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KEY-VALUE MAP COMMITMENTS SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application is a PCT application of and claims the benefit of U.S. Provisional
Application No. 62/905,966, filed on September 25, 2019, which is herein incorporated by

reference in its entirety for all purposes.
BACKGROUND

[0002] Cryptocurrencies like Bitcoin [bit] and Ethereum [ethb] process payments in a
decentralized manner. Every time a block of transactions is generated, validators check the
validity of the block. For example, in Ethereum, a transaction consists of a sender's public key
pk, a transfer amount b, and a signature o (among other things). For every transaction in a block,
validators check that the signature o is valid and that the sender account (identified by hashing
the sender’s public key pk) has a balance of at least the transfer amount b. While the signature o
can be verified given the transaction alone, the sender's balance depends on the past transactions.
A validator could go through the entire chain of blocks (e.g., a blockchain) to compute the

balance initially. The validator could store the balance in memory afterwards and update it as

new transactions arrive.

[0003] The number of sender accounts, however, is usually large. Ethereum has about 70
million accounts [etha] even though the throughput of the blockchain is not high (e.g., 5-10
transactions per second [ethc]). Other currencies like Libra [lib] can have a much higher
throughput and are expected to have billions of accounts. Fast access to such a large number of
accounts requires significant resources, limiting the number of nodes that could perform
validator functions. This is a problem for networks that want to spread far and wide without

entrusting a few computers.

[0004] Embodiments of the invention address these and other issues, individually and

collectively.
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BRIEF SUMMARY

[0005] An embodiment includes a method comprising: receiving, by a validation computer, an
authorization request message from a user device, wherein the authorization request message
comprises a user state and a user proof, wherein the user state comprises a first user state element
and a second user state element, and wherein the user proof comprises a first user proof element,
a second user proof element, and a third user proof element; computing, by the validation
computer, a first verification value by multiplying the first user proof element raised to the power
of the second user state element, and the second user proof element raised to the power of the
first user state element; computing, by the validation computer, a second verification value by
raising the second user proof element to the power of the second user state element; comparing,
by the validation computer, the first verification value to a first accumulated state element of an
accumulated state; comparing, by the validation computer, the second verification value to a
second accumulated state element of the accumulated state; and authorizing, by the validation
computer, the authorization request message if the first verification value matches the first
accumulated state and the second verification value matches the second accumulated state

element.

[0006] Another embodiment includes a validation computer comprising: a processor; a
memory; and a computer-readable medium coupled to the processor, the computer-readable
medium comprising code executable by the processor for implementing a method comprising:
receiving an authorization request message from a user device, wherein the authorization request
message comprises a user state and a user proof, wherein the user state comprises a first user
state element and a second user state element, and wherein the user proof comprises a first user
proof element, a second user proof element, and a third user proof element; computing a first
verification value by multiplying the first user proof element raised to the power of the second
user state element, and the second user proof element raised to the power of the first user state
element; computing a second verification value by raising the second user proof element to the
power of the second user state element; comparing the first verification value to a first
accumulated state element of an accumulated state; comparing the second verification value to a

second accumulated state element of the accumulated state; and authorizing the authorization
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request message if the first verification value matches the first accumulated state and the second

verification value matches the second accumulated state element.

[0007] Another embodiment includes a method comprising: generating, by a user device, an
authorization request message comprising a user state and a user proof, wherein the user state
comprises a first user state element and a second user state element , and wherein the user proof
comprises a first user proof element, a second user proof element, and a third user proof element;
providing, by the user device, the authorization request message to a validation computer of a
plurality of validation computers, wherein the validation computer 1) computes a first
verification value by multiplying the first user proof element raised to the power of the second
user state element , and the second user proof element raised to the power of the first user state
element, 2) computes the second verification value by raising the second user proof element to
the power of the second user state element, 3) compares the first verification value to a first
accumulated state element of an accumulated state, 4) compares the second verification value to
a second accumulated state element of the accumulated state, and 5) authorizes the authorization
request message if the first verification value matches the first accumulated state and the second
verification value matches the second accumulated state element; and receiving, by the user
device, an authorization response message from the validation computer, wherein the
authorization response message indicates whether or not the authorization request message was

authorized.

[0008] Further details regarding embodiments of the invention can be found in the Detailed

Description and the Figures.
BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIG. 1 shows a block diagram of a system according to embodiments.
[0010] FIG. 2A shows a block diagram of a user device according to embodiments.
[0011] FIG. 2B shows a block diagram of a validation computer according to embodiments.

[0012] FIG. 3 shows a flow diagram of an authorization request process according to

embodiments.

[0013] FIG. 4 shows a flow diagram of verification method according to embodiments.
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[0014] FIGs. SA-5D illustrate various equations according to embodiments.
DETAILED DESCRIPTION

[0015] A "blockchain" can be a distributed database that maintains a continuously-growing list
of records secured from tampering and revision. A blockchain may include a number of blocks
of interaction records. Each block in the blockchain can contain also include a timestamp and a
link to a previous block. Stated differently, interaction records in a blockchain may be stored as a
series of "blocks," or permanent files that include a record of a number of interactions occurring
over a given period of time. Blocks may be appended to a blockchain by an appropriate node
after it completes the block and the block is validated. Each block can be associated with a block
header. In embodiments of the invention, a blockchain may be distributed, and a copy of the
blockchain may be maintained at each full node in a verification network. Any node within the

verification network may subsequently use the blockchain to verify interactions.

[0016] A “verification network™ can include a set of computers programmed to provide
verification for an interaction. A verification network may be a distributed computing system
that uses several computers (e.g., validation computers) that are interconnected via
communication links. A verification network may be implemented using any appropriate
network, including an intranet, the Internet, a cellular network, a local area network or any other
such network or combination thereof. In some cases, validation computers may be independently
operated by third party or administrative entities. Such entities can add or remove computers
from the verification network on a continuous basis. In some embodiments, a validation

computer in a verification network may be a full node.

[0017] A “block” can include a data element that holds records of one or more interactions,
and can be a sub-component of a blockchain. A block can include a block header and a block
body. A block can include a batch of valid interactions that are hashed and encoded into a
Merkle tree. Each block can include a cryptographic hash of the prior block (or blocks) in the
blockchain.

[0018] A “block header” can be a header including information regarding a block. A block

header can be used to identify a particular block an a blockchain. A block header can comprise
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any suitable information, such as a previous hash, a Merkle root, a timestamp, and a nonce. In

some embodiments, a block header can also include a difficulty value.

[0019] An “interaction” may include a reciprocal action or influence. An interaction can
include a communication, contact, or exchange between parties, devices, and/or entities.
Example interactions include a transaction between two parties and a data exchange between two
devices. In some embodiments, an interaction can include a user requesting access to secure
data, a secure webpage, a secure location, and the like. In other embodiments, an interaction can

include a payment transaction in which two devices can interact to facilitate a payment.

[0020] “Interaction data” may be data associated with an interaction. For example, an
interaction may be a transfer of a digital asset from one party to another party. The interaction
data for example, may include a transaction amount and unspent transaction outputs (UTXOs).
In some embodiments, interaction data can indicate different entities that are party to an
interaction as well as value or information being exchanged. Interaction data can include an
interaction amount, information associated with a sender (e.g., a token or account information, an
alias, a device identifier, a contact address, etc.), information associated with a receiver (e.g., a
token or account information, an alias, a device identifier, a contact address, etc.), one-time
values (e.g., a random value, a nonce, a timestamp, a counter, etc.), and/or any other suitable

information. An example of interaction data can be transaction data.

[0021] A “digital asset” may refer to digital content associated with a value. In some cases,
the digital asset may also indicate a transfer of the value. For example, a digital asset may
include data that indicates a transfer of a currency value (e.g., fiat currency or crypto currency).
In other embodiments, the digital asset may correspond to other non-currency values, such as
access privileges data (e.g., a number of authorized usages or a time allotment for accessing
information) and ownership data (e.g., digital right data). A digital asset may also include
information about one or more digital asset attributes. For example, a digital asset may include
information useful for transferring value from one entity or account to another. A digital asset
may also include remittance information (e.g., information identifying a sending entity). In some
embodiments, a digital asset may include one or more of a digital asset identifier, a value (e.g.,
an amount, an original currency type, a destination currency type, etc.), transfer fee information,

a currency exchange rate, an invoice number, a purchase order number, a timestamp, a sending



10

15

20

25

WO 2021/062258 PCT/US2020/052864

entity identifier (e.g., a sender enterprise ID), a sending entity account number, a sending entity
name, sending entity contact information (e.g., an address, phone number, email address, etc.),
sending institution information (e.g., a financial institution name, enterprise ID, and BIN), a
recipient entity identifier (e.g., a recipient enterprise ID), a recipient entity account number, a
recipient entity name, recipient entity contact information (e.g., an address, phone number, email
address, etc.), and/or recipient institution information (e.g., a financial institution name,
enterprise ID, and BIN). When a digital asset is received, the recipient may have sufficient

information to proceed with a settlement transaction for the indicated value.

[0022] The term “verification” and its derivatives may refer to a process that utilizes
information to determine whether an underlying subject is valid under a given set of
circumstances. Verification may include any comparison of information to ensure some data or

information is correct, valid, accurate, legitimate, and/or in good standing.

[0023] A “user” may include an individual. In some embodiments, a user may be associated
with one or more personal accounts and/or mobile devices. The user may also be referred to as a

cardholder, account holder, or consumer in some embodiments.

[0024] A “user identifier” can include any piece of data that can identify a user. A user
identifier can comprise any suitable alphanumeric string of characters. In some embodiments, the
user identifier may be derived from user identifying information. In some embodiments, a user

identifier can include an account identifier associated with the user.

[0025] A “validation computer” can include a computer that checks or proves the validity or
accuracy of something. A validation computer can validate a user proof received from a user
device. A validation computer can determine whether or not the user proof and/or any other
provided data is sufficient for the user device to perform an interaction. A validation computer
can be a node in a verification network. In some embodiments, a validation computer can
propose to add a new block to a blockchain, where the new block includes one or more

interactions.

[0026] An “authorization request message” can be an electronic message that requests
authorization for an interaction. In some embodiments, an authorization request message is sent

to a validator computer to request authorization for a transaction.
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[0027] An “authorization response message” can be a message that responds to an
authorization request. In some cases, it may be an electronic message reply to an authorization
request message generated by a validation computer. The authorization response message may
include, by way of example only, one or more of the following status indicators: Approval --
transaction was approved; Decline -- transaction was not approved; or Call Center -- response
pending more information, merchant can call the toll-free authorization phone number. The

authorization response message, or data included therein, may serve as proof of authorization.

[0028] A “user state” can include a condition of attributes or status of user data. A user state
can be a tuple and can include one or more user state elements. For example, a user state can
include a first user state element and a second user state element. A user state can include a first
user state element (e.g., x;) that can be an amount (e.g., a balance, value, etc.) associated with an
account of a user. A user state can include a second user state element (e.g., z;) that can be a

random value.

[0029] A “user proof” can include evidence sufficient to establish a thing provided by a user as
true. A user proof can be referred to as a witness and can be a proof of membership of an
element in an accumulated state. A user proof can be tuple that can include one or more user
proof elements. For example, a user proof can include a first user proof element, a second user
proof element, and a third user proof element. A user proof can include a first user proof element
and a second user element that can be utilized by a validation computer to verify that a
corresponding user state is included in an accumulated state of a most recent block in a
blockchain. A user proof can include a third user proof element that can indicate which of a
number of entries in an accumulated state a user is associated with (e.g., which of a number of
first user state elements from a plurality of users included in the accumulated state is the user

associated with).

