光圈ST1至成像面IMA1于光轴OA1上的间距,TTL1为第一透镜L11的物侧面S11至成像面IMA1于光轴OA1上的间距,f1₆为第六透镜L16的有效焦距,f1为广角镜头1的有效焦距,Nd1₁为第一透镜L11的折射率,Vd1₁为第一透镜L11的阿贝系数,Nd1₃为第三透镜L13的折射率,Vd1₃为第三透镜L13的阿贝系数,Vd1₂为第二透镜L12的阿贝系数,Vd1₆为第 六透镜L16的阿贝系数。

[0051] 利用上述透镜、光圈ST1及满足条件(1)至条件(6)的设计,使得广角镜头1能有效的缩短镜头总长度、缩小光圈值、提升视角、提升分辨率、有效的修正像差。

[0052] 表一为图1中广角镜头1的各透镜的相关参数表,表一数据显示,第一实施例的广 角镜头1的有效焦距等于1.2058mm、光圈值等于2.4、镜头总长度等于4.95mm、视角等于143 度。

[0053] 表一

	有效焦	距=1.2058 r	nm	光圈值=2.4			
	镜头总	长度=4.95 n	nm	视角=143 度			
	表面 序号	曲率半径 (mm)	间距 (mm)	折射率 Nd	阿贝系数 Vd	备注	
	S11	5.408051	0.204027	1.543915	55.9512	第一透镜 L11	
	S12	0.710163	0.438154				
	S13	1.544388	0.53731	1.650958	21.51361	第二透镜 L12	
[0054]	S14	2.810599	0.362879				
	S15	8	0.010997			光圈 ST1	
	S16	2.416652	0.629225	1.543915	55.9512	第三透镜 L13	
	S17	-1.09284	0.060965				
	S18	8.24124	0.290111	1.650958	21.51361	第四透镜 L14	
	S19	1.945135	0.087749				
	S110	-24.3364	0.829364	1.543915	55.9512	第五透镜 L15	
				,			
	S111	-0.76137	0.141868				
	S112	-34.9881	0.474574	1.650958	21.51361	第六透镜 L16	

[0055]

S113

S114

1.60796

 ∞

S115 ∞ 0.179825

0.5

0.21

[0056] 表一中各个透镜的非球面表面凹陷度z由下列公式所得到:

 $[0057] z = ch^2 / \{1 + [1 - (k+1)c^2h^2]^{1/2}\} + Ah^4 + Bh^6 + Ch^8 + Dh^{10} + Eh^{12} + Fh^{14} + Gh^{16}$

[0058] 其中:c:曲率;h:透镜表面任一点至光轴的垂直距离;k:圆锥系数;A~G:非球面系数。

1.543915

55.9512

滤光片 OF1

[0059] 表二为表一中各个透镜的非球面表面的相关参数表,其中k为圆锥系数(Conic Constant)、A~G为非球面系数。

[0060] 表二

	表面 序号	k	А	В	С
	S11	-2.34774	0.002186692	-0.000215788	1.84722E-05
	S12	-0.79128	-0.13002673	0.080619278	0.10136552
	S13	-9.91973	0.23782745	0.11418644	-0.009807514
	S14	0	0.26823293	0.89470711	-0.39193677
	S16	6.396332	0.020258342	-0.65952213	0.86477946
	S17	-2.46911	-0.35277444	-0.15488445	-0.030007962
	S18	-2231.84	-0.34073773	-0.095700548	-0.029240353
	S19	-29.0312	-0.056700552	0.015252993	-0.003226936
[0061]	S110	-2413.95	0.045283244	0.031150008	-0.00159364
	S111	-2.7594	0.00286144	0.040090398	0.010727947
	S112	671.7513	-0.10604476	-0.038213532	-0.003276
	S113	-21.2372	-0.10290978	0.021559284	-0.006331901
	表面 序号	D	E	F	G
	S11	6.23829E-05	2.09843E-05	-4.26767E-06	-1.12087E-06
	S12	0.064069461	-0.041124462	-0.072014883	0.017228151
	S13	0.092220313	0.066692032	-0.13467147	-0.014315083
	S14	-0.006261132	-2.9997374	12.047202	4.7851641
	S16	-2.0325251	-27.180939	158.73356	-263.51828
	\$17	-1 4098971	-2 9506773	1 9438287	-2 9840105
	S18	-0.43013216	-0.96690184	-1 7140905	-2.5689272
	S10	0.005234317	0.002013036	-0.007360986	-0.0147535
[0042]	S110	-0.009234317	0.002913030	-2.465-03	-0.002172445
[0002]	C111		_1 81E_02	-2.402-03	0.000/77/27
	C112	0.001772094	-1.01E-05	7.025.04	1 245 04
	5112	0.001773984	0.000/41/44	7.95E-04	1.34E-04
	5113	-5.99559E-05	2.01E-04	0.0/E-05	-2.58E-05

