woO 2015/150342 A1 [N I NP0 0N O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é 0 DR OO0 O

International Bureau) L.
_").//)/ (10) International Publication Number

\

(43) International Publication Date WO 2015 /1 50342 Al
8 October 2015 (08.10.2015) WIPO|PCT
(51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
GOG6F 9/45 (2006.01) GOG6F 9/50 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
GOG6F 9/455 (2006.01) DO, DZ, EC, EE, EG, ES, F1, GB, GD, GE, GH, GM, GT,
. . HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
PCT/EP2015/056933 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
30 March 2015 (30.03.2015) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English
(84) Designated States (uniess otherwise indicated, for every
(26) Publication Language: English kind of regional protection available). ARIPO (BW, GH,
(30) Priority Data: GM, KE, LR, LS, MW, MZ NA, RW, SD, SL, ST, SZ,
14162520.2 30 March 2014 (30.03.2014) EP TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(71) Applicants: UNIVERSITEIT GENT [BE/BE]; Sint-Pi- DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
etersnieuwstraat 25, B-9000 Gent (BE). IMINDS LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
[BE/BE]; Gaston Crommenlaan 8 box 102, B-9050 Gent SM, TR), OAPI (BF, BI, CF, CG, CIL, CM, GA, GN, GQ,
(BE). GW,KM, ML, MR, NE, SN, TD, TG).

(72) Inventor: GOOSSENS, Bart; Dorent 32, B-9420 Burst Declarations under Rule 4.17:

(BE). — of inventorship (Rule 4.17(iv))
(74) Agents: WAUTERS, Davy et al.; Leuvensesteenweg 203, Published:

B-3190 Boortmeerbeek (BE).
— ith int ti [h t (Art. 21(3
(81) Designated States (unless otherwise indicated, for every with international search report (dr £

kind of national protection available). AE, AG, AL, AM,

(54) Title: PROGRAM EXECUTION ON HETEROGENEOUS PLATFORM

CPU thread (host}

25 T Memory Manager for 1_J

4\ computation devicegl:

Computation device
{GPU, CUDA, CpenCL)

Object manager
N

Runtime scheduler A “ Command Queue

T
—

AY

. [
N\
Computalicn device abstraction layer|
i 32 N

‘ |terpreter / ExecLtion engite 21

FIG. 3

(57) Abstract: The present invention relates in a first aspect to a computer-implemented method (1) comprising obtaining (2) an in-
termediate computer code object comprising at least one set of instructions corresponding to a task to be performed, the intermediate
computer code object — being machine independent - further comprising for each of said at least one set of instructions one or more
metadata descriptors representative of at least a complexity measure of the task to be performed. The method also comprises execut -
ing (4) the intermediate computer code object on a computing platform comprising at least two difterent execution units having a
difterent memory with a different memory location. This executing comprises selecting (6) for each of the at least one set of instruc-
tions a target execution unit from the plurality of execution units. This selecting takes the one or more metadata descriptors and a de-
cision rule into account, wherein the decision rule relates the plurality of complexity measures to a performance characteristic of the
plurality of execution units.

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

Program execution on heterogeneous platform

Field of the invention

The invention relates to the field of computer program execution on computing platforms with at least
two different execution units having a memory with different memory location, such as for example a
CPU and a GPU. More specifically it relates to a computer-implemented method for executing a
sequence of instructions, e.g. a computer program, on such a computing platform and computer

program products related to such computer-implemented method.

Background of the invention

Heterogeneous computing platforms nowadays comprise a plurality of execution units having mutually
distinct processing properties, such as different low-level instruction sets, e.g. different machine
language instruction encodings, different memory organization schemes, different processing
capabilities and/or different performance characteristics depending on the low-level instructions
and/or high-level tasks executed. For example, a heterogeneous computing platform may comprise at
least one central processing unit (CPU) core which may be particularly suitable for performing a wide
variety of complex computing tasks and for high-speed serial execution of instructions, e.g. instructions
formatted in an x86 instruction set family machine language. The plurality of execution units may also
comprise at least one graphics processing unit (GPU) core, which may be particularly suitable for
performing a large number of relatively simple operations in parallel. The plurality of execution units
may also comprise a coprocessor for supplementing the functions of a primary CPU, e.g. a coprocessor
specifically adapted for fast signal processing, encryption or input/output (I/O) interfacing. The
plurality of execution units may also comprise a field-programmable gate array (FPGA) adapted for
run-time hardware reconfiguration, e.g. using a hardware description language (HDL). Although the
heterogeneous computing platform may be integrated into a single computing system, e.g. a personal
computer comprising a CPU, e.g. a multi-core CPU, and at least one GPU, the heterogeneous
computing platform may also comprise a distributed computing system, e.g. comprising a plurality of
computers having identical or distinct configurations, for example each comprising a CPU and a GPU,
the CPUs and GPUs not necessarily identical or compatible over the plurality of computers.

A number of methods for handling programming and program execution on a heterogeneous
computing platform have been described in literature.

United States patent US 8,225,300 discloses a method which comprises receiving a program
that includes one of a parallel construct or a distributed construct, creating a target component from
the program, and integrating the target component into a target environment to produce a client
program that is executable on multiple heterogeneous server platforms including a non-homogeneous
set of Turing-complete computing resources capable of communicating with one another. One or more

tasks are automatically distributed across the heterogeneous server platforms based on a request for

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

task processing. A client environment may provide resource and/or task processing requests to a
scheduler/job manager. The scheduler/job manager may determine an allocation strategy for
resource/task processing requests based on available hardware resources and resource/task
processing requests. For example, the scheduler/job manager may determine a subset of available
execution units which are capable of executing a resource/task processing request, and may arbitrarily
assign a unit from this set to the request. However, it is a disadvantage of this method that although an
available execution unit is automatically assigned to handle a request which has the required
capabilities, the disclosed method may select, e.g. randomly select, an execution unit which has a poor
performance for executing the task at hand.

United States patent US 8,527,973 also discloses a method which comprises receiving a
program created by a technical computing environment, analyzing the program, generating multiple
program portions based on the analysis of the program, dynamically allocating the multiple program
portions to multiple software units of execution for parallel programming, receiving multiple results
associated with the multiple program portions from the multiple software units of execution, and

providing the multiple results or a single result to the program.

Summary of the invention
It is an object of embodiments of the present invention to provide good means and methods for
executing a computer program on a heterogeneous computing platform.

The above objective is accomplished by a method and device according to the present
invention.

The present invention relates to a computer-implemented method comprising - obtaining an
intermediate computer code object comprising at least one set of instructions corresponding to a task
to be performed, the intermediate computer code object further comprising for each of said at least
one set of instructions one or more of metadata descriptors representative of at least a complexity
measure of said task to be performed, the intermediate computer code object being machine
independent, and
- executing at run-time said intermediate computer code object on a computing platform comprising at
least two different execution units having a memory with a different memory location, said executing
at run-time comprising selecting (6) for each of said at least one set of instructions a target execution
unit from said plurality of execution units, said selecting taking into account the one or more of
metadata descriptors and a decision rule relating said plurality of complexity measures to a
performance characteristic of the plurality of execution units.

It is an advantage of embodiments of the present invention that metadata descriptors are generated at
compiler level and inherently enclosed in the intermediated computer code object and that these
metadata descriptors are used for influencing run-time decisions. It is an advantage of embodiments of

the present invention that both compile-time parameters (metadata descriptors) extracted from the

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

high-level programming language used and run-time parameters available at run-time are combined
for selecting the most suitable device for executing the intermediate computer code object. It is an
advantage of embodiments of the present invention that an efficient method and system is obtained
as the required metadata descriptors information for executing is inherently present in the
intermediate computer code object and is automatically supplied for executing.

The at least two different execution units may be a central processing unit CPU and a graphical
processing unit GPU.

The corresponding plurality of complexity measures may be obtained by at least analyzing the
intermediate code.

The one or more metadata descriptors may be representative of a corresponding plurality of
complexity measures of said task to be performed.

The at least two different execution units may be graphical processing units GPU’s having a memory
with a different memory location.

The intermediate computer code object may be obtained in an execution unit independent
intermediate format. It is an advantage of embodiments of the present invention that the method
allows programming such that efficient executing in a computing platform can be automatically
performed.

Executing the intermediate computer code object may comprise determining whether a first set of said
at least one set of instructions and a second set of said at least one set of instructions can be executed
concurrently.

Executing the intermediate computer code object may comprise providing automated memory
allocation to provide data for being processed by the execution of each of said at least one set of
instructions to the corresponding target execution unit. Automated memory allocation thereby may
refer to the fact that no user intervention is required for memory allocation, i.e. that memory
allocation occurs automatically by the system.

