» UK Patent Application

wGB 2443443 . A

(43) Date of A Publication 07.05.2008
(21) Application No: 0621449.8 (51) INT CL:
GOG6F 17/24 (2006.01) GOG6F 17/21 (2006.01)
(22) Date of Filing: 30.10.2006
(56) Documents Cited:
] US 20060046096 A1 US 20050183006 A1

(71) Applicant(s): US 20020143818 A1

Hewlett-Packard Development Company

L.P., 20555 S.H.249, Houston, Texas 77070, (58) Field of Search:

United States of America UK GL (Edition X) G4H

INT CL GO6F

(72) Inventor(s): Other: WPI, EPODOC

John William Lumley

Roger Brian Gimson

Robert Thomas Owen Rees
(74) Agent and/or Address for Service:

Hewlett-Packard Limited

IP Section, Filton Road, Stoke Gifford,

BRISTOL, BS34 8QZ, United Kingdom
(54) Abstract Title: method of defining editable portions within the template document
(57) A modular document construction and generation system in which template documents, source documents,

fragments from source documents and user input are used to construct and generate documents. The
construction of the documents can be done remotely at a server and user information may be entered using a
Web browser. The present invention sets out a method of constructing an editable machine-readable document
which includes processing a machine-readable template document and a machine-readable document defining
an editable portion of the template document to construct a machine-readable template document including an
identifiable editable portion. The document defining editable portions may contain declarations written in XML as

to what/how objects within the template document may be edited.

Original Printed on Recycled Paper

V Evv Evv ¢ dO

100

/

Captured user
Oata

\ Name 1

Template

Name 3

Fig 1

1102 7

Variable
data

108

110b"

116a

1 118
/

Name 4

1226//J

Variable
data

I
122

Fig

104\

200

Caplure user data

202
|dentify portion
of template

204
Process template
and variable data

4

206
Create user
viewable document

208
Process with further
variable data

110a

11qc

_‘
=
| =

A

Insurance claim

:

>
8.
=

()

laim 2

Ingurance cieim

y

Insurance claim

@

Fig 3a

Fig 3

Fig 3c

Fig

Fig 3o

Figd

Figd

400

Obtain name 1 and name 3 contents

402

Perform process associated with name 2

404

Obtain output instance(s)

406

Store at location corresponding fo name 2

500
QObtain name 2 and name 4 contents

502
Perform process associated with name §

504
Obtain output instances

506
Store at location comesponding to name 5

Insurance claim

1~

, \
Fig 6a 102
Insurance claim
(Name)
(Address)
(Vehicle)

Fig bc

100

(Name)

(Address)

(Vehicke)

Fig 6

Fig 7

700

Capture user data

102

Insert reference in template

104

Process with variable data

106

Extract from source

Fig$

800

Instigate prior to procassing

802

Perform type check

804

Identity type

806

Perform process

9023

| 002
" 012
00 \ 014 \
W
—
| /
908’/ | /
908 908
%, | Fig9

Fig 10

1000

Generate document with editabilty

1002

Construct document

1004

Edit document

1006

Update template

. -

100 |

Fig fa

120
/

Insurance claim

Fig 15

104

904

Insurance claim

Fig 1

1202

/

size (Sized|"
Size2 |~
Size 3 1204

Colour 1| ¥
Colour 2
Colour 3
Colour 4

colour

Fig 12

\
102

/goe 1200
Insurance claim
Editable portion:
* Location
» Controls
Fig 11c Fig 12a
904 /1200
Insurance claim Insurance claim
Size 2
Colour 4 Size 2
Colour 4
N
1102
Fig 12d Fig 12e

..

...................................

] 1308

O \1302 ' \1304 O

Fig 14a Fig 14b Fig 14c

Fig 19

1500
Generate image and data structure

1502
Send to client

1504
Issue Edit instruction at client

1506
Send edit to server

1508
Regenerate image at server

1510
Send edited image and
data structure fo client

1600

10

1606

-. 1608 “

Fig 16

1614

1700

View documents

1706

Receive modified information

1702

Send change instructions

1708

Process data and template

1704

Add data field and
modify template

Fig 173

1710

Provide view of documents

Fig 7h

1802
/

Seminar

o

Venug:; town hall

1808

date

}1808

speaker

}1810

1812

1814

Date 1110

}816

1800

Speaker
ABC

1818

Fig 18

162
/

Seminar

Venue: town hall

Dale 1110
Speaker ABC

1820

1918

7
1954

1920

1922

Fig 19

1926

1930

%
¥ 1952 0
1934
Name 2
1954
193 g
/[

1914

1940

1910

| 1916

Fig 20

2000

View architecture

2002

Select desired components

2004

Implement process

2006

Create user viewable document

Fig1

Fig 22

2100

Receive completed

application form and data

2102

Bagin proposal generation

2104

Process documents

2106

(Genarate user viewable document

2200 202

File name Location information

Fig 3

2300

Inspect document type

2302

Determine type

2304

Perform steps dependent
on type requirement

Fig 4

2400

Create editabilty declaration

2402

—

Generate output document

2404

Annotate editable portions

2406

Display instance

2408

Select element

2410

Recognise annotation

2412

Display edit controls

2414

Update source with edit

250

2502

2504

2506

2008 |

212

2514

2504

2508

Fig 25

Fig 26

SERVER

2600

Generate image

2602

Generate data structure

2604

Send image and data
structure to client

CLIENT

—

2606

Receive image data structure and script

2608

Display image

2610

Indicate editable portions

218

Receive edit

2600

Edit source

2612

Display edit options of selected piece

2614

Recaive user edit

2616

Send edit to server

Fig 27

2100

View document

2102

Edit template

2104

Modify at source

g

Generate document

2600
2602 2610
2804 2812
2006

2814

Fig 28

2616

2626

2618

2624

2820

262

10

15

20

25

2443443

A METHOD OF CONSTRUCTING AN EDITABLE MACHINE-
READABLE DOCUMENT

FIELD OF THE INVENTION

[0001] The invention relates to a method of constructing an editable
machinc-rcadablc document.

BACKGROUND OF THE INVENTION

[0002] One method for constructing a machine-readable document is
described in the document “Mcthod of Proccessing a Publishable Document”
filed as USSN 11/400991 on 10 April 2006 which is commonly assigned
herewith and incorporated herein by reference. According to this approach a
machinc-rcadablc document, that is a machinc-rcadable representation
processable to provide an output such as a user viewable document, is treated
as a programmc which can be compiled and cxccuted to create a further
machinc-rcadablc document for cxamplc by binding it with variablc data. The
further machine-readable document can be processed to create a user viewable
document or can be further compiled and cxccuted for examplc with additional
variablc data to create yet a further machine-rcadable document. The machine-
rcadablc documcnt is processed by an “obscrver” to crcate the user vicwable
documcnt in the form, for cxample of a PDF document.

BRIEF SUMMARY OF THE INVENTION

[0003] A mecthod of constructing an cditablec machinc-rcadablc document
comprises processing a machinc-rcadable template document and a machine
readable document defining an editable portion of the template document to
construct a machinc-readable template document including an identifiable
editable portion.

BRIEF DESCRIPTION OF THE INVENTION

[0004] Embodiments of the invention will be described, by way of cxample,

with reference to the drawings, of which:

10

15

20

25

[0005] FIG. 1 is a block diagram showing in overview an cxample of
implemcntation of various aspccts of the approach;

[0006] FIG. 2 is a flow diagram showing thc steps involved in processing
the cxample of Fig. 1;

[0007] FIG. 3a shows a sample input document to the example of Fig. 1;
[0008] FIG. 3b shows a samplc input document to the example of Fig. 1;
[0009] FIG. 3c shows a sample input document to the example of Fig. 1;
[00010] FIG. 3d shows a sample output document combining the documents
of Figs 3a and Fig 3b;

[00011] FIG. 3e shows a sample output document combining the input
documents of Fig. 3a and Fig. 3c;

[00012] FIG. 4 is a flow diagram showing in overvicw steps involved
according to a first aspect of the approach described herein;

[00013] FIG. 5 is a flow diagram showing further steps involved in the first
aspect;

[00014] FIG. 6a shows a sample input document according to a second aspect
of the present approach;

[00015] FIG. 6b shows a furthcr samplc input document according to the
sccond aspcct;

[00016] FIG. 6¢ shows an output document crcated from the input documents
of FIGS. 6a and 6b according to the second aspect;

[00017] FIG. 7 is a flow diagram showing in overvicw stcps involved in
implementing the sccond aspect;

[00018] FIG. 8 is a flow diagram showing in overview steps involved
according to a third aspect of the present approach;

[00019] FIG. 9 is a block diagram showing in overview an example of
implementation of a fourth aspect of the present approach;

[00020] FIG. 10 is a flow diagram showing stcps involved in implementing
the fourth aspect;