[0063] 第一实施例的广角镜头1,其第四透镜L14的物侧面S18的曲率半径R141=8.24124, 第四透镜L14的像侧面S19的曲率半径R142=1.945135mm,光圈ST1至成像面IMA1于光轴OA1 上的间距SL1=3.41mm,第一透镜L11的物侧面S11至成像面IMA1于光轴OA1上的间距TTL1= 4.95mm,第六透镜L16的有效焦距f1₆=-2.32422mm,广角镜头1的有效焦距f1=1.2058mm, 第一透镜L11的折射率Nd11=1.543915,第一透镜L11的阿贝系数Vd11=55.9512,第三透镜 L13的折射率Nd13=1.543915,第三透镜L13的阿贝系数Vd13=55.9512,第二透镜L12的阿贝 系数Vd12=21.51361,第六透镜L16的阿贝系数Vd16=21.51361。由上述数据可得到(R141- $R1_{42}$ / $(R1_{41}+R1_{42}) = 0.618$ SL1/TTL1 = 0.69 $|f1_6/f1| = 1.93$ $(Nd1_1 \times Vd1_1) / (Nd1_3 \times Vd1_3)$ =1、|Vd11-Vd12|=34.44、(Vd11+Vd12) /Vd16=3.60,皆能满足上述条件(1) 至条件(6) 的要 求。

[0064] 另外,第一实施例的广角镜头1的光学性能也可达到要求,这可从图2A至图2C看出。图2A所示的,是第一实施例的广角镜头1的场曲 (Field Curvature)图。图2B所示的,是第一实施例的广角镜头1的畸变 (Distortion)图。图2C所示的,是第一实施例的广角镜头1的调变转换函数 (Modulation Transfer Function)图。

[0065] 由图2A可看出,第一实施例的广角镜头1对波长为0.436µm、0.486µm、0.546µm、0.588µm、0.656µm的光线,于子午(Tangential)方向与弧矢(Sagittal)方向的场曲介于-0.03mm至0.09mm之间。

[0066] 由图2B(图中的五条线几乎重合,以致于看起来只有一条线)可看出,第一实施例的广角镜头1对波长为0.436µm、0.486µm、0.546µm、0.588µm、0.656µm的光线所产生的畸变介于-35%至0%之间。

[0067] 由图2C可看出,第一实施例的广角镜头1对波长范围介于0.436µm至0.656µm的光线,分别于子午(Tangential)方向与弧矢(Sagittal)方向,视场角度分别为0.00度、14.00 度、42.01度、48.00度、56.01度、63.02度、70.02度、71.51度,空间频率介于01p/mm至3201p/mm,其调变转换函数值介于0.0至1.0之间。

[0068] 显见第一实施例的广角镜头1的场曲、畸变都能被有效修正,镜头分辨率也能满足 要求,从而得到较佳的光学性能。

[0069] 请参阅图3,图3是依据本发明的广角镜头的第二实施例的透镜配置示意图。广角镜头2沿着光轴OA2从物侧至像侧依序包括第一透镜L21、第二透镜L22、光圈ST2、第三透镜L23、第四透镜L24、第五透镜L25、第六透镜L26及滤光片OF2。成像时,来自物侧的光线最后成像于成像面IMA2上。

[0070] 第一透镜L21为弯月型透镜具有负屈光力由塑料材质制成,其物侧面S21为凹面, 像侧面S22为凸面,物侧面S21与像侧面S22皆为非球面表面。

[0071] 第二透镜L22为弯月型透镜具有负屈光力由塑料材质制成,其物侧面S23为凸面, 像侧面S24为凹面,物侧面S23与像侧面S24皆为非球面表面。

[0072] 第三透镜L23为双凸透镜具有正屈光力由塑料材质制成,其物侧面S26为凸面,像侧面S27为凸面,物侧面S26与像侧面S27皆为非球面表面。

[0073] 第四透镜L24为双凸透镜具有正屈光力由塑料材质制成,其物侧面S28为凸面,像侧面S29为凸面,物侧面S28与像侧面S29皆为非球面表面。

[0074] 第五透镜L25为双凹透镜具有负屈光力由塑料材质制成,其物侧面S210为凹面,像侧面S211为凹面,物侧面S210与像侧面S211皆为非球面表面。

[0075] 第六透镜L26为弯月型透镜具有正屈光力由塑料材质制成,其物侧面S212为凸面, 像侧面S213为凹面,物侧面S212与像侧面S213皆为非球面表面。

[0076] 滤光片0F2其物侧面S214与像侧面S215皆为平面。

[0077] 另外,第二实施例中的广角镜头2满足底下六条件中任一条件:

 $[0078] \quad 0.62 < (R2_{41} - R2_{42}) / (R2_{41} + R2_{42}) < 5.60$ (7)

[0079] 0.4<SL2/TTL2<0.8 (8)

 $[0080] \quad 1.54 \leq |f_{26}/f_2| \leq 13.37 \quad (9)$

 $[0081] \quad 1.00 \leq (Nd2_1 \times Vd2_1) / (Nd2_3 \times Vd2_3) < 1.29 \quad (10)$

7/18 页

 $[0082] \quad 0 \leq |Vd2_1 - Vd2_2| < 36 \quad (11)$

 $[0083] \quad 0.6 < (Vd2_1 + Vd2_2) / Vd2_6 < 5.5 \quad (12)$

[0084] 上述R2₄₁、R2₄₂、SL2、TTL2、f2₆、f2、Nd2₁、Vd2₁、Nd2₃、Vd2₃、Vd2₂及Vd2₆的定义与第一 实施例中R1₄₁、R1₄₂、SL1、TTL1、f1₆、f1、Nd1₁、Vd1₁、Nd1₃、Vd1₃、Vd1₂及Vd1₆的定义相同,在此皆 不加以赘述。

