PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GO6F 9/44, 17/60 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/42572

13 November 1997 (13.11.97)

(21) International Application Number: PCT/US97/07348

(22) International Filing Date: 1 May 1997 (01.05.97)

(30) Priority Data:

60/016,330 3 May 1996 (03.05.96) us
08/714,205 16 September 1996 (16.09.96) US
(71) Applicant (for all designated States except US): 1-CUBE

[US/US]; 101 Main Street, Cambridge, MA 02142 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): EAGER, Timothy
[US/US]; 813 N. Grandview Avenue, Fullerton, CA
92632 (US). ANAND, Madhav [IN/US]; 812 Memorial
Drive #A1308, Cambridge, MA 02139 (US). ASLANIAN,
Edouard [FR/US]; 345 Manhattan Avenue, Hermosa Beach,
CA 90254 (US).

(74) Agents: SMITH, James, M. et al.; Hamilton, Brook, Smith &
Reynolds, P.C., Two Militia Drive, Lexington, MA 02173
(us).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,
BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT,
UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS,
MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ,
MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE,
SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: ENTERPRISE TRANSITION SYSTEM FOR A DISTRIBUTED INFRASTRUCTURE

D
Wnn-mcmmmc SYSTEM 30
Logis 32
Devalopment
Bavironment

RE-ARCHITECTING SYSTEM 2¢

(87) Abstract

An automated system transitions an entire enterprise to a distributed infrastructure. The system includes a process for organizing and
managing the transition, a multi-tiered client/server architecture that adheres to open systems standards, a system to automate the transition
of existing applications to this architecture, and a system to enable the creation or modification of applications based on this architecture.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Ammenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

israel

lceland

Italy

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugosiav
Republic of Macedonia
Mali

Mungolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
Us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

WO 97/42572 PCT/US97/07348

ENTERPRISE TRANSITION SYSTEM FOR
A DISTRIBUTED INFRASTRUCTURE

Related Applications

This application claims priority to U.S. Application No. 08/714,205 filed on
September 16, 1996 and U.S. Provisional Application No. 60/016,330 filed on May
3, 1996, the teachings of which are incorporated herein by reference in their

entirety.

Background
Corporations characteristically use applications executing on computer

systems to automate their business functions. The applications typically contain
parts that deal with the user interface, parts that deal with business processes, parts
that deal with programming logic, and parts that deal with data. The applications
are typically built to operate on a single computer platform. In this context, a
computer platform includes the programs, or software, to perform the various tasks
required of a computer, as well as the machine, or hardware, that hosts these
programs.

Given the large amount of business functions that need to be automated
within a corporation, applications are often centralized on one single platform.
From a hardware point of view, such platforms include large and powerful
computers such as mini-computers or mainframes. On the software side, such
platforms often take the form of all-encompassing environments that meet all of the
application development needs, such as Information Management System/Virtual
Storage (IMS/VS) from International Business Machines Corporation (IBM). In the

IMS/VS model, the various conceptual layers constituting an application are bundled

10

15

20

25

30

WO 97/42572 PCT/US97/07348
-2-

together in one single piece or a small number of inter-dependent pieces. This

single-tier model is well understood, reliable, and secure. It facilitates control and

limits overhead.

The proprietary nature of the host platform, however, leads to severe
economic disadvantages. Initial platform costs are sizable, and subsequent growth is
limited by the capacity of the hardware and software components of the platform
that hosts the application. Furthermore, application maintenance and enhancement is
a complex and cumbersome process. Application users are removed from
application developers, increasing the gap between requirements and implementation.
Changes to one part of the application also require compatible changes to the other
parts of the application. Finally, data access and communication standards are
limited to those supported by the host platform.

The advent of desktop computing in the form of the personal computer
provides an initial solution to the above problems by enabling corporations to depart
from the centralized platform model. To maximize the usage of their computer
resources, applications can be distributed among different platforms. This
distributed system approach can take many forms, the most widespread of which is
known as the two-tiered client/server architecture. This two-tiered model divides
the application between two platforms: a client and a server. At a high level, clients
and servers are software concepts. A client makes requests from servers, while
servers provide adequate services to fulfill client requests. Client hosts are typically
personal computers, while server hosts are typically mini-computers or mainframe
computers.

In the client/server model, the presentation part of the application is usually
located on the client platform and the data part of the application is found on the
server platform, with the business process and functionality parts of the application
merged into either of the other two layers. This model is more economical than the
single-tier model, with less or no hardware lock-in. The division into two tiers is
also more flexible to user interface changes. On the other hand, the proprietary

nature of the platform is still present at the level of the software.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

Summary of the Invention
Even in the two-tiered client/server model, the mixing of functionality with

either presentation or data still leads to complicated code changes. Also, data access
and communication standards are still limited. Furthermore, enterprises have no
facilities to transition their existing infrastructure to a distributed computing model.

A preferred embodiment of the invention includes a system to transition an
entire business enterprise to a distributed infrastructure. The distributed
infrastructure is preferably a multi-tiered client/server target architecture that
adheres to open system standards. The multi-tiered architecture preferably includes
at least four layers including a separate process control layer and functionality layer.
The process control layer includes a state router to control work flow in accordance
with the business procedures of the enterprise. The functionality layer includes
modules for performing the work. The architecture also preferably includes a
presentation layer for interfacing with a user, and a data retrieval layer for accessing
data stored in a separate data storage layer.

A transition of an entire business enterprise to a distributed infrastructure
based on the new architecture is performed using a process for organizing and
managing the transition. Notably, this requires that each legacy (source) application
be identified and prioritized. For each source application, there are a range of
available transition choices, including the option of translating the source application
to the new target architecture without changing any of the existing functionality and
the option of re-engineering the source application by changing the existing
functionality. The source application may also be replaceable by a commercial
product or a custom application written in-house. The source applications are then
transitioned in order of priority to the new architecture.

Specifically, a preferred system in accordance with the present invention
includes the automated capability to translate existing source applications into new
target applications on a multi-tiered client/server architecture. The translation of
source applications to target applications includes the conversion of user interfaces,

procedural languages, and data definitions. These conversions use a two-phase

10

15

20

25

WO 97/42572 PCT/US97/07348

-4 -
process where source program components written in the source languages are first
translated to components in a common intermediate language. The intermediate
language components are then translated to target program components in the target
languages. By using a common intermediate language, only one translation module
is required for each source and target language.

A preferred system in accordance with the present invention further includes
a facility to create a new application based on the multi-tiered client/server
architecture and to modify an existing application that already uses this multi-tiered

client/server architecture.

Brief Description of the Drawings

The foregoing and other objects, features and advantages of the invention,
including various novel details of construction and combination of parts will be
apparent from the following more particular drawings and description of preferred
embodiments of a system to transition an enterprise to a distributed infrastructure in
which the reference characters refer to the same parts throughout the different
views. It will be understood that the particular apparatus and methods embodying
the invention are shown by way of illustration only and not as a limitation of the
invention, emphasis instead being placed upon illustrating the principles of the
invention. The principles and features of this invention may be employed in various
and numerous embodiments without departing from the scope of the invention.

FIG. 1 is a high level block diagram of a system embodying the invention.

FIG. 2 is a functional block diagram of the interrelationships of FIG. 1.

FIG. 3 is a schematic block diagram of a process for managing the transition
of an entire enterprise to a distributed infrastructure.

FIG. 4 is a schematic diagram of the presentation layer 110 of FIG. 1.

" FIG. S is a schematic diagram of a sample mapping between application user
interface representation structures 116 and display platform user interface

representation structures 118.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-5-
FIG. 6 is a block diagram of the operational modules of the user interface
engine 117 of FIG. 4.
FIG. 7 is a schematic diagram illustrating the business process layer 120,
functionality layer 130, and data access layer 140 of FIG. 1.
FIG. 8 is a block diagram of the business process layer 120 of FIG. 1.
FIG. 9 is a flow diagram of the communication mechanism between the user
interface engine 117 and the state router 122.
FIG. 10 is a flow diagram of the operations of a particular preferred state
router 122 of FIG. 8.
FIG. 11 is a block diagram of the functionality layer 130 of FIG. 1.
FIG. 12 is a block diagram of the data access layer 140 of FIG. 1.
FIG. 13 is a block diagram of the data storage layer 150 of FIG. 1.
FIG. 14 is a schematic diagram of a hardware platform for the data storage
layer 150 of FIG. 19,
FIG. 15 is a block diagram of the control layer 160 of FIG. 1.
FIG. 16 is a block diagram of the user interface conversion utility 210 of
FIG. 1.
FIG. 17 is a flow diagram of the procedural language conversion utility 220
of FIG. 1.
FIG. 18 is an exemplary source code fragment.
FIG. 19 is a block diagram of the first phase transformer program 224 of
FIG. 17.
FIG. 20 illustrates in FIGs. 20A-20B a parse tree for the source code
fragment of FIG. 18.
FIG. 21 is an intermediate language file for the source code fragment of
FIG. 18.
FIG. 22 is a block diagram of the second phase transformer program 22 of
FIG. 17.
FIGs. 23A-23B are C and C+ + target code fragments there being source
code fragment of FIG. 18.

10

15

20

25

WO 97/42572 PCT/US97/07348
-6-
FIG. 24 is a block diagram of the data definition language conversion utility
230 of FIG. 1.
FIG. 25 is a block diagram illustrating a schema conversion.
FIG. 26 is a block diagram of a converter 235a, 235b of FIG. 25.

FIG. 27 is a block diagram of the data converter 236 of FIG. 24.
FIG. 28 is a block diagram of the graphical user interface editor 310 of FIG.

FIG. 29 is a block diagram of the graphical business process editor 320 of
FIG. 1.

FIG. 30 is a block diagram of the graphical business object edito8r 330 of
FIG. 1.

FIG. 31 is a block diagram of the graphical data record editor 340 of FIG. 1.

FIG. 32 is a block diagram of the logic development environment 350 of
FIG. 1.

FIG. 33 is a schematic block diagram of the facilitation tools 360 of FIG. 1.

Detailed Description of the Preferred Embodiment

FIG. 1 is a high level block diagram of a system embodying the invention.
As shown, the system 1 includes a multi-tiered architecture 10, a re-architecting
system 20 for converting source applications of an enterprise to target applications
on the multi-tiered architecture 10, and a re-engineering subsystem 30 for custom
application development or re-engineering.

A preferred multi-tiered architecture 10 of the present invention comprises at
least four separate layers. As illustrated, the architecture 10 includes at least one
presentation layer 110, one separate business process layer 120, one separate
functionality layer 130, one separate data access layer 140, one separate data storage
layer 150, and one separate control layer 160, all inter-connected through
communication links 170. The data storage layer 150 preferably includes a user
interface repository 152, a business process repository 154, a business object

repository 156, and a data record repository 158 for storing data.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-7 -

A preferred re-architecting system 20 includes a user interface conversion
utility 210, a procedural language conversion utility 220, and a data definition
language conversion utility 230. The procedural language conversion utility 220 is
in communication with the functionality layer 130 and the data access layer 140 of
the multi-tier architecture 10. The user interface conversion utility 210 is in
communication with the user interface repository 152 and the data definition
language conversion utility 230 is in communication with the data record repository
158.

A preferred re-engineering system includes a graphical user interface editor
310, a graphical business process editor 320, a graphical business object editor 330,
a graphical data editor 340, a logic development environment 350, and facilitation
tools 360. The logic development environment 350 is in communication with the
functionality layer 130 of the multi-tier architecture 10. The graphical user interface
editor 310, the graphical business process editor 320, the graphical business object
editor 330, and the graphical data record editor 340 are in communication with the
user interface repository 152, the business process repository 154, the business
object repository 156, and the data record repository 158, respectively.

Even though the re-engineering system 30 is an integral part of the overall
system of the present invention, it is not part of the actual transition of an enterprise
to a distributed infrastructure. Instead, the re-engineering system 30 enables the
enterprise to maintain and enhance its distributed infrastructure once the transition
itself is complete.

In its simplest form, a host for all the layers can be a single platform. At the
other end of the spectrum, each layer can be hosted on a different platform. In the
spirit of distributed systems, a preferred embodiment of the present invention hosts
each layer on a separate platform, both in terms of hardware and software. In a
preferred embodiment of the present invention, the architecture 10 supports both
custom-developed applications as well as application converted from a legacy
system. The IMS/VS legacy environment is used herein to illustrate, but not limit,

architectural concepts that pertain to a converted legacy application.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-8-

FIG. 2 is a functional block diagram of the interrelationships of FIG. 1.
Conceptually, the user interface translator 210 and the graphic user interface editor
310 affect the presentation layer 110 of the multi-tiered architecture 10. The
graphical business process editor 320 affects the business process layer 120. The
procedural language conversion utility 220, the graphical business object editor 330,
and a logic development environment 350 conceptually affect the functionality layer
130. The procedural language conversion utility 220 also conceptually affects the
data access layer 140. The data definition language translator 230 and the graphical
data record editor 340 conceptually affect the data storage layer 150.

FIG. 3 is a schematic block diagram of a preferred process for managing the
transition of an entire enterprise to a distributed infrastructure. Preferably, the
transition management process 40 includes a series of high level serial stages,
including an implementation strategy stage 42, an implementation planning stage 44,
a system implementation stage 46, and an operation stage 48. As the transition
management process 40 proceeds from the implementation strategy stage 42 through
to the operation stage 48, the amount of operations support required by the legacy
system decreases and the amount of operations support for the open system
increases, as illustrated.

The implementation strategy stage 42 is a sequence of manual steps embodied
in a Business Case and Implementation Strategy (BCIS) process 422. The BCIS
process 422 determines the business and technology drivers of the enterprise, builds
a business case analysis of the economic feasibility of the transition, and creates an
implementation strategy that provides the basic outline of the organization of the
transition. This can involve studies of the existing and envisioned organization,
infrastructure, and technology, as well as an evaluation of the impact of the
transition in these areas. A study of the organization analyzes methods for
developing the skills necessary for the transition and to manage potential resistance
to change. A study of the infrastructure analyzes the hardware, software, and
network required to support the transition. A technology study analyzes the tools,

architectures, and other technologies necessary for the transition. Although the

10

15

20

25

30

WO 97/42572 PCT/US97/07348

- 9 -
implementation strategy stage 42 is described as a manual process, an expert system
can be employed to perform some or all of the processing.

More specifically, the focus is first to define the current state of the
enterprise, which provides the start point. This start point is defined through an
assessment of the performance of the existing information technology in supporting
current business goals, an assessment of the readiness of the organization to build
and support a new environment, and an assessment of the limitations inherent to the
existing infrastructure.

The next focus is to identify the mission of the enterprise. The mission will
give a good idea of the on-going direction of the enterprise, with which all
undertakings must be aligned. Once the mission is identified, a conceptual vision
for the future of the enterprise is defined, consistently with the mission.

Unlike the mission, the conceptual vision is not continuous, but must be
attained within a predetermined time frame. This conceptual vision provides the
destination point. Given its conceptual nature, the corporate vision must now be
broken down into specific goals or objectives, that are numbered for reference.
Outputs are then associated with each objective, as measurable outcomes that will
clearly indicate the achievement of the associated objective. To secure this
association, outputs are numbered consistently with their corresponding objectives.