[0030] A “verification value” can include a value utilized to verify something. A verification
value can be determined based on provided information and then compared to known (e.g.,
previously stored) information. By comparing a determined verification value to a known value,
a validation computer can verify that the provided information matches the known information.
A verification value can be determined by validation computer to verify a user proof and a user

state.
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[0031] An “accumulated state” can include gathered or collected condition of attributes or
status of data. An accumulated state can be output by an accumulator. An accumulated state can
be a binding commitment to a set of elements together with short membership and/or non-
membership proofs for any element in the set. An accumulated state can be a tuple that includes
one or more accumulated state elements. For example, an accumulated state can include a first
accumulated state element, a second accumulated state element, and a third accumulated state
element. An accumulated state can include a first accumulated state element that is based on the
each first user state element (e.g., amount) and each second user state element (e.g., random
value) of each user in the verification network. An accumulated state can include a second
accumulated state element that is based on each second user state element of each user in the
verification network. An accumulated state can include a third accumulated state element that

can be the number of user states in the verification network.

[0032] A “user device” may be a device that is operated by a user. Examples of user devices
may include a mobile phone, a smart phone, a card, a personal digital assistant (PDA), a laptop
computer, a desktop computer, a server computer, a vehicle such as an automobile, a thin-client
device, a tablet PC, etc. Additionally, user devices may be any type of wearable technology
device, such as a watch, earpiece, glasses, etc. The user device may include one or more
processors capable of processing user input. The user device may also include one or more input
sensors for receiving user input. As is known in the art, there are a variety of input sensors
capable of detecting user input, such as accelerometers, cameras, microphones, etc. The user
input obtained by the input sensors may be from a variety of data input types, including, but not
limited to, audio data, visual data, or biometric data. The user device may comprise any
electronic device that may be operated by a user, which may also provide remote communication
capabilities to a network. Examples of remote communication capabilities include using a mobile
phone (wireless) network, wireless data network (e.g., 3G, 4G or similar networks), Wi-Fi, Wi-
Max, or any other communication medium that may provide access to a network such as the

Internet or a private network.

[0033] A “processor” may include a device that processes something. In some embodiments, a
processor can include any suitable data computation device or devices. A processor may

comprise one or more microprocessors working together to accomplish a desired function. The
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processor may include a CPU comprising at least one high-speed data processor adequate to
execute program components for executing user and/or system-generated requests. The CPU
may be a microprocessor such as AMD's Athlon, Duron and/or Opteron; IBM and/or Motorola's
PowerPC; IBM's and Sony's Cell processor; Intel's Celeron, Itanium, Pentium, Xeon, and/or

XScale; and/or the like processor(s).

[0034] A “memory” may be any suitable device or devices that can store electronic data. A
suitable memory may comprise a non-transitory computer readable medium that stores
instructions that can be executed by a processor to implement a desired method. Examples of
memories may comprise one or more memory chips, disk drives, etc. Such memories may

operate using any suitable electrical, optical, and/or magnetic mode of operation.

[0035] A “server computer” may include a powerful computer or cluster of computers. For
example, the server computer can be a large mainframe, a minicomputer cluster, or a group of
servers functioning as a unit. In one example, the server computer may be a database server
coupled to a Web server. The server computer may comprise one or more computational
apparatuses and may use any of a variety of computing structures, arrangements, and

compilations for servicing the requests from one or more client computers.

1 INTRODUCTION

[0036] As blockchains grow in size, validating new transactions becomes more resource
intensive. To deal with this, there is a need to discover compact encodings of the (effective) state
of a blockchain, an encoding that still allows for efficient proofs of membership and updates. For
account-based cryptocurrencies, the state can be represented by a key-value map where keys are
the account addresses and values consist of account balance, nonce, etc. Embodiments provide
for a new encoding for this state whose size does not grow with the number of accounts, yet
proofs of membership are of constant-size. Both the encoding and the proofs may consist of just
two group elements (in groups of unknown order like class groups). Verifying and updating
proofs can involve a few group exponentiations. Additive updates to account values may also be

quite efficient.

[0037] The state of an account-based cryptocurrency is a key-value map where keys are the

addresses of accounts and values are their attributes (e.g., balance, nonce, etc.). Various
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embodiments provide an encoding for key-value maps in groups of unknown order with the
following four properties. 1) Succinct encoding: encoding consists of just two group elements
irrespective of the number of keys. 2) Succinct proofs and fast verification: a proof to show that a
certain key, value pair is in the encoding consists of just two group elements too. Only three
exponentiations may be required to verify a proof. 3) Fast updates to encoding: additive updates
to values in the encoding are fast too. 4) Trustless set-up: if class groups are used as the

underlying group here, then the encoding scheme could be bootstrapped in a trustless manner.

[0038] When the encoding scheme is utilized with an account-based cryptocurrency where the
updates to values are additive in nature (e.g., for payments), validation becomes an almost
stateless task (e.g., two group elements need to be stored). To send an amount b* from an

account (k,v) to an account (k',v"), where v consists of balance b > b*, a user would supply a
proof & that (k,v) is part of the encoding. The proof can be verified and the encoding can be

easily updated to reflect the new balance values for &, k'. Additionally, other users in the
network would update their proofs, which could be done in the same way as updating encodings.

An exemplary method is illustrated in FIGs. 3-4 and is described in further detail below.

[0039] FIG. 1 shows a system 100 according to various embodiments. The system 100
comprises a user device 110, a validation computer 120, a blockchain network 130, and a
receiver device 140. The blockchain network 130 can be a blockchain network that comprises a
plurality of computers including additional validation computers, user devices, and receiver
devices (not shown). The user device 110 can be in operative communication with the
blockchain network 130 and the validation computer 120. The validation computer 120 can be in
operative communication with the blockchain network 130 and the receiver device 140. The

receiver device 140 can be in operative communication with the blockchain network 130.

[0040] For simplicity of illustration, a certain number of components are shown in FIG. 1. It is
understood, however, that embodiments of the invention may include more than one of each
component. In addition, some embodiments of the invention may include fewer than or greater

than all of the components shown in FIG. 1.

[0041] Messages between at least the components in system 100 of FIG. 1 can be transmitted

using a secure communications protocols such as, but not limited to, File Transfer Protocol

10
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(FTP); HyperText Transfer Protocol (HTTP); Secure Hypertext Transfer Protocol (HTTPS),
SSL, ISO (e.g., ISO 8583) and/or the like. The communications network that may reside between
the devices may include any one and/or the combination of the following: a direct
interconnection; the Internet; a Local Area Network (LAN); a Metropolitan Area Network
(MAN); an Operating Missions as Nodes on the Internet (OMNI); a secured custom connection;
a Wide Area Network (WAN); a wireless network (e.g., employing protocols such as, but not
limited to a Wireless Application Protocol (WAP), I-mode, and/or the like); and/or the like. The
communications network can use any suitable communications protocol to generate one or more
secure communication channels. A communications channel may, in some instances, comprise a
secure communication channel, which may be established in any known manner, such as through
the use of mutual authentication and a session key, and establishment of a Secure Socket Layer

(SSL) session.

[0042] The user device 110 can include any suitable device operated by a user. For example,
the user device 110 can include a laptop computer, a desktop computer, a smartphone, etc. The
user device 110 may be a computer of a first user that is attempting to initiate a transaction with
a second user. The second user may operate, for example, the receiver device 140. The user
device 110 may be connected to the blockchain network 130. The user device 110 can generate
and provide an authorization request message for an interaction to the validation computer 120.
The interaction can be a transaction between the first user of the user device 110 and the second
user of the receiver device 140. The authorization request message can include a user state and a
user proof that are associated with the user. The authorization request message can also include
interaction data, for example, an interaction amount. The interaction data can also include an
information associated with a sender (e.g., a token or account information, an alias, a device
identifier, a contact address, etc.), information associated with a receiver (e.g., a token or account
information, an alias, a device identifier, a contact address, etc.), one-time values (e.g., a random

value, a nonce, a timestamp, a counter, etc.), and/or any other suitable information.

[0043] The validation computer 120 may be a computer that authorizes interactions before
they are posted on the blockchain network 130. Validation computer 120 may validate blocks
before they are added to the blockchain network 130. For example, the validation computer 120

can receive an authorization request message from the user device 110 that requests

11
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authorization of an interaction. The validation computer 120 can verify that the user has an
amount sufficient for the interaction amount of the interaction, as described in further detail in
FIG. 4. For example, the user may have an account with an amount of currency. The validation

computer 120 can validate the user has sufficient currency to perform the interaction.

[0044] The blockchain network 130 may be a blockchain of a cryptocurrency. In some
embodiments, the cryptocurrency of blockchain network 130 may be an account based
cryptocurrency. The blockchain network 130 can be a verification network that includes a set of
computers programmed to provide verification for an interaction. The blockchain network 130
can add or remove computers from the blockchain network 130 on a continuous basis. The
devices of the blockchain network 130 can maintain a blockchain comprising one or more

blocks. Each block of the blockchain can include interaction data from processed interactions.

[0045] The receiver device 140 may be a computer of a second user that participating in a
transaction with the first user. The receiver device 140 may be connected to the blockchain
network 130. The receiver device 140 can be a user device that is operated by a different user
than the user of the user device 110. For example, the receiver device 140 can be a laptop

computer, a desktop computer, a smartphone, etc.

[0046] FIG. 2A shows a block diagram of a user device 200 according to embodiments. The
exemplary user device 200 may comprise a processor 204. The processor 204 may be coupled to

a memory 202, a network interface 206, and a computer readable medium 208.

[0047] The memory 202 can be used to store data and code. The memory 202 may be coupled
to the processor 204 internally or externally (e.g., cloud based data storage), and may comprise
any combination of volatile and/or non-volatile memory, such as RAM, DRAM, ROM, flash, or
any other suitable memory device. For example, the memory 202 can store a user state, a user

proof, etc.

[0048] The computer readable medium 208 may comprise code, executable by the processor
204, for performing a method comprising: generating, by a user device, an authorization request
message comprising a user state and a user proof, wherein the user state comprises a first user
state element and a second user state element , and wherein the user proof comprises a first user

proof element, a second user proof element, and a third user proof element; providing, by the
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user device, the authorization request message to a validation computer of a plurality of
validation computers, wherein the validation computer 1) computes a first verification value by
multiplying the first user proof element raised to the power of the second user state element , and
the second user proof element raised to the power of the first user state element, 2) computes the
second verification value by raising the second user proof element to the power of the second
user state element, 3) compares the first verification value to a first accumulated state element of
an accumulated state, 4) compares the second verification value to a second accumulated state
element of the accumulated state, and 5) authorizes the authorization request message if the first
verification value matches the first accumulated state and the second verification value matches
the second accumulated state element; and receiving, by the user device, an authorization
response message from the validation computer, wherein the authorization response message

indicates whether or not the authorization request message was authorized.

[0049] The network interface 206 may include an interface that can allow the user device 200
to communicate with external computers. The network interface 206 may enable the user device
200 to communicate data to and from another device (e.g., a validation computer 250, etc.).
Some examples of the network interface 206 may include a modem, a physical network interface
(such as an Ethernet card or other Network Interface Card (NIC)), a virtual network interface, a
communications port, a Personal Computer Memory Card International Association (PCMCIA)
slot and card, or the like. The wireless protocols enabled by the network interface 206 may
include Wi-Fi™. Data transferred via the network interface 206 may be in the form of signals
which may be electrical, electromagnetic, optical, or any other signal capable of being received
by the external communications interface (collectively referred to as “electronic signals” or
“electronic messages”). These electronic messages that may comprise data or instructions may
be provided between the network interface 206 and other devices via a communications path or
channel. As noted above, any suitable communication path or channel may be used such as, for
instance, a wire or cable, fiber optics, a telephone line, a cellular link, a radio frequency (RF)

link, a WAN or LAN network, the Internet, or any other suitable medium.

[0050] FIG. 2B shows a block diagram of a validation computer 250 according to

embodiments. The exemplary validation computer 250 may comprise a processor 254. The
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processor 254 may be coupled to a memory 252, a network interface 256, and a computer

readable medium 258.

