US 20230195541A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0195541 Al

TRUONG et al.

43) Pub. Date: Jun. 22,2023

(54)

(71)

(72)

(73)

@
(22)

(63)

(1)

(52)

SYSTEMS AND METHODS FOR SYNTHETIC
DATA GENERATION

Applicant: Capital One Services, LL.C, Mclean,
VA (US)

Inventors: Anh TRUONG, Champaign, IL (US);
Fardin ABDI TAGHI ABAD,
Champaign, IL (US); Jeremy
GOODSITT, Champaign, IL (US);
Austin WALTERS, Savoy, IL (US);
Mark WATSON, Urbana, IL (US);
Vincent PHAM, Champaign, IL (US);
Noriaki TATSUMI, Silver Spring, MD
(US); Michael WALTERS, Brooklyn,
NY (US); Kate KEY, Effingham, 1L,
(US); Reza FARIVAR, Champaign, 1L
(US); Kenneth TAYLOR, Champaign,
IL (US)

Capital One Services, LLC, McLean,
VA (US)

Assignee:

Appl. No.: 18/165,725

Filed: Feb. 7, 2023

Related U.S. Application Data

Continuation of application No. 16/151,407, filed on
Oct. 4, 2018, now Pat. No. 11,615,208.

(Continued)

Publication Classification

Int. CL.
GO6F 9/54 (2006.01)
GO6N 20/00 (2006.01)
(Continued)
U.S. CL
CPCcccue. GO6F 9/541 (2013.01); GO6N 20/00

(2019.01); GO6F 17/16 (2013.01); GO6N 3/04
(2013.01); GOGF 11/3628 (2013.01); GO6N
3/088 (2013.01); GOGF 21/6254 (2013.01);

100

Model Curator

Model Optimizer
107

se

Interface -l _ Dataset Generator
113 E 103

GO6N 5/04 (2013.01); GOGF 17/15 (2013.01);
GOGF 21/6245 (2013.01); GO6T 7/194
(2017.01); GO6T 7/254 (2017.01); GO6T 7/246
(2017.01); GO6T 7/248 (2017.01); GO6F
16/24568 (2019.01); GOGF 16/2237 (2019.01);
GOGF 16/285 (2019.01); GOGF 16/906
(2019.01); GOGF 16/93 (2019.01); GO6F
16/90335 (2019.01); GOGF 16/9038 (2019.01);
GOGF 16/90332 (2019.01); GOGF 16/258
(2019.01); GOGF 16/288 (2019.01); GO6F
16/283 (2019.01); GOGF 16/335 (2019.01):
GOGF 16/2264 (2019.01); GOGF 16/2423
(2019.01); GOG6F 16/248 (2019.01); GO6F
16/254 (2019.01); GOGF 30/20 (2020.01);
GOGF 40/166 (2020.01); GOGF 40/117
(2020.01); GOGF 40/20 (2020.01); GOGF 8/71
(2013.01); GOGF 9/54 (2013.01); GOGF 9/547
(2013.01); GOGF 11/3608 (2013.01); GO6F
11/3636 (2013.01); GOGF 17/18 (2013.01);
GOGF 21/552 (2013.01); GOGF 21/60
(2013.01); GO6N 7/00 (2013.01); GO6Q 10/04
(2013.01); GO6T 11/001 (2013.01); HO4L
63/1416 (2013.01); HO4L 63/1491 (2013.01);
HO4L 67/306 (2013.01):

(Continued)
57 ABSTRACT

A cloud computing system can be configured to generate
data models. A model optimizer of the cloud computing
system can provision computing resources of the cloud
computing system with a data model. A dataset generator of
the cloud computing system can generate a synthetic dataset
for training the data model. The computing resources can
train the data model using the synthetic dataset. The model
optimizer can store the data model and metadata of the data
model in a model storage. The cloud computing system can
receive production data from a data source by a production
instance of the cloud computing system using a common file
system. The production data can be processed using the data
model by the production instance. The computing resources,
the dataset generator, and the model optimizer can be hosted
by separate virtual computing instances of the cloud com-
puting system.

Model Storage

Computing
Resources
101

US 2023/0195541 Al

Page 2

Related U.S. Application Data

(60) Provisional application No. 62/694,968, filed on Jul.

(1)

6, 2018.

Publication Classification

Int. CL.
GO6F 17/16
GO6N 3/04
GO6F 11/36
GO6N 3/088
GO6F 21/62
GO6N 5/04
GO6F 17/15
GO6T 7/194
GO6T 7/254
GO6T 7/246
GO6F 16/2455
GO6F 16/22
GO6F 16/28
GO6F 16/906
GO6F 16/93
GO6F 16/903
GO6F 16/9038
GO6F 16/9032
GO6F 16/25
GO6F 16/335
GO6F 16/242
GO6F 16/248
GO6F 30/20
GO6F 40/166
GO6F 407117
GO6F 40/20
GO6F 8/71
GO6F 17/18
GO6F 21/55
GO6F 21/60
GO6N 7/00
G06Q 10/04
GO6T 11/00
HO4L 9/40
HO4L 67/306
HO4L 67/00

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(52)

HO4N 217234 (2006.01)
HO4N 21/81 (2006.01)
GO6N 5/00 (2006.01)
GO6N 5/02 (2006.01)
GO6V 30/196 (2006.01)
GO6F 18/22 (2006.01)
GO6F 18/23 (2006.01)
GO6r 18/24 (2006.01)
GO6F 18/40 (2006.01)
GO6F 18213 (2006.01)
GO6r 18214 (2006.01)
GoO6r 1821 (2006.01)
GO6r 18/20 (2006.01)
GO6F 18/2115 (2006.01)
GO6F 18/2411 (2006.01)
GO6F 18/2415 (2006.01)
GO6N 3/044 (2006.01)
GO6N 3/045 (2006.01)
GO6N 7/01 (2006.01)
GO6V 30/194 (2006.01)
GO6V 10/98 (2006.01)
GO6V 10/70 (2006.01)
GO6N 3/08 (2006.01)
U.S. CL

CPC ... HO4L 67/34 (2013.01); HO4N 21/23412

(2013.01); HO4N 21/8153 (2013.01); GO6N
5/00 (2013.01); GO6N 5/02 (2013.01); GO6V
30/1985 (2022.01); GOGF 18/22 (2023.01);
GOGF 18/23 (2023.01); GOGF 18/24
(2023.01); GOGF 18/40 (2023.01); GO6F
18/213 (2023.01); GOGF 18/214 (2023.01):
GOGF 18/217 (2023.01); GOGF 18/285
(2023.01); GOGF 18/2115 (2023.01); GO6F
18/2148 (2023.01); GOGF 18/2193 (2023.01);
GOGF 18/2411 (2023.01); GOGF 18/2415
(2023.01); GO6N 3/044 (2023.01); GO6N
3/045 (2023.01); GO6N 7/01 (2023.01); GO6V
30/194 (2022.01); GO6V 10/993 (2022.01);
GOG6V 10/768 (2022.01); GO6N 3/08
(2013.01); GO6T 2207/20084 (2013.01); GO6T
2207/10016 (2013.01); GO6T 2207/20081
(2013.01)

Patent Application Publication

Jun. 22,2023 Sheet 1 of 15

Model Curator

111

Model Optimizer
107

Interface
113

—

Database
105

Fig. 1

US 2023/0195541 A1l

Model Storage
109

Computing
Resources
101

Dataset Generator

103

Patent Application Publication Jun. 22, 2023 Sheet 2 of 15 US 2023/0195541 A1

200
Model Dataset Computing Model Model
Interface N Database
3 Optimizer 105 Generator Resources Storage Curator
107 103 101 109 111

201

Model Generation 203

205

b 4

«—)]—

Fig.2

Patent Application Publication Jun. 22, 2023 Sheet 3 of 15 US 2023/0195541 A1

300
Mpdgl Model Datahase Dataset Computing
Optimizer Storage 105 Generator Resources
107 109 103 101

30—

33—
35—

309

4\

Fig. 3

Patent Application Publication Jun. 22, 2023 Sheet 4 of 15 US 2023/0195541 A1

400
Dataset Generation Instance |
403 A "
A
4
Development
Environment 405
> Development Instance
407
y
o
Distributor |, R Model Optimization Instance N Ny
401 A " 409 18
c
a
1]
A B
Production ~
Environment
411
Producti
nstance s EFS .
413 415

Fig. 4

Patent Application Publication Jun. 22, 2023 Sheet 5 of 15 US 2023/0195541 A1

200 510
Retrieve Actual Data 501 Retrieve Actual Data 511
) 4) 4
Determine Classes of Sensitive Determine Classes of Sensitive
Data Portions 503 Data Portions 513
A 4 A 4
Generate Synthetic Data Using Select Subclass of Sensitive Data
Class-Specific Models 505 Portions 515
\ 4 \ 4

Generate Synthetic Data Using a
Class and Subclass-Specific Model
517

Replace Sensitive Data Portions
with Synthetic Data 507

Fig. 5A ¥
Replace Sensitive Data Portions
with Synthetic Data 519

Fig. 5B

Patent Application Publication Jun. 22, 2023 Sheet 6 of 15 US 2023/0195541 A1

Receive
Data Sequences
601

Receive Context
Sequences
603

Generate Training
Sequences
605

Generate Label
Sequences
607

Train Recurrent Neural
Network
609

Fig. 6

Patent Application Publication Jun. 22, 2023 Sheet 7 of 15 US 2023/0195541 A1

Data Sequence 701

Current Sample

Preceding Samples 703 205

Subsequent Samples 707

\ 4

Recurrent Neural
Network
709

) 4
Estimated Label
711

Actual Label 713 —

\ 4

Loss Function 715

\ 4

Fig. 7

Patent Application Publication Jun. 22, 2023 Sheet 8 of 15 US 2023/0195541 A1

Retrieve Reference Dataset 801

A

Convert Categorical Data to Numerical
Values within a Predetermined Range 803

A

Convert Special Values to Numerical Values
Outside the Predetermined Range 805

A 4

Train Generative Adversarial Network using
Normalized Reference Dataset 807

Fig. 8

Patent Application Publication Jun. 22, 2023 Sheet 9 of 15 US 2023/0195541 A1

(o}
o

Receive Reference Dataset
901

Normalize Reference Dataset 903

y

Generate Synthetic Dataset 905

y

Generate Similarity Metric Value
907

Train Generative Adversarial
Network Using Similarity Metric
Value 909

Fig. 9

Patent Application Publication Jun. 22,2023 Sheet 10 of 15 US 2023/0195541 A1l

1000

Generate Encoder and Decoder
Models 1001

A 4

Identify representative points 1003

Y

Generate difference vector 1005

A 4 2

Transform Dataset Using
Difference Vector 1011

Generate Extreme Codes 1007

Y 4

Generate Extreme Points Using Generate Transformed Dataset
Decoder 1009 Using Decoder 1013

Fig. 10

Patent Application Publication

Code Space 1100

f
t
t
t
i
i

t
‘ \
:
i
i
1
1
:
:
t
:

oint 1101

Vector
1105

0

Paint 1103
0

0

Fig, 11A

Jun. 22,2023 Sheet 11 of 15 US 2023/0195541 Al

Code Space 1110

Point 11113 0

Point 11152

Fig. 11B

Patent Application Publication Jun. 22,2023 Sheet 12 of 15 US 2023/0195541 A1l
Code Space 1200 Code Space 1210
Translated
| Point 1213
0 Translation
1212) O\X
| 0
0 Fxtreme 0\ \‘X
0 Paint 1203 ‘ O\Xk \
 Origiral X A
- Original 0
X Point \A)(
Vector O 111 O\
1105 Vector ™y
_ 1105
Extension 1201
Fig. 12A Fig. 128

Patent Application Publication Jun. 22, 2023 Sheet 13 of 15

1300
Streaming
Data Source
1301
\ 4
Computing Model
Resources < Optimizer
1304 1303
A
y
Model Storage | | GDataSit
1305 » enerator
1307

Synthetic Data Source
1309

Fig. 13

US 2023/0195541 A1l

Patent Application Publication Jun. 22,2023 Sheet 14 of 15 US 2023/0195541 A1l

1400

Retrieve Training Log Data
1401

Yy

Train Recurrent Neural Network
1403

Yy

Generate Synthetic Log Data
1405

y

Validate Synthetic Log Data
1407

Fig. 14

Patent Application Publication Jun. 22,2023 Sheet 15 of 15 US 2023/0195541 A1l

Secure System
1501

Network
1505

A 4

Local Computing
System
1503

Fig. 15

US 2023/0195541 Al

SYSTEMS AND METHODS FOR SYNTHETIC
DATA GENERATION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 62/694,968, filed Jul. 6, 2018, and
incorporated herein by reference in its entirety.

[0002] This application also relates to U.S. patent appli-
cation Ser. No. , (Attorney Docket No. 2951/279202)
filed on Oct. 4, 2018, and titled System, Method, and
Computer-Accessible Medium for Evaluating Multi-Dimen-
sional Synthetic Data Using Integrated Variants Analysis,
the disclosure of which is also incorporated herein by
reference in its entirety.

TECHNICAL FIELD

[0003] The disclosed embodiments concern a platform for
management of artificial intelligence systems. In particular,
the disclosed embodiments concern using the disclosed
platform to create models of data. These data models can be
used to generate synthetic data for testing or training arti-
ficial intelligence systems. The disclosed embodiments also
concern improvements to generative adversarial network
models and adversarially learned inference models.

BACKGROUND

[0004] Training artificial intelligence systems can require
substantial amounts of training data. Furthermore, when
used with data dissimilar from the training data, artificial
intelligence systems may perform poorly. These character-
istics can create problems for developers of artificial intel-
ligence applications designed to operate on sensitive data,
such as customer financial records or patient healthcare data.
Regulations governing the storage, transmission, and distri-
bution of such data can inhibit application development, by
forcing the development environment to comply with these
burdensome regulations.

[0005] Furthermore, synthetic data can be generally useful
for testing applications and systems. However, existing
methods of creating synthetic data can be extremely slow
and error-prone. For example, attempts to automatically
desensitize data using regular expressions or similar meth-
ods requires substantial expertise and can fail when sensitive
data is present in unanticipated formats or locations. Manual
attempts to desensitize data can fall victim to human error.
Neither approach will create synthetic data having statistical
characteristics similar to those of the original data, limiting
the utility of such data for training and testing purposes.
[0006] Accordingly, a need exists for systems and meth-
ods of creating synthetic data similar to existing datasets.

SUMMARY

[0007] The disclosed embodiments can improve genera-
tion of machine learning models. Such models may perform
better on data similar to the data used to train them. But
sensitive data cannot be widely distributed for use in training
models, forcing application developers to choose between
accuracy and training data security. Furthermore, the secu-
rity of sensitive data can be improved by tokenizing sensi-
tive data. For example, such tokenization can result in
tokenized data, sensitive data values, and a mapping
between the tokens and the values. An attacker must obtain

Jun. 22, 2023

both the tokenized data, sensitive data values, and mapping
to reconstruct the sensitive data. But the process of manually
tokenizing data is slow and error prone. The disclosed
embodiments describe specific ways to generate synthetic
data similar to sensitive data and to generate data models for
tokenizing sensitive data. In this manner, the disclosed
embodiments improve upon existing methods by enabling
automatic generation of synthetic data and automatic tokeni-
zation of sensitive portions of datasets.

[0008] The disclosed embodiments may include a method
for generating data models. The method can include receiv-
ing a data model generation request. The request can be
received by a model optimizer from an interface. The
method can include provisioning, by the model optimizer,
computing resources with a data model. Then a dataset
generator can generate a synthetic dataset for training the
data model using a generative network of a generative
adversarial network. The generative network can be trained
to generate output data differing at least a predetermined
amount from a reference dataset according to a similarity
metric. The computing resources can train the data model
using the synthetic dataset. The model optimizer can evalu-
ate performance criteria of the data model. The model
optimizer can store the data model and metadata of the data
model in a model storage based on the evaluation of the
performance criteria of the data model. Production data can
then be processed using the trained data model.

