(51) M_ПK *H05H* 1/50 (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(12) ТИТУЛЬНЫЙ ЛИСТ ОПИСАНИЯ ПОЛЕЗНОЙ МОДЕЛИ К ПАТЕНТУ

(21)(22) Заявка: 2014139559/07, 30.09.2014

(24) Дата начала отсчета срока действия патента: 30.09.2014

Приоритет(ы):

(22) Дата подачи заявки: 30.09.2014

(45) Опубликовано: 20.01.2015 Бюл. № 2

Адрес для переписки:

188540, Ленинградская обл., г. Сосновый Бор, ОАО "НИИ ОЭП", зам. ген. директора главный инженер Дундин Павел Иванович

(72) Автор(ы):

Бедрин Александр Геннадьевич (RU), Громовенко Валентин Михайлович (RU), Миронов Иван Сергеевич (RU), Остапенко Светлана Валерьевна (RU)

(73) Патентообладатель(и):

Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU), Открытое акционерное общество "Научноисследовательский институт оптикоэлектронного приборостроения" ОАО "НИИ OЭΠ" (RU)

(54) ПЛАЗМЕННЫЙ ИСТОЧНИК СВЕТОВОГО ИЗЛУЧЕНИЯ

(57) Формула полезной модели

1. Плазменный источник светового излучения, включающий управляемый источник питания, управляющий вход которого соединен с первым выходом блока управления, первый вход которого соединен с синхронизатором, разделительный диод, катод которого соединен со входом узла формирования стабилизированного дугового газового разряда, выход которого соединен с корпусом, и узел инициирования газового разряда, выход которого соединен со входом узла формирования стабилизированного дугового газового разряда, отличающийся тем, что в него дополнительно введены конденсатор, включенный между анодом разделительного диода и корпусом, схема сравнения, первый вход которой соединен со вторым выходом блока управления, а выход - со вторым входом блока управления, датчик выходного сигнала, выход которого соединен со вторым входом схемы сравнения, и управляемый ключ, включенный между выходом управляемого источника питания и анодом разделительного диода, причем управляющий электрод дополнительного управляемого ключа соединен с выходом синхронизатора непосредственно, а управляющий вход узла инициирования газового разряда - через блок задержки, величина временной задержки тзал которого определена условием

$$\tau_{ad} = (0, 25 \div 0, 75) \cdot \pi \sqrt{L \cdot C}$$
, где

- L суммарная выходная индуктивность управляемого источника питания, Гн;
- С емкость дополнительного конденсатора, Ф.
- 2. Плазменный источник светового излучения по п. 1, отличающийся тем, что блок задержки выполнен с величиной временной задержки

2

Z

ထ ∞

ത

$$au_{\text{\tiny 3aO}} = \sqrt{L \cdot C} \cdot \arcsin \left(\frac{2 \cdot R_{\text{\tiny N}} \cdot \rho}{R_{\text{\tiny N}} + \rho} \right)$$
, где

L - суммарная выходная индуктивность управляемого источника питания, Гн;

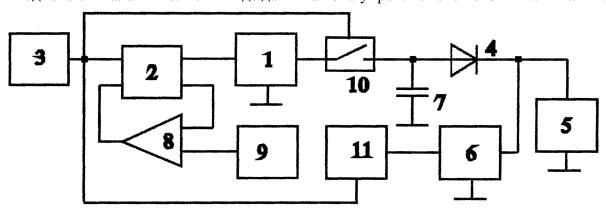
С - емкость дополнительного конденсатора, Ф;

 $R_{
m N}$ - сопротивление газового разряда после инициирования, Ом;

$$\rho = \sqrt{L/C}$$
 - волновое сопротивление, Ом.

3. Плазменный источник светового излучения по п. 1, отличающийся тем, что параллельно конденсатору включен резистор, величина R_{III} которого определена условием

$$R_{III}>U_{min}/I_{min}$$
 , где


8 6 2

2

 U_{min} - минимальное напряжение горения газового разряда, B;

 I_{min} - минимальный ток дополнительного управляемого ключа, A.

4. Плазменный источник светового излучения по п. 1, отличающийся тем, что датчик выходного сигнала выполнен в виде датчика тока управляемого источника питания.