[0085] 利用上述透镜、光圈ST2及满足条件(7)至条件(12)的设计,使得广角镜头2能有效的缩短镜头总长度、缩小光圈值、提升视角、提升分辨率、有效的修正像差。

[0086] 表三为图3中广角镜头2的各透镜的相关参数表,表三数据显示,第二实施例的广 角镜头2的有效焦距等于1.77306mm、光圈值等于2.4、镜头总长度等于4.95mm、视角等于147 度。

[0087] 表三

	有效焦	距=1.77306	mm	光圈值=2.4			
	镜头总	长度=4.95 n	nm	视角=147 度			
	表面	曲率半径	间距	折射率 Nd	阿贝系数 Vd	备注	
	序号	(mm)	(mm)	<i>•</i>			
	S21	-11.6722	0.430572	1.543915	55.9512	第一透镜 L21	
	S22	-19.5842	0.006135				
	S23	1.101204	0.222995	1.543915	55.9512	第二透镜 L22	
F • • • • 7	S24	0.522572	0.661713				
[0088]	S25	8	0.0142			光圈 ST2	
	S26	3.486144	0.427347	1.543915	55.9512	第三透镜 L23	
	S27	-2.26786	0.028374				
	S28	2.343487	0.784577	1.543915	55.9512	第四透镜 L24	
	S29	-1.34647	0.077746				
	S210	-2.36135	0.26081	1.661342	20.3729	第五透镜 L25	
	S211	14.52963	0.511211				
	S212	1.406485	0.549178	1.543915	55.9512	第六透镜 L26	
				1			
	S213	1.366803	0.6				
[0089]	S214	8	0.11	1.5168	64.16734	滤光片 OF2	
	S215	∞	0.265285				

[0090] 表三中各个透镜的非球面表面凹陷度z其公式相同于上述表一所适用的非球面表面凹陷度z,其中各参数的物理意义可参照表一非球面表面凹陷度z公式的说明,在此不再重述。

[0091] 表四为表三中各个透镜的非球面表面的相关参数表。

[0092] 表四

表面 序号	k	А	В	С
S21	0	0.070586858	0.001746118	-0.002190434
S22	0	0.13912209	0.004145135	0.007600384
S23	-2.05831	-0.15488989	-0.020407133	0.02871363
S24	-0.79915	-0.0898881	0.37819194	-0.32985267
S26	8.572075	0.036314858	-0.014995905	-0.017187042
S27	7.080266	-0.013841259	0.009077003	0.06160044
S28	0	-0.025749599	-0.053368665	0.004347418
S29	0.12576	-0.048728196	0.087895997	0.051770273
S210	-0.36144	-0.041465539	-0.086731745	0.02591413
S211	0	0.088559288	0.037328103	-0.006405607
S212	-4.12743	-0.088353667	0.00194097	0.003038532
S213	-2.25677	-0.12835343	0.03873446	-0.008219529
表面 序号	D	E	F	G
S21	0.000149405	-6.61241E-06	3.49024E-05	-4.12253E-05
S22	-0.006390471	-0.004769568	-0.003992185	0.002189127
S23	0.014690139	0.002061809	-0.007709073	-0.000480932
S24	0.17514926	3.095095	6.3520418	-5.5812082
S26	0.084819353	-0.56342421	-1.7749774	1.1892177
S27	0.10030724	0.19922368	-0.04030634	-1.225248
S28	0.024261301	0.03790053	-0.004610073	-0.10417861
S29	0.027179641	0.011126124	0.036027992	0.076284967
S210	0.08591691	0.063029254	1.99E-02	-0.049858026
S211	-0.018407226	-5.33E-03	2.51E-03	0.002457816
S212	0.000655618	-0.000244669	1.06E-05	4.41E-08
\$213	0.000519759	3.78E-04	-1.58E-04	1.66E-05

[0093]

[0094]

[0095] 第二实施例的广角镜头2,其第四透镜L24的物侧面S28的曲率半径R2₄₁=2.34349, 第四透镜L24的像侧面S29的曲率半径R2₄₂=-1.34647mm,光圈ST2至成像面IMA2于光轴OA2 上的间距SL2=3.62mm,第一透镜L21的物侧面S21至成像面IMA2于光轴OA2上的间距TTL2= 4.95mm,第六透镜L26的有效焦距f26=22.7691mm,广角镜头2的有效焦距f2=1.77306mm, 第一透镜L21的折射率Nd21=1.54392,第一透镜L21的阿贝系数Vd21=55.9512,第三透镜 L23的折射率Nd23=1.54392,第三透镜L23的阿贝系数Vd23=55.9512,第二透镜L22的阿贝 系数Vd22=55.9512,第六透镜L26的阿贝系数Vd26=55.9512。由上述数据可得到(R241-R242)/(R241+R242)=3.70、SL2/TTL2=0.73、|f26/f2|=12.84、(Nd21×Vd21)/(Nd23×Vd23) =1、|Vd21-Vd22|=0、(Vd21+Vd22)/Vd26=2,皆能满足上述条件(7)至条件(12)的要求。 [0096] 另外,第二实施例的广角镜头2的光学性能也可达到要求,这可从图4A至图4C看出。图4A所示的,是第二实施例的广角镜头2的场曲(Field Curvature)图。图4B所示的,是 第二实施例的广角镜头2的畸变(Distortion)图。图4C所示的,是第二实施例的广角镜头2 的调变转换函数(Modulation Transfer Function)图。