10

15

20

25

[00021] FIG. 11a shows a sample input document for usc according to the
fourth aspect;

[00022] FIG. 11b shows a furthcer samplc input document for usc according
to the fourth aspect;

[00023] FIG. 11c shows a further sample input document for use according to
the fourth aspect;

[00024] FIG. 12a shows a sample output document generated according to
the fourth aspect;

[00025] FIG. 12b shows an cditing step applicd to the output document of
FIG. 12a;

[00026] FIG 12c shows edit controls displayed according to the fourth aspect
[00027] FIG. 12d shows a revised input document according to the fourth
aspect;

[00028] FIG. 12¢ shows a rcviscd output document according to the fourth
aspcct;

[00029] FIG. 13 is a block diagram showing in overview an example of
implementation of a fifth aspcct of the present approach;

[00030] FIG. 14a shows an cxample editablc document image according to
the fifth aspcct;

[00031] FIG. 14b shows cdit controls for thc document of Fig. 14a;

[00032] FIG. 14c shows an edited document;

[00033] FIG. 15 is a flow diagram showing the steps involved in
implementing the fifth aspect;

[00034] FIG. 16 is a block diagram showing in overview an example of
implementation of a sixth aspcct of the present approach

[00035] FIG. 17a is a flow diagram showing in overview the steps involved
in implementing a sixth aspect of the present approach at a client location;
[00036] FIG. 17b is a flow diagram showing the steps involved in

implementing the sixth aspect at a server location;

10

15

20

25

[00037] FIG. 18 is a block diagram showing an cxamplc of implementation
of the sixth aspect;

[00038] FIG. 19 is a block diagram showing in morc dctail an cxample of
implementation of various aspccts of the approach;

[00039] FIG. 20 is a flow diagram showing in more detail steps involved in
implementing the first approach;

[00040] FIG. 21 is a flow diagram showing in more details steps involved in
implementing the second aspect;

[00041] FIG. 22 is a diagram illustrating schcmatically a resource indicator
according to the second aspect;

[00042] FIG. 23 is a flow diagram showing in more detail steps involved in
implementing the third aspect;

[00043] FIG. 24 is a flow diagram showing in more detail steps involved in
implementing the fourth aspect;

[00044] FIG. 25 is a block diagram showing in morc dctail implementation of
the fifth aspect;

[00045] FIG. 26 is a flow diagram showing in morc dectail the steps involved
in implementing the fifth aspect;

[00046] FIG. 27 is a flow diagram showing in more dctail the steps involved
in implementing the sixth aspect; and

[00047] FIG. 28 is a block diagram illustrating a computer architecture by
which thc various aspccts can be implemented.

DETAILED DESCRIPTION OF THE INVENTION

[00048] The method and apparatus described herein comprise various aspects
which are first described in overview below. Various aspects of the approach
can be implemented separately and independently of one another or two or
more of the approaches can be implemented in conjunction with one another as

appropriatc. In the casc that cach aspect is scparatcly and indcpendently

10

15

20

25

implemented any alternative additional implementation approach can be
adoptcd as appropriate and indicated below.

[00049] Various of the aspcets can understood with reference to an cxample
of constructing machinc-rcadablc documents described with reference to the
exemplary scenario illustrated in FIG. 1 and the corresponding steps of the
flow diagram of FIG. 2.

[00050] The scenario relates to construction of a machine-readable document
comprising an insurance document which includes both captured user data and
variablc data for cxample rclating to specific insurance claims or a specific
local insurance agent responsible for policy, together with a template document
for insurance claims from an insurance company to whom the local agent
belongs.

[00051] At step 200 in Fig. 2, therefore, user data 100 is captured in the form,
for cxamplc, of namc, addrcss or other identifying data and this is stored at a
sourcc location 100. At step 202 the corresponding portion 102 of a template
document 104 at which the captured user data should appear includes a
reference to the captured user data 100. The template claim form 104
compriscs a machinc-readable input document with a user detail space allowing
rcusc for any uscr. The reference portion 102 includes for example
identification of the location and identity of the relevant data portion.

[00052] At step 204 a process P1 indicated as 106 in Fig. 1 is applied to the
template machine-readablc document 104 together with a machinc-rcadable
input document comprising variable data 108 to be bound to the template in an
interpolation step. The variable data 108, in the present example, comprises
dctails of the insurance claim specific to the insurce. It may, for cxamplec,
comprise multiple instances 110a, 110b relating to separate claims from the
same insuree. In that case as will be seen the output of the process comprises
two respective machinc-rcadable output documents 112a, 112b carrying the

template data, the reference to the captured user data and each instance of the

10

15

20

25

variable data 110a, 110b. This output document itsclf compriscs a machine-
readable document which can be treated as an input document, processable to
provide yet further output machinc-rcadable documents or may be converted to
a uscr vicwable document as appropriate.

[00053] Accordingly at step 206 in one approach, if there is no further
variablc data to be bound then the process proceeds to an “obscrver” 02, 114
which processes the machine-readable documents to provide user viewable
documents 116a, 116b which can then be user viewed for example on a
computer screen or printed out as appropriatc.

[00054] Alternatively, at step 208, the machine-readable documents 112a,
112b may be further processed by a processor P2, 118 in conjunction with yet
further variable data 120. The variablc data 120 may also contain multiple
instances for example instances 122a, 122b comprising terms and conditions
and details of the spccific office sclling the policy respectively, or for example
style of data governing the stylc of the document. In this casc the output
machine-readable document will include multiple instances 124 ato d
representing the various possible combinations of the two dual inputs to
process P2. The process can then turn to step 206 to create a user viewable
document albcit with a further obscrver O1, 126 to crcate documents 128 a to
d. It will be scen therefore that different user viewable documents can be
created at different stages. For example observer O2 can be applied if there are
no local agent or terms and conditions information to be incorporated, but if the
additional information is requircd then further processing can be provided as
well. It will further be noted that observers O1 and O2 can create different
types of user vicwablc documents as appropriatc.

[00055] Turning now specifically to the first aspect in overview, a modular
variable document architecture of the type shown in Fig. 1 is provided where
documents are composed from other documents and the parts may be rcused to

make a number of different documents for example in the form of the various

10

15

20

25

possible diffcrent output documents described above. The documents can have
variants bascd on input data and the approach provides a way to definc which
picces go to make up cach document and over what data the variants can be
instantiatcd. As a result the description can be input to a tool allowing
generation of selected output documents and which can identify outputs or
input documents that have already been generated and hence do not need to be
generated again.

[00056] The sets of input documents and data required to generate variable
documecnts are defincd in a machinc processable form corresponding to the
architecture shown in Fig. 1. This form supports both the automation of the
process that generates the documents and the visualisation of the way in which
the documents arc constructcd. Because work docs not need to be duplicated
where documents have already been generated, it becomes feasible to generate
sclected documents on demand from a potentially very large sct of possible
documents speedily and efficiently.

[00057] In particular a further document can be generated in machine-
rcadablc form which describes the componcents of the operation including data,
templates and proccsscs in a manner analogous to the visually represented
architecture of Fig. 1.

[00058] For example with reference to Fig. 3a to 3¢, a machine-rcadable
document can be constructed by applying a machine-readable document
construction proccss such as process P1, reference numecral 106, in Fig. 1 to
first and sccond input machine-rcadablec documents comprising a templatc 104
(Fig. 3a) and at least one of variable data instances 110a, 110b including
different insurancc claim dctails. As can be scen in Fig. 3, the insurance claim
template may comprise, for example, a simple document with the heading
“Insurance Claim” together with the logo of the insurance company, although
any appropriatc information can of course be included. The claim data may

comprise text or data retrieved from forms filled in on-line or any other

10

15

20

25

appropriatc claim data. The template 104 and instances of variablc data 110a,
110b arc combined to create output documents 112a, 112b as shown in Fig. 3d
and Fig. 3¢ respectively in which it will be scen that different variable data is
incorporated for the different instances. This document can then be processed
by the Observer to create the user viewable forms.

[00059] According to thc approach of the first aspect it is then necessary to
ensure that the output machine-readable documents can be identified within the
overall process shown in Fig. 1 and that unnecesary processing can be avoided.
In particular this is achicved by storing the content of the output machine-
readable documents (for example documents 110c, 110d) at a storage location
and assigning an identifier to the output machine-readable document
identifying the storage location. The identifier can also include reference to the
inputs to the process P1 which created the output document, those inputs being
templatc 104 and variablc data 108, hence allowing identification of the
documents from which the output document was constructed.

[00060] For example referring once again to Fig. 1, template 104 is assigned
an identifier “name 1>, variablc data 108 is assigned “name 3” and process P1,
106 and outputs 112a and 112b are assigned identifier “name 2”.

[00061] Hcncc the description associates output documents 112a and 112b
with process P1 and its inputs name 1, name 3 all by virtuc of the identifier
name 2, hence indicating what inputs created the output documents and what
process was applied to them.

