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SYSTEM AND METHOD FOR COMPUTING
FEATURES THAT APPLY TO INFREQUENT
QUERIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. Pat.
Application No. 14/984,578, filed Dec. 30, 2015, which is
herein incorporated by reference in its entirety for all
purposes.

TECHNICAL FIELD

[0002] Embodiments of the present disclosure relate gen-
erally to data processing and, more particularly, but not by
way of limitation, to computing category relevance of a

query.
BACKGROUND

[0003] Searching e-commerce sites, as well as other
searching performed on the Internet, is often performed by
receiving queries from users. A query refers to a request for
information from one or more databases. In various embo-
diments, the query parameters, also referred to as search
terms, are provided by the user by typing in one or more
search terms. In some embodiments, the query parameters
may be chosen from a menu.

[0004] The relevance of e-commerce searching can
directly and measurable impacts sales. For example, pre-
senting items to a user that are most relevant to that user is
more likely to lead to a sale of an item by that user. Locating
the most relevant items for purchase is generally done by
searching the databases.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Various ones of the appended drawings merely
illustrate example embodiments of the present disclosure
and cannot be considered as limiting its scope.

[0006] FIG. 1A is a conceptual diagram illustrating cate-
gory demand for example queries.

[0007] FIG. 1B is a conceptual diagram illustrating cate-
gory affinities for query terms of a query.

[0008] FIG. 1C is a conceptual diagram illustrating cate-
gory inferred relevance for queries grouped by query terms.
[0009] FIG. 1D is a block diagram illustrating a networked
system, according to some example embodiments.

[0010] FIG. 2A illustrates a block diagram of an informa-
tion storage and retrieval platform, including a runtime sys-
tem and an offline system, in accordance with an example
embodiment.

[0011] FIG. 2B illustrates a block diagram of the diction-
ary information shown in FIG. 1D with multiple diction-
aries, in accordance with an example embodiment.

[0012] FIG. 3 illustrates a detailed block diagram of the
search servers and the query node servers shown in FIG.
2A in further detail, in accordance with example
embodiments.

[0013] FIG. 4 illustrates a block diagram of low level
aggregators (LLA) querying a grid of item query nodes, in
accordance with an example embodiment.

[0014] FIG. 5A is a block diagram of a runtime system for
processing queries, in accordance with an example
embodiment.

Jun. 8, 2023

[0015] FIG. 5B illustrates a block diagram of the item
ranking modules shown in FIG. SA in further detail, in
accordance with an example embodiment.

[0016] FIG. 6 illustrates, indexing a list of documents to
an item in an item QN, in accordance with an example
embodiment.

[0017] FIG. 7 illustrates indexing a list of categories, each
with an affinity, to a category in a DSBE QN, in accordance
with an example embodiment.

[0018] FIG. 8A illustrates aggregating view item counts
from a query-category count table to a query term-category
count table, in accordance with an example embodiment.
[0019] FIG. 8B illustrates aggregating view item counts
from a query-term category table to a total view item
count per query term table, in accordance with an example
embodiment.

[0020] FIG. 8C illustrates a table for computing affinity
calculations, in accordance with an example embodiment.
[0021] FIG. 8D illustrates a category relevance dictionary
according to an example embodiment.

[0022] FIG. 9 illustrates two examples of a function used
to compute the inferred category demand score.

[0023] FIG. 10 is a flow diagram 1000 illustrating a
method for computing category demand for a query using
the whole query or query parts, in accordance with example
embodiments.

[0024] FIG. 11 is a flow diagram 1100 illustrating a
method for an inferred category demand for a query, in
accordance with example embodiments.

[0025] FIG. 12 is a flow diagram 1200 illustrating a
method for generating ranked search results using an
inferred category demand, in accordance with example
embodiments.

[0026] FIG. 13 illustrates a flow diagram 1300 illustrating
a method describing sub-operations of the operation 1250
shown in FIG. 12 to compute the category demand (CD)
score, in accordance with example embodiments.

[0027] FIG. 14 illustrates a flow diagram 1400 illustrating
amethod of generating a category relevance table offline, in
accordance with example embodiments.

[0028] FIG. 15 is a block diagram illustrating an example
of a software architecture that may be installed on a
machine, according to some example embodiments.

[0029] FIG. 16 illustrates a diagrammatic representation
of a machine in the form of a computer system within
which a set of instructions may be executed for causing
the machine to perform any one or more of the methodolo-
gies discussed herein, according to an example embodiment.
[0030] The headings provided herein are merely for con-
venience and do not necessarily affect the scope or meaning
of the terms used.

DETAILED DESCRIPTION

[0031] The description that follows includes systems,
methods, techniques, instruction sequences, and computing
machine program products that embody illustrative embodi-
ments of the disclosure. In the following description, for the
purposes of explanation, numerous specific details are set
forth in order to provide an understanding of various embo-
diments of the inventive subject matter. It will be evident,
however, to those skilled in the art, that embodiments of the
inventive subject matter may be practiced without these spe-
cific details. In general, well-known instruction instances,
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protocols, structures, and techniques are not necessarily
shown in detail.

[0032] In example embodiments, a number of features are
used by a search system to generate results for a search
query. The search system searches one or more databases
for items matching the query and then returns various
items to be presented to a user. The items are presented in
a ranked order based on predictions made by the search sys-
tem as to the most relevant results for users. The search sys-
tem uses a number of features to determine the relevancy of
items from a database of items. For example, the database of
items may represent an inventory database in an e-com-
merce system in some example embodiments. In other
embodiments, the search system is not limited to an e-com-
merce system, and may be used for other types of searching.
[0033] In various embodiments, features are related to
items and may be used to describe items. For example, a
feature may represent an item title, an item price, a name
of a seller of an item, other seller information, category of
an item, and computed values (e.g., demand for a price by
buyers and demand for a category). Data from user interac-
tions may be used to measure a feature. Various types of user
interactions when presented with search results include
viewing an item (e.g., by clicking on it), purchasing an
item, bidding on an item, watching an item, and other
types of user interactions. Each of the features can be repre-
sented quantitatively by the search system. By defining a set
of features for items, each of the items may be represented
quantitatively by taking into account the various features
used by the system to rank items returned from a query.
For example embodiments, this quantitative measure can
be referred to as a ranking score, and is used to compare a
number of items to measure relevancy of an item for a given
search query. The ranking score impacts the order in which
search results are presented to a user.

[0034] One way to improve the ranking score is to select
features that are most useful in measuring relevancy or
importance of a returned item relative to other returned
items. It has been observed that category demand is a useful
feature in ranking returned items to enable a search system
to predict the most relevant search results for a query. Cate-
gory demand is an example of one feature that is considered
useful in ranking items. Although example embodiments are
described with respect to the category demand feature, the
scope and spirit of the invention is not limited to the cate-
gory demand feature and may be applied to any number of
features.

[0035] Category demand refers to the demand for a cate-
gory for returned items. The category demand helps the
search system to predict “which category will users pur-
chase from.” More specifically, category demand refers to
the demand for categories based on past user queries and
their interactions with the search system, and therefore
may provide a useful measure as to what may be relevant
to a current user searching on an e-commerce site. For
example, past users searched for “Camaro front fenders”
and then clicked on items in the category Motors>P&A>car
parts>Exterior>fenders. This example indicates how click-
ing (or viewing item via clicking) is used to compute a
“demand” for the category “Motors>P&A>car parts>Exter-
ior>fenders” from the query “Camaro front fenders.” The
demand for this particular category is based on the number
of times past users click on items associated with this cate-

Jun. 8, 2023

gory when the search system received the same query
“Camaro front fenders.”

[0036] The ability of a search system to compute category
demand depends on the frequency at which the search sys-
tem receives the same query (e.g., “Camaro front fenders.”)
from past users, or at least recognizes the same query. In the
event that a query is not frequent enough (i.e., from past
users) for a system to compute category demand for a
given query, example embodiments compute an inferred
category demand for a given query.

[0037] In some embodiments, inferred category demand
represents an alternative to category demand when a query
is not frequent enough for a system to directly compute the
category demand for that query. In other embodiments,
inferred category demand may be computed regardless of
the frequency in which the query was received from past
users. Inferred category demand is not computed directly
from the historical query data of past users.

[0038] In various embodiments, a feature of a query repre-
sents a feature selected for ranking based on its usefulness in
ranking. If the query occurs often, then the search system
simply computes the value feature directly from the histor-
ical data (i.e., of past user queries). On the other hand, if the
query is considered an infrequent query, then the feature
cannot be computed directly from the historical data.
[0039] In various embodiments, a query that is not fre-
quent enough (based on historical data of past user queries)
is referred to as a tail query. A determination as to what is
frequent enough may vary from one search system to
another. For example, one search system may base fre-
quency on receiving the same query one hundred times in
the past four weeks. In this example, a tail query may refer
to a query that did not satisfy a threshold requirement of
receiving the same query one hundred times in the past
four weeks. Although this example describes a search
query for an e-commerce system, in various embodiments,
the system and method of computing features from an infre-
quent query is not limited to search systems from e-com-
merce sites. For the various features associated with infre-
quent queries, a number of probability models that assigns
probabilities to arbitrary queries may be used.

[0040] For the feature being represented by category
demand, each query has a probability model with respect
to categories. In some embodiments, category demand also
accounts for impressions (i.e., views of items from the
results without clicking). In further embodiments, category
demand is a complex function that accounts for various
other user interactions (e.g., purchase of an item, watching
an item, and bidding on an item) with a user interface of a
search system.

[0041] On the other hand, inferred category demand uses a
different model from category demand. Instead of modeling
each query with respect to categories, each category is mod-
eled over a vocabulary of query terms to create an affinity
score for each category-query term pair. In an example
embodiment, the inferred category demand probability
model may be based query terms representing unigrams
and bigrams of a query. In another example embodiment,
the probability model may rely on trigrams or some other
segmentation of the query. The query segmentation may be
over-lapping in some example embodiments and non-over-
lapping in other example embodiments. In further embodi-
ments, the inferred category demand model may be based on
a conditional random field, or recurrent neural networks. For
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the various features associated with infrequent queries, a
number of probability models that assigns probabilities to
arbitrary queries may be used.

[0042] For various embodiments, an affinity score is gen-
erated for each category-query term pair. The term affinity is
used to represent a measure of the strength between a query
term and a category, and can be used to compute the inferred
category demand score for a query. There are a number of
ways to compute affinities based on common functions in
information theory such as MI (c,tlclick) with variations
involving skipped items, Chi-Square (c, tlelick), P(clt,
click) with and without variations, and nClick (c.t), where
c=category and t=query term. A function to compute affinity
of a category-query term pair may be selected by determin-
ing which function gives the best results for a data set. A
random variable like z, which measures the deviation of
data form the expected value, is sometimes referred to as
X2 or chi-squared. P refers to probability. nClick refers to
the number of clicks. MI refers to mutual information.
[0043] In various example embodiments, the affinity of a
category-query term pair is based on the conditional prob-
ability of the query term given a category, and may be
described by the function P(clt, click) with and without var-
iations. For an example, the category-query term affinities
are computed by the formula: Category-query term affini-
ty=P (clt, VI), where c=category, t-query term, and VI=view
item count. In various embodiments, the VI (view item
count) represents the clicks. Based on this category-query
term affinity formula, the number of view item counts on a
category when the query has a query term is divided by the
total view item count when the query has the query term. In
an example embodiment, the query term “t” refers to uni-
grams and bigrams. However in other example embodi-
ments, other forms of segmentation of the query may be
implemented. In further embodiments, the weighted average
of P (clt) for all terms t of the query is computed. During
runtime, the query is segmented into non-overlapping seg-
ments when computing an inferred category demand for an
arbitrary query.

[0044] Bayes rule is a mathematical formula used for cal-
culating conditional probabilities. The probability of Q is
conditional on P. For one example, Q may represent cate-
gory (c¢) and P may represent query terms (t). Bayes rule
uses a model for how P is generated by Q. In some example
embodiments, Bayes rule may be used to estimate the prob-
ability of Prob (Q|P). According to Bayes rule, the Prob (Q|
P) (what we want) can be obtained by using Prob (P|Q). The
formula for Prob (P|Q) is not limited to any specific formula.
In example embodiments, Bayes rule may be applied during
runtime.