[0097] 由图4A可看出,第二实施例的广角镜头2对波长为0.436µm、0.486µm、0.546µm、0.588µm、0.656µm的光线,于子午(Tangential)方向与弧矢(Sagittal)方向的场曲介于-0.03mm至0.04mm之间。

[0098] 由图4B(图中的五条线几乎重合,以致于看起来只有一条线)可看出,第二实施例的广角镜头2对波长为0.436µm、0.486µm、0.546µm、0.588µm、0.656µm的光线所产生的畸变介于-31%至0%之间。

[0099] 由图4C可看出,第二实施例的广角镜头2对波长范围介于0.436µm至0.656µm的光线,分别于子午(Tangential)方向与弧矢(Sagittal)方向,视场角度分别为0.00度、14.22度、42.66度、50.00度、56.88度、73.62度,空间频率介于01p/mm至3201p/mm,其调变转换函数值介于0.0至1.0之间。

[0100] 显见第二实施例的广角镜头2的场曲、畸变都能被有效修正,镜头分辨率也能满足 要求,从而得到较佳的光学性能。

[0101] 请参阅图5,图5是依据本发明的广角镜头的第三实施例的透镜配置示意图。广角镜头3沿着光轴0A3从物侧至像侧依序包括第一透镜L31、第二透镜L32、光圈ST3、第三透镜L33、第四透镜L34、第五透镜L35、第六透镜L36及滤光片0F3。成像时,来自物侧的光线最后成像于成像面IMA3上。

[0102] 第一透镜L31为弯月型透镜具有正屈光力由塑料材质制成,其物侧面S31为凸面, 像侧面S32为凹面,物侧面S31与像侧面S32皆为非球面表面。

[0103] 第二透镜L32为弯月型透镜,具有负屈光力由塑料材质制成,其物侧面S33为凸面, 像侧面S34为凹面,物侧面S33与像侧面S34皆为非球面表面。

[0104] 第三透镜L33为双凸透镜,具有正屈光力由塑料材质制成,其物侧面S36为凸面,像侧面S37为凸面,物侧面S36与像侧面S37皆为非球面表面。

[0105] 第四透镜L34为双凸透镜具有正屈光力由塑料材质制成,其物侧面S38为凸面,像侧面S39为凸面,物侧面S38与像侧面S39皆为非球面表面。

[0106] 第五透镜L35为弯月型透镜具有负屈光力由塑料材质制成,其物侧面S310为凹面, 像侧面S311为凸面,物侧面S310与像侧面S311皆为非球面表面。

[0107] 第六透镜L36为弯月型透镜具有负屈光力由塑料材质制成,其物侧面S312为凸面, 像侧面S313为凹面,物侧面S312与像侧面S313皆为非球面表面。

[0108] 滤光片0F3其物侧面S314与像侧面S315皆为平面。

[0109] 另外,第三实施例中的广角镜头3满足底下六条件中任一条件:

 $[0110] \quad 0.62 < (R3_{41} - R3_{42}) / (R3_{41} + R3_{42}) < 5.60 \quad (13)$

 $[0111] \quad 0.4 < SL3/TTL3 < 0.8 \quad (14)$

 $[0112] \quad 1.54 \leq |f_{36}/f_3| \leq 13.37 \quad (15)$

 $[0113] \quad 1.00 \leq (Nd3_1 \times Vd3_1) / (Nd3_3 \times Vd3_3) < 1.29 \quad (16)$

 $[0114] \quad 0 \leq |Vd3_1 - Vd3_2| < 36 \quad (17)$

[0115] $0.6 < (Vd_{31}+Vd_{32})/Vd_{36} < 5.5$ (18)

[0116] 上述R341、R342、SL3、TTL3、f36、f3、Nd31、Vd31、Nd33、Vd32及Vd36的定义与第一 实施例中R141、R142、SL1、TTL1、f16、f1、Nd11、Vd11、Nd13、Vd12及Vd16的定义相同,在此皆 不加以赘述。

[0117] 利用上述透镜、光圈ST3及满足条件(13)至条件(18)的设计,使得广角镜头3能有 效的缩短镜头总长度、缩小光圈值、提升视角、提升分辨率、有效的修正像差。

[0118] 表五为图5中广角镜头3的各透镜的相关参数表,表五数据显示,第三实施例的广 角镜头3的有效焦距等于1.80064mm、光圈值等于2.4、镜头总长度等于4.01mm、视角等于145 度。

[0119] 表五

有效焦	距=1.80064	mm	光圈值=2.4		
镜头总	长度=4.01 n	าm	视角=	=145 度	
表面	曲率半径	间距	折射索 Nd	际 II 系教 Vd	备注
序号	(mm)	(mm)			д нь
S31	21.56902	0.285896	1.543915	55.9512	第一透镜 L31
S32	1790.377	0.025303			
S33	0.812982	0.253746	1.661342	20.3729	第二透镜 L32
S34	0.485545	0.493987			
S35	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.02327			光圈 ST3
S36	2.352661	0.395475	1.543915	55.9512	第三透镜 L33
S37	-2.90972	0.066223			
S38	1.78233	0.692514	1.543915	55.9512	第四透镜 L34
S39	-1.23945	0.088059			
S310	-1.66863	0.30473	1.661342	20.3729	第五透镜 L35
S311	-30.7694	0.338836			
S312	0.97135	0.337698	1.543915	55.9512	第六透镜 L36
S313	0.793392	0.55			
S314	8	0.11	1.5168	64.16734	滤光片 OF3
S315	~	0.046867			

