« UK Patent Application «GB 2 373073 .. A

(43) Date of A Publication 11.09.2002

(21) Application No 0105734.8

(22) Date of Filing 08.03.2001

(71} Applicant(s)
Escher Technologies Limited
{Incorporated in the United Kingdom)
3 Archipelago Business Park, Lyon Way, FRIMLEY,
Surrey, GU16 5ER, United Kingdom

(72) Inventor(s)
David Crocker

(74) Agent and/or Address for Service
Langner Parry

High Holborn House, 52-54 High Holborn, LONDON,

WC1V 6RR, United Kingdom

{(51) INTCL?
GO6F 9/44

(62) UK CL (Edition T)
G4A APL

(56) Documents Cited
Generating Efficient Protocol Code from an Abstract
Specification; Catellucia, Dabboius, 0'Malley;
IEEE/ACM Transactions on Networking; Vol 5, No 4,
August 1997 improving Efficiency of Automated
Protocol implementation using Estelle; Gotzhein,
Bredereke, Effelsberg, Fischer, Held, Konig; Computer
Communications 19, 1996

(58) Field of Search
UK CL (Edition T) G4A APL
INT CL7 GOG6F 9/44
Online: WPI, EPODOC, JAPIO, INSPEC

(54) Abstract Title

Process and system for developing validated and optimised object-oriented software

(57) A process and a system are used to verify that an object-oriented software component described in an
extended programming language behaves correctly with respect to an abstract data model and specifications
of the operations that may be performed on it. The process and system also verify for an assembly of
components that whenever an operation on a component is invoked, the correct conditions specified for that
operation and component exist, and that specified properties hold for a component of the assembly.

m
Write absiract specification duf[/

class and its expected behaviour

11

Verify specification

4+

Correct the specmcnnon

Try to generate code }—

‘+

Refine methods for which wde
could not be generated

14

Evnluue prototype against
requircments

\+

Amend abstract specifi cnmn

Figure 1 _?

The claims were filed later than the filing date but within the period prescribed by Ruie 25(1) of the Patents Rules 1995.

i
I Evaluke performmnce }4—

16

N 17
v
Tdentify performance improvements
needed

18
yd

!
[rmen]
¢ 19

Refine methods to account for new data
andlor improve performance

/

Comect the refinement 7

e J

Figure 2 . %

vV €0€LEC 99

Figure 1

173

: /

Write abstract specification of the
class and its expected behaviour

\ J

v o

Verify specification B

Y
Success?
<> 111
/ N

Correct the specification

12

— Try to generate code e

Y
Success?
N 13
A

Refine methods for which code
could not be generated

14

Evaluate prototype against
requirements J
| .

OK?

15
/

L Amend abstract specification }—————

23

1

L Evaluate performance
Y
OK?
N 17
/
Identify performance improvements
needed
\
‘ 18
Z
()

Restructure data

¢ 19
pd

Refine methods to account for new data
and/or improve performance

¢ /0
r»L Verify
R J

Y

s

Success?

N 201
yl

[Correct the refinement l

Figure 2 . 99

3/3

: 30
Tokenize input]/
L Parse the token stream]/ 31

!

Bind identifiers and operators to declarations q/ 32

[Convert to standard forms]/ 33

Analyze changes and identify distinct instances of } 34

vanables

40 50 60

<z z Pt
— Generate test cases Generate code where none
[Generate proof obligations [and/or test harness provided]
Output proof Output test case data
[obligations] Attempt proofs] or test harness Convert to translatable form
/ / / /
41 42 51 61

Output prover

results machine code

!
43 62

Output text or machine code }

LTranslate to output language or]

Figure 3

63

10

15

20

25

30

\ 2373073

PROCESS & SYSTEM FOR DEVELOPING MATHEMATICALLY
VALIDATED OBJECT-ORIENTED SOFTWARE

This invention relates to a process and system for developing

mathematically validated object oriented software.

Most computer programs contain bugs (i.e. software errors). In general it
may be said that a program contains a bug if the executing program fails to meet
the user requirements that it was intended to satisfy. Bugs may be introduced at

various stages of the software development process:

1. The user’s requirements may not have been correctly understood and

documented;

2. The system specification that was written may not perform in accordance

with the documented user requirements;
3. The system design may fail to conform to the specification;

4. Components used to implement the design may by assembled in ways that

violate the safe conditions for use of the components;

5. Components may have been incorrectly programmed and so fail to

perform correctly even when assembled correctly;

6. Correctly written components may have been translated incorrectly to

machine language.

It is desirable to provide early detection of bugs introduced in all of these
stages and to provide final product certainty, or near certainty, that the program
will behave according to its specifications. To this end, the following are
described in the prior art: specification languages (including object-oriented
specification languages); object-oriented programming languages; a system that
validates older (non-object-oriented) specifications and program descriptions by

generating proof obligations; and automated proof techniques.

However, the prior art in this field does not address the problems of
specifying and verifying the behaviour of programs using object-oriented

techniques including inheritance and dynamic binding.

It is an object of the invention at least to ameliorate these difficulties.

10

15

20

25

30

According to a first aspect of the invention there is provided a process for
developing mathematically validated object oriented software comprising the
steps of: a) writing an abstract specification of a class, methods and expected
properties of a component of the software; b) checking the abstract specification
for errors and verifying that the class has the expected properties; c)generating
executable code for the class from the abstract specification; d) running and
evaluating the executable code to check that the code meets requirements other
than a required speed of performance; and e) evaluating the speed of performance
when handling data sets commensurate to the size of data sets the software

component is required to handle.