[0045] FIG. 1A is a conceptual diagram 146 illustrating
category demand for example queries. A query 160 for
“red shoe” has a demand for items in category 10 (shown
by reference number 150) and category 20 (shown by refer-
ence number 151). A query 161 for “nike shoe” has a
demand for items in category 20 and category 30 (shown
by reference number 152).

[0046] When a query is received from the user 106 by an
e-commerce site, the frequency of the query by past users
can be determinative as to whether or not the query has an
associated category demand score. A significant portion of
the queries received may not have a category demand score
associated with it. For example, approximately 45% of all
queries received by some e-commerce sites do not have a
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category demand score associated with the query. Such a
query may be referred to as a tail query. When a query is
received, the e-commerce system may use a category
demand dictionary as a look up table to determine whether
a category demand exists for that given query.

[0047] In some embodiments, an inferred category
demand score is computed (based on category relevance)
if a category demand score does not exist in the look up
table of the category demand dictionary. Thus, when a
query is frequent enough, an e-commerce site may use his-
torical information of that whole query and only that query,
to compute a category demand score, and if a query is not
frequent enough, the e-commerce site may use historical
information of the parts of the query (i.e., referred to as
query terms and represent bigrams and unigrams) to com-
pute an inferred category demand score. Affinity of a query
term is one parameter used to determine the inferred cate-
gory demand score in example embodiments.

[0048] Accordingly, the affinity of query terms of a query
are computed when computing an inferred category demand
score. The term affinity is used to represent a measure of the
strength between a query term and a category, and can be
used to compute the inferred category demand score for a
query. There are a number of ways to compute affinities
based on common functions in information theory. A func-
tion to compute affinity of a category-query term pair may
be selected by determining which function gives the best
results for a data set.

[0049] In various example embodiments, the affinity of a
category-query term pair is based on the conditional prob-
ability of the query term given a category, and may be
described by the function P(clt, click) with and without var-
iations. When computing an inferred category demand
score, an e-commerce system models each category over a
vocabulary of query terms to create an affinity for each cate-
gory-query term pair. Thus, the term affinity is also referred
to as a category-query term affinity. FIGS. 8 A-8C provides
an example of computing the affinity of the category-query
term pair using conditional probabilities.

[0050] FIG. 1B is a conceptual diagram 147 illustrating
category-query term affinities, in accordance with an exam-
ple embodiment. As described above, a query term refers to
a unigram or a bigram of a query. For the query “red nike
shoe,” there are two bigrams (i.e., red nike and nike shoe)
and three unigrams (i.e., red, nike, shoe). For simplicity, the
diagram 147 only shows the category-query term affinity for
the unigrams. The query term 170 for “red” has a category-
query term affinity with category 10 and category 20. The
query term 171 for “shoe” has a category-query term affinity
with categories 10, 20 and 30. The query term 172 for
“nike” has a category-query term affinity with categories
20 and 30.

[0051] The affinities of a category-query term pair are
computed offline in example embodiments. These affinities
are also referred to as query term-category affinities. The
affinities, along with various other factors related to tokens,
are used to compute a score referred to as an inferred cate-
gory demand score. The term token refers to the number of
terms in a search query that are separated by white spaces.
The inferred category demand scores can be computed dur-
ing runtime for a query. The inferred category demand
scores represents the inferred relevance between queries
and categories. Computing the inferred category demand
score is an alternative method of computing demand for a
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category, when a category demand score cannot be com-
puted by a system (e.g., e-commerce site) because a particu-
lar query is too infrequent. In some embodiments, a system
may compute an inferred category demand regardless of the
frequency of a query. In example embodiments, the inferred
category demand score and/or an category demand score,
are used as inputs into one or more search ranking algo-
rithms to compute search results for queries.

[0052] As described above, affinities are computed (off-
line) for each query term in a query, and hence referred to
as query term-category affinities. The query term-category
affinities for a query are then used to compute an inferred
category demand score for a query (during runtime).

[0053] FIG. 1C is a conceptual diagram 148 illustrating
category inferred relevance for queries grouped by query
terms, in accordance with an example embodiment. In var-
ious embodiments, the inferred relevance is represented as
an inferred category demand score. The query terms 170 for
“red” and 171 for “shoe” are combined for the query 160
“red shoe.” The query terms 171 for shoe and the query
term 172 for “nike” are combined for the query 161 “nike
shoe.” The query 160 for “red shoe” has an inferred rele-
vance for categories 10 and 20. The query 161 for “nike
shoe” has an inferred relevance for categories 10 and 20.
FIG. 9 illustrates two examples of a function used to com-
pute the inferred category demand score. The computation
of the inferred category demand score will be discussed in
further detail with FIG. 9.

[0054] Thus, FIGS. 1A-1C illustrate that when a query is
frequent enough, historical information of a whole query
(and only that query) is used to compute category demand,
and if a query is not frequent enough for the e-commerce
system to compute a demand for a category, then the e-com-
merce system uses historical information of the parts of a
query referred to as query terms (representing bigrams and
unigrams of the query) to infer a demand for the category
(i.e., inferred category demand) for the query. The inferred
category demand for a query is based on an inferred rele-
vance between query terms and categories. In example
embodiments, the computed demand for a category referred
to as CD ranking scores (including the category demand
scores and the inferred category demand scores) may be
included with a ranking profile of an e-commerce site, and
used as one of the inputs (directly or via business rules) into
one or more search ranking algorithms.

[0055] With reference to FIG. 1D, an example embodi-
ment of a high-level client-server-based network architec-
ture 100 is shown. A networked system 102, in the example
forms of a network-based marketplace or payment system,
provides server-side functionality via a network 104 (e.g.,
the Internet or wide area network (WAN)) to one or more
client devices 110. FIG. 1D illustrates, for example, a web
client 112 (e.g., a browser, such as the Internet Explorer®
browser developed by Microsoft® Corporation of Red-
mond, Wash. State), one or more application(s) 114, and a
programmatic client 116 executing on client device 110.
[0056] The client device 110 may comprise, but are not
limited to, a mobile phone, desktop computer, laptop, por-
table digital assistants (PDAs), smart phones, tablets, ultra
books, netbooks, laptops, multi-processor systems, micro-
processor-based or programmable consumer electronics,
game consoles, set-top boxes, or any other communication
device that a user may utilize to access the networked sys-
tem 102. In some embodiments, the client device 110 may
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comprise a display module (not shown) to display informa-
tion (e.g., in the form of user interfaces). In further embodi-
ments, the client device 110 may comprise one or more of a
touch screens, accelerometers, gyroscopes, cameras, micro-
phones, global positioning system (GPS) devices, and so
forth.

[0057] The client device 110 may be a device of a user that
is used to perform a transaction involving digital items
within the networked system 102. In one embodiment, the
networked system 102 is a network-based marketplace that
responds to requests for product listings, publishes publica-
tions comprising item listings of products available on the
network-based marketplace, and manages payments for
these marketplace transactions.

[0058] One or more users 106 may be a person, a machine,
or other means of interacting with client device 110. In
embodiments, the user 106 is not part of the network archi-
tecture 100, but may interact with the network architecture
100 via client device 110 or another means. For example,
one or more portions of network 104 may be an ad hoc net-
work, an intranet, an extranet, a virtual private network
(VPN), a local area network (LAN), a wireless LAN
(WLAN), a wide area network (WAN), a wireless WAN
(WWAN), a metropolitan area network (MAN), a portion
of the Internet, a portion of the Public Switched Telephone
Network (PSTN), a cellular telephone network, a wireless
network, a WiFi network, a WiMax network, another type
of network, or a combination of two or more such networks.
[0059] Each of the client devices 110 may include one or
more applications (also referred to as “apps™) such as, but
not limited to, a web browser, messaging application, elec-
tronic mail (email) application, an e-commerce site applica-
tion (also referred to as a marketplace application), and the
like. In some embodiments, if the e-commerce site applica-
tion is included in a given one of the client device 110, then
this application is configured to locally provide the user
interface and at least some of the functionalities with the
application configured to communicate with the networked
system 102, on an as needed basis, for data and/or proces-
sing capabilities not locally available (e.g., access to a data-
base of items available for sale, to authenticate a user, to
verify a method of payment, etc.). Conversely if the e-com-
merce site application is not included in the client device
110, the client device 110 may use its web browser to access
the e-commerce site (or a variant thereof) hosted on the net-
worked system 102.

[0060] One or more users 106 may be a person, a machine,
or other means of interacting with the client device 110. In
example embodiments, the user 106 is not part of the net-
work architecture 100, but may interact with the network
architecture 100 via the client device 110 or other means.
For instance, the user provides input (e.g., touch screen
input or alphanumeric input) to the client device 110 and
the input is communicated to the networked system 102
via the network 104. In this instance, the networked system
102, in response to receiving the input from the user, com-
municates information to the client device 110 via the net-
work 104 to be presented to the user. In this way, the user
can interact with the networked system 102 using the client
device 110. In various embodiments, a user 106 may interact
with a client application 114, such as a marketplace applica-
tion, by submitting queries to search for items available on
the marketplace application. The user 106 may further inter-
act with the marketplace application, for example, by view-
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ing items presented on the search results page, clicking on
items presented on the search results page to view the item
details, selecting items to be placed in a shopping cart, and
purchasing items placed in the shopping cart.

[0061] An application program interface (API) server 120
and a web server 122 are coupled to, and provide program-
matic and web interfaces respectively to, one or more appli-
cation servers 140. The application servers 140 may host
one or more publication systems 142 and payment systems
144, each of which may comprise one or more modules or
applications and each of which may be embodied as hard-
ware, software, firmware, or any combination thereof. In
example embodiments, the publication system 142 may
represents an-commerce site. In various embodiments, the
publication system 142 may include a search system S00.
The search system 500 is shown in FIG. 5A in further
details. The application servers 140 are, in turn, shown to
be coupled to one or more database servers 124 that facil-
itate access to one or more information storage repositories
or database(s) 126. In an example embodiment, the data-
bases 126 are storage devices that store information to be
posted (e.g., publications or listings) to the publication sys-
tem 120. The databases 126 may also store digital item
information in accordance with example embodiments.
[0062] In example embodiments, the databases 126 may
include one or more databases that store item information
such as listings indexed by categories, index information
used to index the item listings, log information such a log
of user behavioral data (including search queries from past
users and associated user interactions related to the search
queries), and dictionary information that stores price
demand information, category demand information, and
category relevance information (that can be used to infer
category demand). FIG. 1D illustrates the dictionary infor-
mation 225 item information 226, log information 227, and
index information 228 within one or more databases 126
stored within one or more databases 126.

[0063] Additionally, a third party application 132, execut-
ing on third party server(s) 130, is shown as having pro-
grammatic access to the networked system 102 via the pro-
grammatic interface provided by the API server 120. For
example, the third party application 132, utilizing informa-
tion retrieved from the networked system 102, supports one
or more features or functions on a website hosted by the
third party. The third party website, for example, provides
one or more promotional, marketplace, or payment func-
tions that are supported by the relevant applications of the
networked system 102.

[0064] The publication systems 142 may provide a num-
ber of publication functions and services to users 106 that
access the networked system 102. For example, the publica-
tion systems 142 may provide an e-commerce site that users
106 may shop on. The users may access this e-commerce
site via a client application 114, such as a marketplace appli-
cation. While shopping online via a marketplace applica-
tion, users 106 can submit search queries and review the
search results provided by the publication system 142. The
search results provides a listing of items in a ranked order.
The demand for a category (based on view item counts or
other interactions with the user) is one factor used by rank-
ing algorithms to rank the item listings in the search results
presented to the user 106 on the client device 110.