[0051] The memory 252 can be used to store data and code. The memory 252 may be coupled
to the processor 254 internally or externally (e.g., cloud based data storage), and may comprise
any combination of volatile and/or non-volatile memory, such as RAM, DRAM, ROM, flash, or
any other suitable memory device. For example, the memory 252 can store blocks of a

blockchain, block headers, accumulated states, etc.

[0052] The computer readable medium 258 may comprise code, executable by the processor
254, for performing a method comprising: receiving, by a validation computer, an authorization
request message from a user device, wherein the authorization request message comprises a user
state and a user proof, wherein the user state comprises a first user state element and a second
user state element, and wherein the user proof comprises a first user proof element, a second user
proof element, and a third user proof element; computing, by the validation computer, a first
verification value by multiplying the first user proof element raised to the power of the second
user state element, and the second user proof element raised to the power of the first user state
element; computing, by the validation computer, a second verification value by raising the
second user proof element to the power of the second user state element; comparing, by the
validation computer, the first verification value to a first accumulated state element of an
accumulated state; comparing, by the validation computer, the second verification value to a
second accumulated state element of the accumulated state; and authorizing, by the validation
computer, the authorization request message if the first verification value matches the first
accumulated state and the second verification value matches the second accumulated state

element.

[0053] The network interface 256 is similar to the network interface 206 and description

thereof will not be repeated here.

2 CONCEPTS

2.1 Notation

[0054] For neN,let [n]={1,2,...,n} . Let A € N denote the security parameter. In some

embodiments here, symbols in boldface such as a denote vectors, however, the variables
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described herein are not limited to either being a vector or a scalar in view of the boldface

symbol. The i -th element of the vector a is denoted by ;. A vector a of length » € N and an

index set 7 —[n] is denoted by a|, the set of elements {a },_,. Any function which is bounded

iel *

by a polynomial in its argument is denoted by (-) . An algorithm T can be said to be PPT if it is
modeled as a probabilistic Turing machine that runs in time polynomial in A . In some cases a
function can be referred to as negligible, denoted by negl, if the function vanishes faster than the
inverse of any polynomial. If S is a set, then x<>—S indicates the process of selecting x

uniformly at random over § (which in particular assumes that § can be sampled efficiently).

Similarly, x<>—A() denotes the random variable that is the output of a randomized algorithm
A
2.2 Accumulators

[0055] A definition of accumulators from [BBF18] can be adapted herein, which follows the
conventions of [BCD*17]. For example, a cryptographic accumulator can be a primitive that
produces a short binding commitment to a set of elements together with short membership and/or
non-membership proofs for any element in the set. These proofs can be publicly verified against
the commitment. An accumulator (e.g., a trapdoorless universal accumulator) can be defined as

[BBF18] Acc as a primitive that can be formally defined via the following algorithms.

[0056] 1) Acc.Setup(1*): Given the security parameter A, the setup algorithm outputs some

public parameters pp (which implicitly define the message space M) and an initial state of the

accumulator 4, .

[0057] 2) Acc.Add,,(4,x): On input the accumulated value 4, at a certain time instant # that
corresponds to a set S, and a message x € M , the adding algorithm outputs an updated
accumulator value 4,,, that corresponds to the set S,,, =S, w{x} and some update information

upmsg, ., that may be used to update proofs of other elements.

[0058] 3) Acc.Del ,(4,x): On input the accumulated value 4, at a certain time instant  that

corresponds to a set S, and a message x € M , the adding algorithm outputs an updated
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accumulator value 4,,, that corresponds to the set S,,, =S, \{x} and some update information

upmsg,,, that may be used to update proofs of other elements.

[0059] 4) AccMemWitCreate (4, x): On input the accumulated value A, at a certain time
instant 7 that corresponds to a set S, and a message x € M , the membership witness creation

algorithm outputs a membership proof W' for the membership of xe .S, .

[0060] 5) AccNonMemWitCreate (4,,x): On input the accumulated value 4, at a certain
time instant 7 that corresponds to a set S, and a message x € M , the membership witness

creation algorithm outputs a non-membership proof u. for the non-membership of x £ S, .

[0061] 6) Acc.MemWitUp, (4,,x, w',upmsg, ) : On input the accumulated value A, ata

certain time instant / that corresponds to a set S, , a message x € M , a membership proof W’
for the membership of x € §, and the update information upmsg,,, obtained on performing the
(t+1)-th update (an Add or Del), the membership witness updating algorithm outputs an

f+1

updated membership proof w.” for the membership of x5S, ,,.

[0062] 7) Acc.NonMemWitUp,, (4,,x, u.,upmsg, ) : On input the accumulated value A4 ata
certain time instant ¢ that corresponds to a set S, , a message x € M , a non-membership proof

u.. for the non-membership of x £ S, and the update information upmsg,, obtained on

performing the (z+1)-th update (an Add or Del ), the non-membership witness updating

t+1

algorithm outputs an updated non-membership proof #, "~ for the non-membership of x & S,

+1 -

[0063] 8) Acc.VerMem  (4,,x, w'): On input the accumulated value 4, at a certain time

instant 7 that corresponds to a set S, , a message x € M and a membership proof . for the

membership of x €S, the membership verification algorithm accepts (i.e., it outputs 1) only if

W' is a valid proof of the membership of xS, .
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[0064] 9) Acc.VerNonMem, (4,,x u'): On input the accumulated value 4, at a certain time

instant 7 that corresponds to a set S,, a message x € M and a non-membership proof .. for the
non-membership of x £ S, the non-membership verification algorithm accepts (i.e., it outputs 1)

only if #. is a valid proof of the non-membership of x £ S,.

[0065] For correctness, for all 4 € N, for all honestly generated parameters

pp<«—— Acc.Setup(1*), for all time instants 7 € N U {0}, forall xe M , if 4 isthe
accumulated value at a certain time instant # corresponding to the a set S, of elements from M
(obtained by running a sequence of Acc. Add,,, and Acc. Del,,,), wy is a proof for the
membership of x € S; generated by Acc. MemWitCreate,, or Acc. MemWitUpy,, then
Acc.VerMemy,, (A, x, wi) outputs 1 with overwhelming probability. Similarly, if u is a proof
for the non-membership of x & S; generated by Acc. NonMemW itCreate,, or
Acc. NonMemWitUp,,,, then Acc.VerNonMem,,,(A,, x,uy) outputs 1 with overwhelming
probability.

[0066] A security definition followed herein [Lip12] formulates an undeniability property for
accumulators. The following definition states that an accumulator is secure if an adversary

cannot construct an accumulator, an element x, a valid membership witness w_ and a non-

membership witness #, where w_ shows that x is in the accumulator and #_ shows that it is

not. This definition is provided as Definition 1: An accumulator Acc is secure if for every PPT

adversary A , the following probability is at most negligible in A :

(pp, 4,) > Acc.Setup(1*)
Pr (4,%,w,u,) «<—A(pp, 4,)
Acc.VerMem (4, x,w,) =1/ Acc.VerNonMem_ (4, x,u,)=1

[0067] An accumulator can be concise in the sense that the size of the accumulated value 4,

and the outputs of all the algorithms above are independent of 7.

[0068] Accumulators can also be considered to be hiding. For example, an accumulator is

hiding if an adversary cannot distinguish whether an element is in the accumulator or not even
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after obtaining membership and/or non-membership proofs for other elements. A notion of weak
hiding can also be defined where given an accumulated value A4 to a set .S, it is hard to recover
any xS inthe worst case. Hiding, in some embodiments, however may not be a critical
property in the realization of accumulators. Any construction of accumulators which does not
satisfy hiding can be fixed, for example, by using a commitment scheme (e.g., first commit to
each message separately using a standard commitment scheme and then apply the accumulator to

the obtained set of commitments).

[0069] The definition only asks for a sequential update of the proofs of membership and non-
membership. In other words, if one applies m updates, proofs of membership and non-
membership have to be updated m times. One could hope to build an accumulator scheme
where the number of times one has to update proofs of membership and non-membership grows
sub-linearly with m , possibly even a constant. [CH10] prove a result to the contrary, but as

further discussed herein, this is indeed not ruled out.

2.3 Vector Commitments

[0070] A definition of vector commitments is provided in [CF13]. For example, a vector
commitment allows a device, a computer, etc. to commit to an ordered sequence of values in
such a way that it is later possible to open the commitment only with respect to a specific
position. A vector commitment VC can be a non-interactive primitive, that can be formally

described via the following algorithms.

[0071] 1)VC.KeyGen(1*,q): Given the security parameter A and the size ¢ of the committed
vector (with g = poly(1)), the key generation algorithm outputs some public parameters pp

(which implicitly define the message space M ).

[0072] 2) VC.Compp(xl,...,xq): On input a sequence of g messages X;,...,%, € M and the

public parameters pp, the committing algorithm outputs a commitment string C and auxiliary

information aux.

[0073] 3) VC.Open,, (x,i,aux) : This algorithm is run by the committer to produce a proof A,

that x is the 7-th committed message. In particular, notice that in the case when some updates

18



10

15

20

WO 2021/062258 PCT/US2020/052864

have occurred, the auxiliary information aux can include the update information produced by
these updates.
[0074] 4)VC.Ver, (C,x,i,A,) : The verification algorithm accepts (i.e., it outputs 1) only if A,

is a valid proof that C was created to a sequence X;,...,X, such that x =1,

[0075] 5)VC.Update,,(C,x,x",7): This algorithm is run by the committer who produced C

and wants to update it by changing the 7-th message to x’ . The algorithm takes as input the old
message X, the new message x' and the position /. It outputs a new commitment C' together

with some update information U .

[0076] 6) VC ProofUpdate, (C, A, x",i,U) : This algorithm can be run by any user who holds
a proof A , for some message at position j with respect to C, and it allows the user to compute

an updated proof A ' (and the updated commitment C") such that A ' will be valid with respect
to C' which contains x' as the new message at position 7. Basically, the value U contains the
update information which is needed to compute such values.

[0077] For correctness, for all 1 e N, g =(A4), for all honestly generated parameters
ppVC.KeyGen(1*,g), if C is a commitment on a vector (x,...,x,)eM? (obtained by running
VC.Com,, possibly followed by a sequence of updates), A, is a proof for position / generated

by VC.Open,, or VC ProofUpdate,, for any i €[¢], then VC.Ver, (C,x,,i,A,) outputs 1 with

overwhelming probability.

[0078] The security requirement for vector commitments is that of position binding. For
example, this says that it should be infeasible for any polynomially bounded adversary having

the knowledge of pp to come up with a commitment C and two different valid openings for the

same position . This definition is provided as Definition 2: A vector commitment VC satisfies

position binding if for all 7 € [¢] and for every PPT adversary A, the following probability

(which is taken over all honestly generated parameters) is at most negligible in A :
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VC.Verpp(C, xiL,A)=1A
Pr|VC.Ver,,(C,x',i,A') = 1A|(C,x,x',i, A, ') — A(pp)
x#x

[0079] A vector commitment can be concise in the sense that the size of the commitment string

C and the outputs of all the algorithms above are independent of ¢.

[0080] Vector commitments can also be considered to be hiding. For example, a vector

commitment is hiding if an adversary cannot distinguish whether a commitment was created to a
sequence (X,...,X,) orto (x,...,X,) even after seeing some openings (at positions / where the
two sequences agree). A notion of weak hiding can be defined, where given a commitment to a
sequence (X,...,X, ), it is hard to recover any m, in the worst case. Hiding may not be a critical

property in the realization of vector commitments. Any construction of vector commitments
which does not satisfy hiding can be fixed using a commitment scheme (e.g., first commit to
each message separately using a standard commitment scheme and then apply the vector

commitment to the obtained sequence of commitments).