[0120]

[0121] 表五中各个透镜的非球面表面凹陷度z其公式相同于上述表一所适用的非球面表 面凹陷度z,其中各参数的物理意义可参照表一非球面表面凹陷度z公式的说明,在此不再 重述。

[0122] 表六为表五中各个透镜的非球面表面的相关参数表。

[0123] 表六

[0124]

	表面 序号	k	А	В	С
	S31	0	0.043759437	0.004692789	-0.007760096
	S32	3536528	0.17986113	-0.064097666	0.034190742
	\$33	-1.03317	-0.22169684	-0.15833879	0.062777604
	S34	-0.96522	-0.28268593	-0.090476053	0.28362445
	S36	5.156712	0.035621146	-0.16830903	-0.63915089
	S37	7.708198	0.002010855	-0.14250048	-0.17841963
	S38	0	-0.020906035	-0.11986826	0.064878738
	\$39	0.400481	-0.10722143	0.1162819	0.13445956
	S310	-1.37144	-0.058335324	-0.17258436	-0.03207042
	S311	0	0.15231858	0.058836319	-0.005111873
	S312	-4.36355	-0.14958919	0.009108915	0.012309397
	S313	-3.17058	-0.15485436	0.075973111	-0.030253959
	表面 序号	D	E	F	G
	S31	-0.004801426	-0.002058524	0.000379298	0.000126838
	S32	0.015954935	-0.021788176	-0.041307101	0.013970104
	S33	0.20273663	0.23236142	-0.040620563	-0.1577675
	S34	-0.49551427	2.4901351	4.9537419	24.150335
	S36	0.53806608	3.1568184	1.6109862	-45.598485
	S37	0.16971408	2.1802198	1.9651255	-19.466469
	S38	0.16056284	0.17425442	0.12008256	-0.3769127
	\$39	0.1264808	0.059958862	0.059428822	0.43423147
	S310	0.19863737	0.29735803	8.34E-02	-0.7227685
	S311	-0.075090664	-4.24E-03	3.45E-02	-0.011172776
	S312	0.003841462	-0.002896402	2.90E-04	2.43E-05
ſ	S313	0.002934241	4.14E-03	-2.24E-03	3.29E-04

[0125] 第三实施例的广角镜头3,其第四透镜L34的物侧面S38的曲率半径R3₄₁=1.78233, 第四透镜L34的像侧面S39的曲率半径R3₄₂=-1.23945mm,光圈ST3至成像面IMA3于光轴OA3 上的间距SL3=2.95mm,第一透镜L31的物侧面S31至成像面IMA3于光轴OA3上的间距TTL3= 4.01mm,第六透镜L36的有效焦距f36=-24.058mm,广角镜头3的有效焦距f3=1.80064mm, 第一透镜L31的折射率Nd3₁=1.543915,第一透镜L31的阿贝系数Vd3₁=55.9512,第三透镜 L33的折射率Nd3₃=1.543915,第三透镜L33的阿贝系数Vd3₃=55.9512,第二透镜L32的阿贝 系数Vd3₂=20.3729,第六透镜L36的阿贝系数Vd3₆=55.9512。由上述数据可得到(R3₄₁-R3₄₂)/(R3₄₁+R3₄₂)=5.57、SL3/TTL3=0.74、|f36/f3|=13.36、(Nd3₁×Vd3₁)/(Nd3₃×Vd3₃) =1、|Vd31-Vd32|=35.58、(Vd31+Vd32)/Vd36=1.36,皆能满足上述条件(13)至条件(18)的 要求。

[0126] 另外,第三实施例的广角镜头3的光学性能也可达到要求,这可从图6A至图6C看出。图6A所示的,是第三实施例的广角镜头3的场曲(Field Curvature)图。图6B所示的,是 第三实施例的广角镜头3的畸变(Distortion)图。图6C所示的,是第三实施例的广角镜头3 的调变转换函数(Modulation Transfer Function)图。

[0127] 由图6A可看出,第三实施例的广角镜头3对波长为0.436µm、0.486µm、0.546µm、0.588µm、0.656µm的光线,于子午(Tangential)方向与弧矢(Sagittal)方向的场曲介于-0.10mm至0.05mm之间。

[0128] 由图6B(图中的五条线几乎重合,以致于看起来只有一条线)可看出,第三实施例的广角镜头3对波长为0.436µm、0.486µm、0.546µm、0.588µm、0.656µm的光线所产生的畸变介于-75%至0%之间。

[0129] 由图6C可看出,第三实施例的广角镜头3对波长范围介于0.436µm至0.656µm的光线,分别于子午(Tangential)方向与弧矢(Sagittal)方向,视场角度分别为0.00度、14.22度、42.66度、56.88度、63.99度、72.62度,空间频率介于01p/mm至3201p/mm,其调变转换函数值介于0.0至1.0之间。