[0065] The payment systems 144 may likewise provide a
number of functions to perform or facilitate payments and
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transactions. For example, the payment systems 144 may
allow users 106 to purchase items from an e-commerce
site, While the publication system 142 and payment system
144 are shown in FIG. 1D to both form part of the net-
worked system 102, it will be appreciated that, in alternative
embodiments, each system 142 and 144 may form part of a
payment service that is separate and distinct from the net-
worked system 102. In some embodiments, the payment
systems 144 may form part of the publication system 142.
[0066] Further, while the client-server-based network
architecture 100 shown in FIG. 1D employs a client-server
architecture, the present inventive subject matter is of course
not limited to such an architecture, and could equally well
find application in a distributed, or peer-to-peer, architecture
system, for example. The various publication system 142,
payment system 144, and personalization system 150
could also be implemented as standalone software pro-
grams, which do not necessarily have networking
capabilities.

[0067] The web client 112 may access the various publica-
tion and payment systems 142 and 144 via the web interface
supported by the web server 122. Similarly, the programma-
tic client 116 accesses the various services and functions
provided by the publication and payment systems 142 and
144 via the programmatic interface provided by the API ser-
ver 120. The programmatic client 116 may, for example, be
a seller application (e.g., the Turbo Lister application devel-
oped by eBay® Inc., of San Jose, Calif.) to enable sellers to
author and manage listings on the networked system 102 in
an off-line manner, and to perform batch-mode communica-
tions between the programmatic client 116 and the net-
worked system 102.

[0068] Additionally, a third party application(s) 128,
executing on a third party server(s) 130, is shown as having
programmatic access to the networked system 102 via the
programmatic interface provided by the API server 114. For
example, the third party application 128, utilizing informa-
tion retrieved from the networked system 102, may support
one or more features or functions on a website hosted by the
third party. The third party website may, for example, pro-
vide one or more promotional, marketplace, or payment
functions that are supported by the relevant applications of
the networked system 102.

[0069] FIG. 2A illustrates a system 200 for an information
storage and retrieval platform 211 that utilizes a search
infrastructure, according to an example embodiment. The
information storage and retrieval platform 211 is communi-
catively coupled over a network (e.g., Internet) (not shown)
to the client machine 100 associated with the user 106. The
information storage and retrieval platform 211 includes a
runtime system 230 and an offline system 240.

[0070] In various embodiments, the information storage
and retrieval platform 211 provides a system for computing
e-commerce category relevance of an arbitrary user query.
Although the platform 211 is described with respect to the
query feature category demand, the platform 211 can be
used with other query features. For example, the category
demand system 250 and category demand tables 251 may
be generalized to broadly represent a query feature system
that generates and stores a query feature table.

[0071] The category relevance for a query may be referred
to as an inferred category demand for a query. One or more
components of the information storage and retrieval plat-
form 211 may be included within the publication system
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142, shown in FIG. 1D. The various components within the
information storage and retrieval platform 211 may be com-
municatively coupled with any combination of a wide area
network, local area network, wireless network, or any other
type of network utilizing various networking technologies.

[0072] In example embodiments, the runtime system 230
includes the searchable portion of the publication system
142 and may be referred to as a search system that provides
query searching functionality. The runtime system 230
includes search servers 235, query node servers 232, and
one or more databases 126. In an example embodiment,
the search servers 235 and the query node servers 232 are
included within a search engine 231. The backend system is
also described in FIG. 3.

[0073] Some of the information stored in the databases
126 are accessed by the offline system 240 to generate one
or more dictionaries offline. For example log information
227, which includes search information from prior queries
and various user interactions associated with those queries,
is accessed by the offline system 240 to generate category
demand tables 251 and category relevance tables 261. The
log information may be accessed periodically and used to
update one or more of the tables 251 and 261 offline. A
copy of the tables 251 and 261, or updates to the tables
251 and 261, which are computed offline are transferred to
the runtime system 230 and stored in the databases 126 as
dictionary information 225, which is accessible during run-
time in example embodiments.

[0074] The offline system 240 shown in FIG. 2A includes
a category demand system 250, which computes the cate-
gory demand tables 251, and a category relevance system
260 which computes the category relevance tables 261.
The generation of the category demand tables 251 and the
category relevance tables 261 are performed offline. In
example embodiments, the category relevance tables 261
represent a text file with rows, and each row contains (site
ID, query term, category, category-query term affinity). The
process of computing the category relevance tables 261 may
be automated on a regular basis (e.g., weekly) to ensure the
data stays fresh. The text file generated is then copied and
loaded into the databases 126 as dictionary information 225.
For an example embodiment, the category relevance tables
261 are stored as dictionary information 225 in the databases
126 in the runtime system 230. The dictionary information
225 is accessible by the runtime system 230 when a query is
received. An example of a category relevance dictionary is
shown in FIG. 8D.

[0075] During runtime, the dictionary information 225
may be used as a lookup table to identify category-query
term affinities for a query. Thus, only parts of the query,
referred to as query terms are used during the lookup pro-
cess. The category-query term affinities for queries are used
to compute the inferred category demand score for an entire
query.

[0076] For an example embodiment, the category-query
term affinities are computed by the formula: Category-
query term affinity=P (clt, VI), where c=category, t=query
term, and VI=view item count. Based on this category-query
term affinity formula, the number of view item counts on a
category when the query has a query term is divided by the
total view item count when the query has the query term.
The category relevance dictionary 225C stores the informa-
tion as tuples (site, category, query term, category-query
term affinity). In example embodiments, the tuples may
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have one or more of the following constraints: nclick
(query term)>=5; a category-query term affinity >0.001;
per (site, category) taking the top 90,000 terms by “Jaccard
score.” The Jaccard score is defined as follows:

[0077] N(category,term)/(n(category)+n(term)-

n(category,term)),

[0078] where n is the count of clicks.
[0079] The Jaccard pruning may improve categories with
a large lexicon, such as cell phone cases, covers and skins.
The Jaccard score represents one form of an information-
theoretic measure of affinities. In various other embodi-
ments, other forms of information-theoretic measures of
affinities may be used.
[0080] In various embodiments, the weighted average of
the category-query term affinities for a query are used to
compute the inferred category demand score. The weighted
average of P (cat|term) with weighting by numbers of tokens
in the query term. P (catlterm) represents an example func-
tion used to compute category-query term affinity. In deter-
mining the weighted average of the category-query term
affinity, bigrams and unigrams cannot overlap with each
other. In other words, a unigram must not be included within
a bigram and is referred to as a non-overlapping unigram.
The rational for using only non-overlapping unigrams is that
unigrams have the least context so they may represent noisy
category-query term affinities. Additionally, unigrams
should only be used when all else fails, i.e., no longer n-
gram can cover the unigram. In some embodiments a con-
stant of 2.5 is used for missed tokens. The function for com-
puting the inferred category demand score is described in
further detail below. Additionally, FIG. 9 provides examples
of computing the inferred category demand score.
[0081] For example embodiments, a category demand
table 251 (including fields for site, query, category, and cate-
gory demand) is stored within the dictionary information
225, and is accessible during runtime. The dictionary infor-
mation 225 may be used as a lookup table to identify cate-
gory demand for a given query. Thus, the entire query is
used during the lookup process. The category demand, and
other statistical information (e.g., price demand) generated
from past queries, may also be used by a search engine to
produce search results 205 in a ranked order.
[0082] The demand for a category of a given search is
based on historical data, for example, what past users
searched and what items they viewed by clicking on the
item. For a given query, the categories associated with the
viewed items, or other interactions with the users (e.g.,
impressions or viewing search results without clicking),
for a query may be used to determine the category demand
for that given query, provided the query is frequent enough
for the offline system 240 to compute the category demand.
In various embodiments, the dictionary information 225
does not store category demand scores for tail queries. Gen-
erally, frequent queries are more likely to have an associated
category demand score than less frequent queries. The less
frequent queries may be referred to as tail queries. The fre-
quency of a query may be determined by the number of past
users who submitted the same query and then viewed items
(by clicking) from the search results. For example, if a query
was submitted more than 100 times in the past 4 weeks, it is
likely to be included in the category demand tables 251 in an
example embodiment. The frequency of a query may also be
determined in a various other ways, provided that a category
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demand system 250 has sufficient historical data to compute
category demand for a query.

[0083] During runtime, if the user 106 submits a query
204 and that query 204 does not have a category demand
that was computed by the category demand system 250 off-
line, the runtime system 230 may use (or compute) an
inferred category demand for that query 204. Category rele-
vance information (e.g., category-query term affinities) gen-
erated by the category relevance system 260 offline, may be
used to compute an inferred category demand score for that
query 204 during runtime. In various embodiments, the
DSBE 504 (shown in FIG. 5A) computes the inferred cate-
gory demand which is used by a search engine to rank the
items returned from the query 204. The DSBE will be dis-
cussed in further detail in conjunction with FIG. 3 and FIG.
5A.

[0084] The information stored in the databases 126 in the
runtime system 230, which is accessed by the query node
servers 232, is stored in a format that can be consumed by
the query node servers 232. For example the dictionary
information 225 and the index information 228 are accessed
by the query node servers 232 during runtime and are stored
in a format that can be consumed by the query node servers
232. During runtime, the runtime system 230 performs two
separate and independent processes. One process is to deter-
mine the demand for categories using the DSBE QNs 330
(shown in FIG. 3). The second process is to return the
matched items using the item QNs 325 (shown in FIG. 3).
The category demand scores for one or both of the category
demand or the inferred category demand are used by the
search engine modules 506 (shown in FIG. 5A) to rank the
matched items from the search query.

[0085] The search servers 235 may include search front-
end servers that executes on search machines (not shown)
and search back-end servers that execute on search
machines (not shown) communicatively coupled together.
In example embodiments, the query node servers 232
include two types of QNs, the item QNs and the DSBE
QNs. The item QNs are queried to find the matched items
for a query. The DSBE QNs includes nodes to retrieve the
category demand score for queries. The DSBE QNs also
includes nodes to compute an inferred category demand
score. The item QNs and the DSBE QNs will described in
further detail in conjunction with FIG. 3.

[0086] The index information 228 may be stored in mem-
ory of the query node servers 232 and/or in the database 126
connected to the query node servers 232. The index infor-
mation 228 may be used to perform index lookup in the item
QNs. In some embodiments, the item QNs within the query
node servers 232 receives a copy of what is published by the
publication system 142. For example, index information 228
(e.g., updated documents or actual data, and inverted index
data) gets copied into every single item QN in query node
servers 232. The query node servers 232 may be comprised
of a search grid of item QNs that is arranged in columns of
QNs. Each column of query node servers 232 may be uti-
lized to manage a range of the documents. FIG. 4 illustrates
and example of a search grid of item QNs.

[0087] The user 106 who operates the client device 110
may enter a query 204 that may be communicated over a
network (e.g., Internet) via search servers 235 to be received
by the query node servers 232 which may be divided into
two layers in an example embodiment. The two layers may
include an aggregation layer and a query execution layer.
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The aggregation layer may include a query node server
232 that includes a query engine (not shown) that receives
the query 204 that, in turn, communicates the query to multi-
ple query engines that respectively execute in the execution
layer in multiple query node servers 232 that correspond to
the columns. The aggregation layer may include a top level
aggregator (TLA) and low level aggregators (LLA). The
query engines in the query execution layer may, in turn,
respectively apply the same query, in parallel, against
respective indexes from the index information 228 that
were generated for a range of document identifiers (e.g.,
column) to identify search results (e.g., document) in paral-
lel. Finally, the query engines, at each query node server 232
in the query execution layer, may communicate their respec-
tive partial search results 205 to the query engine in the
aggregation layer which aggregates the multiple sets of par-
tial search results to form a search result 205 for the entire
index information 228 and to communicate the search result
205 over the network to the user 106 by presenting the
search results 205 on the client device 110.

[0088] As mentioned above, the dictionary information
225 includes one or more dictionaries that may be used as
lookup tables. FIG. 2B illustrates the dictionary information
225 in further detail. The dictionary information 225 shown
in FIG. 2B includes dictionaries such as a price demand dic-
tionary 225A, a category demand dictionary 225B, and a
category relevance dictionary 225C. In other embodiments,
the dictionary information 225 may include other diction-
aries as well.