[0009] The similarity metric can depend on a maximum
distance or an average distance according to a distance
measure between rows selected from the output data and
row selected from the reference dataset.

[0010] The generative network can be trained to generate
the output data with less than a predetermined proportion of
duplicate elements. The generative network can be trained to
generate the output data with an output data schema match-
ing a schema of the reference dataset. The method can
further comprise training the generative adversarial network
using a loss function that penalizes generation of data
differing from the reference dataset by less than the prede-
termined amount.

[0011] The model optimizer can be configured to generate
at least one of a statistical correlation score between the
synthetic dataset and the reference dataset, a data similarity
score between the synthetic dataset and the reference data-
set, and a data quality score for the synthetic dataset.
Training the data model using the synthetic dataset can
include determining that the synthetic dataset satisfies a
criterion concerning the at least one of the statistical corre-
lation score between the synthetic dataset and the reference
dataset, the data similarity score between the synthetic
dataset and the reference dataset, and the data quality score
for the synthetic dataset.

[0012] The method can further include receiving the ref-
erence dataset, normalizing the reference dataset, and gen-
erating a synthetic training dataset using the generative
network. A similarity metric value can be determined
according to the similarity metric using the normalized
reference dataset and the synthetic training dataset. A loss
function can be updated that penalizes generation of data
differing from the reference dataset by less than the prede-
termined amount using the similarity metric value. The
generative adversarial network can be trained using the
normalized reference dataset, the synthetic training dataset,
and the updated loss function.

US 2023/0195541 Al

[0013] The generative network can include a decoder
network configured to generate decoder output data in a
sample space having a first dimensionality from decoder
input data in a code space having a second dimensionality
less than the first dimensionality. Generating the synthetic
dataset for training the data model can include identifying
first points and second points in the sample space and
generating first corresponding points and second corre-
sponding points in the code space using an encoder network
corresponding to the decoder network, the first points, and
the second points. Generating the synthetic dataset for
training the data model can further include determining a
first representative point based on the first corresponding
points and a second representative point based on the second
corresponding points and determining a vector connecting
the first representative point and the second representative
point. Datapoints in the code space can be translated using
the vector and a scaling factor, and the translated datapoints
can be converted into the sample space using the decoder
network. The first representative point can be a centroid or
a medoid of the first corresponding points.

[0014] Generating the synthetic dataset for training the
data model can include identitying a first point and a second
point in the sample space. Generating the synthetic dataset
for training the data model can further include generating a
first representative point and a second representative point in
the code space using the first point, the second point, and an
encoder network corresponding to the decoder network. A
vector can be determined connecting the first representative
point and the second representative point. An extreme point
in the code space can be generated by sampling the code
space along an extension of the vector beyond the second
representative point. The extreme point in the code space
can be converted into the sample space using the decoder
network.

[0015] The disclosed embodiments may include a cloud
computing system for generating data models. The cloud
computing system can include at least one processor and at
least one non-transitory memory storing instructions that,
when executed by the at least one processor, cause the cloud
computing system to perform the following operations. A
model optimizer can receive, from an interface a data model
generation request. The model optimizer can provision com-
puting resources with a data model. A generative network of
a generative adversarial network can generate a synthetic
dataset for training the data model. The computing resources
can train the data model using the synthetic dataset. The
model optimizer can evaluate the performance criteria of the
data model. The model optimizer can store, in a model
storage, the data model and metadata of the data model
based on the evaluation of the performance criteria of the
data model. Production data can then be processed using the
data model.

[0016] In some aspects, the operations can further include
retrieving a reference dataset from a database, the reference
dataset including categorical data. A normalized training
dataset can be generated by normalizing the categorical data.
The generative network can be trained using the normalized
training dataset. Normalizing the categorical data can
include converting the categorical data to numerical values
within a predetermined range. The reference dataset can
include at least one of missing values or not-a-number
values. Generating the normalized training dataset by nor-
malizing the categorical data can include converting the at

Jun. 22, 2023

least one of the missing values or the not-a-number values
to corresponding predetermined numerical values outside
the predetermined range.

[0017] The generative network can be configured to gen-
erate output data differing at least a predetermined amount
from a reference dataset according to a similarity metric. In
some aspects, the similarity metric can depend on a cova-
riance of numeric elements of the output data and a cova-
riance of numeric elements of the reference dataset. In
various aspects, the similarity metric can depend on a
univariate value distribution of an element of the output data
and a univariate value distribution of an element of the
reference dataset. The similarity metric can depend on a
joint probability distribution of elements in the output data
and a joint probability distribution of elements in the refer-
ence dataset. The similarity metric can depend on a number
of rows of the output data that match rows of the reference
dataset.

[0018] The disclosed embodiments may include a cloud
computing system for generating data models. The cloud
computing system can include at least one processor and at
least one non-transitory memory storing instructions that,
when executed by the at least one processor cause the cloud
computing system to perform the following operations. A
model optimizer can provision computing resources with a
data model. A dataset generator can generate a synthetic
dataset for training the data model. The computing resources
can train the data model using the synthetic dataset. The
model optimizer can store, in a model storage, the data
model and metadata of the data model. Production data can
be received from a data source by a production instance
using a common file system. The production data can be
processed using the data model by the production instance.
The computing resources, the dataset generator, and the
model optimizer can be hosted by separate virtual comput-
ing instances of the cloud computing system. A can distribu-
tor routes requests between the computing resources, the
dataset generator, and the model optimizer. The data model
can be provisioned in response to a model generation request
received by the model optimizer from an interface. The
model optimizer can evaluate performance criteria of the
data model. The performance criteria can include at least one
of'a statistical correlation score, data similarity score, or data
quality score, prediction accuracy check, a prediction accu-
racy cross check, a regression check, a regression cross
check, and a principal component analysis check. A model
curator can determine that the data model satisfies gover-
nance criteria.

[0019] Generating the synthetic dataset for training the
data model can include retrieving a synthetic dataset model
from the model storage, retrieving a training dataset from a
database, and generating the synthetic dataset using the
synthetic dataset model and the training dataset. Generating
the synthetic dataset using the synthetic dataset model and
the training dataset can include identifying a sensitive por-
tion of the training dataset using a recurrent neural network.
In some aspects, the cloud computing system can perform
further operations of receiving a data sequence and receiving
a context sequence. The operations can additionally include
generating a training sequence by inserting the data
sequence into the context sequence and generating a label
sequence indicating a position of the inserted data sequence
in the training sequence. The recurrent neural network can
be trained using the training sequence and the label

US 2023/0195541 Al

sequence. When the training sequence includes inserted data
sequences, the label sequence can indicate at least one of
differing classes among the inserted data sequences and
differing subclasses among the inserted data sequences.
[0020] In some aspects, training the recurrent neural net-
work using the training sequence and the label sequence can
include estimating a label by applying a subset of the
training sequence to the recurrent neural network and com-
paring the estimated label to an actual label in the label
sequence, the actual label corresponding to the subset of the
training sequence. The recurrent neural network can be
updated according to a loss function based on a result of the
comparison. The actual label can correspond to an element
of the subset occupying the same position in the training
sequence as the actual label occupies in the label sequence.
[0021] The disclosed embodiments may include a method
for generating data models. According to the method, a
model optimizer can receive from an interface, a data model
generation request. The model optimizer can provision com-
puting resources with the data model. A dataset generator
can generate a synthetic dataset for training the data model.
The computing resources can train the data model using the
synthetic dataset. The model optimizer can determine meta-
data of the data model. The model optimizer can store, in a
model storage, the data model and metadata of the data
model. The production data can be processed using the data
model. A model curator can determine that the data model
satisfies governance criteria, before processing the produc-
tion data using the data model. In some aspects, the inter-
face, the computing resources, the dataset generator, and the
model optimizer can be hosted by separate virtual comput-
ing instances of a cloud computing system. A distributor can
route user requests to the computing resources, the dataset
generator, and the model optimizer. The production data can
be received from a data source by a production instance
using a common file system. The production data can be
processed using the data model by the production instance.
[0022] Generating the synthetic dataset for training the
data model can include retrieving a synthetic dataset model
from the model storage and retrieving a training dataset from
a database. The synthetic dataset can be generated using the
synthetic dataset model and the training dataset.

[0023] In some aspects, the synthetic dataset model can
include a class-specific model corresponding to a data class.
Generating the synthetic dataset using the synthetic dataset
model and the training dataset can include determining a
sensitive portion of the training dataset belongs to the data
class and generating a synthetic portion using the class-
specific model. The sensitive portion of the training dataset
can then be replaced with the synthetic portion.

[0024] In various aspects, the synthetic dataset model can
include a class and subclass-specific model corresponding to
a data class and a subclass of the data class. Generating the
synthetic dataset using the synthetic dataset model and the
training dataset can include determining a sensitive portion
of' the training dataset belongs to the data class, selecting the
subclass and generating a synthetic portion using the class
and subclass-specific model. The sensitive portion of the
training dataset can then be replaced with the synthetic
portion. The subclass can be selected according to a uni-
variate distribution, or using a recurrent neural network.
[0025] A non-transitory memory can store instructions
that, when executed by at least one processor, cause a system
to perform operations of obtaining a synthetic dataset model,

Jun. 22, 2023

retrieving a training dataset from a database; and generating
a synthetic dataset using the synthetic dataset model and the
training data. This generation can include determining a
sensitive portion of the training dataset belongs to a data
class using a recurrent neural network, selecting a data
subclass according to a univariate distribution, and gener-
ating a synthetic portion using a class and subclass-specific
model. The sensitive portion of the training dataset can then
be replaced with the synthetic portion.

[0026] The disclosed embodiments may include a cloud
computing system for generating a synthetic data stream.
The cloud computing system can include at least one pro-
cessor and at least one non-transitory memory storing
instructions that, when executed by the at least one processor
cause the cloud computing system to perform the following
operations. A model optimizer can receive a synthetic data
stream request indicating a reference data stream from an
interface. A dataset generator can generate a synthetic data
stream that tracks the reference data stream by repeatedly
swapping data models of the reference data stream. One
such repeat can include the following steps. The dataset
generator can retrieve a current data model of the reference
data stream from a model storage. In some aspects, the
current data model comprises at least one of a kernel density
estimator, a recurrent neural network, and a generative
adversarial network. The dataset generator can generate the
synthetic data stream using the current data model of the
reference data stream. A new data model of the reference
data stream can be generated, and the model optimizer can
store the new data model in the model storage. Generating
the new data model of the reference data stream can include
provisioning, by the model optimizer, computing resources
with the current data model training the new data model on
the computing resources using current reference data stream
data.

[0027] The repeat can further include the steps of receiv-
ing reference data stream data. In some aspects, the refer-
ence data stream data can be included into current reference
data stream data upon receipt. In various aspects, the
received reference data stream data can be stored, reference
data stream data stored during a previous repeat can be
retrieved, and the retrieved reference data stream data can be
included into the current reference data stream data. The
repeat can occur at a predetermined time or upon expiration
of a time interval. The repeat can occur when a data schema
of the reference data stream changes. In some aspect, the
repeat can include evaluating, by the model optimizer,
performance criteria of the new data model and determining,
by the model optimizer, metadata of the new data model.
The new data model and the metadata can then be stored
based on the evaluation of the performance criteria of the
new data model. The performance criteria can include at
least one of a statistical correlation score, data similarity
score, or data quality score, prediction accuracy check, a
prediction accuracy cross check, a regression check, a
regression cross check, and a principal component analysis
check.

[0028] In some aspects, the data models can comprise
recurrent neural networks and the reference data stream
comprises JSON log data. Generating the synthetic data
stream using the current data model of the reference data
stream can include validating the synthetic data stream using
a JSON validator and a schema for the reference data stream.
In various aspects, the schema can describe key-value pairs

US 2023/0195541 Al

present in the reference data stream, and validating the
synthetic data stream can include validating that keys pres-
ent in the synthetic data stream are present in the schema. In
some aspects, the schema can describe key-value pairs
present in the reference data stream, and validating the
synthetic data stream can include validating that key-value
formats present in the synthetic data stream match corre-
sponding key-value formats in the reference data stream.

[0029] Generating the synthetic data stream using the
current data model of the reference data stream can include
identifying a sensitive portion of the reference data stream
using a recurrent neural network and generating a synthetic
portion using the current data model. The sensitive portion
of the reference data stream can then be replaced with the
synthetic portion. In some aspects, the current data model
can include a class-specific model corresponding to a data
class. Identifying the sensitive portion of the reference data
stream can include determining the sensitive portion of the
reference data stream belongs to the data class. Generating
the synthetic portion can include selecting the class-specific
model based on the data class and generating the synthetic
portion using the class-specific model. In various aspects,
the current data model can include a class and subclass-
specific model corresponding to a data class and a subclass
of the data class. Identifying the sensitive portion of the
reference data stream can include determining the sensitive
portion of the reference data stream belongs to the data class.
Generating the synthetic portion can include selecting the
subclass and selecting the class and subclass-specific model
based on the data class and the selected subclass. The
synthetic portion can then be generated using the class and
subclass-specific model.

[0030] The disclosed embodiments may include a system
for generating data models. The system for generating data
models can include at least one secure system processor and
at least one secure system non-transitory memory storing
first instructions that, when executed by the at least one
secure system processor, cause a secure system to perform
the following secure system operations. A model optimizer
can receive, from an interface, a data model generation
request. The model optimizer can provision the computing
resources with a data model. The computing resources can
train the data model using a sensitive dataset. The model
optimizer can then store the data model in a model storage.
The system for generating data models can also include at
least one insecure system processor and at least one insecure
system non-transitory memory storing second instructions
that, when executed by the at least one insecure system
processor cause an insecure system to receive a data gen-
eration request, retrieve the data model from the secure
system based on the data generation request and the meta-
data of the data model, and generating synthetic data using
the data model in response to the data generation request.
The data model can include at least one of a kernel density
estimator, a recurrent neural network, and a generative
adversarial network. When data model includes a generative
adversarial network, the generative adversarial network can
include a generative network. This generative network can
be trained to generate output data differing at least a prede-
termined amount from a reference dataset according to a
similarity metric. The secure system can be a cloud com-
puting system. The insecure system can be a personal
computer or mobile device.

Jun. 22, 2023

[0031] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory only and are not restrictive of
the disclosed embodiments, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] The drawings are not necessarily to scale or
exhaustive. Instead, emphasis is generally placed upon illus-
trating the principles of the embodiments described herein.
The accompanying drawings, which are incorporated in and
constitute a part of this specification, illustrate several
embodiments consistent with the disclosure and, together
with the description, serve to explain the principles of the
disclosure. In the drawings:

[0033] FIG. 1 depicts an exemplary cloud-computing
environment for generating data models, consistent with
disclosed embodiments.

[0034] FIG. 2 depicts an exemplary process for generating
data models, consistent with disclosed embodiments.
[0035] FIG. 3 depicts an exemplary process for generating
synthetic data using existing data models, consistent with
disclosed embodiments.

[0036] FIG. 4 depicts an exemplary implementation of the
cloud-computing environment of FIG. 1, consistent with
disclosed embodiments.

[0037] FIG. 5A depicts an exemplary process for gener-
ating synthetic data using class-specific models, consistent
with disclosed embodiments.

[0038] FIG. 5B depicts an exemplary process for gener-
ating synthetic data using class and subclass-specific mod-
els, consistent with disclosed embodiments.

[0039] FIG. 6 depicts an exemplary process for training a
classifier for generation of synthetic data, consistent with
disclosed embodiments.

[0040] FIG. 7 depicts an exemplary process for training a
classifier for generation of synthetic data, consistent with
disclosed embodiments.

[0041] FIG. 8 depicts an exemplary process for training a
generative adversarial using a normalized reference dataset,
consistent with disclosed embodiments.

[0042] FIG. 9 depicts an exemplary process for training a
generative adversarial network using a loss function config-
ured to ensure a predetermined degree of similarity, consis-
tent with disclosed embodiments.

