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FILTERING OF CONTINUOUS GLUCOSE MONITOR (CGM) 

SIGNALS WITH A KALMAN FILTER 

RELATED APPLICATIONS 

[0001] This application claims priority under 35 U.S.C. §119(e) to U.S.  

Provisional Patent Application No. 63/168,867 filed March 31, 2021 and titled 

"Filtering of CGM Signals with aKalman Filter," and to U.S. Provisional Patent 

Application No. 63/208,362 filed June 8, 2021 and titled "Filtering of 

Continuous Glucose Monitor (CGM) Signals with a Kalman Filter", the entire 

disclosures of which is hereby incorporated by reference.  

BACKGROUND 

[0002] Diabetes mellitus is a disorder in which the pancreas cannot create 

sufficient insulin (Type I or insulin-dependent) and/or in which insulin is not 

effective (Type II or non-insulin-dependent). In the diabetic state, the patient or 

user suffers from high blood sugar, which can cause an array of physiological 

derangements associated with the deterioration of small blood vessels, for 

example, kidney failure, skin ulcers, or bleeding into the vitreous of the eye. A 

hypoglycemic reaction (low blood sugar) can be induced by an inadvertent 

overdose of insulin, or after a normal dose of insulin or glucose-lowering agent 

accompanied by extraordinary exercise or insufficient food intake.  

[0003] Conventionally, a person with diabetes carries a self-monitoring blood 

glucose (SMBG) monitor, which typically requires uncomfortable finger 

pricking methods. Due to the lack of comfort and convenience, a person with 

diabetes normally only measures his or her glucose levels two to four times per 

day. Unfortunately, such time intervals are so far spread apart that the person 
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with diabetes likely finds out too late of a hyperglycemic or hypoglycemic 

condition, sometimes incurring dangerous side effects. It is not only unlikely 

that a person with diabetes will become aware of a dangerous condition in time 

to counteract it, but it is also likely that he or she will not know whether his or 

her blood glucose concentration value is going up (higher) or down (lower) 

based on conventional methods. Diabetics thus may be inhibited from making 

educated insulin therapy decisions.  

[0004] Another device that some diabetics used to monitor their blood glucose 

is a continuous analyte sensor, e.g., a continuous glucose monitor (CGM) 

system. A CGM system typically includes a sensor that is placed invasively, 

minimally invasively, or non-invasively. The sensor measures the concentration 

of a given analyte within the body, e.g., glucose, and generates a raw signal 

using electronics associated with the sensor. The raw signal is converted into 

an output value that is rendered on a display. The output value that results from 

the conversion of the raw signal is typically expressed in a form that provides 

the user with meaningful information, and in which form users have become 

familiar with analyzing, such as blood glucose expressed in mg/dL 

[0005] Some CGM systems rely upon a blood glucose (BG) fingerstick meter 

value to correlate the sensor signal to clinical blood glucose, while others do 

not require real time BG fingerstick meter values to correlate 

(calibrate/transform) the sensor-derived raw signal into a clinical blood glucose 

equivalent value representative of the glucose concentration in a patient (e.g., 

based instead on factory information). Both types of systems may suffer from 

inaccuracies, particularly near the beginning or end of the sensor's life, which 

may result from BG values or calibration codes being interpreted too 

simplistically.  
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SUMMARY 

[0006] In a first aspect, a method is provided for monitoring a blood analyte 

concentration in a host, comprising: receiving from a continuous analyte sensor 

a sensor signal indicative of a blood analyte concentration in a host; filtering 

the sensor signal using a Kalman filter having process noise with a process 

covariance and measurement noise with a measurement covariance, wherein 

the filtering includes updating a value of at least one of the process covariance 

and the measurement covariance using a value of one or more parameters 

employed in a model of the Kalman filter; and outputting from the Kalman filter 

a filtered sensor signal representative of the blood analyte concentration in the 

host.  

[0007] In an embodiment of the first aspect, the one or more parameters used 

to update at least one of the process covariance and the measurement covariance 

includes a value of an innovation term and a residual term employed in the 

Kalman filter model.  

[0008] In an embodiment of the first aspect, the updating is performed when 

one or more predefined artifacts are detected in the sensor signal.  

[0009] In an embodiment of the first aspect, the updating is performed when 

one or more predefined artifacts are detected in the sensor signal after filtering 

the sensor signal using the Kalman filter.  

[00010] In an embodiment of the first aspect, the method further 

comprises detecting the one or more predefined artifacts by examining a 

residual signal, the residual signal being a difference between the sensor signal 

received from the analyte sensor and the sensor signal after filtering the sensor 

signal using the Kalman filter.  
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[0010] In an embodiment of the first aspect, the residual signal is a temporary 

residual signal that is a difference between the sensor signal received from the 

analyte sensor and the sensor signal after filtering the sensor signal using the 

filter before the at least one of the process covariance and the measurement 

covariance is updated.  

[0011] In an embodiment of the first aspect, the residual signal is a final 

residual signal that is a difference between the sensor signal received from the 

analyte sensor and the sensor signal after filtering the sensor signal using the 

filter after the at least one of the process covariance and the measurement 

covariance is updated.  

[0012] In an embodiment of the first aspect, one of the predefined artifacts is a 

value of a residual difference or a derivative of the residual difference that 

exceeds a threshold value, the residual difference being a difference between a 

value of a temporary residual signal and a value of a final residual signal, the 

temporary residual signal being a difference between the sensor signal received 

from the analyte sensor and the sensor signal after filtering the sensor signal 

using the filter before the at least one of the process covariance and the 

measurement covariance is updated and the final residual signal being a 

difference between the sensor signal received from the analyte sensor and the 

sensor signal after filtering the sensor signal using the filter after the at least one 

of the process covariance and the measurement covariance is updated.  

[0013] In an embodiment of the first aspect, one of the predefined artifacts is a 

residual bias reflecting that the residual signal has a consistently positive or 

negative value over one or more selected windows of time.  

[0014] In an embodiment of the first aspect, one of the predetermined artifacts 

is a zero crossing of the final residual signal, the zero crossing of the final 

residual signal reflecting a number of times a value of the final residual signal 
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undergoes a change in sign from positive to negative or negative to positive 

over one or more selected windows of time.  

[0015] In an embodiment of the first aspect, the one or more predetermined 

artifacts are based on models of the sensor signal.  

[0016] In an embodiment of the first aspect, the method further comprises 

undoing a previous update to the values of at least one of the process covariance 

and the measurement covariance upon detecting one or more specified artifacts 

in the sensor signal.  

[0017] In an embodiment of the first aspect, the one or more parameters used 

to update at least one of the process covariance and the measurement covariance 

includes a fault metric that is based on a value of an innovation term and an 

innovation covariance employed in the Kalman filter model.  

[0018] In an embodiment of the first aspect, the fault metric is a moving 

average of an instantaneous fault metric averaged over a specified number of 

measurement samples received from the analyte sensor.  

[0019] In an embodiment of the first aspect, the one or more predefined artifacts 

includes a value of a fault metric that exceeds a threshold, the fault metric being 

based on an innovation term and an innovation covariance employed in the 

Kalman filter model.  

[0020] In an embodiment of the first aspect, the method further comprises 

adaptively performing the updating after each iteration of the filtering.  

[0021] In an embodiment of the first aspect, the update is adaptively performed 

using a residual signal and specified step size coefficients, the residual signal 

being a difference between the sensor signal received from analyte sensor and 

the sensor signal after filtering the sensor signal using the Kalman filter.  
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[0022] In an embodiment of the first aspect, the specified step size coefficients 

are adjusted using transfer functions that are based on the fault metric.  

[0023] In an embodiment of the first aspect, the process covariance has a 

minimum value that is adjusted using the transfer functions.  

[0024] In an embodiment of the first aspect, the method further comprises 

adjusting design parameters employed in the transfer functions to achieve a 

prescribed tradeoff between signal smoothing and time lag.  

[0025] In an embodiment of the first aspect, the method further comprises 

performing a corrective action upon detecting one or more artifacts in the sensor 

signal when the sensor signal is a low-resolution signal, the corrective action 

being determined at least in part by a sign of a residual signal, the residual signal 

being a difference between the sensor signal received from the analyte sensor 

and the sensor signal after filtering the sensor signal using the Kalman filter.  

[0026] In an embodiment of the first aspect, the method further comprises 

retroactively determining from historical data an optimal Kalman filter model 

that was previously employed when the sensor signal is a high-resolution signal.  

[0027] In an embodiment of the first aspect, the determining is performed using 

a residual bias and a zero crossing, the residual bias reflecting that a residual 

signal has a consistently positive or negative value over one or more selected 

windows of time and the zero crossing reflecting a number of times the residual 

signal undergoes a change in sign from positive to negative or negative to 

positive over one or more selected windows of time.  

[0028] In an embodiment of the first aspect, the method comprises performing 

a corrective action upon detecting one or more artifacts in the sensor signal, the 

corrective action including updating values one or more of the parameters 

employed in the Kalman filter model, the updated values being selected to 
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achieve a prescribed tradeoff between an amount of analyte sensor signal 

smoothing to be achieved and a time lag in tracking changes in the analyte 

sensor signal.  

[0029] In an embodiment of the first aspect, the method further comprises 

determining if a feature identified in the sensor signal is to be classified as a 

predefined artifact using a rules-based model trained using clinical data.  

