(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2012/119146 A2

(43) International Publication Date 7 September 2012 (07.09.2012)

(51) International Patent Classification:

A61B 17/82 (2006.01) A61B 17/86 (2006.01)

A61B 17/80 (2006.01)

(21) International Application Number:

PCT/US2012/027733

(22) International Filing Date:

5 March 2012 (05.03.2012)

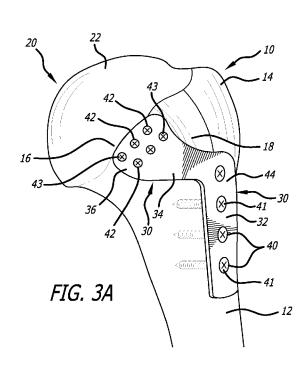
(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:


61/449,012 3 March 2011 (03.03.2011) US 13/412,039 5 March 2012 (05.03.2012) US

- (71) Applicant: TOBY ORTHOPAEDICS, LLC [US/US]; 1805 Ponce De Leon Blvd., Suite 501, Coral Gables, FL 33134 (US).
- (72) Inventor; and
- (71) Applicant: GONZALEZ-HERNANDEZ, Eduardo [MX/US]; 3773 Matheson Avenue, Coconut Grove, FL 33133 (US).

- (74) Agent: WASCO, Michael; Hiscock & Barclay, LLP, One Park Place, 300 South State Street, Syracuse, NY 13202-2078 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

$\textbf{(54) Title:} \ \text{ANTERIOR LESSER TUBEROSITY FIXED ANGLE FIXATION DEVICE AND METHOD OF USE ASSOCIATED } \\ \text{THEREWITH}$

(57) Abstract: A fixation device serves in facilitating reduction and repair of a fractured humerus. The fixation device includes a bone plate adapted to overlie and contact portions of a proximal humerus and a humeral shaft. The bone plate includes at least a body portion overlying the humeral shaft, and an end portion overlying a portion of the proximal humerus. The end portion can facilitate attachment of the bone plate to the lesser tuberosity of the proximal humerus.

Published:

without international search report and to be republished upon receipt of that report (Rule 48.2(g))

ANTERIOR LESSER TUBEROSITY FIXED ANGLE FIXATION DEVICE AND METHOD OF USE ASSOCIATED THEREWITH

Related Applications

This present application claims the benefit of U.S. Provisional Application No. 61/449,012, filed March 3, 2011, entitled "Anterior Lesser Tuberosity Fixed Angle Fixation Device And Method Of Use Associated Therewith"; the entire contents of which is hereby incorporated by reference herein. The present application is related to U.S. Patent Application Serial No. 13/412,039 filed on March 5, 2012, entitled "Anterior Lesser Tuberosity Fixed Angle Fixation Device And Method Of Use Associated Therewith"; the entire contents of which is hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention generally relates to a fixation device used to facilitate reduction and repair of a fractured bone. More particularly, the present invention relates to a bone plate for creating a mechanically stronger connection between the bone plate and portions of a fractured humerus including the proximal humerus and the humeral shaft. More specifically, the present invention relates to a bone plate configured to provide optimal angles for bone screws received therethrough to decrease the incidence of penetration of the bone screws through the articular surface of the humeral head.

Description of the Prior Art

Current state of the art in surgical fracture fixation of the proximal humerus requires the application of a bone plate to the greater tuberosity of the proximal humerus. To attach the bone plate to the proximal humerus, bone screws (threadably or non-threadably engaging the bone plate) are inserted through the bone plate into the proximal humerus. In attaching the bone plate to the proximal humerus, the bone screws are ultimately received under the surface of the humeral head.

The bone screws used to attach the bone plate to the proximal humerus will likely be disposed at a significantly perpendicular angle with respect to the

articular surface of the humeral head. This attachment orientation provides insufficient mechanical strength to maintain rigid attachment of the bone plate to the proximal humerus when subjected to joint reaction forces. As such, there remains a significant incidence of loss of fracture reduction and fracture fixation. In order to maximize stability of the connection, it is necessary to utilize long bone screws, so as to maximize the purchase thereof. However, given the significantly perpendicular angle of the bone screws relative to the articular surface, if there is any collapse or subsidence of the humeral head relative to the bone plate, the tips of the bone screws will penetrate the articular surface. Accordingly, there also remains a significant incidence of joint penetration.

Therefore, there is a need for a fixation device and method of use associated therewith that provides more optimal screw angles with respect to the articular surface of the humeral head and a mechanically stronger connection between the bone plate and the humerus. Such a fixation device can insure that bone screws are disposed at varying angles that are more tangential to the articular surface to prevent loss of fracture fixation and fracture reduction, and/or prevent penetration of the bone screws through the articular surface of the humeral head.