Now that a start point, a direction, and a destination point have been defined,
the intermediate steps that lead to each outcome must be delineated. These
constitute the factors that are critical to successful achievement of these outputs, and
are consequently referred to as the Critical Success Factors (CSF). Each output is
given a set of CSFs associated with it, with appropriate numbering for reference.
At this point, a strategy is put into place for achieving all of the CSFs for each of
the outputs. Each strategy is numbered consistently with the output at which it is
meant to arrive. Finally, a set of specific short term action items is associated with
each strategy, as a means to move from the current situation towards the first CSF
for each output. As before, action items are numbered consistently with the CSFs

they are meant to lead towards. The implementation strategy stage 42 provides a

10

15

20

25

WO 97/42572 PCT/US97/07348

-10-
start point for the implementation planning stage 44. The implementation planning
stage 44 includes an Applications and Process Portfolio Analysis (APPA) process
442, followed by a series of Applications Staging and Planning (ASAP) 444
sessions. The APPA process and the ASAP sessions can be performed manually or
with the aid of expert systems.

The intent of the APPA process 442 is to gather and document an inventory
of all the current and envisioned applications and business processes of an
enterprise. The APPA process 442 separates the strategic from the tactical, and for
each one, determines the transition that needs to take place to move from the
existing to the envisioned situation.

The range of transition possibilities include: do nothing, re-architect, re-
engineer, re-architect and then re-engineer, replace by an off-the-shelf commercial
solution, replace by a custom solution built in-house, and integrate. The do nothing
option retains the existing application or process as is. The re-architect option
translates the existing application to the new architecture without changing any of
the existing functionality. The re-engineer option changes the existing functionality
while remaining on the same architecture. The option of combining re-architecting
and re-engineering first translates the existing application into the new architecture,
and then modifies the application functionality in the context of the new architecture.
The option of replacing by an off-the-shelf commercial solution replaces the existing
application with a corresponding application package which is used, with or without
customizatidn, to perform the function of the replaced application. This solution is
not an alternative for strategic applications and processes due to the inherent
strategic nature of such solutions and to the loss of competitive advantage of the
enterprise should these solution be built using tools and methods commercially
available and thus easily reproducible. The option of replacing by a custom solution
built in-house replaces the existing application with a new application built from
scratch, using the new architecture. The integration option combines the various

applications (whether already present, re-architected, re-engineered, purchased, or

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-11-
custom developed) into the new architecture to obtain a coherent infrastructure based
on the new architecture.

Once this inventory is completed, applications and processes are prioritized,
and the planning of the transition can be initiated, starting with the applications and
processes with the highest priority. This transition planning corresponds to the
ASAP process 444, which focuses on a single application or process. The ASAP
process 444 focuses on the details of the existing and envisioned application or
process, evaluates the scope of the transition effort, and prepares a detailed
implementation plan to conduct the transition, including tasks, schedule, and
resources. An ASAP process 444 is thus carried out for each application and
process identified during the APPA process 442, in order of decreasing priority.

Once the implementation planning stage 44 is completed as described above,
the actual implementation stage 46 can be initiated. Depending on the transition
alternative selected for a particular application or process, a different implementation
process may be applied. At the implementation stage 46, multiple applications and
processes can go through the transition in parallel.

A Strategic Application Advancement (SAA) process 461 is an automated
implementation process that focuses on re-architecting. Re-architecting preserves an
application’s core functionality intact, transformed into a multi-tiered client/server
architecture. Re-architecting is often followed by re-engineering to add or change
existing functionality to accommodate new business processes. Re-architecting
involves identifying the business goals, objectives, and processes encompassed by
the system, determining the existing source and desired target architectures, defining
information systems standards, determining infrastructure requirements, performing
the actual conversion, providing any re-engineering required, including design
documentation for re-engineering requirements and technical documentation for re-
architected application maintenance, and empowerment of staff for application
maintenance and enhancements.

A Strategic Applications System Development (SASD) process 463 is a

manual implementation process that focuses on re-engineering or custom

10

15

20

25

WO 97/42572 PCT/US97/07348

- 12 -
development. The SASD process 463 encompasses the design and development of
re-engineered or custom-built multi-tiered client/server applications conforming to
open system industry standards. Re-engineering refers to modifications to an
existing system, usually the product of a prior re-architecting effort. Re-engineering
must take into account the maintainability and performance issues that arise when
attempting substantial changes to an application designed for a Jegacy system and
converted to a multi-tiered client/server architecture. Custom development refers to
the creation of a multi-tiered client/server application from user requirements.
Consequently, custom development follows familiar application life-cycle steps.

A Tactical Applications Planning and Implementation (TAPI) process 467 is a
manual implementation process that focuses on the usage of commercial off-the-shelf
packages. This involves selection and customization of commercial packages to
achieve reusable applications in very short time frames. The TAPI process 467 is
targeted to tactical as opposed to strategic applications, because such applications are
not critical to the competitive posture of the business énd therefore can make use of
available packaged technology without endangering the competitiveness of an
enterprise.

An Open Systems Integration (OSI) process 467 is a manual implementation
process that focuses on integrating applications that are purchased, newly custom
developed, re-architected, or re-engineered to share data and screens. This process
includes the definition of business goals and objectives, the definition of applicable
business processes, the study of application interactions and data relationships, and
the planning of hardware and software infrastructures. The OSI process 467 also
includes the implementation of the integration, including detailed implementation
plan and schedule and detailed requirements and design documentation, user
acceptance testing, comprehensive technical documentation, and empowerment of
support staff for the maintenance phase. One powerful example of integration at the
user interface layer using the OSI process 467 is the creation of a corporate intranet

using internet Hyper-Text Manipulation Language (HTML) or a highly-level

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-1 3 -
language generating HTML, such as Java from Sun Microsystems to provide a user-
friendly, platform independent, common user interface to corporate application.

Implementation also includes a Skills Enhancement and Empowerment (SEE)
process 462 and an Operations Process Advancement (OPA) process 468. The SEE
process 462 focuses on organizational issues during implementation, such as
changing management and personnel training. The OPA process 468 focuses on
operational support of the applications developed by the other implementation
processes, including standardization of tools and processes, infrastructure setup, and
system operation.

Once the implementation stage 46 is completed, the operations stage 48
begins. The operations stage 48 includes a Customer Service and Support (CSS)
process 480, which can include initial or continued application maintenance and user
support, full-size production and operations, and possibly outsourcing of all
information system needs. As mentioned previously, the facilitation tools of the re-
engineering system are available for electronic planning, tracking, and
documentation of all the stages of the transition management process 40.

FIG. 4 is a schematic diagram of the presentation layer 110 of FIG. 1. In its
simplest form, the presentation layer 110 can be implemented using a conventional
personal computer. It can also take the form of an X-terminal, a workstation
console, or a Macintosh style interface display. As shown, the presentation layer
110 includes a processor 111 having the current screen representation, constructed
according to the principles of the present invention. The processor is preferably a
user workstation which includes a display unit through which commands or user
selections can be entered via a keyboard or mouse. The processor 111 also includes
internal or external storage, such as a disk device, from which a user interface
engine is loaded into the memory of the processor 111 as required. For a personal
computer, X-terminal, or workstation having a large main memory storage, the
entire application front-end can remain resident, thereby enhancing system
performance. The storage unit is also used to store presentation layer log files. The

presentation layer 110 can further include a printer 113, connected to the processor

10

15

20

25

WO 97/42572 PCT/US97/07348
- 14 -

111 through a communication link, such as a parallel or serial port. The printer 113

can be used to provide a permanent record of application log files, reports, source

code, or screen listings according to the present invention.

As shown in FIG. 4, the presentation layer 110 includes a user interface
display platform 115, an application user interface representation mechanism 116,
and a user interface engine 117. In a preferred embodiment of the present
invention, the user interface display platform 115 is a conventional Graphical User
Interface (GUI) tool, commercially available. Consequently, the user interface
display platform 115 has its own internal user interface representation mechanism
118 to display the various components of a user interface, usually in a graphical
way.

Preferably, the underlying internal user interface of the user interface display
platforms 115 is preferably derived from a frame-based system. A frame system is
a network of frames and relations, corresponding to the nodes and links of a
mathematical graph. Frame systems are organized in a hierarchy in which the high-
level frames represent more general concepts and the lower frames represent more
specific concepts. At the lowest levels, the frames represent instances of those
concepts. The concept at each frame is defined by a collection of attributes or
properties which can have values and, in this respect, the frames and attributes in a
frame system are comparable to the records and fields in a database system. Each
attribute can have a descriptor associated with it to define the constraints on the
values the attribute accepts. Each attribute can also have procedures or programs
called daemons attached to it which are executed when the value of the attribute is
modified. In such a system, a frame can inherit the attributes or properties of
higher level frames.

A preferred embodiment of the present invention uses a frame-type
representation in an object-oriented organization in which the frames represent
objects. More specifically, the frames representing general concepts are referred to

as classes and those representing specific occurrences of a concept are referred to as

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-15-
instances. In this context, attributes are termed members, and member inheritance
and procedural attachment take place as in a frame system.

In object-oriented systems, however, objects communicate with one another
by sending and receiving messages. When an object receives a message, it consults
its pre-defined answers for messages to decide on what action to take. These
answers can be stored directly with the object or inherited from a higher level object
somewhere in the network hierarchy. Usually, the action involves triggering some
rules, executing procedural code, or sending new messages to other objects in the
system.

Similarly to the display platform user interface representation structures 118,
the application user interface representation structures 116 store descriptive
information representative of the different objects that compose a user interface.
Each object is described by a structure comprising a plurality of fields containing
information representing an attribute of that object or a relétionship between the
object and another object. The user interface engine 117 maps each of the different
objects that compose the user interface of a given application into the corresponding
representations 118 in the user interface display platform 115 of choice for that
application.

On the one hand, the user interface engine 117 requests application user
interface representation structures 116 from the business process layer 120. Once
the business process layer 120 satisfies the request, the user interface engine 117
converts the application user interface representation structures 116 just received into
user interface representation structures 118 that are expected by the user interface
display platform 115 for display to the end user on a display station 111.

On the other hand, when the end user performs an action through the display
station 111, such as selecting an item or modifying information, the user interface
engine 117 translates that user request from user interface display platform
representation structures 118 into the corresponding application user interface
representation structures 116, which are then handed to the business process layer

120 for execution of the end user request.

10

15

20

25

WO 97/42572 PCT/US97/07348

-16-

FIG. 5 is a schematic diagram of a sample mapping between application user
interface representation structures 116 and display platform user interface
representation structures 118. In the figure, the user interface display platform 115
is exemplified as Microsoft Windows 3.x and the display platform user interface
representation structures 117 are thus the internal Windows 3.x management
structures. However, other user interface display platforms 115 using similar
internal structures to manage windows are supported by the exact same user
interface engine 117. Notably, the internet’s world-wide web, based on the HTML
or Java user interface languages, is another example of user interface display
platform 115. Indeed, in a preferred embodiment of the present invention, the user
interface engine 117 is written using Microsoft Visual C+ + and based on the
industry-standard Microsoft Foundations Classes (MFC) class library, which allows
cross-platform development for Windows 3.x, Windows 95, Windows NT, MacOS,
and UNIX-based user interface display platforms 115, including internet web
Servers.

FIG. 6 is a block diagram of the operational modules of the user interface
engine 117 of FIG. 4. The user interface engine 117 includes an initialization
module 117-1, a user input module 117-2, and a state router communications
module 117-3.

During initialization, the user interface engine 117 first initializes its initial
state, setting up any structures necessary for operation. Depending on the
implementation, the user interface engine 117 can then initialize communications
with the business process layer 120, receiving a client identification number.
Depending on the implementation, the user interface engine 117 can also display an
initial application menu or screen, initial objects that are provided by the business
process layer 120.

‘After completing the initialization, the user interface engine 117 continues to
the user input module 117-2. The user interface engine 117 waits for user input and

processes it accordingly. In particular, the user input module 117-2 handles

10

15

20

25

WO 97/42572 PCT/US97/07348
- 1'7 -
interactions with GUI objects and performs application-dependent actions in response
to user inputs.

If the user performs an action that depends on remote processing, however,
processing continues to the state router communications module 117-3. In the state
router communications module 117-3, the user interface engine 117 creates outgoing
application user interface representation structures 116 from the screen data and
packs these structures for delivery to the business process layer 120. Typically, the
outgoing application user interface representation structures 116 contain values of
screen fields which have changed since the previous call to the business process
layer 120. The packed application user interface representation structures 116 are
then sent to the business process layer 120, which returns packed application user
interface representation structure 116 describing the result of the transaction. The
packed application user interface representation structures 116 returned from the
business process layer 120 are then unpacked and processed. Error messages can
then be displayed, the screen can be updated with the results of the transaction, or a
new screen can be shown. As long as the business process layer 120 does not
indicate a fatal error, the user interface engine 117 processing continues (resumes
the wait for user input) at the user input module 117-2 until the user exits the
application.

Most of the user interface engine 117 processing occurs in the handling of
screens: building a screen from a description, processing application-updated values
from the business process layer 120, and sending user-updated values to the business
process layer 120. If a new screen is sent from the business process layer 120, the
current screen is discarded and replaced by the new screen. Communication with
the business process layer 120, and more specifically its main state router
component (described below), is always initiated by the user interface engine 117
because a remote procedure call (RPC) mechanism which interfaces the user
interface engine 117 with the business process layer 120 is preferably unidirectional

and synchronous.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

~-18-

To simulate asynchronous communication using a unidirectional synchronous
RPC model, the user interface engine 117 includes an ability to periodically poll the
state router for messages during the user interface engine’s 117 idle time, namely
when there is no user input to be processed. This functionality is known as idle
message polling.

Essentially, during idle message polling the user interface engine 117 queries
the state router for any initial messages. At the start of an interactive application, a
first screen needs to be displayed to the user. This screen is usually a sign-on, or
logon, screen which contains fields for the user identifier and user password, with
possibly peripheral buttons to change the user password and access help screens. In
addition, other graphics, such as an application logo or wallpaper, might be
decorating the screen. After these initial messages have been processed, resulting in
the display of the logon screen, application menu, and other object for the user to
act upon, the user interface engine 117 waits to process user inputs. If the user
takes no action and idle message polling is enabled, the user interface engine 117
will periodically query the state router for any messages. If message polling is
disabled, the user input loop will continue indefinitely. Using a window mapping
structure, which is preferably a two-way associative array, it is possible for the user
interface engine 117 to allow window control handlers of the user interface display
platform 111 to manage general window operation and make callbacks to the user
interface engine handlers when an action is required, for example, when a button is
pressed.