[0043] FIG. 10 depicts an exemplary process for supple-
menting or transform datasets using code-space operations,
consistent with disclosed embodiments.

[0044] FIGS. 11A and 11B depict an exemplary illustra-
tion of points in code-space, consistent with disclosed
embodiments.

[0045] FIG. 12A depicts an exemplary illustration of
supplementing datasets using code-space operations, con-
sistent with disclosed embodiments.

[0046] FIG. 12B depicts an exemplary illustration of
transforming datasets using code-space operations, consis-
tent with disclosed embodiments.

[0047] FIG. 13 depicts an exemplary cloud computing
system for generating a synthetic data stream that tracks a
reference data stream, consistent with disclosed embodi-
ments.

[0048] FIG. 14 depicts a process for generating synthetic
JSON log data using the cloud computing system of FIG. 13,
consistent with disclosed embodiments.

US 2023/0195541 Al

[0049] FIG. 15 depicts a system for secure generation and
insecure use of models of sensitive data, consistent with
disclosed embodiments.

DETAILED DESCRIPTION

[0050] Reference will now be made in detail to exemplary
embodiments, discussed with regards to the accompanying
drawings. In some instances, the same reference numbers
will be used throughout the drawings and the following
description to refer to the same or like parts. Unless other-
wise defined, technical and/or scientific terms have the
meaning commonly understood by one of ordinary skill in
the art. The disclosed embodiments are described in suffi-
cient detail to enable those skilled in the art to practice the
disclosed embodiments. It is to be understood that other
embodiments may be utilized and that changes may be made
without departing from the scope of the disclosed embodi-
ments. Thus, the materials, methods, and examples are
illustrative only and are not intended to be necessarily
limiting.

[0051] The disclosed embodiments can be used to create
models of datasets, which may include sensitive datasets
(e.g., customer financial information, patient healthcare
information, and the like). Using these models, the disclosed
embodiments can produce fully synthetic datasets with
similar structure and statistics as the original sensitive or
non-sensitive datasets. The disclosed embodiments also pro-
vide tools for desensitizing datasets and tokenizing sensitive
values. In some embodiments, the disclosed systems can
include a secure environment for training a model of sen-
sitive data, and a non-secure environment for generating
synthetic data with similar structure and statistics as the
original sensitive data. In various embodiments, the dis-
closed systems can be used to tokenize the sensitive portions
of a dataset (e.g., mailing addresses, social security num-
bers, email addresses, account numbers, demographic infor-
mation, and the like). In some embodiments, the disclosed
systems can be used to replace parts of sensitive portions of
the dataset (e.g., preserve the first or last 3 digits of an
account number, social security number, or the like; change
a name to a first and last initial). In some aspects, the dataset
can include one or more JSON (JavaScript Object Notation)
or delimited files (e.g., comma-separated value, or CSV,
files). In various embodiments, the disclosed systems can
automatically detect sensitive portions of structured and
unstructured datasets and automatically replace them with
similar but synthetic values.

[0052] FIG. 1 depicts a cloud-computing environment 100
for generating data models. Environment 100 can be con-
figured to support generation and storage of synthetic data,
generation and storage of data models, optimized choice of
parameters for machine learning, and imposition of rules on
synthetic data and data models. Environment 100 can be
configured to expose an interface for communication with
other systems. Environment 100 can include computing
resources 101, dataset generator 103, database 105, model
optimizer 107, model storage 109, model curator 111, and
interface 113. These components of environment 100 can be
configured to communicate with each other, or with external
components of environment 100, using network 115. The
particular arrangement of components depicted in FIG. 1 is
not intended to be limiting. System 100 can include addi-
tional components, or fewer components. Multiple compo-

Jun. 22, 2023

nents of system 100 can be implemented using the same
physical computing device or different physical computing
devices.

[0053] Computing resources 101 can include one or more
computing devices configurable to train data models. The
computing devices can be special-purpose computing
devices, such as graphical processing units (GPUs) or appli-
cation-specific integrated circuits. The cloud computing
instances can be general-purpose computing devices. The
computing devices can be configured to host an environment
for training data models. For example, the computing
devices can host virtual machines, pods, or containers. The
computing devices can be configured to run applications for
generating data models. For example, the computing devices
can be configured to run SAGEMAKER, GENESYS, or
similar machine learning training applications. Computing
resources 101 can be configured to receive models for
training from model optimizer 107, model storage 109, or
another component of system 100. Computing resources 101
can be configured provide training results, including trained
models and model information, such as the type and/or
purpose of the model and any measures of classification
error.

[0054] Dataset generator 103 can include one or more
computing devices configured to generate data. Dataset
generator 103 can be configured to provide data to comput-
ing resources 101, database 105, to another component of
system 100 (e.g., interface 113), or another system (e.g., an
APACHE KAFKA cluster or other publication service).
Dataset generator 103 can be configured to receive data from
database 105 or another component of system 100. Dataset
generator 103 can be configured to receive data models from
model storage 109 or another component of system 100.
Dataset generator 103 can be configured to generate syn-
thetic data. For example, dataset generator 103 can be
configured to generate synthetic data by identifying and
replacing sensitive information in data received from data-
base 103 or interface 113. As an additional example, dataset
generator 103 can be configured to generate synthetic data
using a data model without reliance on input data. For
example, the data model can be configured to generate data
matching statistical and content characteristics of a training
dataset. In some aspects, the data model can be configured
to map from a random or pseudorandom vector to elements
in the training data space.

[0055] Database 105 can include one or more databases
configured to store data for use by system 100. The data-
bases can include cloud-based databases (e.g., AMAZON
WEB SERVICES S3 buckets) or on-premises databases.

[0056] Model optimizer 107 can include one or more
computing systems configured to manage training of data
models for system 100. Model optimizer 107 can be con-
figured to generate models for export to computing
resources 101. Model optimizer 107 can be configured to
generate models based on instructions received from a user
or another system. These instructions can be received
through interface 113. For example, model optimizer 107
can be configured to receive a graphical depiction of a
machine learning model and parse that graphical depiction
into instructions for creating and training a corresponding
neural network on computing resources 101. Model opti-
mizer 107 can be configured to select model training param-
eters. This selection can be based on model performance
feedback received from computing resources 101. Model

US 2023/0195541 Al

optimizer 107 can be configured to provide trained models
and descriptive information concerning the trained models
to model storage 109.

[0057] Model storage 109 can include one or more data-
bases configured to store data models and descriptive infor-
mation for the data models. Model storage 109 can be
configured to provide information regarding available data
models to a user or another system. This information can be
provided using interface 113. The databases can include
cloud-based databases (e.g., AMAZON WEB SERVICES
S3 buckets) or on-premises databases. The information can
include model information, such as the type and/or purpose
of the model and any measures of classification error.
[0058] Model curator 111 can be configured to impose
governance criteria on the use of data models. For example,
model curator 111 can be configured to delete or control
access to models that fail to meet accuracy criteria. As a
further example, model curator 111 can be configured to
limit the use of a model to a particular purpose, or by a
particular entity or individual. In some aspects, model
curator 11 can be configured to ensure that data model
satisfies governance criteria before system 100 can process
data using the data model.

[0059] Interface 113 can be configured to manage inter-
actions between system 100 and other systems using net-
work 115. In some aspects, interface 113 can be configured
to publish data received from other components of system
100 (e.g., dataset generator 103, computing resources 101,
database 105, or the like). This data can be published in a
publication and subscription framework (e.g., using
APACHE KAFKA), through a network socket, in response
to queries from other systems, or using other known meth-
ods. The data can be synthetic data, as described herein. As
an additional example, interface 113 can be configured to
provide information received from model storage 109
regarding available datasets. In various aspects, interface
113 can be configured to provide data or instructions
received from other systems to components of system 100.
For example, interface 113 can be configured to receive
instructions for generating data models (e.g., type of data
model, data model parameters, training data indicators,
training parameters, or the like) from another system and
provide this information to model optimizer 107. As an
additional example, interface 113 can be configured to
receive data including sensitive portions from another sys-
tem (e.g. in a file, a message in a publication and subscrip-
tion framework, a network socket, or the like) and provide
that data to dataset generator 103 or database 105.

[0060] Network 115 can include any combination of elec-
tronics communications networks enabling communication
between components of system 100. For example, network
115 may include the Internet and/or any type of wide area
network, an intranet, a metropolitan area network, a local
area network (LAN), a wireless network, a cellular commu-
nications network, a Bluetooth network, a radio network, a
device bus, or any other type of electronics communications
network known to one of skill in the art.

[0061] FIG. 2 depicts a process 200 for generating data
models. Process 200 can be used to generate a data model for
a machine learning application, consistent with disclosed
embodiments. The data model can be generated using syn-
thetic data in some aspects. This synthetic data can be
generated using a synthetic dataset model, which can in turn
be generated using actual data. The synthetic data may be

Jun. 22, 2023

similar to the actual data in terms of values, value distribu-
tions (e.g., univariate and multivariate statistics of the syn-
thetic data may be similar to that of the actual data), structure
and ordering, or the like. In this manner, the data model for
the machine learning application can be generated without
directly using the actual data. As the actual data may include
sensitive information, and generating the data model may
require distribution and/or review of training data, the use of
the synthetic data can protect the privacy and security of the
entities and/or individuals whose activities are recorded by
the actual data.

[0062] Process 200 can then proceed to step 201. In step
201, interface 113 can provide a data model generation
request to model optimizer 107. The data model generation
request can include data and/or instructions describing the
type of data model to be generated. For example, the data
model generation request can specify a general type of data
model (e.g., neural network, recurrent neural network, gen-
erative adversarial network, kernel density estimator, ran-
dom data generator, or the like) and parameters specific to
the particular type of model (e.g., the number of features and
number of layers in a generative adversarial network or
recurrent neural network). In some embodiments, a recurrent
neural network can include long short term memory mod-
ules (LSTM units), or the like.

[0063] Process 200 can then proceed to step 203. In step
203, one or more components of system 100 can interoperate
to generate a data model. For example, as described in
greater detail with regard to FIG. 3, a data model can be
trained using computing resources 101 using data provided
by dataset generator 103. In some aspects, this data can be
generated using dataset generator 103 from data stored in
database 105. In various aspects, the data used to train
dataset generator 103 can be actual or synthetic data
retrieved from database 105. This training can be supervised
by model optimizer 107, which can be configured to select
model parameters (e.g., number of layers for a neural
network, kernel function for a kernel density estimator, or
the like), update training parameters, and evaluate model
characteristics (e.g., the similarity of the synthetic data
generated by the model to the actual data). In some embodi-
ments, model optimizer 107 can be configured to provision
computing resources 101 with an initialized data model for
training. The initialized data model can be, or can be based
upon, a model retrieved from model storage 109.

[0064] Process 200 can then proceed to step 205. In step
205, model optimizer 107 can evaluate the performance of
the trained synthetic data model. When the performance of
the trained synthetic data model satisfies performance cri-
teria, model optimizer 107 can be configured to store the
trained synthetic data model in model storage 109. For
example, model optimizer 107 can be configured to deter-
mine one or more values for similarity and/or predictive
accuracy metrics, as described herein. In some embodi-
ments, based on values for similarity metrics, model opti-
mizer 107 can be configured to assign a category to the
synthetic data model.

[0065] According to a first category, the synthetic data
model generates data maintaining a moderate level of cor-
relation or similarity with the original data, matches well
with the original schema, and does not generate too many
row or value duplicates. According to a second category, the
synthetic data model may generate data maintaining a high
level of correlation or similarity of the original level, and

US 2023/0195541 Al

therefore could potentially cause the original data to be
discernable from the original data (e.g., a data leak). A
synthetic data model generating data failing to match the
schema with the original data or providing many duplicated
rows and values may also be placed in this category.
According to a third category, the synthetic data model may
likely generate data maintaining a high level of correlation
or similarity with the original data, likely allowing a data
leak. A synthetic data model generating data badly failing to
match the schema with the original data or providing far too
many duplicated rows and values may also be placed in this
category.

[0066] In some embodiments, system 100 can be config-
ured to provide instructions for improving the quality of the
synthetic data model. If a user requires synthetic data
reflecting less correlation or similarity with the original data,
the use can change the models’ parameters to make them
perform worse (e.g., by decreasing number of layers in GAN
models, or reducing the number of training iterations). If the
users want the synthetic data to have better quality, they can
change the models’ parameters to make them perform better
(e.g., by increasing number of layers in GAN models, or
increasing the number of training iterations).

[0067] Process 200 can then proceed to step 207, in step
207, model curator 111 can evaluate the trained synthetic
data model for compliance with governance criteria.
[0068] FIG. 3 depicts a process 300 for generating a data
model using an existing synthetic data model, consistent
with disclosed embodiments. Process 300 can include the
steps of retrieving a synthetic dataset model from model
storage 109, retrieving data from database 105, providing
synthetic data to computing resources 101, providing an
initialized data model to computing resources 101, and
providing a trained data model to model optimizer 107. In
this manner, process 300 can allow system 100 to generate
a model using synthetic data.

[0069] Process 300 can then proceed to step 301. In step
301, dataset generator 103 can retrieve a training dataset
from database 105. The training dataset can include actual
training data, in some aspects. The training dataset can
include synthetic training data, in some aspects. In some
embodiments, dataset generator 103 can be configured to
generate synthetic data from sample values. For example,
dataset generator 103 can be configured to use the generative
network of a generative adversarial network to generate data
samples from random-valued vectors. In such embodiments,
process 300 may forgo step 301.

[0070] Process 300 can then proceed to step 303. In step
303, dataset generator 103 can be configured to receive a
synthetic data model from model storage 109. In some
embodiments, model storage 109 can be configured to
provide the synthetic data model to dataset generator 103 in
response to a request from dataset generator 103. In various
embodiments, model storage 109 can be configured to
provide the synthetic data model to dataset generator 103 in
response to a request from model optimizer 107, or another
component of system 100. As a non-limiting example, the
synthetic data model can be a neural network, recurrent
neural network (which may include LSTM units), generative
adversarial network, kernel density estimator, random value
generator, or the like.

[0071] Process 300 can then proceed to step 305. In step
305, in some embodiments, dataset generator 103 can gen-
erate synthetic data. Dataset generator 103 can be config-

Jun. 22, 2023

ured, in some embodiments, to identify sensitive data items
(e.g., account numbers, social security numbers, names,
addresses, API keys, network or IP addresses, or the like) in
the data received from model storage 109. In some embodi-
ments, dataset generator 103 can be configured to identify
sensitive data items using a recurrent neural network. Data-
set generator 103 can be configured to use the data model
retrieved from model storage 109 to generate a synthetic
dataset by replacing the sensitive data items with synthetic
data items.

[0072] Dataset generator 103 can be configured to provide
the synthetic dataset to computing resources 101. In some
embodiments, dataset generator 103 can be configured to
provide the synthetic dataset to computing resources 101 in
response to a request from computing resources 101, model
optimizer 107, or another component of system 100. In
various embodiments, dataset generator 103 can be config-
ured to provide the synthetic dataset to database 105 for
storage. In such embodiments, computing resources 101 can
be configured to subsequently retrieve the synthetic dataset
from database 105 directly, or indirectly through model
optimizer 107 or dataset generator 103.

[0073] Process 300 can then proceed to step 307. In step
307, computing resources 101 can be configured to receive
a data model from model optimizer 107, consistent with
disclosed embodiments. In some embodiments, the data
model can be at least partially initialized by model optimizer
107. For example, at least some of the initial weights and
offsets of a neural network model received by computing
resources 101 in step 307 can be set by model optimizer 107.
In various embodiments, computing resources 101 can be
configured to receive at least some training parameters from
model optimizer 107 (e.g., batch size, number of training
batches, number of epochs, chunk size, time window, input
noise dimension, or the like).