3 IMPOSSIBILITY RESULTS FOR ACCUMULATORS

[0081] In this section, a few impossibility results regarding certain desiderata embodiments
may have for an accumulator are discussed. In this section, the public key setting will be
discussed, unless stated otherwise. However, embodiments are not limited thereto. An
accumulator scheme as described herein can be defined as Definition 6, Definition 7, and
Definition 8. Definition 6 can be defined as: let £ be the security parameter. An accumulator

scheme Acc consists of the following seven algorithms.

[0082] 1) Setup(1*): a probabilistic algorithm that takes the security parameter A in unary as
argument and returns a pair of public and private key (PK,SK) as well as the initial

accumulated value for the empty set Acc.

[0083] 2) Eval(X,Acc,, PK,[SK]): given a finite set of elements X, a public key (or the
private secret key), and the initial accumulated value Acc,, the algorithm returns the

accumulated value Acc, corresponding to the set X .
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[0084] 3) Verify(x,w, Acc, PK) : given an element x, a witness w, an accumulated value Acc

and a public key PK , this deterministic algorithm returns OK if the verification is successful,

meaning that x € X , or L otherwise.

[0085] 4) Witness(x, Acc, PK,[SK]): this algorithm returns a witness w associated to the

element x of the set represented by Acc .

[0086] 5) Insert(x, Acc, PK,[SK]): this algorithm computes the new accumulated Accy .,

value obtained after the insertion of x into the set X .

[0087] 6) Delete(x, Acc,, PK,[SK]): this algorithm computes the new accumulated value

Accy,,, obtained from removing x from the accumulated set X .

[0088] 7) UpdWit(x,w, Acc,Upd, ., PK): this algorithm, recomputes the witnesses for

some element of x that remains in the set. It takes as parameters the element x whose witness
can be updated, the "old" witness w with respect to previous set X represented by the

accumulated value Acc, , some update information Upd . . and the public key PK, and returns

a new witness for x. In some embodiments, this algorithm is run by the user.

[0089] Definition 7 can be defined as: let X be a set, Accy its associated accumulated value

Verify(x,w, Acc,, PK) = OK Acc

and X€X _An accumulator scheme is correct if where is

the accumulated value of the set X, X€ X PK is the public key and " is the witness obtained

by running Witness on Acey , ¥ and PK

[0090] Definition 8 can be defined as: let Acc be an accumulator scheme. Embodiments can
consider a notion of security denoted UF — ACC described by the following experiment: given
an integer, k, the security parameter, the adversary has access an oracle O that replies to queries
by playing the role of the accumulator manager. Using the oracle, the adversary can insert and
delete a polynomial number of elements of his choice. The oracle replies with the new
accumulated value. The adversary can also ask for witness computations or updates. Finally, the

adversary is required to output a pair (x,w) . The advantage of the adversary A is defined by:
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AdvE AC(A) = Pr Verify(x,w, Acc, PK)=1Ax £ X]
[0091] where PK is the public key generated by Setup .

[0092] Consider the following trivial accumulator ACC,, . Let A be the security parameter.

Acc,, consists of the following seven algorithms.

[0093] 1) Setup(1*): the pair of public and private key is empty, i.e., (PK,SK)=null and the

initial accumulated value for the empty set Acc,, =0 .
[0094] 2) Eval(X, Acc,, PK,[SK]): the algorithm returns the accumulated value Acc, = X .

[0095] 3) Verify(x,w, Acc, PK) : this deterministic algorithm checks if x € Acc and returns

OK ifitis and | otherwise. In some cases, if the witness w is not used in the verification w

could be null.

[0096] 4) Witness(x, Acc, PK,[SK]): this algorithm returns null .
[0097] 5) Insert(x, Acc,, PK,[SK]): this algorithm computes the new accumulated value

Acc = Acc, U{x}

Xu{x}
[0098] ©6) Delete(x, Acc,, PK,[SK]): this algorithm computes the new accumulated value
Accy g, = Acey \{x}

[0099] 7) UpdWit(x,w, Acc,,Upd,, ., PK): this algorithm returns null. In some cases, if the
witness w and the update information Upd/ . are not used in the verification, then they would
be null.

[0100] Notice that Acc,, satisfies the notion of correctness described in Definition 1 and the

UFACC

advantage Adv, (A) of any adversary A in the security experiment described in Definition

1 is zero. Acc may grow linearly with the number of elements in it. Further, the running time of

Verify may also grows linearly with the number of elements in it. Various improvements
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provide by embodiments, include constant (in fact, zero) sized witnesses and update information.

Furthermore, the witnesses do not change with time.

3.1 Non-trivial Witnesses

[0101] An accumulator that truly accumulates can have non-trivial witnesses. This is shown in
Theorem 2 as follows: Let Acc be a correct and secure accumulator scheme as per Definitions 1,
1 and 1. If the size of the accumulator 4cc does not grow linearly with the number of elements
in it, then the witnesses of the elements can be non-trivial, that is, the size of witnesses can be

(1),

[0102] As proof of Theorem 2, let the accumulated set at a certain point in time be X < [n] for
any arbitrary n. Now, a user may obtain witnesses W, to each element i €[n]. Using these
witnesses, it is possible to deduce which of the 7 elements have been added to the accumulator
by running the public verification algorithm Verify on each of the witnesses. This procedure
also works completely based on the correctness and security of the accumulator. The only
information that could have changed from the initial state are the witnesses and the accumulator
itself. Since any number of the n elements could have been added and the user can recover this
information exactly,

Z|wi|+|Acc|Zlog2"=n

i€[n]

[0103] Since | Acc|=o(n),

21w = Q)

i€[n]

[0104] which proves the claim, assuming that witnesses are uniform in size. In some
embodiments, to remove this assumption, the size of a witness could be made to be appropriately

large.

[0105] Note that the above impossibility holds even in the case of insert-only accumulators.
Furthermore, even if embodiments were to assume the requirement of some secret key SK in
the generation of witnesses and/or scenarios where the witness is generated at the time of insert

and can be updated for further use, the proof above would still show that functional (potentially
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updated) witnesses would have to be non-trivial as long as the accumulator is non-trivial. Thus,

one cannot hope to have trivial witnesses in any meaningful setting.

[0106] Itis easy to see how to realize an accumulator from a vector commitment that has no a
priori bound on the size of the vector that will be committed. Thus, the impossibility result holds
for such vector commitments as well. The result also holds for vector commitments that have an
a priori bound on the size of the vector that will be committed, provided the vector commitment

is concise in comparison to the bound.

[0107] The impossibility result can be interpreted in the following way. The witness
generation algorithm Witness does generate some non-trivial information on every run. Note
that the only new information that is available to the algorithm is the elements that are inserted

into the accumulator. As defined in [CH10], the inputs to Witness are (x, Acc, PK,[SK]) . Since

various embodiments may want Acc and PK to be small (in other words, not grow with the
number of elements inserted into the accumulator) it is unclear where this non-trivial information
comes from. One has to assume that it comes from SK which implies that the definition of
[CH10] does not really make sense in the public key setting. In [CH13], in the context of vector
commitments, the definition works around this by giving the witness generation algorithm access
to some auxiliary information aux that turns out to be the list of messages that have been
committed. In [BBF 18], in the context of accumulators and vector commitments, the definition
works around this by giving the witness generation algorithm the set of messages that have been

inserted into the accumulator or vector commitment.

3.2 Batching Updates

[0108] Camacho and Hevia [CH10] state that if an accumulator admits updates (e.g., in the
form of deletions) then the information needed to update the witnesses after the updates cannot
be short, in particular, it cannot be constant sized. In other words, they state that the update
information for different updates cannot be batched. This section provides a discussion of their
impossibility result. Theorem 3, from [CH10], states: for an update involving m delete operations

in a set of n elements, the size of the information Updy y, used by the algorithm UpdW it while
keeping the dynamic accumulator secure is 2(mlog %). In particular, if m = %with n even, then

|Updx x| = 2(m).
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[0109] The proof of theorem as presented in [CH10] proceeds as follows. Let the accumulated

set at a certain point in time be X ={x,,...,x,}. Suppose a single user possesses the witnesses to
each of these elements. An update deleting 1 <m <n elements from X isissued ie, X' c X

with | X'|=n—m . Let Upd, . be the update information using which the user can update the
witnesses for each of the elements in X . Clearly, m of the updated witnesses will be invalid as
the corresponding element have been deleted. Furthermore, it is possible to deduce which m of
the n elements have been deleted by running the public verification algorithm Verify on each of
the updated witnesses. This procedure also works completely based on the correctness and
security of the accumulator. Since any m of the n elements could have been deleted and the
user can recover this information exactly,

n n
|Upd ; |210g( jZmlog—
: m m

[0110] Notice that Accyyy, trivially satisfies the notion of correctness described in Definition 7

UF ~ACC

and the advantage Aa’vAocd . (A) of any adversary A in the security experiment described in

Definition 8 is zero. However, regardless of what the update is, the update information Updy y,
is null . In fact, no witnesses are required for verification and hence in particular, they need not

be updated.

[0111] An objection to the use of Accyy,y in contradicting Theorem 3 is that it isn't really an
accumulator in the sense that it does not compress the elements of the set accumulated in any
way. The user referenced in the proof who deduces which m of the n elements in the set were

deleted does so with more than just the update information Updy x,. In fact, they need the set
X ={x,...,x,}, the witnesses {W,},.,, of each of n elements, Acc,, Acc,., Updyy, and PK . It
is all these elements together that inform the user of the elements that were deleted in the update,

thus concluding that:

Z|x,.|+Z|w,.|+|Ach|+|Ach,|+|UdeX,|+|PK|2mlog£
’ m

ie[n] ie[n]

[0112] One can see that this is certainly true even for Aag,, . But notice that
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LY

ie[n]

[0113] Thus, this result has no particular consequence and there is hence no reason that a

correct and secure accumulator cannot have batched updates.

[0114] A more carefully chosen argument on the other hand will imply that
n
| Accy. | +|Upd . |2 mlog—
’ m

[0115] The impossibility of batching updates holds if it is assumed that the accumulator is non-
trivial. This is provided in Theorem 4, which states: let Acc be a correct and secure accumulator
scheme as per Definitions 6, 7 and 8. If the size of the accumulator Acc does not grow linearly
with the number of elements in it, then the updates to the witnesses of the elements can be non-

trivial, that is, the size of the update information per update can be Q(1).

[0116] As proof of Theorem 4, consider an empty accumulator Acc,. A series of n updates of

the form upd, = (Insert,i) for 7 €[n] can be issued, where 7 is arbitrary. Let Upd YL, be the
update information that is released as a result of the 7 th update, where X, = and X, =[i] for
i e[n].Let w denote the witness of i with respect to the set X, for 0<7<n . Forevery i [n],

W,-O can be computed using just Acc, and PK . Note that all the final witnesses, that is, W' for

every i e[n] are computed using just the update information upd, for i €[n]. Using these
updated witnesses, it is possible to deduce which of the n elements have been added to the
accumulator by running the public verification algorithm Verify on each of the witnesses. This

procedure also works completely based on the correctness and security of the accumulator. The
only new information that could have been obtained as compared to the initial state are the
update information and the accumulator itself. Since any number of the 7 elements could have

been added and the user can recover this information exactly,

Z |upd, |+ | Acc = log2" =n

i€[n]

[0117] Since | Acc|=o(n),
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Y lupd, |=Q(n)

i€[n]
[0118] which proves the claim, assuming that update information per update is of a uniform
size. In some embodiments, to remove this assumption, the size of the update information could

be made to be appropriately large.

[0119] Note that the above impossibility holds even in the case of insert-only accumulators.
Furthermore, even if it is assumed that the requirement of some secret key SK in the generation
of witnesses and update information and/or scenarios considered herein where the witness and
update information is generated at the time of insert and can be updated for further use, the proof
above would still show that any functional (potentially updated) update information would have
to be non-trivial as long as the accumulator is non-trivial. Thus, one cannot hope to batch updates

to witnesses in any meaningful setting.