In a preferred embodiment of the present invention, the user interface engine
117 can process any type of action from any type of screen object, e.g. a button
being pressed, a control gaining the input focus, or the Tab key being pressed.
Typically, when an action is performed, one of two things may happen: the user
interface engine 117 performs some internal function based on the action, or sends
information to be processed back to the business process layer 120. In a particular
preferred embodiment of the invention, all actions are referred back to the business

process layer 120 for processing, along with any updated field values.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

~19-

FIG. 7 is a schematic diagram illustrating the business process layer 120,
functionality layer 130, and data access layer 140 of FIG. 1. In a preferred
embodiment of the invention, these layers can be hosted on similar platforms. In a
preferred embodiment of the present invention, these platforms include a host
processor 132, in which the various engines are resident, internal or external storage
134, on which the logic or data access server runtime environment resides, and a
terminal console 136 which serves as a human interface for host administration
purposes. In addition, a communications controller 138 such as a LAN controller,
modem or similar device serves as an interface to a communication link. The host
computer system 132 can be considered conventional in design and may, for
example, take the form of a E55 workstation, manufactured by Hewlett Packard
Corporation. As Shown, the business process layer 120, functionality layer 130, and
data access layer 140 further include a printer 135 which can be used to provide a
permanent record of application log files, reports, source code, or process objects
and flows according to the present invention.

FIG. 8 is a block diagram of the business process layer 120 of FIG. 1. The
main component of the business process layer 120 is a state router 122.
Conceptually, the state router 122 receives requests from the user interface engine
117 (FIG. 4) and, based on the request, determines which actions to take. The state
router 122 then calls upon the functionality layer 130 to perform the selected action,
passing any required information. Upon completion of the action by the
functionality layer 130, the state router 122 accepts any resulting return information
and forwards it to the user interface engine 117.

The requests received from the user interface engine 117 include application
user interface representation structures 121. The application user interface
representation structures 121 include request identifiers, transaction codes, screen
information, and input/output buffers. A request identifier is the name of a function
that needs to be executed in response to the request. There is one request identifier
for any user interface event caused by the user. In this regard, request functions are

similar to the conventional callbacks found in GUI languages such as X-Windows

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-20-
developed at the Massachusetts Institute of Technology, in Cambridge,
Massachusetts. Transaction codes are used to determine where to redirect the
request. In this view, the state router 122 is simply a switch that differentiates
between request identifiers and takes appropriate action in the form of a call to a
function of the functionality layer 130. Screen information is used to keep track of
the current state of the application. Input buffers are used to carry information from
the presentation layer 110 to the business process layer 120 and output buffers are
used to carry information from the business process layer 120 to the presentation
layer 110.

FIG. 9 is a flow diagram of the communication mechanism between the user
interface engine 117 and the state router 122. As depicted, the user interface engine
117 includes a user interface routine 117-6 and initiates the communication by
calling a pass message function 117-8. The pass message function 117-8 first
compresses the application user interface representation structures 116 to be
transmitted into a single request string using a packing procedure. The request
string compression performed by the packing procedure is necessary because the
outgoing application user interface representation structures 116 cannot be
transferred efficiently as such across the communication link.

The pass message routine 117-8 then calls a remote procedure call (RPC)
routine 117-9 for actual transmission of the request string over the network. The
RPC routine 117-9 takes two parameters: the request string to be passed from the
user interface engine 117 to the state router 122 and the return string to be returned
to the user interface engine 117 from the state router 122. From the point of view
of the state router 122, requests arrive in the form of strings of characters that need
to be decomposed into the logical components of the request. Consequently, the
first step taken by the state router 122 is to decompress the request string into its
logical components using an unpacking procedure.

The unpacking procedure converts the request string into an array of request
application user interface representation structures 121. This array is then passed to

a main state router 122-1 function, which accounts for the core processing of the

10

15

20

25

30

WO 97/42572 PCT/US97/07348
-21-

state router 122. Routing logic 122-2 then directs the objects to servers in the
functionality layer 130 or the database layer 140. Once the state router 122
completes its processing, the resulting array of return application user interface
representation structures 121 is again packed into a return string, which is passed
back to the user interface engine 117 using an RPC mechanism 122-9.

Because new application user interface representation structures 121 can be
added to facilitate the transport of new types of objects as required by a particular
application, the packing and unpacking functions include a library having primitives
which pack and unpack bytes (8-bit integers), words (16-bit integers), double words
(32-bit integers), and strings (both variable- and fixed-length). To create a new
application user interface representation structure 121, a developer need only create
packing and unpacking routines for that structure, assembling these functions from
the primitive routines.

In the preferred embodiment of the present invention, the packing and
unpacking library is written in such a way that the same source code compiles using
structures (under ANSI C) or using object classes (under ANSI C+ +). Although
the ANSI C language interface is very usable, the ANSI C+ + language interface
makes use of object-oriented features such as virtual functions to make packing and
unpacking as transparent as possible. High-level packing and unpacking routines
take arrays (or, in ANSI C+ +, containers) of application user interface
representation structures 121 and create a single character string containing the
packed information suitable for RPC transmission. This string contains type
information as well as member data, so that any sequence of application user
interface representation structures 121 can be sent and properly reconstructed at the
receiving end.

In a preferred embodiment of the present invention, the state router 122 can
be used to access the functionality layer 130 having custom-developed functionality
servers as well as functionality servers converted from the IMS/VS model. The
IMS/VS model is centered around the message concept, where the term “message”

is used to refer to the model’s communication structures with the functionality layer

10

15

20

25

WO 97/42572 PCT/US97/07348

~20-
130. In a basic IMS/VS model, the state router 122 performs four main conceptual
functions: log-on processing, IMS communication modeling, message conversion,
and log-off processing. Log-on processing consists of checking the user
authorization and issuing a client identifier. IMS communication modeling is
decomposed into transaction routing, conversation management, and message
formatting service. Transaction routing uses Input-Output Program Control Block
(I0-PCB) and Alternate Program Control Block (ALT-PCB) IMS structures to route
calls and messages between programs. Conversation management uses an IMS
Scratch Pad Area (SPA) to store the processing context. Message formatting
services uses Message Input Descriptor (MID) and Message Output Descriptor
(MOD) IMS control blocks to format messages and screens. Message conversion
performs message packing and unpacking. Log-off processing performs clean-up
functions with commit point processing.

FIG. 10 is a flow diagram of the operations of a particular preferred state
router 122 of FIG. 8. Initially, when a logon request is received from the user
interface engine 117 through the request user interface structure 121a and then
authorized, the state router’s 122 internal state is initialized with the current
transaction code and the identifier of the first message. This message identifier is
used to retrieve the full message format from a database repository 152. This
process will be discussed in further detail below.

The full message is placed in a message structure 122a. Among other pieces
of information, a message format 122a-1, 122a-2 provides the identifier of the
related screen as well as the identifier of the next message. The screen information
associated with this screen identifier is then loaded from the database repository 152.
This screen information is passed back to the user interface engine 117 through the
return application user interface representation structures 121. The user interface
engine 117 then displays the screen and awaits user input. When a users enters or
changes data on a screen and presses a function key, the user interface engine 117

translates this user input into a request to the state router 122.

10

15

20

25

WO 97/42572 PCT/US97/07348

-23-

Based on the contents of the request, the state router 122 saves its internal
state into an old-state structure, and the current state is then updated with any new
field values from the user interface engine 117. State information is represented by
a field state structure 122b. Then, the state router 122 determines which
functionality server to call.

As mentioned previously, the request identifier, which describes a function to
be executed, is included with the request from the user interface engine 117. The
state router 122 verifies the user’s authorization to perform this function, and if
authentication is successful, proceeds with its processing. If unsuccessful, an error
condition is set, and the user is informed of an illegal access attempt. Assuming
that authentication is successful, the determination of which functionality server to
call is followed by a preparation of the message to be used for communication
between the state router 122 and the selected functionality server, using a prepare to
send message function 122c to build one or more messages to be put on the top of
the outgoing Message Format Service (MFS) message queue 122d.

For an MFS-aware functionality server, the message is built as follows.

Each field in the message, assuming field length n, is allocated n bytes in the
message at a predefined offset. Additionally, a field may have two additional bytes
allocated to it for passing the field’s attribute in the message. A field’s value is
placed in the message if either of the following conditions holds: if the field’s value
has changed (which is determined by comparing the value of the field in the current
state to the value of that field in the previous state), or if the field’s attributes
specify that its value should always be placed in the message regardless of whether
it has been modified (this attribute is known as “pre-modified”). If the space in the
message for a field value placed in the message exceeds the length of the field value
itself, the allocated space is padded with the pad character specified for that field.
Finally, if a field’s value has not been modified, and the pre-modified attribute is
not set for that field, its space in the message is filled with ‘@’ characters. When

all fields in the message have been considered, the message is complete. The

10

15

20

25

WO 97/42572 PCT/US97/07348

- 2 4 -
message is then sent to the functionality server designated to handle the current
transaction code.

The SPA 122¢ is provided as a functionality server-independent area of
memory used for inter-functionality server communication. The SPA 122e is either
newly-initialized, upon the first communication with the functionality server, or
returned from the previous call to the functionality server.

When the call completes, a pointer is returned to the incoming MFS message
queue 122f, where the functionality server placed one or more messages for
transmission to the state router 122. The returned information includes an auxiliary
buffer, a MOD structure, a SPA, and field value information similar to that of the
message passed from the state router 122 to the functionality server. The auxiliary
buffer specifies the name of the MOD structure. The MOD structure contains either
a message identifier to describe the next message for updates to the current screen or
a transaction name to initiate a switch to a new screen.

Upon receipt of this information, the state router 122 first determines
whether the MOD structure contains a transaction or a message. If a transaction is
present, indicating a screen switch, the new screen information is loaded from the
database repository 152, and its information is included in the return application user
interface representation structures 121b destined for the user interface engine 117.
The state router 122 then recalls the functionality server that corresponds to the new
transaction in what is called an “immediate switch”. On the other hand, if the
MOD structure contains a new message name, the state router 122 retrieves the new
message format from the database repository 152 and passes it to a prepare to
receive message function 122g, along with the incoming MFS message queue 122f.
This function updates the structures and processes the return message in a manner
similar to the processing of the request message. Notably, new values and attributes
are entered into the state router’s 122 internal state. The attributes returned with
each field specify whether the field is to maintain its old value, revert to its original

attributes, or clear its value. The new values and attributes are then included in the

10

15

20

25

WO 97/42572 PCT/US97/07348

- 2 5 -
return application user interface representation structures 121 array passed back to
the RPC mechanism for return to the user interface engine 117.

The above description of the state router 122 operations focused on the case
of communication with functionality servers converted from the IMS/VS
environment. In the case of custom functionality servers, the state router 122 still
processes requests received from the user interface engine 117 in response to user
interface event caused by the user in manner similar to that described earlier.
However, much of the ensuing IMS/VS message processing can be bypassed in
favor of a more generic mechanism embodied in the usage of a business process
engine 124.

In this custom model, the state router 122 still redirects processing to
appropriate functionality servers based on the transaction codes received from the
user interface engine 117. However, when the functionality server returns, it passes
back an event to the business process engine 124 component of the state router 122.
The business process engine 124 is an event handler implemented as a conventional
non-deterministic finite automaton (NFA).

By way of background, an NFA is a mathematical model that consists of a
set of states, a set of input symbols, a transition function that maps state-symbol
pairs to sets of states, an initial state, and a set of final states. A special case of
NFA is the deterministic finite automaton (DFA), which can have no unlabelled
edges and at most one edge with the same label leaving a given state. Where time-
space tradeoffs are an issue, an NFA is slower than a DFA but consumes much less
space. In any event, an NFA and a DFA are both appropriate representations for
real-life business processes. Furthermore, an NFA can automatically be converted
into a DFA using fundamental principles of state machines and finite automaton
theory. Consequently, which representation is used is of little consequence to a
preferred embodiment of the business process engine 124. In addition, because
business processes can be composed of a series of unrelated processes or can even

be decomposed into sub-processes, more than one NFA, possibly organized in a

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-26 -
hierarchical fashion, can be used to represent the various business processes modeled
by an application.

In any case, the business process engine 124 preferably implements an NFA
as follows. Upon receiving an event from the state router 122, the business process
engine 124 first checks the validity of the event. If the event is valid, the business
process engine 124 then examines all transitions out of the current state, which could
be the initial state if this is the first call to the business process engine 124. If the
business process engine 124 does not find a transition that corresponds to the event
received from the state router 122, it simply remains in its current state, releasing
control back to the state router 122. On the other hand, should the business process
engine 124 find a transition that includes the event received, the current state is
saved and the next state is derived by starting at the current state and following the
transition corresponding to the event received. The next state thus reached now
becomes the current state.

Because states include initialization routines, the business process engine 124
executes any initialization routine associated with the next state immediately upon
arrival at this next state. This initialization function can require another transition
followed by another change of state, and therefore the business process engine 124
ends its processing by calling itself recursively, based on the event returned by the
initialization function.

A complication can occur when a transition leads to a state that is not part of
the business process modeled by the current NFA. In this instance, the business
process engine 124 needs to switch to the NFA containing the next state. For this
purpose, the business process engine 124 also maintains a current business process
set. This enables the business process engine 124 to keep track of its position in the
business process or NFA hierarchy.

FIG. 11 is a block diagram of the functionality layer 130 of FIG. 1.
Conceptually, the functionality layer 130 manages the business objects manipulated
by the business process layer 120. These business objects constitute the fundamental

components of an application. In a traditional manual system, a business object is

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-27-

associated with one or more physical paper forms. These forms contain the fields
that hold the information relevant to the business object. Forms differ not only in
their physical appearance, but also in the rules that govern their use. For example,
a highly confidential form is treated differently from a non-confidential form. Other
business rules may also govern the handling of forms. For example, some invoices
might require more than one signature if their amount is bigger than a certain value.
It is the form and the rules that govern its handling that define a business object in a
traditional manual system.

The business objects represent the physical forms, the information in those
forms, and the rules that govern these forms. As discussed previously in the context
of a re-engineering or custom-developed application, the business process engine 124
of the business process layer 120 manages the flow of business objects, interprets
their rules, and acts on these rules.

In a preferred embodiment of the present invention, the functionality layer
130 must also be able to handle IMS/VS COBOL functionality code. In IMS,
functionality codes are structured into transactions composed of a main program
called a driver and transaction programs for the various function keys the driver
handles. Accordingly, a functionality server 135 performs a number of functions.

These functions comprise include file processing, server initialization,
transaction call resolution, transaction entry point processing, and server wrap-up.
Include file processing comprises initializing global variables, notably the Program
Specification Block (PSB) structures for each transaction. By way of background, a
PSB defines, for a given transaction, the database which may be accessed, the
database segments that are available, and the type of access (read, update, etc.)
which may occur. A PSB is also a collection of Program Communication Blocks
(PCB). A PCB is an IMS structure to control the access to data as will be described
in detail below.

Server initialization comprises unpacking the message received from the state
router 122, to obtain the SPA and its call parameters, and assigning local function

pointers. An additional level of indirection for each transaction program main

10

15

20

25

WO 97/42572 PCT/US97/07348

-28-
routine is necessary for ANSI C to mimic the COBOL “goto” capability to span
across routines and exit at any point in the program.

Transaction call resolution comprises determining the driver to call based on
the transaction identifier specified in the RPC received from state router 122,
associating the appropriate PSB structure obtained from the include file with the
selected driver, and calling the driver with its arguments. Once in the driver code,
control flows according to defined COBOL language principles. Two COBOL
constructs merit further description in the context of ANSI C functionality code
converted from COBOL, namely special routines called entry points and COBOL
variables.