[0074] Process 300 can then proceed to step 309. In step
309, computing resources 101 can generate a trained data
model using the data model received from model optimizer
107 and the synthetic dataset received from dataset genera-
tor 103. For example, computing resources 101 can be
configured to train the data model received from model
optimizer 107 until some training criterion is satisfied. The
training criterion can be, for example, a performance crite-
rion (e.g., a Mean Absolute Error, Root Mean Squared Error,
percent good classification, and the like), a convergence
criterion (e.g., a minimum required improvement of a per-
formance criterion over iterations or over time, a minimum
required change in model parameters over iterations or over
time), elapsed time or number of iterations, or the like. In
some embodiments, the performance criterion can be a
threshold value for a similarity metric or prediction accuracy
metric as described herein. Satisfaction of the training
criterion can be determined by one or more of computing
resources 101 and model optimizer 107. In some embodi-
ments, computing resources 101 can be configured to update
model optimizer 107 regarding the training status of the data
model. For example, computing resources 101 can be con-
figured to provide the current parameters of the data model
and/or current performance criteria of the data model. In
some embodiments, model optimizer 107 can be configured
to stop the training of the data model by computing
resources 101. In various embodiments, model optimizer
107 can be configured to retrieve the data model from
computing resources 101. In some embodiments, computing

US 2023/0195541 Al

resources 101 can be configured to stop training the data
model and provide the trained data model to model opti-
mizer 107.

[0075] FIG. 4 depicts a specific implementation (system
400) of system 100 of FIG. 1. As shown in FIG. 4, the
functionality of system 100 can be divided between a
distributor 401, a dataset generation instance 403, a devel-
opment environment 405, a model optimization instance
409, and a production environment 411. In this manner,
system 100 can be implemented in a stable and scalable
fashion using a distributed computing environment, such as
a public cloud-computing environment, a private cloud
computing environment, a hybrid cloud computing environ-
ment, a computing cluster or grid, or the like. As present
computing requirements increase for a component of system
400 (e.g., as production environment 411 is called upon to
instantiate additional production instances to address
requests for additional synthetic data streams), additional
physical or virtual machines can be recruited to that com-
ponent. In some embodiments, dataset generator 103 and
model optimizer 107 can be hosted by separate virtual
computing instances of the cloud computing system.
[0076] Distributor 401 can be configured to provide, con-
sistent with disclosed embodiments, an interface between
the components of system 400, and between the components
of system 400 and other systems. In some embodiments,
distributor 401 can be configured to implement interface 113
and a load balancer. Distributor 401 can be configured to
route messages between computing resources 101 (e.g.,
implemented on one or more of development environment
405 and production environment 411), dataset generator 103
(e.g., implemented on dataset generator instance 403), and
model optimizer 107 (e.g., implemented on model optimi-
zation instance 409). The messages can include data and
instructions. For example, the messages can include model
generation requests and trained models provided in response
to model generation requests. As an additional example, the
messages can include synthetic data sets or synthetic data
streams. Consistent with disclosed embodiments, distributor
401 can be implemented using one or more EC2 clusters or
the like.

[0077] Data generation instance 403 can be configured to
generate synthetic data, consistent with disclosed embodi-
ments. In some embodiments, data generation instance 403
can be configured to receive actual or synthetic data from
data source 417. In various embodiments, data generation
instance 403 can be configured to receive synthetic data
models for generating the synthetic data. In some aspects,
the synthetic data models can be received from another
component of system 400, such as data source 417.

[0078] Development environment 405 can be configured
to implement at least a portion of the functionality of
computing resources 101, consistent with disclosed embodi-
ments. For example, development environment 405 can be
configured to train data models for subsequent use by other
components of system 400. In some aspects, development
instances (e.g., development instance 407) hosted by devel-
opment environment 405 can train one or more individual
data models. In some aspects, development environment 405
be configured to spin up additional development instances to
train additional data models, as needed. In some aspects, a
development instance can implement an application frame-
work such as TENSORBOARD, JUPYTER and the like; as
well as machine learning applications like TENSORFLOW,

Jun. 22, 2023

CUDNN, KERAS, and the like. Consistent with disclosed
embodiments, these application frameworks and applica-
tions can enable the specification and training of data
models. In various aspects, development environment 405
can be implemented using one or more EC2 clusters or the
like.

[0079] Model optimization instance 409 can be configured
to manage training and provision of data models by system
400. In some aspects, model optimization instance 409 can
be configured to provide the functionality of model opti-
mizer 107. For example, model optimization instance 409
can be configured to provide training parameters and at least
partially initialized data models to development environ-
ment 405. This selection can be based on model perfor-
mance feedback received from development environment
405. As an additional example, model optimization instance
409 can be configured to determine whether a data model
satisfies performance criteria. In some aspects, model opti-
mization instance 409 can be configured to provide trained
models and descriptive information concerning the trained
models to another component of system 400. In various
aspects, model optimization instance 409 can be imple-
mented using one or more EC2 clusters or the like.

[0080] Production environment 405 can be configured to
implement at least a portion of the functionality of comput-
ing resources 101, consistent with disclosed embodiments.
For example, production environment 405 can be configured
to use previously trained data models to process data
received by system 400. In some aspects, a production
instance (e.g., production instance 413) hosted by develop-
ment environment 411 can be configured to process data
using a previously trained data model. In some aspects, the
production instance can implement an application frame-
work such as TENSORBOARD, JUPYTER and the like; as
well as machine learning applications like TENSORFLOW,
CUDNN, KERAS, and the like. Consistent with disclosed
embodiments, these application frameworks and applica-
tions can enable processing of data using data models. In
various aspects, development environment 405 can be
implemented using one or more EC2 clusters or the like.
[0081] A component of system 400 (e.g., model optimi-
zation instance 409) can determine the data model and data
source for a production instance according to the purpose of
the data processing. For example, system 400 can configure
a production instance to produce synthetic data for con-
sumption by other systems. In this example, the production
instance can then provide synthetic data for testing another
application. As a further example, system 400 can configure
a production instance to generate outputs using actual data.
For example, system 400 can configure a production
instance with a data model for detecting fraudulent transac-
tions. The production instance can then receive a stream of
financial transaction data and identify potentially fraudulent
transactions. In some aspects, this data model may have
been trained by system 400 using synthetic data created to
resemble the stream of financial transaction data. System
400 can be configured to provide an indication of the
potentially fraudulent transactions to another system con-
figured to take appropriate action (e.g., reversing the trans-
action, contacting one or more of the parties to the transac-
tion, or the like).

[0082] Production environment 411 can be configured to
host a file system 415 for interfacing between one or more
production instances and data source 417. For example, data

US 2023/0195541 Al

source 417 can be configured to store data in file system 415,
while the one or more production instances can be config-
ured to retrieve the stored data from file system 415 for
processing. In some embodiments, file system 415 can be
configured to scale as needed. In various embodiments, file
system 415 can be configured to support parallel access by
data source 417 and the one or more production instances.
For example, file system 415 can be an instance of AMA-
ZON ELASTIC FILE SYSTEM (EFS) or the like.

[0083] Data source 417 can be configured to provide data
to other components of system 400. In some embodiments,
data source 417 can include sources of actual data, such as
streams of transaction data, human resources data, web log
data, web security data, web protocols data, or system logs
data. System 400 can also be configured to implement model
storage 109 using a database (not shown) accessible to at
least one other component of system 400 (e.g., distributor
401, dataset generation instance 403, development environ-
ment 405, model optimization instance 409, or production
environment 411). In some aspects, the database can be an
s3 bucket, relational database, or the like.

[0084] FIG. 5A depicts process 500 for generating syn-
thetic data using class-specific models, consistent with dis-
closed embodiments. System 100, or a similar system, may
be configured to use such synthetic data in training a data
model for use in another application (e.g., a fraud detection
application). Process 500 can include the steps of retrieving
actual data, determining classes of sensitive portions of the
data, generating synthetic data using a data model for the
appropriate class, and replacing the sensitive data portions
with the synthetic data portions. In some embodiments, the
data model can be a generative adversarial network trained
to generate synthetic data satisfying a similarity criterion, as
described herein. By using class-specific models, process
500 can generate better synthetic data that more accurately
models the underlying actual data than randomly generated
training data that lacks the latent structures present in the
actual data. Because the synthetic data more accurately
models the underlying actual data, a data model trained
using this improved synthetic data may perform better
processing the actual data.

[0085] Process 500 can then proceed to step 501. In step
501, dataset generator 103 can be configured to retrieve
actual data. As a non-limiting example, the actual data may
have been gathered during the course of ordinary business
operations, marketing operations, research operations, or the
like. Dataset generator 103 can be configured to retrieve the
actual data from database 105 or from another system. The
actual data may have been purchased in whole or in part by
an entity associated with system 100. As would be under-
stood from this description, the source and composition of
the actual data is not intended to be limiting.

[0086] Process 500 can then proceed to step 503. In step
503, dataset generator 103 can be configured to determine
classes of the sensitive portions of the actual data. As a
non-limiting example, when the actual data is account
transaction data, classes could include account numbers and
merchant names. As an additional non-limiting example,
when the actual data is personnel records, classes could
include employee identification numbers, employee names,
employee addresses, contact information, marital or benefi-
ciary information, title and salary information, and employ-
ment actions. Consistent with disclosed embodiments, data-
set generator 103 can be configured with a classifier for

Jun. 22, 2023

distinguishing different classes of sensitive information. In
some embodiments, dataset generator 103 can be configured
with a recurrent neural network for distinguishing different
classes of sensitive information. Dataset generator 103 can
be configured to apply the classifier to the actual data to
determine that a sensitive portion of the training dataset
belongs to the data class. For example, when the data stream
includes the text string “Lorem ipsum 012-34-5678 dolor sit
amet,” the classifier may be configured to indicate that
positions 13-23 of the text string include a potential social
security number. Though described with reference to char-
acter string substitutions, the disclosed systems and methods
are not so limited. As a non-limiting example, the actual data
can include unstructured data (e.g., character strings, tokens,
and the like) and structured data (e.g., key-value pairs,
relational database files, spreadsheets, and the like).

[0087] Process 500 can then proceed to step 505. In step
505, dataset generator 103 can be configured to generate a
synthetic portion using a class-specific model. To continue
the previous example, dataset generator 103 can generate a
synthetic social security number using a synthetic data
model trained to generate social security numbers. In some
embodiments, this class-specific synthetic data model can be
trained to generate synthetic portions similar to those
appearing in the actual data. For example, as social security
numbers include an area number indicating geographic
information and a group number indicating date-dependent
information, the range of social security numbers present in
an actual dataset can depend on the geographic origin and
purpose of that dataset. A dataset of social security numbers
for elementary school children in a particular school district
may exhibit different characteristics than a dataset of social
security numbers for employees of a national corporation.
To continue the previous example, the social security-
specific synthetic data model could generate the synthetic
portion “03-74-3285.”

[0088] Process 500 can then proceed to step 507. In step
507, dataset generator 103 can be configured to replace the
sensitive portion of the actual data with the synthetic por-
tion. To continue the previous example, dataset generator
103 could be configured to replace the characters at posi-
tions 13-23 of the text string with the values “013-74-3285,”
creating the synthetic text string “Lorem ipsum 013-74-3285
dolor sit amet.” This text string can now be distributed
without disclosing the sensitive information originally pres-
ent. But this text string can still be used to train models that
make valid inferences regarding the actual data, because
synthetic social security numbers generated by the synthetic
data model share the statistical characteristic of the actual
data.

[0089] FIG. 5B depicts a process 510 for generating
synthetic data using class and subclass-specific models,
consistent with disclosed embodiments. Process 510 can
include the steps of retrieving actual data, determining
classes of sensitive portions of the data, selecting types for
synthetic data used to replace the sensitive portions of the
actual data, generating synthetic data using a data model for
the appropriate type and class, and replacing the sensitive
data portions with the synthetic data portions. In some
embodiments, the data model can be a generative adversarial
network trained to generate synthetic data satisfying a
similarity criterion, as described herein. This improvement
addresses a problem with synthetic data generation, that a
synthetic data model may fail to generate examples of

US 2023/0195541 Al

proportionately rare data subclasses. For example, when
data can be classified into two distinct subclasses, with a
second subclass far less prevalent in the data than a first
subclass, a model of the synthetic data may generate only
examples of the most common first data subclasses. The
synthetic data model effectively focuses on generating the
best examples of the most common data subclasses, rather
than acceptable examples of all the data subclasses. Process
510 addresses this problem by expressly selecting subclasses
of the synthetic data class according to a distribution model
based on the actual data.

[0090] Process 510 can then proceed through step 511 and
step 513, which resemble step 501 and step 503 in process
500. In step 511, dataset generator 103 can be configured to
receive actual data. In step 513, dataset generator can be
configured to determine classes of sensitive portions of the
actual data. In a non-limiting example, dataset generator 103
can be configured to determine that a sensitive portion of the
data may contain a financial service account number. Dataset
generator 103 can be configured to identify this sensitive
portion of the data as a financial service account number
using a classifier, which may in some embodiments be a
recurrent neural network (which may include LSTM units).

[0091] Process 510 can then proceed to step 515. In step
515, dataset generator 103 can be configured to select a
subclass for generating the synthetic data. In some aspects,
this selection is not governed by the subclass of the identi-
fied sensitive portion. For example, in some embodiments
the classifier that identifies the class need not be sufficiently
discerning to identify the subclass, relaxing the requirements
on the classifier. Instead, this selection is based on a distri-
bution model. For example, dataset generator 103 can be
configured with a statistical distribution of subclasses (e.g.,
a univariate distribution of subclasses) for that class and can
select one of the subclasses for generating the synthetic data
according to the statistical distribution. To continue the
previous example, individual accounts and trust accounts
may both be financial service account numbers, but the
values of these accounts numbers may differ between indi-
vidual accounts and trust accounts. Furthermore, there may
be 19 individual accounts for every 1 trust account. In this
example, dataset generator 103 can be configured to select
the trust account subclass 1 time in 20, and use a synthetic
data model for financial service account numbers for trust
accounts to generate the synthetic data. As a further
example, dataset generator 103 can be configured with a
recurrent neural network that estimates the next subclass
based on the current and previous subclasses. For example,
healthcare records can include cancer diagnosis stage as
sensitive data. Most cancer diagnosis stage values may be
“no cancer” and the value of “stage 1 may be rare, but when
present in a patient record this value may be followed by
“stage 2,” etc. The recurrent neural network can be trained
on the actual healthcare records to use prior and cancer
diagnosis stage values when selecting the subclass. For
example, when generating a synthetic healthcare record, the
recurrent neural network can be configured to use the
previously selected cancer diagnosis stage subclass in select-
ing the present cancer diagnosis stage subclass. In this
manner, the synthetic healthcare record can exhibit an
appropriate progression of patient health that matches the
progression in the actual data.

[0092] Process 510 can then proceed to step 517. In step
517, which resembles step 505, dataset generator 103 can be

Jun. 22, 2023

configured to generate synthetic data using a class and
subclass specific model. To continue the previous financial
service account number example, dataset generator 103 can
be configured to use a synthetic data for trust account
financial service account numbers to generate the synthetic
financial server account number.

[0093] Process 510 can then proceed to step 519. In step
519, which resembles step 507, dataset generator 103 can be
configured to replace the sensitive portion of the actual data
with the generated synthetic data. For example, dataset
generator 103 can be configured to replace the financial
service account number in the actual data with the synthetic
trust account financial service account number.

[0094] FIG. 6 depicts a process 600 for training a classifier
for generation of synthetic data. In some embodiments, such
a classifier could be used by dataset generator 103 to classify
sensitive data portions of actual data, as described above
with regards to FIGS. 5A and 5B. Process 600 can include
the steps of receiving data sequences, receiving content
sequences, generating training sequences, generating label
sequences, and training a classifier using the training
sequences and the label sequences. By using known data
sequences and content sequences unlikely to contain sensi-
tive data, process 600 can be used to automatically generate
a corpus of labeled training data. Process 600 can be
performed by a component of system 100, such as dataset
generator 103 or model optimizer 107.