Executing the intermediate computer code object may comprise translating each of the at least one set
of instructions to a machine level format executable by the corresponding target execution unit.
Obtaining the intermediate computer code object may comprise compiling the intermediate computer
code object from a computer program code specified in accordance to a high-level programming
language specification.

It is to be noticed that the compilation of the intermediate computer code into machine dependent
code may be performed at runtime, but that this nevertheless is not required. In other words, the
compilation of the intermediate computer code into machine-dependent code may occur not solely at

run-time.

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

Obtaining the intermediate computer code object further may comprise for each of said at least one

set of instructions determining the one or more of metadata descriptors representative of the

corresponding plurality of complexity measures.

The one or more metadata descriptors may be one or more parameters determinable at compiler level

and expressing a complexity of a kernel function of the intermediate computer code object.

The selecting also may take into account one or more of a code length, a product of data dimensions, a

product of GPU block dimensions, a total number of GPU blocks, a number of assigned CPU threads, a

memory transfer time, a GPU occupancy, a size or load of CPU and GPU command queues or an overall

load of CPU and GPU queues.

The present invention also relates to a first computer program product for executing an intermediate

computer code object, the first computer program product comprising

an input component for obtaining an intermediate computer code object comprising at least one set of

instructions corresponding to a task to be performed, the intermediate computer code object further

comprising for each of said at least one set of instructions one or more of metadata descriptors

representative of a corresponding plurality of complexity measures of said task to be performed, and

a run-time component for executing said intermediate computer code object on a computing platform

comprising at least two different execution units having a memory with a different memory location,

wherein the run-time component comprises a selection unit for selecting for each of said at least one

set of instructions a target execution unit from said at least two execution units, said selecting taking

into account the one or more of metadata descriptors and a decision rule relating said plurality of

complexity measures to a performance characteristic of the at least two different execution units.

The run-time component furthermore may comprise a memory manager unit for automated memory

allocation.

The run-time component furthermore may comprise a run-time scheduler unit adapted for

determining whether a first set of said at least one set of instructions and a second set of said at least

one set of instructions can be executed concurrently.

The first computer program product, may be implemented by a set of instructions for executing an

intermediate computer code object.

The present invention also relates to a second computer program product for generating an

intermediate computer code object, the second computer program product comprising:

- an input component for obtaining a computer program code specified in accordance to a high-
level programming language specification,

- a compiler component for compiling the computer program code into an intermediate
computer code object comprising at least one set of instructions corresponding to a task to be

performed, and

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

- an analysis component for annotating each of said at least one set of instructions with one or
more of metadata descriptors representative of a corresponding plurality of complexity
measures of said task to be performed.

The analysis component may be adapted for determining the one or more metadata descriptors

representative of at least a measure related to conditional branches, backward jumps, dynamic

memory allocation, indirect function calls and/or thread synchronization.

The second computer program product may be implemented as a software compiler.

The present invention also relates to a data carrier comprising a set of instructions for, when executed

on a computer, executing intermediate computer code object on a computing platform comprising at

least two different execution units having a memory with different memory location according to a

method as described above.

Particular and preferred aspects of the invention are set out in the accompanying
independent and dependent claims. Features from the dependent claims may be combined with
features of the independent claims and with features of other dependent claims as appropriate and
not merely as explicitly set out in the claims.

These and other aspects of the invention will be apparent from and elucidated with reference

to the embodiment(s) described hereinafter.

Brief description of the drawings

FIG. 1 illustrates an exemplary method according to embodiments of the present invention.

FIG. 2 illustrates a first computer program product according to embodiments of the present
invention.

FIG. 3 illustrates an exemplary embodiment of a first computer program product according to the
present invention.

FIG. 4 illustrates a first computer program product according to embodiments of the present
invention.

FIG. 5 and FIG. 6 illustrate screen shots of implementations of decisions rules, as can be used in
exemplary embodiments of the present invention.

The drawings are only schematic and are non-limiting. In the drawings, the size of some of the
elements may be exaggerated and not drawn on scale for illustrative purposes.

Any reference signs in the claims shall not be construed as limiting the scope.

In the different drawings, the same reference signs refer to the same or analogous elements.

Detailed description of illustrative embodiments
The present invention will be described with respect to particular embodiments and with
reference to certain drawings but the invention is not limited thereto but only by the claims. The

drawings described are only schematic and are non-limiting. In the drawings, the size of some of the

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

elements may be exaggerated and not drawn on scale for illustrative purposes. The dimensions and
the relative dimensions do not correspond to actual reductions to practice of the invention.

Furthermore, the terms first, second and the like in the description and in the claims, are used for
distinguishing between similar elements and not necessarily for describing a sequence, either
temporally, spatially, in ranking or in any other manner. It is to be understood that the terms so used
are interchangeable under appropriate circumstances and that the embodiments of the invention
described herein are capable of operation in other sequences than described or illustrated herein.

Moreover, the terms top, under and the like in the description and the claims are used for
descriptive purposes and not necessarily for describing relative positions. It is to be understood that
the terms so used are interchangeable under appropriate circumstances and that the embodiments of
the invention described herein are capable of operation in other orientations than described or
illustrated herein.

It is to be noticed that the term “comprising”, used in the claims, should not be interpreted as
being restricted to the means listed thereafter; it does not exclude other elements or steps. It is thus
to be interpreted as specifying the presence of the stated features, integers, steps or components as
referred to, but does not preclude the presence or addition of one or more other features, integers,
steps or components, or groups thereof. Thus, the scope of the expression “a device comprising means
A and B” should not be limited to devices consisting only of components A and B. It means that with
respect to the present invention, the only relevant components of the device are A and B.

Reference throughout this specification to “one embodiment” or “an embodiment” means that a
particular feature, structure or characteristic described in connection with the embodiment is included
in at least one embodiment of the present invention. Thus, appearances of the phrases “in one
embodiment” or “in an embodiment” in various places throughout this specification are not
necessarily all referring to the same embodiment, but may. Furthermore, the particular features,
structures or characteristics may be combined in any suitable manner, as would be apparent to one of
ordinary skill in the art from this disclosure, in one or more embodiments.

Similarly it should be appreciated that in the description of exemplary embodiments of the
invention, various features of the invention are sometimes grouped together in a single embodiment,
figure, or description thereof for the purpose of streamlining the disclosure and aiding in the
understanding of one or more of the various inventive aspects. This method of disclosure, however, is
not to be interpreted as reflecting an intention that the claimed invention requires more features than
are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less
than all features of a single foregoing disclosed embodiment. Thus, the claims following the detailed
description are hereby expressly incorporated into this detailed description, with each claim standing

on its own as a separate embodiment of this invention.

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

Furthermore, while some embodiments described herein include some but not other features
included in other embodiments, combinations of features of different embodiments are meant to be
within the scope of the invention, and form different embodiments, as would be understood by those
in the art. For example, in the following claims, any of the claimed embodiments can be used in any
combination.

In the description provided herein, numerous specific details are set forth. However, it is
understood that embodiments of the invention may be practiced without these specific details. In
other instances, well-known methods, structures and techniques have not been shown in detail in
order not to obscure an understanding of this description.

Where in embodiments of the present invention reference is made to “run-time”, reference is made to
the moment in time when the program is running on the computer, in contrast to compile time.

Where in embodiments of the present invention reference is made to execution, reference is made to
execution at run-time, unless otherwise indicated.

Where in embodiments of the present invention reference is made to execution units having a
memory with a different memory location, reference can be made to a CPU and GPU, a GPU and
another type of processing unit, or two GPU’s — e.g. part of a GPU network having different memories
with a different memory location.

In a first aspect, the present invention relates to a computer-implemented method. This
method comprises obtaining an intermediate computer code object comprising at least one set of
instructions corresponding to a task to be performed, and for each of said at least one set of
instructions a plurality of metadata descriptors representative of a corresponding plurality of
complexity measures of said task to be performed. The method further comprises executing the
intermediate computer code object on computing platform comprising at least two execution units
with a memory having a different memory location (i.e. the memory locations for the different
execution units are different). Such systems may comprise a plurality of execution units wherein there
is at least one graphical processing unit GPU and at least one processing unit of a different type, e.g. a
central processing unit CPU. The latter typically may be referred to as heterogeneous computing
platforms. Alternatively, systems are also encompassed comprising at least two different GPU’s, for
example a GPU network wherein optionally no CPU’s are present, whereby the GPU’s are execution
units with different memory locations. This step of executing the intermediate computer code object
comprises selecting for each of said at least one set of instructions a target execution unit from the
plurality of execution units. This selecting furthermore takes the plurality of metadata descriptors and
a decision rule into account. The decision rule relates the plurality of complexity measures to a
performance characteristic of the plurality of execution units.

