
(12) United States Patent
Coronado et al.

USO09513998B2

US 9,513,998 B2
*Dec. 6, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)

MANAGEMENT OF MICROCODE ERRORS
IN A STORAGE OPERATION

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Juan A. Coronado, Tucson, AZ (US);
Lisa R. Martinez, Escondido, CA
(US); Beth A. Peterson, Tucson, AZ
(US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 15/066,455

Filed: Mar. 10, 2016

Prior Publication Data

US 2016/01884 12 A1 Jun. 30, 2016

Related U.S. Application Data
Continuation of application No. 14/220,218, filed on
Mar. 20, 2014, now Pat. No. 9,317,357.

Int. C.
G06F II/IS (2006.01)
G06F II/4 (2006.01)
G06F II/07 (2006.01)
G06F II/I) (2006.01)
U.S. C.
CPC G06F II/1423 (2013.01); G06F II/079

(2013.01); G06F II/0727 (2013.01); G06F
II/0793 (2013.01); G06F II/1016 (2013.01);

G06F II/1096 (2013.01); G06F 220 1/84
(2013.01)

400

(58) Field of Classification Search
CPC G06F 11/1423: G06F 11/1016; G06F

11/1096; G06F 2201/84
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,566.298 A * 10/1996 Boggs G06F 9,268
T12/E9.015

6,983,362 B1 1/2006 Kidder et al.
7,249,286 B1 7/2007 Krishnan
7,315,976 B2 * 1/2008 Holt G06F 11.1076

711 114
7,395,483 B1 7/2008 Tourancheau et al.
7,509,550 B2 3/2009 Rajski et al.
7,617,074 B2 11/2009 Beish et al.
7,657,785 B2 * 2/2010 Haque G06F 13/24

T14? 13

(Continued)

OTHER PUBLICATIONS

Coronado et al., “Management of Microcode Errors in a Storage
Operation”, U.S. Appl. No. 14/220,218, filed Mar. 20, 2014.

Primary Examiner — Esaw Abraham
(74) Attorney, Agent, or Firm — Stosch Sabo

(57) ABSTRACT
Embodiments of the present disclosure relate to a system
and computer program product for managing a microcode
error in a storage operation. Embodiments include receiving
an error code that corresponds to the microcode error and
receiving a received error path signature for the error code.
Embodiments also include identifying a metadata error path
signature for the error code within a metadata table and
determining whether the received error path signature for the
error code Substantially matches the metadata error path
signature for the error code. Embodiments also include
initiating a mitigation action in response to the received
error path signature for the error code Substantially matching
the metadata error path signature for the error code.

14 Claims, 5 Drawing Sheets

STORAGEDEVICES)
412

STORAGE CONTROLER 413

MONITORING OULE 41

41

414
CODEPATH ABLE

A18

ERROR COBE 48

3320"

WARMSTARTAVOIDANCE FUNCION 422

WARMSTARTAVOIDANCE MEADATA 424

ERRORPA
SIGNATURE

420
is 10

3320

MeADAA TABLE 426
CONER ERR. PATH

WEiE FOR SIGNARE MGAON
I ALEADE NUMBERS UNKRUEOAAACTION RESOLTION

10 200305 Code level
4120 NONE No Action Fix

MICROCODELEVELA28

US 9,513.998 B2
Page 2

(56) References Cited 8,296,605 B2 10/2012 John
8.448,013 B2 5, 2013 Clark et al.

U.S. PATENT DOCUMENTS 8,775,886 B2 7/2014 Melen et al.
8,978,150 B1* 3/2015 Rosen HO4L 63/1441

7,694, 187 B2 * 4/2010 Souders G06F 11.00 T26/26
T14.f43 2007,0268.905 A1* 11/2007 Baker HO4L 1.0052

7,847,701 B2 12/2010 Bajpay et al. 370,392
7.975,165 B2 * 7/2011 Shneorson G06Q 10/04

T14/3 * cited by examiner

U.S. Patent Dec. 6, 2016 Sheet 1 of 5 US 9,513,998 B2

100

/
124

112 TRANSMIT STATE SAVE
RECEIVE ERROR CODE DATA

126
RECEIVE SOUTION
FOR STATE SAVE

DATA

114
DETERMINE ERROR
PATH SiGNATURE OF

ERROR CODE

116 128
CALL WARMSTART UPDATE THE

AVOIDANCE FUNCTION METADATA

118
IDENTFY APPLICABLE ERROR

PATH SIGNATURE N
WARMSTARAVOIDANCE

METADATA

120
MATCH BETWEEN
TWO ERROR PATH
SIGNATURES

YES

122
NITATE WARMSTART
AVODANCE ACTION

FIG. 1

U.S. Patent Dec. 6, 2016 Sheet 2 of 5 US 9,513,998 B2

200

210
PARSE ERROR
SIGNATURE

ess - essa - ess - ess - - - as se - esse - ess - - esse - ess

212
ERROR CODE EXISTS N

METADATA2

YES

214
INCREMENT COUNTER

NMEADATA

216
IDENTFY ERROR PATH

SGNATURE FOR
ERROR CODE IN
METADATA

FIG. 2

U.S. Patent Dec. 6, 2016 Sheet 3 of 5 US 9,513,998 B2

300

.

