a9y United States

Ochmanski et al.

US 20170099148A1

12y Patent Application Publication o) Pub. No.: US 2017/0099148 A1

(54) SECURELY AUTHORIZING CLIENT
APPLICATIONS ON DEVICES TO HOSTED
SERVICES

(71)

(72)

@
(22)

(1)

43) Pub. Date: Apr. 6, 2017
(52) U.S. CL
CPC ... HO4L 9/3247 (2013.01); HO4L 63/102

(2013.01); HO4L 63/06 (2013.01); HO4L 67/02
(2013.01); HO4L 63/083 (2013.01)

Applicant: Cisco Technology, Inc., San Jose, CA
(US)
Inventors: Steven R. Ochmanski, Raleigh, NC &7 ABSTRACT
(US); David C. White, JR., Durham,
NC (US); Robert T. Bell, Bountiful,
UT (US) A cl.lent.appl%catlon of'a device querl.es/ 1ntenoggtes a secure
device identity module of the device to obtain a device
Appl. No.: 14/872,337 identifier of the device and a signed string generated by the
security device identity module using a private key unique
Filed: Oct. 1, 2015 to the device. The client application of the device sends to
L . . an authorization server a request containing the device
Publication Classification identifier and the signed string. Depending on an authenti-
Int. C1. cation result obtained for the device based on the device
HO4L 9/32 (2006.01) identity, the authorization server sends to the device an
HO4L 29/08 (2006.01) access token that enables the client application to access a
HO4L 29/06 (2006.01) resource.
SECURE DEVICE | % CLIENT AUTHORIZATION DEVICE IDENTITY RESOURCE
100 [IDENTITY MODULE APPLICATION SERVER VALIDATION SERVER SERVER
RETRIEVE | QUERY/NTERROGATE FOR ity 0 40(1)40(N)) 501)-50(K))
SUBIECTSERAL | DEVICE DENTFER HTTPS POST INCLUDING
NUMBER AND 10" | DEyicE DENTFIER
OBTAN DEVICE IDENTIFIER AND SIGNED STRING ANE)
DIGITALLY SIGNED STRING CLIENT APPLICATION
SIGNEDSTRING | | 14 DENTIFIER BROKER TO PROPER DEVICE
USING PRIVATE . IDENTITY VALIDATION
KEY 112 120 SERVER VALIDATE SIGNED STRING
130 RESPONSE WTH USING PUBLIC KEY 140
STOPIF AUTHENTICATION RESULT
AUTHENTICATION
FAILURE 160 180 J
IF AUTHENTICATION
SUCCESS, SEND ACCESS
TOKEN (AND REFRESH
TOKEN) GENERATE SCOPE OF
180~ PERMISSIONS 170
MAKE RESOURCE API
CALLS USING ACCESS
TOKEN
10

Apr. 6,2017 Sheet 1 of 5 US 2017/0099148 A1

Patent Application Publication

MHOMLIN

| ¥INES 308n0S
(Mog
[]
®
®
1 ¥3mE8 30uNn0s
(1)og
¥IAY3S
71 NOILYZIMOHLNY
06
HIAYS NOILVAITYA
/| ALIN3@I30IA3C
(NJoy "
[J
[J
HIAHIS NOILYAITYA
/| ALIN3QI3DIA3G
(Loy

HE
®
[~ 0¢ .
30130
% | WAISASONILVH3AO | AOMEIN
N 62
NOLLYOddY NOLLYOIddY N3OV
e $5300Y
INMD NGO
J 7 | 3¥n03s
()i iz %
LINN
<3N T s0ssz008g |—| 100N AILNaI
A BNEY O 3030 O3S
“ i s

Apr. 6,2017 Sheet 2 of 5 US 2017/0099148 A1

Patent Application Publication

LA
ALVAIId ONISN
ONIILS QINDIS

ATIVLIOIN

NIv180

ANV ¥38WNN
T3S 133rans
E/E(TEL

¢9l4
o@J
NINOL
$§300Y ONISN STIV)
Id¥ 30HN0STY IV
O sNoissimead | %
40 3d00S ILV¥ANT9 (NI¥OL
HST4434 ONV) NayoL
$5309¥ AN3S ‘$S300NS
NOILYDLLNIHLAY 4l
ﬁce 091 JUNTIVA
NOILYOLLNIHLNY
LINS3H NOILYALINIHLNY 1140LS
_ HLIM ISNOASTY
0Pl A3X OI18Nd ONISN 08h~
ONIMLS GINDIS FLVAITVA NELNES 0
NOLLYQITYA ALILN3AI
30IA30 ¥3d0¥d 01 ¥3N0YE glINdl 4
NOILYIddY INTID TR
ONY ONIELS 03NS QN ¥3141LN30I 301A30
¥314IIN3al 39IA30 0l
ONIANTONI LSOd SdLLH EIMEVERTEG
ﬁgom.s% 123153 16 Ei&f 804 ALYD0HYILNIAYIND
YIS HIAYIS NOILYAIVA REINES NOILYOIddY |
304N0S3Y ALIINIQI30IA30 NOILYZIOHLNY IN3TD ¢