SUMMARY OF THE INVENTION

The present invention in a preferred embodiment contemplates a fixation device for facilitating reductions and repair of a fractured humerus, the fixation device including a bone plate adapted to overlie and contact portions of a proximal humerus and a humeral shaft, the bone plate having a body portion, a neck portion, and a first end portion, the body portion including a first end, a second end opposite the first end, a longitudinal axis extending between the first and second ends, a plurality of bone screw receiving apertures adapted to overlie the humeral shaft, and a first contact surface adapted to contact the exterior surface of the humeral shaft, the longitudinal axis of the body portion being adapted to be substantially aligned with the humeral shaft when the bone plate is attached to the humerus, the neck portion extending from the body portion, the neck portion being adapted to bridge the biceps groove of the proximal humerus when the bone plate is attached to the humerus, the first end portion being contiguous to the neck portion, the first end portion including a second contact

surface adapted to contact the exterior surface of the lesser tuberosity of the proximal humerus, and at least two bone screw receiving apertures adapted to overlie the lesser tuberosity, the at least two bone screw receiving apertures each including an axis, the axes of the at least two bone receiving apertures being oriented away from the articular surface of the proximal humerus when the bone plate is attached to the humerus; at least a first set of bone screws, a first bone screw of the first set of bone screws being received through a first of the plurality of bone screw receiving apertures and into the humeral shaft, and a second bone screw of the first set of bone screws being received through a second of the plurality of bone screw receiving apertures and into the humeral shaft, the first and second bone screws of the first set of bone screws facilitating attached of the bone portion to the humeral shaft; and at least a second set of bone screws, each bone screw of the at least a second set of bone screws having a longitudinal axis. a first bone screw of the second set of bone screws being received through a first of the at least two bone screw receiving apertures and into the lessor tuberosity, a second bone screw of the second set of bone screws being received through a second of the at least two bone screw receiving apertures and into the lessor tuberosity, the longitudinal axes of the first and second bone screws of the second set of bone screws being aligned with the axes of the first and second bone screw receiving apertures and being oriented away from the articular surface of the proximal humerus when the bone plate is attached to the humerus.

The present invention in a further preferred embodiment contemplates A fixation device for facilitating reductions and repair of a fractured humerus, the fixation device including a bone plate adapted to overlie and contact portions of a proximal humerus and a humeral shaft, the bone plate having a body portion, a neck portion, and a first end portion, the body portion including a first end, a second end opposite the first end, a longitudinal axis extending between the first and second ends, a plurality of bone screw receiving apertures adapted to overlie the humeral shaft, and a first contact surface adjacent the second end and adapted to contact the exterior surface of the humeral shaft, the longitudinal axis of the body portion being adapted to be substantially aligned with the humeral shaft when the bone plate is attached to the humerus, and the plurality of bone screw receiving apertures being positioned from adjacent a midpoint of and the second end of the body portion, the neck portion extending from between the first

and second ends of the body portion, the neck portion being adapted to bridge the biceps groove of the proximal humerus when the bone plate is attached to the humerus, the neck portion terminating in the first end portion, the first end portion including a second contact surface adapted to contact the exterior surface of the lesser tuberosity of the proximal humerus, and at least two bone screw receiving apertures adapted to overlie the lesser tuberosity, the at least two bone screw receiving apertures each including an axis, the axes of the at least two bone receiving apertures being oriented away from the articular surface of the proximal humerus when the bone plate is attached to the humerus; at least a first set of bone screws, a first bone screw of the first set of bone screws being received through a first of the plurality of bone screw receiving apertures and into the humeral shaft, and a second bone screw of the first set of bone screws being received through a second of the plurality of bone screw receiving apertures and into the humeral shaft, the first and second bone screws of the first set of bone screws facilitating attached of the bone portion to the humeral shaft; and at least a second set of bone screws, each bone screw of the at least a second set of bone screws having a longitudinal axis, a first bone screw of the second set of bone screws being received through a first of the at least two bone screw receiving apertures and into the lessor tuberosity, a second bone screw of the second set of bone screws being received through a second of the at least two bone screw receiving apertures and into the lessor tuberosity, the longitudinal axes of the first and second bone screws of the second set of bone screws being aligned with the axes of the first and second bone screw receiving apertures and being oriented away from the articular surface of the proximal humerus when the bone plate is attached to the humerus.

It is understood that both the foregoing general description and the following detailed description are exemplary and exemplary only, and are not restrictive of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate preferred embodiments of the invention.

