
US 2006O1233 12A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0123312 A1

Forhan et al. (43) Pub. Date: Jun. 8, 2006

(54) METHOD AND SYSTEM FOR INCREASING Publication Classification
PARALLELISM OF DISK ACCESSES WHEN
RESTORING DATAN ADISKARRAY (51) Int. Cl.
SYSTEM H03M, 3/00 (2006.01)

(52) U.S. Cl. .. 714/758
(75) Inventors: Carl Edward Forhan, Rochester, MN

(US); Robert Edward Galbraith,
Rochester, MN (US); Adrian Cuenin (57) ABSTRACT
Gerhard, Rochester, MN (US)

Correspondence Address: In a disk array environment such as a RAID-6 environment,
WOOD, HERRON & EVANS, L.L.P. (IBM) the overall performance overhead associated with exposed
27OO CAREW TOWER mode operations such as resynchronization, rebuild and
441 VINE STREET exposed mode read operations is reduced through increased
CINCINNATI, OH 45202 (US) parallelism. By selecting only subsets of the possible disks

required to solve a parity stripe equation for a particular
(73) Assignee: INTERNATIONAL BUSINESS parity stripe, accesses to one or more disks in a disk array

MACHINES CORPORATION, may be omitted, thus freeing the omitted disks to perform
ARMONK, NY other disk accesses. In addition, disk accesses associated

with different parity stripes may be overlapped such that the
(21) Appl. No.: 10/994,098 retrieval of data necessary for restoring data for one parity

stripe is performed concurrently with the storage of restored
(22) Filed: Nov. 19, 2004 data for another parity stripe.

10.
Ya

MEMORY 14

SOFTWARE APPLICATIONS

OPERATING SYSTEM 30

22

PROCESSOR

DISPLAY
MASS STORAGE CONTROLLER

DISKARRAY 34

US 2006/O123312 A1

AVTdISICI

RIGHTTORIJLNOO SHOVNOJLS SSVW

I "?INH

09

WEIJLSÅS ONIJLVYHEIJO, , SNOIJLVOITc{dV ETHVAALEIOSYHOSSEIOOHd
Patent Application Publication Jun. 8, 2006 Sheet 1 of 3

Z * OIH

8 IZ9 IZþIZZIZ SHATRICI• • • ! SEIATRICISOEHATRICISOEHATRICI XISICIXISICIX{SICIXISICI 0 IZST18I GIOVYHOLS

US 2006/O123312 A1

*0%|YIATTORILNODOHOIW

WEILSÅS NIVVN

80% Sng WGILSÅS

Z0 Z`IGHTTORIJLNO O CITVRI

Patent Application Publication Jun. 8, 2006 Sheet 2 of 3

Patent Application Publication Jun. 8, 2006 Sheet 3 of 3 US 2006/O123312 A1

302 A FIRST SET OF READ OPERATIONS ON A FIRST PARITY STRIPE IS PERFORMED
WHILE A SECOND SET OF READ OPERATIONS ON A SECOND PARITY STRIPE
IS QUEUED.

304
PPARITY DATA FOR THE FIRST PARITY STRIPE IS CALCULATED AND
WRITTEN TO THE P DESK WHILE THE SECOND SET OF READ OPERATIONS
IS PERFORMED

306
PPARITY DATA FOR THE SECOND PARITY STRIPE IS CALCULATED AND
WRITTEN TO THE P DISK WHILEATHIRD SET OF READ OPERATIONS OF THE
FIRST PARITY STRIPE IS PERFORMED

Q PARITY DATA FOR THE FIRST PARITY STRIPE IS CALCULATED AND 308
WRITTEN TO THE Q DISK WHILE A FOURTH SET OF READ OPERATIONS OF THE
SECOND PARTY STRIPE IS PERFORMED

310

Q PARITY DATA FOR THE SECOND PARITY STRIPE IS CALCULATED
AND WRITTEN TO THE Q DISK

FIG. 3

400 RANDOMILY SELECT SUBSET OF N-2 DISKS FROM AMONG N- DISKS STORING
DATA FOR FIRST PARITY STRIPE, ISSUE READ REQUESTS TO SELECTED SUBSET
OF DISKS, AND SOLVE EQUATION USING RETRIEVED DATA

402 RANDOMILY SELECT DIFFERENT SUBSET OF N-2 DISKS FROM AMONG N-1 DISKS
STORING DATA FORSECOND PARITY STRIPE, ISSUE READ REQUESTS TO
SELECTED SUBSET OF DISKS, AND SOLVE EQUATION USING RETRIEVED DATA

FG. 4

US 2006/01.233 12 A1

METHOD AND SYSTEM FOR INCREASING
PARALLELISM OF DISK ACCESSES WHEN

RESTORING DATA IN ADISK ARRAY SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is related to the following U.S.
patent applications all filed on even date herewith by Carl
Edward Forhan, Robert Edward Galbraith and Adrian Cue
nin Gerhard: Ser. No. entitled “METHOD AND
SYSTEM FOR ENHANCED ERRORIDENTIFICATION
WITH DISK ARRAY PARITY CHECKING, Ser. No.

entitled “RAID ENVIRONMENT INCORPORAT
ING HARDWARE-BASED FINITE FIELD MULTIPLIER
FOR ON-THE-FLY XOR, Ser. No. entitled
METHOD AND SYSTEM FOR IMPROVED BUFFER
UTILIZATION FOR DISK ARRAY PARITY UPDATES.”
and Ser. No. entitled “METHOD AND SYSTEM
FOR RECOVERING FROM ABNORMAL INTERRUP
TION OF A PARITY UPDATE OPERATION IN A DISK
ARRAY SYSTEM. Each of these applications is incorpo
rated by reference herein.