JINGOWALLINAQI | 00}
30IA30 3HND3S

Patent Application Publication Apr. 6,2017 Sheet 3 of 5 US 2017/0099148 A1

32
NETWORK
INTERFACE
UNIT
3

PROCESSOR |—/

200
AUTHORIZATION |/
LOGIC

210
PERMISSIONS J

DATABASE

MEMORY W,

AUTHORIZATION SERVER J

FIG.3

Patent Application Publication Apr. 6,2017 Sheet 4 of 5

0
NETWORK
INTERFACE
UNIT
m
PROCESSOR |’
DEVICE IDENTITY Jsoo
VALIDATION
L0GIC
DEVICE 310
IDENTITY
DATABASE
1
MEMORY |/

DEVICE IDENTITY VALIDATION SERVER

FIG.4

US 2017/0099148 A1

Patent Application Publication Apr. 6,2017 Sheet 5 of 5 US 2017/0099148 A1

400

-
CLIENT APPLICATION QUERYING THE SECURE DEVICE J
IDENTITY MODULE TO OBTAIN A DEVICE IDENTIFIER
OF THE DEVICE AND A SIGNED STRING GENERATED
BY THE SECURITY DEVICE IDENTITY MODULE USING A
PRIVATE KEY UNIQUE TO THE DEVICE

DEVICE/CLIENT <
APPLICATION 410

SENDING TO AUTHORIZATION SERVER A REQUEST J
CONTAINING THE DEVICE IDENTIFIER AND THE
SIGNED STRING (A BASIC AUTH HTTP HEADER

IDENTIFIES THE CLIENT APPLICATION VIA: CLIENT_ID
AND CLIENT_SECRET)

420

DEPENDING ON THE AUTHENTICATION RESULT, J
AUTHORIZATION < SENDING TO THE DEVICE AN ACCESS TOKEN THAT
SERVER ENABLES THE CLIENT APPLICATION TO ACCESS A

RESOURCE WITH A SCOPE

FIG.5

US 2017/0099148 Al

SECURELY AUTHORIZING CLIENT
APPLICATIONS ON DEVICES TO HOSTED
SERVICES

TECHNICAL FIELD

[0001] The present disclosure relates to authorization of
devices and applications.

BACKGROUND

[0002] When a device (e.g. a router, switch, access point,
or any device) attempts to access an Application Program-
ming Interface (API) resource hosted by an enterprise, it is
often required that a human encode and save their login
credentials (e.g., user identifier and user password) directly
into the configuration of the device. The device then imper-
sonates that human’s user account when accessing the
enterprise APl resources. This is known as a password
anti-pattern.

[0003] Saving a user’s credentials on a device has many
disadvantages. The credentials may not be secure at rest in
the configurations. The credentials may or may not be secure
in transport. Such is the case when Trivial File Transfer
Protocol (TFTP) is used, or when the credentials are stored
off-box, e.g., in a plain text file. The device could get stolen
(while still configured with that user’s credentials). The
user’s password could change (by policy or as a reaction to
a password loss), which would result in the need to change
the configurations on all devices that have stored that user’s
credentials. The user could leave the role or group or
company. In any event, the device is not identifying itself;
rather the device is posing/impersonating the saved user’s
identity.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 is a block diagram of a system in which a
device identity is used to authorize access of a client
application to a resource, according to an example embodi-
ment.

[0005] FIG. 2 is a sequence diagram depicting the trans-
actional flow for authorization of the client application and
device, according to an example embodiment.

[0006] FIG. 3 is a block diagram of an authorization server
according to example embodiment.

[0007] FIG. 4 is a block diagram of a device identity
validation server according to an example embodiment.
[0008] FIG. 5 is a high-level flow chart depicting opera-
tions of the device and the authorization server, according to
an example embodiment.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

[0009] Inone embodiment, a client application of a device
queries/interrogates a secure device identity module of the
device to obtain a device identifier of the device and a signed
string generated by the security device identity module using
a private key unique to the device. The client application of
the device sends to an authorization server a request con-
taining the device identifier and the signed string. Depend-
ing on an authentication result obtained for the device based
on the device identity, the authorization server sends to the
device an access token that enables the client application to
access a resource.

Apr. 6,2017

Example Embodiments

[0010] Most devices today do not identify themselves.
Instead they impersonate a human user when the device calls
into an Application Programming Interface (API) resource.
By a human entering his/her credentials into a device, the
device can call an API resource with user approval.

[0011] When a device is not identifying itself but instead
is posing as a saved user’s identity, this is known in the
authorization technology field as that a password anti-
pattern. This occurs when a human saves his/her password
directly into a client application. From a security perspec-
tive, it is considered bad practice.

[0012] If a human leaves a company and his/her creden-
tials were in a device, then that device may either (1) no
longer be functional because those credentials could be
invalid, or (2) if the credentials are still valid (or until they
are made invalid), that device could do undesired things with
the human user’s credentials.

[0013] A device should have its own unique identity, not
shared across devices. In other words, a device should not
impersonate a human. The device should identify itself.
[0014] In actuality, a given device could have two iden-
tities: one for a client application running on the device, and
one for the device itself. The same application could run on
hundreds of devices. The device identifier should be unique
and something that can be proven (authenticated). By con-
trast, when a user enters his/her human identifier, it is not
identifying a particular device.