310
RECEIVE MATCH FOR

ERROR PATH
SIGNATURE

312
SEARCH METADATA
FOR METIGATION

ACTION

314
DOES A PRESCRBED
MTIGATION ACTION

EXIST?

YES

316
IMPLEMENTING THE

MTIGATION

FIG. 3

US 9,513,998 B2 Sheet S of 5 Dec. 6, 2016 U.S. Patent

ETH|ROWN

} { } } } } } } } 099} { } } } } } } {

US 9,513,998 B2
1.

MANAGEMENT OF MICROCODE ERRORS
IN A STORAGE OPERATION

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of and claims the benefit
of U.S. application Ser. No. 14/220,218 filed on Mar. 20,
2014 (now U.S. Pat. No. 9,317,357).

BACKGROUND

The present disclosure relates to storage systems, and
more specifically, to error analysis mechanisms.

Computer storage systems may encounter errors when
reading or writing data from a storage device. When encoun
tering errors that result in a failure, the storage device may
initiate a warm start to collect information regarding the
error and the pathway. During the warm start, the storage
device may cease storage operations until the data is col
lected. The warm start data may be stored for field service
personnel or transmitted to a remote location. Although
warm starts may produce valuable error recovery and error
analysis data, the warm start process itself may be disruptive
and cause significant delays in storage operations, particu
larly when a storage device is frequently accessed.

SUMMARY

Embodiments of the present disclosure relate to a system
and computer program product for managing a microcode
error in a storage operation.
One embodiment is directed toward a system for manag

ing a microcode error in a storage operation. The system
includes one or more storage devices configured to perform
the storage operation that produces the microcode error and
an error code corresponding to the microcode error. The
system also includes a metadata table that stores a metadata
error path signature for the error code. The system also
includes a storage controller configured to receive the error
code and a received error path signature for the error code
from the one or more storage devices. The received error
path signature identifies a series of instructions executed
during the storage operation that causes the storage opera
tion to return the error code. The storage controller is
configured to identify, within the metadata table, a metadata
error path signature for the error code. The storage controller
is configured to determine whether the received error path
signature for the error code Substantially matches the meta
data error path signature for the error code. The storage
controller is configured to initiate a mitigation action in
response to the received error path signature for the error
code Substantially matching the metadata error path signa
ture for the error code.

Another embodiment is directed toward a computer pro
gram product for managing a microcode error in a storage
operation. The computer program product includes a com
puter readable storage medium having program code includ
ing computer readable program code. The program code is
configured to receive an error code that corresponds to the
microcode error that triggers a warm start operation issued
by a storage system to collect data for problem diagnostics.
The error code is a numerical representation of a type of
microcode error. The program code is further configured to
receive a received error path signature for the error code,
where the received error path signature identifies a series of
instructions executed during the storage operation that

10

15

25

30

35

40

45

50

55

60

65

2
causes the storage operation to return the error code. The
program code is further configured to identify a metadata
error path signature for the error code within a metadata
table and determine whether the received error path signa
ture for the error code substantially matches the metadata
error path signature for the error code. The program code is
further configured to initiate a mitigation action in response
to the received error path signature for the error code
Substantially matching the metadata error path signature for
the error code. The mitigation action indicates an action to
be taken to recover from the microcode error.
The above summary is not intended to describe each

illustrated embodiment or every implementation of the pres
ent disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings included in the present application are
incorporated into, and form part of the specification. They
illustrate embodiments of the present disclosure and, along
with the description, serve to explain the principles of the
disclosure. The drawings are only illustrative of certain
embodiments and do not limit the disclosure.

FIG. 1 illustrates a flowchart of a method 100 of manag
ing a warm start avoidance function, according to various
embodiments.

FIG. 2 illustrates a flowchart of a method 200 of identi
fying the applicable error code in the warm start avoidance
metadata, according to various embodiments.

FIG. 3 illustrates a method 300 of implementing a warm
start avoidance action, according to various embodiments.

FIG. 4 illustrates a block diagram of a storage system 400
configured to avoid warm starts, according to various
embodiments.

FIG. 5 illustrates a block diagram of automated comput
ing machinery, according to various embodiments.

While the invention is amenable to various modifications
and alternative forms, specifics thereof have been shown by
way of example in the drawings and will be described in
detail. It should be understood, however, that the intention is
not to limit the invention to the particular embodiments
described. On the contrary, the intention is to cover all
modifications, equivalents, and alternatives falling within
the spirit and scope of the invention.