Together with the description, they serve to explain the objects, advantages and principles of the invention. In the drawings:

- FIG. 1 is a perspective view of a left proximal humerus;
- FIG. 2 is a top view of the left proximal humerus depicted in FIG. 1;
- FIG. 3 is a perspective view of a bone plate of a first embodiment of a fixation device according to the present invention positioned with respect to the proximal humerus;
- FIG. 3A is a perspective view of the fixation device of FIG. 3 depicting the placement of bone screws used in the fixation device;
- FIG. 4 is a perspective view of a bone plate of a second embodiment of a fixation device according to the present invention positioned with respect to the proximal humerus;
- FIG. 4A is a perspective view of the fixation device of FIG. 4 depicting the placement of bone screws used in the fixation device;
- FIG. 5 is a perspective view of a bone plate of a third embodiment of a fixation device according to the present invention positioned with respect to the proximal humerus;
- FIG. 5A is a perspective view of the fixation device of FIG. 5 depicting the placement of bone screws used in the fixation device; and
- FIG. 6 is a top cross-sectional view of the fixation device depicted in FIG. 5A taken through the greater tuberosity, the lesser tuberosity, and a portion of the fixation device.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The following description is intended to be representative only and not limiting, and many variations can be anticipated according to these teachings. Reference will now be made in detail to the preferred embodiments of this invention, examples of which are illustrated in the accompanying drawings.

FIGS. 1 and 2 depict the portions of a left proximal humerus generally indicated by the numeral 10. Proximal humerus 10 is joined to humeral shaft 12 (FIG. 1), and includes greater tuberosity 14, lesser tuberosity 16, biceps groove 18, humeral head 20, and an articular surface 22 of humeral head 20. Biceps groove 18 is disposed between greater tuberosity 14 and lesser tuberosity 16. Thus, as depicted in FIG. 2, greater tuberosity 14 is disposed laterally of biceps groove 18, and lesser tuberosity 16 is disposed medially of biceps groove 18. Furthermore, in FIGS. 3-5A, lesser tuberosity 16 is partially covered by the

fixation devices of the present invention. Thus, the lead line associated with numeral 16 in FIGS. 3-5A points to proximal humerus 10 adjacent where fixation devices of the present invention are positioned.

As discussed above, to facilitate fracture fixation and fracture reduction, a bone plate typically has been attached to greater tuberosity 14. However, the placement of bone screws by the bone plate attached solely to greater tuberosity 14 is less than optimal. The bone screws will likely be disposed at a significantly perpendicular angle with respect to articular surface 22 of humeral head 20, and thus, cause a significant incidence of penetration of articular surface 22.

A first embodiment of a fixation device according to the present invention is generally indicated by the numeral 30 in FIGS. 3 and 3A. Fixation device 30 includes a "dogleg-shaped" bone plate 31 and various bone screws inserted therethrough and into bone.

Bone plate 31 has a body portion 32, a neck portion 34, and an end portion 36. Body portion 32 includes apertures 40 spaced therealong, and is attached to humeral shaft 12 and portions of proximal humerus 10 using bone screws 41 (FIG. 3A) inserted through apertures 40 and into the bone. As depicted in FIGS. 3 and 3A, neck portion 34 extends from body portion 32 over biceps groove 18, and terminates at end portion 36. End portion 36 includes apertures 42 spaced apart thereon, and is attached to lesser tuberosity 16 using bone screws 43 (FIG. 3A) inserted through apertures 42 and into proximal humerus 10. Apertures 40 and 42 extend between an upper surface 44 and a lower surface (not shown) of bone plate 31. The lower surface of bone plate 31 can be contoured according to the surfaces of proximal humerus 10 to provide a flush interface therebetween.

Apertures 42 each include an axis substantially perpendicular to at least one of the upper and lower surfaces of bone plate 31 adjacent thereto, and the longitudinal axes of bone screws 43 received therein are ultimately aligned with the axes of apertures 42. The angles of the longitudinal axis of apertures 42 serve to orient bone screws 43 in positions that inhibit the incidence of penetration thereof through articular surface 22. For example, the orientation angles afforded by apertures 42 serve to position bone screws 43 in at least substantially tangential orientations with respect to articular surface 22 of humeral head 20. Accordingly, the axes of apertures 42 and the longitudinal axes of bone

screws 43 received therein can be oriented away from and avoid intersection with articular surface 22, thereby decreasing the incidence of penetration of bone screws 43 through articular surface 22, while also preventing a loss of fracture fixation and fracture reduction.

A second embodiment of a fixation device according to the present invention is generally indicated by the numeral 50 in FIGS. 4 and 4A. Fixation device 50 includes an "h-shaped" bone plate 51 and various screws inserted therethrough and into bone.