[0030] In an embodiment of the first aspect, the method further comprises 

determining if a feature identified in the sensor signal is to be classified as a 

predefined artifact using a machine-learning model.  

[0031] In an embodiment of the first aspect, one of the predefined artifacts is a 

value of residual kurtosis or an R/Q value.  

[0032] In an embodiment of the first aspect, the at least one of the artifacts is 

identified in a sensor signal domain.  

[0033] In an embodiment of the first aspect, at least one of the artifacts is 

identified after translation of the sensor signal to a corresponding blood glucose 

value.  

[0034] In a second aspect, a method is provided for monitoring a blood analyte 

concentration in a host, comprising: receiving from a continuous analyte sensor 

a sensor signal indicative of a blood analyte concentration in a host; filtering 

the sensor signal using a Kalman filter; detecting one or more predefined 

artifacts in the sensor signal; performing a corrective action upon detecting the 

one or more artifacts in the sensor signal, wherein the corrective action includes 

updating values one or more of parameters employed in a model of Kalman 

filter; and outputting from the Kalman filter a filtered sensor signal 

representative of the blood analyte concentration in the host.  
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[0035] The difference between the raw sensor signal and filtered signal by the 

Kalman filter is representative of the noise on the signal. This value is used to 

measure the signal-to-noise ratio of the signal and is indicative of the signal 

quality. Other metrics can be used to provide additional signal quality metrics, 

such as the covariance of error calculated by the Kalman filter which can be a 

measure of the accuracy of the state estimates.  

BRIEF DESCRIPTION OF THE DRAWINGS 

[0036] The details of the present disclosure, both as to its structure and 

operation, may be understood in part by study of the accompanying drawings, 

in which like reference numerals refer to like parts. The drawings are not 

necessarily to scale, emphasis instead being placed upon illustrating the 

principles of the disclosure.  

[0037] FIG. 1 is a diagram of one example of an integrated system including a 

continuous glucose sensor and a medicament delivery device.  

[0038] FIG. 2 is a front elevation view of an electronic device configured for 

use with the present systems and methods.  

[0039] FIG. 3 is a functional block diagram of the electronic device of FIG. 2.  

[0040] FIG. 4 is a simplified block diagram showing the primary inputs to and 

outputs from a Kalman filter module.  

[0041] FIG. 5 shows is a graph showing the glucose level of a patient over a 

period of time as provided by a CGM system before the raw sensor signal is 

filtered.  
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[0042] FIG. 6 shows a simplified block diagram of an example of a Kalman 

filter in which an artifact detection module is employed to examine a sensor 

signal output by a Kalman filter state update module.  

[0043] FIG. 7 shows a simplified block diagram of an example of a Kalman 

filter in which a fault metric calculation module is employed to examine various 

internal variables used by a Kalman filter update module.  

[0044] FIG. 8 shows the raw sensor signal shown in FIG. 5, except the signal 

is filtered using a Kalman filter configured in accordance with the techniques 

described herein.  

[0045] FIG. 9. shows a raw sensor signal and a filtered sensor signal after 

filtering with a Kalman filter using three different sets of parameters.  

[0046] FIG. 10 is a flowchart showing a method for monitoring a blood analyte 

concentration in a host.  

DETAILED DESCRIPTION 

[0047] Exemplary embodiments disclosed herein relate to the use of a glucose 

sensor that measures a concentration of glucose or a substance indicative of the 

concentration or presence of another analyte. In some embodiments, the glucose 

sensor is a continuous device, for example a subcutaneous, transdermal, 

transcutaneous, non-invasive, intraocular and/or intravascular (e.g., 

intravenous) device. In some embodiments, the device is a non-continuous 

device. In some embodiments, the device can analyze a plurality of intermittent 

blood samples. The glucose sensor can use any method of glucose 

measurement, including enzymatic, chemical, physical, electrochemical, 

optical, optochemical, fluorescence-based, spectrophotometric, spectroscopic 
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(e.g., optical absorption spectroscopy, Raman spectroscopy, etc.), polarimetric, 

calorimetric, iontophoretic, radiometric, and the like.  

[0048] The glucose sensor can use any known detection method, including 

invasive, minimally invasive, and non-invasive sensing techniques, to provide 

a data stream indicative of the concentration of the analyte in a host. The data 

stream is typically a raw data signal that is used to provide a useful value of the 

analyte to a user, such as a patient or health care professional (e.g., doctor), who 

may be using the sensor.  

[0049] Although much of the description and examples are drawn to an 

implantable glucose sensor capable of measuring the concentration of glucose 

in a host, the systems and methods of embodiments can be applied to any 

measurable analyte and/or analytes. It should be understood that the systems, 

devices and/or methods described herein can be applied to any system, device, 

and/or method capable of detecting a concentration of an analyte and providing 

an output signal that represents the concentration of the analyte.  

[0050] As noted, in some embodiments, the analyte sensor is an implantable 

glucose sensor, such as described with reference to U.S. Pat. No. 6,001,067 and 

U.S. Patent Publication No. US-2011-0027127-Al. In some embodiments, the 

analyte sensor is a transcutaneous glucose sensor, such as described with 

reference to U.S. Patent Publication No. US-2006-0020187-A1. In yet other 

embodiments, the analyte sensor is a dual electrode analyte sensor, such as 

described with reference to U.S. Patent Publication No. US-2009-0137887-A1.  

In still other embodiments, the sensor is configured to be implanted in a host 

vessel or extracorporeally, such as is described in U.S. Patent Publication No.  

US-2007-0027385-A1. These patents and publications are incorporated herein 

by reference in their entirety.  
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[0051] The following description and examples describe the present 

embodiments with reference to the drawings. In the drawings, reference 

numbers label elements of the present embodiments. These reference numbers 

are reproduced below in connection with the discussion of the corresponding 

drawing features.  

[0052] FIG. 1 is a block diagram of an integrated system of the preferred 

embodiments, including a continuous glucose sensor and a medicament 

delivery device. Such is an exemplary environment in which some 

embodiments described herein may be implemented. Here, an analyte 

monitoring system 100 includes a continuous analyte sensor system 8.  

Continuous analyte sensor system 8 includes a sensor electronics (e.g., a sensor 

electronics module) 12 and a continuous analyte sensor 10. The system 100 can 

also include other devices and/or sensors, such as a medicament delivery pump 

2 and/or a reference analyte meter 4. The continuous analyte sensor 10 may be 

physically connected to sensor electronics 12. The sensor electronics 12 may 

be integral with (e.g., non-releasably attached to) or releasably attachable to the 

continuous analyte sensor 10. Alternatively, the continuous analyte sensor 10 

may be physically separate from sensor electronics 12, but electronically 

coupled via inductive coupling or the like. Further, the sensor electronics 12, 

medicament delivery pump 2, and/or analyte reference meter 4, may 

communicate with one or more additional devices, such as any or all of display 

devices 14, 16, 18, and/or 20. The display devices 14, 16, 18, and 20 may 

generally include a processor, memory, storage, and other components 

sufficient to run an application including a decision support module.  

[0053] As used herein, the term "continuous" used in connection with analyte 

monitoring may refer to an ability of a device to produce measurements 

substantially continuously, such that the device may be configured to produce 

the glucose measurements at intervals of time (e.g., every hour, every 30 
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minutes, every 5 minutes, and so forth). In various embodiments, however, the 

systems and techniques discussed herein may be implemented using 

non-continuous sensors and systems. For instance, the continuous analyte 

sensor system 8 may be implemented with a non-continuous analyte sensor 

which may be configured to produce analyte measurements (e.g., glucose 

measurements) when requested, e.g., responsive to a user request.  

[0054] In some implementations, the system 100 of FIG. 1 may also include a 

processor (e.g., cloud-based) 22 configured to analyze analyte data, 

medicament delivery data and/or other user-related data provided over network 

24 directly or indirectly from one or more of sensor system 8, medicament 

delivery pump 2, reference analyte meter 4, and/or display devices 14, 16, 18, 

20. Based on the received data, the processor 22 can further process the data, 

generate reports providing statistics based on the processed data, trigger 

notifications to electronic devices associated with the host or caretaker of the 

host, and/or provide processed information to any of the other devices of FIG.  

1. In some exemplary implementations, the processor 22 comprises one or more 

servers. If the processor 22 comprises multiple servers, the servers can be either 

geographically local or separate from one another. The network 24 can include 

any wired and wireless communication medium to transmit data, including 

WiFi networks, cellular networks, the Internet and any combinations thereof.  

[0055] In some exemplary implementations, the sensor electronics 12 may 

include electronic circuitry associated with measuring and processing data 

generated by the continuous analyte sensor 10. This generated continuous 

analyte sensor data may also include algorithms, which can be used to process 

and calibrate the continuous analyte sensor data, although these algorithms may 

be provided in other ways as well, such as by the devices 14, 16, 18, and/or 20.  

The sensor electronics 12 may include hardware, firmware, software, or a 

combination thereof, to provide measurement of levels of the analyte via a 
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continuous analyte sensor or a non-continuous analyte sensor (e.g., a 

continuous glucose sensor or a non-continuous glucose sensor).  