DETAILED DESCRIPTION

Aspects of the present disclosure relate to storage sys
tems, more particular aspects relate to error analysis mecha
nism. For instance, aspects of the present disclosure relate to
avoiding a warm start action when a cause of a warm start
has a known solution/mitigation action. The cause of the
warm start is identified by a storage controller using a
microcode detected error code and the error code path
signature taken to produce the error code. The storage
controller compares the received error code and the error
path signature taken to produce the error code and compare
them to an error code and error path signature taken to
produce the error code on a metadata table. If there is a
match, then the storage controller initiates a mitigation
action in lieu of a warm start. While the present disclosure
is not necessarily limited to Such applications, various
aspects of the disclosure may be appreciated through a
discussion of various examples using this context.

Aspects of the disclosure are directed toward applications
written in microcode. Microcode is a layer of hardware-level
instructions or data structures involved in the implementa

US 9,513,998 B2
3

tion of higher level machine code instructions in central
processing units, and in the implementation of the internal
logic of many channel controllers, disk controllers, network
interface controllers, network processors, graphics process
ing units, and other hardware. Even though microcode is
used, aspects of the disclosure also apply to applications
written in a lower or higher-level programming language.

Throughout the disclosure, reference to the term micro
code error code is used interchangeably with the term error
code. The term error path signature also refers to a micro
code detected error signature path. Presently, a warm start is
issued to collect data for problem diagnostics and/or for
error recovery. The warm start is triggered by a microcode
logic error (MLE) or microcode detected error (MDE)
caused by one of the storage system components. The warm
start is communicated by the use of error codes for a
particular MLE or MDE. The term error code is used to refer
to a numerical sequence that describes a particular MLE or
MDE. The error path refers to a series of instructions taken
by the storage system to produce the MLE or MDE. The
error path is denoted by an error path signature which
describes a code or other unique identifier that identifies the
error path. The error path signature also allows a storage
controller to communicate the error path in an expedient
a.

Unplanned warm starts, caused by MLEs or MDEs,
impact applications that demand high performance. For
example, a database application may be very sensitive to
Input/Output(I/O) response times and even a short warm
start may interrupt high-performance applications. Various
high-performance applications of storage access involve
high-frequency changes to a database where milliseconds
count, e.g., high-speed financial applications. When a stor
age system has to sacrifice a number of seconds to perform
a warm start, the high-performance application may suffer
performance issues.
Warm start data that is generated as a result of the warm

start is transferred to a repository, e.g., a customer Solution
center, over network connections that may take several
hours due to the size of the information that needs to be
off-loaded for analysis. Depending on customer network
configurations, it may not be possible to transfer the data out
of a customer environment, requiring a Customer Service
Engineer to be physically at the customer environment to
manually transfer the data to a flash drive and then to a
repository. The repository exists, in various embodiments, in
a customer solution center where skilled experts work
outside of a customer environment to solve issues obtained
from warm starts. The customer Solution center exists at any
proximity relative to the customer environment, e.g., in the
same room, or across the world. This delay in obtaining data
to be analyzed by the associated experts may delay under
standing the error, and lead to continuing and even increas
ing impacts to the customer's workloads until a migration or
resolution is determined.
Once the data from the warm start is collected, then the

analysis of the collected data may begin at the customer
solution center. The MLE or MDE that caused the warm start
may be a frequent problem and fixed in Subsequent patches
of microcode. In the event of the problem being known, the
disruption of the warm start itself and the impact of trans
ferring the associated data may be perceived as having no
value to a customer. Aspects of the disclosure may relate to
determining the need for a warm start when the MLE or
MDE is a known problem and has been resolved in later
microcode levels.

10

15

25

30

35

40

45

50

55

60

65

4
FIG. 1 illustrates a flowchart of a method 100 of manag

ing a warm start avoidance function, according to various
embodiments. The method 100 involves comparing two
error path signatures, one error path signature from a warm
start avoidance metadata and another error path signature
from a storage system, and if there is a match between the
two error path signatures, then warm start avoidance func
tion occurs and the warm start is avoided. Each error code
produced by a storage device has a specific error path
signature, with an error code and error path signature
associated with the error code. The method 100 begins at
operation 112.

In operation 112, the storage controller receives an error
code. The error code originates from the microcode error on
a storage device in a storage system, according to various
embodiments. The error code is a numerical representation
of the type of microcode error that occurred. For example,
in an IBMTM TS7700TM system, the MDE code of 8101 may
correspond to Vtd cache check: Cache Subsystem detected
an error. The MDE and MLE is dependent on the type of
storage device used. The error code is the same as a new
error. Once the error code is received by the storage con
troller, the method 100 continues to operation 114.