Transaction entry point processing comprises performing calls to transaction
entry points in the converted COBOL functionality code. Transaction entry points
include routines to perform calls to various local (sub) routines or external COBOL
library routines, as well as routines to establish communication with the data access
layer 140 (ENTRY statement) and perform calls to the database server/IO devices
(CBLTDLI). A typical database access consists of an initial GET call to populate
the I/0 work area, followed by modifications to the I/O work area for subsequent
insert (ISRT) or replace (REPL) calls. After each database access, the return status
of the call is checked to take action based on the result of the database operation.

In a preferred embodiment of the invention, COBOL variables are
implemented as COBOL structures. A COBOL structure contains a data field,
which consists of a pointer to an area in memory used to store the value of the
variable. Another field stores the length of this data memory area. The COBOL
structures also contain a mask, which is a string describing the COBOL format
specification for the variable. For example, a mask of “PIC X(3)” refers to a string
of 3 characters. Sometimes COBOL variables exist in a hierarchy of other COBOL
variables. Consequently, the COBOL structures also contain the number of sub-
variables or sub COBOL structures in the current variable or COBOL structure

hierarchy. A COBOL structure variable can thus be viewed as pointing to a buffer

10

15

20

25

WO 97/42572 PCT/US97/07348

-29-
containing its data, all sub COBOL structure variables pointing to the proper offsets
in that buffer.

The last function performed by the functionality layer 130 is server wrap-up.
Server wrap-up includes preparing return data, notably packing the SPAM for return
to the state router 122.

FIG. 12 is a block diagram of the data access layer 140 of FIG. 1. The data
access layer 140 comprises a number of data servers. As mentioned previously, the
data servers are used to access and retrieve data from the data storage layer 150.
Preferably, one data server exists for each of the four application object repositories.
Consequently, there is user interface data server 141 to manipulate user interface
objects 142, a business process data server 143 for business processes 144, a
business object data server 145 for business objects 146, and a database server 147
for application data records 148. The data servers constitute the sole interface
between the data storage layer 140 and the functionality layer 130, and each data
server is only in charge of exchanging with the functionality layer 130 information
about the type of application object it services.

According to client/server technology, a server is any program that runs a
function invoked by a different program. A server is thus a software concept that
provides a way to package together a set of related functions. Consequently, it
could be implemented as a conventional third generation language sub-routine or
library.

In the present invention, a number of the components referred to as libraries
can be implemented as servers and vice versa. The server implementation,
however, is better suited to inter-platform communication, and is a preferred
embodiment for the communication links of the present invention.

| By way of background, servers can be left to run continuously in stand-alone
mode and accept requests from multiple clients. The set of functions, or services,
provided by a server constitutes the server interface. This interface is specified in

an Interface Definition Language (IDL) file. The concept of servers is well known,

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-30-
and details of server development and operations, including stub generation and IDL
file syntax and specification are commercially available.

The data access layer 140 can now be viewed as a set of database access and
retrieval functions. There is one function for each one of the data access construct
of the source Data Base Management System (DBMS). Each such function must
emulate the behavior of the corresponding source DBMS data accessor construct. In
the preferred embodiment of the present invention, the target DBMS is typically
based on a conventional relational model, and is called a Relational DBMS
(RDBMS). The source DBMS can be built around a number of coﬁventional data
models. The most common such models are the flat file, hierarchical, network,
CODASYL, relational, and object-oriented data models.

By way of background, the flat file model is a generalized file management
system that adds report generation and file management additions to third-generation
programming languages such as COBOL. An example of such as model is the
Report Program Generator (RPG) from International Business Machines,
Incorporated. The hierarchical model is a hierarchical tree of nodes made of
records and fields, with tree search capabilities. An example of such a model is
IMS Data Language 1 (DL/1). The network model is an extension of the
hierarchical model, where nodes may have more than one parent. The network
model is also referred to as CODASYL, which is the initial embodiment of this
model using owner and member records linked by pointers, as originated by
Honeywell Information Systems, Incorporated. Examples of the network model are
Integrated Data Store (IDS) from IBM, and Integrated Database Management System
(IDMS) from Cullinet, Incorporated. Given the fundamental differences between
these models, the data access library must be careful to map the semantics of the
source database to the appropriate constructs in the target database.

In its simplest form, this mapping results in a simulaticn of the source DBMS
in a relational model, which is not always ideal for readability and maintainability.
A preferred embodiment of this invention extends this mapping to a true conversion

of the source data model to the relational data model. The initial relational model

10

15

20

25

30

WO 97/42572 PCT/US97/07348
~31-
thus obtained is further normalized to a specified degree controlled by parameter
using a bacchus-normal form utility, leading to a true relational model. In the
context of the present invention, such libraries exist for all the common source data
models mentioned. Because an overwhelming majority of existing database systems
fall into one of the source data models above, it is likely that most existing
applications can be handled by one of these libraries with minor or no changes.

In a preferred embodiment of the present invention, the source DBMS is IMS
DL/1. As discussed previously, IMS functionality code is structured into
transactions composed of a main program called a driver and subprograms for the
various function keys the driver handles. For every such IMS transaction in the
functionality server, an entry function is called once to initialize the database server.
This entry function calls a database server function through an intermediary to
initialize the PCB structure in the database server. Then, every time the
functionality server needs to access the database server, it calls the function
CBLTDLI(), which in turn calls a database server function to call the appropriate
database function (e.g., GET, INSERT, DELETE, and REPLACE primarily).
Communication between the functionality server and the database server is thus
reduced to two functions: init and CBLTDLI (which, in IMS, stands for CoBoL. To
Data Language 1).

The main function of a database server is to fulfill requests for data from the
functionality server 135. In the preferred embodiment of the present invention, this
includes implementing the IMS DL/1 CBLTDLI call. This can be decomposed into
three tasks: server initialization, CBLTDLI call resolution, and database access
function execution. As discussed earlier, server initialization is performed on the
PCBs for the current transaction. Then, the database server resolves CBLTDLI
database calls.

- The database server communicates with the database through ANSI SQL
queries. The database server implements each type of IMS DL/1 function as
follows. The database server first validates the arguments to the IMS DL/1

function. It then dynamically creates an ANSI SQL query string. In the preferred

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-32-
embodiment of the present invention, this query string is forwarded to the database
using the Oracle Call Interface (OCI) from Oracle Corporation. At a high-level, the
process consists in initializing bind and define variables, setting currency
information, executing the SQL query, and returning query status.

FIG. 13 is a block diagram of the data storage layer 150 of FIG. 1. The
data storage layer 150 is a repository for data accessed by the data access layer 140.
The user interface data repository 152 provides user interface objects 153 to the data
access layer 140. The business process data repository 154 provides business
processes 155 to the data access layer 140. The business object data repository 156
provides business objects 157 to the data access layer 140. The application data
records repository 158 provides data records 159 to the data access layer 140.

FIG. 14 is a schematic diagram of a hardware platform for the data storage
layer 150 of FIG. 19. As shown, the data storage layer 150 is hosted on a platform
that includes a host processor 151, with one or more Central Processing Units
(CPU), in which the Data Base Management System (DBMS) is resident, internal or
external storage 153, usually an array of mirrored disks, on which all database data
resides, and a terminal console 155 which serves as a human interface for host
administration purposes. DBMS log files are stored in storage unit. A printer 157
is usually present for database diagnostics or large data outputs. In addition, a LAN
controller, modem or similar device serves as a communication link 159. The
DBMS and the host computer system 151 can be considered conventional in design
and may, for example, take the form of an Oracle relational DBMS, manufactured
by Oracle Corporation, and a T500 mini-computer, manufactured by Hewlett
Packard Corporation respectively.

A preferred embodiment of the present invention uses the relational data
model for the data storage layer. The relational data model can be viewed at three
different levels: conceptual, logical, and physical. The conceptual level consists of
entities, attributes, and relations. Entities are things that exist on their own,
distinguishable from other objects. Entities (records, rows) are described in terms

of their attributes (fields, columns). Relations are common fields between entities

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-33-
used to connect entities together. The Entity-Relationship data model (ER) is the
predominant conceptual level description tool. It is used as a diagramming
technique where rectangles represent entities, circles represent attributes, diamonds
represent relationships. The logical level consists of records, fields, and relations.
The schema is the logical level description tool. In the relational model, a
database schema consists of the description of the tables, their fields, and the fields
formats and domains. The relational algebra provides the theoretical basis for the
model, with five operators: selection, projection (deleting columns from table),
product, union (adding the rows of two tables), difference and a composite: join.
Query languages based on relational algebra are Structured Query Language
(SQL) and Query By Example (QBE), both originated by IBM. SQL is usually
embedded within a third generation language such as C, called the host language.
Because host languages do not typically have multi-record operations, special SQL
commands such as the cursor concept are provided to process multi-row query
results in a record-at-a-time fashion. A cursor is a name given to a query. When a
cursor is opened, the corresponding query is executed. Any subsequent fetch
command on the cursor returns a new row to the host language. When the cursor is
closed, query results are no longer available to the host language. Other special
commands in SQL embedded mode include transaction processing features, dynamic
SQL generation, and authorization control. The physical level deals with data
dictionaries, data definitions (physical file structures, file space allocation), storage
devices (da_ta compression), access methods (sequential, index-sequential, direct).
Sequential files use a sorted column to perform sequential search. Index-
sequential adds an index to a given column to provide random access. Large indices
may themselves be indexed. Sequential files are difficult to maintain because adding
or deleting a record requires reorganization of the whole file. Indexed (inverted)
files remove the sequential part. Fully inverted refers to indices associated with
each column. Indices carry update overhead but enable fast access. Direct access
uses a single key and a calculation from that key to locate the physical address of

the data in memory.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-34 -

The distribution discussed in the context of the present invention is reduced
to process distribution. However, the data storage layer can also be distributed
among different platforms. A decision on how the data can be distributed depends
on the following four criteria: connectivity, volume, volatility, and usage. The
inter-connectivity of the data is defined by the relations between entities. The
volume or size of each entity is evaluated in terms of memory usage as well as
number of records. The volatility is the rate of change in the volume of each entity.
Finally, the usage is determined by the frequency of use of the various screens and
the transaction rate.

FIG. 15 is a block diagram of the control layer 160 of FIG. 1. The control
layer 160 includes utilities for transaction management 161, security 162, system
administration 163, server management 164, accounting 165, network management
166, and configuration management 167. These utilities can take the form of
libraries or can consist of graphical user interfaces.

Transaction management 161 provides library utilities to manipulate
transactions. Transactions are a way to package related application elements
together. Transaction processing refers to the manipulation of groups of elements as
opposed to the manipulation of the individual elements. A transaction that
successfully completes the processing of all the elements that compose the
transaction is finalized by a database commit, which saves the results of the
processing of all its elements in a permanent form, usually in the database. Should
the processing of one of the transaction elements fail, the transaction elements that
have already been committed to the database need to be un-committed, and the
whole transaction is rolled back, with appropriate error messages posted.
Transaction management 161 is useful in distributed systems to insure data
consistency in the absence of user-defined integrity constraints.

Security 162 is provided at all layers of an application through a library of
functions to manage system as well as data security. At the presentation layer level
110, security functions are available at logon time and at the menu, screen, field,

and button levels. At the functionality layer 130 level, access to entire servers or to

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-35-
a subset of the services provided by a server can be restricted. At the data layer
140 level, security functions manage access control lists (ACL), which enable
application administrators to set up a hierarchy of user types for controlling access
to application resources. In addition, the underlying database management system
usually provides a wide range of security features which are implicitly available to
the application.

System administration 163 provides graphic facilities for administrators to
perform basic application administration tasks, such as lookup table maintenance,
user access maintenance, and application backup and recovery.

Server management 164 provides mechanisms to organize servers in a
hierarchical model in which entities called brokers keep track of the servers
available to a given client and of their location. This can increase the robustness of
applications through server redundancy.

Accounting libraries 165 are available to perform logging of application
operations at all application tiers for performance monitoring, auditing, or error
tracing and recovery. Logging is also available on a per client, server, or broker
basis. Logging can come in various flavors, with control over the level of detail
provided or the application resource or component being monitored.

Network management 166 provides a graphical interface to monitor clients,
servers, and brokers. Network traffic and performance can thus be monitored, and
network components restarted automatically or manually upon failure.

Configuration management 167 provides libraries for a number of diverse
purposes. For instance, application version management functions are provided. In
addition, currency is handled through locking functions to insure data consistency.
Data integrity is controllable at the functionality layer by the business objects rules
or constraints. The underlying database management system usually provides data
integrity controls implicitly available to applications, but the usage of such controls
are not recommended because it would mean encoding business logic in the data
layer 150 instead of confining it to the functionality layer 130, and would therefore

be contrary to the fundamental principle of the preferred multi-tiered architecture.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-36-

Communication links 170 are used by the other components to exchange
information by the way of computer networks. By the way of background,
computer networks consist of interconnected collections of autonomous computers.
Networks are usually described in terms of the well known International Standards
Organization (ISO) Open Systems Interconnection (OSI) reference model. ISO OSI
describes networking in terms of seven layers, from lowest to highest: physical, data
link, network, transport, session, presentation, and application.

Because distributed systems are a special case of a network that is transparent
to the application, the present invention can rely on any one of the prevalent
networking standards. For example, using ISO OSI terminology, one embodiment
of the present invention can be based on the internet de facto standard. At the
lowest physical and data link levels, a preferred embodiment of the present invention
can be a standard communication media, such as a telephone network, local area
network (LAN), wide area network (WAN) or direct line. The Internet Protocol
(IP) can be used as the network protocol and the Transmission Control Protocol
(TCP) as the transport protocol. Session and presentation layers do not exist in the
internet model. Application protocols include FTP for file transfer, SMTP for
electronic mail, and TELNET for remote login.

Because distributed applications are network transparent, the distinction lies
in the software. Therefore, the preferred embodiment of the present invention uses
commercial tools that. hide all of the underlying network complexities and isolate
applications from network implementations. These tools are based on the Remote
Procedure Call (RPC) operating over TCP/IP or over the Distributed Computing
Architecture (DCE) mechanism. Using an RPC, a client program performs what
looks like a conventional function call. A piece of RPC generated code called a
client stub handles all the aspects of handling the call, including packaging the
function arguments for transport, called marshaling, and carrying out the transport.

On the server side, a similar RPC server stub unpacks the function
arguments, called unmarshaling, and passes them to the server code that implements

in a conventional way the function requested by the client. Upon completing the

10

15

20

25

30

WO 97/42572 PCT/US97/07348
-37-

execution of the requested function, the server returns the results of the cail to the

client in a similar way. Because all transport complexities are addressed by the

RPC generated stubs, RPCs acts just like conventional local calls.

For more complex distributed applications, a preferred embodiment of the
present invention can use tools based on DCE, which is a more comprehensive
distributed system infrastructure that includes directory services, distributed security,
multi-threading, distributed file system, and central time management, in addition to
RPCs. As sample implementation of RPCs effective over both TCP/IP and DCE
networks, is the Entera toolkit from Open Environment Corporation.

Returning to FIG. 1, the re-architecting system 20 includes a user interface
conversion utility 210, a procedural language conversion utility 220, and a data
definition language conversion utility 230.