Further details and advantages of standard and optional steps of a computer-implemented

method according to at least some embodiments of the present invention will now further be

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

described with reference to an exemplary computer-implemented method and to the drawings,
embodiments of the present invention not being limited thereto.

Referring to FIG. 1, an exemplary computer-implemented method 1 according to
embodiments of the present invention is shown. This method may be a method for executing high-
level operations, e.g. high-level parallel operations, on computing platforms having at least two
execution units with a memory having a different memory location, e.g. on heterogeneous computing
devices. Such heterogeneous computing platform may comprise a plurality of execution units, e.g. a
plurality of execution units wherein at least some are functionally and/or structurally distinct execution
units, such as, for example, a central processing unit (CPU) core and a graphics processor unit (GPU).
However, the computing platform also may comprise a plurality of graphical processing units, e.g.
connected via a network, wherein at least two graphical processing units have a memory with a
different memory location, e.g. a distributed computing system. The computing platform may also
comprise for example a coprocessor particularly suitable to perform a specific task, e.g. floating point
arithmetic operations or signal processing. The heterogeneous computing platform may also comprise
for example a field-programmable gate array (FPGA).

According to embodiments of the present invention, the heterogeneous computing platform
may consist of a single computer comprising at least two cores or may consist of a set of computers
wherein the set comprises at least two computing devices. The single computer or the set of
computers may comprise one or more CPUs and/or GPU’s having different properties, such as for
example GPU1 and GPU2 wherein both GPUs have different properties. The different CPUs and/or
GPUs may thus be cores in different computing devices or in the same computer device. The
computing device can either be a single core or a multi core CPU.

The method 1 comprises a step of obtaining 2 an intermediate computer code object. The
intermediate computer code object may be obtained in an execution unit independent intermediate
format. The intermediate computer code object may encode a computer program, e.g. an algorithm
for performing an automated task on a computing platform. The method 1 may be particularly suitable
for executing an iterative algorithm involving complex, parallelizable operations, e.g. the intermediate
computer code object may encode such iterative parallelizable algorithm, for example a signal
processing algorithm, a 2D image processing algorithm or a 3D image processing algorithm. The
intermediate computer code object may comprise an intermediate representation, for example, a
register transfer language, a static single assignment form, a reverse Polish notation (RPN)
representation of platform-independent opcodes and references, e.g. references to data structures,
functions and procedures.

This intermediate computer code object, also referred to as intermediate representation,
comprises at least one set of instructions corresponding to a task to be performed. The at least one set

of instructions, e.g. at least one sequence of instructions, may comprise high-level operations, e.g. may

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

comprising an instruction for performing a high-level operation such as a matrix operation, an image
manipulation operation or a Fourier transform. For example, an instruction in the intermediate
computer code object may instruct the execution of a multiplication of real-valued or complex-valued
matrices or apply a goniometric transformation to each element of a vector.

For each of the at least one set of instructions, e.g. instructions defining a kernel function
corresponding to a task to be performed, e.g. an algorithm for an element-wise matrix operation, the
intermediate computer code object also comprises a plurality of metadata descriptors representative
of a corresponding plurality of complexity measures of said task to be performed.

The complexity measures may be obtained based on the intermediate computer code.

The intermediate code is such that the code is machine or device independent.

The intermediate computer code object may be an execution unit independent intermediate
format, e.g. may be executed on a plurality of structurally and functionally different computing
devices. For example, the at least one set of instructions corresponding to a task to be performed may
comprise instructions which are specified in a machine-level agnostic manner. Such instructions may
thus be executed by a computer-implemented interpreter which translates each instruction in a
suitable computer code suitable for execution on a specific execution unit. The decision on which
computing device the intermediate program code object is executed thus typically is made at run-time.
Furthermore, the plurality of metadata descriptors may also be specified in a machine-level agnostic
manner, e.g. the descriptors may be representative of a corresponding plurality of complexity
measures of the task to be performed independent on performance characteristics and capabilities of
an execution unit on which the corresponding task is executed.

For example, the plurality of metadata descriptors may comprise a set of values of
corresponding complexity measures determined for the set of instructions to which it is attributed.
Such metadata descriptors may comprise indicator variables, integer variables, real-valued variables or
even structured variables, e.g. a pointer to a node in an hierarchical classification tree. The complexity
measures may comprise measures which are mutually independent or provide at least partially
complementary information, relating to different aspects of computational complexity of the set of
instructions. The complexity of a kernel function is defined based on a number of parameters. The idea
is that a kernel function using for example loops or thread synchronization typically needs a longer
completion time than kernel functions that only consist of a small number of calculations with no loop.
For example, complexity measures may thus comprise information regarding loop structures, nested
loop depth, conditional code execution, branching, branching depth, dynamic memory allocation,
backward jumps in the code during execution, indirect function calls or synchronization requirements
such as inter-thread synchronization. In particular embodiments, at compiler level, the complexity may
be determined and may be assigned a score, e.g. between 0 and 10. In one example this may for

example be based on the following parameters :

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

10

(a) COMPLEXITY_BRANCHES (1): The kernel function contains if statements

(b) COMPLEXITY_TEN_STATEMENTS (2): The kernel function has at least 10 statements

(c) COMPLEXITY_DYNAMIC_MEMORY (3): The kernel function requires dynamic memory allocation

(d) COMPLEXITY_JUMP_BACK (8): The kernel function contains a backward jump (typically a loop)

(e) COMPLEXITY_INDIRECT_CALLS (9): The kernel function performs indirect calls (e.g. through function
pointers)

(f) COMPLEXITY_SYNCHRONIZATION (10): The kernel function requires thread synchronization

As will be clear, this is only an example and different selections may be made.

It is an advantage of embodiments of the present invention that the intermediate computer
code object can be executed on a platform comprising execution unit types not considered when
compiling the intermediate computer code object, e.g. a novel CPU or GPU architecture. The decision
is thus taken at run-time. This execution can furthermore be performed efficiently by simply adapting
the run-time interpreter to this type of execution unit and providing a suitable decision rule. The
decision rule or rules will allow or assist in selecting which execution unit will be used. This adaptation
can furthermore be advantageously performed independent of the computer program to be executed.

The method further comprises executing 4 the intermediate computer code object on a
computing platform comprising at least two execution units with a memory having a different memory
location. This step of executing the intermediate computer code object comprises selecting 6 for each
of said at least one set of instructions a target execution unit from the plurality of execution units. This
selecting furthermore takes the plurality of metadata descriptors and a decision rule into account. The
decision rule relates the plurality of complexity measures to a performance characteristic of the
plurality of execution units. For example, the decision rule may be adapted for predicting which of the
plurality of execution units will perform best at performing the task encoded by the set of instructions,
e.g. which execution unit has the highest probability of providing the best performance for the task at
hand. The decision rule may for example be a classifier expression, e.g. providing a partitioning of the
space spanned by the plurality of complexity measures into regions of dominant performance for
subsets, e.g. elements, of the plurality of execution units. Such decision rule may for example be
obtained by profiling a set of reference tasks, e.g. for which the points in the space defined by the
complexity measures provide a good sampling of this space, and determining for each reference task
the best performing execution unit. It is an advantage of embodiments of the present invention that
good performance in executing a program can be obtained without requiring detailed profiling of this
program, e.g. manually or automatically executing components of the program, e.g. different sets of
instructions encoding constituent tasks, on a plurality of execution units in order to determine the best
performing solution.

However, the selecting may also take a runtime parameter into account, for example, the

dimensionality or number of elements of a data structure on which the at least one set of instructions,

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

11

e.g. a kernel function, operates. Thus, the decision rule may for example be a classifier expression, e.g.
providing a partitioning of the joint space spanned by the plurality of complexity measures and the at
least one runtime parameter into regions of dominant performance for subsets, e.g. elements, of the
plurality of execution units. The at least one runtime parameter may for example comprise a
dimensionality, number of elements and/or data type of a data structure provided as input parameter
to the at least one set of instructions, e.g. to a kernel function. The at least one runtime parameter
may comprise a number of threads or parallel units assigned to an invocation of the at least one set of
instructions, e.g. taking memory requirements into account. In some embodiments of the present
invention, the decision rule may for example take into account, besides a complexity, one or more or
all of the following parameters :
- Code length: describes the number of (medium-level) “instructions” that the kernel function contains.
Code length is defined in an architecture-independent manner. Note that the “code length” is often
used as a heuristic for function inlining in modern compilers.
- Product of the data dimensions: a kernel function is applied to every element of a data set (e.g. every
pixel of an image). The total number of data items is therefore an important indicator for the
computation time of the kernel function.
- Product of the GPU block dimensions: when a GPU executes a kernel function, the data is divided into
blocks and each block is processed sequentially (or often mixed sequentially/parallel by different multi-
processors). The block size is the result of a different optimization procedure. This can be a numerical
procedure, an analytical procedure, can be based on profiling, etc. The present invention thus is not
limited by the specific optimization procedure(s) used.
- The total number of GPU blocks: this is obtained by the data dimensions dim, corresponding with the
data dimension, divided by the block dimensions blk dim, corresponding with the dimension of the
blocks i.e. with the block size, and by calculating the product of the result:
dim, dim
blkdim, | | blk dim

where D is the dimensionality of the data.

