»UK Patent .,GB

2972193

(13)B

(45)Date of B Publication 28.12.2022

(54) Title of the Invention: 1 Nreat detection system

(51) INT CL: GO6F 21/56 (2013.01) GO6F 21/52 (2013.01) GO6F 21/55 (2013.01) GO6F 21/57 (2013.01)
(21) Application No: 1804396.8 (72) Inventor(s):
Mikko Suominen
(22) Date of Filing: 20.03.2018 Dmitriy Komashinskiy
Fredrik Kock
(43) Date of A Publication 25.09.2019

(56) Documents Cited:
US 20170161499 A1
US 20140366140 A1

US 20160300065 A1

(58) Field of Search:
As for published application 2572155 Aviz:
INT CL GO6F
Other: EPODOC, WPI, INSPEC, XPi3E, Patent Fulltext
updated as appropriate

Additional Fields
Other: None

(73) Proprietor(s):
WithSecure Corporation
Tammasaarenkatu 7, 00180 Helsinki, Finland

(74) Agent and/or Address for Service:
Berggren Oy
P.0.BOX 16, Eteldinen Rautatiekatu 10A,
00101 Helsinki, Finland

g 6G1¢lS¢ 89

1/3

1 Client computer(s) 23 DB {171 18"
12
o 2 Server
13 1 156

2/3

200 Monitor installation and operation of multiple different
versions of same application in computer system

N

201 Analyse evolutionary changes between behaviours of
different versions of same application

Vv

202 Detect and monitor new version of the same application in
the computer system

y

203 Monitor behaviour of computer system to detect any
procedures not matching expected behaviours

\

204 Identify application as malicious/suspicious upon detecting
procedure not matching the expected behaviours of application

Figure 2

No

Yes

S$305

Figure 3

10

15

20

25

30

35

THREAT DETECTION SYSTEM

Field of the Invention

The present invention relates to detecting a threat against a computer system.

Background

The term ‘malware _is short for malicious software and is used to refer to any software
designed to infiltrate or damage a computer system without the owner's informed
consent. Malware can include viruses, worms, Trojan horses, rootkits, adware, spyware
and any other malicious and unwanted software. Many computer devices and computer
systems, such as desktop personal computers (PCs), laptops, personal data assistants

(PDAs) and mohile phones can be at risk from malware.

Advanced attacks targeting organizations have become mainstream and cover
commercial, governmental and private organizations. The factions performing these kind
of attacks have tremendous resources and may use highly advanced methods to breach
their targets. One example of such advanced methods is a so called supply chain attack
where attackers breach an organization not by directly attacking the actual target but by
compromising the products of 3™ party software developers which are used by the target
organization. Once the attackers have gained sufficient access to the software
developers network, they may modify the software at some pre-release stage to suit
their needs. As the software developer releases the compromised version of the

software, the attackers gain access to any organization using that software.

In order to avoid false alarms and improve performance, security applications typically
consider software coming from known vendors as clean by default when they are signed
with a normal code signing certificate for the vendor. Organizations also many times
implicitly trust their selected software vendors and as a result of this the software may
be widely distributed within the organization without vetting the software more closely.
Thus, the software that has been modified to include malicious code, for example during
the development process of it, is unlikely to get detected as malicious by a security

software or other mechanisms.

10

15

20

25

30

35

There is a need for methods and systems that alleviate the foregoing problems and
enable detecting malicious modifications in software applications before these

applications cause harm to computer systems.

Summary

Various aspects of examples of the invention are set out in the claims.

According to an aspect of the invention, there is provided a method as specified in claim
1.

According to an aspect of the invention, there is provided a computer system as specified
in claim 15.

According to an aspect of the invention there is provided computer program comprising

computer readable code as specified in claim 29.

According to an aspect of the invention there is provided a non-transitory computer

storage medium as specified in claim 30.

E mbodiments of the invention are defined in the depended claims.

Brief Description of the Drawings

Figure 1 is a schematic diagram of a system;
Figure 2 is a flowchart of a malware protection method according to an embodiment; and
Figure 3 is a schematic diagram of a procedure according to exemplary embodiment of

the present invention.