Preferably, the step c) of generating executable code includes the further
step, where the specification is too complex to generate executable code directly,
of refining the method by specifying a series of operations to be undertaken, to
produce a refined method and verifying that the refined method behaves in

accordance with the abstract specification before generating executable code.

Conveniently, the step d) of running and evaluating the executable code,
includes the further step, where the code does not meet requirements, of
identifying the defects and correcting the abstract specification and then repeating

the process from step b).

Advantageously, the step €) of evaluating the speed of performance,
includes the further steps, where the speed of performance is inadequate, of
restructuring the data maintained by the class, adding variable declarations for the
restructured data, and refining the methods and constructors to take account of the

restructured data and generating executable code.

Conveniently, the step e) of evaluating the speed of performance, includes
the further steps, where the speed of performance is inadequate of refining the
method to produce a refined method and verifying that the refined method meets

the specifications of the original method, and generating executable code.

Advantageously, the abstract specification includes a name of the class, a

list of other class or classes and/or interfaces that said class inherits from, an

=

10

15

20

25

30

abstract model of data maintained by the class, abstract specifications of the
methods and constructors of the class, and theorems of expected behaviour of the

class and the methods and constructors.

Advantageously, the abstract model of data includes declarations of
abstract variables and may optionally include class invariants which are conditions
concerning values of the abstract variables that are expected always to be true and
declarations of abstract methods private to the class that assist in defining the class

invariants and what other methods achieve.

Conveniently, the abstract specifications of the methods and constructors
of the class include: a method name; a method parameter list; and a definition of

what the method achieves.

Advantageously, the abstract specifications of the methods and
constructors of the class further include one or more of: a method result type; a
precondition that is required to hold whenever the method is called; a post-

assertion description of conditions expected to hold when the method returns.

Conveniently, the step of refining the method includes providing an

algorithm of program statements including postcondition statements.

Conveniently, a description of the class is divided into regions: an abstract
region containing the abstract data model and also private methods and
constructors referred to elsewhere in specifications of the class; an internal region
containing re-implemented data and redundant data and also private methods and
constructors referred to in re-implementations of other methods; a confined region
of methods and constructors that are used only within the class and within other
classes that inherit from that class; and an interface region of methods and
constructors accessible to any program or components that use instances of the

class.

Advantageously, the step c) of generating executable code includes the
steps of: i) tokenising the abstract specification to form a token stream and
building a representation of the abstract specification; ii) parsing the token stream;

iif) binding identifiers and operators to declarations; iv) converting the

10

15

20

25

30

specifications and expressions contained therein to standard forms, v) generating a
new instance of each variable at every point at which the variable is changed,
effectively replacing each variable by a succession of constants; vi) generating
proof obligations to represent requirements for program correctness; vii) proving
the obligations; viii) using the abstract specification to generate a test harness or a
set of test data for testing speed of performance; ix) generating code statements to
implement the specification where no code is provided; x) translating the code
statements to easily translatable form; xi) translating the easily translatable form

to an output language.

According to a second aspect of the invention there is provided a system
for developing mathematically validated object oriented software comprising: a)
means for writing an abstract specification of the class, methods and expected
properties of the software component; b) means for checking the abstract
specification for errors and verifying that the class has the expected properties; c)
means for generating executable code for the class from the abstract specification;
d) means for running and evaluating the executable code to check that the code
meets requirements other than a required speed of performance; and e) means for
evaluating the speed of performance when handling data sets commensurate to the

size of data sets the software component is required to handle.

Conveniently, the means for generating executable code further includes,
where the specification is too complex to generate executable code directly, means
for refining the method by specifying a series of operations to be undertaken, to
produce a refined method and for verifying that the refined method behaves in

accordance with the abstract specification before generating executable code.

Advantageously, the means for running and evaluating the executable
code, includes the further means, where the code does not meet requirements, for
identifying the defects and for correcting the abstract specification and then for
repeating checking the abstract specification for errors and verifying that the class

has the expected properties

Conveniently, the means for evaluating the speed of performance, further

includes, where the speed of performance is inadequate, means for restructuring

PR

10

15

20

25

the data maintained by the class, adding variable declarations for the restructured
data, and refining the methods and constructors to take account of the restructured

data and generating executable code.

Advantageously, the means for evaluating the speed of performance,
further includes, where the speed of performance is inadequate, means for refining
the method to produce a refined method and verifying that the refined method

meets the specifications of the original method, and generating executable code.

Conveniently, the abstract specification includes a name of the class, a list
of other class or classes and/or interfaces that said class inherits from, an abstract
model of data maintained by the class, abstract specifications of the methods and
constructors of the class, and theorems of expected behaviour of the class and the

methods and constructors.

Advantageously, the abstract model of data includes declarations of
abstract variables and may optionally include class invariants which are conditions
concerning values of the abstract variables that are expected always to be true and
declarations of abstract methods private to the class that assist in defining the class

invariants and what other methods achieve.

Conveniently, the abstract specifications of the methods and constructors
of the class include: a method name; a method parameter list; and a definition of

what the method achieves.