[0089] FIG. 3 which illustrates the search servers 235 and
the query node servers 232 in further detail. The architecture
shown in FIG. 3 may be referred to as the query serving
stack (QSS) architecture and represents many of the compo-
nents in the runtime system 230. The QSS architecture is
responsible for taking a query and the returning matching
items in a ranked order.

[0090] The search severs 235 receive a query during run-
time. The QSS architecture distributes the computations
across the various item nodes 325 when processing a search
query. The search servers 235 include a software load bal-
ancer (SLB) 305, a transformer (TSR) 310, and aggregators
320, which includes top level aggregators (TLA) and low
level aggregators (LLA).

[0091] The computation of the dictionaries, which is per-
formed offline (i.e., by computing the category demand
tables 251 and the category relevance tables 252), operates
independently of this QSS architecture. The computation of
the category relevance dictionary involves the computation
of a large text file offline with rows. Each row contains a site
identifier (ID), query term, category, and category-query
term affinity. In an example embodiment, an automatic pro-
cess generates the text file every week so that the data in the
category relevance dictionary stays fresh. The data used to
compute the category relevance dictionary (using the cate-
gory relevance tables) is based on historical user query data
which may be stored as log information (e.g., log informa-
tion 227 shown in FIG. 2A). The generation of the inferred
relevance dictionary will be discussed in further detail
below in conjunction with FIGS. 8A-8D. Data from the
category relevance table 261 which was computed offline
is then copied and loaded into the category relevance dic-
tionary 225C and used by the DSBE QNs 330, more speci-
fically, the inferred category DSBE QNs 350. For various
embodiments, the DSBE QNs 330, given a query, returns
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matching records. The index of the DSBE QNs 330 typi-
cally maps the queries to tuples of data, for example, tuples
of (category, CD ranking score) for the query.
[0092] The DSBE scoring function for ICD 355 produces
CD ranking scores. Thus, the CD ranking scores represent
demand for a category using either category demand (e.g.,
retrieved via lookup) or inferred category demand (e.g.,
computed via scoring function 355). The CD ranking scores
in the form of a table that includes the tuples of (category,
CD ranking score) are transferred to the TSR 310. This table
is referred to as the CD ranking score table. The TSR 310
then transfers the CD ranking score table to the aggregators
320 for distribution to the item QNs 325.
[0093] In an example embodiment, the query-indexed
DSBE QNs 340 determines the CD ranking score by look-
ing up the query (whole query) in the category demand dic-
tionary and returns a CD ranking score. In example embodi-
ments, the DSBE scoring function 355 used to compute the
CD ranking score for a query, is much more complex than a
simple lookup in a dictionary. The DSBE scoring function
for ICD is described below:
[0094] Let query q consist of tokens ul, ... , un.
[0095] Let bi be the bigram (ui, ui+1).
[0096] Terms T=bl, ... bn ... bn-1, ul, ..., un.
[0097] If fj is a measure of category-query term affinity
between a term T and category ¢j, then define
[0098] B(cj)=sumf{i:1 ... n-1}{j(bi)
[0099] U(cj)=sum{i:1 ... n}fj(ui)
[0100] Let U'(cj) be the sum over unigrams that are not
covered by a bigram
[0101] The CD ranking score is computed by the function:
[0102] Score(cjlq)=(2*B(cj)+U'(c)))/(nt+const*nl)
[0103] Where nt=number of unigram scores used
+2*number of bigram scores used, nt=sum{i:l ... n}
uvijtsum{i:1 ... n-1}2%bvij
[0104] Where nl=number of tokens NOT covered by
any bigram or unigram, nl=n-sum{i:1 ... n}(uvijlbvi---
1.jlbvij)
[0105] Const=1.5
[0106] Examples to compute the CD ranking score using
this DSBE scoring function for ICD 355 are described in
FIG. 9.
[0107] The DSBE scoring function for ICD 355 may use a
normalized score, for example, the CD ranking score
divided by the scores for the top 20 categories. In various
embodiments, a 4x score boost is applied if the query does
not have an associated category demand (e.g., found via
lookup in the category demand table) and a normalized
score greater than 0.1.
[0108] During runtime, two separate and independent pro-
cesses are performed. One process is to retrieve the category
demand for a query or to compute an inferred category
demand for a query using the DSBE QNs 330. The second
process is to return the matched items using the item QNs
325. The category demand scores for one or both of the
category demand score or the inferred category demand
score are used to rank the matched items from the search
query.
[0109] The SLB 305 provides software load balancing
functionality to distribute the load across the various item
QNs 325. For example, the SLB 305 determines which
item QNs have the least load and then determines how to
distribute the search process across the different item QNs
325. As mentioned above, all information distributed to the
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item QN 325 is copied into each item QN. In one example,
the item QNs 325 may be implemented using the item QN
grid 420 with item QNs 430 arranged in columns and rows
as shown in FIG. 4. The same information is distributed to
cach item QN 430.

[0110] Information from the SLB 305 is passed down to
the TSR 310. The TSR 310 provides functionality to better
understand the query and to transform the query into more
complex objects. The TSR 310 is also responsible for pro-
viding decision making functionality regarding what DSBE
calls that need to be made to the DSBE QNs 330. In certain
situations, rather than performing computations by the indi-
vidual item QNs, the TSR 310 may offload some of that
functionality by providing the information to the item QNs
325 after the computations are performed, such that indivi-
dual item QNs 325 do not have to perform that computations
individually.

[0111] In example embodiments, the TSR 310 has direct
communications path to the DSBE QNs 330 such that the
TSR 310 may make DSBE calls to the query-indexed DSBE
QNs 340 to retrieve the category demand, and may make
DSBE calls to the inferred category DSBE QNs 350 to
retrieve the inferred category demand computed by the
DSBE scoring function for inferred category demands
(ICD) 355. For example embodiments, the inferred category
DSBE QNs 350 provides functionality to create “arbitrary
strings” for a query (e.g., bigrams and unigrams) and also
provides functionality to putting back the string back
together so that the category/price demand can be computed
for the query. The demand for a category (including the cate-
gory demand and the inferred category demand) is referred
to as a CD ranking score, and a CD ranking score table is
transferred directly from the query-indexed DSBE QNs 340
over path 360 to the TSR 310, and is transferred directly
from the inferred category DSBE QNs 350 over path 361
to the TSR 310. The query-indexed DSBE QNs 340 and
the Inferred Category DSBE QN5 350 provide the CD rank-
ing scores in the same format such that the items QNs
(which receive the CD ranking score table via paths 362)
do not recognize that the scores were computed by different
functions. In an example embodiment, the CD table score
represents a table with less than 20 tuples of (categories,
CD ranking score).

[0112] In various embodiments, the CD ranking score
table (e.g., representing a table with less than 20 tuples of
(categories, scores)) is transferred from the DSBE QNs 330
to the item QN5 325 via the TSR 310 using a DSBE use case
query. This table is used in a regular fashion to compute
inferred category relevance, also referred to inferred cate-
gory demand during runtime when queries are received.
[0113] The DSBE QNs 330 given a query returns match-
ing records. In various embodiments, an index maps queries
to tuples of data stored in the category relevance dictionary
225C shown in FIG. 2B. In example embodiments, the
tuples of data include site, category, query term and cate-
gory-query term affinity. The lookup within the category
relevance dictionary 225C is based on parts of the query
(referred to as query terms) rather than the whole query. In
other words, the index in the relevance dictionary 225C
maps query bigrams and unigrams to documents (i.e.,
categories).

[0114] The category-query term affinities are stored as
DSBE data and used to determine the inferred relevance of
a category to a query. The category-query term affinities are
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stored as a document word lever documents. The category-
query term affinities are evaluated in the inferred category
DSBE QNs 350 by the DSBE scoring function 355 which
computes the CD ranking scores for a query. The CD rank-
ing scores, in the form of a table with tuples of (category,
CD ranking scores) are provided to the item QNs 325 to be
used by one or more ranking algorithms.

[0115] FIG. 4 illustrates an example of an item QN grid
420. As shown in FIG. 4, the item QN grid 420 includes a
number of item QNs 430 arranged in rows and columns. The
low level aggregators 410 (LLA) and the item QNs 430
locate the matching items using an index. The index lookup
is done in parallel in the QNs 430. In example embodiments,
the QNs 430 also rank the matched items. The category
demand scores (one or both of the category demand score
and the inferred category demand score) computed by the
DSBE QNs are provided to the item QNs for input into the
ranking algorithms used to rank the matched items.

[0116] FIG. 5A is a block diagram illustrating an example
embodiment of a search system 500 including multiple
modules forming at least a portion of the client-server sys-
tem 100 of FIG. 1. The modules 502-514 of the illustrated
search system 500 include an application interface mod-
ule(s) 502, DSBE module(s) 504, a search engine module(s)
406, a data access module(s) 510, and a web-front module(s)
512. The application interface module(s) 502 includes a
user-facing sub-module(s) 514, an application-facing sub-
module(s) 516, and a third party-facing submodule(s) 518.
The search engine module(s) 506 includes an item searching
module(s) 508, an item ranking module(s) 510, which
includes a machine learning module(s) 514.

[0117] In some embodiments, the components of the
search system 500 can be included in the publications sys-
tem 142 of FIG. 1. However, it will be appreciated that in
alternative embodiments, one or more components of the
search system 500 described below can be included, addi-
tionally or alternatively, in other devices, such as one or
more of the payment systems 144. In example embodi-
ments, the search system 500 may be used to implement
the runtime system 230 shown in FIG. 2A and FIG. 3.
[0118] The modules 502-514 of the search system 500 can
be hosted on dedicated or shared server machines (not
shown) that are communicatively coupled to enable commu-
nications between server machines. Each of the modules
502-514 are communicatively coupled (e.g., via appropriate
interfaces) to each other and to various data sources, so as to
allow information to be passed between the modules 502-
514 of the search system 500 or so as to allow the modules
502-514 to share and access common data. The various
modules of the search system 500 can furthermore access
one or more databases 126 via the database server(s) 124.
[0119] The search system 500 can facilitate receiving
search requests (e.g., queries), processing search queries,
and/or providing search results page data to a client device
110. In a particular example, the search system 500 can
facilitate computing category relevance of an arbitrary user
query by the search engine modules 506. The category rele-
vance may be measured by a CD ranking score. To this end,
the search system 500 illustrated in FIG. 5 includes the
application interface module(s) 502, the DSBE module(s)
504, the search engine module(s) 506, the data access mod-
ule(s) 510, and the web-front module(s) 512.

[0120] The application interface module(s) 502 can be a
hardware-implemented module which can be configured to
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communicate data with client devices. From the perspective
of the search system 500, client devices can include user
devices, such as the client device 110 of FIG. 1D, and/or
the third party server(s) 130 of FIG. 1D. In operation, the
application interface module(s) 502 can receive request
messages corresponding to search requests, for example.
[0121] The search engine module(s) 506 can be a hard-
ware-implemented module which can facilitate searching.
The search engine modules 506 provide the functionality
to process the search queries received. The processing of
the search queries may involve the search servers 235 and
the query node servers 232 as shown in FIG. 2A. In an
example embodiment, the search engine modules(s) 506
can generate search results data by processing a search
query in response to receiving a request from a client device
via the application interface module(s) 502. In an alternative
embodiment, the search engine module(s) 506 interfaces
with a third-party application, such as a third-party applica-
tions 132, via the application interface module(s) 502. The
item searching modules 508 may receive a query as input
(via the application interface module 502) and produce a
set of items matching the query using an index that maps
words to documents, as shown in FIG. 6. The item ranking
modules 510 compute a ranking score for the items returned
from the query which is used to rank the items returned by
the item searching modules S08 from the query.