FIG. 16 is a block diagram of the user interface conversion utility 210 of
FIG. 1. The user interface conversion utility 210 converts the user interface of an
existing application represented by the source user interface definitions 211 into
target user interface definitions 213 using the user interface converter 212. In a
preferred embodiment of the present invention, the source user interface definitions
211 can be viewed as IMS/VS Message Format Service (MFES) files.

Screen definitions provide structural information about the fields that
compose the screen layout. Message definitions provide content information about
the fields, such as the data they contain and their attributes (protected, highlighted,
etc.).

Target user interface definitions 213 can take one of three forms: database
files 246, a header file 247, and a GUI file 248. Database files 246 contain the set
of statements necessary to populate user interface repository 152 with screen and
message information for MFS file 211. In a preferred embodiment of the present
invention, the database files 246 can be viewed as ANSI SQL scripts.

A deletion script removes from the user interface repository 152 any
definitions for the MFS file 211. Once this repository cleanup is accomplished, an

insertion script adds to the user interface repository 152 any new definitions for the

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-38-
MEFS file 211. Consequently, the user interface conversion utility 210 can be run
multiple times for the same MFS file without negative effects. In a preferred
embodiment of the present invention, the user interface repository 152 is a standard
RDBMS such as Oracle Server 7 from Oracle Corporation.

Information stored in the user interface repository 152 is converted at
application runtime into the user interface representation structures of the
presentation layer 116. The user interface engine 117 of the presentation layer 110
then maps application user interface representation structures 116 into display
platform user interface representation structures 118, used by the user interface
display platform 115 for display to the user. Accordingly, target user interface
definitions 213 effectively constitute an intermediary user interface definition
language for storage of user interface information in the user interface repository
152 and eventual user interface representation structures 118.

Header files 247 are an alternative to database files 246. In a preferred
embodiment of the present invention, user interface representations are stored in the
user interface repository 152 and retrieved as needed from this repository by the
business process layer 120. This is an appropriate mode of storing a large amount
of user interface representations on a back-end database host, thus alleviating
performance and space constraint problems on the client or business process hosts.
However, for smaller applications, user interface representations may not need to be
stored on a separate user interface repository 152. Accordingly, a user interface
converter 212 can generate a header file 247 instead of database files 246.

Such a header file 247 is then passed to the business process layer 120 to
provide information necessary during application runtime operations. In this
scenario, the header file 247 can be viewed as declarative statements in ANSI C that
are compiled as part of the source code for the business process layer 120.

- GUI files 248 are used by application developers and maintenance personnel
to modify application screens and messages as part of the re-engineering system 30.
In a preferred embodiment of the present invention, the GUI file 248 are written in

Microsoft Visual Basic. The application re-engineering process 30 then uses the

10

15

20

25

WO 97/42572 PCT/US97/07348

-39-
GUI file to load screen information in Visual Basic, which can be viewed as the
graphical user interface editor 310, make any modification in Visual Basic, resulting
in a modified GUI file, and then run a Visual Basic to Oracle conversion process as
described regarding the graphical user interface editor 310 to load the modified GUI
file into the user interface repository database 152, ready for usage by the
application.

The user interface conversion utility 210 calls the user interface converter
212 to generate the "target" representation just described. Ina preferred
embodiment of the present invention, the user interface converter 212 is an ANSI C
program, which takes a MFS file as an input and generates output files. To perform
this function, the user interface converter 212 can be structured using conventional
compiler technology, including a scanner 241, a parser 243, and a code generator
245.

Specifically, the scanner 241 reads characters from the MFS file until a token
has been read. The scanner 241 adds the token just obtained to a symbol table in
which all the identifiers of the source language are stored, along with their
characteristics. The tokens are then passed to the parser 243.

The parser 243 can be viewed as a function that parses the statements of the
source language. In this context, the delimiter that enables the user interface
converter 212 to determine when the end of a statement has been reached is defined
by the particular syntax of the source. Once a statement has been parsed, the parser
243 calls another function, which returns the type of the statement that has just been
parsed. This type is then passed to the code generator 245.

The code generator 245 can be viewed as a large switch that, given a
statement type, calls the appropriate function to generate "target” code for this
statement. The code generator 245 relies on a library of functions that handle the
actual code generation for the entire set of statements of the source language. One
such library exists for each source language, with ANSI SQL, ANSI C, and

Microsoft Visual Basic as the target languages.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-40-

FIG. 17 is a flow diagram of the procedural language conversion utility 220.
The procedural language conversion utility 220 converts the functionality and data
access programs of an existing application into the programming language targeted
for the implementation of the functionality layer 130 (FIG. 1). This conversion
process consists of two main phases. A first phase (Phase A) converts the source
language 221 into an intermediary language 225. A second phase (Phase B) then
transforms the intermediary language 225 into the final target language 227.

The first transformation is executed by a first phase (Phase A) transformer
224, customized for each source language environment 221. The intermediary
language 225 is a meta language designed to facilitate application maintenance.

The meta language is independent of source and target languages and
supports the use of an independent data dictionary 228. The data dictionary 228
generation is preferably achieved through the use of data population tools 223,
which use constructs in the source code and related data files.

The meta language is used as the target for the conversion of numerous
source languages, and in turn can be transformed into multiple different target
languages. The meta language is converted to a target language using a second
phase (Phase B) transformer 226. There is a specially customized second phase
transformer program 226 for each target language environment 227. The procedural
language conversion utility 220 as a whole is applicable to batch as well as on-line
applications.

FIG. 18 is an exemplary source code fragment 221°. As illustrated, the
source code fragment includes assignment statements 221-A, 221-C, 221-E, 221-F,
221-H, conditional-branch statements 221°-B, 221’-G, 221°-], 221-K, 221-M,
jumps, 221-D, 221-L function calls 221-I, 221-N, and labels 221-0. The assignment
and conditional branch statements can use variable values or literals.

" FIG. 19 is a block diagram of the first phase transformer program 224 of
FIG. 17. As shown, the main elements of this transformer are a grammar definition
for the source language 251, a dynamic symbol table generator for the source

language 252, and a number of rules 253 for transforming a source language 221 to

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-41-
the meta language 225. In addition, an external data dictionary 228 contains the
data structures, definitions, and common logic constructs pertaining to the source
application.

In terms of control flow, the first phase transformer 224 receives a file of
source language code 221 as input. This file is then semantically parsed using the
source language grammar definition 251. A full grammar for the source language is
specified using a programmatic grammar encoding scheme.

The symbol table 252 is dynamically generated during parsing based on data
definitions found in the source code 221 as well as in the data dictionary 228. All
relevant data (i.e. non-procedural) elements found in the source code 221 are
incorporated into the symbol table 252, while irrelevant elements are discarded
based on source language grammar 251. The symbol table 252 is thus dynamically
built to contain symbols for all data elements, data structures, data definitions and
variables relevant to the source code file 221 being transformed.

FIG. 20 illustrates in FIGs. 20A-20B a parse tree for the source code
fragment of FIG. 18. As illustrated, the source code 221 is parsed into a series of
statement lists 225. Each statement list includes at least one statement. A statement
can include an additional statement list. For example, the first instruction 221-A
(FIG. 18) is parsed into an assignment (ASSIGN) which assigns the variable (VAR)
LOW-VALUE to the variable list (VARLIST) of variables (VAR) YMS-CALL-
RESULT and FLAG-AREA. Each source language instruction 221-A,...,221-0 of
FIG. 18 is represented as a respective branch cluster 225-A,...,225-0 on the parse
tree 225 of FIG. 20. The branch clusters are on branches 225-1,..,225-8 of the
parse tree 225. From this representation, the source language is converted to the
intermediate language. '

Once parsing is complete, a complete set of rules 253 for transforming
source language code to meta language code is programmed as declarative rules in a
separate conversion routine 253. The conversion rules 253 operate as follows. A
rule is applied to each source language construct parsed using the grammar 251.

When a rule is executed, a source language construct is transformed to its equivalent

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-42-

construct in the meta language. Procedural constructs and primitives are thus re-
generated in the meta language. Operations on data elements and data structures are
first validated using the symbol table 252. Based on this validation, an equivalent
operation is custom-generated in the meta language. The rule being executed for
this validation operation generates a specific construct to reproduce the semantics of
the transformed operation, such as a conversion from integer to floating point, if
required.

In addition to procedural constructs and data elements and structures, a
subset of the rules specializes in the extraction and transformation of external data
access commands into application-independent external data access commands. In a
preferred embodiment of the present invention, application-independent external data
access commands could be encoded using the ANSI-SQL language. External data
access operations are thus parsed and transformed into separate, application-
independent data access commands. These generated data access commands are
stored in at least one separate output file.

FIG. 21 is an intermediate language file 225° for the source code fragment of
FIG. 18. The file 225’ is created by traversing the parse tree 225 depth-first, left-
to-right. A node is not output to the file 225’ until all children are output. This
technique results in a reverse polish or postfix notation. As illustrated, each branch
225-1,...,225-8 of the parse tree 225 is represented as a statement 225-1°,...,225-8’
in the file 225°. The trunk nodes of the parse tree 225 are represented as a terminal
statement 225-9°.

In summary, executing the transformation rules on the source code produces
two separate outputs: the transformed source code in a meta language, which is
constituted of procedural source code and data definition structures, and a set of data
access command.

"~ FIG. 22 is a block diagram of the second phase transformer program 22 of
FIG. 17. Similar to the first phase transformation, the main elements of the second
phase transformer 226 are a grammar definition 261 for the meta language 225, a

dynamic symbol table generator 262 for the meta language 225, and a number of

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-43-
rules 263 for transforming the meta language 225 to a target language 227. In
addition, the second phase transformer program 226 uses the same external data
dictionary 228 as does the first phase transformer program 224.

In terms of control flow, the second phase transformer 226 receives as input
meta language program files 225, usually constituted by meta language procedural
source code and data definition structures files, as well as data access command
files, both generated by the first phase transformer 224. The meta language
program files 225 are then semantically parsed using the meta language grammar
definition 261. A full grammar for the meta language is specified using a
programmatic grammar encoding scheme.

The symbol table 262 is dynamically generated during parsing based on data
definitions found in the meta code 225 as well as in the data dictionary 228.

The data access command files portions of the meta language program files
225 provided as input are parsed using a different mechanism. Because this
mechanism is a simplified version of the one used for procedural source code and
because it is based on the exact same principles, it will not be detailed any further
here.

Upon completion of parsing, a complete set of rules 263 for transforming the
meta language code 225 to the target language code 227 is programmed as
declarative rules in a separate conversion module 263. The conversion rules 263
includes rules for transforming meta language data definitions into target language
data structures, rules for transforming meta language variable definitions into target
language variables, rules for generating target language initialization routines for the
data structures and variables mentioned above, rules for transforming procedural
meta language source code into target language source code, and optionally rules for
customizing the application-independent data access commands for a particular
application such as Oracle. A rule is applied to each language construct parsed
using the meta language grammar 261.

Language constructs include: data definitions, variable definitions, and

procedural constructs. Data definitions in meta language code are transformed into

10

15

20

25

WO 97/42572 PCT/US97/07348
_4 4 -
target language data structures by executing a set of rules written for this purpose.
Variable definitions in meta language are also transformed into target language
variables by executing a set of rules written for that purpose. For each variable
definition created, an initialization routine is created. Procedural constructs are
transformed into their equivalent in the target language. Data access commands can
be tailored for a particular application as required by the target environment.
Executing the transformation rules on the meta language source code produces
output files containing the transformed code in the target language: procedural
source code files, data definition structure files, and final data access command files.

The target source code 227 includes calls to specially designed and
implemented libraries to support functionality that is not provided natively in the
new target environment. These functions include variable handling, value
assignment, data access services, transaction processing, and other. Depending on
the target environment, different runtime libraries are required in order to guarantee
correct execution in the new environment. The scope of these libraries is
determined not only by the target environment, but also by the source environment.
All source constructs must be mapped to equivalent constructs in the target
environment.

FIGs. 23A-23B are C and C+ + target code fragements 227°, 227,
respectively, for the source code fragment of FIG. 18. As illustrated, the
intermediate language illustrated in the output file 225 of FIG. 21 is transformed
into a select target language source code 227. The target language can be any
procedural programming language (such as C) or any object-oriented programming
language (such as C*). As described, a different second phase transformer
program 226 is used to generate source code in each target language.

Together with the transformation of the code to the target environment, the
transformation process permits new data organization methods. If new methods are
used to organize data, additional libraries might be required to achieve complete

compliance with the original application behavior. An example of specializéd

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-45-
library for IMS/VS data organization method was outlined above in the context of
the data access layer 140.

In addition to the transformed code and required libraries, a runtime
infrastructure must be provided for application execution. The infrastructure in
question corresponds to the multi-tiered architecture 10 detailed above. Because the
description of the architecture 10 focused on on-line programs, a number of key
differences should be noted in its application to the batch components of
applications. Batch-related code modules only interact with their calling process,
eliminating the need to maintain a two-way communication structure with the user
interface module and the accompanying state information in the business layer.
Instead, re-architected batch processes are stand-alone programs constituted by a
wrapper that provides means to parse the input arguments and call the top-level
batch job. Typically, this top-level batch job requires some form of job scheduling
infrastructure. As an example, legacy Job Control Language (JCL) can be
converted to a scripting language-equivalent such as UNIX shell, Perl, or REXX.
The resulting script then calls the various batch programs, interleaved with scripting
commands or library calls that provide functionality that is similar to that of the
source legacy system. In spite of these differences, batch conversion and processing
follows the same fundamental principles as on-line, in a simplified manner.
Consequently, a full discussion of the specifics of batch conversion and runtime
execution will not be detailed any further.

FIG. 24 is a block diagram of the data definition language conversion utility
230 of FIG. 1. The database conversion utility 230 is used to convert a source
database language 231 into a target database language 237 using a database converter
234. As illustrated, the conversion must address the database structure, encoded
using a Data Definition Language (DDL), and referred to as a schema, as well as
the database data.

In a preferred embodiment of the present invention, the target DDL 238 is a
relational database schema specified using conventional ANSI SQL language. Such

a schema defines the tables that compose an application, along with their key fields,

10

15

20

25

WO 97/42572 PCT/US97/07348

-46-

and other descriptive fields. Initial values and other constraints such as referential
integrity clauses may also be included in this schema. Because relational schemas
are well understood, and ANSI SQL syntax is well-documented, the primary task of
the DDL converter 235 is to map the syntax of source DDL 232 to the
corresponding ANSI SQL syntax. In a preferred embodiment of the present
invention, this "target” DDL 238 can be viewed as an intermediary language that
can then be converted to the final target DDL language for increased maintainability
and flexibility, as was the case with the user interface and procedural language
conversion utility. For illustrative purposes, IMS DL/1 can be considered as the
source DLL 232.

FIG. 25 is a block diagram illustrating a schema conversion. As shown, the
DDL converter 235 is sub-divided into a first converter 235a and a second converter
235b. The first converter 235a takes DBDxx 232a, DBDxxL 232b, and COPYLIB
232c as inputs and generates a table creation SQL statement file 238a, an index
creation SQL statement file 238b, a primary key creation SQL statement file 238c,
and a database schema ANSI C header file 238d.