Bone plate 51 has a body portion 52, a neck portion 54, a first end portion 56, and a second end portion 58. Body portion 52 includes apertures 60 spaced therealong, and is attached to humeral shaft 12 and portions of proximal humerus 10 using bone screws 61 (FIG. 4A) inserted through apertures 60 and into the bone. As depicted in FIGS. 4 and 4A, first end portion 56 is contiguous with body portion 52, and includes apertures 62 spaced apart thereon. First end portion 56 is attached to greater tuberosity 14 using bone screws 63 (FIG. 4A) inserted through apertures 62 and into proximal humerus 10. As depicted in FIGS. 4 and 4A, neck portion 54 extends from between body portion 52 and first end portion 56 over biceps groove 18, and terminates at second end portion 58. Second end portion 58 includes apertures 64 spaced apart thereon, and is attached to lesser tuberosity 16 using bone screws 65 (FIG. 4A) inserted through apertures 64 and into proximal humerus 10. Apertures 60, 62, and 64 extend between an upper surface 66 and a lower surface (not shown) of bone plate 51. The lower surface of bone plate 51 can be contoured according to the surfaces of proximal humerus 10 to provide a flush interface therebetween.

Apertures 62 each include an axis substantially perpendicular to at least one of the upper and lower surfaces of bone plate 51 adjacent thereto, and the longitudinal axes of bone screws 63 received therein are ultimately aligned with the axes of apertures 62. As discussed below, use of second end portion 58 to facilitate attachment of bone plate 51 to proximal humerus 10 affords use of shorter bone screws 63 in apertures 62 than those typically used to secure attachment to greater tuberosity 14.

Like apertures 62, apertures 64 each include an axis substantially perpendicular to at least one of the upper and lower surfaces of bone plate 51 adjacent thereto, and the longitudinal axes of bone screws 65 received therein

are ultimately aligned with the axes of apertures 64. The angles of the axes of apertures 64 serve to orient bone screws 65 in positions that inhibit the incidence of penetration thereof through articular surface 22. For example, the orientation angles afforded by apertures 64 serve to position bone screws 65 in at least substantially tangential orientations with respect to articular surface 22 of humeral head 20. As such, the axes of apertures 64 and the longitudinal axes of bone screws 65 received therein can be oriented away from and avoid intersection with articular surface 22. Accordingly, such an orientation allows bone screws 63 inserted into lesser tuberosity 16 to share (with bone screws 63) in resisting the joint forces applied in a direction perpendicular to articular surface 22, thereby decreasing the incidence of penetration of bone screws 63 through articular surface 22, while also increasing the overall mechanical strength of the connection, preventing a loss of fracture fixation and fracture reduction.

Because bone plate 51 is attached using (1) first end portion 56 to greater tuberosity 14, and (2) using second end portion 58 to lesser tuberosity 16, bone screws 63 used with apertures 62 can be shorter than those typically used to attach a bone plate solely to greater tuberosity 14. Thus, given that shorter bone screws 63 are used, the incidence of shorter bone screws 63 (inserted through greater tuberosity 14) penetrating articular surface 22 of humeral head 20 can be significantly lessened. That is, even if the orientations of the axes of apertures 62 and the longitudinal axes of bone screws 63 received therein intersect articular surface 22, the lengths of bone screws 63 received in apertures 62 do not afford penetration of articular surface 22.

A third embodiment of a fixation device according to the present invention is generally indicated by the numeral 70 in FIGS. 5, 5A, and 6. Fixation device 70 includes a "y-shaped" bone plate 71 and various screws inserted therethrough and into bone.

Bone plate 71 has a body portion 72, a neck portion 74, and an end portion 76. As depicted in FIGS. 5 and 5A, body portion 72 extends along greater tuberosity 14 and humeral shaft 12. Body portion 72 includes first apertures 80 and second apertures 82 formed therein. First apertures 80 are spaced apart from one another at one end of body portion 72 (ultimately adjacent greater tuberosity 14), and second apertures 82 are spaced along body portion

72 from adjacent first apertures 80 to the other end of body portion 72 (ultimately adjacent humeral shaft 12).

Furthermore, as depicted in FIG. 5, neck portion 74 extends from body portion 72 over biceps groove 18, and terminates at end portion 76. Neck portion 74 can be formed integrally with body portion 72 (as depicted in FIG. 5), or neck portion 74 can be formed separately from body portion 72. When body portion 72 and neck portion 74 are formed separately, body portion 72 and neck portion 74 can be attached to one another before or during surgery. Furthermore, neck portion 74 can be positioned to overlap body portion 72, and then body portion 72 and neck portion 74 can be attached to one another; or body portion 72 can be positioned to overlap neck portion 74, and then body portion 72 and neck portion 74 can be attached to one another.

When formed separately from one another, body portion 72 and neck portion 74 can be attached to one another using one or more fasteners such as screws (not shown). Furthermore, to facilitate attachment of one another, body portion 72 and neck portion 74 can each include one or more corresponding apertures (not shown) formed therein and configured to receive the associated fastener or fasteners. Accordingly, during surgery, body portion 72, for example, can be attached to proximal humerus 10 first, and then neck portion can 74 can attached to proximal humerus 10 and body portion 72, or neck portion 74 can attached to proximal humerus 10 first, and then body portion 72 can be attached to proximal humerus 10 and neck portion 74.