[0015] Most modern web APIs use oAuth 2.0 (v2), as
specified in RFC 6749 of the Internet Engineering Task
Force (IETF). oAuth v2 has several primary grant types:
[0016] 2-legged Client Credential Grant. This is useful for
machine-to-machine (M2M) but only identifies the client
application to the back-end resource (API) not the human
identity. This does not help with device identity. Multiple
devices could use the same client application and therefore
have the same client identifier (client_id).

[0017] 3-legged Authorization Code Grant (for trusted
environment clients). This identifies both the client applica-
tion and the human (resource owner) to the back-end
resource (API).

[0018] 3-legged Implicit Grant (for untrusted environment
clients). This identifies both the client application and the
human (resource owner) to the back-end resource (API).
[0019] 3-legged Resource Owner Password Grant (for
legacy trusted application).

[0020] The 3-legged Authorization Code Grant and
Implicit Grant identify both the client application and the
human’s identity. These grant types are sufficient for most
user interface and non-specific batch program type of client
applications, but they lack a dimension when a device may
have multiple client applications on it and a need exists to
identify the “device itself” and the client application for
determining entitlement of access to a resource (API).
[0021] Presented herein are techniques that modify the
original Resource Owner (password grant type) of o Auth v2,
and in lieu of human login credentials, information in the
body of the Hypertext Transfer Protocol Secure (HTTPS)
POST request is used as a mechanism to identify the device
(and its authenticity) as well as to identify a client applica-
tion running on the device. This information is contained
within a token generated by the authorization server and
transmitted securely to the device in the HTTP POST
response. The client application uses this token (called a

US 2017/0099148 Al

“bearer access_token”) for later resource API calls in the
client application (running on the device).

[0022] In one embodiment, the device identity is derived
from the IEEE 802.1AR (also known as IDevID or LDevID)
standard. IEEE 802.1AR provides for a device identifier and
a digitally signed block of text (signed string) from the
device and uses that in a device authentication sub-flow.
“IDevID” is a term coined by IEEE 802.1AR to refer to a
digital certificate representing the device rather than a user.
The terms Initial Device IDentity (IDevID) and Local
Device IDentity (LDevID) used herein may be interchange-
able. Both are specific extensions defined by IEEE 802.1AR
for the term Device Identifier (DevID).

[0023] Reference is now made to FIG. 1. FIG. 1 illustrates
a system 10 that includes a device 20, an authorization
server 30, a plurality of device identity validation servers
40(1)-40(N), and a plurality of resource servers 50(1)-50(K).
The device 20 communicates with the authorization server
30 and with the resource servers 50(1)-50(K) via a network
60. The network 60 may include wired and wireless local
area networks and wired and wireless wide area networks.
There may be multiple devices in a given system but for
simplicity only a single device 20 is shown.

[0024] The device 20 may be any type of device that has
network connectivity and processing capability. Examples
of the device 20 include networking switches, routers,
gateways, user devices such as desktop computers, laptop
computers, tablets, and SmartPhones. The device 20 may be
any type of device now known or hereinafter developed, and
which has network connectivity. In one example, the device
20 includes a network interface unit (e.g., network interface
card) 22 to enable wired and/or wireless network commu-
nications, a processor 24 (or multiple processors), a security
device identity module 25, and memory 26. The memory 26
stores executable instructions for, among other things, client
applications 27(1)-27(P), a secure access agent 28 and an
operating system 29.

[0025] The processor 24 may be a microprocessor or
microcontroller. The secure device identity module 25
maybe a dedicated hardware component (e.g., application
specific integrated circuit) that performs a certificate mecha-
nism based on a device identity established by the device
manufacturer at build time of the device. In one example, the
certificate mechanism maybe based on the IEEE 802.1AR
standard that provides asymmetric credentials, meaning that
there is a part that is available to identify the device
anywhere (a digital public key) but another part that is only
available to the device itself (a digital private key). Thus, the
IEEE 802.1AR standard uses public key infrastructure (PKI)
involving a public/private key pair. The private key in the
IEEE 802.1AR mechanism is unique to each device. Other
types of device credentials could be used. Moreover, the
functions of the secure device identity module 25 may be
implemented partially in hardware and partially in software
(e.g., in the operating system 29), completely in hardware or
completely in software (e.g., in the operating system 29).
[0026] In the example in which the secure device identity
module 25 is compliant with the IEEE 802.1AR standard, it
may be referred to as a DevID service interface module and
it implements a DevID Service Interface. The DevID Ser-
vice Interface supports several operations including: enu-
meration of the DevID public keys, enumeration of the
DevID credentials (the device identifier referred to herein),
enumeration of DevID credential chain, signing, enabling/

Apr. 6,2017

disabling of a DevID credential and enabling/disabling of a
DevID key. More generally, the device identity may be
referred to as a device identity credential, and it could be a
platform manufacturer-installed (chip manufacturer, dis-
tributor software manufacturer/publisher, or device manu-
facturer) device identity credential, or a customer locally
installed device identity credential. The DevID Service
Interface may be more broadly referred to as a programmatic
interface with interacting with a system that holds one or
more device identities.

[0027] The client applications 27(1)-27(P) could perform
any type of functionality in the device 20. The secure access
agent 28 is a software process running on the device 20 to
enable authorization and authentication of the device. In one
example, the secure access agent 28 is compliant with the
OAuth v2 (2.0) standard. As explained above, OAuth is an
open standard for authorization, and provides client appli-
cations a ‘secure delegated access’ to server resources on
behalf of a resource owner. It specifies a process for resource
owners to authorize third-party access to their server
resources without sharing their credentials. The functions of
the secure access agent 28 could be included within the
functions of the client applications 27(1)-27(P) or within the
functions of the operating system 29.