[0056] The sensor electronics 12 may, as noted, couple (e.g., wirelessly and the 

like) with one or more devices, such as any or all of display devices 14, 16, 18, 

and 20. The display devices 14, 16, 18, and/or 20 may be configured for 

processing and presenting information, such sensor information transmitted by 

the sensor electronics module 12 for display at the display device. The display 

devices 14, 16, 18, and 20 can also trigger alarms and/or provide decision 

support recommendations based on the analyte sensor data.  

[0057] In FIG. 1, display device 14 is a key fob-like display device, display 

device 16 is a hand-held application-specific computing device (e.g., a DexCom 

receiver and/or other receiver commercially available or previously 

commercially available from DexCom, Inc.), display device 18 is a general 

purpose smart phone or tablet computing device 20 (e.g., a phone running the 

AndroidTM OS, an AppleTM iPhoneTM, iPadTM, or iPod TouchTM. commercially 

available or previously commercially available from Apple, Inc.), and display 

device 20 is a computer workstation 20. In some exemplary implementations, 

the relatively small, key fob-like display device 14 may be a computing device 

embodied in a wrist watch, a belt, a necklace, a pendent, a piece of jewelry, an 

adhesive patch, a pager, a key fob, a plastic card (e.g., credit card), an 

identification (ID) card, and/or the like. This small display device 14 may 

include a relatively small display (e.g., smaller than the display device 18) and 

may be configured to display a limited set of displayable sensor information, 

such as a numerical value 26 and an arrow 28. Some systems may also include 

a wearable device 21, such as described in U.S. Provisional Patent Application 

No. 61/904,341, filed Nov. 14, 2013, and entitled "Devices and Methods for 

Continuous Analyte Monitoring," the entire disclosure of which is hereby 

expressly incorporated by reference. The wearable device 21 may include any 
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device(s) that is/are worn on, or integrated into, a user's vision, clothes, and/or 

bodies. Example devices include wearable devices, anklets, glasses, rings, 

necklaces, arm bands, pendants, belt clips, hair clips/ties, pins, cufflinks, 

tattoos, stickers, socks, sleeves, gloves, garments (e.g. shirts, pants, underwear, 

bra, etc.), "clothing jewelry" such as zipper pulls, buttons, watches, shoes, 

contact lenses, subcutaneous implants, eyeglasses, cochlear implants, shoe 

inserts, braces (mouth), braces (body), medical wrappings, sports bands (wrist 

band, headband), hats, bandages, hair weaves, nail polish, artificial joints/body 

parts, orthopedic pins/devices, implantable cardiac or neurological devices, etc.  

The small display device 14 and/or the wearable device 21 may include a 

relatively small display (e.g., smaller than the display device 18) and may be 

configured to display graphical and/or numerical representations of sensor 

information, such as a numerical value 26 and/or an arrow 28. In contrast, 

display devices 16, 18 and 20 may be larger display devices that may be capable 

of displaying a larger set of and/or different displayable information or form of 

displayable information, such as a trend graph 30 depicted on the hand-held 

receiver 16 in addition to, and/or in replacement of other information such as a 

numerical value and arrow.  

[0058] It is understood that any other user equipment (e.g., computing devices) 

configured to at least present information (e.g., a medicament delivery 

information, discrete self-monitoring analyte readings, heart rate monitor, 

caloric intake monitor, and the like) may be used in addition to or instead of 

those discussed with reference to FIG. 1.  

[0059] In some exemplary implementations of FIG. 1, the continuous analyte 

sensor 10 comprises a sensor for detecting and/or measuring analytes, and the 

continuous analyte sensor 10 may be configured to continuously detect and/or 

measure analytes as a non-invasive device, a subcutaneous device, a 

transdermal device, and/or an intravascular device. In some exemplary 
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implementations, the continuous analyte sensor 10 may analyze a plurality of 

intermittent blood samples, although other analytes may be used as well. In one 

or more implementations, the sensor 10 may instead be implemented as a non

continuous analyte sensor.  

[0060] In some exemplary implementations of FIG. 1, the continuous analyte 

sensor 10 may comprise a glucose sensor configured to measure glucose in the 

blood using one or more measurement techniques, such as enzymatic, chemical, 

physical, electrochemical, fluorescent, spectrophotometric, polarimetric, 

calorimetric, iontophoretic, radiometric, immunochemical, and the like. In 

implementations in which the continuous analyte sensor 10 includes a glucose 

sensor, the glucose sensor may be comprise any device capable of measuring 

the concentration of glucose and may use a variety of techniques to measure 

glucose including invasive, minimally invasive, and non-invasive sensing 

techniques (e.g., fluorescent monitoring), to provide data, such as a data stream, 

indicative of the concentration of glucose in a host. The data stream may be a 

raw data signal, which is converted into a calibrated and/or filtered data stream 

used to provide a value of glucose to a host, such as a user, a patient, or a 

caregiver (e.g., a parent, a relative, a guardian, a teacher, a doctor, a nurse, or 

any other individual that has an interest in the wellbeing of the host). Moreover, 

the continuous analyte sensor 10 may be implanted as at least one of the 

following types of sensors: an implantable glucose sensor, a transcutaneous 

glucose sensor, implanted in a host vessel or extracorporeally, a subcutaneous 

sensor, a refillable subcutaneous sensor, intraocular, or an intravascular sensor.  

As described throughout, the sensor 10 may alternately be implemented as a 

non-continuous glucose sensor in one or more embodiments.  

[0061] FIG. 2 illustrates one embodiment of an electronic device 200 

configured for use with the present systems and methods. The electronic device 

200 includes a display 202 and one or more input/output (1/0) devices, such as 
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one or more buttons 204 and/or switches 206, which when activated (e.g., 

clicked and/or manipulated) perform one or more functions. In some 

embodiments the electronic device 200 may be mobile communication device.  

For instance, in the illustrated embodiment, the electronic device 200 is a 

smartphone, and the display 202 comprises a touchscreen, which also functions 

as an I/O device. In other embodiments, the electronic device 200 may comprise 

a device or devices other than a smartphone, such as a receiver of a CGM 

system, a smartwatch, a tablet computer, a mini-tablet computer, a handheld 

personal digital assistant (PDA), a game console, a multimedia player, a 

wearable device, such as those described above, a screen in an automobile or 

other vehicle, etc. While the electronic device 200 is illustrated as a smartphone 

in the figures, the electronic device 200 can be any of the other electronic 

devices mentioned herein and/or incorporate the functionality of any or all of 

the other electronic devices, including wherein some or all of the functionally 

is embodied on a remote server. As described in greater detail herein, in certain 

embodiments, processing of data such as that data discussed herein (e.g., data 

of a CGM system) may be performed by the electronic device 200 using one or 

more processors of the electronic device 200. Alternately or additionally, the 

processing and filtering of data discussed herein may be performed by one or 

more devices other than the device 200. For example, the processing and 

filtering techniques discussed herein may be performed, at least partially, by a 

wearable device (e.g., wearable device 21) that is worn on the user's body and 

communicates information to another device, such as the electronic device 200.  

[0062] FIG. 3 is a block diagram of the electronic device 200 shown in FIG. 2, 

illustrating its functional components in accordance with some embodiments.  

The electronic device 200 includes the display 202 and one or more input/output 

("I/O") device(s) 204, 206, as described above with respect to FIG. 2. The 

display 202 may be any device capable of displaying output, such as an LCD 

or LED screen and others. The input/output (1/0) devices 202, 204, 206 may 
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comprise, for example, a keyboard (not shown), one or more buttons 204, one 

or more switches 206, etc. In embodiments including a touchscreen, the display 

202 also functions as an I/O device.  

[0063] The electronic device 200 further includes a processor 208 (also referred 

to as a central processing unit (CPU)), a memory 210, a storage device 212, a 

transceiver 214, and may include other components or devices (not shown). The 

memory 210 is coupled to the processor 208 via a system bus or a local memory 

bus 216. The processor 208 may be, or may include, one or more programmable 

general-purpose or special-purpose microprocessors, digital signal processors 

(DSPs), programmable controllers, application specific integrated circuits 

(ASICs), programmable logic devices (PLDs), or the like, or a combination of 

such hardware-based devices.  

[0064] The memory 210 provides the processor 208 access to data and program 

information that is stored in the memory 210 at execution time. Typically, the 

memory 210 includes random access memory (RAM) circuits, read-only 

memory (ROM), flash memory, or the like, or a combination of such devices.  

[0065] The storage device 212 may comprise one or more internal and/or 

external mass storage devices, which may be or may include any conventional 

medium for storing large volumes of data in a non-volatile manner. For 

example, the storage device 212 may include conventional magnetic disks, 

optical disks, magneto-optical (MO) storage, flash-based storage devices, or 

any other type of non-volatile storage devices suitable for storing structured or 

unstructured data. The storage device 212 may also comprise storage in the 

"cloud" using so-called cloud computing. Cloud computing pertains to 

computing capability that provides an abstraction between the computing 

resource and its underlying technical architecture (e.g., servers, storage, 

networks), enabling convenient, on-demand network access to a shared pool of 
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configurable computing resources that can be rapidly provisioned and released 

with minimal management effort or service provider interaction.  

[0066] The electronic device 200 may perform various processes, such as, for 

example, correlating data, pattern analysis, and other processes. In some 

embodiments, the electronic device 200 may perform such processes on its own.  