[0130] 显见第三实施例的广角镜头3的场曲、畸变都能被有效修正,镜头分辨率也能满足 要求,从而得到较佳的光学性能。

[0131] 请参阅图7,图7是依据本发明的广角镜头的第四实施例的透镜配置示意图。广角镜头4沿着光轴0A4从物侧至像侧依序包括第一透镜L41、第二透镜L42、第三透镜L43、光圈 ST4、第四透镜L44、第五透镜L45、第六透镜L46及滤光片0F4。成像时,来自物侧的光线最后成像于成像面IMA4上。

[0132] 第一透镜L41为弯月型透镜具有负屈光力由玻璃材质制成,其物侧面S41为凸面, 像侧面42为凹面,物侧面S41与像侧面S42皆为球面表面。

[0133] 第二透镜L42为弯月型透镜具有负屈光力由塑料材质制成,其物侧面S43为凸面, 像侧面S44为凹面,物侧面S43与像侧面S44皆为非球面表面。

[0134] 第三透镜L43为双凸透镜具有正屈光力由玻璃材质制成,其物侧面S45为凸面,像侧面S46为凸面,物侧面S45与像侧面S46皆为球面表面。

[0135] 第四透镜L44为双凸透镜具有正屈光力由塑料材质制成,其物侧面S48为凸面,像侧面S49为凸面,物侧面S48与像侧面S49皆为非球面表面。

[0136] 第五透镜L45为双凹透镜具有负屈光力由塑料材质制成,其物侧面S410为凹面,像侧面S411为凹面,物侧面S410与像侧面S411皆为非球面表面。

[0137] 第六透镜L46为双凸透镜具有正屈光力由塑料材质制成,其物侧面S412为凸面,像侧面S413为凸面,物侧面S412与像侧面S413皆为非球面表面。

[0138] 滤光片0F4其物侧面S414与像侧面S415皆为平面。

[0139] 另外,第四实施例中的广角镜头4至少满足底下八条件中任一条件:

 $[0140] \quad 0.62 < (R4_{41} - R4_{42}) / (R4_{41} + R4_{42}) < 5.60 \quad (19)$

[0141] 0.4<SL4/TTL4<0.8 (20)

 $[0142] \quad 1.54 \leq |f4_6/f4| \leq 13.37 \quad (21)$

 $[0143] \quad 1.00 \leq (Nd4_1 \times Vd4_1) / (Nd4_3 \times Vd4_3) < 1.29 \quad (22)$

 $[0144] \quad 0 \leq |Vd4_1 - Vd4_2| < 36 \quad (23)$

[0145] $0.6 < (Vd4_1 + Vd4_2) / Vd4_6 < 5.5$ (24)

[0146] $0.65 < |f4_{456}/f4_{123}| < 1.95$ (25)

[0147] 4.4 < TTL4/EPP4 < 6.2(26)

[0148] 上述R441、R442、SL4、TTL4、f46、f4、Nd41、Vd41、Nd43、Vd43、Vd42及Vd46的定义与第一 实施例中R141、R142、SL1、TTL1、f16、f1、Nd11、Vd11、Nd13、Vd13、Vd12及Vd16的定义相同,在此皆 不加以赘述。f4456为第四透镜L44、第五透镜L45及第六透镜L46的组合的有效焦距,f4123为 第一透镜L41、第二透镜L42及第三透镜L43的组合的有效焦距,EPP4为广角镜头4的入瞳间 距。

[0149] 利用上述透镜、光圈ST4及满足条件(19)至条件(26)的设计,使得广角镜头4能有 效的缩短镜头总长度、缩小光圈值、提升视角、提升分辨率、有效的修正像差。

表七为图7中广角镜头4的各透镜的相关参数表,表七数据显示,第四实施例的广 [0150] 角镜头4的有效焦距等于3.171mm、光圈值等于1.8、镜头总长度等于23.548mm、视角等于 92.9度。

[0151] 表七

	有效焦	距=3.171 m	m		光圈值=1.8			
	镜头总	长度=23.548	3 mm	视角=92.9度				
	表面	曲率半径	间距	七日云 NId	同日を粉いる	友计		
	序号	(mm)	(mm)	折射伞 NO	阿贝杀奴 VO			
	S41	13.352	0.908	1.883	40.81	第一透镜 L41		
	S42	4.297	0.411					
	S43	2.357	0.922	1.643	22.44	第二透镜 L42		
	S44	1.620	4.432					
	S45	8.528	4.945	1.613	36.96	第三透镜 L43		
[0152]	S46	-6.758	2.023					
	S47	8	0.020			光 圈 ST4		
	S48	6.810	1.962	1.531	55.84	第四透镜 L44		
	S49	-4.186	0.282					
	S410	-5.361	0.446	1.651	21.51	第五透镜 L45		
	S411	3.658	0.315					
	S412	5.466	3.564	1.531	55.84	第六透镜 L46		
	S413	-3.856	2.819					
	S414	8	0.500	1.517	64.17	滤光片 OF4		
[0153]	S415	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0					

[0154] 表七中各个透镜的非球面表面凹陷度z其公式相同于上述表一所适用的非球面表 面凹陷度z,其中各参数的物理意义可参照表一非球面表面凹陷度z公式的说明,在此不再 重述。