- Number of assigned CPU threads: due to the threading granularity of the OS, for light-weight tasks it
is often more efficient to run the kernel function on one CPU core rather than on all available cores.
The selection of the number of CPU threads is typically binary (1 core or all available cores) and is
performed by a separate decision rule. The number of CPU threads may also be selected dynamically
(e.g. based on current load of the CPU). Therefore, the number of assigned CPU threads may also be an
indicator for whether the CPU is a good choice for execution.

- Memory transfer time: due to the distributed memory system, it may be necessary to perform data
transfers from CPU to GPU in order to run the specified kernel function on the GPU, or from GPU to

CPU in order to run on the CPU. Because the run-time system knows exactly how many bytes of

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

12

memory that need to be transferred, the memory transfer time can be estimated, by multiplying the
number of bytes by an average device-dependent transfer rate (adding a small constant that contains
the driver-level overhead).

- GPU occupancy: defined as the maximum number of active warps on a GPU divided by the maximal
number of supported warps, it is an indicator of the GPU utilization. For example, when it is known in
advance that the GPU occupancy is fairly low, it may be more efficient to run the kernel function on
the CPU. Note that the definition of GPU occupancy still ignores two aspects:

(a) The execution of different asynchronous kernel functions on the GPU (it only considers one kernel
function).

(b) Instruction level parallelism: in some (rare) cases the occupancy can be low but the throughput can
be high. Nevertheless, because the GPU utilization is difficult to predict directly, the GPU occupancy is
still a useful parameter.

Detection of instruction level parallelism is much harder because it requires device-specific analytical
modeling tools (which we will not consider here). The GPU occupancy can be calculated in the same
way as in the NVidia Occupancy Calculator Excel spreadsheet (which has later been integrated in the
NVidia nSight Profiler and NVidia Visual Profiler programs).

- Size or load of the CPU and GPU command queues. Due to the fact that the performance ratio is
sufficiently high, it is usually still most efficient to schedule a kernel function on the GPU command
gqueue even when this queue is full. Moreover, when the decision would be to run the kernel function
on the CPU, still some memory transfers would be needed. These memory transfers then would need
to be scheduled to the GPU command queue anyway. For Fermi devices, the parallel handling of
memory transfers and kernel functions is rather limited (i.e. usually they are performed sequentially or
with only partial overlap). As such, assuming that at

least one memory transfer is necessary, it makes little sense to run a kernel function on the CPU even
when the GPU is busy. Nevertheless, as GPUs will advance in the future, the effect of the parameter
may become more relevant.

- Overall load of the CPU and GPU command queues : Rather than counting the number of
kernel functions waiting to be processed by the CPU or GPU, one can also take their kernel complexity
into account in this metric. This gives a more accurate prediction when heterogeneous kernel functions
are used.

Therefore, in embodiments according to the present invention, a good performance of
execution of a block of code may be achieved without requiring an extensive profiling operation of the
block of code on a plurality of possible execution units, e.g. a CPU and a GPU, but may also provide a
good performance tuned to the size, type and/or dimensionality of input data determined during
execution. For example, a code fragment, e.g. a kernel function, may be preferably executed on the

CPU of a computer when the input data is relatively small, e.g. due to an overhead of scheduling the

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

13

execution on a GPU, translating the instructions to a GPU compatible format and/or memory transfer
to a dedicated graphics memory. When the same code fragment would be invoked with a larger input
data structure, execution could be preferred on the GPU, as the parallel processing capabilities in
executing the task would outweigh the overhead cost. However, a different task could be more
complex, and would benefit from selection of a GPU device instead of a CPU device at a smaller input
data structure size threshold. It is furthermore to be noted that the complexity of two tasks can be
substantially different in more than one manner, e.g. a first task could involve many branching
conditions, while a second task could involve many nested loops, such that a multidimensional
representation of the parameters influencing the inherent complexity of a task may provide good
means for determining a suitable execution unit without requiring a priori knowledge, during
preparation of the intermediate computer code object, regarding the specific combination of
execution units on a computing platform on which the code is to be executed and performance
tradeoffs associated with this combination.

Executing 4 the intermediate computer code object may also comprise determining 5 whether
a first set of said at least one set of instructions and a second set of said at least one set of instructions
can be executed concurrently, e.g. taking into account data dependencies and the corresponding
targeted execution units. Thus, executing 4 the intermediate computer code object may comprise
runtime scheduling in order to define the order in which the sets of the at least one set of instructions
are to be executed on each of the corresponding target execution units.

Executing 4 the intermediate computer code object may further comprise providing 7
automated memory allocation, e.g. memory sharing, memory mirroring and/or dirty tagging of
memory copies, to provide data being processed by the execution of each of said at least one set of
instructions to the corresponding target execution unit. For example, a first set of instructions from the
at least one set of instructions may have a first execution unit selected as target execution unit, while a
second set of instructions from the at least one set of instructions may have a second execution unit
selected which differs from the first execution unit. Executing the intermediate computer code object
may thus take data dependencies into account between the first set of instructions and the second set
of instructions in order to automatically copy data between memory available to the first execution
unit and the second execution unit. Providing 7 automated memory allocation may comprise tracking
the most recently changed copy of data in memories available to different execution units, in order to
synchronize such copies when required during execution. This automated memory allocation may
further comprise automated data conversion between machine-level specific data formats, e.g. in
order to account for differences in architecture of the execution units. For example, such automated
data conversion may comprise simple operations such as changing a most significant bit first (MSB)
representation to a least significant bit first (LSB) representation, or more complex operations, such as

changing the order in which matrix dimensions are internally stored in order to make advantageous

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

14

processing features of a specific execution unit available, or changing a floating point format which is
not supported by a specific execution unit to a lower precision format which is supported, or into an
aggregate of such lower precision formats to avoid loss of information due to rounding errors.

Executing 4 the intermediate computer code object may further comprise translating 8 each
of the at least one set of instructions to a machine level format executable by the corresponding target
execution unit, e.g. the target execution unit selected for the set of instructions. For example, this
translating may comprise a just-in-time compilation of the set of instructions into a suitable machine
level format, running an interpreter program in the suitable machine level format for interpreting the
set of instructions, a combination thereof, or an alternative of translating a non-native set of
instructions into a native machine level format as known in the art.

In a method according to embodiments of the present invention, obtaining 2 the intermediate
computer code object may comprise compiling 11 the intermediate computer code object from a
computer program code specified in accordance to a high-level programming language specification,
e.g. a programming language which provides a strong abstraction from the details of program
execution by an execution unit, e.g. a processor. Such high-level programming language may for
example use natural language elements, may be adapted for ease of use, may automate, and
preferably hide entirely, significant areas of low-level computing system programming such as memory
management and processor register operations, and may provide a human-readable and easily
understandable code.

Obtaining 2 the intermediate computer code object may further comprise, for each of the at
least one set of instructions, determining 12 the plurality of metadata descriptors representative of the
corresponding plurality of complexity measures. For example, a compiler program or a support
program for a compiler may analyse the high-level computer program code, determine sets of
instructions corresponding to the execution of specific tasks, e.g. highly parallelizable tasks, and derive
a plurality of complexity measures related to each set of instructions.

In a second aspect, the present invention also relates to a first computer program product.
FIG. 2 schematically illustrates an exemplary first computer program product 21 according to
embodiments of the present invention.

The first computer program product 21 is adapted for executing an intermediate computer
code object, e.g. may be an interpreter or run-time stub for executing the intermediate computer code
object.