In operation 114, the storage controller determines the
error path signature of the error code. The error path
signature is a particular numerical or alpha-numeric code
that indicates the circumstances that created the error code.
For example, a storage device produces an error path sig
nature number of “101 when data is read from a read head
and an error path signature number of “140 when the data
is stored in a cache. The error path signature numbers are
associated with an error code.

In various embodiments, the storage controller references
a code path table to assign the error path signature number
of an error code. For example, the code path table is
accessed whenever a data is written into cache and produces
an error code. The storage controller determines, from the
code path table, that the pathway data written into a cache
corresponds to an error path signature number of "140.
Various components of the storage controller are responsible
for operations 112, and 114. For example, a monitoring
module of the storage controller monitors for the error code
in the storage device in operation 112. The monitoring
module may also maintain the code path table.

In various embodiments, the error path signature may be
stored temporarily in a signature path structure. During code
execution, as each storage function is called, the storage
function saves its unique number in a signature path struc
ture. The signature path structure may also be saved within
the warm start avoidance metadata. Once the storage con
troller determines the error path signature of the error code,
then the method 100 continues to operation 116.

In operation 116, the storage controller calls the warm
start avoidance function to determine if the MDE or MLE
corresponding to the error code has been fixed in a higher
release level of microcode. The warm start avoidance func
tion is a subroutine of the storage controller to avoid the
warm start if a solution to the warm start already exists,
according to various embodiments. The warm start avoid
ance function may be a Subroutine of the storage controller.
According to various embodiments, the warm start avoid
ance function may block the warm start. In various embodi
ments, the warm start avoidance function is always activated
instead of optional. Once the warm start avoidance function
is called, then the method 100 may continue to operation
118.

US 9,513,998 B2
5

In operation 118, the warm start avoidance function
identifies the applicable error path signature in the warm
start avoidance metadata. According to various embodi
ments, the warm start avoidance metadata (WAM) is a
repository of the various error codes with known mitigation
actions. The WAM may also be referred to as a mitigation
action database. The warm start avoidance function will
search the warm start avoidance metadata for the error code
corresponding to the MLE or MDE entry. In various
embodiments, the error code in the WAM is referred to as a
rectified error since entries in the WAM may refer to errors
with solution. As each entry for the specified error code is
found, the warm start avoidance function will compare the
error path signature received against the signature entered in
the warm start avoidance metadata for that error code. The
number of entries to be compared and which make the error
path signature unique is used as the number of error path
signature numbers to compare. During operation 118, the
warm start avoidance function determines if the error code
and error path signature received from the storage controller
are in the metadata. Once the storage controller identifies the
applicable signature path, then the method 100 continues to
operation 120.

In operation 120, the warm start avoidance function
determines whether the received error path signature sub
stantially matches the metadata error path signature for the
error code. In various embodiments, the received error path
signature is an associated signature of a new error while the
metadata error path signature is the associated signature of
a rectified error. An error path signature Substantially
matches when a majority of elements matches. For example,
the error path signatures substantially match whenever both
at least two error path signatures out of five error path
signatures for the error codes match. The error codes must
also be sufficiently similar to trigger a match. For example,
if the received error code is for a cache write error that is
Solved by the same update as the metadata error code from
the received error code for a cache read error, then the error
codes may be considered substantially similar. If the error
path signatures substantially match, then the method 100
continues to operation 122. If the error path signatures do
substantially match, then the method 100 continues to opera
tion 124.

In operation 122, the storage controller initiates a warm
start avoidance action. According to various embodiments,
the warm start avoidance action is a series of instructions for
the storage system to avoid the warm start. The warm start
avoidance action involves searching the metadata for a
mitigation action and implements the mitigation action.
The mitigation action indicates the action to be taken to

recover from the MLE or MDE. A mitigation action is
defined by the administrator or service team that had ana
lyzed the MLE or MDE and had provided the fix along with
the steps to mitigation from the MLE or MDE. The mitiga
tion action is an external or internal event. An external event
may be a host sending a reset for the input/output that has
failed. An internal event may take place in a control unit. For
example, the internal event may consist of rediscovering and
rebuilding a linked list, not fencing a resource that would
normally be fenced, only fencing one resource but not every
resource of a particular type. An internal event is also a
reduced operation warm start where there is not a need to
collect and analyze data.

In operation 124, the storage controller transmits the state
save data for the error code. As part of the transmitting, the
storage controller also collects the state save data. The state
save data is data from a saved state of the storage device. In

5

10

15

25

30

35

40

45

50

55

60

65

6
various embodiments, a warm start operation for the error
code may initiate the state save data collection. For example,
the warm start stops the storage operation within the storage
device to collect the state save data regarding the error code.
The warm start operation occurs in a similar manner to other
warm start operations that are found in the IBMTM
DS8000TM system or other storage systems. In various
embodiments, the state save data of the error code is
collected into a cache or other repository, e.g., a Compact
Disk, Flash Drive and transmitted manually. In various
embodiments, the state save data may be transmitted via a
network connection. After the storage controller transmits
the state save data, then the method 100 continues to
operation 126.