Detailed Description

In order to provide improved detection of malware and threats, a system is proposed
which makes use of behaviour profiles generated for multiple different versions of the
same application in a computer system. For example malicious modifications done to
software before its release (i.e. any time during the development and build process) may
be detected by comparing behavioural data of multiple different versions of the same

software to deduce what changes in the behaviour are likely to be part of normal

10

15

20

25

30

35

evolutionary progress and which changes have been caused by abnormal, malicious or

suspicious modifications.

The proposed solution has many benefits, such as providing early detection and stopping
execution prior to malicious actions, and understanding the lineage of the threat in an
automated manner providing significant benefits to threat intelligence through providing

detailed information.

The proposed solution may be implemented with a system that analyses behavioural
data produced by executing multiple versions of the same software. When a new version
of the software is released, the behavioural data produced by itis compared against the
evolution in behaviour that has been seen in earlier versions of the same software. If the
changes in behaviour of the new version are different to those expected based on
analysis of the changes in data from earlier versions, then the new version may contain
anomalous changes and the system may generate an alert. Analysis results for each

new version can be stored in a database for future use.

The required behavioural data can be generated by executing the software on physical
machines during normal usage, on separate test machines for the sole purpose of
generating the required data or by any type of virtualization solution. The tool(s) used to
extract behavioural data may be any suitable tool such as an Endpoint Detection &
Response (EDR) product, a public tracing tool or a custom tool made specifically for the

purpose.

In an embodiment, the decision when to detect a version of a software as containing
malicious/suspicious changes may involve specific predetermined rules (e.g. a network
connection to a destination the software has previously not connected to), a machine
learning approach or any other decision making logic that uses the behavioural data as

input.

In an embodiment, the difference in version numbers may be used at leastas part of the
detection logic: with a small change between version numbers a small change in
behaviour is expected, a major change between version numbers means a greater

change in behaviour may be considered normal.

An example schematic diagram of a system according to the invention will be described

with reference to Figure 1. A clientcomputer 1 has installed thereon a security application

10

15

20

25

30

35

14 provided by a security service provider. The computer runs a number of further
applications, and the security application 14 monitors actions taken by those further
applications. The client computer 1 may connect to a server 2, and the security
application 14 sends results of the monitoring to the server 2 for analysis, or the analysis
may be performed at the client computer 1 by the security application. Data 17 relating
to applications or services may be stored in a database 23. Application behaviour
profiles/representations of behaviours 18 of applications/services may be constructed at
the client 1 by the security application 14, at the server 2, and/or at a second server 3
and be stored in a database 23. The client computer 1 and the servers 2 and 3 each
typically comprise a hard drive 12, 20, 30, a processor 13, 21, 31, and RAM 15, 22, 32.
The client computer 1 may connect to the servers 2 and 3 over the Internet, or any
suitable network. The servers 2 and 3 (if used) are operated by the security service

provider.

Figure 2 is a flowchart of a method of detecting malware according to an embodiment.

In 200, the security application analyses the computer system 1 to monitor installation

and operation of multiple differentversions of the same application in a computer system.

In 201, the security application analyses evolutionary changes between the behaviours
of the different versions of the same application. In an embodiment, the security
application may create and store representations of the behaviour of the applications on
the basis of the analysis. In an embodiment, the representations may be created based
on sub-components of the monitored applications. Each sub-component identifies one
or more procedures known to be performed by the applications. For each such
application, the security application may also maintain identification information for the
application such as filenames, hash data, certificates, etc. The security application may
further maintain a behaviour profile for each of the monitored applications. The behaviour
profile for an application identifies how the application implements one or more
procedures, for example how an SSL or other secure connection is established, how the
application edits registry entries, or any other operation such as file access, network
access or memory related operations. The profile identifies, for each procedure, a
characteristic action (which will typically be the action which is the result of the
procedure) and one or more expected actions. For example, in the case of an SSL
connection, the characteristic action may be the sending of an SSL encrypted message,
and the expected actions may include a call to a library which provides an SSL

implementation.