[0095] Process 600 can then proceed to step 601. In step
601, system 100 can receive training data sequences. The
training data sequences can be received from a dataset. The
dataset providing the training data sequences can be a
component of system 100 (e.g., database 105) or a compo-
nent of another system. The data sequences can include
multiple classes of sensitive data. As a non-limiting
example, the data sequences can include account numbers,
social security numbers, and full names.

[0096] Process 600 can then proceed to step 603. In step
603, system 100 can receive context sequences. The context
sequences can be received from a dataset. The dataset
providing the context sequences can be a component of
system 100 (e.g., database 105) or a component of another
system. In various embodiments, the context sequences can
be drawn from a corpus of pre-existing data, such as an
open-source text dataset (e.g., Yelp Open Dataset or the
like). In some aspects, the context sequences can be snippets
of this pre-existing data, such as a sentence or paragraph of
the pre-existing data.

[0097] Process 600 can then proceed to step 605. In step
605, system 100 can generate training sequences. In some
embodiments, system 100 can be configured to generate a
training sequence by inserting a data sequence into a context
sequence. The data sequence can be inserted into the context
sequence without replacement of elements of the context
sequence or with replacement of elements of the context
sequence. The data sequence can be inserted into the context
sequence between elements (e.g., at a whitespace character,
tab, semicolon, html closing tag, or other semantic break-
point) or without regard to the semantics of the context
sequence. For example, when the context sequence is
“Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
do eiusmod” and the data sequence is “013-74-3285,” the
training sequence can be “Lorem ipsum dolor sit amet,
013-74-3285 consectetur adipiscing elit, sed do eiusmod,”
“Lorem ipsum dolor sit amet, 013-74-3285 adipiscing elit,

US 2023/0195541 Al

sed do eiusmod,” or “Lorem ipsum dolor sit amet, conse013-
74-3285ctetur adipiscing elit, sed do eiusmod.” In some
embodiments, a training sequence can include multiple data
sequences.

[0098] After step 601 and step 603, process 600 can
proceed to step 607. In step 607, system 100 can generate a
label sequence. In some aspects, the label sequence can
indicate a position of the inserted data sequence in the
training sequence. In various aspects, the label sequence can
indicate the class of the data sequence. As a non-limiting
example, when the training sequence is “dolor sit amet,
013-74-3285 consectetur adipiscing,” the label sequence can
be “0000000000000000111111111110000000000000000
0000000,” where the value “0” indicates that a character is
not part of a sensitive data portion and the value “1”
indicates that a character is part of the social security
number. A different class or subclass of data sequence could
include a different value specific to that class or subclass.
Because system 100 creates the training sequences, system
100 can automatically create accurate labels for the training
sequences.

[0099] Process 600 can then proceed to step 609. In step
609, system 100 can be configured to use the training
sequences and the label sequences to train a classifier. In
some aspects, the label sequences can provide a “ground
truth” for training a classifier using supervised learning. In
some embodiments, the classifier can be a recurrent neural
network (which may include LSTM units). The recurrent
neural network can be configured to predict whether a
character of a training sequence is part of a sensitive data
portion. This prediction can be checked against the label
sequence to generate an update to the weights and offsets of
the recurrent neural network. This update can then be
propagated through the recurrent neural network, according
to methods described in “Training Recurrent Neural Net-
works,” 2013, by Ilya Sutskever, which is incorporated
herein by reference in its entirety.

[0100] FIG. 7 depicts a process 700 for training a classifier
for generation of synthetic data, consistent with disclosed
embodiments. According to process 700, a data sequence
701 can include preceding samples 703, current sample 705,
and subsequent samples 707. In some embodiments, data
sequence 701 can be a subset of a training sequence, as
described above with regard to FIG. 6. Data sequence 701
may be applied to recurrent neural network 709. In some
embodiments, neural network 709 can be configured to
estimate whether current sample 705 is part of a sensitive
data portion of data sequence 701 based on the values of
preceding samples 703, current sample 705, and subsequent
samples 707. In some embodiments, preceding samples 703
can include between 1 and 100 samples, for example
between 25 and 75 samples. In various embodiments, sub-
sequent samples 707 can include between 1 and 100
samples, for example between 25 and 75 samples. In some
embodiments, the preceding samples 703 and the subse-
quent samples 707 can be paired and provided to recurrent
neural network 709 together. For example, in a first iteration,
the first sample of preceding samples 703 and the last sample
of subsequent samples 707 can be provided to recurrent
neural network 709. In the next iteration, the second sample
of preceding samples 703 and the second-to-last sample of
subsequent samples 707 can be provided to recurrent neural
network 709. System 100 can continue to provide samples
to recurrent neural network 709 until all of preceding

Jun. 22, 2023

samples 703 and subsequent samples 707 have been input to
recurrent neural network 709. System 100 can then provide
current sample 705 to recurrent neural network 709. The
output of recurrent neural network 709 after the input of
current sample 705 can be estimated label 711. Estimated
label 711 can be the inferred class or subclass of current
sample 705, given data sequence 701 as input. In some
embodiments, estimated label 711 can be compared to actual
label 713 to calculate a loss function. Actual label 713 can
correspond to data sequence 701. For example, when data
sequence 701 is a subset of a training sequence, actual label
713 can be an element of the label sequence corresponding
to the training sequence. In some embodiments, actual label
713 can occupy the same position in the label sequence as
occupied by current sample 705 in the training sequence.
Consistent with disclosed embodiments, system 100 can be
configured to update recurrent neural network 709 using loss
function 715 based on a result of the comparison.

[0101] FIG. 8 depicts a process 800 for training a genera-
tive adversarial network using a normalized reference data-
set. In some embodiments, the generative adversarial net-
work can be used by system 100 (e.g., by dataset generator
103) to generate synthetic data (e.g., as described above with
regards to FIGS. 2, 3, 5A and 5B). The generative adver-
sarial network can include a generator network and a dis-
criminator network. The generator network can be config-
ured to learn a mapping from a sample space (e.g., a random
number or vector) to a data space (e.g. the values of the
sensitive data). The discriminator can be configured to
determine, when presented with either an actual data sample
or a sample of synthetic data generated by the generator
network, whether the sample was generated by the generator
network or was a sample of actual data. As training pro-
gresses, the generator can improve at generating the syn-
thetic data and the discriminator can improve at determining
whether a sample is actual or synthetic data. In this manner,
a generator can be automatically trained to generate syn-
thetic data similar to the actual data. However, a generative
adversarial network can be limited by the actual data. For
example, an unmodified generative adversarial network may
be unsuitable for use with categorical data or data including
missing values, not-a-numbers, or the like. For example, the
generative adversarial network may not know how to inter-
pret such data. Disclosed embodiments address this techni-
cal problem by at least one of normalizing categorical data
or replacing missing values with supra-normal values.

[0102] Process 800 can then proceed to step 801. In step
801, system 100 (e.g., dataset generator 103) can retrieve a
reference dataset from a database (e.g., database 105). The
reference dataset can include categorical data. For example,
the reference dataset can include spreadsheets or relational
databases with categorical-valued data columns. As a further
example, the reference dataset can include missing values,
not-a-number values, or the like.

[0103] Process 800 can then proceed to step 803. In step
803, system 100 (e.g., dataset generator 103) can generate a
normalized training dataset by normalizing the reference
dataset. For example, system 100 can be configured to
normalize categorical data contained in the reference data-
set. In some embodiments, system 100 can be configured to
normalize the categorical data by converting this data to
numerical values. The numerical values can lie within a
predetermined range. In some embodiments, the predeter-
mined range can be zero to one. For example, given a

US 2023/0195541 Al

column of categorical data including the days of the week,
system 100 can be configured to map these days to values
between zero and one. In some embodiments, system 100
can be configured to normalize numerical data in the refer-
ence dataset as well, mapping the values of the numerical
data to a predetermined range.

[0104] Process 800 can then proceed to step 805. In step
805, system 100 (e.g., dataset generator 103) can generate
the normalized training dataset by converting special values
to values outside the predetermined range. For example,
system 100 can be configured to assign missing values a first
numerical value outside the predetermined range. As an
additional example, system 100 can be configured to assign
not-a-number values to a second numerical value outside the
predetermined range. In some embodiments, the first value
and the second value can differ. For example, system 100
can be configured to map the categorical values and the
numerical values to the range of zero to one. In some
embodiments, system 100 can then map missing values to
the numerical value 1.5. In various embodiments, system
100 can then map not-a-number values to the numerical
value of -0.5. In this manner system 100 can preserve
information about the actual data while enabling training of
the generative adversarial network.

[0105] Process 800 can then proceed to step 807. In step
807, system 100 (e.g., dataset generator 103) can train the
generative network using the normalized dataset, consistent
with disclosed embodiments.

[0106] FIG. 9 depicts a process 900 for training a genera-
tive adversarial network using a loss function configured to
ensure a predetermined degree of similarity, consistent with
disclosed embodiments. System 100 can be configured to
use process 900 to generate synthetic data that is similar, but
not too similar to the actual data, as the actual data can
include sensitive personal information. For example, when
the actual data includes social security numbers or account
numbers, the synthetic data would preferably not simply
recreate these numbers. Instead, system 100 would prefer-
ably create synthetic data that resembles the actual data, as
described below, while reducing the likelihood of overlap-
ping values. To address this technical problem, system 100
can be configured to determine a similarity metric value
between the synthetic dataset and the normalized reference
dataset, consistent with disclosed embodiments. System 100
can be configured to use the similarity metric value to update
a loss function for training the generative adversarial net-
work. In this manner, system 100 can be configured to
determine a synthetic dataset differing in value from the
normalized reference dataset at least a predetermined
amount according to the similarity metric.

[0107] While described below with regard to training a
synthetic data model, dataset generator 103 can be config-
ured to use such trained synthetic data models to generate
synthetic data (e.g., as described above with regards to
FIGS. 2 and 3). For example, development instances (e.g.,
development instance 407) and production instances (e.g.,
production instance 413) can be configured to generate data
similar to a reference dataset according to the disclosed
systems and methods.

[0108] Process 900 can then proceed to step 901, which
can resemble step 801. In step 901, system 100 (e.g., model
optimizer 107, computational resources 101, or the like) can
receive a reference dataset. In some embodiments, system
100 can be configured to receive the reference dataset from

Jun. 22, 2023

a database (e.g., database 105). The reference dataset can
include categorical and/or numerical data. For example, the
reference dataset can include spreadsheet or relational data-
base data. In some embodiments, the reference dataset can
include special values, such as missing values, not-a-number
values, or the like.

[0109] Process 900 can then proceed to step 903. In step
903, system 100 (e.g., dataset generator 103, model opti-
mizer 107, computational resources 101, or the like) can be
configured to normalize the reference dataset. In some
instances, system 100 can be configured to normalize the
reference dataset as described above with regard to steps 803
and 805 of process 800. For example, system 100 can be
configured to normalize the categorical data and/or the
numerical data in the reference dataset to a predetermined
range. In some embodiments, system 100 can be configured
to replace special values with numerical values outside the
predetermined range.

[0110] Process 900 can then proceed to step 905. In step
905, system 100 (e.g., model optimizer 107, computational
resources 101, or the like) can generate a synthetic training
dataset using the generative network. For example, system
100 can apply one or more random samples to the generative
network to generate one or more synthetic data items. In
some instances, system 100 can be configured to generate
between 200 and 400,000 data items, or preferably between
20,000 and 40,000 data items.

[0111] Process 900 can then proceed to step 907. In step
907, system 100 (e.g., model optimizer 107, computational
resources 101, or the like) can determine a similarity metric
value using the normalized reference dataset and the syn-
thetic training dataset. System 100 can be configured to
generate the similarity metric value according to a similarity
metric. In some aspects, the similarity metric value can
include at least one of a statistical correlation score (e.g., a
score dependent on the covariances or univariate distribu-
tions of the synthetic data and the normalized reference
dataset), a data similarity score (e.g., a score dependent on
a number of matching or similar elements in the synthetic
dataset and normalized reference dataset), or data quality
score (e.g., a score dependent on at least one of a number of
duplicate elements in each of the synthetic dataset and
normalized reference dataset, a prevalence of the most
common value in each of the synthetic dataset and normal-
ized reference dataset, a maximum difference of rare values
in each of the synthetic dataset and normalized reference
dataset, the differences in schema between the synthetic
dataset and normalized reference dataset, or the like). Sys-
tem 100 can be configured to calculate these scores using the
synthetic dataset and a reference dataset.

[0112] In some aspects, the similarity metric can depend
on a covariance of the synthetic dataset and a covariance of
the normalized reference dataset. For example, in some
embodiments, system 100 can be configured to generate a
difference matrix using a covariance matrix of the normal-
ized reference dataset and a covariance matrix of the syn-
thetic dataset. As a further example, the difference matrix
can be the difference between the covariance matrix of the
normalized reference dataset and the covariance matrix of
the synthetic dataset. The similarity metric can depend on
the difference matrix. In some aspects, the similarity metric
can depend on the summation of the squared values of the
difference matrix. This summation can be normalized, for
example by the square root of the product of the number of

US 2023/0195541 Al

rows and number of columns of the covariance matrix for
the normalized reference dataset.

[0113] In some embodiments, the similarity metric can
depend on a univariate value distribution of an element of
the synthetic dataset and a univariate value distribution of an
element of the normalized reference dataset. For example,
for corresponding elements of the synthetic dataset and the
normalized reference dataset, system 100 can be configured
to generate histograms having the same bins. For each bin,
system 100 can be configured to determine a difference
between the value of the bin for the synthetic data histogram
and the value of the bin for the normalized reference dataset
histogram. In some embodiments, the values of the bins can
be normalized by the total number of datapoints in the
histograms. For each of the corresponding elements, system
100 can be configured to determine a value (e.g., a maxi-
mum difference, an average difference, a Euclidean distance,
or the like) of these differences. In some embodiments, the
similarity metric can depend on a function of this value (e.g.,
a maximum, average, or the like) across the common
elements. For example, the normalized reference dataset can
include multiple columns of data. The synthetic dataset can
include corresponding columns of data. The normalized
reference dataset and the synthetic dataset can include the
same number of rows. System 100 can be configured to
generate histograms for each column of data for each of the
normalized reference dataset and the synthetic dataset. For
each bin, system 100 can determine the difference between
the count of datapoints in the normalized reference dataset
histogram and the synthetic dataset histogram. System 100
can determine the value for this column to be the maximum
of the differences for each bin. System 100 can determine
the value for the similarity metric to be the average of the
values for the columns. As would be appreciated by one of
skill in the art, this example is not intended to be limiting.

[0114] In various embodiments, the similarity metric can
depend on a number of elements of the synthetic dataset that
match elements of the reference dataset. In some embodi-
ments, the matching can be an exact match, with the value
of'an element in the synthetic dataset matching the value of
an element in the normalized reference dataset. As a non-
limiting example, when the normalized reference dataset
includes a spreadsheet having rows and columns, and the
synthetic dataset includes a spreadsheet having rows and
corresponding columns, the similarity metric can depend on
the number of rows of the synthetic dataset that have the
same values as rows of the normalized reference dataset. In
some embodiments, the normalized reference dataset and
synthetic dataset can have duplicate rows removed prior to
performing this comparison. System 100 can be configured
to merge the non-duplicate normalized reference dataset and
non-duplicate synthetic dataset by all columns. In this non-
limiting example, the size of the resulting dataset will be the
number of exactly matching rows. In some embodiments,
system 100 can be configured to disregard columns that
appear in one dataset but not the other when performing this
comparison.