[0155]	丰川为丰上山久入添培的非球而丰而的相关会粉丰
[0155]	衣八万衣七甲合个笾钥的非球囬衣囬的相大参数衣。

[0156] 表八

表面 序号	k	А	В	С	D
S43	-0.899630	4.83E-04	4.92E-05	-6.34E-06	-5.77E-07
S44	-0.828139	-9.80E-04	1.64E-05	-3.29E-05	-3.86E-06
S48	-5.624879	-0.000655	0.0002250	-1.82E-04	0
S49	-4.803801	5.68E-03	-0.002183	3.71E-05	0
S410	-2.180941	0.0002241	-6.73E-04	5.90E-05	0
S411	-6.30066	-0.000368	0.0004716	-1.19E-05	0
S412	-5.793683	0.0026576	1.74E-04	-7.63E-06	0

书

[0157]

[0158] 第四实施例的广角镜头4,其第四透镜L44的物侧面S48的曲率半径R4₄₁=6.810,第 四透镜L44的像侧面S49的曲率半径R4₄₂=-4.186mm,光圈ST4至成像面IMA4于光轴OA4上的 间距SL4=9.907mm,第一透镜L41的物侧面S41至成像面IMA4于光轴OA4上的间距TTL4= 23.548mm,第六透镜L46的有效焦距f4₆=4.909mm,广角镜头4的有效焦距f4=3.171mm,第 一透镜L41的折射率Nd4₁=1.883,第一透镜L41的阿贝系数Vd4₁=40.81,第三透镜L43的折 射率Nd4₃=1.613,第三透镜L43的阿贝系数Vd4₃=36.96,第二透镜L42的阿贝系数Vd4₂= 22.44,第六透镜L46的阿贝系数Vd4₆=55.84,第四透镜L44、第五透镜L45及第六透镜L46的 组合的有效焦距f4₄₅₆=7.56mm,第一透镜L41、第二透镜L42及第三透镜L43的组合的有效焦 距f4₁₂₃=8.681mm,广角镜头4之入瞳间距EPP4=5.074mm。由上述数据可得到(R4₄₁-R4₄₂)/ (R4₄₁+R4₄₂)=4.191、SL4/TTL4=0.42、 $|f4_6/f4|=1.55$ 、 $(Nd4_1 \times Vd4_1)/(Nd4_3 \times Vd4_3)$ = 1.289、 $|Vd4_1-Vd4_2|=18.37$ 、 $(Vd4_1+Vd4_2)/Vd4_6=1.13$ 、 $|f4_{456}/f4_{123}|=0.871$ 、TTL4/EPP4= 4.641,皆能满足上述条件(19)至条件(26)的要求。

[0159] 另外,第四实施例的广角镜头4的光学性能也可达到要求,这可从图8A至图8E看出。图8A所示的,是第四实施例的广角镜头4的纵向像差(Longitudinal Aberration)图。图8B所示的,是第四实施例的广角镜头4的场曲(Field Curvature)图。图8C所示的,是第四实施例的广角镜头4的畸变(Distortion)图。图8D所示的,是第四实施例的广角镜头4的横向 色差(Lateral Color)图。图8E所示的,是第四实施例的广角镜头4的调变转换函数(Modulation Transfer Function)图。

[0160] 由图8A可看出,第一实施例的广角镜头4对波长为0.435µm、0.490µm、0.550µm、0.610µm、0.650µm的光线所产生的纵向像差值介于-0.035mm至0.055mm之间。

[0161] 由图8B可看出,第四实施例的广角镜头4对波长为0.550µm的光线,于子午 (Tangential)方向与弧矢(Sagittal)方向的场曲介于-0.05mm至0.02mm之间。

[0162] 由图8C可看出,第四实施例的广角镜头4对波长为0.550µm的光线所产生的畸变介于-4%至0.1%之间。

[0163] 由图8D可看出,第四实施例的广角镜头4对波长为0.435µm、0.490µm、0.550µm、0.610µm、0.650µm的光线,于最大视场高度等于3.1942mm,所产生的横向色差值介于-1.25µm至4.75µm之间。

[0164] 由图8E可看出,第四实施例的广角镜头4,对波长范围介于0.435µm至0.650µm的光线,分别于子午(Tangential)方向与弧矢(Sagittal)方向,视场高度分别为0.0000mm、0.6388mm、1.2777mm、1.5971mm、2.2359mm、2.8748mm、3.1942mm,空间频率介于01p/mm至1341p/mm,其调变转换函数值介于0.26至1.0之间。

[0165] 显见第四实施例的广角镜头4的纵向像差、场曲、畸变、横向色差都能被有效修正, 镜头分辨率也都能满足要求,从而得到较佳的光学性能。

[0166] 请参阅表九及表十。表九是依据本发明的广角镜头的第五实施例的各透镜的相关 参数表,表十为表九中各个透镜的非球面表面的相关参数表。

[0167] 上述第五实施例的透镜配置示意图与第四实施例的透镜配置示意图近似,因此省略其图例。

[0168] 表九数据显示,第五实施例的广角镜头的有效焦距等于3.099mm、光圈值等于 1.85、镜头总长度等于23.5mm、视角等于93.5度。

表九	[0169]
ベハ	[0107]

[0170]

