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(57) Abstract: An improved virtual memory scheme designed for multi-processor environments that uses processor registers and a
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DISJOINTED VIRTUAL MEMORY SCHEME WITH BLOCK BYPASS

PRIORITY CLAIM
Priority is claimed from U.S. Patent Application No. 15/280,015 filed September 29,
2016 and entitled “Disjointed Virtual Memory Scheme with Block Bypass,” which claims
priority to U.S. Provisional Patent Application No. 62/275,149 filed January 5, 2016 and
entitled “LambdaFabric: A Scale-Invariant Computing Interconnect Scheme,” an entirety of

which is incorporated herein by reference.

BACKGROUND
Multi-processor computer architectures capable of parallel computing operations were
originally developed for supercomputers. Today, with modern microprocessors containing
multiple processor “cores,” the principles of parallel computing have become relevant to both

on-chip and distributed computing environment.

BRIEF DESCRIPTION OF DRAWINGS

For a more complete understanding of the present disclosure, reference is now made
to the following description taken in conjunction with the accompanying drawings.

FIG. 1 is a block diagram conceptually illustrating an example of a network-on-a-chip
architecture that utilizes localized address virtualization in a system that includes distributed
memory.

FIG. 2 illustrates an example of a packet header used by the system.

FIG. 3A illustrates an example structure of a virtual address used by the system.

FIG. 3B illustrates an example structure of a physical address used by the system.

FIG. 4 illustrates an example of chip-level registers storing a look-up table used to
translate between virtual cluster numbers and real cluster numbers.

FIG. 5 illustrates an example of cluster-level registers used to locally translate address
bits corresponding to a virtualized memory block into address bits indicating a real memory
block.

FIG. 6 illustrates how chunks of local memory may be divided into multiple blocks.

FIG. 7 illustrates example components within a chip-level packet interface processor
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that use the registers storing a lookup table like that in FIG. 4 to direct a packet to the real
cluster.

FIG. 8 illustrates an example of the process performed by the chip-level packet
interface processor.

FIG. 9 illustrates example components within a cluster-level packet interface
processor that use the registers storing a lookup table like that in FIG. 5 to address memory.

FIG. 10 illustrates an example of the process performed by the cluster-level packet
interface processor.

FIGS. 11A and 11B illustrate examples of processes used to generate and store the
lookup tables.

FIG. 12 is a block diagram overview of example components used for virtualization in
the architecture of FIG. 1.

FIG. 13 is a block diagram overview of including alternative components used for
virtualization in the architecture of FIG. 1.

FIGS. 14A and 14B are examples of routing processes performed by the architecture
in FIG. 1.

FIG. 15 is a block diagram conceptually illustrating example components of a

processing element of the architecture in FIG. 1.

DETAILED DESCRIPTION

In computing, “virtual” memory refers to a memory management technique that maps
memory addresses used by a program, called virtual addresses, into physical addresses in
computer memory. Storage as seen by a process or task appears as a contiguous address
space or collection of contiguous segments. An operating system may manage virtual
address spaces and the assignment of real memory to virtual memory. Address translation
hardware in a processor, often referred to as a memory management unit or MMU,
automatically translates virtual addresses to physical addresses. Software within the
operating system may extend these capabilities to provide a virtual address space that can
exceed the capacity of real memory and thus reference more memory than is physically
present in the computer.

Conventional benefits of virtual memory include increased security due to memory
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isolation, and being able to conceptually use more memory than might be physically available
using the technique of paging. Paging is a memory management scheme by which a
computer stores and retrieves “pages” of data from secondary storage on an as-needed basis
for use in main memory, where each page is a same-size block. Page tables store the
mapping between the virtual address and physical addresses. As used herein, “real” and
“physical” are used interchangeably.

Most earlier processors based their virtual addressing on lookup tables that map the
entire virtual storage space. For example, in a typical scheme based on pages, a memory
address is viewed as essentially two pieces: a page number and an offset into a page. Asa
typical example, the twelve least-significant bits of an address might represent an offset
within a page, and the remaining more significant bits (typically at least twenty, and often
more) represent a page number. This page number is used to look up a physical address in a
page table, then the physical address and the offset within the page are used to read or write
the actual memory.