[0115] In various embodiments, the similarity metric can
depend on a number of elements of the synthetic dataset that
are similar to elements of the normalized reference dataset.
System 100 can be configured to calculate similarity
between an element of the synthetic dataset and an element
of the normalized reference dataset according to distance
measure. In some embodiments, the distance measure can

Jun. 22, 2023

depend on a Euclidean distance between the elements. For
example, when the synthetic dataset and the normalized
reference dataset include rows and columns, the distance
measure can depend on a Euclidean distance between a row
of the synthetic dataset and a row of the normalized refer-
ence dataset. In various embodiments, when comparing a
synthetic dataset to an actual dataset including categorical
data (e.g., a reference dataset that has not been normalized),
the distance measure can depend on a Euclidean distance
between numerical row elements and a Hamming distance
between non-numerical row elements. The Hamming dis-
tance can depend on a count of non-numerical elements
differing between the row of the synthetic dataset and the
row of the actual dataset. In some embodiments, the distance
measure can be a weighted average of the Euclidean dis-
tance and the Hamming distance. In some embodiments,
system 100 can be configured to disregard columns that
appear in one dataset but not the other when performing this
comparison. In various embodiments, system 100 can be
configured to remove duplicate entries from the synthetic
dataset and the normalized reference dataset before perform-
ing the comparison.

[0116] In some embodiments, system 100 can be config-
ured to calculate a distance measure between each row of the
synthetic dataset (or a subset of the rows of the synthetic
dataset) and each row of the normalized reference dataset (or
a subset of the rows of the normalized reference dataset).
System 100 can then determine the minimum distance value
for each row of the synthetic dataset across all rows of the
normalized reference dataset. In some embodiments, the
similarity metric can depend on a function of the minimum
distance values for all rows of the synthetic dataset (e.g., a
maximum value, an average value, or the like).

[0117] In some embodiments, the similarity metric can
depend on a frequency of duplicate elements in the synthetic
dataset and the normalized reference dataset. In some
aspects, system 100 can be configured to determine the
number of duplicate elements in each of the synthetic dataset
and the normalized reference dataset. In various aspects,
system 100 can be configured to determine the proportion of
each dataset represented by at least some of the elements in
each dataset. For example, system 100 can be configured to
determine the proportion of the synthetic dataset having a
particular value. In some aspects, this value may be the most
frequent value in the synthetic dataset. System 100 can be
configured to similarly determine the proportion of the
normalized reference dataset having a particular value (e.g.,
the most frequent value in the normalized reference dataset).
[0118] In some embodiments, the similarity metric can
depend on a relative prevalence of rare values in the syn-
thetic and normalized reference dataset. In some aspects,
such rare values can be those present in a dataset with
frequencies less than a predetermined threshold. In some
embodiments, the predetermined threshold can be a value
less than 20%, for example 10%. System 100 can be
configured to determine a prevalence of rare values in the
synthetic and normalized reference dataset. For example,
system 100 can be configured to determine counts of the rare
values in a dataset and the total number of elements in the
dataset. System 100 can then determine ratios of the counts
of the rare values to the total number of elements in the
datasets.

[0119] In some embodiments, the similarity metric can
depend on differences in the ratios between the synthetic

US 2023/0195541 Al

dataset and the normalized reference dataset. As a non-
limiting example, an exemplary dataset can be an access log
for patient medical records that tracks the job title of the
employee accessing a patient medical record. The job title
“Administrator” may be a rare value of job title and appear
in 3% of the log entries. System 100 can be configured to
generate synthetic log data based on the actual dataset, but
the job title “Administrator” may not appear in the synthetic
log data. The similarity metric can depend on difference
between the actual dataset prevalence (3%) and the synthetic
log data prevalence (0%). As an alternative example, the job
title “Administrator” may be overrepresented in the syn-
thetic log data, appearing in 15% of the of the log entries
(and therefore not a rare value in the synthetic log data when
the predetermined threshold is 10%). In this example, the
similarity metric can depend on difference between the
actual dataset prevalence (3%) and the synthetic log data
prevalence (15%).

[0120] In various embodiments, the similarity metric can
depend on a function of the differences in the ratios between
the synthetic dataset and the normalized reference dataset.
For example, the actual dataset may include 10 rare values
with a prevalence under 10% of the dataset. The difference
between the prevalence of these 10 rare values in the actual
dataset and the normalized reference dataset can range from
-5% to 4%. In some embodiments, the similarity metric can
depend on the greatest magnitude difference (e.g., the simi-
larity metric could depend on the value —5% as the greatest
magnitude difference). In various embodiments, the simi-
larity metric can depend on the average of the magnitude
differences, the Euclidean norm of the ratio differences, or
the like.

[0121] In various embodiments, the similarity metric can
depend on a difference in schemas between the synthetic
dataset and the normalized reference dataset. For example,
when the synthetic dataset includes spreadsheet data, system
100 can be configured to determine a number of mismatched
columns between the synthetic and normalized reference
datasets, a number of mismatched column types between the
synthetic and normalized reference datasets, a number of
mismatched column categories between the synthetic and
normalized reference datasets, and number of mismatched
numeric ranges between the synthetic and normalized ref-
erence datasets. The value of the similarity metric can
depend on the number of at least one of the mismatched
columns, mismatched column types, mismatched column
categories, or mismatched numeric ranges.

[0122] In some embodiments, the similarity metric can
depend on one or more of the above criteria. For example,
the similarity metric can depend on one or more of (1) a
covariance of the output data and a covariance of the
normalized reference dataset, (2) a univariate value distri-
bution of an element of the synthetic dataset, (3) a univariate
value distribution of an element of the normalized reference
dataset, (4) a number of elements of the synthetic dataset
that match elements of the reference dataset, (5) a number of
elements of the synthetic dataset that are similar to elements
of the normalized reference dataset, (6) a distance measure
between each row of the synthetic dataset (or a subset of the
rows of the synthetic dataset) and each row of the normal-
ized reference dataset (or a subset of the rows of the
normalized reference dataset), (7) a frequency of duplicate
elements in the synthetic dataset and the normalized refer-
ence dataset, (8) a relative prevalence of rare values in the

Jun. 22, 2023

synthetic and normalized reference dataset, and (9) differ-
ences in the ratios between the synthetic dataset and the
normalized reference dataset.

[0123] System 100 can compare a synthetic dataset to a
normalized reference dataset, a synthetic dataset to an actual
(unnormalized) dataset, or to compare two datasets accord-
ing to a similarity metric consistent with disclosed embodi-
ments. For example, in some embodiments, model optimizer
107 can be configured to perform such comparisons. In
various embodiments, model storage 105 can be configured
to store similarity metric information (e.g., similarity values,
indications of comparison datasets, and the like) together
with a synthetic dataset.

[0124] Process 900 can then proceed to step 909. In step
909, system 100 (e.g., model optimizer 107, computational
resources 101, or the like) can train the generative adver-
sarial network using the similarity metric value. In some
embodiments, system 100 can be configured to determine
that the synthetic dataset satisfies a similarity criterion. The
similarity criterion can concern at least one of the similarity
metrics described above. For example, the similarity crite-
rion can concern at least one of a statistical correlation score
between the synthetic dataset and the normalized reference
dataset, a data similarity score between the synthetic dataset
and the reference dataset, or a data quality score for the
synthetic dataset.

[0125] In some embodiments, synthetic data satisfying the
similarity criterion can be too similar to the reference
dataset. System 100 can be configured to update a loss
function for training the generative adversarial network to
decrease the similarity between the reference dataset and
synthetic datasets generated by the generative adversarial
network when the similarity criterion is satisfied. In particu-
lar, the loss function of the generative adversarial network
can be configured to penalize generation of synthetic data
that is too similar to the normalized reference dataset, up to
a certain threshold. To that end, a penalty term can be added
to the loss function of the generative adversarial network.
This term can penalize the calculated loss if the dissimilarity
between the synthetic data and the actual data goes below a
certain threshold. In some aspects, this penalty term can
thereby ensure that the value of the similarity metric exceeds
some similarity threshold, or remains near the similarity
threshold (e.g., the value of the similarity metric may exceed
90% of the value of the similarity threshold). In this non-
limiting example, decreasing values of the similarity metric
can indicate increasing similarity. System 100 can then
update the loss function such that the likelihood of gener-
ating synthetic data like the current synthetic data is reduced.
In this manner, system 100 can train the generative adver-
sarial network using a loss function that penalizes generation
of data differing from the reference dataset by less than the
predetermined amount.

[0126] FIG. 10 depicts a process 1000 for supplementing
or transforming datasets using code-space operations, con-
sistent with disclosed embodiments. Process 1000 can
include the steps of generating encoder and decoder models
that map between a code space and a sample space, identi-
fying representative points in code space, generating a
difference vector in code space, and generating extreme
points or transforming a dataset using the difference vector.
In this manner, process 1000 can support model validation
and simulation of conditions differing from those present
during generation of a training dataset. For example, while

US 2023/0195541 Al

existing systems and methods may train models using data-
sets representative of typical operating conditions, process
1000 can support model validation by inferring datapoints
that occur infrequently or outside typical operating condi-
tions. As an additional example, a training data include
operations and interactions typical of a first user population.
Process 1000 can support simulation of operations and
interactions typical of a second user population that differs
from the first user population. To continue this example, a
young user population may interact with a system. Process
1000 can support generation of a synthetic training dataset
representative of an older user population interacting with
the system. This synthetic training dataset can be used to
simulate performance of the system with an older user
population, before developing that userbase.

[0127] After starting, process 1000 can proceed to step
1001. In step 1001, system 1001 can generate an encoder
model and a decoder model. Consistent with disclosed
embodiments, system 100 can be configured to generate an
encoder model and decoder model using an adversarially
learned inference model, as disclosed in “Adversarially
Learned Inference” by Vincent Dumoulin, et al. According
to the adversarially learned inference model, an encoder
maps from a sample space to a code space and a decoder
maps from a code space to a sample space. The encoder and
decoder are trained by selecting either a code and generating
a sample using the decoder or by selecting a sample and
generating a code using the encoder. The resulting pairs of
code and sample are provided to a discriminator model,
which is trained to determine whether the pairs of code and
sample came from the encoder or decoder. The encoder and
decoder can be updated based on whether the discriminator
correctly determined the origin of the samples. Thus, the
encoder and decoder can be trained to fool the discriminator.
When appropriately trained, the joint distribution of code
and sample for the encoder and decoder match. As would be
appreciated by one of skill in the art, other techniques of
generating a mapping from a code space to a sample space
may also be used. For example, a generative adversarial
network can be used to learn a mapping from the code space
to the sample space.

[0128] Process 1000 can then proceed to step 1003. In step
1003, system 100 can identify representative points in the
code space. System 100 can identify representative points in
the code space by identifying points in the sample space,
mapping the identified points into code space, and deter-
mining the representative points based on the mapped
points, consistent with disclosed embodiments. In some
embodiments, the identified points in the sample space can
be elements of a dataset (e.g., an actual dataset or a synthetic
dataset generated using an actual dataset).

[0129] System 100 can identify points in the sample space
based on sample space characteristics. For example, when
the sample space includes financial account information,
system 100 can be configured to identify one or more first
accounts belonging to users in their 20s and one or more
second accounts belonging to users in their 40s.

[0130] Consistent with disclosed embodiments, identify-
ing representative points in the code space can include a step
of mapping the one or more first points in the sample space
and the one or more second points in the sample space to
corresponding points in the code space. In some embodi-
ments, the one or more first points and one or more second
points can be part of a dataset. For example, the one or more

Jun. 22, 2023

first points and one or more second points can be part of an
actual dataset or a synthetic dataset generated using an
actual dataset.

[0131] System 100 can be configured to select first and
second representative points in the code space based on the
mapped one or more first points and the mapped one or more
second points. As shown in FIG. 11A, when the one or more
first points include a single point, the mapping of this single
point to the code space (e.g., point 1101) can be a first
representative point in code space 1100. Likewise, when the
one or more second points include a single point, the
mapping of this single point to the code space (e.g., point
1103) can be a second representative point in code space
1100.

[0132] As shown in FIG. 11B, when the one or more first
points include multiple points, system 100 can be configured
to determine a first representative point in code space 1110.
In some embodiments, system 100 can be configured to
determine the first representative point based on the loca-
tions of the mapped one or more first points in the code
space. In some embodiments, the first representative point
can be a centroid or a medoid of the mapped one or more
first points. Likewise, system 100 can be configured to
determine the second representative point based on the
locations of the mapped one or more second points in the
code space. In some embodiments, the second representative
point can be a centroid or a medoid of the mapped one or
more second points. For example, system 100 can be con-
figured to identify point 1113 as the first representative point
based on the locations of mapped points 1111a and 11115.
Likewise, system 100 can be configured to identify point
1117 as the second representative point based on the loca-
tions of mapped points 11154 and 11155.

[0133] In some embodiments, the code space can include
a subset of R”. System 100 can be configured to map a
dataset to the code space using the encoder. System 100 can
then identify the coordinates of the points with respect to a
basis vector in R” (e.g., one of the vectors of the identity
matrix). System 100 can be configured to identify a first
point with a minimum coordinate value with respect to the
basis vector and a second point with a maximum coordinate
value with respect to the basis vector. System 100 can be
configured to identify these points as the first and second
representative points. For example, taking the identity
matrix as the basis, system 100 can be configured to select
as the first point the point with the lowest value of the first
element of the vector. To continue this example, system 100
can be configured to select as the second point the point with
the highest value of the first element of the vector. In some
embodiments, system 100 can be configured to repeat pro-
cess 1000 for each vector in the basis.

[0134] Process 1000 can then proceed to step 1005. In step
1005, system 100 can determine a difference vector con-
necting the first representative point and the second repre-
sentative point. For example, as shown in FIG. 11A, system
100 can be configured to determine a vector 1105 from first
representative point 1101 to second representative point
1103. Likewise, as shown in FIG. 11B, system 100 can be
configured to determine a vector 1119 from first represen-
tative point 1113 to second representative point 1117.
[0135] Process 1000 can then proceed to step 1007. In step
1007, as depicted in FIG. 12A, system 100 can generate
extreme codes. Consistent with disclosed embodiments,
system 100 can be configured to generate extreme codes by

US 2023/0195541 Al

sampling the code space (e.g., code space 1200) along an
extension (e.g., extension 1201) of the vector connecting the
first representative point and the second representative point
(e.g., vector 1105). In this manner, system 100 can generate
a code extreme with respect to the first representative point
and the second representative point (e.g. extreme point
1203).

[0136] Process 1000 can then proceed to step 1009. In step
1009, as depicted in FIG. 12A, system 100 can generate
extreme samples. Consistent with disclosed embodiments,
system 100 can be configured to generate extreme samples
by converting the extreme code into the sample space using
the decoder trained in step 1001. For example, system 100
can be configured to convert extreme point 1203 into a
corresponding datapoint in the sample space.

[0137] Process 1000 can then proceed to step 1011. In step
1011, as depicted in FIG. 12B, system 100 can translate a
dataset using the difference vector determined in step 1005
(e.g., difference vector 1105). In some aspects, system 100
can be configured to convert the dataset from sample space
to code space using the encoder trained in step 1001. System
100 can be configured to then translate the elements of the
dataset in code space using the difference vector. In some
aspects, system 100 can be configured to translate the
elements of the dataset using the vector and a scaling factor.
In some aspects, the scaling factor can be less than one. In
various aspects, the scaling factor can be greater than or
equal to one. For example, as shown in FIG. 12B, the
elements of the dataset can be translated in code space 1210
by the product of the difference vector and the scaling factor
(e.g., original point 1211 can be translated by translation
1212 to translated point 1213).

[0138] Process 1000 can then proceed to step 1013. In step
1013, as depicted in FIG. 12B, system 100 can generate a
translated dataset. Consistent with disclosed embodiments,
system 100 can be configured to generate the translated
dataset by converting the translated points into the sample
space using the decoder trained in step 1001. For example,
system 100 can be configured to convert extreme point
translated point 1213 into a corresponding datapoint in the
sample space.

[0139] FIG. 13 depicts an exemplary cloud computing
system 1300 for generating a synthetic data stream that
tracks a reference data stream. The flow rate of the synthetic
data can resemble the flow rate of the reference data stream,
as system 1300 can generate synthetic data in response to
receiving reference data stream data. System 1300 can
include a streaming data source 1301, model optimizer
1303, computing resource 1304, model storage 1305, dataset
generator 1307, and synthetic data source 1309. System
1300 can be configured to generate a new synthetic data
model using actual data received from streaming data source
1301. Streaming data source 1301, model optimizer 1303,
computing resources 1304, and model storage 1305 can
interact to generate the new synthetic data model, consistent
with disclosed embodiments. In some embodiments, system
1300 can be configured to generate the new synthetic data
model while also generating synthetic data using a current
synthetic data model.