[00062] When it is desired to construct the output documents having name 2,
process P1 is performed as shown in Fig. 4. At step 400 process P1 obtains the
contcnts of the relevant input documents identificd by names 1 and 3. Tt will be
noted that there may be multiple versions where there are multiple data
instances, for example name 3 in fact relates to two data instances, 110a, 110b.
[00063] At stcp 402 the process dcfined in conjunction with name 2, ic
process P1 is performed, for example binding the instances of the data 110a,

10

15

20

25

9

110b to the template 104. At stcp 404 the two output instances 112a, 112b arc
obtained and at step 406 the contents arc stored at a location corresponding to
the identificr name 2. Where there are multiple instances then the step may
includc adding tags as qualificrs to cach instance. A time stamp is also applicd
to the or each instance to indicate when the document was created.

[00064] As arcsult the sclection of documents to be combincd is scparated
from the content of the documents themselves allowing the documents to be
reused in a flexible way as well as simplifying the avoidance of unnecessary
processing where the output is alrcady up to date as significd by the time
stamp. As each document is described in terms of the process used to generate
it and the inputs to that process, the overall sequence of the process can be
derived from the individual descriptions, and cach document can be considered
separately which reduces the complexity of the overall description.

[00065] This can be further understood with refercnce to Fig. 5 which shows
how yet further processing might take place for example at P2, reference
numeral 118 in Fig. 1. Where additional variable data 120 has identifier name
4 then at step 500 process P2 obtains the contents stored at the location
identificd within names 2 and 4 as input documents. In both cascs it will be
seen that two instanccs arc availablc for cach of name 2 and namc 4 and thesc
arc identificd by their respective qualifiers.

[00066] At step 502 the input documents are processed by document P2 as
described in the associated process description under the corresponding name,
name 5. The output instances 124a to 124d arc obtaincd at stcp 504 and at stcp
506 are stored at the location corresponding to name 5, again with appropriate
qualificrs per instance and any required time stamping.

[00067] As discussed above the output documents can be processed by an
observer to obtain a user viewable document either at the end of the steps of
Fig. 4 or at the cnd of steps of Fig. 5 depending on what output is required. It

will be noted that names 1, 3 and 4, comprising documents but no associated

10

15

20

25

10

processes or inputs share the syntax of names 2 and 5 but with a “null” proccss
defined therein, and no inputs, such that all of the identificrs name 1 to name 5
perform the same function. Bccausc cach of the components is described in
modular form, when the process is run cach of the components can be
examined, for example by accessing the location identified within the name, to
scc whether it is up to datc (for cxamplc by cxamining the time stamp) or
indeed has been created at all. If so then there is no need to begin the whole
process from the beginning; the up to date documents can be retrieved and
rcused, simplifying the procedure.

[00068] It will be seen that this approach described above in overview
provides an improvement over conventional approaches to document
modularity according to which parts of documents are included by an “include”
directive in an outer document to which the relevant processing is applied,
making it difficult to includc a diffcrent component document in order to
generate a different output without cditing the outer document.

[00069] Turning now to the second aspect in overview, this relates to
construction of an instance of a variable-data document incorporating multiplc
fragments. The sccond aspect may be performed in conjunction with, or
indcpendently of the first aspect. The fragments comprise elements from
source documents, such as complcte pages (such as covers or scctions) or
significant components of the documents such as tables, graphs or figures. In
particular, thc approach allows construction of variablc data documents
allowing the fragments to be selected as a conscquence of binding variable
data, and additionally allows decoupling of the act of interpolation of the
fragments from the cxact mechanism for cvaluating the cffect of variable data.
[00070] This can be further understood with reference to Figs 6a to 6¢c. A
template document 104 may comprise a basic, un-populated vehicle insurance
claim form which may, for example, havc a titlc “insurance claim” and an

extractable portion 102 for insertion of corresponding extractable data such as

10

15

20

25

11

capturcd uscr data 100 providing uscr name, uscr address and user vehicle. As
discusscd in morc detail below, when the template is combined for example
with variablc data 108 and an uscr vicwable document is constructed at
obscrver 114, the finalised output is constructed by cxtracting the namc,
address and vehicle information from the captured user data based on a source
document locator and cxtractable portion identificr in the templatc document
which is unaltered by the intermediate processing.

[00071] This can be further understood with reference to Fig. 7. At step 700
uscr data 100 is captured for examplc from input data to an on-linc claim form
and stored as a source document or a component thereof. At step 702 a
reference to the extractable portion is included in a document such as the
template or gencratable from some aspect of variable data for the document
instance, in the form a source document locator and a fragment reference
cxtractable portion identifier. In particular this allows the entirc uscr source
document to be stored as the captured user data and for the required portion
only to be identified by the extractable portion identifier.

[00072] At step 704 the template 104 is processed with variable data, the
extractablc portion identifier being declarcd and passing through any
processing steps of the template such that it is unaltered in intcrmediate
documents. The clement cmerges in the final “output” as required.

[00073] At step 706, during final projection of the resulting document into a
user vicwable document for cxamplc a print-ready form such as PDF, the
fragment reference is used to determine the portion of the source document
required and the data for that fragment is interpolated into the final print-ready
form. Any appropriate format convcrsations can be performed by the
Observer.

[00074] As a result it is not necessary to incorporate the document fragment
itscif into the tcmplatc as a result of which an import action is not required such

that interpolation of the data is not required when making an intermediate

10

15

20

25

12

document instance from a template. Hence, construction of instances of
variablc — data documents can include components derived or extracted from
other sourcc documents through a systcm of cxtractable portion identifiers
carricd through the construction process and only intcrpolated into final output
forms. This makes it possible for fragments to be selected as a consequence of,
or dircctly referenced in variable data, as well as in original construction of the
template. Such fragments can be transported through arbitrary programs
evaluating the effect of variability on a particular document instance. As a
result cven where complex intermediate processing steps arc involved,
processing agents do not need knowledge of the format of a component passing
through. This increases the range of potential documents that a given
document construction systcm can produce with minimal altcration to cxisting
processing machinery allowing document fragments to be interpolated via the
references cmbedded in variable document instance data. Furthermore,
because the reference is to an cxternal document, and the document is only
imported at the final stage, there is no risk of corruption of the document data
during the intcrmediate processing step.

[00075] Considcring now the third aspect of the present approach in
overview, a modular document architccture is supported by composing
documents from component parts which are both rcusable and replaceable in
output documents or compositions. The third aspect may be performed in
conjunction with cither or both of the first or second aspect or can form a
stand-alonc approach as appropriatc. For ease of explanation howcver, the
following overview discussion is provided in the context of the same example
as the first and sccond aspccts.

[00076] In order to support a modular document architecture, types are
defined that can describe both the parts from which documents are composed
and the placcs in to which thcy may fit in an output document. As a result a

correct fit can be verified for a proposed output document. Document parts

10

15

20

25

13

that will fit in a given context can be cxtracted from a collection of document
parts and the derivation of the typc from the ecxamination of the parts and
combination of parts can bc automatcd. Hence, considering the variable data
documents as functions, the typc system can include both functional and data
aspects that an input document makes available to the other fragments or input
documents to a compositec document as well as the functional and data aspccts
of other document components that may or must be available to the component.
[00077] This can be understood with further reference to Fig. 8. At step 300,
the approach is instigated prior to subscquent proccssing. At step 802 a type
check is performed in relation to a document. This may be an external process.
Alternatively the type can be defined in the document although in that case if it
is incorrcct then when the document is instantiated there may not be a type
match. At step 804 the type is identified and declared for example from a
comparison with the type options available. Where multiple options are
available then the best match may be sclected. At step 806, in subscquent
processing the process is performed dependent on type matches. For example
wherc a process requires a certain type for an input document or where a first
input document rcquires a sccond input document to have a certain type the
appropriatc rule is applicd to establish whether the process can be performed or
whether the process should stop.

[00078] For example referring to Fig. 1, the template 104, may specify a
certain data typc for variablc data 108, name 3 if they arc to bc combined.
Alternatively, process P1 may specify that it requires, as input, a template type
and a variable data type.

[00079] As a result an approach is provided that extends beyond a merc data
check for example, to establish whether a field is populated in a data
component to requiring the type of a document itself to be declared, for

cxamplc cstablishing that a “stylc” componcnt or a templatc is required.

10

15

20

25

14

[00080] Turning now to a fourth aspcct in overview, which once again can be
implemented in conjunction with onc or all of the other aspects described
herein, or implemented independently, the approach can be understood with
reference to Figs 9 and 10. According to the fourth approach, when a variable
data document is presented to the viewer for example after processing by an
obscrver, cditablc clements in the display contain references to both their origin
in the original source template and the editing operations or edit controls that
can be performed on that element. This allows the viewer to perform the edit
opcrations on the instancc of the document produccd by the obscrver from the
template. The edit changes are applied automatically to the template itself. As
a result the editing operations are decoupled from the details of how the
variablc data template is processed to produce specific instances of the
document and can be configured to specific classes of documents.