[0122] In various embodiments, machine learning mod-
ules 514 are used to compute the ranked search results for
a query. The machine learning modules are trained offline
using various sample data. Various inputs into one or more
of the machine learning modules 514 include price demand
and category demand (which may be inferred). The machine
learning modules 514 represent a number machine learning
algorithms, each trained to compute a different machine
learned ranking (MLR) scores. The MLR scores generated
by the machine learning modules 514 are used to compute
the ranking score for the search results. FIG. 5B illustrates
the item rankings modules 510, which includes the machine
learning modules 514, in further detail. FIG. 5B illustrates
an example of the item ranking modules 510. The item rank-
ing module 510 includes a ranking profile module 511 for a
site. The profile is used to identify the information used by
the item ranking modules 510, in particular, the inputs (e.g.,
demand values 550 and other query features) into the
machine learning modules 514 and the business rules 540
used to compute ranking score for producing the ranked
item listings 560, or ranked search results. The business
rules 540 may be include some MLR rules and some that
are not MLR rules in example embodiments. The demand
values 550 provided as input to the item ranking modules
may represent CD ranking scores or CD ranking tables.
The machine learning modules 514 shows examples of
machine learning ranking (MLR) modules. The MLR mod-
ule 514 produces the MLR 515A, the MLR module 514B
produces the MLR score 515B, and the MLR modules 514C
produces the MLR score 515C. The MLR scores 151A-C
are received as inputs into the item ranking score module
520 that generates the ranking score for the matched items.
The item ranking modules 510 produces the ranked item
listings 560, which represents the search results in a ranked
order.

[0123] In an example embodiment, the search results data
can correspond to a list of items. Additionally, the search
results data can further correspond to ranking data that is
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suitable for ranking the items. For example, the search
results data can include a ranking score for each of the
items of the search results. Additionally or alternatively,
the items of the search results can be provided in an order
that is indicative of their rankings, for example, ordered
from most relevant to least relevant or ordered from least
relevant to most relevant. Accordingly, an example embodi-
ment can provide an ordered search results list and can thus
omit explicit ranking value data.

[0124] Furthermore, the search results data can addition-
ally correspond to one or more attribute-value pairs for each
of the items of the search results data. For example, each
item can correspond to an item of an online marketplace
and can have data that indicates the brand, seller, item con-
dition, price, color, type/sub-type, and/or the like attributes
usable to characterize, filter, and/or search for the item.
[0125] The data access module(s) 510 can be a hardware-
implemented module which can provide data storage and/or
access. Search results data can be stored in or retrieved from
the database 126 via the data access module(s) 510.

[0126] For example, the data access module(s) 510 can
access the search results data. As used herein, the operation
of accessing includes receiving the search results data from
the search engine directly and can also include accessing a
data memory device storing the search results data. As such,
the data access module(s) 510 can interface with the data-
base 126 of FIG. 1.

[0127] Additionally, the data access module(s) 510 may
be used to retrieve information requested by the offline sys-
tem 240. For example, the offline system 240 retrieves log
information 227 (via the data access module(s) 510) from
the databases 126 to compute the dictionary information
225. As such, the data access module(s) 510 can interface
with the offline system 240 shown in FIG. 2.

[0128] The web-front module(s) 512 can be a hardware-
implemented module which can provide data for displaying
web resources on client devices. For example, the search
system 500 can provide a webpage for displaying the search
results data.

[0129] The DSBE 504 may include the dictionary infor-
mation 225 and the DSBE QNs 330. The dictionary infor-
mation 2285 is described in further detail in conjunction with
FIG. 2A and FIG. 2B. The DSBE QNs 330 mare described
in further detail in conjunction with FIG. 3.

[0130] Referring now to FIG. 6, an example 600 of using
an index in an item QN is shown. For the example shown in
FIG. 6, a query “red sweater” is received. A list of docu-
ments 610 is referred to be item titles. There are four docu-
ments shown in the list 610. A list of item indexes 620 is
also shown. Each word in the list of item indexes 620 is
associated with a list of documents. For the query “red
sweater” there are two words red 621 and sweater 622 that
are associated with a list of documents. A list 631 is asso-
ciated with the word red 621. A list 632 is associated with
the word sweater. The list 631 includes the documents red
shirt and red cotton sweater. The list 632 includes the docu-
ments blue sweater and red cotton sweater. In this example,
the red cotton sweater appears on both lists 631 and 632
such that the query “red sweater” returns item 4 which is
the red cotton sweater.

[0131] As mentioned above, the item QNs compute a
ranking of the search results. The item QNs receive a
query as input and produces a set of items matching the
query. An index is used to find items by mapping words to
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documents. Items are matched using the words of the query.
Referring to FIG. 6, the arrow 641 a maps the word red 621
to item 1 (red shirt) and the arrow 6415 to item 4 (red cotton
sweater). Also shown in FIG. 6, the arrow 642 a maps the
word sweater 622 to the item 3 (blue sweater) and the arrow
6425 maps the word sweater 622 to item 4 (red cotton swea-
ter). In this example, the set of items matching the query
only includes one item, item 4 (red cotton sweater). For
each returned item, the item QN then computes a ranking
score. In various embodiments, the higher the ranking
score, the better the match between the items (e.g., docu-
ments) and the query (based on the words of the query). In
example embodiments, the items are ranked by score and
the item QNs return the set of items, together with their
ranking score.

[0132] FIG. 7 illustrates an example of using an index in
the inferred category DSBE QNs 350. In example 700, a
query “iphone 5 blue” is received. The query terms for this
query include iphone 5, 5 blue, iphone, 5 and blue. The
example 700 includes a list 710 of categories and a list
720 of category indexes representing words (i.e., bigrams
and unigrams). When a runtime system (e.g., runtime sys-
tem 230 shown in FIG. 3) receives a query, the inferred
category DSBE QNs 350 return the three categories 9358,
63869, and 20349. Each of the unigrams and bigrams has a
list of categories, each with category-query term affinity.
FIG. 7 shows a list 731 associated with the category index
iphone 5 and a list 732 associated with the category index
blue. Each category in the list is separated by a comma, and
the associated category-query term affinity is shown in the
parenthesis. The relevant category-query term affinities are
shown by the arrows from the category index 720 to the
categories 710.

[0133] FIGS. 8A-8D illustrate various tables used to com-
pute the category-query term affinities, according to exam-
ple embodiments. FIG. 8A illustrates a query-category
count table 800 and a query term-category count table 820
according to an example embodiment.

[0134] The query-category count table 800 illustrates a
number of query-category pairs. Three queries (Q1, Q2
and Q3) are shown in the table 800. A row is created for
each category-query-pair. In the example shown in the
table 800, the query “front fenders” is has two rows, one
for category 33644 and one for category 72569. The view
items counts correspond to each category-query pair.
[0135] The query term-category count table 820 includes
category-query terms pairs with the corresponding view
item count. The queries Q1, Q2, and Q3 are each disas-
sembled into query terms that represent either a bigram or
a unigram. A row in the table 820 is computed for each
category-query term-pair. In the example shown in the
table 820, the query term “front fenders” is has two rows,
one for category 33644 and one for category 72569. The
arrows 801, 802, 803 show mappings from the table 800 to
the table 820. The query term “front fenders” represents a
query term from in all three queries (Q1, Q2, and Q3). The
view item counts associated with the category 33644 from
the table 800 from queries that include the term “front fen-
ders” is mapped (as shown by arrows 801, 802, 803) into the
table 820 into the first row 804 which includes the query
term-category pair (front fenders, 33644). The view item
count for row the query term-category pair (front fenders,
33644) is 420, which represent the sum of the view item
counts 395, 10, and 15 from the table 800. Thus, FIG. 8A
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illustrates extracting query-terms from a number of queries
by categories and the aggregating the view item counts for
the query terms for all the queries by categories.

[0136] FIG. 8B illustrates the query term-category count
table 820 and a total view item count per term table 840
according to an example embodiment. The arrows 806 and
807 illustrate that rows 804 and 805 from the table 820 are
aggregated into the row 808 in the table 840. The rows in the
total view item count per term table 840 aggregates all the
query terms regardless of the category. The view item count
455 shown in row 808 of the table 840 is the sum of the view
item counts from the row 804 for category 33644 and the
row 805 for the category 72569. Thus, FIG. 8B illustrates
aggregating the view item counts across relevant categories
query term. The view item counts from the query-term cate-
gory count table 820 and the total view item count per term
table 840 are used to compute the category-query term affi-
nities as shown in FIG. 8C.

[0137] FIG. 8C illustrates a table 860 used to compute the
category-query term affinities. The view item counts from
the table 820 are shown in column 861 of the table 860, and
the view item counts from the table 840 are shown in the
column 862 of the table 860. The values shown in columns
861 and 862 are used to compute the category-query term
affinity shown in column 863. The values in column 861
represent the numerator and the values in the column 862
represent the denominator of the category-query term affi-
nity shown in column 863.

[0138] FIG. 8D illustrates a table 890 that represents an
example of a category relevance dictionary. The rows in
the table include site, category, query term and category-
query term affinity.

[0139] FIG. 9 illustrates two example of computing the
CD ranking score based on the function: Score (cjlq)
=(2*B(¢))+U'(c)))/ (nt+const*nl). The variables and con-
stants for this function are described above. For these exam-
ples that illustrate the scoring function according to example
embodiments, the query used is “double electrical socket
spacer” and the relevant category is 73954. In the Example
1, the CD ranking score is computed by the calculation 910.
The table 920 shows the values used in the calculation 910.
In the Example 2 the CD ranking score is computed by the
calculation 930. The table 940 shows the values used in the
calculation 930.

[0140] For the example 1, one bigram and one unigram
were identified as having a category-query term affinity.
Since the unigram does not represent a non-overlapping uni-
gram, because the unigram “electrical” is included within
the bigram “electrical socket,” the unigram “electrical” is
not used in to compute the CD ranking score. The arrows
921-923 show where the values in the formula 910 are
derived from the table 920. The arrows 924 and 925 are
used to indicate the constants in the formula 910.

[0141] For the example 2, two bigrams and one unigram
were identified as having a category-query term affinity.
Since the unigram does not represent a non-overlapping uni-
gram, because the unigram “electrical” is included within
the bigram “electrical socket,” the unigram “electrical” is
not used in to compute the CD ranking score. The arrows
941-944 show where the values in the formula 930 are
derived from the table 940. The arrows 945 and 946 are
used to indicate the constants in the formula 930.

[0142] FIGS. 10-14 illustrate flow diagrams describing
example methods for computing category relevance for a
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query. The example methods 1000-1400 will be described
below, by way of explanation, as being performed by certain
modules, components or systems. It will be appreciated,
however, that the operation of the example methods can be
performed by any suitable order by any number of modules,
components or system shown in FIGS. 1A, 2A, 2B, 3. 4, 5A,
and SB.

[0143] FIG. 10 is a flow diagram 1000 illustrating a
method for computing category demand for a query using
the whole query or query parts in accordance with example
embodiments. The whole query is used to compute the cate-
gory demand if the frequency of that query by past users
provides sufficient historical data to compute a category
demand. The query parts of a query are used to compute
an inferred category demand if the frequency of that query
by past users does not provide sufficient historical data to
compute the category demand from the whole query.
[0144] The method shown in FIG. 10 includes operations
1010-1040. At operation 101 a query is received by a run-
time system. The runtime system may a publication system
142 that provide an e-commerce site, for example. The
query received typically includes a number of words that
can be separated into query terms which are unigrams or
bigrams. A query term represents a part of a whole query.
At operation 1020, a category demand table is accessed. The
category demand table may be referred to as a category
demand dictionary and stored in a database (e.g., databases
126) that is accessible to DSBE QNs 330 for lookup. An
example category demand table includes information for
site, category, query, and category demand. The category
demand may be referred to as CD ranking score.

[0145] At operation 1030, a determination is made
whether a category demand for the query is stored in the
category demand table. Operation 1030 may involve per-
forming a lookup using the whole query in the category
demand table and finding one or more category demands
for the query. In an example embodiment, the query-indexed
DSBE QNs 340, shown in FIG. 3, performs the lookup. If a
category demand for the query exists in the table, the cate-
gory demand identified in the table is used, as shown at
operation 1050.