[0028] The memory 26 may include read only memory
(ROM), random access memory (RAM), magnetic disk
storage media devices, optical storage media devices, flash
memory devices, electrical, optical, or other physical/tan-
gible memory storage devices. Thus, in general, the memory
26 may comprise one or more tangible (non-transitory)
computer readable storage media (e.g., a memory device)
encoded with software comprising computer executable
instructions and when the software is executed (by the
processor 24) it is operable to perform the operations
described herein.

[0029] Still referring to FIG. 1, the authorization server 30
is a server that also operates in compliance with the OAuth
v2.0 standard. The authorization server 30 receives from the
device 20 a request for access to a resource, e.g., one of the
resource servers 50(1)-50(K). Each of resource servers
50(1)-50(K) may be considered an API endpoint, that is, an
externally hosted API resource for performing a task at the
request of a client application running on the device 20. In
order to determine the scope of permissions available for a
given request, the authorization server 30 will seek authen-
tication of the device 20 (using a device identifier, such as
an IDevID/LDevID embedded in the device usually at
manufacture). To do this, the authorization server 30 will
communicate with a particular one of the device identity
validation servers 40(1)-40(N). Each device identity valida-
tion server 40(1)-40(N) stores entries in a database/certifi-
cate store for device identifiers associated with devices of a
particular type or from a given manufacturer. In addition,
each device identity validation server 40(1)-40(N) has the
appropriate public key for each public/private key pair
associated with a device in its database/certificate store. As
explained further hereinafter, this will allow the appropriate
device identity validation server 40(1)-40(N) to validate the
device identifier and cipher text (signed string) contained in
an authorization request that device 20 sends to the autho-
rization server 30.

US 2017/0099148 Al

[0030] The original Resource Owner Password grant flow
of OAuth 2.0 (HTTPS POST) has a body of:

[0031] grant_type=password & username=<username>&
password=<the user’s password>

[0032] According to the embodiments presented herein, a
Device Resource Owner Password Grant flow (HTTPS
POST) is:

grant_type=password &

username=<IDevID.SubectSerial Number@DeviceDomain> &
password=<a signed block or string of text (signed by the private key of
the device)>

where:

[0033] grant_type: This is the same as the human resource
owner flow.

[0034] username: This is a unique identifier of the leaf

certificate for which there is a public key to check the signed
string of text, within the DeviceDomain. DeviceDomain is a
programmable name on the authorization server 30 that the
authorization server 30 uses to bifurcate and broker to the
appropriate device identity validation server in the backend.
This provides a mechanism to scale in the Internet of Things
(IoT) world, by breaking up domains into manageable
blocks of devices. DeviceDomain is an optional component.
[0035] password: A block of text signed by the IEEE
802.1AR mechanism within the device using the private key
(of the IDevID) on that device. The password consists of at
least the IDevID Subject.SerialNumber (usually hardware
product identifier (PID) and SerialNumber), signed by the
private key maintained by the device. Optionally, other
fields may be included, such as a nonce for protection
against a replay attack. The nonce comes from the authori-
zation server when the request for authentication is issued,
and may be included in the block of text before the signing
operation is performed. When a nonce is used as an anti-
replay tool, the device that is verifying the validity of the
credential is the source of the nonce. That way, the verifier,
in this case the authorization server, can examine the nonce
to determine that it is the same nonce that it sent to the
device, thereby ensuring that the response is not a replay of
a previously successful response.

[0036] Reference is now made to FIG. 2. FIG. 2 illustrates
a sequence/transactional diagram for the overall authentica-
tion/authorization flow 100 according to an example
embodiment. FIG. 2 shows the interaction among the secu-
rity device identity module 25, any arbitrary one of the client
applications 27(1)-27(P), the authorization server 30, any
one of the device identity validation servers 40(1)-40(N) and
any one of the resource servers 50(1)-50(K). It is to be
understood that the security device identity module 25 and
the client application 27(1)-27(P) involved in a given trans-
actional flow are within the same device, as depicted in FIG.
1.

[0037] The flow begins at operation 110. Instead of a
human entering his/her user name and password, when a
client application running on a device seeks access to an API
resource, the client application queries/interrogates the
secure device identity module 25 for the device identifier. In
one example, the secure device identity module 25 imple-
ments the IEEE 802.1AR/IDevID mechanism, and at 112,
the IDevID Subject.SerialNumber is retrieved and (at least)
that Subject.SerialNumber (string) is sent to be digitally

Apr. 6,2017

signed via the service interface of IEEE 802.1AR for that
block of text, using the private key maintained by the secure
device identity module 25.

[0038] As explained above, the IEEE 802.1AR standard
allows for the creation of a digital signature based on a
private key so that the client application will use the services
of the identity service in the device to prove that it is the
device. This is a key-based solution and not a password. The
Subject.SerialNumber (text string) and optionally other
fields are run through the digital signing mechanism to
produce signed text that could only be done by the secure
device identity module 25 using the private key within it (in
lieu of a password). The client application needs to be
running on the device because it needs to interrogate the
IEEE 802.1AR/IDevID mechanism on the device.