[00081] Turning to Fig. 9, inputs to a process 900 includes one or more
variable data documents 902a, 902b, a templatc document 904 and a further
document 906 including a declaration concerning editability in the form an
editable portion definition. The template 904 includes an editable portion 908
and upon processing of the documents proccss 900 outputs an output machinc-
rcadable document 910 including the data 902a, 902b and the cditablc portion
908, and carrics the cditable portion definition. When a uscr vicwablc
presentation document 912 is produced by the observer 914, the user is able to
edit the editable portion 908 according to the definition and any cdit operations
sclected by the user arc performed automatically on the templatc 904 at a
template source location identified in the editable position definition, as
discussed below.

[00082] Referring to Fig. 10, therefore, a method of constructing an editable
machine-readable presentation document comprises, at step 1000, generating a
document with cditability by processing a tcmplate document and an editablc

portion definition (and variable data as appropriate). At step 1002 a machine-

10

15

20

25

15

readablc document is constructed including an identifiable portion. At step
1004 the viewer cdits the document for cxample by moving a cursor over the
cditablc portion and sclecting, from the available options, a desired edit control.
At step 1006 the cdits arc automatically applicd to updatc the template.

[00083] The approach can be further understood with regard to the specific
cxamplcs shown in Figs. 11 and 12. Fig. 11a shows variablc data document
902a, including, in the instance shown, data 1100. Fig. 11b shows an insurance
claim template 904 including an editable portion 908 comprising a graphic
1102 having a certain size SIZE 1 and colour COLOUR 1. Fig. 11c shows an
editable portion definition 906 including identification of the location of the
editable portion and the edit controls applicable to the editable portion.
Accordingly the location compriscs, for cxample, the coordinatcs of the graphic
1102 in Fig. 11b and the controls comprise, for example, permissible variations
of the size and colour of the graphic 1102.

[00084] When the templatc, 904, variable data 902a, 902b and cditable
portion definition 906 are processed and a viewable presentation document is
produced for vicwing by a vicwer, the output document 1200 is shown in Fig.
12a as including the text 1100 and the graphic 1102. When, as shown in Fig.
12b, the user selects the graphic 1102 for cxample by drawing a cursor 1104
over it with a mouse, by virtuc of the cditable portion dcfinition of the location
this is identified as an editable portion and the editable portion controls 1202
arc displaycd as shown in Fig. 12¢ for example in the form of a drop down
menu 1204. If, for example, the uscr sclects SIZE 2 and COLOUR 4 from the
available options then the template 904 is updated as shown in Fig. 12d so that
the graphic has sizc 2 and colour 4 and, referring to Fig. 12c, the uscr viewablc
document 1200 is correspondingly updated.

[00085] As a result an improved approach is provided over existing

approachcs where the template must be cdited directly. In such direct editing

10

15

20

25

16

arrangements only limited editing is possible and without the ability to sce
immediatcly the cffects on the output documents.

[00086] Turning now, in overvicw, to a fifth aspcect which may be
implemented in conjunction with onc or more of the other aspects described
herein or can be implemented independently, the approach can be understood
with reference to Figs. 13 and 14. According to this approach a method of
constructing a remotely editable machine-readable document is achieved by
sending both a presentation image of a machine-readable document — for
cxamplc a user viewable form to be cdited together with a data structure
identifying editable portions, to a remote editing location. The data structure
may be an editable portion definition of the kind described with regard to the
fourth aspect or may take any other appropriatc form. Sclection of cditable
areas within the documents is achieved by superimposing visual cues over an
imagc of a document page. The positioning of the cucs is derived from the
document source by marking thosc clements that arc cditable, carrying this
information through to the document presentation and conveying the associated
positioning information to the browser. This enables remote cditing of the
document sourcc using a standard web browser without the necd for special
graphical support.

[00087] Referring in morc detail to Fig. 13, at a remote source which may be,
for example, a server designated generally at 1300, a presentation image 1302
and a data structure 1304 identifying cditablc portions of thc presentation
image arc gencrated. The presentation image may be gencrated, for cxamplc,
produced by an observer 1310 from input documents shown generally as
components 1306, 1308. The presentation image 1302 and data structure 1304
are sent for example over a network such as the internet 1312 to a remote
editing location 1314 which may be, for example, a client computer. The client
computer receives and displays the presentation image 1302 and implements

the data structure 1304 allowing identification editing of the editable portion.

10

15

20

25

17

[00088] Rcferring to Fig. 14a, therefore, the client computer may display the
presentation image 1302 in conjunction with the cdit screen 1304 of Fig. 14b
indicating thc cdit controls availablc for an aspcct of the presentation image
when that aspect is highlighted. When the cdit command is performed the
information is returned, again under the control of the data structure, to the
remote sourcc 1300 according to a sourcc location dcfined in the data structurce
where the document is updated and the revised image shown in Fig. 14¢
returned to the remote editing location together with the data structure allowing
further cditing.

[00089] Referring to Fig. 15, at the remote source or server, therefore, the
presentation image and data structure are generated and at step 1502 these are
sent to the remotc cditing location or clicnt computer. At step 1504 the
editable portion is edited and at step 1506 the edit is sent back to the server
computer. At step 1508 the image is regencrated at the server and at step 1510
the editcd image and data structurc arc sent to the client.

[00090] Hence a document that is constructed as an arrangement of pieces
(for cxample images, tcxt blocks, graphics) can be performed where a picce is
sclected before editing its content. This can be implemented remotely for
cxample, for consumers or small busincss uscrs where special local
applications or web browser plug ins arc not available to providc a suitable
graphics environment for editing according to the aspect. Furthermore the
scrvice provider, for cxample at the server, can retain the documents source and
code formatting a presentation from it without relcasing it to the client.

[00091] Turning now to a sixth aspect in overview which can be
implemented independcntly or in conjunction with, for cxample, the fifth
aspect described above or any of the other aspects described herein, a method
of controlling construction of a machine-readable document is provided. In
particular a systcm is provided allowing users at a remote editing location to

remotely manage their variable data and document templates via a web browser

10

15

20

25

18

and sclectively to create document instances for printing or other forms of
distribution. Thc aspect combincs template cditing and flexible document
layout techniques that can be accessed remotely to automate and simplify the
ovcrall proccss and allows, for example, addition of a data ficld at a remote
editing location such that a corresponding machine-readable document
template at a remotc source is updated to include the additional data ficld.
[00092] The approach according to the sixth aspect can be further understood
with reference to Figs. 16 and 17a and 17b. Referring firstly to Fig. 16 the
architecturc of an appropriate systcm can be scen as including a server or
remote source 1600 which stores both data 1602 and templates 1604. The
server communicates with a web server 1606 which in turn communicates via a
nctwork 1608 for cxample the internet 1608 with a remote cditing location
1610 which can be, for example, a business user’s web browser. The web
scrver 1606 allows uploading and cditing of data including adding or delcting
allowable fields, uploading cxample documents and conversion to tcmplates,
editing of templates including adding references to variable data, and selection
of templates and data in generation of documents and deployment of
documents.

[00093] The steps performed at the client or remote cditing location arc
shown in Fig. 17a and the stcps performed at the server or remote source arce
shown in Fig. 17b. The approach provides a method of controlling
construction of a machinc-rcadable document at a server from a client.
Providing a remotc vicw onto data from a wceb clicnt can be performed using
HTML forms or any other appropriate manner as will be well known to the
skilled rcader. A tcmplate and data arc stored at the scrver and at stcp 1700 the
client views a machine-readable document template or data at the server.
Providing a remote view onto a template can be performed, for example,
according to the approach described in the fifth aspect or in any other

appropriate manner, At step 1702 the client sends change instructions to the

10

15

20

25

19

server which may comprisc or include add instructions for cxample by adding a
reference to a newly added data ficld. Of coursc thesc steps can be performed
in any ordcr or simultancously. The variable data document has at lcast onc
populatcd data ficld and the template has static and dynamic portions, the
dynamic portions being processable in conjunction with the variable data
machinc-rcadable document to construct an output machinc-rcadable
document. Hence, for example, the at least one further data field is added by
the user to the variable data machine-readable document and populated and the
templatc or data is modificd at the server according to the change instructions
to include a dynamic portion corresponding to the added data field. This can
be achieved, for example, using a data structure received from the server
including an editablc portion dcfinition as described with reference to the
fourth and fifth aspects, or in any other appropriate manner such as, once again,
using HTML format. At stcp 1704 the clicnt reccives and displays the view of
the modified data and/or modificd document gencrated by the server by
applying the template to the data, for example in the manner described above
with reference to the fifth aspect.