The first computer program product comprises an input component 22 for obtaining an
intermediate computer code object comprising at least one set of instructions, e.g. at least one
sequence of instructions or at least code fragment construct comprising instructions, corresponding to
a task to be performed. This input component 22 may for example retrieve the intermediate computer

code object from a file on disk or a from a preloaded memory region. The input component 22 may be

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

15

adapted for providing a command queue of instructions encoded in the intermediate computer code
object. In some embodiments, the intermediate computer code object may be incorporated in the first
computer program product, e.g. may be packaged into a single executable file. In other embodiments,
the intermediate computer code object may for example be provided in a separate file being loaded by
the first computer program product. The intermediate computer code object further comprises for
each of the at least one set of instructions a plurality of metadata descriptors representative of a
corresponding plurality of complexity measures of the task to be performed. Thus, the intermediate
computer code object may comprise a high-level computer-readable program code having blocks
defined therein which are annotated by corresponding complexity metadata. It is to be noted that this
complexity metadata may be highly machine-independent, e.g. may characterize aspects related to
complexity of a task to be executed without taking machine-specific performance characteristics into
account. The complexity metadata may be similar as described above. In one particular example, the
complexity metadata may for example relate to:

- the number of instructions required to perform the task,

- the presence, number and/or nesting depth of execution loops required,

- the presence, number and/or nesting depth of conditional branches required,

- the presence, number or depth of recursive statements,

- the use of dynamic memory allocation,

- the static and/or dynamic memory storage space requirements, and/or

- the use of indirect function references, object inheritance, dynamic object dispatching,

abstract data types, object encapsulation and/or open recursion.

The first computer program product also comprises a run-time component 23 for executing
the intermediate computer code object on a computing platform comprising at least two execution
units having a memory with a different memory location. This run-time component 23 comprises a
selection unit 24 for selecting for each of the at least one set of instructions a target execution unit
from the plurality of execution units. This selecting furthermore takes the plurality of metadata
descriptors and a decision rule into account, in which the decision rule relates the plurality of
complexity measures to a performance characteristic of the plurality of execution units. Therefore, the
first computer program product may be adapted for a specific heterogeneous computing platform or
type of platform, e.g. by providing native code capabilities of this platform and by comprising a
decision rule adapted for this platform or type of platform, while being able to execute a platform-
independent intermediate computer code object in highly optimized manner.

The run-time component 23 may also comprise a memory manager unit 25. The intermediate
computer code object may be structured such as to allow good portability of data structures between
different execution units, e.g. between different CPU and/or GPU architectures. Particularly, the

intermediate computer code object format may define data types which can be easily converted to

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

16

native formats suitable for a wide range of execution units. For example, the memory manager unit
may provide memory bookkeeping operations, such as tracking both a CPU pointer and a GPU pointer
to a data structure and keeping track of dirty bits for indicating the most recently changed version of a
data structure. The memory manager unit may also provide automated copying, mirroring, moving
and/or translating of data between execution units, e.g. taking into account low-level differences in
architecture and implementation of such execution units.

The run-time component 23 may furthermore comprise a run-time scheduler unit 26. Thus,
the run-time component may be adapted for scheduling the concurrent execution of tasks on the
plurality of execution units, taking into account data dependencies between the tasks.

FIG. 3 further illustrates an exemplary embodiment of a first computer program product
according to embodiments of the present invention, e.g. a run-time system. The computer program
product may, when executed on a computer, run in a host process thread 31, e.g. on a CPU of the
computing platform. Thus, the first computer program product may be adapted for execution on a
host processor, e.g. a CPU, of the computing platform comprising a plurality of execution units.

An interpreter / execution engine 32 may provide functions for retrieving the intermediate
computer code object, e.g. may be integrated into or operate in conjunction with the input component
22. A computation device abstraction layer 33 forms an interface between the hardware-agnostic, e.g.
platform independent, code of the intermediate computer code object and the computing platform. A
runtime scheduler 26 running in the host process thread 31 may retrieve code fragments, e.g. a set of
instructions defining a specific task to be performed, from the interpreter / execution engine 32 via the
computation device abstraction layer 33.

For example, the interpreter / execution engine 32 may process the intermediate computer
code object by evaluating expressions stored therein, e.g. encoded in a reverse Polish notation. For
example, when a operand code is encountered, a reference to a corresponding object may be pushed
to a stack, e.g. a stack managed by an object manager 27. When an operator is encountered while
evaluating the expression, this may be passed to the command queue 35 of an execution unit via the
runtime scheduler 26.

The exemplary computer program product may further be adapted to interface with a
plurality of computation devices, e.g. a plurality of execution units of the computing platform. For
example, the computer program product may be adapted for execution on a host device, e.g. a CPU of
the computing platform, and to interface with at least one device-specific computation engine, e.g. a
dynamically linked library adapted for controlling at least one computation device. For example, the
computer program product 21 may be dynamically linked to a computation engine for executing code
on a general purpose CPU device, e.g. the host CPU, and to a computation engine for executing code
on a GPU device. Obviously, one computation engine may also control a plurality of different execution

units, or may be statically linked to the program product, e.g. may be integrated into the computer

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

17

program product. However, when the computer program product is adapted for dynamically linking to
a plurality of computation engines via a standardized interface, the computer program product may be
easily adapted to operate on differently configured computing devices.

The computer program product may be set up to interface with, for example, a CPU
computation engine, a CUDA computation engine and an openCL computation engine.

The runtime scheduler 26 furthermore may select for each set of instructions, e.g. each block
of code forming a coherent unit or code fragment, defining a task to be performed the most promising
target execution unit by applying a decision rule to the metadata associated with the set of
instructions. Thus, a command queue 35 for each of the plurality of execution units may be filled with
tasks to be executed on each target execution unit, taking into account data dependencies between
the sets of instructions of the intermediate code. The runtime scheduler 26 may for example
implement a method similar to out-of-order execution in microprocessors to the high-level code
corresponding to the intermediate code format.

The runtime scheduler 26 may determine the dimensionality of the parallel operation of a set
of instructions before execution of this set of instructions, e.g. the kernel function encoded in this set
of instructions. For example, depending on the dimensionality of the data on which the set of
instructions will operate, a different number of parallel executions and/or a different number of
execution threads may be needed. This runtime determination of parameters that influence the
complexity of the task supplements the metadata regarding inherent complexity of the block of code,
which may be determined during compilation of the intermediate code object. Based on the
multidimensional metadata descriptor, e.g. supplemented by the dimensionality of the parallel
operation determined during runtime, the runtime scheduler determines the best execution unit to
assign for executing the set of instructions, e.g. the best unit taking a probabilistic prognostic model
represented by the decision rule into account. The runtime parameters may also comprise information
regarding, for example, the current availability of an input data structure in a memory accessible to a
specific execution unit, e.g. to take the cost of memory operations into account when selecting this
execution unit.

The decision rule may be predetermined for a specific configuration of the computing
platform, and may take for example the maximum number of parallel threads that can be spawned for
each execution unit into account. The decision rule may also exclude or include a specific execution
unit taking the complexity of the task to be performed into account, e.g. a set of instructions may
comprise too much branches or nested loops to be executable on a specific execution unit or the set of
instructions needs to operate on a block of data which is too large to fit into a memory accessible to a
specific execution unit. The decision rule may also take global runtime parameters into account, for

example, a specific execution unit may already have a full command queue.

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

18

The command queue 35 for a CPU may for example be implemented using event wait handles
and synchronization, as is known in the art. For other execution units, e.g. a GPU, the command queue
35 may require a more complex implementation. For example, OpenCL may be used for interfacing
with the GPU, as it already supports command queuing, e.g. once data dependencies for a block of
code are resolved, it suffices to pass the dependencies to the OpenCL runtime, and the code block
invocation, e.g. a kernel function corresponding to a set of instructions in the intermediate computer
code object, can be added to the command queue. However, the command queue 35 for a GPU may
also be implemented on the CUDA platform, e.g. by implementing an additional mapping to CUDA
streams.

In embodiments according to the present invention, the decision rules may be based on
evaluation of parameters as described above. Below two examples of decision rules are described, as
can be used in embodiments of the present invention, the invention not being limited thereto.

In the first example it first is checked whether the GPU memory manager has sufficient space to transfer
the kernel functions arguments to the GPU memory. It may be possible that the kernel function is
referring to a number of very large memory blocks that do not fit into the GPU memory. In the example,
to avoid insufficient GPU memory, the choice is to run the kernel function on the CPU. However, other
choices are also possible. One alternative is performing a GPU memory compaction (due to compaction,
some additional memory could be freed which could enable the kernel function to run on the GPU)
Another alternative is using a memory eviction technique (with an eviction policy, e.g. least recently
used first). With this technique, memory blocks that reside in the GPU memory are copied back to the
CPU memory, so that additional memory becomes available for this kernel function. Still a further
alternative is performing a host memory mapping. It is possible to map CPU host memory to the
address space of the GPU. The memory access times are then rather high, nevertheless these
technique may be useful for kernel functions that use huge matrices (e.g. 1024x1024x1024 in double
precision format).