[0120] Itis easy to see how to realize an accumulator from a vector commitment that has no a
priori bound on the size of the vector that will be committed. Thus, the impossibility result
trivially holds for such vector commitments as well. The result also holds for vector
commitments that have an a priori bound on the size of the vector that will be committed,

provided the vector commitment is concise in comparison to the bound.

[0121] The impossibility result can be interpreted in the following way. The witnesses can
depend on the set of elements in the accumulator at given time. In this sense, it is clear that
updates cannot be batched as the updates can convey information about the elements that have
been inserted or deleted from the accumulator so that the updated witnesses also reflect the

current set of elements in the accumulator.

4 ACCUMULATORS

[0122] In this section an accumulator scheme is described. As a starting point, consider an
accumulator which satisfies all the requirements, but for being concise, as described by the

following functions:

[0123] 1) Setup(1*): Sample the description of a hash function H that maps A -bit

numbers to unique O (1) -bit primes. Set M = {0,1}* . Output (pp, 4,) = (H,1).
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[0124] 2) Add,(4,,x): Check whether H(x)| 4, If so, set 4, = 4,. Otherwise set
AH—I - Af H(X) - Output (Ar+1>upmsgt+l - null) .

[0125] 3) Del ,(4,,x): Check whether H(x)| 4,.If so, set 4, = A(Tx) . Otherwise set

A, =4, Output (4., upmsg,, =null).

[0126] 4) MemWitCreate,, (4, x): Output W, =null.

[0127] 5) NonMemWitCreate,, (4,,x) : Output #, =null.

[0128] 6) MemWitUp,, (4, x,w.,upmsg,.,): Output w," =null.
[0129] 7) NonMemWitUp,, (4,,x,u,,upmsg,,,): Output utt = null.

[0130] 8) VerMem, (4, x, w'): Check whether H(x)| A, . If so, output 1. Otherwise, output |

[0131] 9) VerNonMem  (4,,x, u'): Check whether H(x)| A . If so, output | . Otherwise,

output 1.

[0132] The accumulator described above satisfies correctness and security requirements. An
issue is that in the worst case, | 4, |[=O(Ar). In some embodiments, a way to solve this technical

problem is to put this product accumulator in the exponent, i.e., construct an accumulator of the

form

[0133] where g is the generator of a group G. This is similar to the starting point of the
construction in [BBF18]. However, the issue now is that instead of actually working with

erSH (x), embodiments work with erSH (x) modulo the order of the group G and for
t t

soundness, embodiments can rely on the fact that the order of the group is unknown. In fact,
[BBF18] prove security of the accumulator based on the Strong RSA assumption. In this
scenario, however, one has to start releasing witnesses as opposed to the case of the trivial
construction. The witnesses in [CF13] and [BBF18] are, in some form, an "accumulator" of all

the other elements in the accumulator. Thus, may need to be updated as the accumulator changes.
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For these reasons, scenarios where MemWitCreate(4,, x) is executed as a part of Add (4, x)

and the witness is only updated going forward are considered, as opposed to being able to
generate a witness for any arbitrary element at an arbitrary time instant. Equipped with these

intuitions, systems and methods according to various embodiments will be further described.

4.1 An Insert-only Accumulator

[0134] First an insert-only accumulator construction will be discussed. Note that the lower

bounds discussed herein apply in this case as well. Witnesses for non-membership of elements

can be ignored. The accumulator A to the set X ={x }, . (X can refer to a total accumulated

ielg]
amounts of value in the system, x; can be an amount held by user 7, and ¢g can be the total number

accounts), according to embodiments, takes the form as follows and as illustrated in FIG. 5A:

AX = (gZE[q]x'HJE[q]\{I}ZJ , gHIE[q]z’ , qj

[0135] where z, can be a random value associated with user 7, and g can be a generator. 7 and

q are described above, and j can refer to users other than 7. The accumulator output may be
referred to as an accumulated state and may be a tuple comprising a first accumulated state
element, a second accumulated state element, and a third accumulated state element, which may

respectively correspond to the three elements in the parenthesis in the equation above.

[0136] As an illustrative example, there can be three users that are associated with user states.
The accumulated state can accumulate the user state of the first user, the user state of the second
user, and the user state of the third user. The accumulated state can be stored in the most recent

block of the blockchain. In some embodiments, the accumulated state can be stored in the block

header of the most recent block of the blockchain. For example, the accumulated state, when
there are three accumulated user states, can be equal to (g¥122%st¥223214X32221 | 227371 3y

Here, x1 can refer to an amount with of a first user, user 1. z2 and z3 may be random values

associated with second and third users (user 2 and user 3), respectively.

[0137] The first accumulated state element can be created based on each first user state
element (e.g., amount) and each second user state element (e.g., random value) of each user in

the verification network. The first user state element can be generated by raising each first user

29



10

15

20

25

WO 2021/062258 PCT/US2020/052864

state element to the power of the product of every second user state element other than the
second user state element associated with the first user state element. Each of these
exponentiations already by to a power of a generator g and can then be multiplied together. For

example:

(gx1)2223 . (gx2)2123 . (gx3)2122

[0138] This equation is equivalent to the first element of the accumulated state tuple illustrated

above.

[0139] The second accumulated state element can be created based on each second user state
element of each user in the verification network. The second accumulated state element can be
created by multiplying each second user state element in the exponent of the selected generator

value.

[0140] The third accumulated state element can be the number of user states in the verification
network. For example, the above example would have three different users corresponding to
three different user states. Therefore, the third accumulated state element would be a value of 3.
However, in some embodiments, a user may be associated with more than one user state. For
example, the user may have multiple accounts in the verification network. The third accumulated
state element represents the number of user states rather than the number of users in the

verification network.

[0141] The witness for membership of an element x, € X (k denotes an identifier for a user, x

would be an amount associated with user &, and X is the total amount of value in the system)

would be as follows and as illustrated in FIG. 5B:

ka = (gzlelﬂ\{k}x’HJE[q}\{hk}z] , gHIE[q}\{k}z' ’kj

[0142] which is essentially the accumulator of all the other elements in X (the pi symbol
above symbolizes a proof and is not a variable in the equation above). The witness may be
referred to as a user proof and may be a tuple comprising a first user proof element, a second
user proof element, and a third user proof element (respectively corresponding to the elements in

parenthesis in the above equation). The element x;, may be part of a user state (x, z,). The
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elements in the parenthesis in this equation may be examples of a first user state element, and a
second user state element, respectively. Assume that the random values z; can be publicly
generated, say by some pseudorandom function. In some embodiments, any real randomness is
not required in the z;s, if there is some concise representation of them. This is clear from the fact
that various embodiments may publish the key for the pseudorandom function to enable its

public evaluation. Then, the verification of the witness W, would simply be the following

checks, comprising computing a first verification value, as illustrated in FIG. 5C:

Z X, Z; X;
W w3 x k k
w.k 3 w ko= ( ngelql\ﬂf} Ier[qu,k}Zf j . ( ngdql\(k}Zf j

xk,l xk,2

i Lagnons® el Ligna

= g M g
— gzxe[q]x’Hje[q]\{l}zf
= AX,l

and a second verification value, as illustrated in FIG. 5D:

Z Z
w., .3 k
w k= Hze{q]\(k}z’
X 2 g

[0143] The computation of and examples of the first and second verification values is

described below with respect to FIG. 4.

[0144] Note that the above design also describes a procedure to add an element to the

accumulator. To add an element x,,; to X,

AX, — (Azqﬂ ‘quﬂ Azq+1 A

X1 X2 2x 2 sy 3 +1)

[0145] where X' =X U{x

;1) - Furthermore, the witness for membership of x,,; can be
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[0146] The witnesses for membership of elements can also be updated. For instance, on adding

X,,; to the accumulator, with the update information (xq g+1), the witness w, can be

+1°

updated for membership of x, as follows:

4 x 4
" g+l . g+l g+l
ka (ka,l ka,Z > ka,Z > ka,3

[0147] One can easily verify that the verification of membership of x, € X" would succeed.

[0148] The final piece of the puzzle is security, namely, soundness of the verification
procedure. Since various embodiments are dealing with an append-only accumulator and not
dealing with witnesses for non-membership, the security requirement would be that it is
computationally infeasible for an adversary to produce a witness for an element x’ that is not in

the accumulator. This can be analyzed as follows. Suppose an adversary comes up with an

element x and a witness w= (W, ;,w,,,W, ;) for the membership of x. First, check that

1<w <A, Let w =k and 4 ;=q. Then, check that

z
k =
W AX,z

[0149] If the check passes, then, with overwhelming probability,

| P
— iclg Mk} !

wx,2 - g

[0150] This is because

w
gHre[q]\{k}z’

[0151] is anon-trivial z,th root of unity. Such elements can be hard to find without knowing

the order of the group. In particular, this means that the order of the non-trivial element ¢ has

been computed. As a final check:

x,1 : x,2 -

[0152] Note that
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z x
k. k =
ka ni ka 2 AX ni

[0153] and, with overwhelming probability, w,_, = w, ,. Hence

wx,l _ XX
xk,2
ka,l
[0154] For the case where x, # X
B=—=21,and
ka,l
— xk—x
7 ka,2

[0155] thus determining S, a z, th root of a non-trivial element » which would be hard to find
in groups of unknown order. However, the following attack can be possible: set x, —x =z, and

Weg =W 1 W, - Then, the verification check would pass. To guard against such attacks, various

x,1
embodiments can ensure that x, —x # z, . This can be done by having z, be exponentially (in 4 )

larger than x, —x.

[0156] FIG. 3 shows a flowchart of an authorization request message processing method
according to embodiments. The method illustrated in FIG. 3 will be described in the context of a
user device 302 generating an authorization request message for an interaction between the user
device 302 and a receiver device 306. The user device 302 can provide the authorization request
message to a validation computer 304 and can receive an authorization response message
indicating whether or not the interaction is authorized. For example, in some embodiments, an
interaction can be a transaction and may be authorized when the validation computer 304

includes the transaction in a block of a blockchain.

[0157] Prior to step 320, in some embodiments, the user device 302 can initiate an interaction
(e.g., a transaction, a data transfer interaction, etc.). For example, a first user of the user device

302 can select to perform a transaction with a second user of the receiver device 306.
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[0158] At step 320, the user device 302 can generate an authorization request message for the
interaction. The authorization request message can comprise a user state and a user proof. In
some embodiments, the authorization request message can further comprise interaction data, a
date, a time, a user device identifier, a receiver device identifier, etc. The user state can be a tuple
that comprises one or more elements. For example, the user state can comprise a first user state

element and a second user state element.

[0159] The first user state element can be an amount (e.g., a balance, etc.) associated with an
account of the user of the user device 302. For example, a first user state element can be x,
where k denotes an identifier for a user (e.g., user 1 is k = 1) and x denotes an amount (e.g.,
$5.00). In some embodiments, the first user state element can be created based on the amount.
For example, the first user state element can be created based concatenating, or otherwise

combining, the amount with a nonce.

[0160] The second user state element can be can be a random value. For example, a second
user state element can be z,, where k denotes an identifier for a user (e.g., user 1 isk=1) and z
denotes the random value (e.g., 18389828332). In some embodiments, the second user state
element can be an output of a hash function. For example, a value that indicates a particular
position in a vector can be input into a hash function to obtain the second user state element. For
example, each user can be assigned a particular position in a vector used to create an
accumulator commitment. The first user can be assigned the first position in the vector (e.g., a
value of 0 or 1). The second user state element for the first user can be equal to the output of a

hash function (e.g., H(0) or H(1)).