End portion 76 includes apertures 84 spaced apart from one another thereon (ultimately adjacent lesser tuberosity 16). Apertures 80, 82, and 84 extend between an upper surface 86 and a lower surface (not shown) of the bone plate 71. The lower surface of bone plate 71 can be contoured according to the surfaces of proximal humerus 10 to provide a flush interface therebetween.

First apertures 80 are configured to receive bone screws 81 (FIGS. 5A and 6) and second apertures 82 are configured to receive bone screws 83 (FIG. 5A) to facilitate attachment of body portion 72 to greater tuberosity 14 and humeral shaft 12, respectively. Furthermore, apertures 84 are configured to receive bone screws 85 (FIG. 5A and 6) therethrough to attach end portion 76 to lesser tuberosity 16.

Apertures 80 each include an axis substantially perpendicular to at least one of upper and lower surfaces of bone plate 71 adjacent thereto, and the longitudinal axes of bone screws 81 received therein are ultimately aligned with the axes of apertures 80. As discussed below, use of end portion 76 to facilitate attachment of bone plate 71 to proximal humerus 10 affords use of shorter bone screws 81 in apertures 80 than those typically used to secure attachment to greater tuberosity 14.

Like apertures 80, apertures 84 each include an axis substantially perpendicular to at least one of the upper and lower surfaces of bone plate 71 adjacent thereto, and the longitudinal axes of bone screws 85 received therein are ultimately aligned with the axes of apertures 84. The angles of the axes of apertures 84 serve to orient bone screws 85 in positions that inhibit the incidence of penetration thereof through articular surface 22. For example, the orientation angles afforded by apertures 84 serve to position bone screws 85 in at least substantially tangential orientations with respect to articular surface 22 of humeral head 20. As such, the axes of apertures 84 and the longitudinal axes of bone screws 85 received therein can be oriented away from and avoid intersection with articular surface 22, and are substantially perpendicular to the longitudinal axes of bone screws 81. Accordingly, such an orientation allows bone screws 85 to share (with bone screws 81) in resisting the joint forces applied in a direction perpendicular to articular surface 22, thereby decreasing the incidence of penetration of bone screws 85 through articular surface 22, while also increasing the overall mechanical strength of the connection, preventing a loss of fracture fixation and fracture reduction. Furthermore, as discussed below, the right angle construct formed by the substantial perpendicularity between the longitudinal axes of bone screws 81 and 85 provides significant mechanical advantages.

Because the bone plate 71 is attached using (1) apertures 80 and bone screws 81 to greater tuberosity 14, and (2) using apertures 84 (of end portion 76) and bone screws 85 to lesser tuberosity 16, bone screws 81 can be shorter than those typically used to attach a bone plate solely to greater tuberosity 14. Thus, given that bone screws 81 are shorter than those typically used, the incidence of bone screws 81 (inserted through greater tuberosity 14) penetrating articular surface 22 of humeral head 20 can be significantly lessoned. That is, even if the orientations of the axes of apertures 80 and the longitudinal axes of bone screws

81 received therein intersect articular surface 22, the lengths of bone screws 81 received in apertures 80 do not afford penetration of articular surface 22.

The right angle construct formed by the substantial perpendicularity between the longitudinal axes of bone screws 81 and 85 provides significant mechanical advantages that reinforce the connection between proximal humerus 10 and bone plate 71. That is, in addition to affording shorter bone screws 81, the substantial perpendicularity between the longitudinal axes of bone screws 81 and 85 serves in stabilizing proximal humerus 10.

To further stabilize proximal humerus 10, bone screws 81 and 85 can be configured to engage one another within proximal humerus 10. For example, bone screws 85 inserted into lesser tuberosity 16 (via end portion 76) can engage bone screws 81 inserted into greater tuberosity 14 (via body portion 72). Bone screws 85 can impinge on bone screws 81, or bone screw 81 can include apertures (not shown) for receiving bone screws 85. Either way, the engagement of bone screws 81 and 85 forms a lattice structure within proximal humerus 10. In doing so, bone screws 81 and 85 strengthen proximal humerus 10, and further prevent a loss of fracture fixation and fracture reduction thereof. The structure and formation of lattice structures (such as that form by bone screws 81 and 85) is described in pending U.S. Application Serial Nos. 11/050,304 and 13/253,564, which are herein incorporated by reference.

Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Accordingly, it is intended that the specification and examples be considered as exemplary only.