[00094] At stcp 1706 therefore, the scrver reccives the modificd information
and at step 1708 processes and updates its data and templatcs and provides a
view of thesc once again at step 1710.

[00095] Still in overview, the approach according to the sixth aspect can be
further understood with regard to the non-limiting cxample shown in Fig. 18.
At a local scrver location 1800 a document template 1802 for cxamplc for a
seminar flyer includes static data “Seminar” 1804 and “Venue: Town Hall”
1806 togcther with variable date data 1808 and variable speakcr data 1810.
Variable data documents 1812 include date data 1814 and speaker data 1816.
The template is instantiated with the variable data to provide a user variable

document 1822 of which a vicw is provided to the uscr.

10

15

20

25

20

[00096] According to the sixth aspect a variable data ficld is added in the
form of converting the static “Venuc: Town Hall” ficld to a variable or

dynamic data ficld, togcther with the corresponding venue information for
examplc using appropriatc cdit controls provided in an cditablc portion
definition. Once the template has been modified to include the information as a
dynamic portion and thc data ficld has been populated by the user with the
venue information corresponding instructions are returned to the server 1800
including an instruction to add the field to the variable data and an initial value
for the ficld. In addition but not nccessarily simultancously, instructions arc
sent to modify the static venue field in the template that references the date. At
the server the template is modified accordingly, the additional data added as a
variable data ficld 1812 and thc tcmplate and variable data bound to gencrate a
result document. This document or an observation thereof is sent to the client
1820.

[00097] As a result of the described approach, a significantly less time
consuming approach is provided for updating variable data documents based on
tcmplates that allow incorporating diffcrent data for each document gencrated,
hence providing customisablc or personalisable documents using a web bascd
scrvice and variable data document templates. In particular improved
flexibility is provided by allowing addition and population of further data fields
and modification of a remote template without requiring specialised software or
SCTVCTS.

[00098] Having discusscd various aspccts of the present approach in
overview above, each aspect will now be described in more detail in relation to
an cxcmplary and non-limiting approach.

[00099] Turning to the first aspect in more detail, a more generalised
architecture for processing a modular variable document is shown in Fig. 19 for
constructing documents of the type, for example, described above with

reference to Fig. 6a in which it is desired to combine machine-readable

10

15

20

25

21

documents such as templatec documents and variable data documents. The
various modular parts can be rcused to make different documents and a
corresponding description can be the input to a tool for generating sclected
output documents, as discusscd above. In particular it can be scen that
machine-readable documents can be input to one or more processes, that
multiplc processes can be applicd with further inputs, and that the output
documents can be viewed in user viewable form via one or more observers at
any appropriate point in the architecture.

[000100] Fig. 19 shows an architccturc with processors 1900, 1902, 1904,
1906, 1908 and 1910 and observers 1912, 1914, 1916. Template documents
1918, 1920 are input to process 1900 and template documents 1920 and 1922
are input to process 1902. Of course these may also be other types of data
documents such as variable data documents. A data document 1924 is output
from process 1900 and a data document 1926 is output from proccss 1902.
These documents arc output documents from the processors but can also
comprise input documents to further respective processors 1904, 1906.
[000101] A further variable data input 1928 comprising multiplc
documents is proccssed by process 1904 and multiplc data documents 1930 are
also processcd by process 1906. The multiple output documents 1932 of
process 1904 can be observed by an observer 1912 to provide user viewable
documents 1934. The output documents 1932 from process 1904 also
comprisc inputs to process 1908 together with further multiple variable data
documents 1936 to provide an output 1938. An obscrver 1914 allows
presentation of user viewable documents corresponding to each of the input
documents 1938. Thc output documents 1940 of process 1906 togcther with
further data documents 1942 are input to process 1910 to provide outputs 1944
which can be viewed as user viewable output via observer 1916.

[000102] It will be appreciated that more than two inputs can be received
by any process, of course. It will be further noted that where variable data

10

15

20

25

22

documents comprisc multiplc variable data documents such as 1928 then
respective multiplc output documents 1932 arc provided by the process.
Similarly where multiple sets of variablc data documcents arc input to a process
such as 1932 or 1936 then the resulting process 1908 provides multiplc outputs
corresponding to each possible combination, i.e. the product of the number of
input documents 1938.

[000103}] As a result a notation is provided for describing a family of
related documents where ecach document is defined in terms of a process
applicd to other documents in the family or, in the absence of such a process, 1s
taken as an original input. For example document 1924 can be described in
terms of the process 1900 and the input documents 1918, 1920. Document
1918 and 1920 themsclvcs, which do not result from a process, arc hence cach
taken as an original input with null process. In particular this can be achieved
by assigning an identificr to the output machine-readablc document identifying
the storage location at which it is stored at that location. The identificr further
:dentifies the names of the input documents to the process as well as the
process itsclf. Hence an architccture such as that shown in Fig. 19 can be
constructed derived from the information in the assigned identificrs to cach
document. As discussed below, this provides a fully modular approach
allowing a complex process to be broken down into the clements shown in the
architecture of Fig. 19 which in turn allows processing t0 be restricted to the
componcnts that have not already been completed.

[000104] Where a document compriscs a sct of instanccs, for cxample
1932 or 1938 in Fig. 19, the document is defined as the product of a number of
such scts of data valucs, still identificd by a singlc name having multiple
instances. A generated document may be used as the input to another process
for generating a further document and, as can be seen in Fig. 19, there is 1o

limit to how many stages of proccssing may be used.

10

15

20

25

30

23

[000105] The manner in which the identificrs arc assigned and used can be
further understood with reference to the xml cxample sct out below. Output
document 1932 has an identifier “name 2” defining it and its associated process
1904. Input machinc-rcadable template 1924 has identifier “name 17 in
conjunction with its process 1900. Input variable data instance 1928 has
identificr “name 3”. In the following cxamplc, therefore, the data files arc
declared, giving the name and location of the corresponding data. The process
description is then declared, once again defining the location of name 2, the
process applicd and the inputs name 1 and name 3.

<!--DATA FILES-->

<doc id = “namc 3>
<location><datadir/>/name3.xmi</location>

</doc>

<!--TEMPLATE FILES-->

<doc id: “name 1>
<location><indir/>/namc1.ddf</location>

</doc>

<!--PROCESS DESCRIPTION-->

<doc id= “name 2-ddf*>
<location><builddir/>/namec2.ddf</location>
<proccss op="ddf”>
<input><ref id= “name 1”/></input>
<data><ref id= “name 3”/></data>
</proccss>
</doc>

[000106] It will be noted that the manner in which the documents are
processcd can be in any appropriatc fashion, for cxample that described in the
above referenced document “Method of Processing a Publishable Document”
whereby the machine-recadable documents are trcated as programs which can be
compiled and executed by the processors to create a further machine-readable

document and processed by the obscrvers to creatc user viewable documents.

10

15

20

25

24

[000107] Becausc of the manner in which the architecture is described, a
diagram can be gencrated of the overall application based on the usc of onc
document as an input to the process that creates another. In addition it is
possiblc to computc the processing steps needed to gencrate the document
instances corresponding to given data and the dependencies that constrain the
order in which processcs may be performed. The processing can then be
performed to generate a selected set of the possible instances that could be
generated rather than, for example, running through every process and observer
for cvery possibility, and in particular allowing suppressing of processing stcps
that correspond to documents that exist and are up to date.

[000108] This can be further understood with reference to Fig. 20. At step
2000 an appropriatc vicwer can construct a representation of the architccture
for example as shown in Fig. 19 or the specific example of Fig. 1. This can be
performed by any appropriate tool which can parsc xml the dcclarations and
construct the representation. At step 2002 the uscr can then select the desired
components within the architecture. For example, reverting to the specific
cxample of Fig. 1, the variable data 120 may comprise terms and conditions
and it may decided that a uscr vicwable document should be producced without
this data.

[000109] At step 2004 the process is then implemented. Hence, for
example, the template 104 in Fig. 1 may be bound with the variable data 108
by process P1 providing respective output documents 112a, 112b. Thesc arc
then storcd as instances against the corresponding identificr and, if appropriate,
time stamped or otherwise marked with data signifying the “freshness” of the
corrcsponding data. However it is not nccessary to implement process P2 and
so the observer 114 02 can be implemented to create user viewable documents
116a, 116b without the terms and conditions at step 2006. It will be seen that if
it is desired to producce further instances at a later datc then it is not necessary

to re-run the process P1, but instead the data can be extracted using the

10

15

20

25

25

identificr for the output (name 2) unless the time stamp shows that the data
must be refreshed. Hence only thosc portions of the process that arc stale
require re-running to reproduce the output. Furthermore the approach allows
multiplc related outputs to be treated as familics and the family relationship
identified.