In operation 126, the storage controller receives a solution
for the error code from the state save data. The solution
includes a mitigation action, according to various embodi
ments. The mitigation action is found independent from the
storage system, e.g., a customer Solution facility, according
to various embodiments. The mitigation action is found at
any period of time after the state save data is transmitted,
e.g., three weeks, and after any level of analysis. After the
solution is received, then the method 100 continues to
operation 128.

In operation 128, the storage controller updates the meta
data with the solution. In various embodiments, the solution
is packaged and installed into the metadata on the control
unit. For example, a given error code with an error path
signature receives a mitigation action of upgrade to the
current microcode level. Thus, the Solution of upgrade is
written to the metadata for use in future operations.

In various embodiments, the metadata exists in a metadata
table. Updates to the metadata involve locating the error
code and error path signature of the metadata, associating
the Solution to the error code and error path signature, and
uploading the mitigation action to the metadata. In various
embodiments, the signature path structure is translated to the
warm start avoidance metadata. The translation could be
done manually by entering in the error path signature
numbers in warm start avoidance metadata in a newly
created element of warm start avoidance metadata. The
translation could also update a warm start avoidance meta
data entry that has been assigned for the MLE or MDE.
The metadata is updated when an update is received from

the customer solution center. When the warm start data is
sent to the customer Solution center, the mitigation action to
the error code at the error path signature is not yet known.
Once the customer Solution center determines the mitigation
action, the customer Solution center updates the storage
controller with the mitigation action. The storage controller
determines which column and row of the metadata to place
the associated mitigation action.

In various embodiments, the warm start avoidance meta
data in the storage controller is updated with the information
related to the MLE or MDE. Since warm start avoidance
metadata along with the Supporting code was initially part of
a code release, future updates to warm start avoidance
metadata in the storage controller may be updated indepen
dently to the actual level of code on the control unit. The
update is made without disruption. To accomplish the
update, the warm start avoidance metadata is updated with
new entries through the Storage Controller User Interface
such as a new IBMTM System Storage DS Command Line
Interface (DSCLI) command. Once warm start avoidance
metadata is updated in the storage controller memory, a copy
of updated warm start avoidance metadata is saved in the
storage controller internal disk drives. Whenever an event

US 9,513,998 B2
7

occurs that causes an initial microcode load (IML) of a
single central electronic complex (CEC) of both CEC's,
warm start avoidance metadata is loaded to the storage
controller memory as part of the CECIML.

FIG. 2 illustrates a flowchart of a method 200 of identi
fying the applicable error code in the warm start avoidance
metadata, according to various embodiments. The method
200 corresponds to operation 118 in FIG. 1. The method 200
involves locating the error code and the corresponding error
path signature in the metadata. Aspects of the method 200
are performed by the warm start avoidance function in the
storage controller. In various embodiments, the monitoring
module passes an error code to the warm start avoidance
function of the storage controller. The method 200 begins at
operation 210.

Operation 210 is optional depending on whether an error
signature, that includes an error code and an error path
signature, is received by the storage controller. In various
embodiments, the error signature is recognized as an error
path signature for an error code. In operation 210, the
storage controller may parse the error signature received as
part of a prior operation, e.g., operation 112 from FIG.1. The
parsing may occur by receiving the entire error signature and
storing the error signature in a cache. The error signature
may be parsed by isolating the signal that corresponds to the
error code and the corresponding error path signature. Once
the storage controller parses the error signature, then the
method 200 may continue to operation 212.

In operation 212, the storage controller determines
whether the error code that corresponds to the parsed error
signature in operation 210 exists in the metadata. In various
embodiments, the error code can be a first instance and
therefore not observed before. If the error code does not
exist in the metadata table, then the method 200 halts. If the
error code exists in the metadata table, then the method 200
continues to operation 214.

In operation 214, the storage controller increments the
counter within the metadata that corresponds to the error
code. For example, when the error code is received, then the
metadata table may increment, by one, an entry in the
metadata table that corresponds to the error code. The
incrementing serves as a log to determine how many times
a particular error code occurs. The incrementing occurs
independent from the recording of the error path signature.

In various embodiments, the warm start avoidance meta
data contains a count element that keeps the number of times
the MLE or MDE occurs at the current microcode level. The
count element may be used later by the warm start avoidance
function to tella user the number of occurrences of the same
MLE or MDE. The user may use this information to make
a decision. For instance, the user may determine when to
update to the level of microcode that contains a fix because
the count has reached a user-defined threshold, e.g., a
counter threshold. The counter threshold is a threshold for
the number of times an MLE or MDE appears in the storage
system. Once the counter threshold is Surpassed, then the
storage controller may be automatically triggered to update
to the most recent version of microcode/microcode level.
The most recent microcode level may have the fix for the
MLE or MDE. Once the storage controller increments the
counter, then the method 200 continues to operation 216.