Advantageously, the abstract specifications of the methods and
constructors of the class further include one or more of: a method result type; a
precondition that is required to hold whenever the method is called; a post-

assertion description of conditions expected to hold when the method returns.

Conveniently, the means for refining the method includes means for

providing an algorithm of program statements including postcondition statements.

Conveniently, a description of the class is divided into regions: an abstract
region containing the abstract data model and also private methods and

constructors referred to elsewhere in specifications of the class; an internal region

10

15

20

25

30

containing re-implemented data and redundant data and also private methods and
constructions referred to in re-implementations of other methods; a confined
region of methods and constructors that are used only within the class and within
other classes that inherit from that class; and an interface region of methods and
constructors accessible to any program or components that uses instances of the

class.

Advantageously, the means for generating executable code includes means
for: i) tokenising the abstract specification to form a token stream and building a
presentation of the abstract specification; ii) parsing the token stream; iii) binding
identifiers and operators to declarations; iv) converting the specification and
expressions contained therein to standard forms; v) generating a new instance of
each variable at every point at which the variable is changed, effectively replacing
each variable by a succession of constants; vi) generating proof obligations to
represent requirements for program correctness; vii) proving the obligations; viii)
using the abstract specification to generate a test harness or a set of test data for
testing speed of performance; ix) generating code statements to implement the
specification where no code is provided; x) translating the code statements to
easily translatable form; xi) transiating the easily translatable form to an output

language.

The invention provides the advantage that an object-oriented computer
programming language is provided with the usual facilities found in such
programming languages and additionally facilities to specify the abstract data
model represented by a class, the properties that a class method and all methods
that override it are required to satisfy, the precise overall behaviour of a class
method or constructor, the conditions under which a method may be safely
invoked, invariant expressions for loops, variant expressions for loops and
recursive methods, functions and other methods that do not form part of the
program but are helpful in describing its behaviour, and aspects of behaviour that
are expected in consequence of the specifications. A computer system is
described to process a program description written in this language and to carry
out validation and to generate test data and a set of theorems (known as “proof

obligations”) that must be true for the program to behave as described. Where the

10

15

20

25

30

user has described required behaviours but has not provided program statements
to implement them, the system attempts to generate suitable program statements
and optionally proof obligations that these statements behave as specified, just as
if the user had provided them. The computer system or another system or a
plurality of systems is used to attempt to prove the proof obligations, with or

without human assistance.

The invention provides the further advantages of the use of a single
language to express both specifications and program statements using object-

oriented concepts.

The invention also provides the ability to embed theorems in a program to

represent the user’s requirements or expectations of the system’s behaviour.

Additionally, an embodiment of the invention has the advantage of the use
of a method postcondition divided into two parts: a part that defines what the
method does and that is not inherited by any overriding method; and a part that is
a necessary consequence of the first part (subject to the precondition being met)

that is inherited by any overriding method.

An additional advantage is the construction of a complete system that is
capable of taking the development process right the way through from object-
oriented specifications to code in a standard programming language, with the
ability to provide a mathematical proof that the code behaves according to the
specifications (subject only to uncertainty in the semantics of the standard
programming language).

A specific embodiment of the invention will now be described by way of

example with reference to the accompanying drawings in which:

Figure 1 is a flowchart showing a first part of the process of developing

software using the invention;

Figure 2 is a flowchart showing a second part of the process of developing

software using the invention,

Figure 3 is a flowchart showing the flow of data between the various steps
performed by the computer system to carryout out validation and to generate test

data and executable code.

10

15

20

25

30

Overview of the process

The invention uses a new computer language to express both program
specifications and program statements in a single document. The language uses
the same notation for the detail of both specifications and statements; further, this
notation is designed to be similar to notations used in known programming

languages, so that it is easy for software developers to learn.

A software component is represented by one or more classes described in
the language. For each class the following process is performed, as illustrated in

outline in Figs 1 and 2.

1. Using the new language, an abstract specification of the class, its methods,

and expected properties is written, step 10.

2. Using a computer system, the description is checked for errors and it is
verified, step 11, that the class has the expected properties, if not the

specification is corrected, step 111.

3. Using the computer system, executable code is generated, step 12, for the

class from its abstract specification.

4. Wherever the system is unable to generate code for a method of the class,
because the specification is too complex, the method is refined, step 13,
(i.e. a series of steps to be taken is specified). Using the system it is
verified that an algorithm representing the refined method will behave
according to the specification, and then the system is used to generate

code.

5. The code is run and evaluated, step 14, to ensure that the code meets all
user requirements apart from the required level of performance. If the
generated code does not meet the requirements, any defects are identified
and the abstract specification corrected, step 15. The process is then

repeated from step 11.

6. The performance of the code when handling data sets of a realistic size is
evaluated, step 16. If the performance is adequate, development is
finished, step 99.

10

15

20

25

30

10.

11.

Alternatively, areas where improved performance is needed for the final
version are identified, step 17, to decide whether it is necessary to
restructure the data maintained by the class to improve the speed of the

operations that are performed on the data.

If the data does need to be restructured, step 18, variable declarations for
the new data are added together with a description of how the new data

represents the original abstract data model.

Where methods are executing too slowly or they operate on data that has
been restructured, the method is refined, step 19, by specifying an

algorithm to achieve the desired result.