FIELD OF THE INVENTION

0002 The present invention relates to data protection
methods for data storage and, more particularly, to systems
implementing RAID-6 and similar data protection and
recovery strategies.

BACKGROUND OF THE INVENTION

0003 RAID stands for Redundant Array of Independent
Disks and is a taxonomy of redundant disk array storage
schemes which define a number of ways of configuring and
using multiple computer disk drives to achieve varying
levels of availability, performance, capacity and cost while
appearing to the Software application as a single large
capacity drive. Typical RAID storage Subsystems can be
implemented in either hardware or software. In the former
instance, the RAID algorithms are packaged into separate
controller hardware coupled to the computer input/output
(“I/O”) bus and, although adding little or no central pro
cessing unit (“CPU) overhead, the additional hardware
required nevertheless adds to the overall system cost. On the
other hand, software implementations incorporate the RAID
algorithms into system software executed by the main
processor together with the operating system, obviating the
need and cost of a separate hardware controller, yet adding
to CPU overhead.

0004 Various RAID levels have been defined from
RAID-0 to RAID-6, each offering tradeoffs in the previously
mentioned factors. RAID-0 is nothing more than traditional
striping in which user data is broken into chunks which are
stored onto the stripe set by being spread across multiple
disks with no data redundancy. RAID-1 is equivalent to
conventional 'shadowing or "mirroring techniques and is
the simplest method of achieving data redundancy by hav
ing, for each disk, another containing the same data and
writing to both disks simultaneously. The combination of
RAID-0 and RAID1 is typically referred to as RAID-0+1
and is implemented by Striping shadow sets resulting in the
relative performance advantages of both RAID levels.
RAID-2, which utilizes Hamming Code written across the
members of the RAID set is not now considered to be of
significant importance.

Jun. 8, 2006

0005. In RAID-3, data is striped across a set of disks with
the addition of a separate dedicated drive to hold parity data.
The parity data is calculated dynamically as user data is
written to the other disks to allow reconstruction of the
original user data if a drive fails without requiring replica
tion of the data bit-for-bit. Error detection and correction
codes (“ECC) such as Exclusive-OR (XOR) or more
Sophisticated Reed-Solomon techniques may be used to
perform the necessary mathematical calculations on the
binary data to produce the parity information in RAID-3 and
higher level implementations. While parity allows the recon
struction of the user data in the event of a drive failure, the
speed of Such reconstruction is a function of system work
load and the particular algorithm used.

0006. As with RAID-3, the RAID scheme known as
RAID-4 consists of N data disks and one parity disk wherein
the parity disk sectors contain the bitwise XOR of the
corresponding sectors on each data disk. This allows the
contents of the data in the RAID set to survive the failure of
any one disk. RAID-5 is a modification of RAID-4 which
stripes the parity across all of the disks in the array in order
to statistically equalize the load on the disks.

0007. The designation of RAID-6 has been used collo
quially to describe RAID schemes that can withstand the
failure of two disks without losing data through the use of
two parity drives (commonly referred to as the “P” and “Q'
drives) for redundancy and sophisticated ECC techniques.
Although the term “parity” is used to describe the codes used
in RAID-6 technologies, the codes are more correctly a type
of ECC code rather than simply a parity code. Data and ECC
information are striped across all members of the RAID set
and write performance is generally lower than with RAID-5
because three separate drives must each be accessed twice
during writes. However, the principles of RAID-6 may be
used to recover a number of drive failures depending on the
number of “parity” drives that are used.
0008 Some RAID-6 implementations are based upon
Reed-Solomon algorithms, which depend on Galois Field
arithmetic. A complete explanation of Galois Field arith
metic and the mathematics behind RAID-6 can be found in
a variety of sources and, therefore, only a brief overview is
provided below as background. The Galois Field arithmetic
used in these RAID-6 implementations takes place in
GF(2). This is the field of polynomials with coefficients in
GF(2), modulo some generator polynomial of degree N. All
the polynomials in this field are of degree N-1 or less, and
their coefficients are all either 0 or 1, which means they can
be represented by a vector of N coefficients all in {0,1}; that
is, these polynomials “look” just like N-bit binary numbers.
Polynomial addition in this Field is simply N-bit XOR,
which has the property that every element of the Field is its
own additive inverse, so addition and Subtraction are the
same operation. Polynomial multiplication in this Field,
however, can be performed with table lookup techniques
based upon logarithms or with simple combinational logic.