10

15

20

25

30

35

As a further example, the characteristic action may be the editing of a registry entry. The
API used to perform this action will generally be the same regardless of implementation,
but there is a detectable difference in the actions preceding the registry edit depending
on the programming language in which the code is written, and possibly on the compiler
used. The actions may be anything which is done by the application or other software or
hardware on the computer system as part of the procedure. The procedures may include

file, registry, memory, and/or network operations.

In 202, the security application detects and monitors a new version of the same

application in a computer system.

In 203, the security application monitors behavior of the computer system to detect one
or more procedures of the monitored new version of the same application that do not
match expected behaviors of the monitored application on the basis of the analysis. In
an embodiment, the security application monitors the behaviour (e.g. one or more
procedures) of the monitored application and compares the detected behaviour with the
representation of expected behaviour of the same application that has been stored in the

database.

In 204, upon detection of one or more procedures not matching the expected behaviors
of the monitored application, the monitored application is identified as malicious or

suspicious.

Figure 3 is a schematic diagram of a procedure according to exemplary embodiment of

the present invention.

In S301, installation and operation of multiple versions of the same application and
evolutionary changes between the behaviours of the versions are monitored and
analysed in a computer system. If, in S302, a new version of the same application is
detected, then S303 is entered. In $S303, the behaviour of the computer system is
monitored to detect any procedures of the monitored new version of the same application
that do not match expected behaviours of the monitored application. If, in S304, one or
more procedures not matching the expected behaviours of the monitored application is
detected, then S305 is entered where the monitored application is identified as malicious

or suspicious.

10

15

20

25

30

35

In an embodiment, the step of analyzing evolutionary changes of the behaviours may
comprise analyzing evolutionary changes of the behaviours of subsequent versions of

the same application.

In an embodiment, the representations of expected behaviours of the monitored
application are created and stored in a database on the basis of the analysis. The
behavior of the monitored application may thus be compared to the stored
representations of the expected behaviours to detect one or more procedures not

matching the expected behaviours of the monitored application.

In an embodiment, the behavioural data for the analysis may be generated by executing
multiple different versions of the same application on physical machines during normal

usage, on separate test machines or by any virtualization system.

In an embodiment, the detected procedures may include any one or more of:
establishment of a secure session, communication over a secure session, file operations,

registry operations, memory operations, network operations.

In an embodiment, the step of identifying the monitored application as malicious or
suspicious may be based on at least one of: fulfiling predetermined rules, machine

learning approach used, a decision making logic using the behavioural data as input.

In an embodiment, the step of identifying the monitored application as malicious or
suspicious may be based on the detected difference between the version numbers of
the different versions of the same application. For example, the expected amount of

change in behavior may be related to the amount of change in version numbers.

In an embodiment, the step of identifying the monitored application as malicious or
suspicious may further comprise first determining which already analysed version of the
same application is most similar with the new version of the same application by
comparing the codes of the different versions of the same application with the code of
the new version of the same application. Then a version delta value between the most
similar version and the new version is determined based on the comparison. Finally, the
monitored application may be identified as suspicious or malicious if the version delta
value is subtle and the behavioural difference is substantial. Further, the monitored
application may be identified as unknown if the version delta value is substantial and the

behavioural difference is substantial. The monitored application may be identified as

10

15

20

25

30

35

normal if both the version delta value and the behavioural difference is subtle or the

version delta value is substantial and the behavioural difference is subtle.

In an embodiment, the version delta value may be determined to be subtle when a
predetermined first threshold value is not exceeded and substantial when the
predetermined first threshold value is exceeded. In an embodiment, the behavioural
difference may be determined to be subtle when a predetermined second threshold value
is not exceeded and substantial when the predetermined second threshold value is

exceeded.

In an embodiment, a security application may provide a warning about the monitored
application being identified as malicious or suspicious. Installation and operation of the
different versions of the same application may be stored in the database and monitored
to get ‘a baseline _ of known expected behaviour of them. The security application may
create and store representations of the expected behaviours of the applications on the

basis of the monitoring.