By way of background, an IMS database schema depends on Data Base
Descriptions (DBD) and COBOL copy libraries (COPYLIB). All IMS data bases
must be defined through DBD generation prior to use by application programs. A
DBD is the DL/1 control block that contains all the information necessary to
describe a data base, namely segment types, physical and logical relationships
between segment types, database organization and access method, and physical
characteristics of the database. COPYLIB contains COBOL data structures
definition and is used to create corresponding C structures and IMS segment
definitions.

The first converter 235a generates a table file 238a, which is used to create
tables in the target RDBMS. The table file 238a includes simple relational table
creation statements, without indices, keys, or reference integrity. Consequently, it

can be generated directly from COPYLIB 232¢ information, without any DBD input.

10

15

20

25

WO 97/42572 PCT/US97/07348

-47-
For example, the COPYLIB entry for a segment is used to generate a corresponding
relational table.

A relational table is build from an IMS segment as follows. First, all the key
fields of all the ancestors of the segment in question in the IMS hierarchy are
included in the relational table into which the segment in question is being
converted. Then, all the local key fields of the segment being converted are
included in the target relational table. Finally, all the local non-key fields of the
segment to convert are added to the target relational table.

The first converter 235a also generates the index file 238b and the primary
key file 238c, which are derived from the table file 238a. The first converter 235a
creates one index for each parent of the converted segment by concatenating the
keys for that parent. One index is also created for each local key field.

The first converter 235a also creates the schema header file 238d having
information for each segment using the DBDxx 232a and corresponding DBDxxL
232b to provide schema information to application programs. Preferably, a segment
header file includes two ANSI C data structures: a segment and a segment array.
The segment structure includes the following information: a segment name, the
names of the segment columns, the segment child index in the form of another
header file, the length of each segment column, the expanded column length, the
PIC mask for each segment column indicating column type and size, the column
usage, a logical key and the corresponding local key index, the number of columns
in the segment, the number of parent keys in the segment, and the number of local
keys for this segment. The segment array structure includes the following
information: a segment name, physical child names, the number of children, a
logical flag, and a pointer to the corresponding segment data structure.

In addition to the first converter 235a, the second converter 235b is used to
convert PSB definitions 232d into PSB header files 238e. As mentioned previously,
a PSB defines the database which can be accessed, the segments within the database

which are available, and the type of access (read, update, etc.) which can occur.

10

15

20

25

WO 97/42572 PCT/US97/07348

-48-
The PSB header file 238e provides such database access information to application
programs.

FIG. 26 is a block diagram of a converter 235a, 235b of FIG. 25. Both
converters 235a, 235b are built using the conventional principles of compiler design.
This includes a scanner 271 to decompose source data definition language 232 into
tokens 272, a parser 273 to assemble tokens 272 into a syntactic parse tree 274, and
a code generator 275 to generate target data definition language constructs 238 from
the parse tree 274. This technology is well-understood and documented in existing
literature and the details of a particular compiler are highly dependent on the source
and target languages. Consequently, the converters 235a, 235b will not be detailed
any further.

Once the database structure is converted, the next task is to convert and load
database data. In the IMS example, source data 233 is stored in a hierarchical
fashion. The first converter 235a generates a data loading pattern file DBDxx.dlp
238f for a given physical DBD using DBDxx 232a and COPYLIB 232c information.

FIG. 27 is a block diagram of the data converter 236 of FIG. 24. A
DBDxx.dlp file 231a is provided as input to the data converter 236, along with a flat
file 231b that contains the data to be converted. The data converter 236 uses the
data loading pattern specified in the DBDXX.dIp file 231a to determine the desired
target format for each data record in the data flat file 231b and generate an ANSI
SQL file 239a containing the INSERT statements necessary to populate the target
database with the data provided.

The data converter 236 needs to take into account a number of technical
issues in performing its task on IMS data, including packed data handling and field
redefinition. In IMS, some numerical field are compressed into a binary
representation for storage efficiency. Such packed data still present in binary format
in data flat files 231b, is first unpacked and then moved to the end of the record,
before using a filler, namely clearing the packed data original positions with blanks.

When a data loading pattern file 231a specifies packed data fields, the data converter

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-49-
736 searches the end of the record instead of the original field position to locate the
proper data in unpacked format.

Another peculiar situation arises with redefined fields. COPYLIB 232¢c
sometimes specifies a redefinition for one or more fields. Such re-definitions are
ignored and left to the functionality code to handle. When redefined fields include
packed data however, the data converter 236 creates one filler for each redefine
after moving all unpacked data for the redefine in question to the end of record.
Combination between re-definitions and packed data fields is thus treated as a special
case of the latter.

Once all conversion is complete and all output files are available, the order
of creation for a given target database table is first to create the table using the table
creation file 238a, next load the data from the target data 239, then create the
primary key using the primary key creation file 238c, and finally to create the
indices from the index creation file 238b. Once the target database structure is
established and all database data is loaded, the ANSI C structures in the schema
header file 238d and the PSB header file 238¢ are used at runtime by application
programs to access the target database structures.

As mentioned previously with regard to FIG. 1, the custom and re-
engineering system 30 focuses on providing an enterprise a facility for maintaining
and enhancing distributed infrastructure. Even though this facility is an integral part
of the overall system of the present invention, it is really an add-on facility that
becomes paramount once the transition is complete. Consequently, only an
overview of the custom and re-engineering system 30 will be provided here. At a
high-level therefore, the custom and re-engineering system 30 includes a graphical
user interface editor 310, a graphical business process editor 320, a graphical
business object editor 330, a graphical data record editor 340, a logic development
environment 350, and facilitation tools 360.

The graphical editors 310, 320, 330, 340 are preferably fourth generation
languages (4GL) or Computer Aided Software Engineering (CASE) tools that

facilitate the application development task by enabling a certain amount of the

10

15

20

25

30

WO 97/42572 PCT/US97/07348

-50-

application code to be generated automatically from graphical representations. In
particular, the graphical user interface editor 310 can be a commercially available
user interface display platforms or GUI builders discussed in the context of the
presentation layer 110.

FIG. 28 is a block diagram of the graphical user interface editor 310 of FIG.
1. The graphical user interface editor 310 is a typical user interface made to create
menus and paint screens. As such, the graphical user interface editor 310 includes a
screen editor 311 to position graphical representations of business objects on a
screen or form. Screens can thus include text fields, labels, buttons, selection
boxes, pull down lists, and similar graphical objects that compose a user interface.
These graphical representations of business objects can be grouped so that a screen
can be composed of sub-screens. This is useful to represent screen overlays, which
are screens that have a fixed area as well as a variable area that changes depending
on user actions. Sub-screens are also useful for grouping together business objects
that need to be displayed across a number of application screens. The screen editor
311 creates internal user interface representations 312 which are processed by a user
interface code generator 313 into data stored in the user interface repository 152.

FIG. 29 is a block diagram of the graphical business process editor 320 of
FIG. 1. The graphical business process editor 320 is a tool that enables application
developers to represent the business processes that an application is meant to
automate in a more intuitive, graphical form, referred to as a process flowchart.
Because a business process can be broken down into sub-processes, an application
can be viewed as a hierarchy of process flowcharts. This modularization enables an
application to look at high-level business processes separately from detailed business
sub-processes. As illustrated, a business process editor 321 generates internal
business process representations 322, which are converted by a business process
code generator 323 into data stored in the business process repository 154.

In a preferred embodiment of the present invention, process flowcharts can
be viewed as conventional transition diagrams. Transition diagrams are networks of

nodes represented graphically by circles and are called states. The states are

10

15

20

25

WO 97/42572 PCT/US97/07348

_51-
connected by directed labeled arrows, called edges. Edge labels represent the
transformations that lead from one state to the next.

As an example, the process of applying for a driver’s license includes routing
a driver’s license application paper form through the various departments in charge
of eye exams, written test, driving test and the like, with a progression from
department to department. This process can be modeled using a transition diagram
in which the states represent the various departments, and the edges represent the
changes to the electronic driver’s license form that need to be performed before that
form is routed to the next department.

A transition diagram can be deterministic, or non-deterministic, where non-
deterministic means that more than one edge with the same label is possible out of a
state. In a preferred embodiment of the present invention, non-deterministic
transition diagrams are used to represent business processes graphically. These non-
deterministic transition diagrams constitute a process representation perfectly suited
for interpretation by business process engine 124 (FIG. 8), which, as mentioned
earlier, is the event handler based on NFA theory that processes the business process
flowcharts resulting from the graphical business process editor 320.

FIG. 30 is a block diagram of the graphical business object editor 330 of
FIG. 1. The graphical business object editor 330 is a tool that enables the graphical
editing of business objects and their relationships. A business object editor 331
generates internal business object representations which are converted by a business
object code generator into data stored in the business object repository 156.

In a preferred embodiment of the present invention, the graphical business
object editor 330 can be viewed as a Entity-Relationship (ER) diagramming tool.
The ER data model is the predominant conceptual level description tool and is used
as a diagramming technique where rectangles represent entities, circles represent
attributes, diamonds represent relationships. This graphical ER diagram can be used
to generated automatically the application database schema, and a number of the

basic data accessor queries.

10

15

20

25

30

WO 97/42572 PCT/US97/07348

- 5 2 -

In addition, default constraints can be automatically associated to business
objects based on the business object type. This can lead to automatic generation of
maintenance screens for lookup business objects that can take a known range of
values. The graphical business object editor can also be used to create templates
that can be reused throughout an application. For instance, every screen may have a
number of fixed function keys or buttons such as display, insert, delete, update,
clear, refresh, backup, or quit, as well as a number of variable function keys whose
semantics change from screen to screen. These function keys can be treated as a
group and provided automatically as part of the template for every screen in an
application.

FIG. 31 is a block diagram of the graphical data record editor 340 of FIG. 1.
The graphical data record editor 340 is a tool that provides access to the data stored
in the relational tables of the data layer RDBMS. As such, it is an interface that
provides graphical access to each application table and permits the application
developer or maintainer to view, insert, delete or update specific data records. As
illustrated, a data record editor 341 generates internal data record representations
342 which are converted by a data record code generator 343 into data stored in the
data record repository 138.

This focus on application data is complemented by an ability to manipulate
DDL structures. In this function, the data record editor can be viewed as a data
repository used to generate the database schema, either initially in its totality, or
subsequently, for incremental updates. In this regards, the data record editor is
similar to commercially-available off-the-shelve packages such as PeopleSoft Inc.’s
Record Editor or ERwin from Logic Works Corporation. As a whole, the data
record editor greatly facilitates application maintenance and data error recovery for
day to day application development, maintenance, and operation.

" FIG. 32 is a block diagram of the logic development environment 350 of
FIG. 1. The logic development environment 350 is an environment that adheres to
the “open system” standards. As defined herein, an open system is a system that

implements sufficient open specifications for interfaces, services, and supporting

10

15

20

25

WO 97/42572 PCT/US97/07348

53—
formats to enable properly engineered application software to be ported across a
wide range of systems with minimal changes, to interoperate with other applications
on local and remote systems, and to interact with users in a style which facilitates
user portability. Open specifications are defined herein as a public specification that
is maintained by an open, public consensus process to accommodate new technology
over time and that is consistent with standards.

Functionality, the logic development environment 350 includes, at a
minimum, an operating system 351, a third generation programming language
compiler 352 and debugger 353, a runtime building facility 354, a source control
system 355, and a screen oriented text editor 356. One possible embodiment of the
logic development environment could use the UNIX operating system, the ANSI C
programming language, the XDB debugging facility, the MAKE build utility, the
RCS revision control system, and the EMACS text editor.

FIG. 33 is a schematic block diagram of the facilitation tools 360 of FIG. 1.
The facilitation tools 360 are graphic editing tools. The primary concept is to
provide a structured, yet flexible, methodology for gathering user and application
requirements while enabling the use of the resulting documentation to automatically
generate a2 number of the architectural constructs that would otherwise have to be
encoded manually. These facilitation tools 360 can include project tools 361,
organizational tools 362, communication tools 363, office tools 364, groupware tools

365, and templates 366 for processing user inputs.

Equivalents
While this invention has been particularly shown and described with

reference to preferred embodiments thereof, it will be understood by those skilled in
the art that various changes in form and details may be made therein without
departing from the spirit and scope of the invention as defined by the appended
claims. In particular, the invention is not limited to particular communications
links, protocols, data structure formats, etc. In addition, although various features

of the invention are disclosed as being either hardware or software, it is understood

WO 97/42572 PCT/US97/07348

-54 -
that any feature of the invention can be embodied in hardware, software or
firmware.

These and all other equivalents are intended to be encompassed by the

following claims.

10

15

20

WO 97/42572 PCT/US97/07348

-565-

CLAIMS

What is claimed is:

A system to transition source applications to a distributed infrastructure, the
system comprising:

a multi-tiered computer architecture including a process control tier
for modelling the internal procedures of an enterprise and a functionality tier
for performing functions of the enterprise; and

an automated converter to transition a source application to a target

application operable on the multi-tiered computer architecture.

The system of Claim 1 wherein the multi-tiered computer architecture is a

client-server architecture having at least four tiers.

The system of Claim 1 where the multi-tiered architecture further includes a
presentation tier for interfacing with a user, a data retrieval tier, and a data

storage tier.

The system of Claim 1 wherein the converter includes an intermediate
language, the language of the source application being translated to the
intermediate language and from the intermediate language to the language of

the target application.

- The system of Claim 1 wherein the target application is an internet accessible

application.

WO 97/42572 PCT/US97/07348

6.
7.
5
8.
9.
10
10.
15
11.
20 12.

-56-

The system of Claim 1 wherein the target application is an object-oriented

application.

The system of Claim 1 further comprising an implementation plan which
provides a prioritized list of source applications to be transitioned by the

automated converter.

The system of Claim 7 wherein the implementation plan further provides

instructions for controlling the operation of the automated converter.

The system of Claim 1 further comprising an implementation strategy which
identifies inputs to a target system and provides a list of action items for

obtaining the identified outputs from the source system.

A method for transitioning source applications to a distributed infrastructure,
comprising the steps of:

providing a multi-tiered architecture including a process control tier
for modelling the internal procedures of an enterprise and a functionality tier
for performing functions of the enterprise; and

in a computer, automatically converting a source application to a

target application operable on the multi-tiered computer architecture.

The method of Claim 10 wherein the step of providing comprises providing a

client-server architecture having at least four tiers.

The method of Claim 10 where the multi-tiered computer architecture further

- inclades a presentation tier for interfacing with a user, a data retrieval tier,

and a data storage tier.

WO 97/42572 PCT/US97/07348

13.
14.

5
15.
16.

10
17.
18.

15
19.

20

-57-
The method of Claim 10 wherein the step of converting comprises translating

the language of the source application to an intermediate language and

translating the intermediate language to the language of the target application.

The method of Claim 10 wherein the target application is an internet

accessible application.

The method of Claim 10 wherein the target application is an object-oriented

application.

The method of Claim 10 further comprising the step of providing a
prioritized list of source applications to be transitioned by the automated

converter.

The method of Claim 16 further comprising the step of providing instructions
for controlling the operation of the automated converter based on the

prioritized list.