CLAIMS

I CLAIM:

1. A fixation device for facilitating reductions and repair of a fractured humerus, the fixation device comprising:

a bone plate adapted to overlie and contact portions of a proximal humerus and a humeral shaft, said bone plate having a body portion, a neck portion, and a first end portion,

said body portion including a first end, a second end opposite said first end, a longitudinal axis extending between said first and second ends, a plurality of bone screw receiving apertures adapted to overlie the humeral shaft, and a first contact surface adapted to contact the exterior surface of the humeral shaft, the longitudinal axis of said body portion being adapted to be substantially aligned with the humeral shaft when said bone plate is attached to the humerus,

said neck portion extending from said body portion, said neck portion being adapted to bridge the biceps groove of the proximal humerus when said bone plate is attached to the humerus,

said first end portion being contiguous to said neck portion, said first end portion including a second contact surface adapted to contact the exterior surface of the lesser tuberosity of the proximal humerus, and at least two bone screw receiving apertures adapted to overlie the lesser tuberosity, said at least two bone screw receiving apertures each including an axis, the axes of said at least two bone receiving apertures being oriented away from the articular surface of the proximal humerus when said bone plate is attached to the humerus;

at least a first set of bone screws, a first bone screw of said first set of bone screws being received through a first of said plurality of bone screw receiving apertures and into the humeral shaft, and a second bone screw of said first set of bone screws being received through a second of said plurality of bone screw receiving apertures and into the humeral shaft, said first and second bone screws of said first set of bone screws facilitating attached of said bone portion to the humeral shaft; and

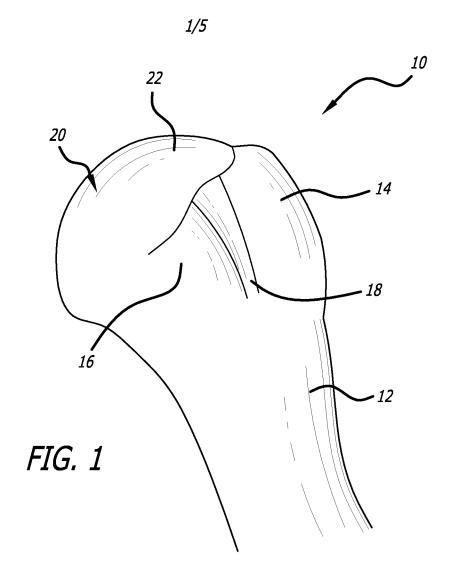
at least a second set of bone screws, each bone screw of said at least a second set of bone screws having a longitudinal axis, a first bone screw of said second set of bone screws being received through a first of said at least two bone screw receiving apertures and into the lessor tuberosity, a second bone screw of said second set of bone screws being received through a second of said at least two bone screw receiving apertures and into the lessor tuberosity, the longitudinal axes of said first and second bone screws of said second set of bone screws being aligned with the axes of said first and second bone screw receiving apertures and being oriented away from the articular surface of said proximal humerus when said bone plate is attached to the humerus.

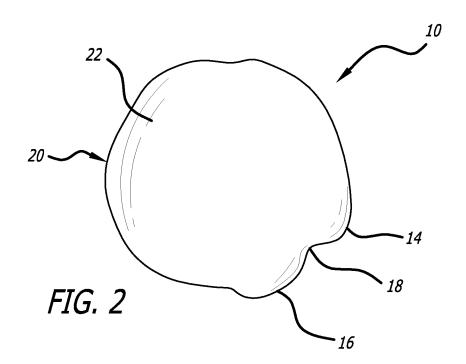
- 2. The fixation device of claim 1, wherein said bone plate includes a second end portion being contiguous with said body portion and being spaced apart from said first end portion, said second end portion including a third contact surface adapted to contact the exterior surface of said the greater tuberosity of said proximal humerus, and at least two bone screw receiving apertures adapted to overlie the greater tuberosity.
- 3. The fixation device of claim 2, further comprising at least a third set of bone screws, a first bone screw of said third set of bone screws being received through a first bone screw receiving hole of said at least two bone screw receiving holes overlying the greater tuberosity and into the greater tuberosity, and a second bone screw of said third set of bone screws being receiving through a second bone screw receiving hole of said at least two bone screw receiving holes overlying the greater tuberosity and into the greater tuberosity.
- 4. The fixation device of claim 3, wherein the lengths of each bone screw of said third set of bone screws do not afford penetration of the articular surface of the proximal humerus.
- 5. The fixation device of claim 1, wherein the axes of said at least two bone screw receiving apertures are oriented to avoid intersection with the articular surface of the proximal humerus.
- 6. The fixation device of claim 1, wherein said body portion and said neck portion are substantially perpendicular to one another.