Such a design is extremely flexible, but at a considerable cost in efficiency. The page
tables occupy a considerable amount of memory—a conventional design might easily use
several megabytes of memory just to hold the page tables. In addition, reading the page
tables uses precious memory bandwidth. To minimize the memory bandwidth used to read
page tables, most conventional processors cache at least a small part of the paging table on
the processor.

Disclosed herein is an improved virtual memory scheme designed for multi-processor
environments that uses processor registers and a small amount of dedicated logic to eliminate
the overhead that is associated with the use of page tables. The virtual addressing provides a
contiguous virtual address space where the actual real memory is distributed across multiple
memories. Locally, within an individual memory, the virtual space may be composed of
discontinuous “real” segments or “chunks” within the memory. The delays and additional
bus traffic associated with translating from virtual to real addresses are eliminated.

The improved virtual address scheme uses packets to route data within semiconductor
chips and externally between chips. Processors have increased in complexity and scope to
the point that they can benefit from a routed packet network on a semiconductor chip

including multiple processors. By using a same packet format on-chip as well as off-chip, a
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seamless fabric is created for high data throughput computation that does not require data to
be re-packed and re-transmitted between devices.

In addition to any “main” memory that is shared by all of the processors, smaller
memories may be distributed across each chip, where clusters of processors share a local
memory amongst themselves. The virtual addressing scheme can provide a contiguous set of
virtual addresses for a system where the actual memories are not only distributed across
different chips in a system, but are distributed between memories within each chip, and
distributed across multiple segments within an individual memory. Among other advantages,
this allows memory to rapidly be remapped to remove bad blocks of memory from the virtual
addressing space.

A “host” process executed by one or more processing elements in the system can
remap virtual addresses to different physical blocks, and add and drop blocks from the virtual
address space on an as-needed basis. When devices are added or dropped from the system, a
host process can remap the virtual address space to accommodate the change in the physical
space. Moreover, by monitoring traffic within the system, the host process can remap the
virtual address space as a load balancing tool, changing the physical location of a virtual
block to be closer to the processing elements accessing that portion of the virtual address
space. This flexibility reduces latency and optimizes resource use.

Conventional systems that use virtual addressing typically operate in a virtual
addressing mode or in a physical addressing mode, but are not able to contemporaneously
handle both addressing types. Such systems reconfigure themselves to switch between
addressing modes, creating computational delay and reducing flexibility. In comparison, the
improved architecture allows contemporaneously mixed physical and virtual addressing.
Whether a packet uses physical addressing or virtual addressing is determined on a packet-to-
packet basis, with the address type used by each packet being independent of the address type
used by every other packet in the system. Eliminating “modal” operation improves
operational efficiency and simplifies simultaneous execution of processes with different
memory needs.

FIG. 1 illustrates such an architecture. The multi-core chip 100 includes a top level
(L1) router 102 that moves data inside the chip and between chips. All data packets begin

with a header containing routing data. Routing to internal parts of the chip may be done by
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fixed addressing rules. Routing to external ports may be done by comparing the packet
header against a set of programmable tables and registers. The same hardware can route
internal to internal (Ioopback), internal to external (outbound), external to internal (inbound)
and external to external (pass through). The routing framework may support a wide variety
of geometries of chip connections, and allows execution-time optimization of the fabric to
adapt to changing data flows.

The L1 router 102 is connected to one or more external-facing ports 103 that connect
the chip 100 to other chips, devices, components, and networks. Such external-facing ports
103 may provide access to one or more external communication channels via external serial
data busses 104a and 104b. Each serial bus 104 comprises at least one media access control
(MAC) port 105a, 105b and a physical layer hardware transceiver 106a, 106b. The L1 router
102 may also be connected to a chip-level supervisor processor 110 and/or data feeder, such
as a processor/feeder that distributes executable instructions to configure the programmable
elements of the router 102 and otherwise manage overall operations on the chip.

Each chip has a device identifier (“device ID”) that uniquely identifies within the
system. Device IDs may be physical or virtualized. An example of a physical device ID is a
burned-in identifier stored in hardware or firmware (such as a MAC address or serial number)
when the chip is manufactured. An example of a virtualized device ID is a unique identifier
assigned to a device/chip by a host process when the system is initialized and when a new
chip/device is added to an existing network topology. When data packets arrive in the L1
router 102, the L1 router examines the header at the front of each packet to determine the
destination of the packet’s data payload. Each packet header identifies a destination chip by
including that chip’s device ID in an address contained in the packet header. Packets that are
received by the L1 router that have a device ID matching that of the chip 100 containing the
L1 router 102 are routed within the chip using a fixed pipeline through a supervisor port 109
to the supervisor 110 or through one of the internal ports 111 linked to a cluster 130 of
processor cores 134 within the chip. The L1 router 102 routes packets that are received with
a non-matching device ID through an external port 103.