[0039] At 114, the secure device identity module 25
responds to the client application with both the device
identifier (the IDevID Subject.SerialNumber) and the cypher
text (the cryptographically signed string).

[0040] Next, at 120, the client application sends to the
authorization server a request including the device identifier,
signed string and a client application identifier (the client
application identifier may be optional). For example, the
client application transmits an HTTPS POST (within a
Secure Socket Layer (SSL) tunnel) to the authorization
server (OAuth 2.0 token endpoint) but with a POST payload
as follows:

grant_type=password &
username=<IDevID.SubectSerial Number@DeviceDomain> &
password=<A signed block of text (signed by the device’s private key)>.

[0041] Thus, the user identifier of a standard OAuth 2.0
flow is swapped out for the device identifier (e.g., IDevID/
LDevID) and a signed block of text is used instead of a
password. As described above, as an optional variation, a
nonce may be included (in the block of text before digitally
signing) in the HTTPS POST payload for replay protection
so that the information that is passed in step 120 cannot be
captured and replayed by a rogue device that is attempting
to prove that it is an authentic device.

[0042] Also, at 120, the HTTPS POST has a “Basic
Authentication” header (including the client_id/client_se-
cret pair) as is the case for a normal resource owner flow. As
a result, the HTTPS POST includes a client application
identifier (client_id) that is unique to a given client appli-
cation as well. Thus, there may be two identities (one for the
device and one for the client application) that are combined
into one access token request.

[0043] At 130, the authorization server 30 uses the
DeviceDomain to bifurcate and broker to the proper backend
identity validation server. In other words, the authorization
server 30 examines the DeviceDomain contained in the
POST payload to identify a particular device identity vali-
dation server, of the plurality of device identity validation
servers 40(1)-40(N), which will have the public key of the
public-key private-key pair for that device. The particular
device identity validation server may be the device identity
validation server for the manufacturer of the device, or for
the enterprise where the device is used. Also, the device
identifier may be included in what is sent to the particular
device identity validation server because there may be
records for thousands of devices at the particular device

US 2017/0099148 Al

identity validation server. The device identifier (IDevID
Subject.SerialNumber) allows the particular device identity
validation server to retrieve the record (the public key) for
the particular device.

[0044] In some cases, the DeviceDomain may not be
included in the request received by the authorization server
30 and thus the authorization server 30 may also serve as the
device identity validation server for authenticating the
device, or there is only one separate device identity valida-
tion server to which the authorization server 30 needs to
forward the request. However, when the request includes a
DeviceDomain, the authorization server performs the bro-
kering operation by determining a particular device identity
validation server (among a plurality of device identity
validation servers) based on the DeviceDomain to send the
device identifier to the particular device identity validation
server.

[0045] At 140, the particular device identity validation
server uses the public key that it has for the particular device
to check the validity of the signed text in the request sent by
the client application to the authorization server 30. More
specifically, at 140, the particular device identity validation
server applies the public key to the signed text (thereby
decrypting it) and compares the resulting values with the
stated IDevID Subject.SerialNumber. When the particular
identity validation server determines that there is a match of
the signed text to the results of application of the public key
to the device identifier, then the particular identity validation
server confirms that the signed text could only have come
from a device that had the private key, and in that case, the
device is authenticated.

[0046] At 150, the particular device identity validation
server sends to the authorization server 30 a response with
an authentication result (authentication success or failure)
indicating whether the device is or is not the device it
represents that it is. If the signed text is valid (decrypts from
the public-key and the IDevID Subject.SerialNumber within
the block matches), then the particular device identity vali-
dation server transmits an authentication success notification
to the authorization server 30 at 150. If the signed text is
invalid (decrypts from the public-key but does not match
IDevID Subject.SerialNumber), the particular device iden-
tity validation server transmits an authentication failure
notification to the authorization server 30 at 150. If the
signed text (decrypts from the public-key and matches the
IDevID Subject.SerialNumber) but has an expired or
revoked status (within the particular device identity valida-
tion server) then the particular device identity validation
server transmits an authentication failed indication to the
authorization server 30 at 150.

[0047] If authentication fails, then the authorization server
30 stops any authorization processing, and may send a
notification to the client application (not shown in FIG. 2 for
simplicity). If authentication succeeds, then the flow goes to
step 170.

[0048] The authorization server 30 can then give (or not
give) certain permissions (scope of permissions, e.g., read
access but not write access or which sub-resources are
available within a Resource API) to the device in accordance
with the authentication pass or fail notification from the
device identity validation server.

[0049] At 170, when authentication succeeds, the autho-
rization server 30 can authorize the device and the client
application according to a scope of permissions that are

Apr. 6,2017

based on the device identity and the client application
identity. Since authentication is based on a unique digital
private key that is unique to each device, the resulting
authorization scope (if authentication passed) can be far
more granular and controllable than if all devices use the
same user password. The scope of permissions can be
specific to a particular device, and specific to a given client
application running on that device. For example, each client
application can have different licenses and permissions,
allowing for more granular authorization control at the
application level as well. Two (or more) different client
applications running on the same may get different scopes of
permissions by the authorization server.