The computer system is used to verify, step 20, that the refined methods
operating on the restructured data meet the original method specification,
bearing in mind how the restructured data that the algorithm operates on
maps to the abstract data to which the specification refers, and generate

code. If not, the refined method is corrected, step 201.
The process is repeated from step 16 to re-evaluate the performance.

The steps will now be described in more detail.

Writing the abstract specification, step 10

The abstract specification of a class comprises the following elements:

The name of the class.

A list of other class or classes and/or interfaces from which the class

inherits.

An abstract model of the data maintained by each class. This model is
described as simply as possible without regard to how the data will be
stored at execution time and without storing redundant data (i.e. data that

can instead be calculated from other data already in the abstract model).

Abstract specifications of the methods and constructors of the class (but
not program statements to implement them). Methods and constructors are
grouped into four regions. Methods and constructors that are referred to

from elsewhere in the specification but are not intended to be available

10

from outside the class are placed in the a/stract section along with the
abstract data model. The internal region is initially empty. The confined
region is for methods and constructors that are used only within the class
and within other classes that inherit from it. The interface region is for
methods and constructors that are accessible to any program or component

that wishes to use instances of the class.

Theorems describing the expected behaviour of the class and its methods

(e.g. the expected consequences of calling several methods in sequence).

The abstract data model comprises:

Declarations of abstract variables.

Class invariants (optional), which are conditions concerning the values of

the abstract variables that are always expected to hold.

Declarations of abstract methods (optional). These are methods private to
the class that assist in defining the class invariants and what other methods

achieve.

Each abstract specification of a method has the following elements:

5
[]
10 o
[
[]

15
[]
®
[]
20)
[

25

Name,
Parameter list.
Result type (where applicable).

Precondition (optional), which is a condition that is required to hold

whenever the method is called.

What the method achieves. For a function or operator, this is a definition
(either explicit or implicit) of the values returned. For a procedure, this is a
postcondition, which is a construct describing what variables and/or
parameters have changed when the procedure returns and what the new

values are (explicitly or implicitly).

Post-assertion (optional), which is a description of conditions expected to
hold when the method returns as a consequence of the description of what

the method achieves.

S

10

15

20

25

11

e Variant (only needed if the method is recursive), which is an expression of
a finite type with a defined lower bound. If the expression is of a numeric
type, the lower bound is taken to be zero; otherwise it is the lowest value

of the type.
Each abstract specification of a constructor has the following elements:

¢ Parameter list.

If the class inherits others, the values of the abstract data variables of the

inherited instance of each inherited class.
e Precondition (optional).
¢ Postcondition describing the value of the constructed class instance.
o Post-assertion (optional)

In addition to declaring methods and constructors that will actually be used
during program execution, it is also possible to declare methods and constructors
that are flagged such that no code will be generated for them. The purpose of
declaring these ghost methods is to describe properties of the class that are
referred to in the specifications but will not be evaluated at execution time. It is

not permitted to call a ghost method from a program statement.

Every built-in operator and library class method or constructor provided by
the language also has defined specifications, which are made available to the

computer system.
Checking the description for errors
Details of the performance of this step 11 are described below.
Generating code for the class
Details of this step 12, are described below.
Refining methods for which the system is unable to generate code, step 13

In order to refine the methods an algorithm is provided in the form of
program statements. As well as types of program statement similar to those of
known programming languages, a new form of statement, called a postcondition

statement, may be used. A postcondition statement is similar to a method

10

15

20

25

30

12

postcondition (i.e. a description of what variables are to be changed and an
explicit or implicit description of their new values). By using postcondition
statements, it is not necessary to break each step of the algorithm into individual
executable statements, rather an entire program step may be represented by a
postcondition statement. The computer system attempts to generate code to satisfy
the postcondition statement in the same way that it attempts to generate code for
methods specified by postconditions. It is possible that the system will fail to
generate code for a postcondition statement (although generating code for one step
in the algorithm will generally be simpler than for the postcondition of the entire
method, so successful code generation is more likely), in which case the user can
provide an algorithm for performing the step (i.e. break it down into smaller
steps). The system verifies that the algorithm achieves the desired result (see the

later description).
Evaluating the functionality of the prototype, step 14

There is always the possibility that the requirements of the user of the
component (or an assembly of components) have not been correctly understood
and expressed in the language. It is therefore useful to supply the prototype
component to the customer for that component, or to assemble a collection of
prototype components into a system for evaluation by an end user. If the prototype
is found not to meet the requirements (ignoring for the time being the speed at
which the prototype executes), this indicates that the specification needs to be

corrected, step 15.
Evaluating the performance of the prototype, step 16

To check whether the prototype executes fast enough, it will normally be
necessary to generate a realistic quantity of test data. One way of doing this is to
use the system to generate such data from the specifications. The system may also
be used to generate a test harness (i.e. a program to exercise the component and
verify that the expected results are produced). If the prototype is fast enough in all

respects, development is complete.

Identifying the areas where improved performance is needed, step 17

10

15

20

25

This can be done by determining which class methods are involved in
opératicns that are taking too long. Profiling can be used to determine which of
those methods are taking up most of the time. It may also be fairly obvious to the
developer which methods will show a substantial deterioration in performance

with increasing amounts of data, in the absence of an optimised algorithm.