In operation 216, the storage controller identifies the error
path signature that corresponds to the error code in the
metadata. The error path signature may be associated with
the error code in the parsing of operation 210. Once the error
code is located within the metadata, the error path signature
of the error code is located in the metadata.

10

15

25

30

35

40

45

50

55

60

65

8
FIG. 3 illustrates a method 300 of implementing a warm

start avoidance action, according to various embodiments.
The method 300 corresponds to operation 122 in FIG.1. The
warm start avoidance function may search the metadata for
a mitigation action and if a mitigation action exists, then the
warm start avoidance function implements the mitigation
action. The method 300 begins at operation 310.

In operation 310, the warm start avoidance function of the
storage controller receives a match signal for the error path
signature in the metadata table and the received error path
signature from the storage operation. According to various
embodiments, the error path signature match corresponds to
operation 120 in FIG. 1. Once a match signal is received by
the warm start avoidance function, then the method 300
continues to operation 312.

In operation 312, the warm start avoidance function
searches the metadata for a mitigation action to the error
code. The warm start avoidance function searches the meta
data table, according to various embodiments. The metadata
table contains a reference to the mitigation action associated
with the error code and the error path signature. Once the
mitigation action is found, then the method 300 continues to
operation 314.

In operation 314, the warm start avoidance function
determines whether a prescribed mitigation action exists for
the error path signature at the error code. If there is no
mitigation action, i.e. the non-existence of a mitigation
action, the method 300 halts. In various embodiments, if
there is not a mitigation action for the error path signature,
the warm start avoidance function waits for a mitigation
action to be found. For instance, the mitigation action may
be found at a customer solution center. If there is no
mitigation action, then the storage controller avoids the
warm start because a warm start to a known problem will not
be beneficial to the storage system. The warm start avoid
ance function may increment a counter for the error code for
a reoccurring MDE or MLE. In various embodiments, a
matching error path signature at the error code necessarily
indicates that the mitigation action exists at the error code.

If there is a mitigation action, i.e., an existence of a
mitigation action, then the warm start avoidance function
implements the mitigation action in operation 316. For
example, if the mitigation action is to update the microcode
level, then the storage controller updates the microcode
level. Other possible mitigation actions would depend on the
specific error code but may include reconfiguring the data
processing pathways or holding data for a longer period of
time.

FIG. 4 illustrates a block diagram of a storage system 400
configured to avoid warm starts, according to various
embodiments. The storage system 400 has a storage control
410 that controls data storage between one or more storage
devices 412. The storage system 400 has a monitoring
module 414. The monitoring module 414 is configured to
monitor a storage device 412 for an error, e.g., an error code
418 referring to an MLE or MDE, that would prompt a warm
Start.

Once the error code 418 is received by the monitoring
module 414, the storage controller 410 forwards the error
code 418 to the warm start avoidance function 422. The
warm start avoidance function 422 is configured to receive
the error code 418 and determine if a warm start can be
avoided by the storage system 100.
An error path signature 420 may be associated with the

error code 418. In various embodiments, a code path table
416 is used to relate the code path that is taken by the storage
device 412 to the error code 418. For example, the code path

US 9,513,998 B2
9

table 416 relates the storage actions on the storage device
412 to an error path signature 420. The code path table 416
may be maintained by the monitoring module 414. Although
the code path table 416 is shown as part of the storage device
412, it is understood that the code path table 416 exists
anywhere in the storage system 400.

To determine if the warm start may be avoided, the warm
start avoidance function 420 accesses the warm start avoid
ance metadata 424. The warm start avoidance metadata 424
includes a metadata table 426 and a microcode level 428.
Both the metadata table 426 and the microcode level 428
may exist independently or be incorporated into the warm
start avoidance metadata 424. In various embodiments, the
metadata table 426 is the warm start avoidance metadata 424
and the microcode level 428 is specified in the metadata
table 426. The metadata table 426 also specifies a counter for
the MLE/MDE ID, i.e., the error code. The metadata table
426 also specifies the resolution taken for the mitigation
action. In this example, there is no mitigation action speci
fied so the resolution is a code level fix.
The microcode level 428 specifies the latest microcode

level that was last updated from a customer Solution center.
In various embodiments, the microcode level 428 specifies
a minimum microcode level required by the warm start
avoidance function 422. For example, the warm start avoid
ance function may specify the microcode level of 9.0.1
release 2 for the storage system. If the current microcode
level in the storage system 400 is 9.0.1 release 3, then any
mitigation actions involving an update of the microcode
level would have been solved or otherwise the update is not
sufficient. Likewise, if the current microcode level in the
storage system 400 is 9.0.1 release 1, then updating the
microcode level may be sufficient as a mitigation action.
The warm start avoidance function 422 receives the error