[0161] The user proof, of the authorization request message, can be a tuple that comprises one
or more elements. For example, the user proof can comprise a first user proof element, a second
user proof element, and a third user proof element. The user proof can be a witness, as described
herein. The witness can be a proof of membership of an element in an accumulated state. For
example, the user proof can be a proof that the user state is an element in the accumulated state,
which may be stored in each block of the blockchain. Stated differently, the user proof can be
used by a user to prove that his or her user state is present in the accumulated state. The

accumulated state may be an compact aggregation of user states in the blockchain network.
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[0162] The first user proof element and the second user proof elements can be utilized by a
validation computer to verify that the user state is included in the accumulated state of the most
recent block in the blockchain. As such, the validation computer 304 can validate that the user
device 302 is associated with a sufficient amount (e.g., funds) to perform the interaction (e.g., a

transaction).

[0163] The third user proof element of the user proof can include a value of the number of
elements accumulated so far in the accumulated state. For example, if there 500 accounts
associated with 500 users in the blockchain network, then the third user proof element can be a

value of 500 to represent the number of accounts.

[0164] As an example, the accumulated state can be as follows an as illustrated in FIG. SA:
AX — (gZIE[q]x'HJE[q]\{I}ZJ gHIE[q]z' qj )

[0165] As an example, the user proof can be as follows an as illustrated in FIG. 5B:

&

w o= (gzxe[ql\{k}x‘er[ql\{x,wzf ’ gHIE[q]\{k}z’ ’kj'

[0163] These equations are described in detail above.

[0166] In some embodiments, prior to generating the authorization request message, the user
device 302 can update the user proof based on interactions included in a blockchain since a last
time the user proof was updated. For example, the user device 302 can update the user proof
using one or more value changes (&, where k is a specific user and the delta symbol represents
the change) from each interaction performed since the last time that the user device 302 updated
the user proof. For example, the starting user proof can be (g*2%37¥3%2, g%2%3 1), The
second user proof element and the third user proof element do not need to be updated. To update
the first user proof element with value change §, (e.g., a transaction amount of a transaction

conducted by a second user, user 2), the user device 302 can raise the first user proof element

(eg, g

(Z,) associated with the user state that corresponds to the change in amount &,. For example,

X2231X322) 1o the exponent of the change in amount &, multiplied by the random value
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8,2
(g¥2Zat¥372) %2 — g(x2+62)23+X322  These can represent the new first user proof element,

which incorporates the transaction amount §,.

[0167] As such, the user device 302 can update the user proof based on the interactions
included in the blocks of the blockchain that have been added since the user device 302 last
updated the user proof.

[0168] At step 322, after generating the authorization request message, the user device 302 can
provide the authorization request message to the validation computer 304. In some embodiments,
the user device 302 can broadcast the authorization request message to a plurality of validation
computers in the verification network, where the validation computer 304 is one of the plurality

of validation computers.

[0169] At step 324, after receiving the authorization request message, the validation computer
304 can verify the user proof. For example, the validation computer 304 can verify that the user
proof provides sufficient proof that an amount of the interaction is equal to or less than an
amount indicated by the first user state element. For example, the validation computer 304 can
verify that the user has sufficient funds. The validation computer 304 can determine whether or
not to include the interaction in a new block of the blockchain. Step 324 is described in further

detail in FIG. 4.

[0170] At step 324, after evaluating the authorization request message and determining
whether or not to include the interaction in the new block of the blockchain, the validation
computer 304 can generate an authorization response message comprising an indication of

whether or not the interaction is authorized.

[0171] At step 328, after generating the authorization response message, the validation

computer 304 can provide the authorization response message to the user device 302.

[0172] In some embodiments, at step 330, after generating the authorization response message,
the validation computer 304 can provide the authorization response message to the receiver

device 306 which with the user device 302 is performing the interaction.
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[0173] In other embodiments, at step 332, after receiving the authorization response message
from the validation computer 304, the user device 302 can provide the authorization response

message to the receiver device 300.

[0174] FIG. 4 shows a flowchart of a verification method according to embodiments. The
method illustrated in FIG. 4 will be described in the context of a user device providing an
authorization request message to a validation computer. The validation computer can verify that
a user of the user device is associated with an amount that is sufficient to perform an interaction.
In some embodiments, the validation computer can authorize the interaction based on
verification of the user and/or user device. Steps 410-480 of FIG. 4 may be performed during
step 324 of FIG. 3. For example, the authorization request message provided from the user
device 302 to the validation computer 304 can be the authorization request message received by

the validation computer at step 410.

[0175] At step 410, the validation computer can receive the authorization request message
from a user device. The authorization request message can comprise a user state and a user proof,
as described herein. The user state comprises a first user state element and a second user state
element. The user proof comprises a first user proof element, a second user proof element, and a

third user proof element.

[0176] As an illustrative example, the user state can represent information about the user. For
example, the user state (e.g., (X, Z;)) can be a tuple including an amount included in an account
associated with the user (e.g., the first user state element x;,) and a random value (e.g., the
second user state element z;). The values included in the user state can be any suitable numerical
values. For example, the first user state element x; can have a value of $100. The second user
state element z, can have a value of 0, 5, 100, etc. In this example, the user state can be

associated with the first user. Therefore, the user state can be written as (x;, z;).

[0177] The user proof comprising the first user proof element, the second user proof element,

and the third user proof element can be a witness for membership of an element x, € X (e.g., the

first user state element). In some embodiments, the first user proof element and the second user
proof element can be data items that may provide proof that the first user state element xy, is

included into an accumulated state of the most recent block in a blockchain. The third user proof
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element can indicate which of a number of entries in the accumulated state the user is associated
with (e.g., which of a number of first user state elements from a plurality of users included in the

accumulated state is the user associated with).

[0178] As an illustrative example, there can be three different first user state elements
associated with three different users. If the first user is assigned to amount 1 (e.g., of exemplary
amounts 1, 2, and 3), then the third user proof element of the first user can be equal to 1 (e.g.,

k = 1). The first user proof element and the second user proof element can be generated based
on the user states of the second user and the third user and may not need to be generated based
on the user state of the first user. Furthermore, the first user proof element can be generated
based on both the amount and the random value of the user states of the second user and the third
user. Whereas, the second user proof element can be generated based on the random value of the

user states of the second user and the third user. For example, the first user proof element can be

(g*2%3¥3%2)) The second user proof element can be (g%2%3). Therefore, the user proof

received by the validation computer can be (g*2%37¥3%2, g%2%3 1)

[0179] In some embodiments, the authorization request message can also comprise interaction
data. For example, the user device can include interaction data related to the interaction into the
authorization request message for the interaction that the user device is attempting. For example,
the interaction data in the authorization request message can include an interaction amount. In
some embodiments, the interaction data can include a transaction amount and unspent
transaction outputs (UTXOs). In other embodiments, the interaction data can include
information associated with the user device 302 and/or the user (e.g., a token or account
information, an alias, a device identifier, a contact address, etc.), information associated with the
receiver device 306 and/or the user of the receiver device 306 (e.g., a token or account
information, an alias, a device identifier, a contact address, etc.), one-time values (e.g., a random

value, a nonce, a timestamp, a counter, etc.), and/or any other suitable information.

[0180] At step 420, after receiving the authorization request message, the validation computer
can compute a first verification value. The validation computer can determine the first
verification value by multiplying the first user proof element raised to the power of the second
user state element, and the second user proof element raised to the power of the first user state

element. In some embodiments, the first verification value can be utilized to verify the first user
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proof element, whereas the second verification value can be utilized to verify the second user

proof element.

[0181] As an example, the validation computer can determine the first verification value by

multiplying the first user proof element raised to the power of the second user state element (e.g.,

(g

element (e.g., (g%2%3)*1). Multiplying these two factors can result in
g g

XpZ3tX 3%2)%1) and the second user proof element raised to the power of the first user state

x223+x322)21 .

Z2Z3)%1 = ¥1%2Z3+X2Z3Z1+X37221  Thig term can be characterized as the generator g raised

(g

to a power that is based on the amounts and random values of each user in the system.

[0182] At step 430, after computing the first verification value, the validation computer can
compute the second verification value by raising the second user proof element to the power of

the second user state element. As an example, the validation computer can determine the second

verification value by raising the second user proof element (e.g., g %2%3) to the power of the

second user state element (e.g., Z1). Performing this exponentiation can result in (gZZZ3)Z1 =
g#2%3%1 This represents the generator raised to a power based on all random numbers, but

without the amounts.

[0183] In some embodiments, rather than receiving the user state from the user device, the
validation computer can obtain the user state from another data source using the user identifier,
k. For example, the third user proof element can be equal to 1, which can be an identifier 41 for a
first user, user 1. The validation computer can determine that the first user state element and the
second user state element that are used in determine the first verification value and the second

verification value should be associated with the first user (e.g., (x4, Z1)).

[0184] In some embodiments, the validation computer can retrieve an accumulated state
comprising the first accumulated state element and the second accumulated state element from a

previous block in a blockchain maintained by the validation computer prior to step 440.

[0185] At step 440, after determining the first verification value and the second verification
value, the validation computer can compare the first verification value to a first accumulated
state element of an accumulated state. As described herein, the accumulated state can be the

following (which is described in detail above):
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AX = (gZ'E[Q]xIHJE[q]\{’}ZJ , gH’E[q]ZI R qj .

[0186] In this example, there can be three users that are associated with three user states. The
accumulated state can accumulate the user state of the first user, the user state of the second user,
and the user state of the third user. The accumulated state can be stored in the most recent block
of the blockchain. In some embodiments, the accumulated state can be stored in the block header
of the most recent block of the blockchain. For example, the accumulated state, when there are

three accumulated user states, can be equal to (17223t ¥223Z1X32221 | 222371 3

[0187] The validation computer can compare the first verification value (determined in step

420) of g¥122Z3+X2Z3Z1%X32221 4 the first accumulated state element (e.g.,

x 12223"'9622321-"9632221) of the accumulated state. In this example, the validation computer

g
determines that the first verification value matches the first accumulated state element stored in
the blockchain. The validation computer can then proceed to step 450 to verify the second

verification value.

[0188] In some embodiments, if the user device is malicious and attempts to provide a user
state that, for example, includes a first user state element (e.g., amount) that differs from the
actual amount as included in the accumulated sate, then the validation computer will determine
that the first verification value does not match the first accumulated state element. For example,
if the user device provides a fake amount f (e.g., attempting to perform a transaction for which

the user does not actually have the required funds), then the validation computer would
determine a first verification value of g/%2%st¥22321%X3%221 yhich would not match the first
accumulated state element of g*1%2%3 TX223217X3Z271 pecause the fake amount f alters the

computation such that the result is not the same as the situation in which the actual amount X is

used.

[0189] At step 450, the validation computer can compare the second verification value to a

second accumulated state element of the accumulated state. The validation computer can

compare the second verification value (determined in step 430) of g#2%3%1 to the first

accumulated state element (e.g., g“2%3%1) of the accumulated state. In this example, the
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validation computer determines that the second verification value matches the second
accumulated state element stored in the blockchain. The validation computer can then proceed to

step 460 to authorize the interaction of the authorization request message.

[0190] In some embodiments, if the user device provides a fake amount (e.g., the first user
state element), but provides the correct random value (e.g., the second user state element), the
validation computer can determine that the first verification value does not match the first
accumulated state element, but that the second verification value does match the second
accumulated state element. This is because, the second verification value is not dependent upon

the fake amount (e.g., the first user state element).

[0191] In some embodiments, the validation computer can compare the third user proof
element to the third accumulated state element of the accumulated state. For example, the
validation computer can determine whether or not the third user proof element is a value less
than or equal to the third accumulated state element. The third accumulated state element can be
the total number of user states in the verification network. Therefore, if the user device provides
a third user proof element that is greater than the third accumulated state element, then the user

device is providing incorrect information to the validation computer.