[0050] At 180, the authorization server sends an access
token (and optional refresh token) to the client application.
An access token is similar to a cookie. The client application
needs to fetch the access token first, using the process
depicted in steps 110-180. The client application now has a
bearer access_token and can make resource (API) calls to
the API endpoint (one of the resource servers 50(1)-50(K))
using the bearer access_token. Thus, at 190, when making
an API call to a resource, the application includes the access
token in a header for that API call. The bearer_access token
may include an absolute timer, making it valid for some
period of time regardless of whether or not it gets used.
[0051] As explained above, at 180, the authorization
server 30 makes a reverse look-up on the access token via
the resource API call, at the API edge, in order to identify/
determine, based on the unique device identity, scope and
permissions for that particular (unique) device. For example,
an enterprise could leverage this for additional back-end
entitlement validation.

[0052] Reference is now made to FIG. 3 for a block
diagram of the authorization server 30 according to an
example embodiment. The authorization server 30 includes
a network interface unit 32 to enable network communica-
tions, a processor 34 (or multiple processors) and memory
36. The memory 36 stores instructions for authorization
logic 200 that, when executed by the processor 34, cause the
processor to perform the operations of the authorization
server 30 as described herein. In addition, the memory 36
stores a permissions database 210. The permissions database
210 contains data indicating permissions according to device
identifier and client application identifier per Resource API.
The functions of the authorization server could be imple-
mented in a cloud computing/data center computing envi-
ronment.

[0053] Scopes (scope of permissions) are resource API
dependent and configured in the permission database 210),
and enforced at the API edge when a bearer access_token is
presented for a sub-resource within a Resource API call.
Some examples could be (but not limited to):

[0054] 1. Read versus Write versus both Read and Write
on a given sub-resource with a Resource API.

[0055] 2. Which sub-resources are visible (available) to
the client application to call. For example, “free” level are
permitted access to 3 of 6 sub-resources but a different level
(“premium” level) are permitted access to 6 of 6 sub-
resources, within a resource API.

Authorization Scopes are Described in oAuthv2, RFC 6749.
[0056] FIG. 4 illustrates a block diagram of a device
identity validation server, generically identified by reference
numeral 40(7), and representative of any of the identity
validation servers 40(1)-40(N). The device identity valida-

US 2017/0099148 Al

tion server includes a network interface unit 42 to enable
network communications, a processor 44 (or multiple pro-
cessors) and memory 46. The memory 46 stores instructions
for device identity validation logic 300, that when executed
by the processor 44, cause the processor 44 to perform the
operations described herein for the device identity validation
server. The memory 46 also stores a device identity database
(also called a certificate store) 310. The device identity
database 310 contains a listing of public keys/certificates for
each of the device identifiers (e.g., DevIDs) that have been
issued for a given device domain. This information is used
by the device identity validation server to validate a pass-
word string supplied to the device identity validation server
from the authorization server 30 as part of the flow described
above in connection with FIG. 2. Therefore, when the device
identity validation server receives a request from the autho-
rization server, the device identity validation server checks
the device identifier (e.g., Subject.Serial Number) to deter-
mine if it has a corresponding entry in the database 310. If
so, the device identity validation server retrieves the public
key associated with device identifier. The device identity
validation server checks the public key to ensure it is still
valid (has not expired and has not been revoked) and then
uses it to decrypt the message. It then verifies if that
decryption was successful. If so, it returns an authentication
successful notification to the authorization server.

[0057] FIG. 5 illustrates a flow chart depicting, at a
high-level, the operations performed when a device secks
authorization to access a resource and operations performed
by the authorization server. Operations 400 and 410 are
performed by the client application running in a device.
Operation 430 is performed by the authorization server. At
400, the client application queries the secure device identity
module to obtain a device identifier of the device and a
signed string generated by the security device identity
module using a private key unique to the device. At 410, the
client application sends to authorization server a request
containing the device identifier and the signed string. As
explained above, the device identifier may be an IEEE
802.1AR Subject.SerialNumber and the signed string may
be generated by cryptographically signing the Subject.Seri-
alNumber with the private key. The request may be a HTTPS
POST with a POST payload indicating the device identifier
and the signed string. The HTTPS POST may be transmitted
in accordance with an authorization procedure compliant
with the OAuth 2.0 standard. The HTTPS POST may be a
Resource Owner Password Grant flow format grant_
type=password & username, where username is based on the
Subject.SerialNumber and the device domain, and the pass-
word comprises at least the signed string. Moreover, the
request may further include the client application identifier.
Further still, the request may include device domain infor-
mation. For example, the header of the HT'TPS POST may
include the client application identifier as indicated in step
410 of FIG. 5, and in some embodiments, further includes a
nonce for protection against a replay attack.

[0058] At 420, depending on an authentication result
obtained from authenticating the device based on the device
identifier, the authorization server sends to the device an
access token that enables the client application to access a
resource (with a scope). The authorization server may fur-
ther determine a scope of authorization permissions based
on the device identifier and a client application identifier
contained in the request, to generate the access token based

Apr. 6,2017

on the scope of authorization permissions. Authentication of
the device, based on the device identifier, may be performed
by the authorization server. For example, as described
above, when there is no device domain in the request sent by
the client application to the authorization server, then the
authorization server can itself perform the functions of the
device identity validation server to authenticate the device as
described above in connection with FIGS. 3 and 4. In that
scenario, there is only one default device validation server
and the authentication and authorization functions may be
co-located at the same entity (the authorization server). In
another scenario, when the request includes a device
domain, the authorization server determines a particular
device identity validation server among a plurality of device
identity validation servers based on the device domain. The
authorization server sends to the particular device identity
validation server the device identifier and the signed string
to enable the particular device identity validation server to
validate the signed string using a public key based on the
device identifier, to generate an authentication result. The
authorization server receives from the particular device
identity validation server a response that includes the
authentication result.