The method of Claim 10 further comprising the steps of:

identifying inputs to a target system including the target application;
and

providing a list of action items for obtaining the identified outputs

from the source applications.

In a computer, a converter for translating a source program component

operating in a source language to a target program component operating in a

“target language, the converter comprising:

an intermediate language;

10

15

20

WO 97/42572 PCT/US97/07348

20.

21.

22.

23.

24.

25.

-5 8 -

a first converter for translating the source program component from
the source language to an intermediate component in the intermediate
language; and

a second converter for translating the intermediate component from
the intermediate language to the target program component in the target

language.

The converter of Claim 19 wherein the intermediate language is independent

of the source language and the target language.

The converter of Claim 19 wherein the source language is operable on a
source processor and the target language is operable on a target processor

different from the source processor.

The converter of Claim 21 wherein the intermediate language is inoperable

on either the source processor or the target processor.

The converter of Claim 21 wherein the first converter parses the source
program component into a parse tree, the intermediate component

representing the parse tree in a postfix notation.

The method of Claim 13 wherein the step of translating comprises:

in a first converter, translating a source program component from the
source language to an intermediate component in the intermediate language;
and

in a second converter, translating the intermediate component from

the intermediate language to the target application in the target language.

The method of Claim 13 wherein the intermediate language independent of

the source language and the target language.

WO 97/42572 PCT/US97/07348

~-59-
26. The method of Claim 13 wherein the source language is operable on a source

processor and the target language is operable on a target processor different

from the source processor.

27. The method of Claim 13 wherein the intermediate language is inoperable on

either the source processor or the target processor.

28. The method of Claim 13 wherein the step of translating the source program
component Comprises:
parsing a source program component into a parse tree; and

representing the parse tree in a postfix notation.

PCT/US97/07348

WO 97/42572

1/36

uo .Eu,a.c.oo
33enduey

uoniuys(q
0¢z e

UOISIBALOY)
QoepaUl

s
ol

I "OId

dLee]

UOISI3AUO))

s8enguey

Jemnpasoiq
(1744

¢ WALSAS ONLLOALIHOY V-

RS OR BRI,

¥ Aousodsy
% Py
A w1 ma
RERIES
Kousoday
0
M wﬁ—ainnm
%
3 | 0T

Jake] 98ri101§ TR
1

L RIOTRR
Koysoday
nrold
g

q Kousoday

soepiawy

{ 7y =n

Aijeuonouny

(41

R ST INANE L VEREAT
4

1ahe]
$520014
ssauisng

0Z1

ERAANSR LSRR

KeT
uonEIUASIIg

L S R R A S A S e TR e SR

1ake ~o..a=oU

]

.—Oumﬁmw uouwvm

piosay 120

Lt e ssamsng

Seondasg | Sreomdesy
ort 13

f o B g B

sonpa oipg

$s3001g | ¥ sovpoU]

5| sseutsng | & 1950}

Jeoydein | Fleomydein
{ e oT¢

juswuolIAug
wawdopaag

___ 921307
(3

fP i B S e S A e B R T ————

09¢

sjo01, uonw[IvRy

St

0€ WHLSAS ONIHAANTONA-TA
f

~—_ I

PCT/US97/07348

WO 97/42572

2/36

¢ 'Ol

JOLVISNVIL
JOVNONVT YOLVISNVIL
NOLLINIFAQ ALITILO NOISYFANOD IOV IAALNI
vivd FOVNONY 1 TVINAID0Ed ¥4asn
0€7 07T 01T
+ S~—— 07 WALSAS ONILOALIHOYY-TA
JIAV1 YAV YAV
FOVIOLS SSHOOV YHAVT SSHEO0Ud YAV
vivda vivda ALI'TVNOLLONNA SsaANISNd NOILVINISTdd
0ST or1 0¢T 0Z1 01T
* * “— 01 DANIDILHOYY AFdLl-LLI TN
| A A
dOl1Idd JOlIad Joliad J0L1dd
arioere: INFNNOYIANA 104drd0 SSHD0Ud JOVIITINI
Vivd INFNJOTIAAA SSANISNY SSANISNI qasn
JIHdVYD JID01 DIHIVID DIHIVYO OIHdVYID
0S¢ oreE 0¢¢ 0z€ ol¢
5o¢ STTO0L NOILLVLITIOVA

S~ 0¢ WALSAS ONIIFANIONT-TY

PCT/US97/07348

€ O

3/36

-

: w vhueld | Zv Abajeng
o374 :o_am._wQO*_ mvco_uﬁcmEm_QE. :o:mu:mEm_QE_ wco_umu:mEm_QE_

ro
o_umhmm., o) ﬂx M \

ws\ 69¥ \ﬁ ISO AT

Swa)sAg :wmao Jo Joddng su

08b w. 9ALQg ABojouyoa
\ ﬁ VdO U 1avi Je ! | \
" |~ ; _
4 L9V~ i :
589 o | dvSV [<{ VddV |&| sioa
ASVS | o
33s | N \
b wy
(4512 | wvs SI9ALIQ ssaulsng

%

swoajsAg AoebaT jo Hoddng suopesadg

WO 97/42572

PCT/US97/07348

WO 97/42572

4/36

sa1n3omulg
uonruasaiday

Q0BT J3S()
uonedtddy

91T

-

1141
JHAVT
SSID0Ud
SSANISNd
oL

IRCH wn
R

TEPF

AR ARG

SRy ST et g

01I

suidug

ERIASENN
18]

|

o~
—
—

saimong
uonejussalday
0BHSIUT Ias()
uuope[d Aejdsiq

8l

b OIA

"-‘*3%'"1F’—i’.‘-ﬁﬁiﬁﬂﬁm@!m%ﬂﬂ!m@?ﬁ)‘mﬁﬁf R

no)
uuone|d
Kejdsiq
sogpaUY
19s0)

Hipaemy,

el

I

PCT/US97/07348

WO 97/42572

5/36

S O

A~

9ZI§ mopuipm

uonIsod MOpuIpm

3141 mopury

1000 punoI3dyoeg mopuip

I0]0D) 1X3 L, mopuip

140, X9], MOpuUIp

(A1u0 1p=D) YSUaT XeA 1xa L, Mopuip
19pIO qe 1 /dno1n mopuip

913 ‘wonng) NP ‘PUMD) sse[D MOPUIM
I mopurpm

(s10130) uonde) 10 (11pgD) 1xa 1. mopurp

{HIRyHU w
\\\\\\\\\\\\uzumsoclE
\\\\\\\\\\\\ ATeyou_w
HHHHHHHHHHHHqumcUclE

HT®XTdu w

_—

——MTOXTIgu w
‘ATOXTJU w

2INJONTIS MOPUI AL

.ebom o1e1§ Aq paudisse (O1 uonoy mopuip
91s£s Mopuim/SO Aq pausisse (g MOpuIp
ooy s1elg Aq pausisse (71 ploryg

T xXToxTgu u
—S231NQTIIJYRIIXFU W
{adAraepIogu w
T J0TO0D0RgU W
—————J0T0D310U W
—S93NQTIIYaTAISU W
5 14A353U03U W

JUyibusTxenu w
![zgluxeizeganozsd w

gluxsjzaiegurzsd w
llllllllluumUHOQchle
!dnoaoqeru w

!adAru w

;////WJumecoHuumcue
‘qIpPTeTIU w
/

aInponyg Surdd ey sopuipy

STENIONYLS NOILVINASTIITH

811

!anTepzsd w

CADSS)
dLxg
dI1X9
dLXd
Jdom
ar(o}
adom
ddom
a’doma
[CADSS
d1LXd
d1LXd
dLXd
dLAd
qaoM
aeyo
Ieyo
dLA"
dLAd
J1Xd
JJaom
dyoM
x IBYD

911

PunSpRIuIaiog
STANIONYIS NOILVINASTIITY

PCT/US97/07348

WO 97/42572

6/36

TLIT

I-L11

9 "Dl

UONeULIOJuT U9aIds

ajepdn pue samjonns uorjejuasardal
SdeIouI Iosn Jutwoouwr yoedun e
OdYy 1o4e ss2001d ssaursnq o o

SaImonns uonejuasardal Rl ARETI0]]
1asn 3urodino yoed pue ojeard e

SUONEJUNWIWOY) 13)N0Y 9)E)g

14’

Suonoe juspusdap-uoneordde
UonoRIOIT 193(q0 [ND e

nduy Jas)

11

nusw uonedrydde jussary e

SUOLBITUNUITIO)
10he] ssao01d ssaursng szienU] e

JlElS [BUIOJUW OZI[BIIIU] o

uoyEzIENUY

€LLI

PCT/US97/07348

WO 97/42572

7/36

(4%

L O

PCT/US97/07348

WO 97/42572

8/36

spiosay
ueq

6C1

QEICY)
ssauisng

Lzl

$35590014
ssouisng

STl

sadepaju]
1ssp)

€Tl

-

0€T
JIAVT

ALTTVNOILDONNA

oL

#ﬁ:iﬁli‘i‘-ﬂ&% SRR A S AR AR S i

e e e ek B S S P 2 ST

i
4 B 744

8§ ‘Ol

BN e AL G A RGN ok e i B

ANIONT
SSH00Ud
SSANISNg

IR AR N DR AR K TR S IR

7T ¥41N0Y LVLS

saInjonng
uopEIuasalday
9orpaIU] JOs[]
uoneoljddy

|44

[

OII
JIAVT

NOILVINISHId

oL

PCT/US97/07348

WO 97/42572

9/36

013077 3unnoyy

-0 —"]

1T

UTe I33n0Y 3¥3els

——

144! A91N0Y I3e1S

_m-NNH dUTINOY DY

6-LIT sutinoy Day
I x

............. ﬂ

v I

6-LIT]

obesso sseyg

T i

9-LIT

3po) 20vfudpu] 425[)

LIIT

uI3uYy dBLIAU] J13S)

PCT/US97/07348

WO 97/42572

10/36

01 "OIA

wi —"

onsodsy
oseqele(]

3z q1Z1
—— //
4nand feiry
_IT NI OsN SaImonIS
DSIN AJY L ERLIE
SIN dddd lasn
T wnsy
S rua !
R1441 1eULI0,] 98BSSaIN
544 (1l U2319S MaN
sweN R
| | U agessoN m&& - (11 35eSSopN 1XaN]
............. - 1XON SN Yy jeuuog adessa|N 1XoN
VdsS
JBULIO 93BSSIIA "o3u]
744! U moAe]
\ U3310G U33I10§
azzl b
|
4nano ferry
OSIN SaImoNS
1Nn0
~¢———— NHES ———— doelou] &
OSI ogu]
d3dd 13850
SAN u2310g isonbay e _
/32 < 64
R4l
JHINOY HLV.LS

PCT/US97/07348

WO 97/42572

11/36

I1"OId

vl

UHAVT
SSEDIV VLIVA
oL

Sp1093y
Tieq

8¢l

s193[30
sssuisng

Lel

S32BJI93UT
1850}

9tl

ot

R Y S OO ST

R A AR e T

spioosy
eeq

pel

51200
ssaursng

£el

AdVIdl'1
S123rdo
NOLLYOI'TddY
VT R DA AT
AdvVadIT
RERIY
SSANISNd

$95532014

ssaursng.

zel

Sa0epIaIU]
98]

el

¢l YHAYIS ALITYNOLLONNA

114

JIAVT

SSADO0Ud SSANISNA
oL

PCT/US97/07348

WO 97/42572

12/36

I RTINS

(AR E |

S Ry S D T

r e

q

ddAYES
JSvavivda

$p1029Y
Tueq

8vl

SR TR MR DRTE RIS

RO

|

Lal
—

m\wﬁnéh S SENEY

AIAYIS
viva
Lodrd0
SSANISAH

$193[q0
sseulsng

14

SRR e A A G A S A MRS A s

7] o8 me

EXREOIAT] ow
[
g
—

JdA¥dsS
viva
$S4004d
SSINISNY

$3853001¢
ssauisng

144

s

fad

&
N

0S1

HHAVT
IOVIOLS VLVA
oL

| aSERi ‘,!TQCW:’A‘IE?‘{? 3

dIAYES
Vivd

IV IITINT
Hasn

$90BHAIU]
1asp)

[44!

0€l

HHIAVT
ALI'TVNOILONNA
oL

PCT/US97/07348

WO 97/42572

13/36

€1 O

Sp10oay
Bleg

681

i AYOLISOdTd
3 SaQY0OTY
i viva
m __ NOILVOI'lddV

S ST

%5

5

e e O N N RO
AdOLISOdTd
yYivda
SLOdI40
- ssaNIsng
SS1

$193090
ssouisng

LSt

2]

..\.J'T.ﬂ#g%mﬁﬁnk? e ST Bl S g N A,
AJOLISOdad

$§3004d
SSINISNA

vivda

535590019
ssauisng

139

|

saorpaU]
138

1291

w ST SRS IR Iy
PR

g AdOLISOdTd

4 viva

m FOVIATLNI

I qgsn

jrd

vl

HIAVT
SSIOIV VIVA
oL

PCT/US97/07348

WO 97/42572

14/36

L

S

I

€<

I

PCT/US97/07348

WO 97/42572

15/36

ST 014

INIWIDVNVYIN
NOLLVINOLINOD

L9]

ININIDOVNVYIN
AIOMLIN

991

ONIALNNODOV

§91

INIWIOVNVYI
dIAA3IS

¥I1

NOLLV1SININGY
WILSAS

X2

ALRINDIS

ININIOVNYIN
NOILOVSNVYL

191

PCT/US97/07348

WO 97/42572

16/36

91 "OId

suouyaq

22BpAY 19S[)
22in0§

R st A O St

RO A b

ST

m.‘\..wﬁm.&%ﬁﬂ%hmméa I T S R Y S R R N B Y ST R SR L RS

991
OLOBIUASG

YOLVUINID 3d0D 444
S¥e

T B Y P SRR Y

TIT YILHIIANOD FIOVAIIINI HASN *

so[id
aseqelR(

144

€17 SuonIUYa(] 99BN Jas[) 19SIE]

(4!
AYOLISOddY

| HOVAYHINI 448 OL

071 HAAVT | SSHOOU SSANISNI

PCT/US97/07348

WO 97/42572

17/36

LT "OIA

TN e T AT T r 5 S RO

Syl

(5 AT ARy i LI

“ ks IR i M LT ST e mE Y
ST001L swesBoig w, S1001
NOLLV'INdOd -— 38en3ue & SISATVNY
viva 301n0g 'm FOVNONV']
122 ,m IDANOS
€72 -

wahiwy‘uﬂewv?ﬂmﬂr 1SRG Y EOY

HINIOISNVIL
V dSVHd

IR

+TT

Kreuonoig

sweidoig
35engue
Kerpaunauy
§TT

Beq

87T

ere SRR A RN IS A, i et oo]