0009. Each RAID-6 check code (i.e., P and Q) expresses
an invariant relationship, or equation, between the data on
the data disks of the RAID-6 array and the data on one or
both of the check disks. If there are C check codes and a set
of F disks fail, Fis C, the failed disks can be reconstructed by
selecting F of these equations and Solving them simulta
neously in GF(2) for the F missing variables. In the

US 2006/01.233 12 A1

RAID-6 systems implemented or contemplated today there
are only 2 check disks—check disk P. and check disk Q. It
is worth noting that the check disks Pand Q change for each
stripe of data and parity across the array Such that parity data
is not written to a dedicated disk but is, instead, striped
across all the disks.

00.10 Even though RAID-6 has been implemented with
varying degrees of Success in different ways in different
systems, there remains an ongoing need to improve the
efficiency and costs of providing RAID-6 protection for data
storage. The mathematics of implementing RAID-6 involve
complicated calculations that are also repetitive. Accord
ingly, efforts to improve the simplicity of circuitry, the cost
of circuitry and the efficiency of the circuitry needed to
implement RAID-6 remains a priority today and in the
future.

0011 For example, one limitation of existing RAID-6
designs relates to the performance overhead associated with
performing resync (where parity data for a parity Stripe is
resynchronized with the current data), rebuild (where data
from a faulty or missing drive is regenerated based upon the
parity data) or other exposed mode operations such as
exposed mode reads. A resync operation, for example,
requires that, for each parity stripe defined in the disk array,
the data must be read from all of the disks and used to solve
a parity stripe equation by multiplying the data from each
disk by an appropriate value and XORing the multiplied
data like a sum of products to construct a parity value for the
parity stripe. In addition, the parity value calculated as the
result of Solving the parity stripe equation must be written to
the appropriate disk. In addition, since RAID-6 designs rely
on two parity values for each parity stripe, the aforemen
tioned process typically must be performed twice for each
parity stripe to generate and write both parity values to the
disk array.

0012 Likewise, to rebuild an exposed disk, data for each
parity stripe must be read from all of the other disks and used
to solve a parity stripe equation in a similar multiply-and
XOR manner as is used for resynchronization. The result of
Solving the parity stripe equation is the data that is written
back to the exposed disk. In addition, for other exposed
mode operations such as exposed mode read operations, a
similar process to a rebuild operation must be performed,
albeit without storing back the result of the parity stripe
equation to the disk array.

0013 In each of these exposed mode operations, how
ever, the requirements of reading data from certain disks and
writing data back to certain disks results in Substantial
performance overhead, specifically with respect to the
sequential nature of the various disk access operations on the
disk array. A substantial need therefore exists for a manner
of improving the performance of a disk array system such as
a RAID-6 system to improve performance in connection
with resynchronization, rebuild and other exposed mode
operations.

SUMMARY OF THE INVENTION

0014. The invention addresses these and other problems
associated with the prior art through a number of techniques
that individual or collectively increase parallelism in terms
of accessing the disks in a disk array, and thereby reduce the

Jun. 8, 2006

performance overhead associated with exposed mode opera
tions such as resynchronization, rebuild and exposed mode
read operations.

0015. In one aspect, for example, accesses to disks in a
disk array for the purpose of solving a parity stripe equation
(e.g., in connection with a rebuild, exposed mode read or
other exposed mode operation) may be optimized by select
ing only a Subset of the possible disks required to solve the
parity stripe equation, and thus omitting accesses to one or
more disks. By doing so, utilization of the disks in a disk
array typically may be better balanced when a number of
Such operations are performed over a particular time period,
so long as different subsets of disks are selected for different
operations.

0016 While other disk array environments may be used,
when implemented in a RAID-6 environment, where the
data in a parity stripe equation is related via two parity stripe
equations, each Subset of data may comprise N-2 disks
among the N disks in a disk array. Moreover, while other
manners of selecting Subsets of disks may be used, in one
embodiment a random selection mechanism may be used
Such that certain disks are randomly omitted.

0017 Consistent with this aspect of the invention, a disk
array of N disks may be accessed such that, for each of a
plurality of parity stripes defined in the disk array, a different
subset of disks among the N disks to be used to solve a parity
stripe equation for such parity stripe is selected. Retrieval of
data associated with each parity stripe may then be initiated
only from the selected subset of disks for that parity stripe,
with such retrieved data used to solve the parity stripe
equation for that parity Stripe. In addition, each selected
subset of disks includes at most N-2 disks.

0018. In another aspect, parallelism may be increased in
a disk array System by overlapping disk accesses associated
with different parity stripes when restoring data in a disk
array (e.g., to resynchronize parity and data, or to rebuild
data for an exposed disk). Specifically, consistent with this
aspect of the invention, restoring data to a disk array may
include the retrieval of a first set of data associated with a
first parity Stripe, coupled with concurrent operations of
writing to the disk array a result value generated by pro
cessing the first set of data, and reading from the disk array
a second set of data associated with a second parity stripe.
By overlapping read and write accesses associated with
different parity Stripes, data associated with multiple parity
stripes may be restored with less overhead than if the
accesses and operations associated with restoring data to
different parity stripes were performed sequentially.