code 418 and the error path signature 420 of the error code
418. In this example, the error code 418 has a code of “3320”
and the error path signature 420 has a code of “101. The
warm start avoidance function 422 references the error code
“3320 in the metadata table 426. Once the error code 3320
is located in the metadata table 426, then the warm start
avoidance function 422 also determines whether the error
code “3320” also has an error path signature “101. In this
example, the error path signature “101 is one of many error
path signature numbers for error code “3320. For example,
error code “3320” has error path signature numbers of “101,
200, 305, or 120. A mitigation action would apply for an
error code match with any of the error path signature
numbers. Thus, an error path signature match with any error
path signature listed in the metadata table 426 for an error
code is a match.
An error path signature number may also refer to different

portions in a path taken to obtain an error code. In various
embodiments, each error path signature number in the
metadata table 426 may also correspond to a particular route
that caused the error code. For example, error path signature
“101 corresponds to one portion of the path, error path
signature "200 corresponds to another portion of the path,
etc. Thus, the presence of error path signature “101 in “101,
200, 305, and 120” would not necessarily match the error
code “3320” and the mitigation action for “3320” would not
necessary apply. Whether the error path signature numbers
are required to all match or partly match is determined by the
warm start avoidance function 422 policy.

Assuming that the received error path signature 420
matches, the warm start avoidance function 422 searches the
metadata table 426 for the mitigation action. The mitigation

10

15

25

30

35

40

45

50

55

60

65

10
action in this example is to perform a code level fix. To
initiate a code level fix, the storage controller updates the
microcode level 428.

FIG. 5 illustrates a block diagram of automated comput
ing machinery, according to various embodiments. The
computing machinery may include example computer 552
useful in performing aspects of the disclosure, according to
various embodiments. The computer 552 of FIG. 5 includes
at least one computer processor 556 or CPU as well as
random access memory 568 (RAM) which is connected
through bus adapter 558 to processor 556 and to other
components of the computer 552.
The RAM 568 may include a storage controller 502. The

storage controller 502 controls the flow of data within one or
more data storage devices, e.g., 570. The storage controller
502 monitors for an error code and an error path signature.
The storage controller 502 has a warm start avoidance
function 522 that exists as a part of the storage controller 502
or as a separate module. Once the error signature is detected,
the warm start avoidance function 522 determines if the
received error path signature matches an error path signature
in a metadata 534. If there is a match, then the warm start
avoidance function 522 implements the mitigation action
instead of performing a warm start. The RAM 568 may
include an operating system 554. Operating systems useful
for record filtering according to embodiments of the present
invention include UNIX(R), Linux(R, Microsoft XPTM,
AIX(R), IBM's i5/OSTM, and others. The operating system
554 are shown in RAM (568), but many components of such
Software typically are stored in non-volatile memory also,
such as, for example, on a disk drive 570.
The computer 552 may also include disk drive adapter

572 coupled through expansion bus 560 and bus adapter 558
to processor 556 and other components of the computer 552.
Disk drive adapter 572 connects non-volatile data storage to
the computer 552 in the form of disk drive 570. Disk drive
adapters useful in computers include Integrated Drive Elec
tronics (IDE) adapters, Small Computer System Interface
(SCSI) adapters, and others. Non-volatile computer
memory also may be implemented for as an optical disk
drive, electrically erasable programmable read-only
memory (so-called EEPROM or “Flash memory), RAM
drives, and so on.
The data storage 570 may include one or more storage

devices in a tiered or non-tiered configuration. The data
storage 500 may be configured to store metadata 534 that is
accessed by the warm start avoidance function 522. The
metadata 534 stores the information regarding previous error
codes. The metadata 534 also contains the mitigation actions
to solve the error path signature for the error code.
The example computer 552 includes one or more input/

output (I/O) adapters 578. I/O adapters implement user
oriented input/output through, for example, Software drivers
and computer hardware for controlling output to display
devices such as computer display Screens, as well as user
input from user input devices 581 such as keyboards and
mice. The example computer 552 includes a video adapter
509, which is an example of an I/O adapter specially
designed for graphic output to a display device 580 such as
a display screen or computer monitor. Video adapter 509 is
connected to processor 556 through a high speed video bus
564, bus adapter 558, and the front side bus 562, which is
also a high speed bus.
The example computer 552 includes a communications

adapter 567 for data communications with other computers
510, e.g., mobile devices, and for data communications with
a data communications network 500. Such data communi

US 9,513,998 B2
11

cations may be carried out serially through RS-232 connec
tions, through external buses such as a Universal Serial Bus
(USB), through data communications networks such as IP
data communications networks, and in other ways as will
occur to those of skill in the art. Communications adapters
implement the hardware level of data communications
through which one computer sends data communications to
another computer, directly or through a data communica
tions network. Examples of communications adapters
include modems for wired dial-up communications, Ether
net (IEEE 802.3) adapters for wired data communications
network communications, and IEEE 802.77 adapters for
wireless data communications network communications.