[0059] There are numerous use cases for these techniques.
In one example, a device may need to call a central API for
data for itself, such as, for example, automation of network
management task, software/firmware/patches, automation of
debugging or analysis in a backend resource, etc., for
purposes of troubleshooting the device itself. The device
could be validated to determine if it is under an active
support contract, the conditions of the contract, etc.

[0060] In another example, a “distributed/fog computing”
device in which a client application running within the
device may need to send/receive some data to a centralized
API for that client application’s normal operation/mainte-
nance. For example, the client application may be “a rules
engine” that runs within a device at the edge of a network,
but which needs to call back to a central API to fetch “the
appropriate rules for that specific device” that will be
executed on the edge/fog device. In other words, there is
need to load some base rules from a centralized Resource
API. The rules that are supplied may be different depending
on the location in the network where the device resides. The
device itself could just be “bare metal” for a client applica-
tion, which is separate from the normal operation of the
device. By using both device identity to validate the device
and client application identity (in addition to device identity)
to determine the scope of permissions to be granted to the
client application, these techniques provide a much more
granular authorization flow than heretofore known.

[0061] To summarize, an authorization flow is provided in
which a resource owner grant type of an oAuth v2 request
would have two identities within the access-token request
that the client application sends. These identities would be
sent to the resource/ API proxy for authorization check, prior
to the resource API execution. The identities are (1) a client
application identifier for the client application, which is
useful in API call quotas, controls and versioning of the API;
and (2) an identifier of the device itself that is unique, secure
and based on the ability of the device to prove itself by
digitally signing a block of text that a device identity
validation server can check an approve/reject authentication.
Thus, the device identifier is used for authentication and the

US 2017/0099148 Al

device identifier and client application identifier together are
used for authorization, assuming authentication is success-
ful.

[0062] These techniques eliminate the misuse of a device
impersonating “a human for scope and permissions” and add
a deeper granularity to the authorization of the unique
device, all while keeping the standards based backend
Resource API(s) leveraging oAuth v2. Thus, these tech-
niques do not require any major rewriting of the externalized
APIs themselves, and only a minor addition to add a device
identity validation server to the backend authorization pro-
cess is needed.

[0063] Moreover, these techniques do not involve a
browser and are well-suited for machine-to-machine com-
munication. The client application interrogates the device in
real-time, which means the client application is on the
device. This makes the client application more trusted.
[0064] To reiterate, a mechanism is presented herein for
both authenticating and authorizing a device and application
access to hosted APIs without tying the device or application
to a user identity. This provides the capability for businesses
to authorize application access to services, irrespective of
being connected to a user’s account. This is accomplished by
making slight modifications to the oAuth v2 standard, the
result of which provides for a capability whereby companies
can validate entitlement of a device (and application on the
device) for access to services (such as a software upgrade),
without needing that device or application to be tied to a
user’s account.

[0065] Devices (and the many independent applications
which run on top of them) are able to access API resources
and not just authenticate, but receive authorization for a
given API access, without leveraging any user identity/
credential. Additionally, this solution uses a modified o Auth
v2 implementation that is widely available and scalable.
This is useful for any application software company, where
the application/device itself needs to be identified and
authenticated/authorized without human intervention.
[0066] More generally, techniques presented herein solve
a problem unique to authentication/authorization operations
in networking environments by providing technology that
can securely authorize access by devices to certain
resources/APIs using a device identity rather than a user
identity.

[0067] In one form, a method is provided comprising: at a
device having a secure device identity module: a client
application of the device querying the secure device identity
module to obtain a device identifier of the device and a
signed string generated by the security device identity
module using a private key unique to the device; and sending
to an authorization server a request containing the device
identifier and the signed string; at the authorization server:
depending on an authentication result obtained from authen-
ticating the device based on the device identifier, sending to
the client application on the device an access token that
enables the client application to access a resource.

[0068] In another form, a method is provided comprising:
at a device having a secure device identity module: a client
application of the device querying the secure device identity
module to obtain a device identifier of the device and a
signed string generated by the security device identity
module using a private key unique to the device; and sending
to an authorization server a request containing the device
identifier and the signed string.

Apr. 6,2017

[0069] In still another form, an apparatus is provided
comprising: a processor; a network interface unit configured
to enable communications over a network; a memory storing
instructions for a client application; and a secure device
identity module that maintains a device identifier and is
configured to generate a signed string using a private key;
wherein the processor is configured to execute the instruc-
tions for the client application so as to: query the secure
device identity module to obtain the device identifier and the
signed string; generate a request containing the device
identifier and the signed string; and cause the request to be
sent to an authorization server.

[0070] In yet another form, one or more non-transitory
computer readable storage media are provided, and wherein
the computer readable storage media is encoded with
instructions, that when executed by a processing system
(e.g., a processor), cause the processor to execute instruc-
tions for a client application running on a device so as to:
query a secure device identity module of the device, the
secure device identity module maintaining a device identi-
fier and configured to generate a signed string using a private
key, to obtain the device identifier and the signed string;
generate a request containing the device identifier and the
signed string; and cause the request to be sent to an autho-
rization server.