Note that all of these alternatives have their own associated cost. During the evaluation of the decision
rule, cost estimates of these techniques can be included to guide the decision. For simplicity, in the
example, one just runs the kernel function on the CPU in case there is insufficient GPU memory. Next,
one compares the complexity level (parameter 1) of a kernel function to a first threshold and also the
product of the dimensions of the kernel function (parameter 4) to a second threshold. When both
parameters are smaller than the corresponding thresholds, we are sure that we are dealing with a
light-weight kernel function with limited parallelism. In this case, the preferred choice would be to run
the kernel function on the CPU. However, there is a memory transfer cost associated to this choice.
Note that some input arguments of the kernel function may be stored in the CPU memory, others may
be stored in the GPU memory (or both). To calculate the memory transfer cost, one can inspect each

variable individually (which requires both run-time and compile-time information):

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

19

* run-time information: e.g., the dimensions of the matrix, whether it is currently stored in the CPU or
GPU memory (dirty flags etc).

e compile-time information: the data type of the variable, but also the read/write mode of the variable
and/or the update regions. For example, in case a variable representing a matrix is used in write-mode
and it is sure that all elements of the matrix are overwritten (this may be checked at compile-time), the
original matrix data may be discarded, eliminating the need for data transfers.

Some variables need to be transferred from the GPU to the CPU, other variables need to be
transferred from the CPU to the GPU. The function Mem_transfer_bytes calculates the total number of
bytes that needs to be copied in one direction, thereby taking the “dirty” flags of the variable into
account (e.g. when the variable is stored in both the CPU and the GPU memory and the flag indicates
that the variable is non-dirty, there is no need to transfer this block). Using this information, we
calculate the difference between the memory transfer times (parameter 8) for copies from GPU to CPU
and from CPU to GPU. This is done using some constants Avg_transfer_rate (GPU to CPU) and
Avg_transfer_rate (CPU to GPU) that contain (estimates for) the memory transfer times (i.e.
respectively read and write times to the GPU). These parameters can be obtained in advance (e.g. by
measuring the time it takes to copy N bytes to/from the GPU). In case the difference Delta is smaller
than a given threshold T_Deltal, the decision is to run the kernel function on the CPU. Note that the
threshold T_Deltal can be larger than 0 to accommodate for the fact that we know that we are dealing
with a light weight kernel function, i.e. we know that the GPU will not bring a lot of performance
benefits anyway. In the other case (the data dimensions or the kernel complexity are sufficiently high),
the kernel function is a candidate to be executed on the GPU. Then, one calculates the occupancy of
the kernel function. The occupancy indicates how many warps will be active compared to the total
number of supported warps on the GPU. The occupancy is calculated using a number of GPU
parameters (such as the number of registers used by the function, the amount of shared memory, but
also the data dimensions and the block dimensions). All of these parameters are available at run-time.
In case this number is too low (e.g. due to the large amount of shared memory being used), it can be
useful to run the kernel function on the CPU anyway. In this case, one again checks the memory
transfer times a threshold, T_Delta2. By way of illustration, the example of how the decision rule is
implemented is shown in FIG. 5.

As a second example, the sizes of the command queues of the CPU and GPU can be taken into account.
First one compares the complexity level again to threshold, as well as the product of the data
dimensions prod{(dims) and the code length. The memory transfer time check from the first example is
omitted in the present example, but can also be included. After calculation of the occupancy, and in
the scenario that we are dealing with a kernel function that is sufficiently computationally intensive,
one checks the sizes of the CPU and the GPU command queues. In this example, one takes the total

number of kernel functions that are scheduled to the CPU and the GPU command queues, however,

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

20

this may also be an estimate of the load of the CPU and GPU command queues (e.g. calculated through
the data dimensions and complexity levels of the kernel functions that are already scheduled). One
compares the differences of the sizes of the command queues to a threshold T_size. Finally, the
memory transfer times are checked, in order to make a final decision. An implementation of how such
a decision rule can be implemented is shown in FIG. 6.

The runtime scheduler 26 may furthermore interface with a memory manager 25 for
automated memory allocation in order to provide data for being processed by the execution of each of
said at least one set of instructions to the corresponding target execution unit. For example, the
program product 31 may be configured to operate on a computing platform consisting of a computer
comprising two GPU’s with different memory location or a plurality of CPU cores and one or more
GPU’s. This configuration may for example be effected by setting the program product up to link with a
CPU computation engine and a CUDA computation engine. The memory manager 25 may provide
memory allocation operations in the shared RAM memory accessible to the CPU and the graphics RAM
accessible to the GPU. The memory manager 25 may further transfer data structures between both
memories when the runtime scheduler detects a data dependency of a first set of instructions targeted
for execution on, for example, the CPU, and a second set of instructions targeted for execution on, for
example, the GPU. The memory manager may also be adapted for keeping track of multiple copies, e.g.
in different memories, and synchronizing copies to the most recently updated version when the need
arises. The memory manager may also be adapted for garbage collection and/or for freeing up
memory for a specific execution unit by moving data which is not currently in use by the specific
execution unit to a memory associated with a different execution unit.

The memory manager may provide automated memory allocation, such that, for example
translations between hardware-specific data representations suitable for different execution units are
carried out automatically, and without requiring specific instructions in the intermediate computer
code object to perform such operations.

Embodiments of the present invention have the advantage that the user, e.g. the
programmer, does not have to manually copy data between memories allocated to a first execution
unit, e.g. the CPU, and a second execution unit, such as a GPU. It is known in the art that explicitly
programming such operations can be tedious, e.g. for object graphs with pointers. For example,
without such automated memory management, data objects, which may be fragmented in memory,
could require several memory block copies having an associated time cost and/or complex constructs
of reference pointers need to be traversed in the source memory and mirrored in the target memory.
Furthermore, hardware or low-level software constraints may require a substantially different data
organisation for the target device than which was in use for the source device.

Embodiments of the present invention also have the advantage that the user, e.g. the

programmer, does not need to specify which blocks of code, e.g. kernel functions, can be executed in

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

21

parallel and which needs to be executed serially. Thus, an efficient use of time can be achieved during
programming. Furthermore, in the development process, data dependencies may change, thus would
require a re-evaluation of concurrency properties, and could possibly lead to dependency bugs, in a
conventional system. This disadvantage is therefore also overcome by embodiments of the present
invention.

Since embodiments of the present invention may provide automatic memory management, a
good use of memory resources may be obtained. For example, manual memory management may be
difficult and could lead to simple yet wasteful memory pre-allocation practices. Furthermore, manual
memory management can easily lead to memory leaks that are difficult to detect and correct.

When a set of instructions, e.g. a kernel function, is launched, the runtime scheduler 26 may
create an object representative of a command and inspect the data structures associated with this
command, e.g. operands passed to the kernel function. The data objects corresponding to these data
structures in a memory accessible to the target execution unit selected for the execution of this set of
instructions may then be pinned to prevent this data object from moving or de-allocating during
execution. This pinning may comprise adding a flag to a memory block in a memory structure allocated
for use by the memory manager 25, the flag indicating that the referenced memory block may not be
moved or de-allocated. Such memory pinning arrangements are well-known in the art, e.g. used in
many operating systems for virtual memory management. For example, CUDA also supports a similar
arrangement in which CPU memory is pinned to provide CPU host memory access to a GPU via direct
memory access (DMA).

However, the runtime scheduler may provide object-level pinning, as opposed to the memory
management level, because a single object may have multiple copies in separate memory spaces, e.g.
corresponding to different execution units. Thus an object may be pinned or unpinned, e.g. flagged or
unflagged, for one or more devices. For example, for a configuration comprising a single CPU having a
dedicated system memory and a single GPU having a dedicated device memory, an object can be
pinned: in device memory when in use by the GPU, in system memory when in use by the CPU, in both
memories when used in parallel by CPU and GPU (e.g. when only read operations are performed), or
can be unpinned in both memories when not in use. In the latter case, the memory manager may
move a copy of the object within one of the memories, e.g. for compacting memory blocks, or may
move the object between the memories, e.g. to make it available to the GPU when the copy in CPU
memory was more recently updated.

A flag used for pinning may also comprise a read / write indicator. For example, when a write
indicator is set for the device memory, a memory copy to the system memory should be carried out
when the CPU needs to operate on the data object. While, when a read only inductor is set, this

operation is hot necessary.

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

22

Furthermore, the pinning system may be implemented in a hierarchical manner, such that for
an object graph, pinning of all individual nodes of the graph is avoided by using parent node pinning.

When a set of instructions is launched, the runtime scheduler 26 may create an object
representative of a command, and the object pins of the data objects associated to the set of
instructions, e.g. the operands passed to the function call, may be linked to the command object such
that the scheduler may track the data dependencies. Furthermore, each object may have an associated
list of commands in which the data participates. Thus, when a set of instructions is launched, e.g. a
kernel function, the dependencies between the commands in the command queue 35 can be easily
determined, by inspecting the list of commands associated with the object pins. Furthermore, by
inspecting the read / write accesses of the objects, the scheduler may determine whether a concurrent
or serial execution of the command is appropriate. For example, subsequent read accesses to an object
can be aggregated, since they do not introduce a new data dependency. Furthermore, read after write
(RaW), write after read (WaR) and write after write (WaW) operations on an object need to be
serialized, such that a new data dependency is introduced.