[0146] If a category demand for the query does not exist in
the category demand table, then category demand is com-
puted at operation 1040. At operation 1040, the category
demand is computed based on query parts. The category
demand computed at operation 1040 may represent an
inferred category demand. In an example embodiment,
inferred category demand is computed by the DSBE scoring
function for ICS 335 shown in FIG. 3. The method describe
FIG. 3 uses both category demand and an inferred category
demand, depending on whether there is an existing category
demand (or CD ranking score) computed by the runtime
system based on the frequency of that query.

[0147] For alternative embodiments, category demand
based on query parts is computed for all queries, regardless
of the query frequency (from historical query data). In other
words, category demand based on query parts is not com-
puted is not just computed for tail queries, but all queries
received, even if category demand can be computed based
on historical query data.

[0148] FIG. 11 is a flow diagram 1100 illustrating a
method for an inferred category demand for a query in
accordance with example embodiments. The method
described in FIG. 11 computes an inferred category demand
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for a query regardless of the frequency of that query from
past users. The flow diagram 1100 includes operations 1110-
1140.

[0149] At operation 1110 a query is received from a run-
time system. The query received includes a string of words
that can be disassembled into unigrams and bigrams referred
to as query terms. At operation 1120, the query terms from
the query are identified by extracting the unigrams and
bigrams from the query. At operation 1130, the category-
query term affinities for the query terms in the query are
retrieved from a dictionary. In an example embodiment,
the dictionary may be an inferred relevance dictionary
225C. The category-query term affinities are computed off-
line and copied into the dictionary to be accessed during
runtime when a query is received. At operation 1140, a
score is computed for each category with a category-query
term affinity based on the category query term affinity. Thus,
a list of category-score pairs are computed for each query.
The score computed in 1140 represents an inferred category
demand for the query. In example embodiments, the DSBE
scoring function for ICD 355 (shown in FIG. 3) computes
the inferred category demand score.

[0150] For alternative embodiments, an arbitrary query is
received. Matching item listings for the arbitrary query from
a first database is identified. The first database stores item
listings. Assigned probabilities based on historical queries
for the arbitrary query is retrieved from a second database.
The assigned probabilities is based on a probability model
for a query feature. A score for the query feature based on
the assigned probabilities for the arbitrary query is com-
puted. For an example embodiment, the operation of com-
puting the score comprises generating conditional probabil-
ity by applying Bayes rule to the query feature. The score is
provided to at last one machine learning module to generate
aranking score. For a further embodiment, the query feature
represents a category demand for the arbitrary query. In
another embodiment, the probability model for the category
demand represents a model for each category over a voca-
bulary of query terms for the arbitrary query. In another
example embodiment, the assigned probabilities represent
category-query term affinities to a measure of the strength
between query terms and categories.

[0151] FIG. 12 is a flow diagram 1200 illustrating a
method for generating ranked search results using an
inferred category demand in accordance with example
embodiments. At operation 1210, a query is received. The
query received is processed by two independent processes
during runtime.

[0152] The first process is to compute an inferred category
demand for a query using the DSBE QNs 330 (shown in
FIG. 3). The operations 1230, 1240, and 1250 are used to
implement the first process. At operation 1230, query terms
from the query are identified by extracting bigrams and uni-
grams from the query. At operation 1240, the category-
query term affinities associated with the query terms for
the query are retrieved from a dictionary stored in a second
database. In example embodiment, the dictionary may
represent the inferred relevance dictionary 225C shown in
FIG. 2B. At operation 1250, a score for the query based on
the category-query term affinities are computed. The score
represents the inferred category demand for the query.
[0153] The second process is to return the matched items
using the item QNs 325 (shown in FIG. 3). The operation
1220 is used to implement the second process. At operation
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1220, matching item listings for the query are retrieved from
a first database storing the item listings. At operation 1260,
the items found by the first process are ranked by a ranking
algorithm that uses the score computed by the second pro-
cess. In other words, a ranking for the matching item listings
is generated, based in part, on the score.

[0154] FIG. 13 illustrates a flow diagram 1300 illustrating
a method describing sub-operations of the operation 1250
shown in FIG. 12 to compute the inferred category demand
in accordance with example embodiments. The flow dia-
gram 1300 is performed during runtime after a query is
received. At operation 1250 the score representing the
inferred category demand for the query is computed. The
operation 1250 includes the sub-operations 1310, 1320,
1330, 1340, and 1350. At operation 1310 a total number of
tokens for a query is determined. At operation 1320, the
query is evaluated to identify query terms representing
bigrams and unigrams. At operation 1330, the bigrams and
unigrams associated with a category-query term affinity is
identified. At operation 1340, determining a number of
tokens associated with a category-query term affinity and a
number of tokens missing a category-query term affinity
based on the number of the bigrams and unigrams. At opera-
tion 1350, computing the score based on at least one of the
category-query term affinities associated with the bigrams
or unigrams, the number of tokens associated with a cate-
gory-query term affinity and the number of tokens missing a
category-query term affinity. For some embodiments, the
unigrams may represent non-overlapping unigrams.

[0155] FIG. 14 illustrates a flow diagram 1400 illustrating
a method of generating a category relevance table offline in
accordance with example embodiments. The flow diagram
1400 includes operations 1410-1450. At operation 1410,
history query data is retrieved. In example embodiments,
the history query data may be stored in the databases 126
as log information 227 shown in FIG. 2A. At operation
1420, based on the historical query data, determining view
items counts for query-category pairs. At operation 1430,
determining view items counts for query term-category
pairs based on the view items counts for the query-category
pairs. The view items counts for the query term-category
pairs aggregating the view item counts for the query terms
across relevant categories. At operation 1440, determining
the total view items counts of the query terms by aggregat-
ing query terms across relevant categories. At operation
1450, determining the query term-category affinities based,
in part, on the total view item counts for the query term.
[0156] Although the flow diagrams 1100, 1200, 1300, and
1400 are used to describe the query feature for category
demand, and more specifically, an inferred category
demand, various embodiments may be extended to other
query features. Other dictionaries may be computed for
other query feature and accessible to a search system when
a search query is received. For an arbitrary query, probabil-
ities may be assigned based on historical data. The probabil-
ities may be based on parts or segmentations of queries,
rather than whole queries. In example embodiments, queries
may be segmented by unigrams, bigrams, trigrams, and
other arbitrary text segments. In further embodiments, a
combination of two or more different types of text segments
may be used. A score is then computed for the query feature
based on the assigned probabilities for the arbitrary query.
The score is then used by one or more machine learning
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algorithms used for ranking items. Modules, Components,
and Logic

[0157] Certain embodiments are described herein as
including logic or a number of components, modules, or
mechanisms. Modules may constitute either software mod-
ules (e.g., code embodied on a machine-readable medium)
or hardware modules. A “hardware module” is a tangible
unit capable of performing certain operations and may be
configured or arranged in a certain physical manner. In var-
ious example embodiments, one or more computer systems
(e.g., a standalone computer system, a client computer sys-
tem, or a server computer system) or one or more hardware
modules of a computer system (e.g., a processor or a group
of processors) may be configured by software (e.g., an appli-
cation or application portion) as a hardware module that
operates to perform certain operations as described herein.
[0158] In some embodiments, a hardware module may be
implemented mechanically, electronically, or any suitable
combination thereof. For example, a hardware module
may include dedicated circuitry or logic that is permanently
configured to perform certain operations. For example, a
hardware module may be a special-purpose processor,
such as a Field-Programmable Gate Array (FPGA) or an
Application Specific Integrated Circuit (ASIC). A hardware
module may also include programmable logic or circuitry
that is temporarily configured by software to perform certain
operations. For example, a hardware module may include
software executed by a general-purpose processor or other
programmable processor. Once configured by such soft-
ware, hardware modules become specific machines (or spe-
cific components of a machine) uniquely tailored to perform
the configured functions and are no longer general-purpose
processors. It will be appreciated that the decision to imple-
ment a hardware module mechanically, in dedicated and
permanently configured circuitry, or in temporarily config-
ured circuitry (e.g., configured by software) may be driven
by cost and time considerations.

[0159] Accordingly, the phrase “hardware module” should
be understood to encompass a tangible entity, be that an
entity that is physically constructed, permanently configured
(e.g., hardwired), or temporarily configured (e.g., pro-
grammed) to operate in a certain manner or to perform cer-
tain operations described herein. As used herein, “hardware-
implemented module” refers to a hardware module. Consid-
ering embodiments in which hardware modules are tem-
porarily configured (e.g., programmed), each of the hard-
ware modules need not be configured or instantiated at any
one instance in time. For example, where a hardware mod-
ule comprises a general-purpose processor configured by
software to become a special-purpose processor, the gen-
eral-purpose processor may be configured as respectively
different special-purpose processors (e.g., comprising dif-
ferent hardware modules) at different times. Software
accordingly configures a particular processor or processors,
for example, to constitute a particular hardware module at
one instance of time and to constitute a different hardware
module at a different instance of time.

[0160] Hardware modules can provide information to, and
receive information from, other hardware modules. Accord-
ingly, the described hardware modules may be regarded as
being communicatively coupled. Where multiple hardware
modules exist contemporaneously, communications may be
achieved through signal transmission (e.g., over appropriate
circuits and buses) between or among two or more of the
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hardware modules. In embodiments in which multiple hard-
ware modules are configured or instantiated at different
times, communications between such hardware modules
may be achieved, for example, through the storage and
retrieval of information in memory structures to which the
multiple hardware modules have access. For example, one
hardware module may perform an operation and store the
output of that operation in a memory device to which it is
communicatively coupled. A further hardware module may
then, at a later time, access the memory device to retrieve
and process the stored output. Hardware modules may also
initiate communications with input or output devices, and
can operate on a resource (e.g., a collection of information).
[0161] The wvarious operations of example methods
described herein may be performed, at least partially, by
one or more processors that are temporarily configured
(e.g., by software) or permanently configured to perform
the relevant operations. Whether temporarily or perma-
nently configured, such processors may constitute proces-
sor-implemented modules that operate to perform one or
more operations or functions described herein. As used
herein, “processor-implemented module” refers to a hard-
ware module implemented using one or more processors.
[0162] Similarly, the methods described herein may be at
least partially processor-implemented, with a particular pro-
cessor or processors being an example of hardware. For
example, at least some of the operations of a method may
be performed by one or more processors or processor-imple-
mented modules. Moreover, the one or more processors may
also operate to support performance of the relevant opera-
tions in a “cloud computing” environment or as a “software
as a service” (SaaS). For example, at least some of the
operations may be performed by a group of computers (as
examples of machines including processors), with these
operations being accessible via a network (e.g., the Internet)
and via one or more appropriate interfaces (e.g., an Applica-
tion Program Interface (API)).

[0163] The performance of certain of the operations may
be distributed among the processors, not only residing
within a single machine, but deployed across a number of
machines. In some example embodiments, the processors or
processor-implemented modules may be located in a single
geographic location (e.g., within a home environment, an
office environment, or a server farm). In other example
embodiments, the processors or processor-implemented
modules may be distributed across a number of geographic
locations.

Machine and Software Architecture

[0164] The modules, methods, applications and so forth
described in conjunction with FIGS. 1-5 and 10-14 are
implemented in some embodiments in the context of a
machine and an associated software architecture. The sec-
tions below describe representative software architecture(s)
and machine (e.g., hardware) architecture that are suitable
for use with the disclosed embodiments.

[0165] Software architectures are used in conjunction with
hardware architectures to create devices and machines tai-
lored to particular purposes. For example, a particular hard-
ware architecture coupled with a particular software archi-
tecture will create a mobile device, such as a mobile phone,
tablet device, or so forth. A slightly different hardware and
software architecture may yield a smart device for use in the
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“internet of things.” While yet another combination pro-
duces a server computer for use within a cloud computing
architecture. Not all combinations of such software and
hardware architectures are presented here as those of skill
in the art can readily understand how to implement the
invention in different contexts from the disclosure contained
herein.