BRIEF DESCRIPTION OF THE DRAWINGS

0019 FIG. 1 is a block diagram of an exemplary com
puter system that can implement a RAID-6 storage control
ler in accordance with the principles of the present inven
tion.

0020 FIG. 2 is a block diagram illustrating the principal
components of a RAID controller of FIG. 1.

0021 FIG. 3 depicts a flowchart for performing restora
tion operations in an overlapping manner to improve utili
Zation of the disk array in a RAID-6 system in accordance
with the principles of the present invention.

US 2006/01.233 12 A1

0022 FIG. 4 depicts a flowchart for performing exposed
mode read operations with random selection of which disks
to access to improve utilization of the disk array in a RAID-6
system in accordance with the principles of the present
invention.

DETAILED DESCRIPTION

0023 The embodiments discussed hereinafter utilize one
or both of two techniques to increase parallelism and oth
erwise reduce the overhead associated with restoring data in
a disk array environment such as a RAID-6 environment.
One technique described hereinafter selects different subsets
of disks to access in connection with an operation Such as a
rebuild or exposed read operation. Another technique
described hereinafter overlaps read and write accesses asso
ciated with restoration operations performed with respect to
multiple parity stripes.

0024 Presented hereinafter are a number of embodi
ments of a disk array environment implementing the afore
mentioned techniques. However, prior to discussing Such
embodiments, a brief background on RAID-6 is provided,
followed by a description of an exemplary hardware envi
ronment within which the aforementioned techniques may
be implemented.

General RAID-6. Background

0025. The nomenclature used herein to describe RAID-6
storage systems conforms to the most readily accepted
standards for this field. In particular, there are N drives of
which any two are considered to be the parity drives, Pand
Q. Using Galois Field arithmetic, two independent equations
can be written:

where the "+” operator used herein represents an Exclusive
OR (XOR) operation.

0026. In these equations, C. is an element of the finite
field and d is data from the x" disk. While the P and Q disk
can be any of the N disks for any particular stripe of data,
they are often noted as de and do. When data to one of the
disks (i.e., d) is updated, the above two equations resolve
tO:

A=(old d)+(new d) (3)
(new dip)=(old d)+(C+C)/(op+C))A (4)

(new do)=(old do)+(o'+C)/(C+C))A (5)
0027. In each of the last two equations the term to the
right of the addition sign is a constant multiplied by the
change in the data (i.e., A). These terms in equations (4) and
(5) are often denoted as KA and KA, respectively.

0028. In the case of one missing, or unavailable drive,
simple XORing can be used to recover the drive's data. For
example, if d fails then d can be restored by

d=do-d2+d+ . . . (6)

0029. In the case of two drives failing, or being
“exposed, the above equations can be used to restore a
drive's data. For example, given drives 0 through X and
assuming drives A and B have failed, the data for either drive

Jun. 8, 2006

can be restored from the remaining drives. If for example,
drive A was to be restored, the above equations reduce to:

Exemplary Hardware Environment
0030. With this general background of RAID-6 in mind,
attention can be turned to the drawings, wherein like num
bers denote like parts throughout the several views. FIG. 1
illustrates an exemplary computer system in which a RAID
6, or other disk array, may be implemented. For the purposes
of the invention, apparatus 10 may represent practically any
type of computer, computer system or other programmable
electronic device, including a client computer, a server
computer, a portable computer, a handheld computer, an
embedded controller, etc. Moreover, apparatus 10 may be
implemented using one or more networked computers, e.g.,
in a cluster or other distributed computing system. Appara
tus 10 will hereinafter also be referred to as a “computer,
although it should be appreciated the term "apparatus' may
also include other Suitable programmable electronic devices
consistent with the invention.

0031 Computer 10 typically includes at least one pro
cessor 12 coupled to a memory 14. Processor 12 may
represent one or more processors (e.g., microprocessors),
and memory 14 may represent the random access memory
(RAM) devices comprising the main storage of computer
10, as well as any supplemental levels of memory, e.g.,
cache memories, non-volatile or backup memories (e.g.,
programmable or flash memories), read-only memories, etc.
In addition, memory 14 may be considered to include
memory storage physically located elsewhere in computer
10, e.g., any cache memory in a processor 12, as well as any
storage capacity used as a virtual memory, e.g., as stored on
the disk array 34 or on another computer coupled to com
puter 10 via network 18 (e.g., a client computer 20).
0032 Computer 10 also typically receives a number of
inputs and outputs for communicating information exter
nally. For interface with a user or operator, computer 10
typically includes one or more user input devices 22 (e.g., a
keyboard, a mouse, a trackball, a joystick, a touchpad,
and/or a microphone, among others) and a display 24 (e.g.,
a CRT monitor, an LCD display panel, and/or a speaker,
among others). Otherwise, user input may be received via
another computer (e.g., a computer 20) interfaced with
computer 10 over network 18, or via a dedicated workstation
interface or the like. For additional storage, computer 10
may also include one or more mass storage devices accessed
via a storage controller, or adapter, 16, e.g., removable disk
drive, a hard disk drive, a direct access storage device
(DASD), an optical drive (e.g., a CD drive, a DVD drive,
etc.), and/or a tape drive, among others. Furthermore, com
puter 10 may include an interface with one or more networks
18 (e.g., a LAN, a WAN, a wireless network, and/or the
Internet, among others) to permit the communication of
information with other computers coupled to the network. It
should be appreciated that computer 10 typically includes
Suitable analog and/or digital interfaces between processor
12 and each of components 14, 16, 18, 22 and 24 as is well
known in the art.