The same set of device IDs may be used for both physical and virtual addressing. As
such, if the host process assigns a device ID to each chip in the system (i.e., a virtualized

device ID), both physical and virtual addressing will use the host-assigned device IDs to
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indicate a packet’s destination. Likewise, if the system is configured to use hardware-or-
firmware-specified device IDs (such as a MAC address or serial number), both physical and
virtual addressing will use each device’s burned-in device ID to indicate a packet’s
destination.

The L1 router 102 includes a set of registers 108 that stores a cluster lookup table, and
a cluster packet interface processor (CPIP) 107. When the L1 router receives a packet to be
routed to a destination on the chip 100, the CPIP 107 determines from the packet header
whether virtual addressing is being used. If virtual addressing is being used, the CPIP 107
translates the bits identifying the virtual cluster to determine the actual physical cluster 130,
and causes the L1 router 102 to direct the packet through the internal port 111 corresponding
to the actual physical cluster 130.

Packets destined for a processing element 134 or a cluster memory 136 within the
chip 100 may be routed by the L1 router 102 directly to the actual cluster 130, or routed
through intermediate routers (not illustrated) that include their own CPIPs 107. Whether
there are or are not additional routing tiers between the L1 router 102 and the clusters 130 is a
design choice.

As illustrated, there are clusters 130a to 130n, where “n” is not intended to convey
any particular upper limit. For example, there might be thirty-two (32) clusters 130. Each
cluster 130 comprises a plurality of processing elements 134 and a cluster memory 136. As
illustrated, each cluster 130 includes eight (8) processing elements 134a-h (e.g., processor
cores). Thus, in this example, the L1 router 102 services two-hundred-fifty-six (256)
processing elements within the chip 100, associated with thirty-two (32) cluster memories
136.

Each cluster 130 includes an intra-cluster router (L2) 132 which routes transactions
between each processing elements 134 in the cluster 130, between processing elements 134
within the cluster 130 and the cluster memory 136, and between a processing element 134 or
cluster memory 136 and the L1 router 102 (directly or via intervening routers).

Each L2 router 132 includes a set of registers 138 that store another lookup table, and
a packet interface processor (PIP) 137. When the L2 router 132 receives a packet to be
routed to the cluster memory 136, the PIP 137 determines from the packet header whether

virtual addressing is being used. If virtual addressing is being used, with the virtual address
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specifying a virtual block within a virtual cluster 140, the PIP 137 replaces higher-order in an
“offset” of the virtual address with bits that identify a physical block within the cluster
memory 136.

The virtual cluster 140 corresponds to one or more “chunks” 142 of memory
addresses within the cluster memory 136, where each chunk 142 includes at least one block.
Typically, each chunk 142 would include an integer number of blocks. The size of a “block™
is uniform throughout the system. While the range of virtual addresses corresponding to a
virtual cluster 140 are contiguous, the actual chunks 142 that make up the virtual cluster may
have different sizes, with gaps in the physical addresses between chunks.

Rather than using an arbitrary translation from each page number to a physical
address, the combination of the CPIP 107 and PIP 137 provide a uniform translation to
addresses in all the clusters of a device. The translation tables 108 and 138 provide linear
translation from the virtual space directly to physical memory location, with only two
registers (one in each of 108 and 138) being used per translation.

As illustrated in FIG. 2, a packet header 202 may include a global address, where the
address space accommodates locations internal and external to a chip 100. A payload size
204 may indicate a size of the payload associated with the header 202. If no payload is
included, the payload size 204 may be zero. A packet opcode 206 may indicate the type of
transaction conveyed by the packet, such as indicating a write instruction or a read
instruction. A memory tier “M” 208 may indicate what tier of device memory is being
addressed, such as main memory (connected to supervisor 110), cluster memory 136, or a
program memory or registers within a processing element 134. As illustrated, the memory
tier “M” 208 also indicates whether virtual or physical addressing is being used. As an
alternative, a separate “V” bit may be included in the header that indicates whether
addressing is real or virtual.