[0192] At step 460, if the first verification value matches the first accumulated state and the
second verification value matches the second accumulated state element, the validation computer
can authorize the interaction of the authorization request message. In some embodiments, the
validation computer can also determine if the interaction amount included in the authorization
request message is less than or equal to the first user state element (e.g., amount). If the
interaction amount is less than or equal to the first user state element, then the user device can
determine that the user has sufficient funds for the interaction. If the interaction amount is greater

than the first user state element, then the validation computer can deny the interaction.

[0193] After authorizing the interaction, the validation computer can include at least the
interaction amount into a new block of the blockchain maintained by the validation computer.
For example, the validation computer can propose a new block including at least the interaction
amount of the interaction and any number of other interactions to the verification network. The
verification network can perform any suitable consensus protocol to determine whether or not to

add the new block to the blockchain. If the computers of the verification network determine to
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add the new block to the blockchain, then the validation computer can generate an authorization
response message indicating that the authorization request message is authorized. The validation

computer can provide the authorization response message to the user device.

[0194] In some embodiments, the validation computer can update the accumulator state based
on the change in value to the amount (e.g., first user state element) based on the interaction
amount. For example, the validation computer can update the accumulator state based on each
performed interaction that is included into the new block of the blockchain. If 50 interactions are
included in the block, then the validation computer can update the accumulator based on the 50

changes in value (e.g., 6;).

[0195] As an example, the validation computer can update the accumulator state based on the
authorized interaction described in reference to FIG. 4. The change in the amount (e.g., first user

state element) can be &;. Specifically, the validation computer can update the first accumulated
state element based on the second user proof element (e.g., g#2%3) and the change in amount &,

which is also equal to the interaction amount.

[0196] The validation computer can raise the second user proof element (e.g., g “2%3) to the

. 5 A
exponent of the change in amount &;. For example, (g72%3)°* = g#273%1 The validation

ZyZ3

computer can then multiply the above value g 61 (e.g., an intermediary value) with the first

accumulated state element of g TX3Z221 For example:

gx12223+x22321+x32221 .g222351 — g(xl+61)2223+x22321+x32221

[0197] As such, the validation computer may only need to update the accumulated state based
on changes in value (e.g., interaction amounts) for first user state elements used in interactions in
the new block of the blockchain. The validation computer does not need to recompute the
exponents of the accumulated state elements that include user state elements not used in

interactions in the new block.

[0198] In some embodiments, the user device can locally update the user proof in a similar

manner to how the validation computer updates the accumulated state.
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4.2 Construction

[0199] Next, a construction of the accumulator utilized in various embodiments (e.g., in FIGs.

3-4) is provided. The following 5 functions can be utilized.

[0200] 1) Setup(1*): Sample the description of a group G «——GGen(A) of unknown order

in the range [a,b] where a, b and a —b are exponential in A and a random element g G,

In some embodiments, a random element of G would be a generator of G with overwhelming

probability, and at the very least, may not be of low order. Let | 5|= m . Sample the description of

a hash function // that maps A -bit numbers to unique primes from the set Primes(m +1)\[0,5].

Set M =[0,a) . Output (pp, 4,) = (G, g H,a,b),(1,£,0)).

[0201] 2) Add(4,x): Let z,., = H(t+1).

Set A, = (A7 A5, 45, 4,5 +1)
Output (4, upmsg,, = (x,1+1)).
[0202] 3) MemWitCreate, (4,,x) : On an execution of Add (4 _,x),

MemWitCreate , (4,,X) outputs W, = 4.

[0203] 4) MemWitUp, (4,,x,w;,upmsg, ,): Parse the inputs 4, = (AT,I,AT,Z,ATJ),

w.=(wi,,wi,,w,,) and upmsg,, =(upmsg,.,, upmsg,.,, ). Let z=F(upmsg,,,,). Output

x,1° "x,22 " x3

1 t Y r \UPMSS4 ) t YV t
wx - ((wx,l) '(wx,Z) 7(wx,2) 7wx,3

[0204] 5) VerMem, (4,,x,w,): Parse the inputs A, = (AT,I,A,,Z,A,J) and w, = (w’ Wi, Wl )

x,1> " x, 2> T x 3

Let z=H (w;,3 + l) . Check whether:
0<x<a
O < W)tc,S < A7,3

(w’ )Z =4

x,2 1,2
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t Y t Y\
(wx,l) '(Wx,z) _At,l

If so, output 1. Otherwise, output | .

4.3 Completeness and Efficiency

[0205] The correctness of the scheme follows directly from inspection. Also note that each can
operation involve, at the most, one hash computation, three exponentiations and one
multiplication in terms of computational difficulty. The size of the accumulator can be constant,
namely, two group elements, aside from a counter that keeps track of the number of elements

that have been added to the accumulator, which grows logarithmically. Assuming that not more
than 2* additions are performed, the size of the counter is also a constant, limited by A bits.

This is also true of the witnesses for membership.

5 VECTOR COMMITMENTS

[0206] The starting point of a new vector commitment is the insert-only accumulator designed

in Section 5. Recall that the accumulator A to the set X ={x,},, takes the form

A

X

_ ( gZie[q]\{k}xi Hje[q]\{i}zj g

Hie[q]\{k}zi ’ qj
[0207] where z, are random odd strings. The witness for membership of an element x, € X

would be

X z. Zz.
— ZiE[Q]\{k} IH]E[Q]\{I'JV} 7 HiE[Q]\{k} !
ka - (g & > k

[0208] which can be the accumulator of all the other elements in X . The strings z, can be

publicly generated (e.g., by some pseudorandom function). In some cases, various embodiments

may not require any real randomness in the z; s, just that there is some concise representation of

them. This can because embodiments can publish the key for the pseudorandom function to

enable public evaluation.
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[0209] The crucial observation is the accumulator is sensitive to the order in which elements

are added. This order can be thought of as specifying the index in the vector that is being

committed. Furthermore, since the z;s can be generated publicly, there is no a priori bound on

the size of the vector that is being committed. Furthermore, the exponent is linear in the
messages that are being committed. Thus, in order to change the message committed at index /

by &, it is enough to perform the following operation:
A — AX E génie[q]\{k}zj

[0210] This means that one only need know the index 7/ and § in order to perform an update

on the 7th message in vector. Let

Hie[q]\{k}zj

e}
£=8
[0211] Firstly, note that £ can be generated publicly. But, this would be a computationally

intensive task — one would have to generate all the z; s for je[g]\ {7} and then perform ¢ -1

exponentiations. However, notice that

[0212] Thus, if it is assumed that the party involved in the update of the 7th element has access

to w_, then it can be assumed that there is access to # and £ does not need to be recomputed

every time an update is issued. However, this limitation can be solved. For instance, in the case
of a blockchain, a sender who wants to send another user some funds will not be able to update
the vector commitment corresponding to the changes reflected in the recipient's account

efficiently unless they have access to the witness of the recipient.

[0213] If an update at index 7 is performed, the witness corresponding to the i th message does

not change. For k = i, the witness for membership of the element x, can be updated by

performing the following operation:

ol]. -
W'xk ) — ka E g Hle[q]\{l,k}
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z
_ ol Laanan™
r=8

[0214] y can be generated publicly. However, this may be a computationally intensive task.

For example, all the z; s for j €[¢q]\{i,k} may need to be generated and then g -2

exponentiations may be performed.

[0215] For this purpose, various embodiments can make the z; s special. The z;s can be
generated using a key-homomorphic pseudorandom function [BLMR15]. z, = F, X, () canbe
defined for some value ¢ , where K, is derived from / in some public deterministic way (e.g.,
utilizing an additional pseudorandom function). A key-homomorphic property can include:

Z;rz; :FKI.+KJ (7()

[0216] In this way, if the following were to be kept as part of the vector commitment,

A=K,

ie[q]

[0217] given i,k , then one can efficiently compute £ and y defined above. A way to realize

this, according to various embodiments, is to consider the function

[0218] where £, s are random odd strings and « is a fixed random string. Then keep, the

following can be kept as a part of the vector commitment,

A=>¢,

ie[q]

[0219] Now, the following difficult computational task is presented, but can be solved by

embodiments. Given g, o, A, compute
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[0220] This appears difficult to do efficiently without knowing ord(G) . Notice that given
a” mod ord(G), y would be easy to compute. There however does not seem to be a way to

enable users to compute " mod ord(G) without having them learn ord(G) which would

compromise the security of the scheme. Suppose the bit-length of A is at most m , one could

enable this computation by publishing for 7 € [m]:

i
0:2

Yi—&

[0221] and then one can efficiently compute:

y= 11 »

ie[m]:AI-ZI

[0222] However, note that computing each y, even to setup the vector commitment would not
be efficient unless ord(G) is known. This can be done, for example, in RSA groups where
during setup, the prime factorization of the Blum integer N is known. This can be used to
compute ord(G) =¢(N) . But, in general, GGen may not ever have access to the order of the
group. Embodiments can solve this by allowing GGen to also output a random large multiple of
the order of the group. The conjecture is that, based on the factoring assumption, it will still be
hard to recover ord(G) . If GGen ever gets explicit access to ord(G) during its computations, as
in the setup of RSA groups, this is certainly achievable. Even in the case that it does not, one can

certainly conceive that it might be possible to generate a random large multiple of ord(G)

without having access to ord(G) . Given this large multiple, say I', compute &” mod I' can be

computed efficiently given « and A and then use that to compute y . Note that

a® mod T

y=8
[0223] This is because, for any a,b,c, (a mod b) mod ¢ = a mod ¢ if there exists an 7 € N

such that » = cn . Since there exists an 77 such that I' =7 -0rd(G),

A (aA mod F) mod ord(G)

a” modl' _ A

A
a“ modord(G) _
g =8

y=£&
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[0224] This modified group generation procedure is formalized below followed by a
description of vector commitment procedures according to embodiments. The definition from
[CF13] can be modified in order to accommodate the commitment of messages in indices of the
vector that have not been used before, using the method Add . Owing to the modifications in the
construction, embodiments may need slightly modified hardness assumptions in order to prove

position binding.

5.1 Modified Group Generation

[0225] Existence of a randomized polynomial-time algorithm GGen'(1), can be assumed, that
takes as input the security parameter A and outputs three integers a,b,I" along with the

description of a group G of unknown order in the range [a,b] such that a,b and a —b are all

integers exponential in A, and I =7-ord(G) where 7 is a random integer exponential in A .

5.2 Construction

[0226] - KeyGen(1"): Sample the description of a group G «——GGen'(A) of unknown order
in the range [a,b] where a, b and a — b are exponential in A along with an integer
I'=7-ord(G) where 77 is a random integer exponential in A . Sample a random element
2<> G and arandom prime o <>—Primes(m+1)\[0,5]. Note that a random element of G

would be a generator of G with overwhelming probability, and at the very least, would not be of

low order. Let | b |= m . Sample the description of a hash function /A that maps A -bit numbers to

unique primes from the set Primes(m +1)\[0,5]. Set M =[0,a) . Output

(pp,C) = ((G,g,O{,H,a,b,r),(l,g,0,0)) .
[0227] Compp(Xy, ..., X4): Compute
z, =" modT

- Forielq]

2

X Z .
= gzielql ’Hje[ql\{f} /
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- C,=¢q
- C=2 O
Output C =(C,,C,,C,,C,) and aux=(x1,...,xq).
[0228] Openpp (x,i,aux) : Let aux = (x4, ..., Xq). If x # x4, output L. Otherwise, compute
5 For je[q]\{i},
z =" modT

J

X . Z
Zje[q]\{i} J er[q]\{i,j} k

[T
jelaiy?
10 - AL3 =i-1

“ A= Z/e[ql\{i}H(j)
Output A, =(A, LA, A AL
[0229] Add, (C,x,i): If i #C,+1, output L. Let
z=a"” modT
15 Set
C'=(C1-C1LCLiC + H )
Output (C',upmsg = (add, x,17)) .