In a third aspect, the present invention also relates to a second computer program product,
e.g. a functionally interrelated product to the first computer program. This second computer program
product may for example be a software compiler. The second computer program product, e.g. the
compiler, and the first computer program product, e.g. a runtime execution interpreter, according to
embodiments form a pair of interrelated products, e.g. complement each other and work together.
Particularly, the second computer program product according to embodiments may be used to, e.g.
may be adapted for, generate an intermediate computer code object comprising at least one set of
instructions, e.g. at least one sequence of instructions, each such sequence forming a coherent code
block such as a function or routine, and accompanying metadata corresponding to this at least one set
of instructions, while the first computer program product according to embodiments may be used to,
e.g. may be adapted for, execute this intermediate computer code object on a computing platform.
Thus each computer program product is linked via the intermediate computer code object which
allows efficient platform-independent compilation while still enjoying platform-dependent optimized
execution on a computing platform comprising a plurality of execution units which may have mutually
substantially distinct architectures and therefore mutually distinct capabilities and relative
performance strengths and weaknesses with respect to each other.

FIG. 4 illustrates an exemplary second computer program product 41 according to
embodiments of the present invention. The second computer program product 41 for generating an
intermediate computer code object comprises an input component 42 for obtaining a computer
program code specified in accordance to a high-level programming language specification. This high-
level programming language may for example comprise C++, pascal, BASIC, smalltalk, or even a very

high-level programming language (VHLL). Such high-level programming language may be extended in

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

23

order to take advantage of all features of the second computer program product, e.g. by #pragma
directives or additional keywords not defined in the language standard. However, the high-level
programming language may also be specifically designed to take full advantage of the features of the
present invention, e.g. to provide native variable classes which provide a high portability and/or
specific control structures for parallel and/or distributed systems such as parallel-for loops.

The second computer program product 41 further comprises a compiler component 43 for
compiling the computer program code into an intermediate computer code object comprising at least
one set of instructions corresponding to a task to be performed. This intermediate computer code
object may for example be a byte-level code for an abstract machine. For example, the source code of
a program is translated into a form more suitable for code-improving transformations before being
used, e.g. by a first computer program product according to embodiments of the present invention, to
generate machine code for a target processor during runtime. The intermediate language to which the
intermediate computer code object confirms may for example have one fundamental operation
corresponding to each instruction, where a fundamental operation may relate to a, possibly
computationally involved, operation, such as a matrix multiplication. Such intermediate computer code
may furthermore be defined without directly specifying typical low-level operations such as register
manipulation or instruction pointer manipulation.

The second computer program product 41 further comprises an analysis component 44 for
annotating each of the at least one set of instructions with a plurality of metadata descriptors
representative of a corresponding plurality of complexity measures characterizing the at least one set
of instructions, e.g. representative of the complexity of the task to be performed. For example, the
analysis component 44 may be adapted for determining the plurality of metadata descriptors
representative of at least a measure related to conditional branches, backward jumps, dynamic
memory allocation, indirect function calls and/or thread synchronization. It is to be noted that this
complexity metadata may be highly machine-independent, e.g. may characterize aspects related to
complexity of a task to be executed without taking machine-specific performance characteristics into
account. Such complexity metadata may for example relate to:

- the number of instructions required to perform the task,

- the presence, number and/or nesting depth of execution loops required,

- the presence, number and/or nesting depth of conditional branches required,

- the presence, number or depth of recursive statements,

- the use of dynamic memory allocation,

- the static and/or dynamic memory storage space requirements, and/or

- the use of indirect function references, object inheritance, dynamic object dispatching,

abstract data types, object encapsulation and/or open recursion.

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

24

The above described method embodiments for executing an intermediate computer code
object may be implemented as software in a processor. One configuration of such a processor may for
example include at least one programmable computing component coupled to a memory subsystem
that includes at least one form of memory, e.g., RAM, ROM, and so forth. It is to be noted that the
computing component or computing components may be a general purpose, or a special purpose
computing component, and may be for inclusion in a device, e.g., a chip that has other components
that perform other functions. Thus, one or more aspects of the present invention can be implemented
in digital electronic circuitry, or in computer hardware, firmware, software, or in combinations of
them. For example, each of the method steps of the method for executing an intermediate computer
code object may be a computer implemented step implemented as one or a set of instructions. Thus,
while a processor as such is prior art, a system that includes the instructions to implement aspects of
the methods for executing the intermediate computer code object is not prior art.

The present invention thus also includes a computer program product which provides the
functionality of any of the methods according to the present invention when executed on a computing
device.

Vice versa, the computer program products described above may be implemented as
hardware in computing devices. Alternatively, the computer program products may be implemented
as computer-implemented methods and the present invention therefore also relates to the
corresponding computer-implemented methods.

In another aspect, the present invention relates to a data carrier for carrying a computer
program product as described above. Such a data carrier may comprise a computer program product
tangibly embodied thereon and may carry machine-readable code for execution by a programmable
processor. The present invention thus relates to a carrier medium carrying a computer program
product that, when executed on computing means, provides instructions for executing any of the
methods as described above. The term “carrier medium” refers to any medium that participates in
providing instructions to a processor for execution. Such a medium may take many forms, including
but not limited to, non-volatile media, and transmission media. Non-volatile media includes, for
example, optical or magnetic disks, such as a storage device which is part of mass storage. Common
forms of computer readable media include, a CD-ROM, a DVD, a flexible disk or floppy disk, a tape, a
memory chip or cartridge or any other medium from which a computer can read. Various forms of
computer readable media may be involved in carrying one or more sequences of one or more
instructions to a processor for execution. The computer program product can also be transmitted via a
carrier wave in a network, such as a LAN, a WAN or the Internet. Transmission media can take the form
of acoustic or light waves, such as those generated during radio wave and infrared data
communications. Transmission media include coaxial cables, copper wire and fibre optics, including the

wires that comprise a bus within a computer.

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

25

Claims

1.-

A computer-implemented method (1) comprising:

- obtaining (2) an intermediate computer code object comprising at least one set of instructions
corresponding to a task to be performed, the intermediate computer code object further
comprising for each of said at least one set of instructions one or more of metadata descriptors
representative of at least a complexity measure of said task to be performed, said intermediate
computer code object being machine-independent and

- executing (4) at run-time said intermediate computer code object on a computing platform
comprising at least two different execution units having a memory with a different memory
location, said executing at run-time comprising selecting (6) for each of said at least one set of
instructions a target execution unit from said plurality of execution units, said selecting taking into
account the one or more of metadata descriptors and a decision rule relating said plurality of
complexity measures to a performance characteristic of the plurality of execution units.

The computer-implemented method according to claim 1, wherein the at least two different
execution units are a central processing unit CPU and a graphical processing unit GPU.

The computer-implemented method according to claim 1, wherein the at least two different
execution units are graphical processing units GPU’s having a memory with a different memory
location.

The computer-implemented method according to any of the previous claims, wherein the
corresponding plurality of complexity measures is obtained by at least analyzing the intermediate
code.

The computer-implemented method according to any of the previous claims, wherein said one or
more metadata descriptors are representative of a corresponding plurality of complexity
measures of said task to be performed.

The computer-implemented method according to any of the previous claim, wherein said
intermediate computer code object is obtained (2) in an execution unit independent intermediate
format.

The computer-implemented method according to any of the previous claims, in which executing
(4) the intermediate computer code object comprises determining (5) whether a first set of said at
least one set of instructions and a second set of said at least one set of instructions can be
executed concurrently.

The computer-implemented method according to any of the previous claims, in which executing
(4) the intermediate computer code object comprises providing (7) automated memory allocation
to provide data for being processed by the execution of each of said at least one set of instructions

to the corresponding target execution unit.

WO 2015/150342 PCT/EP2015/056933

10

15

20

25

30

35

9.-

10.-

11.-

12.-

13.-

14.-

26

The computer-implemented method according to any of the previous claims, in which executing
(4) the intermediate computer code object comprises translating (8) each of the at least one set of
instructions to a machine level format executable by the corresponding target execution unit.
The computer-implemented method according to any of the previous claims, in which obtaining
(2) the intermediate computer code object comprises compiling (11) the intermediate computer
code object from a computer program code specified in accordance to a high-level programming
language specification and/or in which obtaining (2) the intermediate computer code object
further comprises for each of said at least one set of instructions determining (12) the one or more
of metadata descriptors representative of the corresponding plurality of complexity measures.

The computer-implemented method according to any of the previous claims, wherein the one or
more metadata descriptors are one or more parameters determinable at compiler level and
expressing a complexity of a kernel function of the intermediate computer code object.