The structure of the address 210 in the packet header 202 may vary based on the tier
of memory being addressed, and whether addressing is virtual or physical. For example, a
memory tier “M” value of zero may be used to indicate that the address 210 is a virtual
address 210a. As illustrated in FIG. 3A, each virtual address 210a includes a device ID 212,
first virtual address bits 230 (a virtual cluster ID 230), and an address field 220. The virtual
cluster ID 230 indicates a virtual cluster 140. The address field 220 includes second virtual
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address bits 340 (upper bits 340) that identify a virtual block (i.e., a virtual block ID) and
address offset bits 342 (lower bits 342) corresponding to an address offset within the block.
The number of bits used for the address offset bits 342 corresponds to the number of bits per
block.

As for physical address, at a top physical tier (e.g., M=1), a physical device-level
address 210b may include a unique device identifier 212 identifying the processor chip 100
and an address field 221 corresponding to a location anywhere in the physical address space,
such as in a main-memory.

At anext physical tier (e.g., M=2), a cluster-level address 210c may include the
device identifier 212, a cluster identifier 214 (identifying a cluster 130), and an address field
222 corresponding to a location in the cluster memory 136. As illustrated in FIG. 3B,
although the address field 222 specifies a physical memory location within a cluster memory
136, it can be subdivided into real (physical) base address bits 341 (i.e., a real block ID) and
address offset bits 342 identifying a location within the block. The offset bits 342 in the real
address field 222 are the same as those in the virtual address field 220, since it is the blocks
that are virtualized, rather than the location within the blocks.

At the processing element level (e.g., M=3), a processing-element-level address 210d
may include the device identifier 212, the cluster identifier 214, a processing element
identifier 216, an event flag mask 218, and an address 223 of the specific location in the
processing element’s operand registers, program memory, etc.

The event flag mask 218 may be used by a packet to set an “event” flag upon arrival
at its destination. Special purpose registers within the execution registers of each processing
element may include one or more event flag registers, which may be used to indicate when
specific data transactions have occurred. So, for example, a packet header designating an
operand register of a processing element 134 may indicate to set an event flag upon arrival at
the destination processing element. A single event flag bit may be associated with all the
registers, with a group of registers, or a single register. Each processing element 134 may
have multiple event flag bits that may be altered in such a manner. Which flag is triggered
may be configured by software, with the arriving packet designating the flag to be triggered.
A packet may also write to an operand register without setting an event flag, if the packet

event flag mask 218 does not indicate to change an event flag bit.
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As noted above, the system can be configured to use real or virtualized the device IDs
212, with the same device IDs are used for both virtual and physical addresses. The device
ID 212 may be factory-coded into the chip 100, and/or assigned when a chip or device first
joins the system comprising a network of chips/devices. One or more processing elements
134 (or other processors, such as a supervisor 110) within the system may be configured as a
host that, among other things, executes the host process that manages the assigning of unique
device IDs 212 when a device/chip joins the system, and/or determining the device/chip’s
physical ID. When a device/chip is removed from the system, the host may reassign the
departing chip’s device ID. Each chip/device may also have an assigned MAC address that
serves as a physical ID, which may also be used for addressing. However, an advantage of
virtualizing the device IDs 212 is that fewer bits of the address 210 are required to route
packets within the system. With slightly added complexity, the system can be configured to
support contemporaneous use of both burned-in and assigned device IDs. Among other ways
this could be accomplished would be to add more memory tiers (208), with some tiers
associated with virtualized (host-assigned) device IDs and some associated with physical
(e.g., burned-in at time of manufacture) device IDs.

FIG. 4 illustrates an example of the cluster look-up table registers 108. On a chip 100
with thirty-two (32) clusters, there are thirty-two (32) individual registers 108. Each register
stores first physical address bits 430 corresponding to the identifier of a real cluster 130.
There is a one-to-one mapping between the virtual cluster number bits 230 in the virtual
address 210a and the first physical address bits 430 (real cluster number bits 430). So, for
example, if there are thirty-two virtual clusters 140, then there are five (5) virtual cluster
number bits 230. The virtual cluster number bits 230 correspond to a register address 428,
such that each virtual cluster number 230 results in a five-bit output corresponding to the real
cluster number 430. The first physical address bits 430 (real cluster number bits 430) may be
a portion of a memory address, or may correspond to a portion of a memory address.