[0140] Streaming data source 1301 can be configured to
retrieve new data elements from a database, a file, a data-
source, a topic in a data streaming platform (e.g., IBM
STREAMS), a topic in a distributed messaging system (e.g.,
APACHE KAFKA), or the like. In some aspects, streaming

Jun. 22, 2023

data source 1301 can be configured to retrieve new elements
in response to a request from model optimizer 1303. In some
aspects, streaming data source 1301 can be configured to
retrieve new data elements in real-time. For example,
streaming data source 1301 can be configured to retrieve log
data, as that log data is created. In various aspects, streaming
data source 1301 can be configured to retrieve batches of
new data. For example, streaming data source 1301 can be
configured to periodically retrieve all log data created within
a certain period (e.g., a five-minute interval). In some
embodiments, the data can be application logs. The appli-
cation logs can include event information, such as debug-
ging information, transaction information, user information,
user action information, audit information, service informa-
tion, operation tracking information, process monitoring
information, or the like. In some embodiments, the data can
be JSON data (e.g., JSON application logs).

[0141] System 1300 can be configured to generate a new
synthetic data model, consistent with disclosed embodi-
ments. Model optimizer 1303 can be configured to provision
computing resources 1304 with a data model, consistent
with disclosed embodiments. In some aspects, computing
resources 1304 can resemble computing resources 101,
described above with regard to FIG. 1. For example, com-
puting resources 1304 can provide similar functionality and
can be similarly implemented. The data model can be a
synthetic data model. The data model can be a current data
model configured to generate data similar to recently
received data in the reference data stream. The data model
can be received from model storage 1305. For example,
model optimizer 1307 can be configured to provide instruc-
tions to computing resources 1304 to retrieve a current data
model of the reference data stream from model storage 1305.
In some embodiments, the synthetic data model can include
a recurrent neural network, a kernel density estimator, or a
generative adversarial network.

[0142] Computing resources 1304 can be configured to
train the new synthetic data model using reference data
stream data. In some embodiments, system 1300 (e.g.,
computing resources 1304 or model optimizer 1303) can be
configured to include reference data stream data into the
training data as it is received from streaming data source
1301. The training data can therefore reflect the current
characteristics of the reference data stream (e.g., the current
values, current schema, current statistical properties, and the
like). In some aspects, system 1300 (e.g., computing
resources 1304 or model optimizer 1303) can be configured
to store reference data stream data received from streaming
data source 1301 for subsequent use as training data. In
some embodiments, computing resources 1304 may have
received the stored reference data stream data prior to
beginning training of the new synthetic data model. As an
additional example, computing resources 1304 (or another
component of system 1300) can be configured to gather data
from streaming data source 1301 during a first time-interval
(e.g., the prior repeat) and use this gathered data to train a
new synthetic model in a subsequent time-interval (e.g., the
current repeat). In various embodiments, computing
resources 1304 can be configured to use the stored reference
data stream data for training the new synthetic data model.
In various embodiments, the training data can include both
newly-received and stored data. When the synthetic data
model is a Generative Adversarial Network, computing
resources 1304 can be configured to train the new synthetic

US 2023/0195541 Al

data model, in some embodiments, as described above with
regard to FIGS. 8 and 9. Alternatively, computing resources
1304 can be configured to train the new synthetic data model
according to know methods.

[0143] Model optimizer 1303 can be configured to evalu-
ate performance criteria of a newly created synthetic data
model. In some embodiments, the performance criteria can
include a similarity metric (e.g., a statistical correlation
score, data similarity score, or data quality score, as
described herein). For example, model optimizer 1303 can
be configured to compare the covariances or univariate
distributions of a synthetic dataset generated by the new
synthetic data model and a reference data stream dataset.
Likewise, model optimizer 1303 can be configured to evalu-
ate the number of matching or similar elements in the
synthetic dataset and reference data stream dataset. Further-
more, model optimizer 1303 can be configured to evaluate
a number of duplicate elements in each of the synthetic
dataset and reference data stream dataset, a prevalence of the
most common value in synthetic dataset and reference data
stream dataset, a maximum difference of rare values in each
of the synthetic dataset and reference data stream dataset,
differences in schema between the synthetic dataset and
reference data stream dataset, and the like.

[0144] In various embodiments, the performance criteria
can include prediction metrics. The prediction metrics can
enable a user to determine whether data models perform
similarly for both synthetic and actual data. The prediction
metrics can include a prediction accuracy check, a prediction
accuracy cross check, a regression check, a regression cross
check, and a principal component analysis check. In some
aspects, a prediction accuracy check can determine the
accuracy of predictions made by a model (e.g., recurrent
neural network, kernel density estimator, or the like) given
a dataset. For example, the prediction accuracy check can
receive an indication of the model, a set of data, and a set of
corresponding labels. The prediction accuracy check can
return an accuracy of the model in predicting the labels
given the data. Similar model performance for the synthetic
and original data can indicate that the synthetic data pre-
serves the latent feature structure of the original data. In
various aspects, a prediction accuracy cross check can
calculate the accuracy of a predictive model that is trained
on synthetic data and tested on the original data used to
generate the synthetic data. In some aspects, a regression
check can regress a numerical column in a dataset against
other columns in the dataset, determining the predictability
of the numerical column given the other columns. In some
aspects, a regression error cross check can determine a
regression formula for a numerical column of the synthetic
data and then evaluate the predictive ability of the regression
formula for the numerical column of the actual data. In
various aspects, a principal component analysis check can
determine a number of principal component analysis col-
umns sufficient to capture a predetermined amount of the
variance in the dataset. Similar numbers of principal com-
ponent analysis columns can indicate that the synthetic data
preserves the latent feature structure of the original data.

[0145] Model optimizer 1303 can be configured to store
the newly created synthetic data model and metadata for the
new synthetic data model in model storage 1305 based on
the evaluated performance criteria, consistent with disclosed
embodiments. For example, model optimizer 1303 can be
configured to store the metadata and new data model in

Jun. 22, 2023

model storage when a value of a similarity metric or a
prediction metric satisfies a predetermined threshold. In
some embodiments, the metadata can include at least one
value of a similarity metric or prediction metric. In various
embodiments, the metadata can include an indication of the
origin of the new synthetic data model, the data used to
generate the new synthetic data model, when the new
synthetic data model was generated, and the like.

[0146] System 1300 can be configured to generate syn-
thetic data using a current data model. In some embodi-
ments, this generation can occur while system 1300 is
training a new synthetic data model. Model optimizer 1303,
model storage 1305, dataset generator 1307, and synthetic
data source 1309 can interact to generate the synthetic data,
consistent with disclosed embodiments.

[0147] Model optimizer 1303 can be configured to receive
a request for a synthetic data stream from an interface (e.g.,
interface 113 or the like). In some aspects, model optimizer
1307 can resemble model optimizer 107, described above
with regard to FIG. 1. For example, model optimizer 1307
can provide similar functionality and can be similarly imple-
mented. In some aspects, requests received from the inter-
face can indicate a reference data stream. For example, such
a request can identify streaming data source 1301 and/or
specify a topic or subject (e.g., a Kafka topic or the like). In
response to the request, model optimizer 1307 (or another
component of system 1300) can be configured to direct
generation of a synthetic data stream that tracks the refer-
ence data stream, consistent with disclosed embodiments.
[0148] Dataset generator 1307 can be configured to
retrieve a current data model of the reference data stream
from model storage 1305. In some embodiments, dataset
generator 1307 can resemble dataset generator 103,
described above with regard to FIG. 1. For example, dataset
generator 1307 can provide similar functionality and can be
similarly implemented. Likewise, in some embodiments,
model storage 1305 can resemble model storage 105,
described above with regard to FIG. 1. For example, model
storage 1305 can provide similar functionality and can be
similarly implemented. In some embodiments, the current
data model can resemble data received from streaming data
source 1301 according to a similarity metric (e.g., a statis-
tical correlation score, data similarity score, or data quality
score, as described herein). In various embodiments, the
current data model can resemble data received during a time
interval extending to the present (e.g. the present hour, the
present day, the present week, or the like). In various
embodiments, the current data model can resemble data
received during a prior time interval (e.g. the previous hour,
yesterday, last week, or the like). In some embodiments, the
current data model can be the most recently trained data
model of the reference data stream.

[0149] Dataset generator 1307 can be configured to gen-
erate a synthetic data stream using the current data model of
the reference data steam. In some embodiments, dataset
generator 1307 can be configured to generate the synthetic
data stream by replacing sensitive portions of the reference
data steam with synthetic data, as described in FIGS. 5A and
5B. In various embodiments, dataset generator 1307 can be
configured to generate the synthetic data stream without
reference to the reference data steam data. For example,
when the current data model is a recurrent neural network,
dataset generator 1307 can be configured to initialize the
recurrent neural network with a value string (e.g., a random

US 2023/0195541 Al

sequence of characters), predict a new value based on the
value string, and then add the new value to the end of the
value string. Dataset generator 1307 can then predict the
next value using the updated value string that includes the
new value. In some embodiments, rather than selecting the
most likely new value, dataset generator 1307 can be con-
figured to probabilistically choose a new value. As a non-
limiting example, when the existing value string is “examin”
the dataset generator 1307 can be configured to select the
next value as “e” with a first probability and select the next
value as “a” with a second probability. As an additional
example, when the current data model is a generative
adversarial network or an adversarially learned inference
network, dataset generator 1307 can be configured to gen-
erate the synthetic data by selecting samples from a code
space, as described herein.

[0150] In some embodiments, dataset generator 1307 can
be configured to generate an amount of synthetic data equal
to the amount of actual data retrieved from synthetic data
stream 1309. In some aspects, the rate of synthetic data
generation can match the rate of actual data generation. As
a nonlimiting example, when streamlining data source 1301
retrieves a batch of 10 samples of actual data, dataset
generator 1307 can be configured to generate a batch of 10
samples of synthetic data. As a further nonlimiting example,
when streamlining data source 1301 retrieves a batch of
actual data every 10 minutes, dataset generator 1307 can be
configured to generate a batch of actual data every 10
minutes. In this manner, system 1300 can be configured to
generate synthetic data similar in both content and temporal
characteristics to the reference data stream data.

[0151] In various embodiments, dataset generator 1307
can be configured to provide synthetic data generated using
the current data model to synthetic data source 1309. In
some embodiments, synthetic data source 1309 can be
configured to provide the synthetic data received from
dataset generator 1307 to a database, a file, a datasource, a
topic in a data streaming platform (e.g., IBM STREAMS),
a topic in a distributed messaging system (e.g., APACHE
KAFKA), or the like.

[0152] As discussed above, system 1300 can be config-
ured to track the reference data stream by repeatedly switch-
ing data models of the reference data stream. In some
embodiments, dataset generator 1307 can be configured to
switch between synthetic data models at a predetermined
time, or upon expiration of a time interval. For example,
model optimizer 1307 can be configured to switch from an
old model to a current model every hour, day, week, or the
like. In various embodiments, system 1300 can detect when
a data schema of the reference data stream changes and
switch to a current data model configured to provide syn-
thetic data with the current schema. Consistent with dis-
closed embodiments, switching between synthetic data mod-
els can include dataset generator 1307 retrieving a current
model from model storage 1305 and computing resources
1304 providing a new synthetic data model for storage in
model storage 1305. In some aspects, computing resources
1304 can update the current synthetic data model with the
new synthetic data model and then dataset generator 1307
can retrieve the updated current synthetic data model. In
various aspects, dataset generator 1307 can retrieve the
current synthetic data model and then computing resources
1304 can update the current synthetic data model with the
new synthetic data model. In some embodiments, model

Jun. 22, 2023

optimizer 1303 can provision computing resources 1304
with a synthetic data model for training using a new set of
training data. In various embodiments, computing resources
1304 can be configured to continue updating the new
synthetic data model. In this manner, a repeat of the switch-
ing process can include generation of a new synthetic data
model and the replacement of a current synthetic data model
by this new synthetic data model.

[0153] FIG. 14 depicts a process 1400 for generating
synthetic JSON log data using the cloud computing system
of FIG. 13. Process 1400 can include the steps of retrieving
reference JSON log data, training a recurrent neural network
to generate synthetic data resembling the reference JSON
log data, generating the synthetic JSON log data using the
recurrent neural network, and validating the synthetic JSON
log data. In this manner system 1300 can use process 1400
to generate synthetic JSON log data that resembles actual
JSON log data.

[0154] After starting, process 1400 can proceed to step
1401. In step 1401, substantially as described above with
regard to FIG. 13, streaming data source 1301 can be
configured to retrieve the JSON log data from a database, a
file, a datasource, a topic in a distributed messaging system
such Apache Kafka, or the like. The JSON log data can be
retrieved in response to a request from model optimizer
1303. The JSON log data can be retrieved in real-time, or
periodically (e.g., approximately every five minutes).
[0155] Process 1400 can then proceed to step 1403. In step
1403, substantially as described above with regard to FIG.
13, computing resources 1304 can be configured to train a
recurrent neural network using the received data. The train-
ing of the recurrent neural network can proceed as described
in “Training Recurrent Neural Networks,” 2013, by Ilya
Sutskever, which is incorporated herein by reference in its
entirety.

[0156] Process 1400 can then proceed to step 1405. In step
1405, substantially as described above with regards to FIG.
13, dataset generator 1307 can be configured to generate
synthetic JSON log data using the trained neural network. In
some embodiments, dataset generator 1307 can be config-
ured to generate the synthetic JSON log data at the same rate
as actual JSON log data is received by streaming data source
1301. For example, dataset generator 1307 can be config-
ured to generate batches of JSON log data at regular time
intervals, the number of elements in a batch dependent on
the number of elements received by streaming data source
1301. As an additional example, dataset generator 1307 can
be configured to generate an element of synthetic JSON log
data upon receipt of an element of actual JSON log data
from streaming data source 1301.

[0157] Process 1400 can then proceed to step 1407. In step
1407, dataset generator 1307 (or another component of
system 1300) can be configured to validate the synthetic data
stream. For example, dataset generator 1307 can be config-
ured to use a JSON validator (e.g., JSON SCHEMA VALI-
DATOR, JSONLINT, or the like) and a schema for the
reference data stream to validate the synthetic data stream.
In some embodiments, the schema describes key-value pairs
present in the reference data stream. In some aspects, system
1300 can be configured to derive the schema from the
reference data stream. In some embodiments, validating the
synthetic data stream can include validating that keys pres-
ent in the synthetic data stream are present in the schema.
For example, when the schema includes the keys “first_

US 2023/0195541 Al

2, < 29, < 2, <

name”: “type”: “string” and “last_name”: {“type”: “string”
}. system 1300 may not validate the synthetic data stream
when objects in the data stream lack the “first_name” and
“last_name” keys. Furthermore, in some embodiments, vali-
dating the synthetic data stream can include validating that
key-value formats present in the synthetic data stream match
corresponding key-value formats in the reference data
stream. For example, when the schema includes the keys
“first_name”: “type”: “string” and “last_name”: {“type™:
“string” }, system 1300 may not validate the synthetic data
stream when objects in the data stream include a numeric-
valued “first_name” or “last_name”.

[0158] FIG. 15 depicts a system 1500 for secure genera-
tion and insecure use of models of sensitive data. System
1500 can include a remote system 1501 and a local system
1503 that communicate using network 1505. Remote system
1501 can be substantially similar to system 100 and be
implemented, in some embodiments, as described in FIG. 4.
For example, remote system 1501 can include an interface,
model optimizer, and computing resources that resemble
interface 113, model optimizer 107, and computing
resources 101, respectively, described above with regards to
FIG. 1. For example, the interface, model optimizer, and
computing resources can provide similar functionality to
interface 113, model optimizer 107, and computing
resources 101, respectively, and can be similarly imple-
mented. In some embodiments, remote system 1501 can be
implemented using a cloud computing infrastructure. Local
system 1503 can comprise a computing device, such as a
smartphone, tablet, laptop, desktop, workstation, server, or
the like. Network 1505 can include any combination of
electronics communications networks enabling communica-
tion between components of system 1500 (similar to net-
work 115).