[0071] The above description is intended by way of
example only. Although the techniques are illustrated and
described herein as embodied in one or more specific
examples, it is nevertheless not intended to be limited to the
details shown, since various modifications and structural
changes may be made within the scope and range of equiva-
lents of the claims.

1. A method comprising:

at a device having a secure device identity module:

a client application of the device querying the secure
device identity module to obtain a device identifier
of the device and a signed string generated by the
security device identity module using a private key
unique to the device; and

sending to an authorization server a request containing
the device identifier, the signed string, and a device
domain;

at the authorization server:

sending the device identifier to a particular device
identity validation server according to the device
domain identified in the request; and

depending on an authentication result obtained from
authenticating the device based on the device iden-
tifier, sending to the client application on the device
an access token that enables the client application to
access a resource.

2. (canceled)

3. The method of claim 1, wherein the device identifier is
an IEEE 802.1AR Subject.SerialNumber and the signed
string is generated from cryptographically signing the Sub-
ject.SerialNumber with the private key.

4. The method of claim 1, wherein sending the request
comprises transmitting a Hypertext Transfer Protocol Secure
(HTTPS) POST with a POST payload indicating the device
identifier and the signed string.

5. The method of claim 3, wherein the HTTPS POST is
transmitted in accordance with an authorization procedure
compliant with the oAuth 2.0 standard.

US 2017/0099148 Al

6. The method of claim 3, wherein the HTTPS POST is
a Resource Owner Password Grant flow format grant_
type=password & username, where username is based on the
Subject.SerialNumber, and the password comprises at least
the signed string.

7. The method of claim 3, wherein the request further
includes a client application identifier as an authorization
HTTPS header.

8. The method of claim 1, wherein the request further
includes a nonce for protection against a replay attack.

9. The method of claim 1, further comprising, at the
authorization server:

determining a scope of authorization permissions based

on the device identifier and a client application identi-

fier contained in the request; and

generating the access token based on the scope of autho-

rization permissions.

10. The method of claim 1, wherein the request is of a
format: grant_type=password & username=<IDevID.
SubectSerialNumber@DeviceDomain>& password=<a
signed block or string of text (signed by the private key of
the device)>.

11. A method comprising:

at a device having a secure device identity module:

a client application of the device querying the secure
device identity module to obtain a device identifier
of the device and a signed string generated by the
security device identity module using a private key
unique to the device; and

sending to an authorization server a request containing
the device identifier, the signed string, and a device
domain, the device domain enabling the authoriza-
tion server to identify a particular device identity
validation server to which to send the request for
validating an identity of the apparatus with the
device identifier.

12. The method of claim 11, wherein the device identifier
is an IEEE 802.1AR Subject.SerialNumber and the signed
string is generated from cryptographically signing the Sub-
ject.SerialNumber with the private key.

13. The method of claim 12, wherein sending the request
comprises transmitting a Hypertext Transfer Protocol Secure
(HTTPS) POST with a POST payload indicating the device
identifier and the signed string.

14. The method of claim 13, wherein the request further
includes a client application identifier as an authorization
HTTPS header.

15. The method of claim 14, further comprising, if the
device identifier is validated, receiving an access token from
the authorization server, the access token indicating a scope

Apr. 6,2017

of authorization permissions determined based on the device
identifier and the client application identifier.

16. An apparatus comprising:

a processor;

a network interface unit configured to enable communi-

cations over a network;

a memory storing instructions for a client application; and

a secure device identity module that maintains a device

identifier and is configured to generate a signed string
using a private key;

wherein the processor is configured to execute the instruc-

tions for the client application so as to:

query the secure device identity module to obtain the
device identifier and the signed string;

generate a request containing the device identifier, the
signed string, and a device domain, the device
domain enabling the authorization server to identify
aparticular device identity validation server to which
to send the request for validating an identity of the
apparatus with the device identifier; and

cause the request to be sent to an authorization server.

17. The apparatus of claim 16, wherein the secure device
identity module is implemented in hardware or software.

18. The apparatus of claim 16, wherein the device iden-
tifier is an IEEE 802.1AR Subject.SerialNumber and the
signed string is generated from cryptographically signing the
Subject.SerialNumber with the private key.

19. The apparatus of claim 18, wherein the processor is
configured to cause the request to be sent as a Hypertext
Transfer Protocol Secure (HTTPS) POST with a POST
payload indicating the device identifier and the signed
string.

20. (canceled)

21. The apparatus of claim 16, wherein the processor is
configured, to if the device identifier is validated, receive an
access token from the authorization server, the access token
indicating a scope of authorization permissions determined
based on the device identifier and the client application
identifier.

22. The apparatus of claim 18, wherein the HTTPS POST
is a Resource Owner Password Grant flow format grant_
type=password & username, where username is based on the
Subject.SerialNumber, and the password comprises at least
the signed string.

23. The apparatus of claim 16, wherein the request is of
a format: grant_type=password & username=<IDevID.
SubectSerialNumber@DeviceDomain>& password=<a
signed block or string of text (signed by the private key of
the device)>.