Alternatively, such processes may be performed by one or more other devices, 

such as one or more cloud-based processors 22 described above. In still further 

embodiments, these processes may be performed in part by the electronic 

device 200 and in part by other devices. Various example processes are 

described herein with reference to the electronic device 200. It should be 

understood that these example processes are not limited to being performed by 

the electronic device 200 alone. Further, as used herein, the term "electronic 

device" should be construed to include other devices with which the electronic 

device 200 interacts, such as one or more cloud-based processors, servers, etc.  

[0067] The electronic device 200 may also include other devices/interfaces for 

performing various functions. For example, the electronic device 200 may 

include a camera (not shown).  

[0068] The transceiver 214 enables the electronic device 200 to communicate 

with other computing systems, storage devices, and other devices via a network.  

While the illustrated embodiment includes a transceiver 214, in alternative 

embodiments a separate transmitter and a separate receiver may be substituted 

for the transceiver 214.  

[0069] In some embodiments, the processor 208 may execute various 

applications, for example, a CGM application, which is loaded on the electronic 

device 200. The application (e.g., the CGM application) may be downloaded 

to the electronic device 200 over the Internet and/or a cellular network, and the 

like. Data for various applications may be shared between the electronic device 
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200 and one or more other devices/systems, and stored by storage 212 and/or 

on one or more other devices/systems. This CGM application may include a 

decision support electronics (e.g., a decision support module) and/or may 

include processing sufficient to operate decision support assessment functions 

and methods as described below.  

[0070] In certain of the present embodiments, the sensor 10 of the continuous 

analyte sensor system 8 of FIG. 1 is inserted into the skin of a host. A new 

sensor session is initiated with the sensor 10, the sensor electronics 12, and the 

electronic device 200. Numerous techniques may be employed for initializing 

the sensor 10. For example, initialization may be triggered when the sensor 

electronics 12 engages the sensor 10. In another example, initialization may be 

triggered by a mechanical switch, such as a switch (not shown) on a snap-in 

base that receives the sensor electronics 12. When the sensor electronics 12 are 

snapped into the base, the switch is automatically tripped. In another example, 

initialization may be menu driven, and the user may be prompted by a user 

interface on the display 202 of the electronic device 200 to begin initialization 

by making a selection on the user interface, such as by pushing a button or 

touching a designated area on a display 202 (which may comprise a 

touchscreen). In another example, initialization may be based upon evaluation 

or analysis of a signal characteristic, such as a signal received by the sensor 

electronics 12 from the sensor 10. In another example involving a non-invasive 

sensor that is applied to the wearer's skin, the sensor 10 may sense when it is in 

contact with skin and start automatically. Further, the analyte sensor system 8 

can detect use of a new sensor 10 using any of the above techniques, 

automatically prompt the user to confirm the new sensor session by way of a 

prompt on a user interface of the system 8, and initiate an initialization response 

to the user confirmation responsive to the prompt. Additional examples of 

initializing the sensor 10 are found in U.S. patent application Ser. No.  
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13/796,185, filed on Mar. 12, 2013, the entire disclosure of which is hereby 

incorporated by reference herein.  

[0071] The preferred embodiments provide a continuous analyte sensor that 

measures a concentration of the analyte of interest or a substance indicative of 

the concentration or presence of the analyte. In some embodiments, the analyte 

sensor is an invasive, minimally invasive, or non-invasive device, for example 

a subcutaneous, transdermal, intravascular, or extracorporeal device. In some 

embodiments, the analyte sensor may analyze a plurality of intermittent 

biological samples. The analyte sensor may use any method of analyte

measurement, including enzymatic, chemical, physical, electrochemical, 

spectrophotometric, polarimetric, calorimetric, radiometric, or the like.  

[0072] In some embodiments the analyte sensor may be broadly characterized 

as a diffusion-based sensor. Some particular embodiments of the diffusion

based sensor may be, more specifically, an electrochemical or electrode-based 

sensor. In some embodiments the electrochemical or electrode-based sensor 

may be an enzymatic sensor such as a GOX-based sensor or a GOX-based H20 2 

sensor.  

[0073] In general, analyte sensors provide at least one working electrode and at 

least one reference electrode, which are configured to measure a signal 

associated with a concentration of the analyte in the host, such as described in 

more detail below, and as appreciated by one skilled in the art. The output signal 

is typically a raw data stream that is used to provide a useful value of the 

measured analyte concentration in a host to the patient or doctor, for example.  

However, the analyte sensors of some embodiments comprise at least one 

additional working electrode configured to measure at least one additional 

signal, as discussed elsewhere herein. For example, in some embodiments, the 

additional signal is associated with the baseline and/or sensitivity of the analyte 
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sensor, thereby enabling monitoring of baseline and/or sensitivity changes that 

may occur in a continuous analyte sensor over time.  

[0074] In general, continuous analyte sensors define a relationship between 

sensor-generated measurements (for example, current in pA, nA, or digital 

counts after A/D conversion) and a reference measurement (for example, 

glucose concentration mg/dL or mmol/L) that are meaningful to a user (for 

example, patient or doctor). In the case of an implantable diffusion-based 

glucose oxidase electrochemical glucose sensor, the sensing mechanism 

generally depends on phenomena that are linear with glucose concentration, for 

example: (1) diffusion of glucose through a membrane system (for example, 

biointerface membrane and membrane system) situated between implantation 

site and/or the electrode surface, (2) an enzymatic reaction within the membrane 

system, and (3) diffusion of the H202 to the sensor. Because of this linearity, 

calibration of the sensor can be understood by solving an equation: 

y=mx+b 

where y represents the sensor signal (e.g., counts), x represents the estimated 

glucose concentration (e.g., mg/dL), m represents the sensor sensitivity to 

glucose (e.g., counts/mg/dL), and b represents the baseline signal (e.g., counts).  

When both sensitivity m and baseline (background) b change over time in vivo, 

calibration has generally requires at least two independent, matched data pairs 

(xI, yi; x2, y2) to solve for m and b and thus allow glucose estimation when only 

the sensor signal, y is available. Matched data pairs can be created by matching 

reference data (for example, one or more reference glucose data points from a 

blood glucose meter, or the like) with substantially time corresponding sensor 

data (for example, one or more glucose sensor data points) to provide one or 

more matched data pairs, such as described in U.S. Patent Publication No. US

2005-0027463-Al. In some implantable glucose sensors, such as described in 
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more detail in U.S. Pat. No. 6,329,161 to Heller et al., which is incorporated 

herein by reference in its entirety, the sensing layer utilizes immobilized 

mediators (e.g., redox compounds) to electrically connect the enzyme to the 

working electrode, rather than using a diffusional mediator. In some 

implantable glucose sensors, such as described in more detail in U.S. Pat. No.  

4,703,756, the system has two oxygen sensors situated in an oxygen-permeable 

housing, one sensor being unaltered and the other contacting glucose oxidase 

allowing for differential measurement of oxygen content in bodily fluids or 

tissues indicative of glucose levels. A variety of systems and methods of 

measuring glucose in a host are known, all of which may benefit from some 

embodiments to provide a sensor having a signal-to-noise ratio that is not 

substantially affected by non-constant noise. Additional description of analyte 

sensor configurations can be found in U.S. patent application Ser. No.  

11/692,154, filed on Mar. 27, 2007 and entitled "DUAL ELECTRODE 

SYSTEM FOR A CONTINUOUS ANALYTE SENSOR", U.S. Patent 

Publication No. US-2007-0027385-A1, and U.S. Patent Publication No. US

2005-0143635-Al.  

[0075] Generally, implantable sensors measure a signal related to an analyte of 

interest in a host. For example, an electrochemical sensor can measure glucose, 

creatinine, or urea in a host, such as an animal (e.g., a human). Generally, the 

signal is converted mathematically to a numeric value indicative of analyte 

status, such as analyte concentration. It is not unusual for a sensor to experience 

a certain level of noise. In general, "constant noise" (sometimes referred to as 

constant background or baseline) is caused by non-analyte-related factors that 

are relatively stable over time, including but not limited to electroactive species 

that arise from generally constant (e.g., daily) metabolic processes. Constant 

noise can vary widely between hosts. In contrast, "non-constant noise" 

(sometimes referred to as non-constant background) is caused by non-constant, 

non-analyte-related species (e.g., non-constant noise-causing electroactive 
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species) that arise during transient events, such as during host metabolic 

processes (e.g., wound healing or in response to an illness), or due to ingestion 

of certain compounds (e.g., certain drugs). In some circumstances, noise can be 

caused by a variety of noise-causing electroactive species.  

[0076] In general, noise can be caused by a variety of factors, ranging from 

mechanical factors to biological factors. For example, macro- or micro-motion, 

ischemia, pH changes, temperature changes, pressure, stress, or even unknown 

mechanical, electrical, and/or biochemical sources can cause noise, in some 

embodiments. Interfering species, which cause non-constant noise, can be 

compounds, such as drugs that have been administered to the host, or 

intermittently produced products of various host metabolic processes.  