[0230] OpenOnAdd  (C',x,i): On an execution of Add, (C,x,7), OpenOnAdd, (C",x,)
outputs A, =C .
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[0231] Update,,(C,6,i): Ifitis not the case that 0 </ <C;, output 1. Compute

A =C,-H()
and
y, = a" mod T
5  Set
C'=C,-g""
and

C'=(C,G,,GLC)
Output (C',upmsg = (upd, 8,7)) .

10 [0232] ProofUpdate,(C,A,, upmsg) : Parse upmsg . If i = upmsg;, output A;'= A, Otherwise,

the following cases are present:

- upmsg, =add: Let
z =" modI’

1

[0233] Set

1,22

15 A= (NG AR AT AL A, +HG))

- upmsg, = upd: Compute

Ai - Ai,4 _H(i)
[0234] and
Y. = o’ mod T

20 [0235] Set
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"V Sy,

il A1,1 g
[0236] and

A;:UMﬂAmJMpAm)
Output A"

[0237]  Ver,,(C,x,i,A,): Parse the inputs C =(C,,C,,C,,C,) and A, =(A, A, A, A,,).

Let

H(Ai,3 +1)

zZ=a mod I’
[0238] Check whether:
-0<x<a

- Ay +H@) =G,

S0<A,, <G,

- (Ai,l )Zi '(Ai,z )x = Cl

If so, output 1. Otherwise, output L .

5.3 Completeness and Efficiency

[0239] The correctness of the scheme follows directly from inspection. Also, all operations
involve (at the most) one hash computation, four exponentiations and one multiplication. The
size of the accumulator is constant, namely, two group elements, aside from a counter that keeps
track of the number of elements that have been added to the accumulator and a sum of hashes,
which grow logarithmically. Assuming that not more than 2* additions are performed, the size

of the counter and the hash-sum is also a constant, limited by (24 + m + 2) bits. This is also true

of the witnesses for membership.
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[0240] Embodiments provide for a number of advantages. For example, embodiments provide
for efficient storage of data. In particular, user states can be accumulated into an accumulated
state. The accumulated state, which is a binding commitment to a set of elements (e.g., user
states), compactly stores data that can be used to verify if a user has a sufficient amount (e.g., a
first user state element) for an interaction. The accumulated state can be small in size, such that it
can easily be included into each block of the blockchain. For example, the accumulated state can
be included in the block header of each block, thus allowing every node in the verification

network to easily verify user states.

[0241] Embodiments provide for a number of additional advantages. The number of sender
accounts in a blockchain network is usually large. Ethereum has about 70 million accounts even
though the throughput of the blockchain is not high (e.g., 5-10 transactions per second). Fast
access to such a large number of accounts requires significant resources, limiting the number of
nodes that could perform validator functions. Embodiments solve this problem and allow for
networks that want to spread far and wide without entrusting a few computers. Embodiments
allow not only a few select high computationally powered computers be validator nodes.
Embodiments allow for end users, with access to an ordinary laptop or mobile phone, to act as

validator computers as well.

[0242] Any of the software components or functions described in this application may be
implemented as software code to be executed by a processor using any suitable computer
language such as, for example, Java, C, C++, C#, Objective-C, Swift, or scripting language such
as Perl or Python using, for example, conventional or object-oriented techniques. The software
code may be stored as a series of instructions or commands on a computer readable medium for
storage and/or transmission. A suitable non-transitory computer readable medium can include
random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-
drive, or an optical medium such as a compact disk (CD) or DVD (digital versatile disk), flash
memory, and the like. The computer readable medium may be any combination of such storage

or transmission devices.

[0243] Such programs may also be encoded and transmitted using carrier signals adapted for
transmission via wired, optical, and/or wireless networks conforming to a variety of protocols,

including the Internet. As such, a computer readable medium may be created using a data signal

52



10

15

20

25

30

WO 2021/062258 PCT/US2020/052864

encoded with such programs. Computer readable media encoded with the program code may be
packaged with a compatible device or provided separately from other devices (e.g., via Internet
download). Any such computer readable medium may reside on or within a single computer
product (e.g. a hard drive, a CD, or an entire computer system), and may be present on or within
different computer products within a system or network. A computer system may include a
monitor, printer, or other suitable display for providing any of the results mentioned herein to a

user.

[0244] Any of the methods described herein may be totally or partially performed with a
computer system including one or more processors, which can be configured to perform the
steps. Thus, embodiments can be directed to computer systems configured to perform the steps
of any of the methods described herein, potentially with different components performing a
respective steps or a respective group of steps. Although presented as numbered steps, steps of
methods herein can be performed at a same time or in a different order. Additionally, portions of
these steps may be used with portions of other steps from other methods. Also, all or portions of
a step may be optional. Additionally, and of the steps of any of the methods can be performed

with modules, circuits, or other means for performing these steps.

[0245] The specific details of particular embodiments may be combined in any suitable
manner without departing from the spirit and scope of embodiments of the invention. However,
other embodiments of the invention may be directed to specific embodiments relating to each

individual aspect, or specific combinations of these individual aspects.

[0246] The above description of exemplary embodiments of the invention has been presented
for the purpose of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise form described, and many modifications and variations are possible in
light of the teaching above. The embodiments were chosen and described in order to best explain
the principles of the invention and its practical applications to thereby enable others skilled in the
art to best utilize the invention in various embodiments and with various modifications as are

suited to the particular use contemplated.

[0247] A recitation of “a”, “an” or “the” is intended to mean “one or more” unless specifically
indicated to the contrary. The use of “or” is intended to mean an “inclusive or,” and not an

“exclusive or” unless specifically indicated to the contrary.
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[0248] All patents, patent applications, publications and description mentioned herein are

incorporated by reference in their entirety for all purposes. None is admitted to be prior art.
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WHAT IS CLAIMED IS:

1. A method comprising:

receiving, by a validation computer, an authorization request message from a user
device, wherein the authorization request message comprises a user state and a user proof,
wherein the user state comprises a first user state element and a second user state element, and
wherein the user proof comprises a first user proof element, a second user proof element, and a
third user proof element;

computing, by the validation computer, a first verification value by multiplying
the first user proof element raised to the power of the second user state element, and the second
user proof element raised to the power of the first user state element;

computing, by the validation computer, a second verification value by raising the
second user proof element to the power of the second user state element;

comparing, by the validation computer, the first verification value to a first
accumulated state element of an accumulated state;

comparing, by the validation computer, the second verification value to a second
accumulated state element of the accumulated state; and

authorizing, by the validation computer, the authorization request message if the
first verification value matches the first accumulated state and the second verification value

matches the second accumulated state element.

2. The method of claim 1, wherein the authorization request message
comprises an interaction amount, and wherein the method further comprises:
updating, by the validation computer, the accumulated state based on the

interaction amount.

3. The method of claim 2, wherein updating the accumulated state based on
the interaction amount further comprises:

computing, by the validation computer, an updated first accumulated state
element by multiplying 1) the first accumulated state element and 2) the second user proof

element raised to the power of the interaction amount.
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4. The method of claim 1, wherein the first user state element is an amount
associated with a user, the second user state element is a random number, and the third user
proof element indicates which of a number of entries in an accumulated state the user is

associated with.

5. The method of claim 1, wherein prior to receiving the authorization
request message, the user device generates an authorization request message requesting

authorization for an interaction between the user device and a receiver device.

6. The method of claim 1 further comprising:
comparing, by the validation computer, the third user proof element of a third

accumulated state element of an accumulated state.

7. The method of claim 6, wherein authorizing the authorization request
message includes:

authorizing, by the validation computer, the authorization request message if the
first verification value matches the first accumulated state, the second verification value matches
the second accumulated state element, and the third user proof matches the third accumulated

state element.

8. The method of claim 1, wherein the first user proof element is derived
from a plurality of first user state elements and a plurality of second user state elements
associated with a plurality of user states, and wherein the second user proof element is derived

from the plurality of second user state elements associated with the plurality of user states.

9. The method of claim 1, wherein the validator computer maintains a
blockchain in a verification network, wherein the accumulated state is stored in each block of the

blockchain.

10. A validation computer comprising:
a processor;

a memory; and
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a computer-readable medium coupled to the processor, the computer-readable

medium comprising code executable by the processor for implementing a method comprising:

receiving an authorization request message from a user device, wherein
the authorization request message comprises a user state and a user proof, wherein the
user state comprises a first user state element and a second user state element, and
wherein the user proof comprises a first user proof element, a second user proof element,
and a third user proof element;

computing a first verification value by multiplying the first user proof
element raised to the power of the second user state element, and the second user proof
element raised to the power of the first user state element;

computing a second verification value by raising the second user proof
element to the power of the second user state element;

comparing the first verification value to a first accumulated state element
of an accumulated state;

comparing the second verification value to a second accumulated state
element of the accumulated state; and

authorizing the authorization request message if the first verification value
matches the first accumulated state and the second verification value matches the second

accumulated state element.

11.  The validation computer of claim 10, wherein the first user state element

~ N = W

is an amount associated with a user, the second user state element is a random number, the third
user proof element indicates which of a number of entries in an accumulated state the user is
associated with, and wherein the first user proof element is derived from a plurality of first user
state elements and a plurality of second user state elements associated with a plurality of user
states, and wherein the second user proof element is derived from the plurality of second user

state elements associated with the plurality of user states.

12.  The validation computer of claim 10, wherein the authorization request

message is a request to authorize an interaction and comprises an interaction amount.
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13.  The validation computer of claim 12, wherein the user device updates the
user proof based on the interaction amount, and wherein the method further comprises:
updating, by the validation computer, the accumulated state based on the

interaction amount.

14.  The validation computer of claim 12, wherein after authorizing the
authorization request message, the method further comprises:
including, by the validation computer, at least the interaction amount into a new

block of a blockchain maintained by the validation computer.

15.  The validation computer of claim 10, wherein after authorizing the
authorization request message, the method further comprises:

generating, by the validation computer, an authorization response message
indicating whether or not the authorization request message is authorized; and

providing, by the validation computer, the authorization response message to the

user device.

16.  The validation computer of claim 15, wherein the user device provides the
authorization response message to a receiver device with which the user device initiated an

interaction.

17. The validation computer of claim 10, wherein the method further
comprises:

retrieving, by the validation computer, the accumulated state comprising the first
accumulated state element and the second accumulated state element from a previous block in a

blockchain maintained by the validation computer.

18. A method comprising:

generating, by a user device, an authorization request message comprising a user
state and a user proof, wherein the user state comprises a first user state element and a second
user state element , and wherein the user proof comprises a first user proof element, a second

user proof element, and a third user proof element;
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providing, by the user device, the authorization request message to a validation
computer of a plurality of validation computers, wherein the validation computer 1) computes a
first verification value by multiplying the first user proof element raised to the power of the
second user state element , and the second user proof element raised to the power of the first user
state element, 2) computes the second verification value by raising the second user proof element
to the power of the second user state element, 3) compares the first verification value to a first
accumulated state element of an accumulated state, 4) compares the second verification value to
a second accumulated state element of the accumulated state, and 5) authorizes the authorization
request message if the first verification value matches the first accumulated state and the second
verification value matches the second accumulated state element; and

receiving, by the user device, an authorization response message from the
validation computer, wherein the authorization response message indicates whether or not the

authorization request message was authorized.

19. The method of claim 18 further comprising:
prior to generating the authorization request message, updating, by the user
device, the user proof based on interactions included in a blockchain since a last time the user

proof was updated.

20. The method of claim 18, wherein the authorization request message
requests authorization for an interaction between the user device and a receiver device, wherein
the authorization request message comprises an interaction amount, and wherein the method
further comprises:

providing, by the user device, the authorization response message to the receiver

device.
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