[000110] It will be appreciated that the first aspect can be implemented in
any manner not limited to xml and can accommodate any number of input,
output, template, data, style or other documents. Furthermore the documents
can be processed by any appropriate process and the identificrs can take any
appropriate form. The tool for viewing and implementing the process can be
implemented in software as appropriate and the data can be stored and
presented in user viewable form using any appropriate observer and format.
[000111] Turning now to the second aspect in more detail, a method for
identifying an extractable portion of a source machine-rcadable document can
be further understood with reference to the flow chart of Fig. 21. The approach
can be understood in the context of the first aspect but can be implemented in
any appropriatc manner. According to the second aspcct, as discusscd above,
input or output variable data documents can include components derived or
cxtracted from source documents through a system of document fragment
references carricd through the construction process and only interpolated into
final output forms.

[000112] Referring to the gencralised example of Fig. 19, for example, a
source document 1950 may havc an extractable portion or fragment which is
required by template document 1918. The template 1918 therefore retains a
place holder or reference to the cxtractable portion in the form of an extractable
portion identifier. Additionally or alternatively, the variable data to be
instantiated during the process may have a reference to the extractable portion.
In cither event the various processcs arc applicd to instantiate the variable data

combined with other variable data templates in the manner described herein

10

15

20

25

26

and the reference is carried unaltered through the process. For example where
the reference 1954 appears in template 1918 then it will appcear additionally in
documcnt 1924, documents 1932 and so fourth. When uscr vicwable
documents 1934 arc produced by obscrver 1912 the referenee is extracted from
the source document 1950 as shown by arrow 1956. Hence the extractable
portion fragment can be transportcd through arbitrary programs without
requiring processing of it or risking degradation of the source data.

[000113] Fig. 21 shows an implementation of the approach according to
the sccond aspect in the context of the insurance claim form cxample described
above with reference to Figs 3, 6, 11 and 12. At step 2100 a completed
application form with accompanying data is received. This is completed by the
insuree and may include applicant data and other textual data in normally
populated fields together with, for example, scanned-in images or other
documentation for cxamplc in PDF form. At step 2102 proposal generation is
commcenced in which the data and the claim form template arc combined. In
addition the template may carry a reference to the scanned-in document for
cxample pointing to a portion of the scanned-in document carrying photographs
or hand-writtcn notes rclating to the claim. The refercncc is in a format
recognised by the processing steps as being unalterable when the various
components arc processed at step 2104 which may comprise onc or multiplc
processing steps. At step 2106 a user viewable document is generated
including thc portion of the original claim document identificd by the
reference, which is extracted from the source document. This may involve
additional formatting steps if the user viewable document format is not the
samc as thc source document format.

[000114] Fig. 22 shows schematically a possible form for the reference to
the extractable portion as including a file name 2200 and location information
within the file 2202. The file name can provide, for cxample, the location of

the source document and, for example, the file type if this is not inherent

10

15

20

25

27

through the context. The location information 2202 can identify the relevant
portion of the identified file for cxample by page number or by a coordinate
(x,y) position within thc document together with width and height information
or in any other manner. The reference is formatted such that it is identifiable as
a reference and processed only at the point at which a user viewable document
is crcated. This can be done, for cxample, by creating a Universal Resource
Indicator (URI) in xml as a scalable vector graphic (svg) in the form:
<svg:image width="234" hcight="345" typc=".." xlink:href="filcnamc" pagc-
numbcr="2"

src-x=".." src-y=".." src-width="..." src-height="..."...>
[000115] It will be scen, therefore, that the gross propertics “width” and
“height” are defined together with the universal resource indicator “href”
indicating the resourcc at “filcnamc™ and the cxtractable portion as defined by
the page number, coordinatc, width and height information and the src-x, src
width etc. are the extractor information from the source as distinct from the
placement in the final result document. Where the cntirc document is required
then the extractable portion can be identified as the whole document.
[000116] Because, according to this format, the extractable portion
compriscs a scparate part of the URI in addition to the resource namc, lcss
computation is required in finding and processing the portion as it is not
necessary to interpret the URI. However in an alternative implementation the
reference to the extractable portion can be included within the file name such

that the entire construct comprises the universal resource indicator in the form:
File:///data/filcname?page=....x=....y=....width=..., height=...
[000117] In this instance the URI server would need to recognise and be

able to parsc its format.
[000118] Whichever format is adopted it will be seen that the relevant
portion of the source document is defined externally such that no configuration

of the source document itself is required.

10

15

20

25

28

[000119] As a result of the approach described in detail above with
reference to the sccond aspect it will be scen, thercfore, that the source
document information cannot be corrupted during the processing of
intcrmediate stages.

[000120] It will be appreciated that the second aspect can be implemented
in any appropriatc manner, relying on any sourcc data and reference format as
appropriate.

[000121] Turning now to the third aspect of the approach described herein
in morc dctail it will be appreciated that this aspect can be implemented in
conjunction with the other aspects described herein or independently thereof as
appropriate. As described above, according to the third aspect, types are
defined that can describe both the parts and the places into which they may fit
in a composed document such that it can be verified whether documents and
processors will be interoperablc.

[000122] Once again the documents to which the aspect can be applied can
be considered as functions that can be applied to data to generate the new
documents which may themsclves be functions. Howcver the functional
aspects must fit together scveral documents which arc brought together for
proccssing, as wcll as being matched to the data that is being incorporated.
Otherwisc the form of the output may be unintended but it may be hard to
determine the problem from the output, especially if the output is used as an
input to a subscquent processing step and does not cxhibit the problem in an
casily obscrvable form. The third aspect provides a modcl for how the
document pieces fit as well as tools which can determine directly whether or
not the picces fit to allow matched picces to be detected carly together with
identification of the nature of the problem. The approach further allows
selection of pieces having the required type from a repository of document
picces and the sorting of such a repository into common types. Furthcrmore it

can be determined whether or not a document is of a given type, or the type can

10

15

20

25

29

be inferred by inspection and the type of a composite document can be derived
from the types of its parts. An appropriatc tool can be implemented to allow
thesc various steps.

[000123] The steps involved can be further understood with reference to
the flow diagram of Fig. 23, and can be implemented by any appropriate tool.
At step 2300 the document type is inspected for example by retrieving relevant
aspects of the document, and at step 2302 the document type is determined.
Where multiple candidate types are available then the type can be selected as
the best match for cxample from a pre-calculated list of potential types. At step
2304 the appropriate steps are then performed dependent on the declared types.
For example the process may be aborted if an inappropriate type is identified or
further cxamination can be carricd out to identify if there is a rclationship
between the types which allows other types to be used if the desired match is
not madc.

[000124] The approach provides advantages over conventional approaches
whereby modular documents are simply imported wholly or partially into one
another without any compatibility check for the picces of the modular
documents. By defining typcs, early dctcction that a documcent is not of the
required type is possible, and specifications are provided against which a
collcction of rcusablc document components can be built. Type checking of
the compatibility of the pieces being combined provides better information
regarding incompatibilitics and reduces the need to work backwards from
obscrved dcfects in the final output.

[000125] It will be appreciated that the third aspect can be implemented in
any appropriatc manncr for example not limited to xml. The typc can be
declared in the input or process and can be assessed in the input or process or
using an external tool as appropriate. The type can be obtained, for example,
by checking it against a pre-calculated type list or using any appropriate

algorithm for both type selection and best match selection.

10

15

20

25

30

[000126] Turning in morc dctail to the fourth aspect which once again can
be implemented independently of, or in conjunction with onc or morc of the
othcer aspccts as described herein, the operation can be understood with
reference to Fig. 24. In particular Fig. 24 shows how cditablc clements in a
displayed user viewable output containing references to their origin in the
original sourcc templatc and the cditing opcrations that can be performed on
that element can be implemented allowing automatic update of the template.
[000127] At step 2400 the editability can be defined by creating an
cditability declaration or document sctting out the pattcrns of clements for
which a particular editing operation is valid in a source document such as a
template or variable data document, an extractor program or function which
can be applied to the sclected itcm to determine the current value of the
property being edited and an effector program to which a new value for the
property can be uscd as an argument. The pattern, extractor and cffector for a
given desircd cditing opcration can be packed togcether as a dcclaration and, as
described below, projected automatically into the necessary programs sections
within the presentation generator or observer and editing interface.

[000128] At step 2402, an output or user viewable document is gencrated.
For examplc a sourcc document is transformed into a presentation with
interpolation of variablc data. The source document may be a templatc which
need not itself be presentable and which may contain complex programmatic
constructs such as iterations, selection and choice which arc cvaluated when the
source document is bound to specific values of variablcs. At step 2404, during
this transformation, presentation elements which can be edited are annotated
with a reference to their origin within the source and the permissible editing
operations or controls on this element. The result is a viewable document that
contains enough information buried within it that the original source can be
altcred sclectively. In particular the description of cditability on thc document

describes patterns of elements for which a particular editing operation is valid.