Exemplary interferents include but are not limited to a variety of drugs (e.g., 

acetaminophen), H202 from exterior sources (e.g., produced outside the sensor 

membrane system), and reactive metabolic species (e.g., reactive oxygen and 

nitrogen species, some hormones, etc.). Some known interfering species for a 

glucose sensor include but are not limited to acetaminophen, ascorbic acid, 

bilirubin, cholesterol, creatinine, dopamine, ephedrine, ibuprofen, L-dopa, 

methyldopa, salicylate, tetracycline, tolazamide, tolbutamide, triglycerides, and 

uric acid. In some cases noise may also arise when hosts are intermittently 

sedentary, such as during sleep or sitting for extended periods. When the host 

began moving again, the noise may quickly dissipate.  

[0077] Noise is clinically important because it can induce error and can reduce 

sensor performance, such as by providing a signal that causes the analyte 

concentration to appear higher or lower than the actual analyte concentration.  

For example, upward or high noise (e.g., noise that causes the signal to increase) 

can cause the host's glucose concentration to appear higher than it truly is, 

which can lead to improper treatment decisions. Similarly, downward or low 

noise (e.g., noise that causes the signal to decrease) can cause the host's glucose 
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concentration to appear lower than it is, which can also lead to improper 

treatment decisions. Accordingly, analyte sensor systems that are able to reduce 

noise arising in the analyte sensor offer important technological advantages.  

[0078] Conventional techniques for filtering the raw sensor signal may not 

always lead to satisfactory results. For instance, FIG. 5 shows the glucose level 

of a patient over a period of time as provided by a CGM system before the raw 

sensor signal is filtered. The raw sensor signal becomes significantly noisy 

shortly before time 7.65 and stays noisy past time 7.65. The noisy data may 

arise from a variety of sources, including, by way of example, displacement of 

the sensor in the patient due to the patient's movement or electronic error. The 

figure also shows the signal after being filtered using a conventional IIR filter.  

However, the filtered signal clearly does not accurately track the signal from 

the sensor for some time after the noisy data is received. Accordingly, the data 

may not be presented to the user for an extended period of time. FIG. 5 also 

shows that the data displayed to the user and the near zero value for the glucose 

level during this period indicates that no data is displayed for this entire period 

of time.  

[0079] The Kalman filter belongs to the class of Bayesian estimators, which are 

a group of algorithms that extract information about a set of unknown variables 

or states given noisy measurements and some prior knowledge about the 

variables. Kalman filtering may use a two-step estimation process to extract 

information about the unknown variables by assuming that they are represented 

by probability density functions rather discrete values. Additional details of the 

Kalman filter estimation process generally may be found in S. Akhlaghi, N.  

Zhou and Z. Huang, "Adaptive adjustment of noise covariance in Kalman filter 

for dynamic state estimation," 2017 IEEE Power & Energy Society General 

Meeting, Chicago, TL, 2017, pp. 1-5 ("Akhlaghi"), which is hereby incorporated 
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by reference in its entirety. This estimation process can be applied to continuous 

glucose monitor (CGM) measurements as described below.  

[0080] In one example, as applied to analyte (e.g., CGM) measurements, the 

Kalman filter processes the raw analyte (e.g., glucose) signal (the noisy 

measurements) from the CGM sensor and provides an estimation of the filtered 

analyte (e.g., glucose) signal (the first unknown variable) by removing the noise 

from the raw analyte signal. It also provides a rough estimate of the analyte 

(e.g., glucose) signal rate of change (the second unknown variable).  

[0081] FIG. 4 is a simplified block diagram showing exemplary primary inputs 

to and outputs from the Kalman filter module 40. The inputs include a raw 

glucose signal 42 and point-wise model parameters 48. The raw glucose signal 

42 represents the glucose signal values obtained from the CGM sensor, which 

may typically be provided at regular intervals of time (e.g., every 30 seconds, 

every 5 minutes, etc.). The point-wise model parameters 48 may be used to 

convert the glucose signal values (typically measured in units of pa) to glucose 

values (typically measured in units of mg/dl).  

[0082] The outputs from the Kalman filter module 40 may be a filtered glucose 

signal 44 and a glucose signal rate of change 46. The filtered glucose signal 44 

may be an estimation of the denoised glucose signal. The glucose signal rate of 

change 46 may be used in subsequent modules to estimate a trend value and/or 

other information or analytics.  

[0083] The Kalman filter may perform an iterative (e.g., two-step) estimation 

process in which a predicted estimate of the filtered glucose signal and its rate 

of change is first determined (referred to as the apriori estimate), followed by 

a correction step in which the predicted estimate of the filtered glucose signal 

is updated.  
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[0084] The operation of the Kalman filter may be based on a state space model 

where: 

gk 
Xk - [dk 

In one exemplary embodiment, xk is the unknown state variable, g is the 

unknown glucose signal value at time k, and dk is the unknown rate of change 

of the glucose signal at time k.  

[0085] The state space model may define how, at each time k , the unknown 

variables in the state space model can be predicted from the previous step k, 

which may be given by: 

Xk = F Xk1 -|Wk_1 

where 

F 1 A] 
0 1 

At indicates the time difference between the two iteration steps (e.g., the 

sampling time of the raw glucose signal) and which, for instance, may be equal 

to 0.5 minutes if the CGM sensor provides raw glucose signal values at 30

second intervals. The time difference and/or sample rate may be chosen to be 

any suitable time difference or sample rate. In some cases, the time difference 

and/or sample rate may be a dynamic and/or adaptive time difference or sample 

rate. Wk_1 is the state process noise, where the mean may be equal to zero and 

the covariance matrix of the process noise at time k may be assumed to be given 

by Qk = E(wkwk)under the assumption that the process noise has a 

multivariate normal distribution.  

[0086] The measurement model determines how the unknown (state) variable 

xk is related to the observed or measured value Yk (e.g., the raw glucose signal 

from the CGM sensor), which may be given by: 
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yA = H x Xk +Vk 

where 

H = [1 0].  

Vki the measurement noise, where the mean is equal to zero and the covariance 

matrix of the measurement noise at time k is assumed to be given by Rk

E(vkvijunder the assumption that the measurement noise has a multivariate 

normal distribution.  

[0087] Given the above definitions, in each iteration of the Kalman filter 

process, the two steps of prediction and correction may be performed as 

discussed below.  

[0088] In the prediction step, an apriori estimate of the unknown state variable 

xk is obtained based on knowledge of the state variable at k - 1 and the state 

model. In particular, the apriori estimate is 

- = Fxj+_ 1 

Pk- = FPk+_ 1 FT + Qk-1 

where the superscript "+" indicates that the estimate is a posteriori and"-" 

indicates the estimate is apriori, and it is referenced with respect to the current 

observation at time k.  

[0089] In the correction step, which may occur after the prediction step, the a 

priori estimate of the state variable x is revised to obtain a more accurate 

estimate, which is referred to as the a posteriori estimate. Specifically, the a 

posteriori estimate of the state variable xk is calculated using the a priori 

estimate of the state variable xk, the current noisy measured value yA and the 

measurement equation. That is, the prediction step determines the value of the 

state variable xkbefore considering the measured value Yk. The correction step 
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then revises the value of the state variable xk by taking into account the 

measured values at time k. The detailed calculation is given below: 

dk Y - H xk 

Pinnov  HP) HT + Rk 

Gk = P HT [Pinno]-1 

x+ = + Gd k 
Xk xk+Gkdk 

Pk = Pi - GkPinnovGT 

where dk is the innovation term and Pinnov is the innovation covariance. The 

Kalman gain is indicated by Gk. The aposteriori estimate for the state variable 

and covariance matrix is given by x and Pk respectively.  

[0090] Based on the above equations, the updated a posteriori state estimate 

can be calculated in each Kalman filter iteration step. The additional values to 

be determined are the initial values for the x+ and P, which may be provided 

during an initialization step.  

[0091] In one embodiment, the application of the Kalman filter to raw glucose 

signals from a CGM sensor may be summarized as follows. If, for example, a 

CGM sensor generates a measured value every e.g., 30 seconds, then a count or 

sample is received by the Kalman filter every 30 seconds. Assume at a time 

t=150 sec that a count is received and at this time the Kalman filter, in the 

prediction step, predicts what the state variable xk will be based on the counts 

received up to and including t=120 sec. The prediction is based on the 

previously obtained measured counts obtained from the sensor and the 

assumptions employed by the state model about how glucose levels change over 

time. Next, the correction step is performed at t=150 sec where the estimate of 

the state variable is updated using the most recent measured count value. Thus, 
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at t=150 sec there is a predicted value of the unknown state variable x available 

and a measured value y. The error in the predicted value is obtained by 

comparing these two values. This error is referred to as the measurement 

innovation since it is the new information that is obtained based on the 

observation or measurement at time k. Other embodiments may use other time 

intervals for generation of a measured value and/or operation of Kalman filter 

processing (e.g., every 15 seconds, 1 minute, 5 minutes, etc.).  

[0092] Two noise components may be employed in the Kalman filter, the 

process noise and the measurement noise. These noise components may be 

known in advance and/or estimated from the data. The measurement noise may 

approximately correspond to the noise present on the observed signal and the 

process noise may approximately correspond to the model error. The correct 

estimation of these noise components may have an impact on the performance 

of the Kalman filter in terms of the optimal removal of noise and/or its 

robustness when a signal anomaly arises. The measurement innovation 

described above may be used to update the measurement covariance R and the 

process covariance Q. The updated values of Q and R can then be used to update 

other parameters used by the Kalman filter, such as the Kalman gain and/or the 

aposteriori state values.  