Software Architecture

[0166] FIG. 1—is a block diagram 1500 illustrating a
representative software architecture 1502, which may be
used in conjunction with various hardware architectures
herein described. FIG. 15 is merely a non-limiting example
of a software architecture and it will be appreciated that
many other architectures may be implemented to facilitate
the functionality described herein. The software architecture
1502 may be executing on hardware such as machine 1600
of FIG. 16 that includes, among other things, processors
1610, memory 1630, and /O components 1650. A represen-
tative hardware layer 1504 is illustrated and can represent,
for example, the machine 1600 of FIG. 16. The representa-
tive hardware layer 1504 comprises one or more processing
units 1506 having associated executable instructions 1508.
Executable instructions 1508 represent the executable
instructions of the software architecture 1502, including
implementation of the methods, modules and so forth of
FIGS. 1-5 and 10-14. Hardware layer 1504 also includes
memory and/or storage modules 1510, which also have
executable instructions 1508. Hardware layer 1504 may
also comprise other hardware as indicated by 1512 which
represents any other hardware of the hardware layer 1504,
such as the other hardware illustrated as part of machine
1600.

[0167] In the example architecture of FIG. 15, the soft-
ware 1502 may be conceptualized as a stack of layers
where each layer provides particular functionality. For
example, the software 1502 may include layers such as an
operating system 1514, libraries 1516, frameworks/middle-
ware 1518, applications 1520 and presentation layer 1522.
Operationally, the applications 1520 and/or other compo-
nents within the layers may invoke application program-
ming interface (API) calls 1524 through the software stack
and receive a response, returned values, and so forth illu-
strated as messages 1526 in response to the API calls
1524. The layers illustrated are representative in nature
and not all software architectures have all layers. For exam-
ple, some mobile or special purpose operating systems may
not provide a frameworks/middleware layer 1518, while
others may provide such a layer. Other software architec-
tures may include additional or different layers.

[0168] The operating system 1514 may manage hardware
resources and provide common services. The operating sys-
tem 1514 may include, for example, a kernel 1528, services
1530, and drivers 1532. The kernel 1528 may act as an
abstraction layer between the hardware and the other soft-
ware layers. For example, the kernel 1528 may be responsi-
ble for memory management, processor management (e.g.,
scheduling), component management, networking, security
settings, and so on. The services 1530 may provide other
common services for the other software layers. The drivers
1532 may be responsible for controlling or interfacing with
the underlying hardware. For instance, the drivers 1532 may
include display drivers, camera drivers, Bluetooth® dri-
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vers, flash memory drivers, serial communication drivers
(e.g., Universal Serial Bus (USB) drivers), Wi-Fi® drivers,
audio drivers, power management drivers, and so forth
depending on the hardware configuration.

[0169] The libraries 1516 may provide a common infra-
structure that may be utilized by the applications 1520
and/or other components and/or layers. The libraries 1516
typically provide functionality that allows other software
modules to perform tasks in an easier fashion than to inter-
face directly with the underlying operating system 1514
functionality (e.g., kernel 1528, services 1530 and/or drivers
1532). The libraries 1516 may include system 1534 libraries
(e.g., C standard library) that may provide functions such as
memory allocation functions, string manipulation functions,
mathematic functions, and the like. In addition, the libraries
1516 may include API libraries 1536 such as media libraries
(e.g., libraries to support presentation and manipulation of
various media format such as MPREG4, H.264, MP3, AAC,
AMR, JPG, PNQ), graphics libraries (e.g., an OpenGL fra-
mework that may be used to render 2D and 3D in a graphic
content on a display), database libraries (e.g., SQLite that
may provide various relational database functions), web
libraries (e.g., WebKit that may provide web browsing func-
tionality), and the like. The libraries 1516 may also include a
wide variety of other libraries 1538 to provide many other
APIs to the applications 1520 and other software compo-
nents/modules.

[0170] The frameworks 1518 (also sometimes referred to
as middleware) may provide a higher-level common infra-
structure that may be utilized by the applications 1520 and/
or other software components/modules. For example, the
frameworks 1518 may provide various graphic user inter-
face (GUI) functions, high-level resource management,
high-level location services, and so forth. The frameworks
1518 may provide a broad spectrum of other APIs that may
be utilized by the applications 1520 and/or other software
components/modules, some of which may be specific to a
particular operating system or platform.

[0171] The applications 1520 includes built-in applica-
tions 1540 and/or third party applications 1542. Examples
of representative built-in applications 1540 may include, but
are not limited to, a contacts application, a browser applica-
tion, a book reader application, a location application, a
media application, a messaging application, and/or a game
application. Third party applications 1542 may include any
of the built in applications as well as a broad assortment of
other applications. In a specific example, the third party
application 1542 (e.g., an application developed using the
Android™ or iOS™ software development kit (SDK) by
an entity other than the vendor of the particular platform)
may be mobile software running on a mobile operating sys-
tem such as 10S™, Android™, Windows® Phone, or other
mobile operating systems. In this example, the third party
application 1542 may invoke the API calls 1524 provided
by the mobile operating system such as operating system
1514 to facilitate functionality described herein.

[0172] The applications 1520 may utilize built in operat-
ing system functions (e.g., kernel 1528, services 1530 and/
or drivers 1532), libraries (e.g., system 1534, APIs 1536,
and other libraries 1538), frameworks/middleware 1518 to
create user interfaces to interact with users of the system.
Alternatively, or additionally, in some systems interactions
with a user may occur through a presentation layer, such as
presentation layer 1544. In these systems, the application/



US 2023/0177579 Al

module “logic” can be separated from the aspects of the
application/module that interact with a user.

[0173] Some software architectures utilize virtual
machines. In the example of FIG. 185, this is illustrated by
virtual machine 1548. A virtual machine creates a software
environment where applications/modules can execute as if
they were executing on a hardware machine (such as the
machine of FIG. 16, for example). A virtual machine is
hosted by a host operating system (operating system 1514
in FIG. 16) and typically, although not always, has a virtual
machine monitor 1546, which manages the operation of the
virtual machine as well as the interface with the host operat-
ing system (i.e., operating system 1514). A software archi-
tecture executes within the virtual machine such as an oper-
ating system 1550, libraries 1552, frameworks/middleware
1554, applications 1556 and/or presentation layer 1558.
These layers of software architecture executing within the
virtual machine 1548 can be the same as corresponding
layers previously described or may be different.

Example Machine Architecture and Machine-
Readable Medium

[0174] FIG. 16 is a block diagram illustrating components
of a machine 1600, according to some example embodi-
ments, able to read instructions from a machine-readable
medium (e.g., a machine-readable storage medium) and per-
form any one or more of the methodologies discussed
herein. Specifically, FIG. 16 shows a diagrammatic repre-
sentation of the machine 1600 in the example form of a
computer system, within which instructions 1616 (e.g., soft-
ware, a program, an application, an applet, an app, or other
executable code) for causing the machine 1600 to perform
any one or more of the methodologies discussed herein may
be executed. For example the instructions may cause the
machine to execute the flow diagrams of FIGS. 11-14. Addi-
tionally, or alternatively, the instructions may implement the
modules shown in FIGS. 1D, 2A, 3, 4, 5A, and SB, and so
forth. The instructions transform the general, non-pro-
grammed machine into a particular machine programmed
to carry out the described and illustrated functions in the
manner described. In alternative embodiments, the machine
1600 operates as a standalone device or may be coupled
(e.g., networked) to other machines. In a networked deploy-
ment, the machine 1600 may operate in the capacity of a
server machine or a client machine in a server-client net-
work environment, or as a peer machine in a peer-to-peer
(or distributed) network environment. The machine 1600
may comprise, but not be limited to, a server computer, a
client computer, a personal computer (PC), a tablet compu-
ter, a laptop computer, a netbook, a set-top box (STB), a
personal digital assistant (PDA), an entertainment media
system, a cellular telephone, a smart phone, a mobile device,
a wearable device (e.g., a smart watch), a smart home device
(e.g., a smart appliance), other smart devices, a web appli-
ance, a network router, a network switch, a network bridge,
or any machine capable of executing the instructions 1616,
sequentially or otherwise, that specify actions to be taken by
machine 1600. Further, while only a single machine 1600 is
illustrated, the term “machine” shall also be taken to include
a collection of machines 1600 that individually or jointly
execute the instructions 1616 to perform any one or more
of the methodologies discussed herein.
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[0175] The machine 1600 may include processors 1610,
memory 1630, and /O components 1650, which may be
configured to communicate with each other such as via a
bus 1602. In an example embodiment, the processors 1610
(e.g., a Central Processing Unit (CPU), a Reduced Instruc-
tion Set Computing (RISC) processor, a Complex Instruc-
tion Set Computing (CISC) processor, a Graphics Proces-
sing Unit (GPU), a Digital Signal Processor (DSP), an
Application Specific Integrated Circuit (ASIC), a Radio-
Frequency Integrated Circuit (RFIC), another processor, or
any suitable combination thereof) may include, for example,
processor 1612 and processor 1614 that may execute
instructions 1616. The term “processor” is intended to
include multi-core processor that may comprise two or
more independent processors (sometimes referred to as
“cores”) that may execute instructions contemporaneously.
Although FIG. 16 shows multiple processors, the machine
1600 may include a single processor with a single core, a
single processor with multiple cores (e.g., a multi-core pro-
cess), multiple processors with a single core, multiple pro-
cessors with multiples cores, or any combination thereof.
[0176] The memory/storage 1630 may include a memory
1632, such as a main memory, or other memory storage, and
a storage unit 1636, both accessible to the processors 1610
such as via the bus 1602. The storage unit 1636 and memory
1632 store the instructions 1616 embodying any one or
more of the methodologies or functions described herein.
The instructions 1616 may also reside, completely or par-
tially, within the memory 1632, within the storage unit
1636, within at least one of the processors 1610 (e.g., within
the processor’s cache memory), or any suitable combination
thereof, during execution thereof by the machine 1600.
Accordingly, the memory 1632, the storage unit 1636, and
the memory of processors 1610 are examples of machine-
readable media.

[0177] As used herein, “machine-readable medium”
means a device able to store instructions and data tempora-
rily or permanently and may include, but is not be limited to,
random-access memory (RAM), read-only memory (ROM),
buffer memory, flash memory, optical media, magnetic
media, cache memory, other types of storage (e.g., Erasable
Programmable Read-Only Memory (EEPROM)) and/or any
suitable combination thereof. The term “machine-readable
medium” should be taken to include a single medium or
multiple media (e.g., a centralized or distributed database,
or associated caches and servers) able to store instructions
1616. The term “machine-readable medium” shall also be
taken to include any medium, or combination of multiple
media, that is capable of storing instructions (e.g., instruc-
tions 1616) for execution by a machine (e.g., machine
1600), such that the instructions, when executed by one or
more processors of the machine 1600 (e.g., processors
1610), cause the machine 1600 to perform any one or
more of the methodologies described herein. Accordingly,
a “machine-readable medium” refers to a single storage
apparatus or device, as well as “cloud-based” storage sys-
tems or storage networks that include multiple storage appa-
ratus or devices. The term “machine-readable medium”
excludes signals per se.

[0178] The /O components 1650 may include a wide vari-
ety of components to receive input, provide output, produce
output, transmit information, exchange information, capture
measurements, and so on. The specific /O components
1650 that are included in a particular machine will depend
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on the type of machine. For example, portable machines
such as mobile phones will likely include a touch input
device or other such input mechanisms, while a headless
server machine will likely not include such a touch input
device. It will be appreciated that the /O components
1650 may include many other components that are not
shown in FIG. 16. The /O components 1650 are grouped
according to functionality merely for simplifying the fol-
lowing discussion and the grouping is in no way limiting.
In various example embodiments, the /O components 1650
may include output components 1652 and input components
1654. The output components 1652 may include visual com-
ponents (e.g., a display such as a plasma display panel
(PDP), a light emitting diode (LED) display, a liquid crystal
display (LCD), a projector, or a cathode ray tube (CRT)),
acoustic components (e.g., speakers), haptic components
(e.g., a vibratory motor, resistance mechanisms), other sig-
nal generators, and so forth. The input components 1654
may include alphanumeric input components (e.g., a key-
board, a touch screen configured to receive alphanumeric
input, a photo-optical keyboard, or other alphanumeric
input components), point based input components (e.g., a
mouse, a touchpad, a trackball, a joystick, a motion sensor,
or other pointing instrument), tactile input components (e.g.,
a physical button, a touch screen that provides location and/
or force of touches or touch gestures, or other tactile input
components), audio input components (e.g., a microphone),
and the like.