JIWNIOISNVYL
4 gSVHd

sures3org
a3enSuey
198re],

LT

0L HHAVTSSHOOV VLVA ANV

0T HIAVT ALI'TVNOILONNA OL

PCT/US97/07348

WO 97/42572

18/36

81 "OIA

N-122 NL-6600 9 07122
g ———— N XAANIHOWVES-000Z WAOREd

Wriee —> ISTH

e NFINGS LXAN 122

Slgg ————P=HOVdS < YOMIT-TIVO-SWA I

WVIOOUd-QNT LION 41 &
SINVE-NOWNOD-ANIA-000T INJOTdad ~g— 1%
- IVHO-T-IA-TIVO-A'IOH OL AOVJS HAON
H-1TT 0 = WNN-Z-LA-TTVO-Q'TOH JI <& 971T
"LA“TIVO-Q'TOH OL LA-TIVI-SINA HAON -
NON-LIE OL 0 SAON -~ 1%
e —»NI3-6600 OL 0D
VT > JOWAT-TIVO-SINA OL N, TAON
_ 0006 < VARIV-TIVO'SWA 4l g1,
‘SLINSTY TTVO-SINA bl
VAIV-OVTI OL ANTVA-MOT AAON *—

177 \;

a-1ce

PCT/US97/07348

WO 97/42572

19/36

Kreuonoig

eeq
827

61 "O1d

sweidos
aden3due]
921n0§

|§44

REAEY WA

l&

PRI TS

7

AR

[A%4

11avL
TOGWAS

PRI N AR

:
}

RN R SR S A

NOILINIIZd

AVYIWINVIED

IDOVAONVT
I3dNO0S

A

AT

-

ey

ST NOISYIANOD

AIVIATANFLNT OL 24N0S

£5T

dOVNONVT

PITHINAOASN VAL VISVHI

sweiSoig
agenduey
Areipaunaluy

§TT

WO 97/42572 PCT/US97/07348

20/36

FI1G.20B

FIG. 20

F1G.20A

PCT/US97/07348

WO 97/42572

21/36

\\n 4-S27
IA- JA

a-sze D-STT
TIVISWA TIVOTOH \ q-STT x \ Y0T 'OI4

NI4-6600 N ¥OWdE-TTVI-SNA
qd-STt
0 WON-L16 @ e

0006 VIIV-TTVI-SWA

dNTvA vIAv LIS

g @ D Yed! OVl “IIVI-SW

€572
mNN.\A st @ /

| 744

PCT/US97/07348

WO 97/42572

22/36

N-S7T 4%@%%.&8 Em.&oﬁ-mmmuoém AOWUI-TIVO-SWA

_

q0? "OId

FOVdS YVHIIA-TIVO-QTIOH 0 WNAN ¢-IA-TIVD-QI0:

H-STT

8-5C - l\\@ @\ &
_A

PCT/US97/07348

WO 97/42572

23/36

1T 'O

\\.\I‘ amNN

/iv LISITINGNALVLS ISITINFNALVLS LSITININTLVLS
LSIT-ININALVIS LSITINFNILVLS LSIT-INFNILY LS LSIT-INTNILVLS ISIT-INTGNALVLS

6°5TT

«8-67T

—p INIWNILVLS 199V NIJ-6600

LST2 ININFLVLS 41 LSIT-ININGLVLS ST-41 LSI T INTNALYIS INTNALVLS
) /.'v 41N0dXd ¥VA XdANI-HOWVIS-00T LSIT-INANTLV.LS INTNILYLS JNNT 149V T NId-6600 NOILIANOD
NVHINALVEYO TVYALITIOVdS YYA YOUYT-TTVI-SINA NOLLIANOD LON ¥VA NVYDOUd-ANIT

9-577 —— > INFNELVLS ALN0TXT VA INVE-NOWANOI-ANIZ-001
1

INAWALVLS AT LSIT LNIWNALYLS NDISSV
S-77 Y TVYALITHOVdS AVA AVHDLA-TTVD-A'TOH NOLLIANOD TVNOF TVIALIT 0 ¥VA WAN-Z-LA-TTVO-ATOH

— > INGWILVLS NOISSV VA LA-TIVD-SIWA VA IA-TIVO-QIOH

$s
€77 p LNFNHLV.LS NOISSV TVYHLIT 0 dVA WAN-1I9

772 > INHWHLVLS A1 LSIT-INFNALVLS INFNGLYLS JNN TV NI-660 INTINTLV.LS NOISSY TVHALIT
¢ NAVA OAIF-TIVI-SINA NOLLIONOD NVHL-YILVIID TVIILIT 0006 YVA VIIV-TIVI-SIAX

T I NENHLVIS NOISSV ¥VA SN TVA-MOT LSITHVA 3VA VIIV-OVTL dVA LINSTI-TIVO-SIA

PCT/US97/07348

WO 97/42572

24/36

Kseuonoig
eleq

8T

¢ "OId

sweidoid
a8en3uey
Keipaunaiug

mﬁﬁmﬁﬁwﬁﬁﬁuvﬁm NN w,..r S B s T P AR e Aol o
& NOILINI4FQ
T1avL 2 AV IO
TOENAS FOVNONV
AUVIADARILNI

TR *?J@,
sy '.-<<‘rz"ce’-u‘=~|

9T

R N R Y D R G NI MU T S A

ST NOISYIANOD
IOVNDNVT
LEDYVI OL ALVIATAIILNI

£9C

97T HAWHOASNVYL 4 ASYHd

Sasnjorug
ue(¥ 3poD
a%enBue]
198re]

LTT

PCT/US97/07348

WO 97/42572

25/36

fLTT

VETOIA

NI 6660 [9qeT
/% SOUSUIS JXaU /1| [3qe| usd

{

{
‘0 XHANI HO9VAS 0007 oung

}

020

{

‘1 12qe] uag 0308

}

(C,, . MOWIT TIVO SIAA) [eIeyITuey [1518310)s]) J1
)
((NVIDO™d ANE) 2us j) j1
‘0 JINVE NOWINOD NI 0001 dung
{

‘(s MYHO T LATTIVD Q'IOH) [BIoN TWOLUSISSY
}
(CO AN T LA™ TIVO @IOH) [esoirToLieabgs]) Ji
(LA™TIVO SWA ‘LA TTVD Q'TOH) ulissy
(0, WNN LI9) [erenTwoIugissy
{

__ ‘NId 6660 12qeT 0103

(N FOAIT TIVO SINA) [eIoN TWOLUSISSY
}
((0006 “VEIV TIVO SIA) [eal TURY L13}2210s]) J1
{dNTVA MOT'VEIY DV) uSissy
(aNTVA MOT‘SIINSTY TIVD SA) udissy

PCT/US97/07348

WO 97/42572

26/36

€7 014

‘NId 6660 19987
/% OUUIS IX3U /| [oqe| usd

{
~ o {
‘0OXAaNI HOYVES 0007 ounyg
}
as[s

{
‘1" [oqe[uag 0308

]
]

(o <AOWHT TIVD SAD I
}
NVID0¥d aNd i) J!

{OMNVE NOWWOD ANET 000 dunyg

{
e =dVHD T LA TIVD QTOH

}
(0==WNN 7 1A TIVD QIOHJ!

"1A TIVD SINA = 1A TTVO d'TOH
0=WNN 1Ig

{
‘NI 6660 19987 0303
«No» = 4OWYT TIVD SIA
}
(0006 < VIIV TIVD SINA) Jt

ANTYA MOT =VIYV OV = SLINSTY TIVD SINA

PCT/US97/07348

WO 97/42572

27/36

T "OId

£el
gle(qQ

201n0g

1€2 IOVNONYV'T IDUNOS

[AX4
s3endue

uonIuIya(] ele
30In0g

Ia|IsAu0))

€T JALAAANOD ISVEVIYA

{ uontuyaeleq

el
J913AU0)

a8enSue

6¢C
Bl
103m]

LET ADVIIONVT LADYV.L

uonIug(q elR(]

8¢€C
a3engue]

Jo8m]

: NOISYIANOD V.LVA

NOISHAANOD VIWIHDS:

85T AYOLISOdHAY | AYODHAY VAVA Ol

PCT/US97/07348

WO 97/42572

28/36

ST 'O

| 434
31 9Sd

oTeT

uonIulap juaw3ag
dI'TAdOD

Sl TXxgdd

qcee

!

A

BTLL
o[y Xxxddd

(A %4 ‘HQ AAN0S

*

qset BGET
(IURAU0D [19118AU0)
S£T YALYIAANOD '1dd
Y Y Y Y Y
J8¢ET 98¢€T P8ET 08¢7 q8¢€7 14
Sa[y So[1J Japeay $a[lJ Iapeay S9[1] UOIB3ID SO[1J UOIBaId K91} UOIRaI)
dipxxgdd qSd BUWYOS Aoy Xopuj 31qe L

8¢€7 TAd LADYUVL

PCT/US97/07348

WO 97/42572

29/36

QSETESET SYALYTANOD TAA

9T "OId

a8engue

901n0g
[A%4

%ﬁaﬂﬁgﬁﬂiﬁmﬁaﬁéﬁvﬂg@wﬁzﬁﬂﬂﬂﬁg..-vnm%

J. 53 s a \,rwmnku\..? L0y
H YANNVIS
2 1.7

TR AN T AT SRR e

ddsdvd
€LT

EERIAN

"~

YRR

A S G SOy s

\ Y

AOLVYINID 30D

SLT

cEI g
o1BIUAG

vL

(4

agen3ue|
onIuYa(T EIE
19818

8¢T

PCT/US97/07348

WO 97/42572

30/36

qiec
o[y ey

BJEP 20100G

LT "OId

BlET
AY

dipxxqaqg

SR L R

PANTRRAR AR

9¢t
13}19AU0D)
el

BoET
3] Yasur
BlR(J193Ie]

PCT/US97/07348

WO 97/42572

31/36

ST AYOLISOdad

8¢ O

A

JOLVIINID
4d0d
FOVIIAINI
Jgsn

uonEIuasIdoy

20BpAIU] JOS()
Jewau]

AR A N et e 6

HOVAIAINI dASN

OL

PCT/US97/07348

WO 97/42572

32/36

PST AYOLISOdTA

| A D S T SR A

O g e A i

743

6T "Old

}

JOLVYINTD
4d00
SS400Yd
SSANISNd

SSHOOUd SANISNd O.L

uonejuasaidoy
$590014 ssaulsng
Jewayuy

(443

F AR i R

=4

A A R

| ¥43

d0l1a3
SS30¥d
SSANISNL

PCT/US97/07348

WO 97/42572

33/36

95T AYOLISOdHYA

0€ "OId

LOArdO SSANISNI OL

&
& JOLVIINTD
m cle(o)e)
; RIeE13: (0]
SSANISNY
£€€

uonrmussaidoy
13(qQ sssuisng
Jewajuy

[423

(B ST e O RN R G et]

Jo11ad
124rdo
SSINISNd

PCT/US97/07348

WO 97/42572

34/36

85T AYOLISOddA

I€ "OId

f

YOLVIINTD
4d00
QEOOT] VIVAd

uoneuassidoy
piooay meq
Jewaiuy

(423

R G DALY By i s NN

Jo.Lad
qa00dy viva

40039 VLVA OL

PCT/US97/07348

WO 97/42572

35/36

E SN D

AR

B B RSB M s

Is¢

€ O

A

0€T HHAVT | ALI'TVNOILDONNA OL

WHISAS ONILVYHdO

ORIV

e 2T T A ey b e Pl N A R 7
Rt B N L O A W A AR,

JIATINA
TANLINNE

14%°

e O B A

et
DR

5
m
g

i wouas
5
!
:
E

TOYINOD
NOISYIA

I TINOD

TIO0NgHd NICRLAR

A N I T e Ry B AL e ST G55

— e AT
S N S SV L R PRI TF

PCT/US97/07348

WO 97/42572

36/36

£€ "OId

SLN4dLNO

4

$9¢€ STOOL 4D1330

£9¢ STO0L NOLLVOINMNNOD

19¢ STOOL NOLLVZINVOYO

SERABTERNES

§9¢ STO0L TYVMINOYD

19€ STO0L LOIA0¥d

99¢ SALVIdNIL

SL(dNI

INTERNATIONAL SEARCH REPORT

Inte. »nal Applicaton No

PCT/US 97/07348

A CI ASSIFICATION OF SUBJECT MATTER
IPC 6 GOG6F9/44 GO6F17/60

According to Internatonal Patent Classification (IPC) or to hoth national classificaion and IPC

B. FIELDS SEARCHED

Minumum documentation searched (classification system followed by classification symbols)

IPC 6 GO6F

Documentaton searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the internatonal search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1,2,4-6,
vol. 17, no. 6, 1 June 1991, 9-11,
pages 626-635, XP000260966 13-15,
CALLAHAN J R ET AL: "A PACKAGING SYSTEM 18-28
FOR HETEROGENEOUS EXECUTION ENVIRONMENTS"
Y see the whole document 7,8,16,
17
X BYTE, APRIL 1995, USA, 1-3,5,6,
vol. 20, no. 4, ISSN 0360-5280, 10-12,
pages 175-176, XP002039049 14,15
BERG K S: "Business objects done right"
Y see the whole document 7,8,16,
17

-/--

Further documents are listed in the continuation of box C.

D Patent family members are listed in annex.

° Special categories of cited documents :

“A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publicaton date of another
citation or other special reason (as specified)

"0° document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the international filing date but
{ater than the pniority date claimed

“T" later document published after the international filing date
or prionty date and not in conflict with the applicauon but
cited to understand the principle or theory underlying the
invention

“X" document of particular retevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y® document of particular reievance; the claimed invention
cannot be connidered to involve an inventive step when the
document is combined with one or more other such docu-
me&ts, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

27 August 1997

Date of mailing of the international search report

05. 0997

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Kingma, Y

Form PCT/1SA/210 {secand sheet} (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inte. onal Application No

PCT/US 97/07348

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

[Category *

Citation of document, with indication, where appropnate, of the reievant passages

Relevant to claim No.

A

INTELLECTUAL LEVERAGE: DIGEST OF PAPERS OF
THE SPRING COMPUTER SOCI INTERNATIONAL
CONFERENCE (COMPCON), SAN FRANCISCO, FEB.
28 - MAR. 4, 1994,

no. -, 28 February 1994, INSTITUTE OF
ELECTRICAL AND ELECTRONICS ENGINEERS,
pages 230-234, XP000479395

LEYMANN F ET AL: "“BUSINESS PROCESS
MANAGEMENT WITH FLOWMARK"

see page 230, left-hand column, line 1 -
page 232, right-hand column, Tine 32

COMPUTER,

vol. 27, no. 4, 1 April 1994,

pages 55-61, XP000447752

SCANDURA J M: "CONVERTING LEGACY CODE
INTO ADA: A COGNITIVE APPROACH"

see page 57, left-hand column, line 32 -
page 58, middle column, line 3
PROCEEDINGS OF THE INTERNATIONAL
CONFERENCE ON COMPUTER LANGUAGES,
TOULOUSE, MAY 16 - 19, 1994,

no. CONF. 5, 16 May 1994, INSTITUTE OF
ELECTRICAL AND ELECTRONICS ENGINEERS,
pages 1-10, XP0OO0479355

LADD D A ET AL: "A*:A LANGUAGE FOR
IMPLEMENTING LANGUAGE PROCESSORS"

see abstract; figures 5,6,8

4,13

19-23

23,28

Form PCT/ISA/210 (continuation of second sheet) (July 1992}

page 2 of 2

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