In an embodiment, each procedure of the one or more procedures of the monitored
applications may be identified by a characteristic action and one or more expected
actions. The characteristic and/or expected actions may include one or more of: APIcalls
and/or API call parameters made by the running application, information made available
to plugins of the running application, actions relating to browser extensions, file access
operations performed by the running application, network operations performed by the
running application, encrypted communications sent by the running application, error
conditions relating to the running application. In an embodiment, the procedures may
include any one or more of: establishment of a secure session, communication over a
secure session, file operations, registry operations, memory operations, network

operations.

In an embodiment, upon identifying the monitored application as malicious or suspicious,
the application may be handled by one or more of; terminating a process of the
application, terminating the characteristic action or an action resulting from the
characteristic action, removing or otherwise making safe the application and performing
a further malware scan on the application. In an embodiment, upon identifying the
application as malicious or suspicious, the method further comprises at least one of:
sending from a client computer to a server details of the characteristic action and other

actions taken on the client computer; sending from the server to client computer an

10

15

20

25

30

35

indication as to whether or not the application is malicious or suspicious; sending from
the server to the client computer instructions for handling the application; prompting the
client computer to kill and/or remove the application; storing information indicating the
application. In an embodiment, an alert may be triggered when detecting any operations

on said application that do not match ‘the baseline .

The method steps according to the invention may be created on the ‘back end, i.e. by
a security service provider and provided to the security application at the client computer.
A set of characteristic actions relating to suitable procedures, performed by an
application, may be specified and the application then analysed to determine
characteristic and expected actions. The analysis may also include receiving behavioural
monitoring information from each of a plurality of client computers on which the
application has been running, and determining the characteristic and expected actions

from the aggregated results of the behavioural monitoring.

Alternatively, at least part of the method steps may be performed at the client computer.
The behaviour of the applications may be monitored during normal use of the computer.
In order to mitigate the risks of creating the profile at the client computer, the application
may be subject to intensive behavioural analysis techniques while the representation of

the expected behaviour of the application is being created.

As a further alternative, a behaviour profile may be created either at the client computer
or the server by examining the binary code of the application. The code is examined to
look for characteristic actions of interest, and to determine which expected actions would

be associated with those characteristic actions.

Prior to performing any of the above analyses, the application may be identified as a
known malware by comparing it to identification information of the malware. For example,
the application may be compared to a hash of a known malicious application, or a digital
signature of the application may be examined to determine whether it is valid or issued

by a trusted source.

The behaviour monitoring and detection of characteristic and expected actions may be
performed at the client computer or at the server. Alternatively, the client computer may
monitor the behaviour of the suspect application, and send details of monitored actions
to a server, along with identification information for the monitored application. The

information may be sent periodically, or only when characteristic actions are detected

10

15

(e.g. detecting an SSL connection may cause the client computer to send details of the
behaviour leading up to the SSL connection to the server). The server maintains the
database of the applications to be monitored, and detects characteristic actions (if not
already detected by the client), and the expected action. The detection is carried out as
described above. If the analysis identifies the application running on the client computer
as malicious or suspicious, then the server notifies the client computer, and may specify

a response to be performed.

Although the invention has been described in terms of preferred embodiments as set
forth above, it should be understood that these embodiments are illustrative only and
that the claims are not limited to those embodiments. Those skilled in the art will be able
to make modifications and alternatives in view of the disclosure which are contemplated
as falling within the scope of the appended claims. Each feature disclosed or illustrated
in the present specification may be incorporated in the invention, whether alone orin any

appropriate combination with any other feature disclosed or illustrated herein.

10

15

20

25

30

35

10

CLAIMS:

1. A method of detecting a threat against a computer system, the method
comprising:

a) monitoring installation and operation of multiple different versions of the same
application in a computer system;

b) analysing evolutionary changes between the behaviours of the different
versions of the same application;

¢) detecting and monitoring a new version of the same application in a computer
system;

d) monitoring the behavior of the computer system to detect one or more
procedures of the monitored application that do not match expected
behaviors of the monitored application on the basis of the analysis; and

e) upon detection of one or more procedures not matching the expected
behaviors of the monitored application, identifying the monitored application

as malicious or suspicious.

2. The method according to claim 1, wherein analysing evolutionary changes of the
behaviours comprises analysing evolutionary changes of the behaviours of subsequent

versions of the same application.