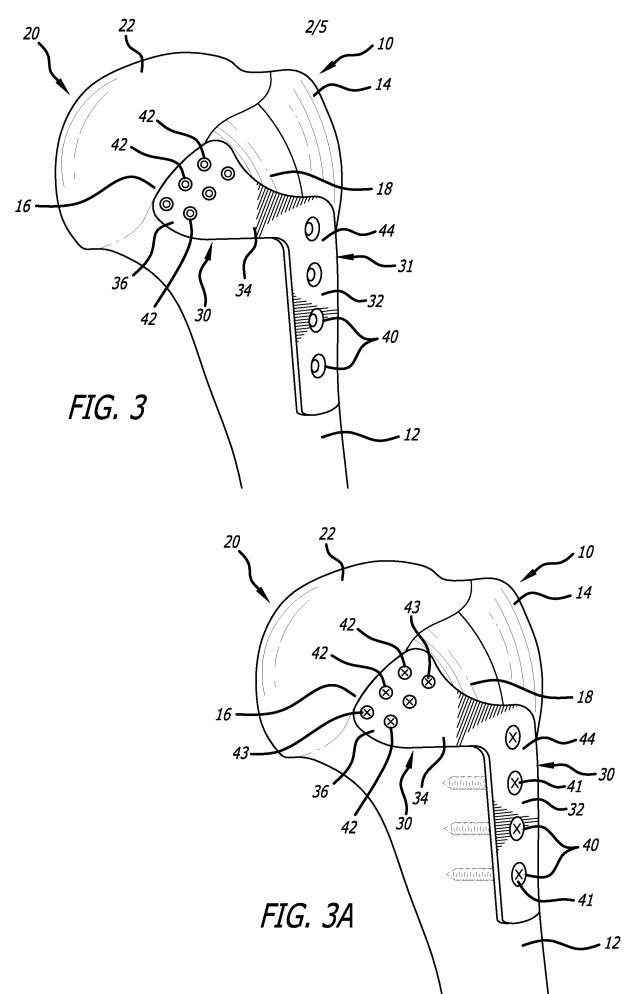
7. A fixation device for facilitating reductions and repair of a fractured humerus, the fixation device comprising:

a bone plate adapted to overlie and contact portions of a proximal humerus and a humeral shaft, said bone plate having a body portion, a neck portion, and a first end portion,

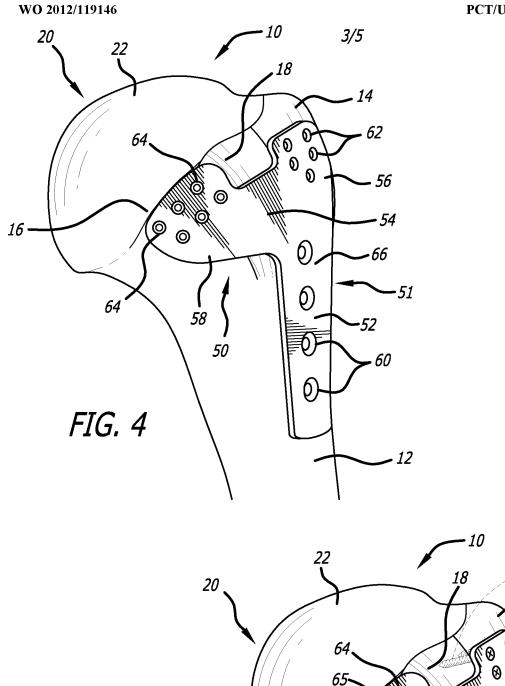
said body portion including a first end, a second end opposite said first end, a longitudinal axis extending between said first and second ends, a plurality of bone screw receiving apertures adapted to overlie the humeral shaft, and a first contact surface adjacent said second end and adapted to contact the exterior surface of the humeral shaft, the longitudinal axis of said body portion being adapted to be substantially aligned with the humeral shaft when said bone plate is attached to the humerus, and said plurality of bone screw receiving apertures being positioned from adjacent a midpoint of and said second end of said body portion,

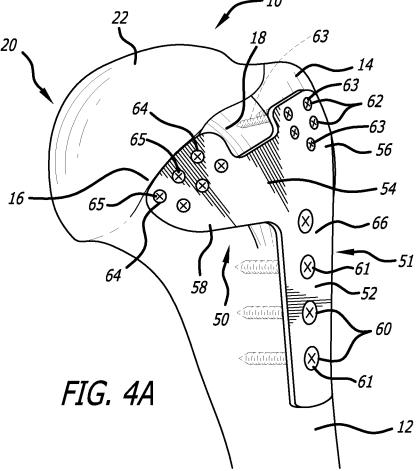

said neck portion extending from between said first and second ends of said body portion, said neck portion being adapted to bridge the biceps groove of the proximal humerus when said bone plate is attached to the humerus,