FIG. 5 illustrates an example of the block ID look-up table registers 138, as used by
the L2 routers 132. The registers 138 are also configured to provide a one-to-one mapping.
If each virtual cluster 140 contains (for example) thirty-two (32) blocks, there are thirty-two
(32) individual registers 138. Each register stores second physical address bits 540

corresponding to a real block base address identifying a block of physical memory with a
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cluster memory 136. There is a one-to-one mapping between the virtual block ID bits 340 in
the virtual address 210a and the second physical address bits 540 (real block base address bits
540). So, for example, if there are thirty-two (32) virtual blocks within a virtual cluster 140,
then there are five (5) bits 340 to identify the virtual block. The virtual block ID bits 340
correspond to a register address 536, such that each virtual block ID 340 results in a five-bit
output corresponding to the base address bits of a physical block.

FIG. 6 illustrates how blocks 152 of local memory may be divided among multiple
chunks 142. While a single contiguous chunk of a cluster memory 136 might initially be
used for an entirety of the blocks within a virtual cluster, as bad bits are detected, blocks may
be taken out of service, re-dividing the blocks across multiple chunks. Bad blocks may be
detected during processing operations based, for example, on parity bit inconsistency,
through the use of longitudinal redundancy checks, etc. As illustrated in FIG. 6, the virtual
cluster 140 is divided across multiple discontinuous clusters (e.g., 142a, 142b, etc.). Each
chunk 142 includes at least a block 152, but different chunks may have different sizes. For
example, chunk 142a includes blocks 152a and 152b, whereas chunk 142b includes only
block 152¢. The blocks 152 within a virtual cluster 140 are addressed within cluster memory
136 by concatenating the real block base address bits 540 from the LUT register 138 with the
address offset bits 342 of a virtual address 210a.

The addressing scheme used with a return address specified in a packet payload is
independent of the addressing scheme used in the packet header. So, for example, if a packet
header 202 includes a virtual address 210a and indicates (e.g., by packet opcode 206) that the
packet is a read packet, a payload of the packet may indicate a real or virtual address to which
the read data should be returned. Likewise, a packet using a physical destination address
(210b-d) in the header 202 may have a payload indicating a real or virtual return address.

FIG. 7 illustrates example components within a chip-level packet interface processor
107 that use the registers 108 storing a lookup table like that in FIG. 4 to direct a packet to
the real cluster. A bit-field extractor 756 non-destructively extracts the M-bits 208 and the
cluster ID bits 214/230 from each packet being routed by the L1 router 102 to an internal port
111 within the chip 100. The M-bits 208 are checked by a digital comparator 760 to
determine whether they equal zero, indicating that the packet is using virtual addressing. If

the M-bits indicate that the packet header 202 uses virtual addressing, the comparator 760
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asserts a selection signal 762. The cluster number bits 214/230 are input into a first input of a
multiplexer 764, and are also used as to address the cluster look-up table registers 108. If the
cluster ID bits are virtual, the output of the register 108 will be the real cluster number bits
430. The output from the register is input into a second input of the multiplexer 764.

When the selection signal 762 is not asserted, the multiplexer 764 selects and outputs
the cluster number bits 214 as received in the packet header 202. When the selection signal
762 is asserted, the multiplexer 764 selects and outputs the real cluster number bits 430. The
output from the multiplexer 764 serves as a selected internal port identifier 752. The selected
port ID (consisting of “Q” bits) is input into the selection input of a demultiplexer 750. In
accordance with the selected port ID 752, the demultiplexer 750 directs the packet to the
cluster 130. Using fast memory for the CLUT registers 108 (e.g., static random access
memory (SRAM)), the operations of the CPIP 107 can be performed in a fraction of a clock
cycle (i.e., less than one cycle of the clock signal that is used to control timing within the L1
router 102).

FIG. 8 illustrates an example of a process 800 performed by a chip-level packet
interface processor 107. The PIP 107 determines 802 whether virtual addressing is being
used. If virtual addressing is used (802 “Yes™), the PIP 107 translates (804) the virtual cluster
ID bits 230 into real cluster ID bits 430 and selects (806) the translated real cluster number
bits 430. If virtual addressing is not used (802 “No™), the PIP 107 selects the real cluster bits
214, as extracted from the packet header 202. The L1 router 102 outputs the packet through
the internal egress port selected by the PIP 107 to the cluster 130 corresponding to the
selected cluster ID bits 213/430.