The computer-implemented method according to any of the previous claims, wherein said
selecting also takes into account one or more of a code length, a product of data dimensions, a
product of GPU block dimensions, a total number of GPU blocks, a number of assigned CPU
threads, a memory transfer time, a GPU occupancy, a size or load of CPU and GPU command
queues or an overall load of CPU and GPU queues.

A first computer program product (21) for executing an intermediate computer code object, the
first computer program product comprising:

- an input component (22) for obtaining an intermediate computer code object comprising at
least one set of instructions corresponding to a task to be performed, the intermediate computer
code object further comprising for each of said at least one set of instructions one or more of
metadata descriptors representative of a corresponding plurality of complexity measures of said
task to be performed, and

- a run-time component (23) for executing said intermediate computer code object on a
computing platform comprising at least two different execution units having a memory with a
different memory location,

wherein the run-time component (23) comprises a selection unit (24) for selecting for each of said
at least one set of instructions a target execution unit from said at least two execution units, said
selecting taking into account the one or more of metadata descriptors and a decision rule
relating said plurality of complexity measures to a performance characteristic of the at least two
different execution units.

The first computer program product according to claim 13, wherein the run-time component (23)
furthermore comprises a memory manager unit (25) for automated memory allocation and/or a

run-time scheduler unit (26) adapted for determining (5) whether a first set of said at least one

10

15

20

WO 2015/150342 PCT/EP2015/056933

15.-

16.-

17.-

27

set of instructions and a second set of said at least one set of instructions can be executed
concurrently.

A second computer program product (41) for generating an intermediate computer code object,
the second computer program product comprising:

- aninput component (42) for obtaining a computer program code specified in accordance to a
high-level programming language specification,

- a compiler component (43) for compiling the computer program code into an intermediate
computer code object comprising at least one set of instructions corresponding to a task to be
performed, and

- an analysis component (44) for annotating each of said at least one set of instructions with
one or more of metadata descriptors representative of a corresponding plurality of complexity
measures of said task to be performed.

The second computer program product (41) according to claim 15, in which the analysis
component (44) is adapted for determining the one or more metadata descriptors representative
of at least a measure related to conditional branches, backward jumps, dynamic memory
allocation, indirect function calls and/or thread synchronization.

A data carrier comprising a set of instructions for, when executed on a computer, executing
intermediate computer code object on a computing platform comprising at least two different
execution units having a memory with different memory location according to a method

according to any of the claims 1 to 12.

WO 2015/150342 PCT/EP2015/056933

1/4

2 —|

11—

12—

obtaining code object comprising
sets of instructions and associated complexity metadata

executing code object on heterogeneous platform

selecting for each set of instructions a target execution unit
using metadata and decision rule

__

2 ——
T L 25
Co T 11— 26

23

21
FIG. 2

WO 2015/150342 PCT/EP2015/056933

2/4

CPU thread (host}

Computation device
— | Memory Manager for {CPU, CUDA, OpenCL)

computation device

1l

Ohject manager

257

|
2 il
~
5 /’ Runtime scheduler Command Queue
6

[\

][] 33 \35 \

‘Computalion device abstraction layer

] 32 "\
‘ Interpreter / Execution engine /

34

21

FIG. 3

42 —

43

| 44
/!
41

FIG. 4

PCT/EP2015/056933

WO 2015/150342

3/4

M BA U0 BITOBES 01 LUS8IDIEIs RIDIM

jpus
jipua
jipua
ey JEERIV = 1981e3
aEla
M) MV = 1881w

RUB 1 > BRI

ndp eqy uo

m.ﬁ lenﬁww%u # %

{
M ;

pﬁwmmﬁ mmaﬁ Tiepsuwly wWapy
7 IapEuely Emw& =
OBt Yl ‘
,mumm&ﬂu%w!uw uednoso 31
{suprp¥1g - swEp wm_m&umx”_,mwm,mmmuu@umwu = Aouednoso

Oy PUY U0 BOTINS8 X

IBpIsTon fmn ose CMo] ooy g1 doumednooc eul 31 Aouwdnoso syl AYEINDIED

as[a
Jipue

Ny % CIATMVL = edauy

el &L > wie(3t

{[Er—dnieiss sejsurls Favy = [P0 © sBiwisendyg rejsuwyy wapy
— {err-ngnieiwl alsuwniy Hay mdmwmw I\Wmﬁ *g8rwis _wim Trejsuwly ma = wilagy
Sl S T FEIEURIY AXOEISND 81 awﬁmmﬁr %
Ay BT P WOIROUN] mmm.m;wm JyEtes 1]
sEHIp L, ﬁmﬁmwmwmh& WY O OL > 1948] mfvﬂ_mmﬁ& mnmmmm
% CHYL = 1ediEy
{eBreonwds jusisging- IaFeIRNr AlouIeum “ndE] 11

NdD #4101 %

gyusnTE Iy ByYL Jo e Edoo o9 lsowem JuUsIIIINE BI Blougy T HaaUTy

Ml BT U0 9Inoexs 01 A1RYI[Bre aan W

; - B i 8 g v im
Aomednooy 5 EOC TEiE fmmp

smipyig Csmp o sdaw

FIG.5

PCT/EP2015/056933

WO 2015/150342

4/4

Mwﬁmmwl.wﬁwuw Biel IBjEUEl w
(D Ndneies” iajsuely

00 <= Ngo) Wo) BuIry IBIEUTEY AOvmons

IapIsnoy AUun s

fid} 843 U0 eimIeXs Oy jue

sanp I, M
BT

;

%,

Fao] ool 51 Anuwdnooc Byl e : {ourdnoso
=133
ﬁ_%

L “eieq I Cews

ngmensnbpues o lenenbpoes G swrpy

jipua
jipua
jipua
N [HDUVL = 195183
agls
(D IFEMVL = 195193
BRI < BHAQ 31
LAY * %m#mmw,iﬁwu gdre jsaidg asjsuRiy _mapy
i : w%hﬁwwwww@ I8jsuEdy wWel = B8]
a3 eEmafE) <=

() JE = jedie]

Ipusa
JHEMVEL = 1e81u
mednaso I = Asumdmnono It
Lfowednoonoes = Asuwdnooso
, WO HOIITI0 XS
1 ogwpuafel %

B

£
{sunipylq * sugp ¥

fjeuiey

GE L]

DD JADMVL = 198181

B eIomwl Al8YI] 81 31 ! UWOIloUnj [suisy jyBiesm xwﬁ
ypoad mpy epon 3 > USR] BP0 Y Ty L & [9an] Anxeidmony 31

o1 m TR R "E 1 pesn ElaaumimlEg

L Chmmednoogy L Csmip T ,MW 3 rep(oiEasny,
iy !

aHIwRY

Pgmrp Cosdiw ¢ reuley

6

FIG

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/056933

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/45 GO6F9/455
ADD.

GO6F9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

paragraphs [0061] - [0065]
figure 1

paragraph [0006]
paragraph [0034]
paragraph [0037]
paragraph [0043]
paragraph [0045]
paragraph [0053]
paragraph [0061]

Y US 2013/050229 Al (SONG JEONGIG [KR] ET
AL) 28 February 2013 (2013-02-28)

Y US 2008/276262 Al (MUNSHI AAFTAB [US] ET
AL) 6 November 2008 (2008-11-06)

1-17

1-17

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 May 2015

Date of mailing of the international search report

05/06/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Kamps, Stefan

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2015/056933

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

ET AL) 20 June 2013 (2013-06-20)
paragraph [0022]
paragraphs [0038] - [0041]

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2012/317556 Al (ZHU WEIRONG [US] ET AL) 1-17

13 December 2012 (2012-12-13)

abstract

paragraph [0009]

paragraph [0044]

paragraph [0055]
Y US 2013/160016 Al (GUMMARAJU JAYANTH [US] 1-17

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2015/056933
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2013050229 Al 28-02-2013 KR 20130021172 A 05-03-2013
US 2013050229 Al 28-02-2013
US 2008276262 Al 06-11-2008 AU 2008239697 Al 23-10-2008
CN 101802789 A 11-08-2010
EP 2140352 A2 06-01-2010
EP 2146283 A2 20-01-2010
US 2008276262 Al 06-11-2008
US 2013055272 Al 28-02-2013
US 2013063451 Al 14-03-2013
US 2014201746 Al 17-07-2014
WO 2008127623 A2 23-10-2008
US 2012317556 Al 13-12-2012 US 2012317556 Al 13-12-2012
WO 2012173772 A2 20-12-2012
US 2013160016 Al 20-06-2013 US 2013160016 Al 20-06-2013
WO 2013090788 Al 20-06-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report
	Page 35 - wo-search-report