3. The method according to claim 1, the method further comprising creating and storing
representations of expected behaviors of the monitored application on the basis of the

analysis.

4. The method according to claim 1, wherein the step of detecting one or more
procedures that do not match the expected behaviours of the monitored application
further comprises comparing the behaviour of the monitored application to the stored

representations of expected behaviours.

5. The method according to claim 1, the method further comprising generating
behavioural data for the analysis by executing multiple different versions of the same
application on physical machines during normal usage, on separate test machines or by
a virtualization system.

10

15

20

25

30

35

11

6. The method according to claim 1, wherein each procedure of the one or more
procedures of the monitored application is identified by a characteristic action and one

or more expected actions.

7. The method according to claim 6, wherein the characteristic and/or expected actions
include one or more of: API calls and/or API call parameters made by the running
application, information made available to plugins of the running application, actions
relating to browser extensions, file access operations performed by the running
application, network operations performed by the running application, encrypted
communications sent by the running application, error conditions relating to the running

application.

8. The method according to claim 1, wherein said procedures include any one or more
of: establishment of a secure session, communication over a secure session, file

operations, registry operations, memory operations, network operations.

9. The method according to claim 1, wherein the step of identifying the monitored
application as malicious or suspicious is based on atleast one of: fulfilling predetermined
rules, machine learning approach used, a decision making logic using the behavioural

data as input.

10. The method according to claim 1, wherein the step of identifying the monitored
application as malicious or suspicious is further based on the difference in version
numbers of the different versions of the same application, wherein the expected amount

of change in behaviour is related to the amount of change in version numbers.

11. The method according to claim 1, wherein the step of identifying the monitored
application as malicious or suspicious further comprises:

determining which already analysed version of the same application is most
similar with the new version of the same application by comparing the codes of the
different versions of the same application with the new version of the same application;

determining a version delta value between the most similar version and the
new version on the basis of the comparison;

identifying the monitored application as suspicious or malicious, if the
version delta value is subtle and the behavioural difference is substantial;

identifying the monitored application as unknown, if the version delta value

is substantial and the behavioural difference is substantial; and

10

15

20

25

30

35

12

identifying the monitored application as normal, if both the version delta
value and the behavioural difference is subtle or the version delta value is substantial

and the behavioural difference is subtle.

12. The method according to claim 11, wherein the version delta value is determined to
be subtle when a predetermined first threshold value is not exceeded and substantial
when the predetermined first threshold value is exceeded, and wherein the behavioural
difference is determined to be subtle when a predetermined second threshold value is
not exceeded and substantial when the predetermined second threshold value is

exceeded.

13. The method according to claim 1, upon identifying the monitored application as
malicious or suspicious, the method further comprises handling the monitored
application by one or more of: terminating a process of the monitored application,
terminating the characteristic action or an action resulting from the characteristic action,
removing or otherwise making safe the monitored application and performing a further

malware scan on the monitored application.

14. The method according to claim 1, upon identifying the monitored application as
malicious or suspicious, further comprising at least one of: sending from a client
computer to a server details of the characteristic action and other actions taken on the
client computer; sending from the server to client computer an indication as to whether
or not the monitored application is malicious or suspicious; sending from the server to
the client computer instructions for handling the monitored application; prompting the
client computer to kill and/or remove the monitored application; storing information

indicating the monitored application.

15. A computer system comprising:
a memory configured to store computer program code, and
a processor configured to read and execute computer program code stored in the
memory,
wherein the processor is configured to cause the computer system to perform:
a) monitoring installation and operation of multiple different versions of the same
application in a computer system;
b) analysing evolutionary changes between the behaviours of the different

versions of the same application;

10

15

20

25

30

35

13

¢) detecting and monitoring a new version of the same application in a computer
system;

d) monitoring the behavior of the computer system to detect one or more
procedures of the monitored application that do not match expected
behaviors of the monitored application on the basis of the analysis; and

e) upon detection of one or more procedures not matching the expected
behaviors of the monitored application, identifying the monitored application

as malicious or suspicious.