0033. In accordance with the principles of the present
invention, the mass storage controller 16 advantageously
implements RAID-6 Storage protection within an array of
disks 34.

US 2006/01.233 12 A1

0034 Computer 10 operates under the control of an
operating system 30, and executes or otherwise relies upon
various computer Software applications, components, pro
grams, objects, modules, data structures, etc. (e.g., Software
applications 32). Moreover, various applications, compo
nents, programs, objects, modules, etc. may also execute on
one or more processors in another computer coupled to
computer 10 via a network 18, e.g., in a distributed or
client-server computing environment, whereby the process
ing required to implement the functions of a computer
program may be allocated to multiple computers over a
network.

0035) In general, the routines executed to implement the
embodiments of the invention, whether implemented as part
of an operating system or a specific application, component,
program, object, module or sequence of instructions, or even
a subset thereof, will be referred to herein as “computer
program code.” or simply "program code.” Program code
typically comprises one or more instructions that are resi
dent at various times in various memory and storage devices
in a computer, and that, when read and executed by one or
more processors in a computer, cause that computer to
perform the steps necessary to execute steps or elements
embodying the various aspects of the invention. Moreover,
while the invention has and hereinafter will be described in
the context of fully functioning computers and computer
systems, those skilled in the art will appreciate that the
various embodiments of the invention are capable of being
distributed as a program product in a variety of forms, and
that the invention applies equally regardless of the particular
type of computer readable signal bearing media used to
actually carry out the distribution. Examples of computer
readable signal bearing media include but are not limited to
recordable type media Such as volatile and non-volatile
memory devices, floppy and other removable disks, hard
disk drives, magnetic tape, optical disks (e.g., CD-ROMs,
DVDs, etc.), among others, and transmission type media
Such as digital and analog communication links.
0036). In addition, various program code described here
inafter may be identified based upon the application within
which it is implemented in a specific embodiment of the
invention. However, it should be appreciated that any par
ticular program nomenclature that follows is used merely for
convenience, and thus the invention should not be limited to
use solely in any specific application identified and/or
implied by Such nomenclature. Furthermore, given the typi
cally endless number of manners in which computer pro
grams may be organized into routines, procedures, methods,
modules, objects, and the like, as well as the various
manners in which program functionality may be allocated
among various Software layers that are resident within a
typical computer (e.g., operating systems, libraries, API's,
applications, applets, etc.), it should be appreciated that the
invention is not limited to the specific organization and
allocation of program functionality described herein.
0037 FIG. 2 illustrates a block diagram of the control
Subsystem of a disk array system, e.g., a RAID-6 compatible
system. In particular, the mass storage controller 16 of FIG.
1 is shown in more detail to include a RAID controller 202
that is coupled through a system bus 208 with the processor
12 and through a storage bus 210 to various disk drives
212-218. As known to one of ordinary skill, these buses may
be proprietary in nature or conform to industry standards

Jun. 8, 2006

such as SCSI-1, SCSI-2, etc. The RAID controller includes
a microcontroller 204 that executes program code that
implements the RAID-6 algorithm for data protection, and
that is typically resident in memory located in the RAID
controller. In particular, data to be stored on the disks
212-218 is used to generate parity data and then broken apart
and striped across the disks 212-218. The disk drives 212
218 can be individual disk drives that are directly coupled to
the controller 202 through the bus 210 or may include their
own disk drive adapters that permit a string a individual disk
drives to be connected to the storage bus 210. In other
words, a disk drive 212 may be physically implemented as
4 or 8 Separate disk drives coupled to a single controller
connected to the bus 210. As data is exchanged between the
disk drives 212-218 and the RAID controller 202, in either
direction, buffers 206 are provided to assist in the data
transfers. The utilization of the buffers 206 can sometimes
produce a bottle neck in data transfers and the inclusion of
numerous buffers may increase cost, complexity and size of
the RAID controller 202. Thus, certain embodiments of the
present invention relate to provision and utilizing these
buffers 206 in an economical and efficient manner.