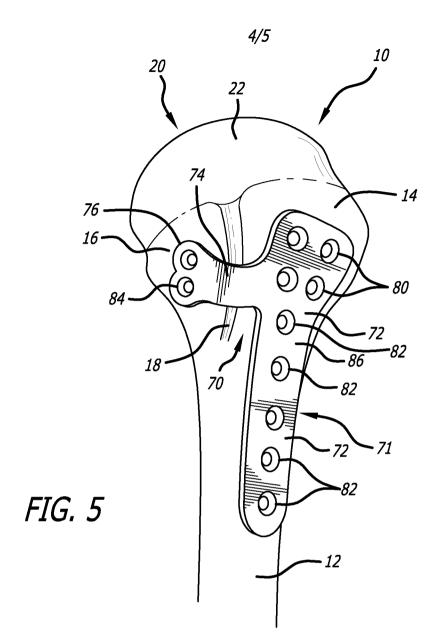

said neck portion terminating in said first end portion, said first end portion including a second contact surface adapted to contact the exterior surface of the lesser tuberosity of the proximal humerus, and at least two bone screw receiving apertures adapted to overlie the lesser tuberosity, said at least two bone screw receiving apertures each including an axis, the axes of said at least two bone receiving apertures being oriented away from the articular surface of the proximal humerus when said bone plate is attached to the humerus:

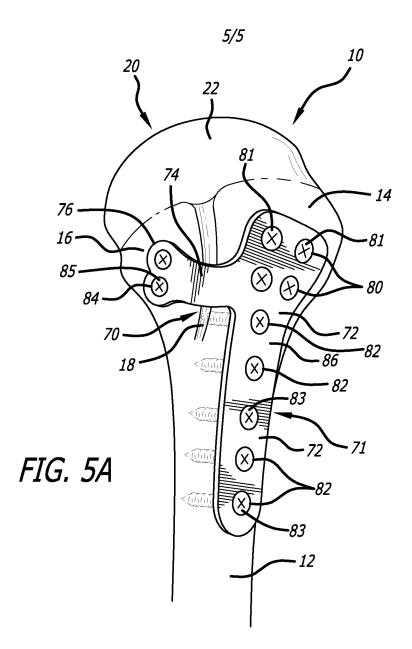

at least a first set of bone screws, a first bone screw of said first set of bone screws being received through a first of said plurality of bone screw receiving apertures and into the humeral shaft, and a second bone screw of said first set of bone screws being received through a second of said plurality of bone screw receiving apertures and into the humeral shaft, said first and second bone screws of said first set of bone screws facilitating attached of said bone portion to the humeral shaft; and

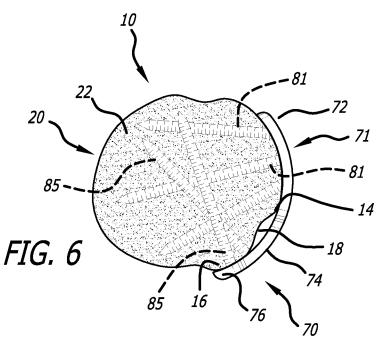
at least a second set of bone screws, each bone screw of said at least a second set of bone screws having a longitudinal axis, a first bone screw of said second set of bone screws being received through a first of said at least two bone screw receiving apertures and into the lessor tuberosity, a second bone screw of said second set of bone screws being received through a second of said at least two bone screw receiving apertures and into the lessor tuberosity, the longitudinal axes of said first and second bone screws of said second set of bone screws being aligned with the axes of said first and second bone screw receiving apertures and being oriented away from the articular surface of said proximal humerus when said bone plate is attached to the humerus.


- 8. The fixation device of claim 7, wherein, when said bone plate is attached to said humerus, said first end of said body portion is positioned adjacent said greater tuberosity, and said second end of said body portion is positioned adjacent said humeral shaft.
- 9. The fixation device of claim 8, wherein said body portion includes a third contact surface adjacent said first end and adapted to contact the exterior surface of said the greater tuberosity of said proximal humerus, and at least two bone screw receiving apertures adapted to overlie the greater tuberosity.
- 10. The fixation device of claim 9, further comprising at least a third set of bone screws, a first bone screw of said third set of bone screws being received through a first bone screw receiving hole of said at least two bone screw receiving holes overlying the greater tuberosity and into the greater tuberosity, and a second bone screw of said third set of bone screws being receiving through a second bone screw receiving hole of said at least two bone screw receiving holes overlying the greater tuberosity and into the greater tuberosity.
- 11. The fixation device of claim 10, wherein the lengths of each bone screw of said third set of bone screws do not afford penetration of the articular surface of the proximal humerus.
- 12. The fixation device of claim 7, wherein the axes of said at least two bone screw receiving apertures are oriented to avoid intersection with the articular surface of the proximal humerus.








PCT/US2012/027733