10

15

20

25

31

Annotations arc added to elements that mect this pattern, which can vary
according to the cditing capabilitics requircd. For cxample only images that
mecct particular criteria (larger than the given size for cxample) might be
cditablc or text in particular with classes (main body) might not be permitted to
have their fonts style edited, whereas other “free” text can be editable and with
have the annotation added. The pattcrns may be guarded to cnsurc that they
only apply to documents which they are intended, for example by incorporating
a reference within the pattern to the identities or types of documents in relation
to which they are useable.

[000129] At step 2406, when editing the document, the document instance
is displayed in an editing viewer which can interpret the editing annotations
within the presentation. At step 2408, when the uscr sclects a particular
element on the screen (for example by dragging a cursor over the element) such
as a text block, picturc or graphical clement, at stcp 2410 any corresponding
annotation is rccognized and, at step 2412, appropriate controls for performing
the edit are retrieved from the annotation and generated by the editing viewer
to display the appropriate set of controls. These controls can include, for
examplc, the current value of the various cditable aspccts together with the
available changes that can bec made. The current valucs can be obtained by the
cxtractor program attached to the cditing control, and the current valucs can be
any appropriate form for example a simple scalar such as a dimension or a font
or a colour, or a compound property such as an aspcct ratio which can be
calculatcd from other propertics or cven a variable binding itself having a
programmatic sense. Display of the current value and new possible values can
be in any appropriatc manncr for cxamplc a standard user-interface sclcctor and
can be declared in the annotation along with the other controls or can be
calculated from context as appropriate.

[000130] At stcp 2414, once the user, via the uscr-interface sclector, has

determined a new value for the property, this value is used as an argument to

10

15

20

25

32

the cffector program attached to the control, together with the reference origin
in the sourcc that gencrated the clement being cdited. The cffector program
then modifics the source, for examplc the template, at the indicator point to
change it such that on reprocessing with the same variable data the displaycd
property is changed according to the user selected edit.

[000131] The annotation or cditable portion definition can be included in a
source document such as a template or separately as appropriate and can be in a
form suitable to be recognised by the editing viewer or program to display the
rclevant controls. This allows editability to be expressed in a single definition
which can be varied between the documents to which it can be applied. The
declaration can be, for example, expressed in xml identifying the editable
portion (for example “circle”) the applicable controls (“control””) and the
location in the source (“path”) providing all relevant information to the editor.

For cxample the declaration may take the form, in this specific example:

<svg: circle r=243
cdit:controls= “c1 control
colour control”

edit:path= “page/svg[4]/circle>

It will be seen that editing can proceed by four distinct steps:

i) an edit definition declares what should be editable, what types of editing may
be performed on such items and how to alter such an item to make the cditing
changes chosen in the form of the editing effector program, which, given an
item to cdit and 'choicc' paramecters setting out the modifications, will producc

a new item to replace the original.

ii) this definition is used to arrange that for the cditablc items generated from
the template all will be annotated or “decorated™ with this cditability (usually in

the form of references to controls) and references to source locations where an

10

15

20

25

33

item came from in the template. As discusscd above, any process passcs both

these forms of reference through untouched, up to the final views.

iii) a minimal vicw-cditing program can proccss cascs of sclecting items with
such decorations (for example with mouse-over), arranging for appropriate
controls to be displaycd and supporting interaction - this could be any of
several mechanisms which will be well known to the skilled reader (java in a
dedicated editor, javascript in a browser, client-server and so forth.) Eventually

an cdit action (c.g. Apply) is sclected.

iv) once “Apply” is selected the edit effector program(s) identified above and
associatcd with the employed control(s) is then applicd to the source template
location with the newly chosen parameters and the result is a new 'item' (which
actually could be a possibly-null sequence of pieces) to replace the original in
the template. This program can be described in any appropriatc manner, but in
one approach, technically it is treated as a parametric function of the original
item, for cxample as XSLT (XML-processing) programs. The program can be
held anywhere (cven attached to the clement itsclf in the view), for examplc it
can be held in the server associatcd with the 'namc' of a control, all of which

arc derived from the original cdit definition.

[000132] As a result of this approach an improved cditing approach is
provided whereby the template can be automatically updated and where,
because the cditability declaration is defined in a single dcclaration, it can
casily be located. The cditor docs not nced to know anything about how the
presentation was constructed from the source such that a generic editor can be
built that can support the authoring and thc modification of complex variablc
data documents. Furthermore the editor can be robust to changes in technology

used for interpolation and layouts. The author or user can edit variable data

10

15

20

25

34

documents or bound instances of the document and have cffcct on the actual
templatcs and, by using different cditability mappings, document-class-specific
cditing can be supported within a single framework. This is advantageous in
instances where processors involve different authors and workflows on the
same underlying system.

[000133] The approach according to the fourth aspect can be implemented
in any appropriate manner, the annotation can be constructed in any suitable
form and the editor similarly can take any appropriate form.

[000134] Turning now to the fifth aspcct of the approach described hercin
this can be understood with reference to the example structure shown in Fig. 25
and the flow diagram shown in Fig. 26. Once again the fifth aspect can be
implemented independently of the other aspects described herein or in
conjunction with one or more of those aspects as appropriate to allow remote
document editing at a browscr without the need for special graphical support.
[000135] Referring firstly to Fig. 25, at a scrver location 2500 a
presentation image 2502 and a data structure 2504 identifying editable portions
of the presentation image are gencrated from a source document 2506. In
addition an instruction sct cxpressing how to present the editable portions and
how to display the options is storcd at 2508 for cxample in javascript or another
languagc rcadable at the client and which can be statically or dynamically
generated. The server 2500 communicates for example by a network 2510
which can be the internet with a client location 2512 comprising a remote
cditing location. Thc presentation image is displaycd at the clicnt at 2514. In
addition the data structure 2504 is received and interpreted by the client
browser according to the browscr rcadable instructions 2508. In particular the
data structure 2504 indicates the portions of the presentation image that are
editable, the available operations for editing and the subsequent editing steps

such as rcturning the edit information to the server as discussed below.

10

15

20

25

35

[000136] Fig. 26 in particular illustrates the steps performed at the scrver
acting as a remote source and clicnt acting as a remote cditing location. At stcp
2600 the scrver gencrates an image of the presentation for sending to the client
wcb browscr and at step 2602 a data structurc indicating the picces that can be
edited, their position within the image and the editing actions that can be
applicd to them is also generated at the server. This data structurc may, for
example, correspond to the editable portion definition or annotations described
above with reference to the fourth aspect. At step 2604 the presentation image
and data structurc arc scnt to the clicnt. In addition implementation
information in the form, for example, of javascript, indicating how to interpret
the data structure, is also sent.

[000137] At the clicnt, at step 2606 the image, data structurc and
implementation information are received and at step 2608 the document image
is displaycd by the clicnt web browser at step 2610, using the information in
the data structurc intcrpreted according to the script. Arcas of the imagc that
corresponds to editable document pieces are made sensitive to user interaction
such as moving the mouse over the arcas. Such arcas may be indicated by
highlighting them in some way, for cxample surrounding them with a colourcd
box or overlaying with a colour or texturc. This allows the uscr to identify and
select a specific picce of the document to edit. The area of a sclected piecc
may be highlighted using a different visual effect.

[000138] At step 2612, oncce a picce has been sclected, the data structure
may be uscd to identify what cditing operations may bc possiblc on the picce.
For example if the piece is text, the text content may be changed, or its style
(font family, font sizc, colour ctc) may be changed. The availablc cdit options
are displayed to the user again in a similar manner, according to one
embodiment, to the approach described in the fourth aspect above. At step
2614 the user cdit is reccived at the client and at step 2616 the cdit, that is, the

parameters provided by the user for the editing operation such as new content

10

15

20

25

36

or style is submitted by the client to the server using another data structurce
defined within the received data structure, including a reference to the picce or
picces to be cdited. At step 2618 the server receives from the client the cdit
information and at stcp 2620 applics the cdit to the document source. The
server then returns to step 2600, generating a new presentation, image and data
structurc and sending them to the client so that the results of the cdit can be
made visible.

[000139] It will be noted that during the interactions at the client, and in
particular steps 2612 to 2616, the identification of cditable portions and the
corresponding edit controls can be received in separate interactions. According
to this approach, the server first sends the image and data structure to the client,
the data structure simply indicating cditable portions. Once the clicnt has
identified the portions requiring editing it can request edit controls from the
server and display thesc once they are reccived. This introduces a lower
sccurity risk but incrcascs latency on the clicnts sidc.

[000140] The approach described above allows rich editing facilities to be
provided at a remote location and implemented on standard web browscrs
without requiring specific plug-ins to be installed to allow the level of graphical
intcraction provided according to the fifth aspect. Furthcrmorc the document
source can be kept sceurce on the server as well as the means of gencrating a
document presentation from the source.