0038. It will be appreciated that the embodiment illus
trated in FIGS. 1 and 2 is merely exemplary in nature. For
example, it will be appreciated that the invention may be
applicable to disk array environments other than RAID-6
environments. It will also be appreciated that a disk array
environment consistent with the invention may utilize a
completely software-implemented control algorithm resi
dent in the main storage of the computer, or that some
functions handled via program code in a computer or
controller can be implemented in hardware logic circuits,
and vice versa. Therefore, the invention should not be
limited to the particular embodiments discussed herein.
Increasing Parallelism in RAID-6 Disk Accesses
0039. In a RAID-6 system, when performing a restora
tion operation Such as resyncing parity and data, rebuilding
a disk, or performing an exposed mode read, a number of I/O
operations on the different disks must be performed to read
the available data, and if appropriate, store restored data
back to the disk array. After reading the data for a particular
parity stripe, the appropriate calculations may be performed
to restore either the data on a disk or the parity information
in the RAID array. Embodiments of the present invention
include techniques for performing these operations in Such
a manner as to maximize the parallelism of the various I/O
operations and to better balance disk utilization.
0040. It has been found, for example, that improvements
in performance may be obtained by selectively omitting
accesses from disks in a disk array in connection with
various restoration operations. As mentioned previously,
RAID-6 is designed to handle two disk failures and, there
fore, equation (7) above may be solved using data from N-2
disks. If two disks have failed, then the data for a disk, from
equation (7), is recoverable using the remaining N-2 disks.
Even when only one disk has failed, data for that disk is
recoverable, in accordance with equation (7). Of note,
however, it should be appreciated that in Such a circum
stance, the data from one of the disks may be omitted when
Solving the equation.
0041. In RAID-5 implementations, any attempt to restore
parity or data for a given disk (e.g., for resyncing parity and

US 2006/01.233 12 A1

data, rebuilding the disk, or performing an exposed mode
read) requires that all other disks in the array be accessed.
Given, however, that RAID-6 implementations do not
require the data from all other disks to solve a parity stripe
equation, it has been found that a disk may not even need to
be accessed in connection with Solving Such an equation. As
a result, it may be desirable in embodiments consistent with
the invention to omit an access to one or more disks in
association with retrieving data used to solve a parity stripe
equation, and thereby reduce the overall utilization of such
disks.

0042. Furthermore, while one particular disk could be
omitted in all situations where a parity stripe equation needs
to be solved, it is typically desirable to select different
Subsets of disks to omit when solving a parity stripe equation
for different parity stripes, e.g., in connection with a resto
ration operation Such as a disk rebuild or a series of exposed
mode read operations. Therefore, instead of one disk con
sistently being unused during restoration operations, the
determination of which disk to not use during a given
restoration operation may be performed so as to better
balance utilization levels among all of the disks.

0.043 Various manners of selecting different subsets of
disks may be used consistent with the invention. In one
embodiment, random selection may be used. In other
embodiments, however, other load balancing-type algo
rithms may be used, e.g., round robin selection. It will be
appreciated that the selection of different Subsets does not
require that each subset be different from every other subset,
only that which disks are incorporated into the subsets used
in solving parity stripe equations changes from time to time
(e.g., for each parity stripe, or for Subsets of parity stripes)
such that the utilization of the disks in a disk array is better
balanced than were the same disk(s) omitted for every parity
stripe.

0044 Additionally, it has also been found that improve
ments in performance may be obtained by overlapping disk
accesses associated with multiple parity stripes in connec
tion with various restoration operations. For example, when
a parity stripe is resynchronized, the data drives are first read
and then the result of the parity calculations is written to the
parity drive. In conventional designs, during the time that
the data drives are being read, the parity drives remain idle.
During a rebuild, a similar underutilization of the disk(s)
being rebuilt occurs as well. Embodiments consistent with
the invention address this inefficiency by overlapping the
read and write operations associated with restoring data to
multiple parity stripes to reduce the idle time of the disks in
a given disk array. In addition to RAID-6 and similar
environments, overlapped disk accesses as described herein
may also be used in other disk array environments, e.g., in
RAID-5 environments.

0045. The flowchart of an exemplary method for accom
plishing a restore operation (e.g., a resync or rebuild opera
tion) is depicted in FIG. 3. In accordance with this method
accesses for two different parity resync operations are inter
leaved so that accesses to both the parity and the data disks
can occur in parallel and, therefore, reduce the overall idle
time of the disks and improve the time it takes to perform
rebuilds and resyncs. It will be appreciated that a rebuild
operation for two or more parity stripes proceeds in a similar
a.

Jun. 8, 2006

0046) In the flowchart of FIG.3, a set of data distributed
across the data disks in a parity stripe A is used to calculate
parity values P and Q for parity stripe A. Also, a set of data
distributed across the data discs in a parity stripe B is used
to calculate different parity values P and Q for parity stripe
B. In step 302, a first set of read operations directed to the
data disks, and specifically to the regions thereof located in
parity stripe A is performed to retrieve a set of data used to
calculate a corresponding parity value P for parity stripe A.
Concurrently, a second set of read operations are queued that
will retrieve a different set of data from the region allocated
to parity stripe B on each of the data disks, which is used to
calculate the corresponding parity value Pfor parity stripe B.
Once the first set of read operations is complete, the new
parity value P may be written to the P parity disk for parity
stripe A, in step 304, while the second set of read operations
are being executed by the other disks of the disk array. In
step 306, a third set of read operations is performed this
time to retrieve the data from parity stripe A a second time
to generate the parity value Q and, concurrently, the parity
value P for parity stripe B is written to the P parity disk.
Next, a fourth set of read operations is performed, in step
308, to read the set of data from parity stripe B, which is
used to generate the parity value Q for parity stripe B. While
these latter read operations are being performed the parity
value Q is written to the Q parity disk for parity stripe A.
Finally, in step 310, the parity value Q for parity stripe B is
written to the Q parity disk.