FIG. 9 illustrates example components within a cluster-level packet interface
processor 137 that use the registers 138 storing a lookup table like that in FIG. 5 to address
the cluster memory 136. A bit-field extractor 958 extracts the M-Bits 208, the block ID bits
340/341, and the address offset bits 342 from a packet header received by an L2 router 132.
The M-bits 208 are checked by a digital comparator 960 to determine whether they equal
zero, indicating that the packet is using virtual addressing. If the M-bits indicate that the
packet header 202 uses virtual addressing, the comparator 960 asserts a selection signal 962.
The block ID bits 340/341 are input into a first input of a multiplexer 964, and are also used
as to address the look-up table registers 138. If the block ID bits are virtual, the output of the

11
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register 138 will be the real cluster number bits 540. The output from the register 138 is
input into a second input of the multiplexer 964.

When the selection signal 962 is not asserted, the multiplexer 964 outputs the real
block ID bits 341 as received in the packet header 202. When the selection signal 962 is
asserted, the multiplexer 964 selects outputs the real block ID bits 540. The output from the
multiplexer 964 serves as the base address 940 of the selected block. The base address 940
(consisting of “R” bits) is concatenated with the extracted address offset bits 342 by a
combiner 945, producing a physical cluster memory address 644. Using fast memory for the
LUT registers 138 (e.g., static random access memory (SRAM), the operations of the PIP 137
can be performed in a fraction of a clock cycle.

FIG. 10 illustrates an example of the process 1000 performed by the cluster-level
packet interface processor 137. The PIP 137 determines 1002 whether virtual addressing is
being used. If virtual addressing is used (1002 “Yes™), the PIP 137 translates (1004) the
virtual block ID bits 340 into real block ID bits 540 and selects (1006) the translated real
block ID bits 540. If virtual addressing is not used (1002 “No”), the PIP 137 selects the real
block ID bits 341, as extracted from the packet header 202. The PIP 137 combines (1010)
the selected real block ID (540/341) with the extracted address offset bits 342 to form the
memory address 644. Data is then read from or written to the memory address 644 in the
cluster memory 136, as specified by the packet.

FIGS. 11A and 11B illustrates examples of the host processes 1100 and 1101 used to
generate and store the lookup tables. In FIG. 11A, a “host” processor (e.g., a processing
element 134, a supervisor 110, a dedicated system management processor, etc.) is configured
to executed the host process 1100 (e.g., as or by a startup routine). The host processor
executes (1112) a software or firmware routine to enable virtual memory addressing within
the system. The processor may configure multiple chips 100. The host processor generates
(1114) cluster lookup tables and stores (1116) the tables in the CLUT registers 108 of the L1
routers 102 on chips/devices 100 that contain clusters that will be used for virtual clusters
140.

Whether the same CLUT table is distributed to all the L1 routers 102 or different
tables are distributed may depend, among other things, on the overall topology of the system.

For example, if the same arrangement of virtual clusters will be used on four chips 100, the
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host processor configuring the virtual address space may individually send or multi-cast the
same table to the four L1 routers 102. When tables are updated (e.g., due to a cluster memory
being removed from the virtual space), the routine may selectively overwrite only the tables
of L1 routers 102 that contain cluster memories 136 that are being added or removed from the
virtual space.

The routine may also generate (1124) the block ID lookup tables and store (1126) the
tables in the LUT registers 138 within the clusters 130. When identical tables are to be
stored, they may be distributed individually or using multi-casting. When the routine needs
to make changes the LUT tables 138 (e.g., to reallocate memory to avoid bad blocks), the
routine may selectively send new tables only to the effected clusters 130.

After the tables are written, the host processor may suspend executing the host
process 1100 and undertake other operations. However, the host processor may be
configured to resume executing the host process in response to certain events, which may be
communicated to the host processor (among other ways) by writing to one or more special
purpose registers, causing the host process to be reload into the host processor’s instruction
pipeline, or into the instruction pipeline of another processing element that is available.