有效焦	有效焦距=3.099 mm 光圈值=1.85							
镜头总	93.5 度							
表面 序号	曲率半径 (mm)	间距 (mm)	折射率 Nd	阿贝系数 Vd	备注			
S51	14.275	0.5	1.806	40.93	第一透镜 L51			
S52	4.295	0.975						
S53	6.53	1.543	1.651	21.51	第二透镜 L52			
S54	2.685	2.73						
S55	13.808	4.2	1.801	34.97	第三透镜 L53			
S56	-7.052	0.781						
S57	∞	3.772			光圈 ST5			
S58	8.723	1.885	1.535	56.12	第四透镜 L54			
S59	-4.376	0.05						
S510	-5.417	0.75	1.651	21.51	第五透镜 L55			
S511	7.278	0.05						
S512	5.946	1.984	1.535	56.12	第六透镜 L56			
S513	-6.308	3.57						
S514	~	0.71	1.517	64.17	滤光片 OF5			
S515	~	0						

[0171] 表九中各个透镜的非球面表面凹陷度z其公式相同于上述表一所适用的非球面表面凹陷度z,其中各参数的物理意义可参照表一非球面表面凹陷度z公式的说明,在此不再重述。

[0172] 表十为表九中各个透镜的非球面表面的相关参数表。

[0173] 表十

[0174]	表面 序号	k	A	В	С	D
	S53	-3.952082	0.006436711	-0.000409	1.66E-05	-5.35E-07
	S54	-0.670741	0.0088735	-0.000772	-1.05E-05	-1.05E-07
	S58	0	-1.54E-05	0.0004286	-0.000136	0
[0175]	S59	-2.772091	-0.003227	-0.000344	3.05E-05	0
	S510	0.636053	-0.002407	-0.000185	0.0001215	0
	S511	-2.163589	0.0013969	8.48E-05	-9.67E-07	0
	S512	1.912412	0.0006602	-0.000208	0	0
	S513	-1.357917	0.0015171	0.0001289	1.03E-05	0

[0176] 上述广角镜头的第五实施例的纵向像差(省略图例)、场曲(省略图例)、畸变(省略 图例)、横向色差(省略图例)都能被有效修正,镜头分辨率也都能满足要求,从而得到较佳 的光学。

[0177] 请参阅表十一及表十二。表十一是依据本发明的广角镜头的第六实施例的各透镜 的相关参数表,表十二为表十一中各个透镜的非球面表面的相关参数表。

[0178] 上述第六实施例的透镜配置示意图与第四实施例的透镜配置示意图近似,因此省 略其图例。

[0179] 表十一数据显示,第六实施例的广角镜头的有效焦距等于3.369mm、光圈值等于 1.8、镜头总长度等于24.025mm、视角等于90.0度。

[0180] 表十一

	有效焦	距=3.369 m	m	光圈值=1.8			
	镜头总	长度=24.02	5 mm	视角=90.0 度			
[0181]	表面	曲率半径	间距	拆针索 Nd	阿贝系数 Vd	冬注	
	序号	(mm)	(mm)	小刘平 NU		田工	
	S61	12.051	2.327	1.883	40.81	第一透镜 L61	
	S62	3.955	0.508				
	S63	8.339	0.811	1.643	22.44	第二透镜 L62	
	S64	3.453	4.141				
	S65	12.287	3.726	1.801	34.97	第三透镜 L63	
	S66	-7.249	2.027				
	S67	8	0.090			光 圈 ST6	
	S68	-50	2.757	1.531	55.84	第四透镜 L64	
	S69	-4.089	0.050				
	S610	-5.009	0.250	1.651	21.51	第五透镜 L65	
	S611	7.632	0.020				
	S612	7.176	1.737	1.531	55.84	第六透镜 L66	
[0182]	S613	-4.264	4.872				
	S614	~	0.71	1.517	64.17	滤光片 OF6	
	S615	~	0				

[0183] 表十一中各个透镜的非球面表面凹陷度z其公式相同于上述表一所适用的非球面 表面凹陷度z,其中各参数的物理意义可参照表一非球面表面凹陷度z公式的说明,在此不 再重述。

[0184] 表十二为表十一中各个透镜的非球面表面的相关参数表。

[0185] 表十二

[0186]	表面 序号	k	А	В	С	D
	S63	3.923508	8.53E-03	-0.000702738	4.13E-05	-1.83E-06
	S64	-0.301564	1.21E-02	-0.000552	4.21E-05	-4.46E-06
	S68	0	-0.003344	-0.000232	-3.71E-05	-0.003344
	S69	-0.807803	-0.003224	9.17E-05	3.79E-05	-0.003224
	S610	1.317336	0.0003329	1.63E-05	0.0001111	0
	S611	2.229362	0.0021145	-0.000334	1.82E-05	0
	S612	1.010015	0.0014163	-7.59E-05	0	0
	S613	-0.499054	0.0007902	-2.03E-05	2.65E-05	0

[0187] 上述广角镜头的第六实施例与广角镜头的第四实施例、第五实施例的差异在于,

第六实施例的广角镜头其第四透镜L64的物侧面S68为凹面,但是第四实施例的广角镜头4 其第四透镜L44的像侧面S48为凸面、第五实施例的广角镜头其第四透镜的像侧面为凸面。 [0188] 上述广角镜头的第六实施例的纵向像差(省略图例)、场曲(省略图例)、畸变(省略 图例)、横向色差(省略图例)都能被有效修正,镜头分辨率也都能满足要求,从而得到较佳 的光学。

图1

图2A

图2B

图2C

图3

图4A

图4B

图4C

图5

图6A

%

图6B

图6C

图7

图8A

		— 0.5	50μ m
4	支视场:	46.434	度
Т	: 子午方	向	
S	: 弧矢方	向	

图8B

图8C

图8D

图8E