The developer will use his/her experience to decide whether a method can
be accelerated sufficiently just by using a better algorithm, or whether the data

needs to be restructured also.
Restructuring the data, step 18
Data may be restructured in two ways:

* Redundant data may be added. For example, if it is frequently required to
evaluate some function of the primary data, then after the first time thisl
function is evaluated, the result can be stored for use in the future. As
another example, an index to a primary data structure could be maintained

in order to facilitate fast searching of the primary data structure.

® One or more abstract variables can be replaced by implementation
variables. For example, a list of names might be replaced by a hash table,
or the polar coordinates of a point might be replaced by the Cartesian

coordinates.

In either case, the description of the abstract data is retained and the new
variables are declared in the internal section of the class definition. Also declared

in the internal section are:

e For every redundant internal variable, a class invariant describing its

relationship to the other variables;

» For every abstract variable that is being replaced by one or more internal
variables, a function (known as a retrieve function) to calculate the value

of the hypothetical abstract variable from the internal variables.

Refining methods to improve performance or to take account of data

restructuring, step 19

10

15

20

25

30

14

This is essentially the same process as was described earlier for refining
methods for which the system was unable to generate code; except that the
program statements (including any postcondition statements) may refer to internal
variables but not to abstract variables that have been replaced by internal

variables.
Description of the computer system that processes the language

The source file containing program text in the new language is processed

as shown in Fig. 3.
Tokenising step 30, parsing step 31, binding step 32 and standardization step 33

These steps are performed as they would be in a conventional compiler for
a programming language except that the additional specification information is
checked for syntactic and semantic errors and stored alongside the normal

program information.
Instancing, step 34

This step generates a new instance of each variable at every point that the
variable is changed, effectively replacing each variable by a succession of
constants (one for each time the variable is changed). This makes it easier to
generate proof obligations, step 40; it also facilitates optimisation when translating
the program statements to machine code or another programming language and
makes certain types of programming error easier to detect (e.g. use of uninitialised

variables).

Loops are treated specially. Within a loop body, for each variable that is
changed, instances are generated for the start of the loop body, the end of the
entire loop, and at each point in the loop body where the value of the variable is
changed. It is not necessary to generate a new instance for each iteration of the

loop.
Generating proof obligations, step 40

Whenever it is desired to validate the program, proof obligations are
generated, step 40, and output, step 41, to represent the following requirements

for program correctness:

10

15

20

25

10.

11.

15

For every expression in the specification, the precondition for the expression
to be well-formed is satisfied (for example, if the expression involves a call to
a function or other method, the precondition of the called function or method

is satisfied when the parameters of the call are substituted in the precondition).

The specification of every class constructor defines each data member of the

constructed object before using that member or completing.

The specification of every class constructor defines a value for the constructed

object that satisfies the class invariant.

Methods that modify objects preserve the class invariants of the modified

objects.

Where a method declaration in a derived class overrides a method inherited
from a parent class: if a precondition is declared for the overriding method, the
overridden precondition implies the overriding precondition; if a post-
assertion is declared for the overriding method, this post-assertion implies the

overridden post-assertion.

For each recursive method, a method variant has been declared and the

method variant has a legal value on entry.

For each recursive method, for every path that starts at the ehtry point of that
method and ends at a recursive call to the same method (without passing
through any other recursive calls to the same method), the method variant
calculated immediately on re-entering the method at the end of the path is less

than the variant calculated at the start of the path.

Methods that return one or more output parameters always set the values of all

returned parameters before completing.

Every method post-assertion (whether declared directly or inherited) is

satisfied whenever the postcondition of the method is satisfied.
Assertions embedded in postconditions or expressions are satisfied.

Where a method modifies one or more parameters (including the current-

object parameter), whenever the method is called then the objects

10

15

20

25

30

16

corresponding to the modified parameters are distinct from each other and

from any other objects modified by the method.
12. Each theorem declared by the user is true.

13. Where a sequence of program statements is provided to implement a method
specification, at each return statement (including any implicit return
statements, e.g. at the end of the sequence), the state of variables and the
returned value (if applicable) at that point conforms to the specification of
what the method achieves, considering the mapping between the actual data on
which the statements operate and the abstract data model referred to in the

specifications.

14. At the beginning of every loop, the loop invariant is satisfied and the loop

variant has a legal value.

15. In each iteration of every loop, the loop invariant is preserved and either the
loop termination condition is reached or the value of the loop variant is

decreased and remains legal.
16. At every assertion statement, the condition asserted is true.

When generating the proof obligations, step 40, for any part of a method
specification apart from the precondition, the precondition is assumed to be
satisfied. Additionally, it can always be assumed that class invariants are satisfied,
except in the definition of a class invariant or any method that a class invariant
directly or indirectly refers to; or in the statements that implement a constructor or

a method that modifies objects of its own class.

When generating proof obligations for a sequence of statements (whether
introduced as a method refinement by the developer or generated automatically
from specifications), the system tracks the program state forwards through the
sequence. At the beginning of the sequence, the known program state comprises
the method precondition and class invariants. This program state forms the
assumptions for proof obligations generated for the first statement in the list.
The system then computes the changes to the known state that would be caused
by executing the first statement. The resulting state forms the assumptions for

proof obligations generated for the second statement, and after computing the

10

15

20

25

17

changes to this state caused by executing the second statement, the third
statement may then be processed in the same way; and so on until the end of the

statement list is reached.