16. The system according to claim 15, wherein the processor is further configured to
cause system to perform: analysing evolutionary changes of the behaviours of
subsequent versions of the same application when analysing evolutionary changes of

the behaviours.

17. The system according to claim 15, wherein the processor is further configured to
cause the system to perform: creating and storing representations of expected behaviors

of the monitored application on the basis of the analysis.

18. The system according to claim 17, wherein the processor is further configured to
cause the system to perform the step of detecting one or more procedures that do not
match the expected behaviours of the monitored application by comparing the behaviour

of the monitored application to the stored representations of expected behaviours.

19. The system according to claim 15, wherein the processor is further configured to
cause the system to perform: generating behavioural data for the analysis by executing
multiple different versions of the same application on physical machines during normal

usage, on separate test machines or by a virtualization system.

20. The system according to claim 15, wherein each procedure of the one or more
procedures of the monitored application is identified by a characteristic action and one

or more expected actions.

21. The system according to claim 20, wherein the characteristic and/or expected actions
include one or more of: API calls and/or API call parameters made by the running
application, information made available to plugins of the running application, actions
relating to browser extensions, file access operations performed by the running

application, network operations performed by the running application, encrypted

10

15

20

25

30

35

14

communications sent by the running application, error conditions relating to the running

application.

22. The system according to claim 15, wherein said procedures include any one or more
of: establishment of a secure session, communication over a secure session, file

operations, registry operations, memory operations, network operations.

23. The system according to claim 15, wherein identifying the monitored application as
malicious or suspicious is based on at least one of: fulfilling predetermined rules,
machine learning approach used, a decision making logic using the behavioural data as

input.

24. The system according to claim 15, wherein identifying the monitored application as
malicious or suspicious is further based on the difference in version numbers of the
different versions of the same application, wherein the expected amount of change in

behaviour is related to the amount of change in version numbers.

25. The system according to claim 15, wherein identifying the monitored application as
malicious or suspicious further comprises the processor causing the system to perform:

determining which already analysed version of the same application is most
similar with the new version of the same application by comparing the codes of the
different versions of the same application with the new version of the same application;

determining a version delta value between the most similar version and the
new version on the basis of the comparison;

identifying the monitored application as suspicious or malicious, if the
version delta value is subtle and the behavioural difference is substantial;

identifying the monitored application as unknown, if the version delta value
is substantial and the behavioural difference is substantial; and

identifying the monitored application as normal, if both the version delta
value and the behavioural difference is subtle or the version delta value is substantial

and the behavioural difference is subtle.

26. The system according to claim 25, wherein the version delta value is determined to
be subtle when a predetermined first threshold value is not exceeded and substantial
when the predetermined first threshold value is exceeded, and wherein the behavioural

difference is determined to be subtle when a predetermined second threshold value is

10

15

20

25

15

not exceeded and substantial when the predetermined second threshold value is

exceeded.

27. The system according to claim 15, upon identifying the monitored application as
malicious or suspicious, the processor is further configured to cause the system to
perform one or more of: terminating a process of the monitored application, terminating
the characteristic action or an action resulting from the characteristic action, removing or
otherwise making safe the monitored application and performing a further malware scan

on the monitored application.

28. The system according to claim 15, upon identifying the monitored application as
malicious or suspicious, the processor is further configured to cause the system to
perform at least one of: sending from a client computer to a server details of the
characteristic action and other actions taken on the client computer; sending from the
server to client computer an indication as to whether or not the monitored application is
malicious or suspicious; sending from the server to the client computer instructions for
handling the monitored application; prompting the client computer to kill and/or remove

the monitored application; storing information indicating the monitored application.

29. A computer program comprising computer readable code which, when run on a
computer system or server, causes the computer system or server to act as a computer

system or server according to any one of claims 15 to 28.

30. A computer program product comprising a non-transitory computer readable
medium and a computer program according to claim 29, wherein the computer program

is stored on the computer readable medium.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - CLAIMS
	Page 15 - CLAIMS
	Page 16 - CLAIMS
	Page 17 - CLAIMS
	Page 18 - CLAIMS
	Page 19 - CLAIMS