[0093] A conventional Kalman filtering process may not produce a high

quality filtered signal when certain underlying assumptions about noise (e.g., 

its Gaussian nature) is violated. This filtering process may result in a relatively 

long period of down time when no glucose values are displayed to the user.  

These problems may be addressed by the techniques described below, which 

modify the process of updating the noise covariance terms Q and R. Various 

embodiments may be employed for this purpose, as listed below and 

subsequently explained in more detail: 
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• Estimating the values for Q and R using innovation and residual 

error values in each step.  

• Estimating the values for Q and R using innovation and residual 

error values in each step using adjustable adaptation coefficients 

that are calculated based on the possibility of the presence of a 

signal anomaly.  

• Modifying the Kalman filter estimation step if a signal anomaly 

is detected.  

• Adding an artifact detection module to detect signal anomalies.  

[0094] As noted above, these innovation and residual error values may be used 

to estimate the values of Q and R, for example by adaptively adjusting their 

values, either using constant coefficients or using data-driven features to adjust 

the adaptation coefficients. This may enable the Kalman filter to be more robust 

to signal anomalies and/or attain a better tradeoff in terms of removing noise 

and tracking signal changes with less lag.  

[0095] In some embodiments, the process and measurement noise terms may 

be updated differently when certain artifacts are identified. The manner in 

which such artifacts are identified or otherwise determined to be present may 

differ in different implementations. For instance, in some embodiments, 

discussed in more detail below, such artifacts may be identified by examining 

certain features in the sensor signal. In yet other embodiments, also discussed 

below, an indication of the presence of such artifacts may be determined by 

examining one or more metrics based on internal variables used in the Kalman 

filter.  

[0096] FIG. 6 shows a simplified block diagram of one example of a Kalman 

filter in which an artifact detection module 56 is employed to examine the 

sensor signal output by the Kalman filter state update module 50. Artifact 
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detection may be performed after the Kalman filter updates the sensor signal to 

detect the presence of signal anomalies on the sensor signal. The exemplary 

Kalman filter of FIG. 6 also includes a measurement noise covariance module 

52 and a process noise covariance module 54, which provide updated values of 

the measurement noise covariance matrix and the process noise covariance 

matrix, respectively. If an artifact is detected by the artifact detection module 

56 certain preventive and/or corrective actions may be taken regarding the 

updates to the measurement noise covariance matrix and the process noise 

covariance matrix, as discussed in more detail below.  

[0097] In some embodiments, the artifact detection module examines the 

residual signal, which is defined as the difference between the raw sensor signal 

and the estimated (filtered) sensor signal after being updated by the Kalman 

filter. The residual signal may be defined in two different steps. In a first step, 

a temporary residual signal may be defined before updating the measurement 

covariance R, the process covariance Q and the other parameters such as the 

Kalman gain G. In the second step, a final residual signal may be defined after 

updating the measurement covariance R, the process covariance Q and the other 

parameters such as the Kalman gain G. Various features of the temporary and/or 

final residual signals may be indicative of artifacts that may result in certain 

preventive and/or corrective actions being taken regarding the updates to the 

internal variables in the Kalman filter such as the state variable and/or noise 

covariances. In general, features indicative of signal artifacts may be extracted 

from either or both of the residual signals (temporary and final) and/or from the 

interaction or relationship between the two residual signals.  

[0100] For instance, one feature that may be indicative of an artifact is the 

residual difference, which is defined as the difference between the value of the 

temporary residual signal (the residual signal before updating the Kalman 

parameters) and the value of the final residual signal (the residual signal after 
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updating the Kalman parameters). The residual difference (or a derivative of 

the residual difference) may be compared to a predefined threshold such as a 

data-driven predefined threshold in the residual signal domain. A signal artifact 

may be present if the residual difference is above (or below) the threshold. In 

one alternative embodiment, the residual difference may be translated to a 

corresponding difference in the estimated glucose value by applying the 

necessary model parameters used to perform the translation or calibration. In 

this way the residual difference in the glucose domain can be compared to a 

predefined threshold in order to detect the presence of signal artifacts. In 

general, different mathematical operations can be applied to the residual 

difference in the signal domain or in the glucose value domain in order to 

identify signal artifacts.  

[0101] Another feature that may be examined for the presence of an artifact is 

the residual bias, which determines if there are consistent high magnitude 

positive or negative values in the final residual signal over different time 

windows. In this context, the final residual signal is defined as the smoothed 

value of the difference between the raw sensor signal and the estimated sensor 

signal output by the Kalman filter. The accumulation of negative or positive 

final residual values in a given window of time may suggest that the assumption 

that the noise is white Gaussian noise is not valid. In this way the residual bias 

may serve to indicate the presence of an artifact.  

[0102] Yet another feature that may be examined for the presence of an artifact 

is referred to as the zero crossing of the final residual signal. This feature may 

track the number of sign changes in the final residual signal over different time 

windows. In this context, the final residual may be defined as smoothed value 

of the difference between the raw sensor signal and the estimated signal output 

by the Kalman filter. A large number of zero crossings may indicate the 

-32-



WO 2022/212512 PCT/US2022/022558 

presence of unbiased noise, whereas a smaller number of zero crossings may 

indicate biased noise and hence the presence of artifacts.  

[0103] By identifying artifacts, the residual bias and/or zero crossing features 

can be used to identify the unreliable portions of the signal so that preventive 

and/or corrective action is taken, which will be discussed in greater detail 

below. These features also can be applied retroactively to the past history of the 

signal to improve the performance of the system. In addition, the residual bias 

can be used not only to detect the presence of an artifact, but also to detect the 

presence of a step anomaly, which may occur, for instance, when pressure is 

suddenly applied to the sensor such as when the user lies down.  

[0104] Other features may be examined for the presence of artifacts in 

alternative embodiments or examples. For instance, features that may be used 

for real time artifact detection are model-based change measures, including a 

median/mean model that is subtracted from the signal, linear models over time 

that are subtracted from the signal, innovation value, residual value, the sign of 

the innovation/residual, R/Q value, and/or the residual kurtosis.  

[0105] Once an artifact is detected, a rule-based model may be used to 

determine whether the feature should be classified as an artifact that should 

cause the process covariance and the measurement covariance to be updated 

and/or to cause other actions to be taken. For instance, a data-driven decision 

tree model may be trained using clinical data to detect artifacts using any of the 

aforementioned features. Likewise, a wide variety of machine learning models 

may be applied to the above features, or a combination of features, to determine 

that an artifact is present.  

[0106] For instance, in one implementation the preventive action that is taken 

upon detecting an artifact may undo the latest Kalman filter parameter update 

and maintain their values within a normal range. If corrective action is triggered 

-33-



WO 2022/212512 PCT/US2022/022558 

several strategies can be followed depending, for instance, on the sampling 

frequency of the sensor signal. For example, in the case of low-resolution signal 

availability (i.e., a signal sampled at a relatively low frequency), different 

corrective action is triggered based on the sign of the signal residual. In the 

case of high-resolution signal availability (i.e., a signal sampled at a relatively 

high frequency), additional features such as the residual bias and the zero 

crossing (as described above) may be used retroactively to determine the 

optimal Kalman filter model that were used in the past as determined from the 

relevant historical data. In general, the corrective action that may be taken when 

updating the Kalman filter parameters to select their optimal values involves a 

tradeoff between the amount of signal smoothing (the amount of noise removed 

from the signal) and a lag in tracking the changes in the signal.  

[0107] As previously mentioned, instead of and/or in addition to examining the 

sensor signal for artifacts after being processed by the Kalman filter, in other 

embodiments an indication of the presence of such artifacts may be determined 

by examining one or more metrics based on internal variables used in the 

Kalman filter.  

[0108] FIG. 7 shows a simplified block diagram of one example of a Kalman 

filter in which a fault metric calculation module 66 is employed to examine 

various internal variables used by the Kalman filter update module 60. The 

exemplary Kalman filter of FIG. 7 also includes a measurement noise 

covariance module 62 and a process noise covariance module 64, which provide 

updated values of the measurement noise covariance matrix and the process 

noise covariance matrix, respectively, based on the value of the fault metric that 

is received from the fault metric calculation module.  

[0109] In one embodiment, the fault metric that is employed may be based on 

the fault metric discussed in Zheng et al., A Robust Adaptive Unscented 

Kalman Filter for Nonlinear Estimation with Uncertain Noise 

-34-



WO 2022/212512 PCT/US2022/022558 

Covariance. Sensors2018, 18, 808. In particular, the fault metric may be 

defined as the moving average of a temporary or instantaneous fault metric 

averaged over a specified number (e.g., 10) of measurement samples. More 

specifically, the temporary fault metric may be given by: 

temporary fault metric = dT [Pinv]-dk 

where dk is the innovation term and Piano, is the innovation covariance. The 

temporary fault metric may be the normalized innovation squared and the fault 

metric is a moving average of this term. High values of the fault metric may 

indicate that a signal anomaly has occurred and therefore, it can be used to 

readjust the Kalman filter parameters for the affected data points.  

[0110] Examples of how the measurement noise covariance matrix and the 

process noise covariance matrix may be updated based on the value of the fault 

metric are presented below.  