0047. By overlapping resync and rebuild operations in
accordance with this algorithm, the parity drives and the data
drives are more equally utilized which improves the perfor
mance of the resync and rebuild functions. One of ordinary
skill in the art having the benefit of the instant disclosure will
note that the aforementioned algorithm may be applied to
overlap operations between any number of parity stripes.

0048 FIG. 4 next illustrates an exemplary method for
accomplishing an exposed read operation, e.g., to retrieve
data from an exposed disk. In accordance with this method
accesses for two exposed read operations to two parity
stripes are illustrated, with one such access being performed
in step 400, and another access being performed in step 402.
In both operations, a different subset of N-2 disks is selected
randomly from among the N-1 disks containing data from
the parity stripe that can be used to solve the parity stripe
equation and generate the data for the exposed disk. As a
result, in each operation, one disk in the disk array will not
be accessed, leaving the disk free to perform other opera
tions (including, for example, handling overlapped accesses
such as those described above in connection with FIG. 3).
It will be appreciated that by randomly omitting different
disks from a series of operations will assist in better bal
ancing disk utilization across the disk array, and thus
improve overall system throughput. It will also be appreci
ated that rebuild operations may utilize such a technique in
a similar manner.

0049. Thus, embodiments of the present invention pro
vide a method and system, within a RAID-6 or similar disk
array environment, that interleaves different disk access
operations and/or selects different disks to be used while
performing restore operations to balance disk utilization and
decrease latency. Various modifications may be made to the
illustrated embodiments without departing from the spirit

US 2006/01.233 12 A1

and scope of the invention. Therefore, the invention lies in
the claims hereinafter appended.

What is claimed is:
1. A method of accessing a disk array comprising N disks,

the method comprising the steps of for each of a plurality
of parity stripes defined in the disk array:

selecting a different subset of disks among the N disks to
be used to solve a parity stripe equation for Such parity
stripe, wherein each Subset of disks includes at most
N-2 disks;

initiating retrieval of data associated with Such parity
stripe only from the selected subset of disks; and

Solving the parity stripe equation using the retrieved data.
2. The method of claim 1, wherein the step of selecting

comprises the step of randomly selecting the Subset of disks.
3. The method of claim 1, wherein the disk array is of the

type wherein the data in each parity stripe is related by
multiple parity stripe equations.

4. The method of claim 1, wherein the disk array com
prises a RAID-6 system.

5. The method of claim 1, wherein solving the parity
stripe equation comprises rebuilding a data value, the
method further comprising initiating storage of the data
value to one of the disks other than the subset of disks.

6. The method of claim 1, further comprising initiating
storage of a result of the parity Stripe equation for a first
parity stripe concurrently with initiating retrieval of data
associated with a second parity stripe.

7. A method of restoring data in a RAID-6 system of N
disks, the method comprising the steps of:

identifying a plurality of data values, each to be restored
to a respective one of the N disks, wherein each data
value is capable of being restored from data retrieved
from the other N-1 disks; and

for each of the plurality of data values selecting N-2 disks
from the respective other N-1 disks to be used to
calculate the data value; and

initiating retrieval of data from the respective selected
N-2 disks for each of the plurality of data values,
wherein the selection of N-2 disks for each of the
plurality of data values balances utilization of the N
disks during restoration of the data.

8. The method of claim 7, wherein the step of selecting
N-2 disks includes selecting the N-2 disks randomly.

9. A program product comprising:

program code configured upon execution to access a disk
array of the type comprising N disks by, for each of a
plurality of parity stripes defined in the disk array,
selecting a different subset of disks among the N disks
to be used to Solve a parity Stripe equation for Such
parity stripe, initiating retrieval of data associated with
such parity stripe only from the selected subset of disks,
and Solving the parity stripe equation using the
retrieved data, wherein each subset of disks includes at
most N-2 disks; and

a computer readable signal bearing medium bearing the
program code.

Jun. 8, 2006

10. An apparatus comprising:
an interface configured to couple to at least N disks in a

disk array; and
a disk array controller coupled to the interface, the disk

array controller configured to, for each of a plurality of
parity stripes defined in the disk array, select a different
subset of disks among the N disks to be used to solve
a parity stripe equation for Such parity stripe, initiate
retrieval of data associated with Such parity stripe only
from the selected subset of disks, and solve the parity
stripe equation using the retrieved data, wherein each
Subset of disks includes at most N-2 disks.

11. The apparatus of claim 10, wherein the disk array
controller comprises a RAID-6 controller.

12. The apparatus of claim 10, wherein the disk array
controller comprises program code configured to perform at
least one of selecting the different subset, initiating retrieval
of the data, and solving the parity stripe equation.