Because new variable instances are generated whenever a variable is
changed, all changes to the program state take the form of additions. The nature

of these additions will now be described.

For an assignment statement, the information is added that the new
instance of the variable being assigned has a value equal to the expression on the

right-hand side of the assignment.

‘_For a conditional statement, the program states are determined at the start
of each branch. These are calculated by adding to the initial state the certainty
that the condition required to reach the branch is true. For example, for a simple
if-then-else statement, adding the condition following IF to the initial state gives
the state at the start of the THEN branch, while adding the inverse condition
gives the state at the start of the ELSE branch.

We also need to determine the state when all branches have merged at the
end of the conditional statement. To do this we merge the states calculated at the

end of each individual branch using the form:

condition for branch 1 AND state at end of branch 1
OR condition for branch 2 AND state at end of branch 2
OR condition for branch 3 AND state at end of branch 3

For a simple if-then-else construct this reduces to:

(condition AND state at end of THEN-part) OR (NOT condition) AND
state at end of ELSE-part)

Where a variable is modified by some, but not all, branches of a
conditional statement, in order to match instances of variables at the end of the

conditional statement, branches that do not modify the variable are treated as if

10

15

20

25

30

18

they included a dummy assignment statement that reassigns the variable its

current value.

Where a branch of a condition does not fall through (e.g. because it
contains a RETURN statement), that branch is omitted when computing the state

at the end of the conditional statement.

For a loop statement, it is necessary to calculate the state at the start of
the loop body and the state after the loop has terminated. For the start of the
loop body, the information that the loop WHILE condition is true and the
invariant is true is added to the initial state (using, for each modified variable,
the instance allocated for loop start in all cases). For the state after loop
termination, the information that the WHILE condition is false and the invariant
is true is added to the initial state (using, for each modified variable, the instance

allocated for loop end).

In generating the full set of proof obligations, for each class not only the
methods that are declared within its declaration, are examined, but also the
methods that are inherited from the method’s ancestors and not overridden. Thus,
for every method, a set of proof obligations is generated in the context of the class
in which it was declared and in the context of each class that inherits that method
and does not override the method. This avoids the possibility that a method that
performs correctly in the class in which it was defined no longer performs
correctly when the method is inherited by another class, a situation which easily
arises (e.g. when the method needs to take account of new data declared in the

inheriting class but the developer forgot to override the inherited method).
Proving the obligations, step 42

Each proof obligation generated by the system is passed to an automatic or
semi-automatic theorem prover running either on the same computer system or
another system or systems, which attempts, step 42, to prove it. The prover may
use various techniques including: term rewriting, equational logic, resolution and

its derivatives, tableaux, sequent calculus and induction.

For each proof obligation that the prover is unable to prove, the system generates,

step 43, a diagnostic message indicating:

10

15

20

25

19

» The origin of the obligation (i.e. the location of the specification fragment or
statement that caused the message to be generated and the nature of the

condition that the obligation represents);

¢ An indication whether the prover has found that the obligation is definitely
unprovable (indicating a definite error in the specification fragment or
statement) or has not been able to prove or disprove the obligation (indicating

that there might be an error in the specification fragment or statement);

¢ An indication of what additional conditions are required to hold for the
obligation to be easily provable (to help the user understand what may be

wrong with the specification fragment or statement).
Generating a test harness or a set of test data, step 50

The specifications are also used to generate programs that invoke the
methods of the program under construction with test data, such test data being
chosen to conform to the method preconditions. The expected result for each data
set is calculated and the test program generated so as to check for this result, and

the test case data or test harness output, step 51.

Generating code to implement the specification where no code was provided,

step 60

Generating code automatically from postconditions is accomplished using

the following techniques:

* An attempt is made to match the postcondition against the members of a
set of standard postconditions forms. If a match is found, a corresponding

rule is used to generate code.

e Equational reasoning is used to turn an implicit postcondition into a set of
formulae that provide values for the variables that are allowed to change.

Code is generated to calculate these formulae.

e A fuzzy match is sought between the postcondition and other
postconditions for which corresponding code is available. For any such

match, the corresponding code is generalised and/or mutated in various

10

15

20

25

30

20

ways and the system attempts to establish conditions under which this

code satisfies the postcondition.
Transforming code statements to easily-translatable form, step 61

This stage is used to convert statements in the language of the system to
other statements in the same language or a slightly extended language, such that
the resulting statements are simpler or more closely mirror the statement types
available in the target language. Optimisations such as common subexpression
elimination, strength reduction and loop unfolding can also be done in this stage.
The user is given the option of verifying that the transformed code still meets the
original specifications, in order to guard against unsafe optimisations. The system
may optionally generate additional statements to check at execution time that the

conditions represented by unproven proof obligations hold.
Translating statements to the output language, step 62

This step is performed mostly as it would be in a conventional compiler.
Variables declared in the abstract data model, but replaced by variables in the
internal section due to data restructuring, are ignored as no storage is needed for
them. The user may be given the option of reproducing the original specifications

as comments in the output stream, step 63.
Reducing the impact of aliasing

One source of program errors occurs where a method modifies two or
more objects of which at least one object is passed as a parameter, and the method
being called with parameters such that two of the objects the method modifies are
aliased (i.e. they are references to the same object). The proof that the method
behaves as expected relies on the objects the method modifies being distinct,
therefore it is necessary to prove that all objects that are passed in a method call
for the method to modify are distinct from each other and from any other objects

modified by the method.