[0111] In one embodiment, the covariance matrix of the measurement noise 

(Rk) may be adaptively updated in each iteration (k) of the Kalman filter 

based on the residual signal (Ek) and a step size (ar), given by: 

Rk ar(EkEk + H P-HT)+(1- aR)Rk-1 

where 

Ek =k - Hx+ 

P-: a priori estimate covariance 

H: observation model 
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Yk: observed signal 

xk+: aposteriori state estimate.  

[0112] Likewise, in one embodiment the covariance matrix of the process noise 

may be given by 

Qk aq(Gkdkd T GT) + (1 - aq)Qk_1 

where 

dk = - -Hx

Gk: Kalman gain 

2k: a priori state estimate. b 

[0113] In some implementations the covariance matrix Qk of the process noise 

is a 2x2 matrix, where the element Qk (2,2) controls the changes to the estimated 

rate of change of the signal. Smaller values of Qk(2,2) may result in slower 

changes to the estimated model and therefore more smoothing of the sensor 

signal. On the other hand, higher values of Qk(2,2) may result in faster changes 

to the estimated model and therefore more tracking of the sensor signal. A 

minimum value may be applied to the term in covariance matrix Qk i.e., if the 

Qk(2,2) is smaller than Qminvalue, it may be capped to be equal to the Qmin. In 

some implementations the minimum value (Qmin) may be a constant value.  

[0114] In one embodiment, after the fault metric is calculated, the step size 

coefficients used in updating the measurement and process noise covariances 

(ar,aq) and the applied minimum value (Qmin) may be adjusted using the 

following transfer functions based on the fault metric fk as follows: 
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ar =max(aiefauit r_- itoil 
fk 

fk- aInitPoint 
f1u- max(aeauit, a 

fk 
armax(+e A dfut 

Qmi = max min Q cefrauit 

(f- QF~oil
T  

r, n min 1 + e (fk o min 

The design parameters such asa erauit nitPoint nitPoint n.aitPoint 

Qmnax, QFJV!oin ltanQault 
mn mint and Qdut may be optimized based on population data to 

achieved the desired trade-off between smoothing and time lag at areas with 

high rate of change.  

[0115] FIG. 8 shows the same raw sensor signal shown in FIG. 5, except in 

FIG. 8 the signal is filtered using a Kalman filter configured in accordance with 

at least some of the techniques described herein. As shown, the filtered signal 

allows data to be continuously presented to the user. Having no or reduced 

periods of time during which no data is presented to the user may represent an 

improvement over the filtered signal shown in FIG. 5. FIG. 9 shows another 

raw sensor signal and filter sensor signal after being filtered with a Kalman 

filter using three different sets of parameters. One curve represents the filtered 

signal when the set of parameters is adjusted to provide more smoothing.  

Another curve represents the filtered signal when the set of parameters is 

adjusted to provide a greater time lag. A third filtered signal represents the 

filtered signal when the set of parameters is adjusted to provide an overall level 

of optimization.  

[0116] FIG. 10 is an exemplary flowchart showing one example of a method 

for monitoring a blood analyte concentration in a host. In accordance with the 
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method, a sensor signal indicative of a blood analyte concentration in a host is 

received from a continuous analyte sensor at step 305. At step 310 the sensor 

signal is filtered using a Kalman filter. One or more artifacts (e.g., predefined) 

is detected in the sensor signal at step 315. At step 320, a corrective action is 

performed upon detecting the one or more artifacts in the sensor signal. The 

corrective action may include updating values associated with one or more of 

parameters employed in a model of the Kalman filter. A filtered sensor signal 

representative of the blood analyte concentration in the host is output from the 

Kalman filter at step 325. In an alternative embodiment, additional, fewer, 

and/or different steps and/or differing ordering of steps may be performed than 

those explicitly shown for FIG. 10.  

[0117] The various operations of methods described above may be performed 

by any suitable means capable of performing the operations, such as various 

hardware and/or software component(s), circuits, and/or module(s). Generally, 

any operations illustrated in the figures may be performed by corresponding 

functional means capable of performing the operations. Notably, use of the 

term "module" does not limit functionality performed by a given module to a 

separate and discrete module. Instead, functionality described as being 

performed by a given module may also be performed by a system executing on 

a single processor even if the functionality is not separated into discrete 

modules.  

[0118] The various illustrative logical blocks, modules and circuits described 

in connection with the present disclosure may be implemented or performed 

with a general purpose processor, a digital signal processor (DSP), an 

application specific integrated circuit (ASIC), a field programmable gate array 

signal (FPGA) or other programmable logic device (PLD), discrete gate or 

transistor logic, discrete hardware components or any combination thereof 

designed to perform the functions described herein. A general purpose 
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processor may be a microprocessor, but in the alternative, the processor may be 

any commercially available processor, controller, microcontroller or state 

machine. A processor may also be implemented as a combination of computing 

devices, e.g., a combination of a DSP and a microprocessor, a plurality of 

microprocessors, one or more microprocessors in conjunction with a DSP core, 

or any other such configuration.  

[0119] In one or more aspects, the functions described may be implemented in 

hardware, software, firmware, or any combination thereof. If implemented in 

software, the functions may be stored on or transmitted over as one or more 

instructions or code on non-transitory computer-readable medium. By way of 

example, and not a limitation, such non-transitory computer-readable media can 

comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, 

magnetic disk storage or other magnetic storage devices.  

[0120] The methods disclosed herein comprise one or more steps or actions for 

achieving the described methods. The method steps and/or actions may be 

interchanged with one another without departing from the scope of the claims.  

In other words, unless a specific order of steps or actions is specified, the order 

and/or use of specific steps and/or actions may be modified without departing 

from the scope of the claims.  

[0121] Certain aspects may comprise a computer program product for 

performing the operations presented herein. For example, such a computer 

program product may comprise a computer readable medium having 

instructions stored (and/or encoded) thereon, the instructions being executable 

by one or more processors to perform the operations described herein. For 

certain aspects, the computer program product may include packaging material.  

[0122] Software or instructions may also be transmitted over a transmission 

medium. For example, if the software is transmitted from a website, server, or 
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other remote source using a coaxial cable, fiber optic cable, twisted pair, digital 

subscriber line (DSL), or wireless technologies such as infrared, radio, and 

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or 

wireless technologies such as infrared, radio, and microwave are included in the 

definition of transmission medium.  

[0123] Further, it should be appreciated that modules and/or other appropriate 

means for performing the methods and techniques described herein can be 

downloaded and/or otherwise obtained by a user terminal and/or base station as 

applicable. For example, such a device can be coupled to a server to facilitate 

the transfer of means for performing the methods described herein.  

Alternatively, various methods described herein can be provided via storage 

means (e.g., RAM, ROM, a physical storage medium such as a compact disc 

(CD) or floppy disk, etc.), such that a user terminal and/or base station can 

obtain the various methods upon coupling or providing the storage means to the 

device. Moreover, any other suitable technique for providing the methods and 

techniques described herein to a device can be utilized.  

[0124] It is to be understood that the claims are not limited to the precise 

configuration and components illustrated above. Various modifications, 

changes and variations may be made in the arrangement, operation and details 

of the methods and apparatus described above without departing from the scope 

of the claims.  

[0125] Unless otherwise defined, all terms (including technical and scientific 

terms) are to be given their ordinary and customary meaning to a person of 

ordinary skill in the art, and are not to be limited to a special or customized 

meaning unless expressly so defined herein. It should be noted that the use of 

particular terminology when describing certain features or aspects of the 

disclosure should not be taken to imply that the terminology is being re-defined 

herein to be restricted to include any specific characteristics of the features or 
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aspects of the disclosure with which that terminology is associated. Terms and 

phrases used in this application, and variations thereof, especially in the 

appended claims, unless otherwise expressly stated, should be construed as 

open ended as opposed to limiting. As examples of the foregoing, the term 

'including' should be read to mean 'including, without limitation,' 'including 

but not limited to,' or the like; the term 'comprising' as used herein is 

synonymous with 'including,' 'containing,' or 'characterized by,' and is 

inclusive or open-ended and does not exclude additional, unrecited elements or 

method steps; the term 'having' should be interpreted as 'having at least;' the 

term 'includes' should be interpreted as 'includes but is not limited to;' the term 

'example' is used to provide exemplary instances of the item in discussion, not 

an exhaustive or limiting list thereof, adjectives such as 'known', 'normal', 

'standard', and terms of similar meaning should not be construed as limiting 

the item described to a given time period or to an item available as of a given 

time, but instead should be read to encompass known, normal, or standard 

technologies that may be available or known now or at any time in the future; 

and use of terms like 'preferably,' 'preferred,' 'desired,' or 'desirable,' and 

words of similar meaning should not be understood as implying that certain 

features are critical, essential, or even important to the structure or function of 

the invention, but instead as merely intended to highlight alternative or 

additional features that may or may not be utilized in a particular embodiment 

of the invention. Likewise, a group of items linked with the conjunction 'and' 

should not be read as requiring that each and every one of those items be present 

in the grouping, but rather should be read as 'and/or' unless expressly stated 

otherwise. Similarly, a group of items linked with the conjunction 'or' should 

not be read as requiring mutual exclusivity among that group, but rather should 

be read as 'and/or' unless expressly stated otherwise.  
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[0126] Where a range of values is provided, it is understood that the upper and 

lower limit and each intervening value between the upper and lower limit of the 

range is encompassed within the embodiments.  