13. The apparatus of claim 10, further comprising a
plurality of disks coupled to the interface.

14. The apparatus of claim 10, wherein the disk array
controller is configured to select the different subset of disks
by randomly selecting the Subset of disks.

15. The apparatus of claim 10, wherein the disk array
controller is configured to solve the parity stripe equation by
rebuilding a data value, and to initiate storage of the data
value to one of the disks other than the subset of disks.

16. The apparatus of claim 10, wherein the disk array
controller is further configured to initiate storage of a result
of the parity stripe equation for a first parity stripe concur
rently with initiating retrieval of data associated with a
second parity stripe.

17. A method of restoring data in a disk array comprising
a plurality of disks, the method comprising the steps of:

reading from the disk array a first set of data associated
with a first parity stripe;

writing to the disk array a result value generated by
processing the first set of data; and

concurrently with writing the result value to the disk
array, reading from the disk array a second set of data
associated with a second parity stripe.

18. The method of claim 17, further comprising:
writing to the disk array a second result value generated

by processing the second set of data; and
concurrently with writing the second result value to the

disk array, reading from the disk array a third set of
data.

19. The method of claim 18, wherein the first and second
result values are generated by processing the first and second
sets of data using at least one parity stripe equation.

20. The method of claim 19, wherein the third set of data
is associated with the first parity stripe, the method further
comprising:

writing to the disk array a third result value generated by
processing the third set of data using a second parity
stripe equation.

21. The method of claim 20, further comprising:
concurrently with writing the third result value to the disk

array, reading from the disk array a fourth set of data
associated with the second parity Stripe; and

US 2006/01.233 12 A1

writing to the disk array a fourth result value generated by
processing the fourth set of data using the second parity
stripe equation.

22. The method of claim 19, wherein the first and second
result values each comprise a parity value, and wherein
writing the first and second result values are performed to
synchronize parity and data for the first and second parity
stripes.

23. The method of claim 19, wherein the first and second
result values each comprise a data value, and wherein
writing the first and second result values are performed to
rebuild data for a disk in the disk array.

24. The method of claim 18, wherein the third set of data
is associated with a third parity stripe.

25. The method of claim 17, wherein writing the result
value to the disk array comprises writing the result value to
a first disk in the disk array, and wherein reading the second
set of data from the disk array comprises reading the second
set of data from a subset of disks in the disk array that
excludes the first disk.

26. A program product comprising:
program code configured upon execution to restore data in

a disk array of the type comprising a plurality of disks
by reading from the disk array a first set of data
associated with a first parity Stripe, writing to the disk
array a result value generated by processing the first set
of data, and reading from the disk array a second set of
data associated with a second parity stripe concurrently
with writing the result value to the disk array; and

a computer readable signal bearing medium bearing the
program code.

27. An apparatus comprising:
an interface configured to couple to a plurality of disks in

a disk array; and
a disk array controller coupled to the interface, the disk

array controller configured to restore data in the disk
array by reading from the disk array a first set of data
associated with a first parity Stripe, writing to the disk
array a result value generated by processing the first set
of data, and reading from the disk array a second set of
data associated with a second parity stripe concurrently
with writing the result value to the disk array.

28. The apparatus of claim 27, wherein the disk array
controller comprises a RAID-6 controller.

29. The apparatus of claim 27, wherein the disk array
controller comprises program code configured to perform at

Jun. 8, 2006

least one of selecting the different subset, initiating retrieval
of the data, and solving the parity stripe equation.

30. The apparatus of claim 27, further comprising a
plurality of disks coupled to the interface.

31. The apparatus of claim 27, wherein the disk array
controller is further configured to write to the disk array a
second result value generated by processing the second set
of data, and read from the disk array a third set of data
concurrently with writing the second result value to the disk
array.

32. The apparatus of claim 31, wherein the disk array
controller is configured to generate the first and second
result values by processing the first and second sets of data
using at least one parity stripe equation.

33. The apparatus of claim 32, wherein the third set of
data is associated with the first parity stripe, and wherein the
disk array controller is further configured to write to the disk
array a third result value generated by processing the third
set of data using a second parity stripe equation.

34. The apparatus of claim 33, wherein the disk array
controller is further configured to read from the disk array a
fourth set of data associated with the second parity stripe
concurrently with writing the third result value to the disk
array, and to write to the disk array a fourth result value
generated by processing the fourth set of data using the
second parity stripe equation.

35. The apparatus of claim 32, wherein the first and
second result values each comprise a parity value, and
wherein the disk array controller is configured to write the
first and second result values to synchronize parity and data
for the first and second parity stripes.

36. The apparatus of claim 32, wherein the first and
second result values each comprise a data value, and
wherein the disk array controller is configured to write the
first and second result values to rebuild data for a disk in the
disk array.

37. The apparatus of claim 31, wherein the third set of
data is associated with a third parity stripe.

38. The apparatus of claim 27, wherein the disk array
controller is configured to write the result value to the disk
array by writing the result value to a first disk in the disk
array, and wherein the disk array controller is configured to
read the second set of data from the disk array by reading the
second set of data from a subset of disks in the disk array that
excludes the first disk.