[0159] In various embodiments, remote system 1501 can
be more secure than local system 1503. For example, remote
system 1501 can better protected from physical theft or
computer intrusion than local system 1503. As a non-
limiting example, remote system 1501 can be implemented
using AWS or a private cloud of an institution and managed
at an institutional level, while the local system can be in the
possession of, and managed by, an individual user. In some
embodiments, remote system 1501 can be configured to
comply with policies or regulations governing the storage,
transmission, and disclosure of customer financial informa-
tion, patient healthcare records, or similar sensitive infor-
mation. In contrast, local system 1503 may not be config-
ured to comply with such regulations.

[0160] System 1500 can be configured to perform a pro-
cess of generating synthetic data. According to this process,
system 1500 can train the synthetic data model on sensitive
data using remote system 1501, in compliance with regula-
tions governing the storage, transmission, and disclosure of
sensitive information. System 1500 can then transmit the
synthetic data model to local system 1503, which can be
configured to use the system to generate synthetic data
locally. In this manner, local system 1503 can be configured
to use synthetic data resembling the sensitive information,
which comply with policies or regulations governing the
storage, transmission, and disclosure of such information.
[0161] According to this process, the model optimizer can
receive a data model generation request from the interface.
In response to the request, the model optimizer can provision
computing resources with a synthetic data model. The

Jun. 22, 2023

computing resources can train the synthetic data model
using a sensitive dataset (e.g., consumer financial informa-
tion, patient healthcare information, or the like). The model
optimizer can be configured to evaluate performance criteria
of the data model (e.g., the similarity metric and prediction
metrics described herein, or the like). Based on the evalu-
ation of the performance criteria of the synthetic data model,
the model optimizer can be configured to store the trained
data model and metadata of the data model (e.g., values of
the similarity metric and prediction metrics, of the data, the
origin of the new synthetic data model, the data used to
generate the new synthetic data model, when the new
synthetic data model was generated, and the like). For
example, the model optimizer can determine that the syn-
thetic data model satisfied predetermined acceptability cri-
teria based on one or more similarity and/or prediction
metric value.

[0162] Local system 1503 can then retrieve the synthetic
data model from remote system 1501. In some embodi-
ments, local system 1503 can be configured to retrieve the
synthetic data model in response to a synthetic data genera-
tion request received by local system 1503. For example, a
user can interact with local system 1503 to request genera-
tion of synthetic data. In some embodiments, the synthetic
data generation request can specify metadata criteria for
selecting the synthetic data model. Local system 1503 can
interact with remote system 1501 to select the synthetic data
model based on the metadata criteria. Local system 1503 can
then generate the synthetic data using the data model in
response to the data generation request.

Example: Generating Cancer Data

[0163] As described above, the disclosed systems and
methods can enable generation of synthetic data similar to
an actual dataset (e.g., using dataset generator). The syn-
thetic data can be generated using a data model trained on
the actual dataset (e.g., as described above with regards to
FIG. 9). Such data models can include generative adversarial
networks. The following code depicts the creation a syn-
thetic dataset based on sensitive patient healthcare records
using a generative adversarial network.

[0164] # The following step defines a Generative Adver-
sarial Network data model.

[0165] model_options={‘GANDim’: 498, ‘GANZDim’:
20, ‘num_epochs’: 3}

[0166] # The following step defines the delimiters present
in the actual data

[0167] data_options={‘delimiter’: “’}

[0168] # In this example, the dataset is the publicly

available University of Wisconsin Cancer dataset, a standard
dataset used to benchmark machine learning prediction
tasks. Given characteristics of a tumor, the task to predict
whether the tumor is malignant.

[0169] data=Data(input_file_path="wisconsin_cancer_
train.csv’, options=data_options)

[0170] # In these steps the GAN model is trained generate
data statistically similar to the actual data.

[0171]
[0172]

ss=SimpleSilo(‘GAN’, model_options)
ss.train(data)

US 2023/0195541 Al

[0173] # The GAN model can now be used to generate
synthetic data.

[0174] generated_data=ss.generate(num_output_
samples=5000)

[0175] # The synthetic data can be saved to a file for later
use in training other machine learning models for this
prediction task without relying on the original data.

[0176] simplesilo.save_as_csv(generated_data, output_
file_path="wisconsin_cancer_GAN.csv’)

[0177] ss.save_model_into_file(‘cancer_data_model’)
[0178] Tokenizing Sensitive Data
[0179] As described above with regard to at least FIGS.

5A and 5B, the disclosed systems and methods can enable
identification and removal of sensitive data portions in a
dataset. In this example, sensitive portions of a dataset are
automatically detected and replaced with synthetic data. In
this example, the dataset includes human resources records.
The sensitive portions of the dataset are replaced with
random values (though they could also be replaced with
synthetic data that is statistically similar to the original data
as described in FIGS. 5A and 5B). In particular, this example
depicts tokenizing four columns of the dataset. In this
example, the Business Unit and Active Status columns are
tokenized such that all the characters in the values can be
replaced by random chars of the same type while preserving
format. For the column of Employee number, the first three
characters of the values can be preserved but the remainder
of each employee number can be tokenized. Finally, the
values of the Last Day of Work column can be replaced with
fully random values. All of these replacements can be
consistent across the columns.

[0180] input_data=Data(‘hr_data.csv’)

[0181] keys_for_formatted_scrub={‘Business
None, ‘Active Status’: None, ‘Company’: (0,3)}
[0182] keys_to_randomize=|‘Last Day of Work’]
[0183] tokenized_data, scrub_map=input_data.tokenize
(keys_for_formatted_scrub=keys_for_formatted_scrub,
keys_to_randomize=keys_to_randomize) tokenized_data.
save_data_into_file(‘hr_data_tokenized.csv’)

[0184] Alternatively, the system can use the scrub map to
tokenize another file in a consistent way (e.g., replace the
same values with the same replacements across both files)
by passing the returned scrub_map dictionary to a new
application of the scrub function.

[0185] input_data_2=Data(‘hr_data_part2.csv’)
[0186] keys_for_formatted_scrub={‘Business
None, ‘Company’: (0,3)}

[0187] keys_to_randomize=|‘Last Day of Work’]
[0188] # to tokenize the second file, we pass the scrub_
map diction to tokenize function.

[0189] tokenized_data_2, scrub_map=input_data_2.to-
kenize(keys_for_formatted_scrub=keys_for_formatted_
scrub, keys_to_randomize=keys_to_randomize, scrub_
map=scrub_map)

[0190] tokenized_data_2.save_data_into_file(‘hr_data_
tokenized_2.csv’)

[0191] In this manner, the disclosed systems and methods
can be used to consistently tokenize sensitive portions of a
file.

[0192] Other embodiments will be apparent to those
skilled in the art from consideration of the specification and
practice of the disclosed embodiments disclosed herein. It is
intended that the specification and examples be considered
as exemplary only, with a true scope and spirit of the

Unit’:

Unit’:

Jun. 22, 2023

disclosed embodiments being indicated by the following
claims. Furthermore, although aspects of the disclosed
embodiments are described as being associated with data
stored in memory and other tangible computer-readable
storage mediums, one skilled in the art will appreciate that
these aspects can also be stored on and executed from many
types of tangible computer-readable media, such as second-
ary storage devices, like hard disks, floppy disks, or CD-
ROM, or other forms of RAM or ROM. Accordingly, the
disclosed embodiments are not limited to the above-de-
scribed examples, but instead are defined by the appended
claims in light of their full scope of equivalents.

[0193] Moreover, while illustrative embodiments have
been described herein, the scope includes any and all
embodiments having equivalent elements, modifications,
omissions, combinations (e.g., of aspects across various
embodiments), adaptations or alterations based on the pres-
ent disclosure. The elements in the claims are to be inter-
preted broadly based on the language employed in the
claims and not limited to examples described in the present
specification or during the prosecution of the application,
which examples are to be construed as non-exclusive. Fur-
ther, the steps of the disclosed methods can be modified in
any manner, including by reordering steps or inserting or
deleting steps. It is intended, therefore, that the specification
and examples be considered as example only, with a true
scope and spirit being indicated by the following claims and
their full scope of equivalents.

1-20. (canceled)
21. A cloud computing system for generating data models,
comprising:
at least one processor; and
at least one non-transitory memory storing instructions
that, when executed by the at least one processor cause
the cloud computing system to perform operations
comprising:
normalizing a reference dataset;
receiving a similarity criterion, the similarity criterion
including a predetermined difference in value
between the normalized reference dataset and an
output dataset of a data model;
generating a synthetic dataset for training the data
model;
training the data model using the synthetic dataset, the
training comprising:
generating, based on a comparison of the output
dataset and the normalized reference dataset, a
similarity metric of the data model,
generating a prediction metric of the data model,
evaluating the similarity metric against the similarity
criterion,
evaluating the prediction metric against a prediction
criterion, and
updating the data model based on the evaluations of
the similarity metric and prediction metric, the
updating comprising penalizing generation of syn-
thetic data by adding a penalty term to a loss
function;
repeating the training until the similarity criterion is
met by the similarity metric and the prediction
criterion is met by the similarity metric and the
prediction metric; and

US 2023/0195541 Al

in response to the similarity criterion being met by the
similarity metric and the prediction criterion being
met by the prediction metric, storing the data model
in a model storage.

22. The cloud computing system of claim 21, wherein the
similarity metric depends on a maximum distance or an
average distance according to a distance measure between
rows selected from the output dataset and at least one row
selected from the reference dataset.

23. The cloud computing system of claim 21, wherein the
loss function is updatable for training the data model, the
loss function is associated with a penalty term, to ensure that
the value of the similarity metric exceeds a similarity
threshold or remains near the similarity threshold.

24. The cloud computing system of claim 21, wherein:

the similarity metric comprises at least one of a statistical

correlation score, data similarity score, or data quality
score; and

the prediction metric includes at least one of a prediction

accuracy verification, a prediction accuracy cross vali-
dation, a regression verification, a regression cross
validation, or a principal component analysis.

25. The cloud computing system of claim 24, wherein the
similarity metric is configured to calculate scores using the
synthetic dataset and a reference dataset.

26. The cloud computing system of claim 21, wherein the
synthetic dataset differs in value from the normalized ref-
erence dataset according to a predetermined amount accord-
ing to the similarity metric.

27. The cloud computing system of claim 21, wherein:

the similarity metric depends on a covariance of the

synthetic dataset and a covariance of the normalized
reference dataset; and

the operations further comprise generating a difference

matrix using a covariance matrix of the normalized
reference dataset and a covariance matrix of the syn-
thetic dataset.

28. The cloud computing system of claim 21, wherein the
prediction metric includes at least one of a prediction
accuracy check, a prediction accuracy cross check, a regres-
sion check, a regression cross check, or a principal compo-
nent analysis check.

29. The cloud computing system of claim 21, wherein the
similarity metric depends on one or more criteria, the one or
more criteria comprising at least one of:

a covariance of output dataset and a covariance of the

normalized reference dataset;

a univariate value distribution of an element of the

synthetic dataset;

a univariate value distribution of an element of the

normalized reference dataset;

a number of elements of the synthetic dataset that match

elements of the reference dataset;

a number of elements of the synthetic dataset that are

similar to elements of the normalized reference dataset;

a distance measure between each row of the synthetic

dataset and each row of the normalized reference
dataset;

a frequency of duplicate elements in the synthetic dataset

and the normalized reference dataset; and

arelative prevalence of rare values in the synthetic dataset

and the normalized reference dataset;

and differences in ratios between the synthetic dataset and

the normalized reference dataset.

Jun. 22, 2023

30. The cloud computing system of claim 21, wherein the
similarity criterion concerns at least one of a statistical
correlation score between the synthetic data and the nor-
malized reference dataset, a data similarity score between
the synthetic dataset and the reference dataset, or a data
quality score for the synthetic dataset.

31. A method for generating data models, comprising:

normalizing a reference dataset;

receiving a similarity criterion, the similarity criterion

including a predetermined difference in value between
the normalized reference dataset and an output dataset
of the data model,

generating a synthetic dataset for training the data model;

training a data model using the synthetic dataset, the

training comprising:

generating, based on a comparison of the output dataset
and the normalized reference dataset, a similarity
metric of the data model,

generating a prediction metric of the data model,

evaluating the similarity metric against the similarity
criterion,

evaluating the prediction metric against a prediction
criterion, and

updating the data model based on the evaluations of the
similarity metric and prediction metric, the updating
comprising penalizing generation of synthetic data
by adding a penalty term to a loss function;

repeating the training until the similarity criterion is met

by the similarity metric and the prediction criterion is

met by the similarity metric and the prediction metric;

and

in response to the similarity criterion being met by the

similarity metric and the prediction criterion being met
by the prediction metric, storing the data model and
new metadata in a model storage.

32. The method of claim 31, wherein the similarity
criterion concerns at least one of a statistical correlation
score between the synthetic data and the normalized refer-
ence dataset, a data similarity score between the synthetic
dataset and the reference dataset, or a data quality score for
the synthetic dataset.

33. The method of claim 31, wherein the similarity metric
depends on a maximum distance or an average distance
according to a distance measure between rows selected from
the output dataset and at least one row selected from the
reference dataset.

34. The method of claim 31, wherein the similarity metric
comprises at least one of a statistical correlation score, data
similarity score, or data quality score, and the prediction
metric includes at least one of a prediction accuracy verifi-
cation, a prediction accuracy cross validation, a regression
verification, a regression cross validation, or a principal
component analysis.

35. The method of claim 34, wherein the similarity metric
is configured to calculate scores using the synthetic dataset
and a reference dataset.

36. The method of claim 31, wherein the synthetic dataset
differs in value from the normalized reference dataset
according to a predetermined amount according to the
similarity metric.

37. The method of claim 31, wherein:

the similarity metric depends on a covariance of the

synthetic dataset and a covariance of the normalized
reference dataset; and

US 2023/0195541 Al

the operations further comprise generating a difference
matrix using a covariance matrix of the normalized
reference dataset and a covariance matrix of the syn-
thetic dataset.

38. The method of claim 31, wherein the prediction metric
includes at least one of a prediction accuracy check, a
prediction accuracy cross check, a regression check, a
regression cross check, or a principal component analysis
check.

39. The method of claim 31, wherein the metadata
includes an indication of origin of the new synthetic data
model and the data used to generate the new synthetic data
model.

40. A non-transitory computer-readable memory storing
instructions that, when executed by at least one processor,
cause the at least one processor to perform operations
comprising:

normalizing a reference dataset;

receiving a similarity criterion, the similarity criterion

including a predetermined difference in value between
the normalized reference dataset and an output dataset
of the data model,

generating a synthetic dataset for training the data model;

training a data model using the synthetic dataset, the
training comprising:

Jun. 22, 2023

generating, based on a comparison of the output dataset
and the normalized reference dataset, a similarity
metric of the data model,

generating a prediction metric of the data model,

evaluating the similarity metric against the similarity
criterion,

evaluating the prediction metric against a prediction
criterion to determine whether data models perform
similarly for both the synthetic data and actual data,
and

updating the data model based on the evaluations of the
similarity metric and prediction metric, the updating
comprising penalizing generation of synthetic data
by adding a penalty term to a loss function, decreas-
ing values of the similarity metric to indicate simi-
larity;

repeating the training until the similarity criterion is met

by the similarity metric and the prediction criterion is

met by the similarity metric and the prediction metric;

and

in response to the similarity criterion being met by the

similarity metric and the prediction criterion being met

by the prediction metric, storing the data model in a

model storage, once a value of a similarity metric or

prediction metric satisfies a predetermined threshold.

#* #* #* #* #*