[0127] With respect to the use of substantially any plural and/or singular terms 

herein, those having skill in the art can translate from the plural to the singular 

and/or from the singular to the plural as is appropriate to the context and/or 

application. The various singular/plural permutations may be expressly set forth 

herein for sake of clarity. The indefinite article "a" or "an" does not exclude a 

plurality. A single processor or other unit may fulfill the functions of several 

items recited in the claims. The mere fact that certain measures are recited in 

mutually different dependent claims does not indicate that a combination of 

these measures cannot be used to advantage. Any reference signs in the claims 

should not be construed as limiting the scope.  

[0128] It will be further understood by those within the art that if a specific 

number of an introduced claim recitation is intended, such an intent will be 

explicitly recited in the claim, and in the absence of such recitation no such 

intent is present. For example, as an aid to understanding, the following 

appended claims may contain usage of the introductory phrases "at least one" 

and "one or more" to introduce claim recitations. However, the use of such 

phrases should not be construed to imply that the introduction of a claim 

recitation by the indefinite articles "a" or "an" limits any particular claim 

containing such introduced claim recitation to embodiments containing only 

one such recitation, even when the same claim includes the introductory phrases 

''one or more" or "at least one" and indefinite articles such as "a" or "an" (e.g., 

"a" and/or "an" should typically be interpreted to mean "at least one" or "one or 

more"); the same holds true for the use of definite articles used to introduce 

claim recitations. In addition, even if a specific number of an introduced claim 

recitation is explicitly recited, those skilled in the art will recognize that such 
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recitation should typically be interpreted to mean at least the recited number 

(e.g., the bare recitation of "two recitations," without other modifiers, typically 

means at least two recitations, or two or more recitations). Furthermore, in those 

instances where a convention analogous to "at least one of A, B, and C, etc." is 

used, in general such a construction is intended in the sense one having skill in 

the art would understand the convention, e.g., as including any combination of 

the listed items, including single members (e.g., "a system having at least one 

of A, B, and C" would include but not be limited to systems that have A alone, 

B alone, C alone, A and B together, A and C together, B and C together, and/or 

A, B, and C together, etc.). In those instances where a convention analogous to 

"at least one of A, B, or C, etc." is used, in general such a construction is 

intended in the sense one having skill in the art would understand the 

convention (e.g., "a system having at least one of A, B, or C" would include but 

not be limited to systems that have A alone, B alone, C alone, A and B together, 

A and C together, B and C together, and/or A, B, and C together, etc.). It will 

be further understood by those within the art that virtually any disjunctive word 

and/or phrase presenting two or more alternative terms, whether in the 

description, claims, or drawings, should be understood to contemplate the 

possibilities of including one of the terms, either of the terms, or both terms.  

For example, the phrase "A or B" will be understood to include the possibilities 

of "A" or "B" or "A and B." 

[0129] All numbers expressing quantities of ingredients, reaction conditions, 

and so forth used in the specification are to be understood as being modified in 

all instances by the term 'about.' Accordingly, unless indicated to the contrary, 

the numerical parameters set forth herein are approximations that may vary 

depending upon the desired properties sought to be obtained. At the very least, 

and not as an attempt to limit the application of the doctrine of equivalents to 

the scope of any claims in any application claiming priority to the present 
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application, each numerical parameter should be construed in light of the 

number of significant digits and ordinary rounding approaches.  

[0130] All references cited herein are incorporated herein by reference in their 

entirety. To the extent publications and patents or patent applications 

incorporated by reference contradict the disclosure contained in the 

specification, the specification is intended to supersede and/or take precedence 

over any such contradictory material.  

[0131] Furthermore, although the foregoing has been described in some detail 

by way of illustrations and examples for purposes of clarity and understanding, 

it is apparent to those skilled in the art that certain changes and modifications 

may be practiced. Therefore, the description and examples should not be 

construed as limiting the scope of the invention to the specific embodiments 

and examples described herein, but rather to also cover all modification and 

alternatives coming with the true scope and spirit of the invention.  
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WHAT IS CLAIMED IS: 

1. A method for monitoring an analyte concentration, the method 

comprising: 

receiving, from an analyte sensor, a sensor signal indicative of an 

analyte concentration in a host; 

filtering the sensor signal using a Kalman filter having process noise 

with a process covariance and measurement noise with a measurement 

covariance, wherein the filtering includes updating a value of at least one of the 

process covariance or the measurement covariance using a value of one or more 

parameters employed in a model of the Kalman filter; and 

outputting, from the Kalman filter, a filtered sensor signal representative 

of the analyte concentration in the host.  

2. The method of claim 1, wherein the one or more parameters used 

to update at least one of the process covariance and the measurement covariance 

includes a value of an innovation term and a residual term employed in the 

Kalman filter model.  

3. The method of claims 1 or 2, wherein the updating is performed 

when one or more predefined artifacts are detected in the sensor signal.  

4. The method of claim 3, further comprising detecting the one or 

more predefined artifacts by examining a residual signal, the residual signal 

being a difference between the sensor signal received from the analyte sensor 

and the sensor signal after filtering the sensor signal using the Kalman filter.  
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5. The method of claim 4, wherein the residual signal is a 

temporary residual signal that is a difference between the sensor signal received 

from the analyte sensor and the sensor signal after filtering the sensor signal 

using the filter before the at least one of the process covariance and the 

measurement covariance is updated.  

6. The method of claim 4, wherein the residual signal is a final 

residual signal that is a difference between the sensor signal received from the 

analyte sensor and the sensor signal after filtering the sensor signal using the 

filter after the at least one of the process covariance and the measurement 

covariance is updated.  

7. The method of claim 4, wherein one of the predefined artifacts 

is a residual bias reflecting that the residual signal has a consistently positive or 

negative value over one or more selected windows of time.  

8. The method of claim 7, wherein one of the predefined artifacts 

is a zero crossing of a final residual signal, the zero crossing of the final residual 

signal reflecting a number of times a value of the final residual signal undergoes 

a change in sign from positive to negative or negative to positive over one or 

more selected windows of time.  

9. The method of any one of claims 1-8, further comprising 

undoing a previous update to the values of at least one of the process covariance 

and the measurement covariance upon detecting one or more specified artifacts 

in the sensor signal.  
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10. The method of any one of claims 1-9, wherein the one or more 

parameters used to update at least one of the process covariance and the 

measurement covariance includes a fault metric that is based on a value of an 

innovation term and an innovation covariance employed in the Kalman filter 

model.  

11. The method of claim 10, wherein the fault metric is a moving 

average of an instantaneous fault metric averaged over a specified number of 

measurement samples received from the analyte sensor.  

12. The method of any one of claims 1-11, further comprising 

performing a corrective action upon detecting one or more artifacts in the sensor 

signal when the sensor signal is a low-resolution signal, the corrective action 

being determined at least in part by a sign of a residual signal, the residual signal 

being a difference between the sensor signal received from the analyte sensor 

and the sensor signal after filtering the sensor signal using the Kalman filter.  

13. The method of any one of claims 1-12, further comprising 

retroactively determining from historical data an optimal Kalman filter model 

that was previously employed when the sensor signal is a high-resolution signal.  

14. The method of claim 13, wherein the determining is performed 

using a residual bias and a zero crossing, the residual bias reflecting that a 

residual signal has a consistently positive or negative value over one or more 

selected windows of time and the zero crossing reflecting a number of times the 

residual signal undergoes a change in sign from positive to negative or negative 

to positive over one or more selected windows of time.  
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15. A method for monitoring an analyte concentration, the method 

comprising: 

receiving from an analyte sensor a sensor signal indicative of an analyte 

concentration in a host; 

filtering the sensor signal using a Kalman filter; 

detecting one or more artifacts in the sensor signal; 

performing a corrective action upon detecting the one or more artifacts 

in the sensor signal, wherein the corrective action includes updating values of 

one or more of parameters employed in a model of the Kalman filter; and 

outputting, from the Kalman filter, a filtered sensor signal representative 

of the analyte concentration in the host.  

16. The method of claim 15, wherein the detecting the one or more 

artifacts in the sensor signal comprises examining one or more internal variables 

of the Kalman filter to detect the artifact, wherein the one or more internal 

variables include a fault metric.  

17. A method for monitoring an analyte concentration, the method 

comprising: 

receiving, from an analyte sensor, a sensor signal indicative of an 

analyte concentration in a host; 

filtering the sensor signal using a Kalman filter; 

during the filtering, examining a residual signal to detect an artifact in 

the sensor signal, the residual signal comprising a difference between the sensor 

signal and an estimated filtered sensor signal generated by the Kalman filter; 

and 

responsive to detecting the artifact in the sensor signal, updating the 

estimated filtered sensor signal.  
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18. The method of claim 17, wherein the artifact is detected based 

on a residual bias reflecting that the residual signal has a consistently positive 

or negative value over one or more time periods.  

19. The method of claims 17 or 18, wherein the artifact is detected 

based on a zero crossing indicating a number of times the residual signal 

undergoes a change in sign over one or more time periods.  

20. The method of any one of claims 17-19, wherein the artifact is 

detected by comparing the residual signal to a predefined threshold.  
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