Traditional object-oriented languages define variables of class types to
obey reference semantics, meaning that when one such variable is assigned the

value from another, the two variables end up referring to the same object rather

-t

10

15

20

25

21

than distinct but identical objects. This makes it very hard to prove that the

parameters in method calls are distinct objects.

To avoid this difficulty, the invention defines variables and parameters to
obey value semantics by default (although the user is allowed to declare

references explicitly where sharing a single object is the required result).

In order to avoid carrying out many expensive copying operations at
execution time when assigning variables of class types, and to facilitate generating
output code in standard programming languages, value semantics are simulated at

run-time using variables that obey reference semantics, as follows.

Variables that are copied from other variables are made to refer initially to
the same object. However, when a variable is changed other than by total
reassignment, if it is possible that the variable refers to a shared object, the
variable is made to refer to a fresh copy of the object before the changes to the
object are made. Those sub-objects within the copy that will not be changed
immediately may continue to be shared with the corresponding sub-objects in the

original, so it is rarely necessary to copy a complete object.

The decision on whether copying is necessary may be made at either of two

times:

* At translation time; the translator emits instructions to unconditionally
perform the copying, unless the translator can determine that the variable
being modified cannot possibly share any part with any other live

variable;

e At execution time; the executing system keeps a reference count in each
object and the translator emits instructions to perform the copying only if
the reference count at run-time indicates that the object is shared. A small
run-time library of classes, methods and macros is provided to facilitate

this.

10

15

20

25

22

CLAIMS

1.

A process for developing mathematically validated object oriented software
comprising the steps of:

a) writing an abstract specification of a class, methods and expected properties of
a component of the software;

b) checking the abstract specification for errors and verifying that the class has
the expected properties;

c) generating executable code for the class from the abstract specification;

d) running and evaluating the executable code to check that the code meets
requirements other than a required speed of performance; and

e) evaluating the speed of performance when handling data sets commensurate

to the size of data sets the software component is required to handle.

2.

A process as claimed in claim 1, wherein step c) of generating executable code
includes the further step, where the specification is too complex to generate
executable code directly, of refining the method by specifying a series of
operations to be undertaken, to produce a refined method and verifying that the
refined method behaves in accordance with the abstract specification before

generating executable code.

3.

A process as claimed in claims 1 or 2, wherein step d) of running and evaluating
the executable code, includes the further step, where the code does not meet
requirements, of identifying the defects and correcting the abstract specification

and then repeating the process from step b).

10

15

20

25

23

4.

A process as claimed in any of the previous claims, wherein the step e) of
evaluating the speed of performance, includes the further steps, where the speed
of performance is inadequate, of restructuring the data maintained by the class,
adding variable declarations for the restructured data, and refining the methods
and constructors to take account of the restructured data and generating

executable code.

5.

A process as claimed in any of the previous claims, wherein the step e) of
evaluating the speed of performance, includes the further steps, where the speed
of performance is inadequate, of refining the method to produce a refined
method and verifying that the refined method meets the specifications of the

original method, and generating executable code.

6.

A process as claimed in any of the previous claims, wherein the abstract
specification includes a name of the class, a list of other class or classes and/or
interfaces that said class inherits from, an abstract model of data maintained by
the class, abstract specifications of the methods and constructors of the class, and

theorems of expected behaviour of the class and the methods and constructors.

7.

A process as claimed in claim 6, wherein the abstract model of data includes
declarations of abstract variables and may optionally include class invariants
which are conditions concerning values of the abstract variables that are
expected always to be true and declarations of abstract methods private to the

class that assist in defining the class invariants and what other methods achieve.

10

15

20

25

24

8.
A process as claimed in claims 6 or 7, wherein the abstract specifications of the
methods and constructors of the class include: a method name; a method

parameter list; and a definition of what the method achieves.

9.

A process as claimed in claim 8, wherein the abstract specifications of the
methods and constructors of the class further include one or more of: a method
result type; a precondition that is required to hold whenever the method is

called; a post-assertion description of conditions expected to hold when the

method returns.

10.
A process as claimed in any of claims 2 to 9, wherein the step of refining the
method includes providing an algorithm of program statements including

postcondition statements.

11.

A process as claimed in any of claims 6 to 10, wherein a description of the class is
divided into regions: an abstract region containing the abstract data model and
also private methods and constructors referred to elsewhere in specifications of
the class; an internal region containing re-implemented data and redundant data
and also private methods and constructors referred to in re-implementations of
other methods; a confined region of methods and constructors that are used only
within the class and within other classes that inherit from that class; and an
interface region of methods and constructors accessible to any program or

components that use instances of the class.

10

15

20

25

12.

A process as claimed in any of the preceding claims, wherein the step c) of
generating executable code includes the steps of:

i) tokenising the abstract specification to form a token stream and building a
representation of the abstract specification;

ii) parsing the token stream;

iii) binding identifiers and operators to declarations;

iv) converting the specifications contained therein to standard forms;

v) generating a new instance of each variable at every point at which the variable
is changed, effectively replacing each variable by a succession of constants;

vi) generating proof obligations to represent requirements for program
correctness;

vii) proving the obligations;

viii) using the abstract specification to generate a test harness or a set of test data
for testing speed of performance;

ix) generating code statements to implement the specification where no code is
provided;

x) translating the code statements to easily translatable form; and

xi) translating the easily translatable form to an output language.