The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
The descriptions of the various embodiments of the

present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to explain the principles of the embodiments, the
practical application or technical improvement over tech
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.
The present invention may be a system, a method, and/or

a computer program product. The computer program prod
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.
The computer readable storage medium can be a tangible

device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals perse. Such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave

10

15

25

30

35

40

45

50

55

60

65

12
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.
Computer readable program instructions described herein

can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, Switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.
Computer readable program instructions for carrying out

operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language Such as Smalltalk, C++ or
the like, and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the users computer,
partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro
cessing apparatus to produce a machine, Such that the
instructions, which execute via the processor of the com
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including

US 9,513,998 B2
13

instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow
chart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
What is claimed is:
1. A system for managing a microcode error in a storage

operation comprising:
one or more storage devices configured to perform the

storage operation that produces the microcode error
that triggers a warm start operation issued by a storage
system to collect data for problem diagnostics, and an
error code corresponding to the microcode error,
wherein the error code is a numerical representation of
a type of microcode error;

a metadata table that stores a metadata error path signa
ture for the error code:

a storage controller configured to:
receive the error code and a received error path signa

ture for the error code from the one or more storage
devices, wherein the received error path signature
identifies a series of instructions executed during the
storage operation that causes the storage operation to
return the error code:

identify, within the metadata table, the metadata error
path signature for the error code:

determine whether the received error path signature for
the error code substantially matches the metadata
error path signature for the error code; and

initiate a mitigation action in response to the received
error path signature for the error code substantially
matching the metadata error path signature for the
error code, the mitigation action indicates an action
to be taken to recover from the microcode error.

2. The system of claim 1, wherein the metadata error path
signature is a particular alpha-numeric code that indicates
circumstances that created the error code.

3. The system of claim 1, wherein the mitigation action
includes reconfiguring data processing pathways of the
Storage System.

10

15

25

30

35

40

45

50

55

60

65

14
4. The system of claim 1, wherein the mitigation action

includes holding data for a longer period of time.
5. A computer program product for managing a microcode

error in a storage operation, the computer program product
comprising a computer readable storage medium having
program code embodied therewith, the program code com
prising computer readable program code configured to:

receive an error code that corresponds to the microcode
error that triggers a warm start operation issued by a
storage system to collect data for problem diagnostics,
wherein the error code is a numerical representation of
a type of microcode error,

receive a received error path signature for the error code,
wherein the received error path signature identifies a
series of instructions executed during the storage opera
tion that causes the storage operation to return the error
code;

identify a metadata error path signature for the error code
within a metadata table;

determine whether the received error path signature for
the error code substantially matches the metadata error
path signature for the error code; and

initiate a mitigation action in response to the received
error path signature for the error code substantially
matching the metadata error path signature for the error
code, the mitigation action indicates an action to be
taken to recover from the microcode error.

6. The computer program product of claim 5, wherein to
identify the metadata error path signature the program code
is further configured to:

match the error code to a respective instance in the
metadata table; and

retrieve, from the respective instance in the metadata
table, the metadata error path signature corresponding
to the error code.

7. The computer program product of claim 5, wherein the
program code is further configured to:

update a respective instance of the metadata table in
response to receiving the error code, wherein the updat
ing comprises cataloguing an occurrence of the error
code.

8. The computer program product of claim 7, wherein the
program code is further configured to:

modify a microcode level in response to cataloguing, in
the metadata table, a number of occurrences of the error
code within an occurrence threshold.

9. The computer program product of claim 5, wherein to
initiate the mitigation action the program code is further
configured to:

determine whether the mitigation action exists in the
metadata table; and

initiate the warm start operation in response to a non
existence of the mitigation action.

10. The computer program product of claim 9, wherein to
determine whether the mitigation action exists in the meta
data table the program code is further configured to:

determine whether the mitigation action includes a micro
code level;

determine whether a current microcode level is outside
the microcode level; and

update the microcode level in response to the current
microcode level being outside the microcode level.

11. The computer program product of claim 5, wherein the
program code is further configured to:

receive the mitigation action for the metadata error path
signature;

US 9,513,998 B2
15

update the metadata table with the mitigation action for
the metadata error path signature.

12. The computer program product of claim 5, wherein
the metadata error path signature is a particular alpha
numeric code that indicates circumstances that created the
error code.

13. The computer program product of claim 5, wherein
the mitigation action includes reconfiguring data processing
pathways of the storage system.

14. The computer program product of claim 5, wherein
the mitigation action includes holding data for a longer
period of time.

10

16