[000141] The fifth aspect can be implemented in any appropriatc manncr,
thc image and data structurc cxpresscd in any appropriate form and interpreted
in any appropriate manner on the client using javascript or any other script or
language implcmentable on a web browser to intcrpret the data structure.
[000142] Turning now to the sixth aspect of the approach described herein,
once again this can be implemented independently of the other aspects or can
be implemented in conjunction with onc or more of thosc aspccts to providc a

method of creating customised marketing documents at a client location

10

15

20

25

37

(remotc cditing location) such that a source or tcmplatc document at a scrver
location (rcmotc source) can be similarly updated.

[000143] Referring to the flow diagram of Fig. 27, at step 2700, a
document is viewed from the server. This includes data (such as text and
images) to be used as variable document content and which may include fields
that arc predefined by the system. In addition the user can add ficlds to or
remove fields from the variable data and can edit the values contained in the
data field. The data may include, for example, information about a business
including its contact information, sales staff, products or services as well as
information about customers or potential customers or of course can be in any
other appropriate form. The user can also view an existing example document
for cxample, containing existing fixed content, stylc and layout and have it
converted at the server into a document template. This conversion can be
applicd in any appropriate manner and thc document may include cxamples of
cxisting marketing documents such as brochures, leaflcts, postcards or flyers.
As a result, at the user or client end a presentation of a template and
corresponding data are availablc.

[000144] At step 2702 the uscr can cdit the template to modify the content,
stylc or layout of the documents which the uscr can generatc, or to add
references to variable data ficlds into the template. For example this can
comprise remotely modifying the template to introduce a reference to extended
data in the template and to select a fixed part and make it modifiable to create a
customiscd document. In addition the user may sclect a template and some
subset of the existing data and generate a set of documents. Specific data will
be cmbedded into a gencrated document whenever there is a variablc data
reference in the template. The generated document will be styled and laid out
according to the definitions included in the template in any appropriate manner.
Where the template is modificd, then at step 2704 the template is modificd at
source for example adopting the approach as described in the fourth and fifth

10

15

20

25

38

aspect above or in any other appropriatc manner, and the updated template is
viewed for approval or otherwise at the client. At step 2706 the final
documents arc generated and can be deployed in various ways, for cxamplc by
being c-mailed directly to the recipient or being printed and delivered by direct
mail to the recipient or being placed on a website for the recipient to collect or
in any othcr appropriatc manner.

[000145] The additional data field and template modification can be
achieved in any appropriate manner, for example 'variablisation' - to either
crcatc a new ficld (usually textual) or sclect onc of the cxisting static ficlds
(from an example-generated template perhaps) and turn its value into a
dynamic one. To do this the approach is in the same manner as for changing the
static text or any other property - through cditability dcfinitions an editing
control/option is attached to that element in the template which would pass
through to the vicw. When the user selects this part in the vicw a suitable extra
control is displayed (for cxamplc through javascript or via clicnt-scrver
interaction) which gives the possibility of making the value bound
dynamically. If this is so choscn an edit cffector is then deployed which alters
the original template such that the reprocessed document-and-view will show

the result, the effecting of the cdit happening server-side.

[000146] It will be seen that according to this approach, at the client end no
additional softwarc or data management system is required, and that business
and customer data, templates and document gencration capabilities are
accessible from any web browser allowing simple creation of a personalised
markcting campaign by sclecting a document template, the products or services
to be featured in it and a subset of the customers to receive the personalised
documents. Of course any other implementation can also be contemplated for

the approach described above with reference to the sixth aspect.

10

15

20

25

39

[000147] It will be appreciated that the approach described according to the
sixth aspecct can be implemented in any appropriatc manncr for cxample using
xml and javascript or any othcr appropriatc language and implemented on any
wcb browscr, the suitable scrver end support.

[000148] The steps and approach described with respect to each of the first
to sixth aspects can be implemented in softwarc or hardwarc as appropriatc.
[000149] Referring to Fig. 28 a server designated generally 2800 can
include a processor component 2802 arranged to retrieve document
componcnts such as variable data and templatc documents, process such
documents, including instantiating data, act as document observer and template
updater as well as type check as appropriate. A data store 2804 can store, for
cxamplc, the documents and instances thereof as identificd by appropriatc
identifiers, templates and variable data, data structures and type check lists or
algorithms as appropriate. A display 2806, for examplc a visual display can
intcract with thc memory storc and data structurc to allow the user to view a
complex process architecture and where appropriate, select identifiers relating
to components of the architecturc to be implemented for document processing.
[000150] The scrver 2800 can further include an input port 2810 for
receiving remote client data for cxample relating to template modifications as
well as an output port 2812 for sending to the remotc location image
presentations, data structures, implementing scripts and so fourth.

[000131] The scrver 2800 interacts remotely for example via a network
2814 such as thc intcrnet, and using any standard communication protocol with
a client entity 2816 which can be, for example, a standard PC or any other
appropriate computcr apparatus including a processor 2818 which can, for
example, process template data and editing controls. The client computer 2816
further includes a data store 2820 for example template documents, variable
data documents and variable data. The clicnt computer 2816 further includes a

display 2822 for example for displaying image presentations and edit controls,

10

40

an input port 2824 for rccciving presentation images, corresponding data
structurcs and so forth and an output port 2826 for forwarding template cdits to
the server 2800. In both the clicnt and server computer, the various specific
modules such as processor modulcs, storage modulcs, display modulcs, input
and output modules may be of any appropriate form as will be well known to
the skilled person such that a detailed description is not required here.

[000152] It will be appreciated that any appropriate programming approach
can be adopted for implementing these steps described in the various aspects
abovce and that the steps can be implemented in any appropriatc manner and

order as appropriate.

10

15

20

25

41

CLAIMS
L. A mecthod of constructing an cditablec machinc-rcadable document
comprising proccssing a machine-rcadable template document and a machinc-
rcadable document defining an cditable portion of the tcmplate document to

construct a machine-readable template document including an identifiable

editable portion.

2. A method as claimed in claim 1 in which the editable portion definition
document includes cditable portion location information and cditable portion

edit control information.

3. A mcthod as claimed in claim 2 further comprising creating a user
viewable document from the constructed machine-readable document,
identifying thc cditable portion in the user viewable document and accepting
cdits to the cditable portion according to the corresponding edit control

information.

4. A mecthod as claimed in claim 3 further comprising cditing the template

document according to the edit control information.

5. A method as claimed in claim 3 in which the editable portion is

identificd by highlighting the portion with a cursor.

6. A method as claimed in claim 3 in which the edit control information is
displaycd in conjunction with the current control values for the cditablc

portion.

7. A mecthod as claimed in claim 2 in which the cditable portion location

information includes the template source location.

10

15

20

25

30

42

8. A method of constructing an cditablec machinc-readablc document
templatc comprising storing a templatc machinc-rcadable document and a

document definition defining an cditable portion of the template document.

9. A mcthod as claimed in claim 8 further comprising including cdit
control information for the editable portion in the editable portion definition

document.

10. A computer readable medium containing instructions arranged to

operate a processor to implement the method of claim 1.

11. An apparatus for constructing an editable machine-readable document
comprising a processor configured to opcrate under instructions contained in a

computer rcadable medium to implement the method of claim 1.

12. An apparatus for constructing an cditable machine-readablc document
comprising a proccssor for processing a machinc-readable template document
and a machinc-rcadablc document defining an editablc portion of the templatc
document to construct a machinc-recadablc template document including the

identifiable editable portion.

4¢3

Application No: GB0621449.8 Examiner: Dr Russell Maurice
Claims searched: I-12 Date of search: 26 February 2007

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:
Category |Relevant | Identity of document and passage or figure of particular relevance
(o claims

X 1.8 & 12| US 2005/0183006 Al
at least | (RIVERS MOORE) scc cg paragraphs 8-9, 106-108 144 & 145

X 1.8 & 12| US2002/0143818 Al
at least | (HEWLETT-PACKARD) see eg paragraphs 11 -16

A - US 2006/0046096 Al
(ORACLE) sce cg the Abstract

Categories:
X Document indicating lack of novelty or inventive A Document indicating technological background and/or state
step of the art.
Y Document indicating lack of inventive step if P Document published on or after the declared priority date but
combined with one or more other documents of before the filing date of this invention.
same category.
& Member of the same patent family E Patent document published on or after, but with priority date
carlier than, the filing date of this application.
Ficld of Scarch:
. e . e . . . X .
Scarch of GB. EP. WO & US patent documents classified in the following areas of the UKC™ -
| G4H |

Worldwide scarch of patent documents classificd in the following areas of the IPC

| GO6F]

The following online and other databases have been used in the preparation of this search report

| WPL. EPODOC

- dti apnservice |

	ABSTRACT
	DRAWINGS
	DESCRIPTION
	CLAIMS
	SEARCH_REPORT