13.

A system for developing mathematically validated object oriented software
comprising:

a) means for writing an abstract specification of the class, methods and expected
properties of the software component;

b) means for checking the abstract specification for errors and verifying that the
class has the expected properties;

c) means for generating executable code for the class from the abstract

specification;

10

15

20

25

26

d) means for running and evaluating the executable code to check that the code
meets requirements other than a required speed of performance; and
e) means for evaluating the speed of performance when handling data sets

commensurate to the size of data sets the software component is required to

handle.

14.

A system as claimed in claim 13, wherein the means for generating executable
code further includes, where the specification is too complex to generate
executable code directly, means for refining the method by specifying a series of
operations to be undertaken, to produce a refined method and for verifying that
the refined method behaves in accordance with the abstract specification before

generating executable code.

15.

The system as claimed in claims 13 or 14, wherein the means for running and
evaluating the executable code, includes the further means, where the code does
not meet requirements, for identifying the defects and for correcting the abstract
specification and then for repeating checking the abstract specification for errors

and verifying that the class has the expected properties.

16.

A system as claimed in any of claims 13 to 15, wherein the means for evaluating
the speed of performance, further includes, where the speed of performance is
inadequate, means for restructuring the data maintained by the class, adding
variable declarations for the restructured data, and refining the methods and
constructors to take account of the restructured data and generating executable

code.

10

15

20

25

27

17.

A system as claimed in any of claims 13 to 16, wherein the means for evaluating
the speed of performance, further includes, where the speed of performance is
inadequate, means for refining the method to produce a refined method and
verifying that the refined method meets the specification of the original method,

and generating executable code.

18.

A system as claimed in any of claims 13 to 17, wherein the abstract specification
includes a name of the class, a list of other class or classes and/or interfaces that
said class intherits from, an abstract model of data maintained by the class,
abstract specification of the methods and constructors of the class, and theorems

of expected behaviour of the class and the methods and constructors.

19.

A system as claimed in claim 18, wherein the abstract model of data includes
declarations of abstract variables and may optionally include class invariants
which are conditions concerning values of the abstract variables that are
expected always to be true and declarations of abstract methods private to the

class that assist in defining the class invariants and what other methods achieve.

20.

A system as claimed in claim 18 or 19, wherein the abstract specifications of the
methods and constructors of the class include: a method name; a method

parameter list; and a definition of what the method achieves.

21.

A system as claimed in claim 20, wherein the abstract specifications of the

methods and constructors of the class further include one or more of: a method

10

15

20

25

28

result type; a precondition that is required to hold whenever the method is
called; a post-assertion description of conditions expected to hold when the

method returns.

22.
A system as claimed in any of claims 14 to 21, wherein the means for refining the
method includes means for providing an algorithm of program statements

including postcondition statements.

23.

A system as claimed in any of claims 18 to 22, wherein a description of the class
is divided into regions: an abstract region containing the abstract data model and
also private methods and constructors referred to elsewhere in specifications of
the class; an internal region containing re-implemented data and redundant data
and also private methods and constructions referred to in re-implementations of
other methods; a confined region of methods and constructors that are used only
within the class and within other classes that inherit from that class; and an
interface region of methods and constructors accessible to any program or

components that uses instances of the class.

24.

A system as claimed in any of claims 13 to 23, wherein the means for generating
executable code includes means for:

i) tokenising the abstract specification to form a token stream and building a
presentation of the abstract specification;

ii) parsing the token stream;

iii) binding identifiers and operators to declarations;

iv) converting the specification and expressions contained therein to standard

forms;

10

29

v) generating a new instance of each variable at every point at which the variable
is changed, effectively replacing each variable by a succession of constants;

vi) generating proof obligations represent requirements for program correctness;
vii) proving the obligations;

viii) using the abstract specification to generate a test harness or a set of test data
for testing speed of performance;

ix) generating code statements to implement the specification where no code is
provided;

x) translating the code statements to easily translatable form; and

xi) translating the easily translatable form to an output language.

@S Dg
<¢, fc

: Pa The w' \\‘:”!: ™y
2 . ¥ ¥
E O[ﬁ s et
'fp Ce .5 INVESTOR IN PEOPLE
% . o¢
Application No: GB 0105734.8 Zgi Examiner: Richard Baines
Claims searched: 1-24 Date of search: 5 February 2002
Patents Act 1977
Search Report under Section 17
Databases searched:
UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK ClI (Ed.T): G4A (APL)
Int C1 (Ed.7): GOGF 9/44
Other: Online;: EPODOC, WPI, JAPIO, INSPEC
Documents considered to be relevant:
Category| Identity of document and relevant passage Relevant
to claims

X | Generating Efficient Protocol Code from an Abstract Specification,;
Castellucia, Dabbous, O’Malley; IEEE/ACM Transactions on 1 at least
Networking; Vol 5; No 4; August 1997

X | Improving the Efficiency of Automated Protocol Implementation using
Estelle; Gotzhein, Bredereke, Effelsberg, Fischer, Held, Konig; 1 at least
Computer Communications 19, 1996

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Documentpublished on or after the declared priority date but before the
with one or more other documents of same category. filing date of this invention.
E Patent document published on or after, but with priority date earlier
& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