[0179] In further example embodiments, the /O compo-
nents 1650 may include biometric components 1656,
motion components 1658, environmental components
1660, or position components 1662 among a wide array of
other components. For example, the biometric components
1656 may include components to detect expressions (e.g.,
hand expressions, facial expressions, vocal expressions,
body gestures, or eye tracking), measure biosignals (e.g.,
blood pressure, heart rate, body temperature, perspiration,
or brain waves), identify a person (e.g., voice identification,
retinal identification, facial identification, fingerprint identi-
fication, or electroencephalogram based identification), and
the like. The motion components 1658 may include accel-
eration sensor components (e.g., accelerometer), gravitation
sensor components, rotation sensor components (e.g., gyro-
scope), and so forth. The environmental components 1660
may include, for example, illumination sensor components
(e.g., photometer), temperature sensor components (e.g.,
one or more thermometer that detect ambient temperature),
humidity sensor components, pressure sensor components
(e.g., barometer), acoustic sensor components (e.g., one or
more microphones that detect background noise), proximity
sensor components (e.g., infrared sensors that detect nearby
objects), gas sensors (e.g., gas detection sensors to detection
concentrations of hazardous gases for safety or to measure
pollutants in the atmosphere), or other components that may
provide indications, measurements, or signals correspond-
ing to a surrounding physical environment. The position
components 1662 may include location sensor components
(e.g., a Global Position System (GPS) receiver component),
altitude sensor components (e.g., altimeters or barometers
that detect air pressure from which altitude may be derived),
orientation sensor components (e.g., magnetometers), and
the like.

[0180] Communication may be implemented using a wide
variety of technologies. The I/O components 1650 may
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include communication components 1664 operable to cou-
ple the machine 1600 to a network 1680 or devices 1670 via
coupling 1682 and coupling 1672 respectively. For example,
the communication components 1664 may include a net-
work interface component or other suitable device to inter-
face with the network 1680. In further examples, communi-
cation components 1664 may include wired communication
components, wireless communication components, cellular
communication components, Near Field Communication
(NFC) components, Bluetooth® components (e.g., Blue-
tooth® Low Energy), Wi-Fi® components, and other com-
munication components to provide communication via other
modalities. The devices 1670 may be another machine or
any of a wide variety of peripheral devices (e.g., a peripheral
device coupled via a Universal Serial Bus (USB)).

[0181] Moreover, the communication components 1664
may detect identifiers or include components operable to
detect identifiers. For example, the communication compo-
nents 1664 may include Radio Frequency Identification
(RFID) tag reader components, NFC smart tag detection
components, optical reader components (e.g., an optical sen-
sor to detect one-dimensional bar codes such as Universal
Product Code (UPC) bar code, multi-dimensional bar codes
such as Quick Response (QR) code, Aztec code, Data
Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCC
RSS-2D bar code, and other optical codes), or acoustic
detection components (e.g., microphones to identify tagged
audio signals). In addition, a variety of information may be
derived via the communication components 1664, such as,
location via Internet Protocol (IP) geo-location, location via
Wi-Fi@® signal triangulation, location via detecting a NFC
beacon signal that may indicate a particular location, and so
forth.

Transmission Medium

[0182] In various example embodiments, one or more por-
tions of the network 1680 may be an ad hoc network, an
intranet, an extranet, a virtual private network (VPN), a
local area network (LAN), a wireless LAN (WLAN), a
wide area network (WAN), a wireless WAN (WWAN), a
metropolitan area network (MAN), the Internet, a portion
of the Internet, a portion of the Public Switched Telephone
Network (PSTN), a plain old telephone service (POTS) net-
work, a cellular telephone network, a wireless network, a
Wi-Fi® network, another type of network, or a combination
of two or more such networks. For example, the network
1680 or a portion of the network 1680 may include a wire-
less or cellular network and the coupling 1682 may be a
Code Division Multiple Access (CDMA) connection, a Glo-
bal System for Mobile communications (GSM) connection,
or other type of cellular or wireless coupling. In this exam-
ple, the coupling 1682 may implement any of a variety of
types of data transfer technology, such as Single Carrier
Radio Transmission Technology (1xRTT), Evolution-Data
Optimized (EVDO) technology, General Packet Radio Ser-
vice (GPRS) technology, Enhanced Data rates for GSM
Evolution (EDGE) technology, third Generation Partnership
Project (3GPP) including 3G, fourth generation wireless
(4G) networks, Universal Mobile Telecommunications Sys-
tem (UMTS), High Speed Packet Access (HSPA), World-
wide Interoperability for Microwave Access (WiMAX),
Long Term Evolution (LTE) standard, others defined by var-
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ious standard setting organizations, other long range proto-
cols, or other data transfer technology.

[0183] The instructions 1616 may be transmitted or
received over the network 1680 using a transmission med-
ium via a network interface device (e.g., a network interface
component included in the communication components
1664) and utilizing any one of a number of well-known
transfer protocols (e.g., hypertext transfer protocol
(HTTP)). Similarly, the instructions 1616 may be trans-
mitted or received using a transmission medium via the cou-
pling 1672 (e.g., a peer-to-peer coupling) to devices 1670.
The term “transmission medium” shall be taken to include
any intangible medium that is capable of storing, encoding,
or carrying instructions 1616 for execution by the machine
1600, and includes digital or analog communications signals
or other intangible medium to facilitate communication of
such software.

Language

[0184] Throughout this specification, plural instances may
implement components, operations, or structures described
as a single instance. Although individual operations of one
or more methods are illustrated and described as separate
operations, one or more of the individual operations may
be performed concurrently, and nothing requires that the
operations be performed in the order illustrated. Structures
and functionality presented as separate components in
example configurations may be implemented as a combined
structure or component. Similarly, structures and function-
ality presented as a single component may be implemented
as separate components. These and other variations, modifi-
cations, additions, and improvements fall within the scope
of the subject matter herein.

[0185] Although an overview of the inventive subject mat-
ter has been described with reference to specific example
embodiments, various modifications and changes may be
made to these embodiments without departing from the
broader scope of embodiments of the present disclosure.
Such embodiments of the inventive subject matter may be
referred to herein, individually or collectively, by the term
“invention” merely for convenience and without intending
to voluntarily limit the scope of this application to any single
disclosure or inventive concept if more than one is, in fact,
disclosed.

[0186] The embodiments illustrated herein are described
in sufficient detail to enable those skilled in the art to prac-
tice the teachings disclosed. Other embodiments may be
used and derived therefrom, such that structural and logical
substitutions and changes may be made without departing
from the scope of this disclosure. The Detailed Description,
therefore, is not to be taken in a limiting sense, and the scope
of various embodiments is defined only by the appended
claims, along with the full range of equivalents to which
such claims are entitled.

[0187] As used herein, the term “or” may be construed in
either an inclusive or exclusive sense. Moreover, plural
instances may be provided for resources, operations, or
structures described herein as a single instance. Addition-
ally, boundaries between various resources, operations,
modules, engines, and data stores are somewhat arbitrary,
and particular operations are illustrated in a context of spe-
cific illustrative configurations. Other allocations of func-
tionality are envisioned and may fall within a scope of var-
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ious embodiments of the present disclosure. In general,
structures and functionality presented as separate resources
in the example configurations may be implemented as a
combined structure or resource. Similarly, structures and
functionality presented as a single resource may be imple-
mented as separate resources. These and other variations,
modifications, additions, and improvements fall within a
scope of embodiments of the present disclosure as repre-
sented by the appended claims. The specification and draw-
ings are, accordingly, to be regarded in an illustrative rather
than a restrictive sense.

What is claimed is:

1. A computer-implemented method comprising:

receiving a query;

identifying query terms from the query;

determining query feature scores for the query terms from

the query;

computing an inferred query feature score for the query

based on the query feature scores for the query terms
from the query; and

providing one or more items as search results in response to

the query based at least in part on the inferred query fea-
ture score for the query.

2. The computer-implemented method of claim 1, wherein
the query feature score associated with each query term from
the query comprises a category-query affinity for a category.

3. The computer-implemented method of claim 2, wherein
the inferred query feature score for the query comprises acate-
gory demand for the category.

4. The computer-implemented method of claim 1, wherein
each query term from the query comprises an n-gram from the
query.

5. The computer-implemented method of claim 1, wherein
determining the query feature scores for the query terms from
the query comprises:

computing the query feature scores for the query terms

using historical search information for previous queries
containing each query term;

storing the query feature scores for the query terms in a

dictionary, the dictionary being indexed by query
terms; and

retrieving the query feature scores for the query terms from

the dictionary.

6. The computer-implemented method of claim 5, the com-
puter-implemented method further comprising:

determining the dictionary does not include a query feature

score for the query.

7. The computer-implemented method of claim 1, wherein
providing the one or more items as search results in response
to the query based at least in part on the inferred query feature
score for the query further comprises ranking the one or more
items based on the inferred query feature score.

8. One or more computer storage media storing computer-
useable instructions that, when used by a computing device,
cause the computing device to perform operations, the opera-
tions comprising:

recelving a query;

identifying query terms from the query;

determining query feature scores associated with the query

terms from the query;

computing an inferred query feature score for the query

based on the query feature scores for the query terms
from the query; and
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providing one or more items as search results in response to
the query based at least in part on the inferred query fea-
ture score for the query.

9. The one or more computer storage media of claim 8§,
wherein the query feature score associated with each query
term from the query comprises a category-query affinity for
acategory.

10. The one or more computer storage media of claim 9,
wherein the inferred query feature score for the query com-
prises a category demand for the category.

11. The one or more computer storage media of claim 8,
wherein each query term from the query comprises an n-
gram from the query.

12. The one or more computer storage media of claim 8,
wherein determining the query feature scores for the query
terms from the query comprises:

computing the query feature scores for the query terms

using historical search information for previous queries
containing each query term;

storing the query feature scores for the query terms in a

dictionary, the dictionary being indexed by query
terms; and

retrieving the query feature scores for the query terms from

the dictionary.

13. The one or more computer storage media of claim 12,
the operations further comprising:

determining the dictionary does not include a query feature

score for the query.

14. The one or more computer storage media of claim 8,
wherein providing the one or more items as search results in
response to the query based at least in part on the inferred
query feature score for the query further comprises ranking
the one or more items based on the inferred query feature
score.

15. A computer system comprising:

aprocessor; and
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a computer storage medium storing computer-useable
instructions that, when used by the processor, causes
the computer system to perform operations comprising:
receiving a query;
identifying query terms from the query;
determining query feature scores associated with the
query terms from the query;

computing an inferred query feature score for the query
based on the query feature scores for the query terms
from the query; and

providing one or more items as search results in response
to the query based at least in part on the inferred query
feature score for the query.

16. The computer system of claim 15, wherein the query
feature score associated with each query term from the
query comprises a category-query affinity for a category.

17. The computer system of claim 16, wherein the inferred
query feature score for the query comprises a category
demand for the category.

18. The computer system of claim 15, wherein each query
term from the query comprises an n-gram from the query.

19. The computer system of claim 15, wherein determining
the query feature scores for the query terms from the query
comprises:

computing the query feature scores for the query terms
using historical search information for previous queries
containing each query term;

storing the query feature scores for the query terms in a
dictionary, the dictionary being indexed by query
terms; and

retrieving the query feature scores for the query terms from
the dictionary.

20. The computer system of claim 19, wherein the opera-

tions further comprise:

determining the dictionary does not include a query feature
score for the query.
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