Software processes executed in the system may include explicit instructions to cause
the host processor to a reconfigure the virtual memory space based on changes memory
needs. Also, load-balancing software executed within the system may monitor network
traffic to determine whether the virtual clusters 140 being accessed by processing elements
134 are proximate to the processing elements (e.g., based on latency of packets to a virtual
cluster 140 exceeding a threshold value), and share the load balancing information with the
host process so that when the host processor reconfigures the virtual address space, virtual
clusters can be relocated to be physically closer to the processing elements 134 using them
(e.g., in terms of “hops™ between the processing elements 134 and the physical cluster
memories corresponding hosting the virtual clusters 140, where a hop corresponds to a transit
through a router). In FIG. 11A, the host process determines (1130) whether it needs to
reconfigure the virtual address space based on an indication that there is a change in memory
needs or that there is an imbalance in usage load. In response to determining (1130 “Yes™)
that there is a change in memory needs or a load imbalance, the host process 1100 may

generate (1114) one or more new cluster lookup tables.
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The host process may also be configured to determine (1132) when a chip/device 100
is added or dropped from the system. In response to determining (1132 ““Yes™) that a chip or
device 100 has been added to or dropped from the system, the host process 1100 may
generate (1114) one or more new cluster lookup tables.

The host process may also be configured to determine (1144) when a bad block has
been detected within a virtual cluster 140. Components within the system (e.g., routers and
processing elements) may be configured to send an error reporting packet to an address that
causes the routine to reload/resume. For example, if a bad bit is detected (1144 “Yes™) in a
block used by a virtual cluster 140, the host process 1100 may blacklist (1146) the physical
block containing the bad bit and generate (1114) one or more new cluster lookup tables to
modify the tables to stop using bad block.

The host process 1100 may make these determinations (1130, 1132, 1144) in a variety
of ways, such as by an active determination by the host process (e.g., monitoring system
operations or polling registers or memory locations configured to store metrics updated by
other processes), or in response to being triggered by another process (e.g., via the other
process setting a flag in a special purpose register configured to serve as a host processor
interrupt).

FIG. 11B illustrates a distributed process 1101 variant of the process in FIG. 11A,
where some operations are handled by the host processor and some are handled at the cluster
level. In the process 1101 in FIG. 11B, the host processor (e.g., a processing element 134, a
supervisor 110, a dedicated system management processor, etc.) in the system executes steps
1112 to 1116 as discussed with FIG. 11A. However, instead of centrally determining all of
the cluster-level lookup tables, the host processor load (1118) the program counter of a
processing element 134 in each cluster 130 assigned to provide a virtual cluster 140 with the
address of a firmware or software program. Upon execution, the program causes the
processing element to generate (1140) and store (1142) the block ID lookup tables in the
LUT registers 138 of that cluster 130. Parameters may be passed by the host process to the
cluster level processor indicating, among other things, how many blocks should the cluster-
level processing element 134 should allocate to the virtual address space. As discussed with
FIG 11A, the host process in FIG. 11B continues to determine (1130) whether there is a

change in memory needs and to determine (1132) whether a device/chip 100 has been added
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or dropped from the system.

When a bad bit is detected (1144) in the virtual cluster 140 within that cluster 130, the
bad block is blacklisted (1146). The error generation causes (e.g., using a processor
interrupt) the program to reload and/or restart on a processing element 134 within the cluster
130. A determination (1148) is made as to whether the number of bad blocks within the
cluster memory 136 exceeds a threshold value. If there are too many bad blocks (1148
“Yes”), the error is report to the centralized host processor so that the chip level tables 108
can be revised to remove the cluster memory 136 of the reporting cluster 130 from the virtual
addressing space, or reduce the number of blocks that the reporting cluster is instructed to
allocate to the virtual addressing space. If the number of bad blocks is below the threshold
value (1148 “No”), the program running on the processing element 134 within the cluster 130
generates (1140) and stores (1142) a new block ID lookup table to remove the bad block from
the virtual cluster 140.

An advantage of this distributed table management approach is that an individual
cluster can locally fix routine problems (e.g., finding a bad bit) without the need to disrupt
system operations. In such situations, the effects on system operations may be limited to the
L2 router 132 creating back-pressure on packets directed to the cluster memory 136 while the
virtual cluster 140 is reconfigured.

The processes in FIGS. 11A and 11B may both be used in a same system. For
example, when virtual addressing is first enabled, the process 1100 in FIG. 11 A may
configure the system (e.g., using multicast packets to store identical tables in multiple L1
routers 102, and/or store identical tables in multiple L2 routers 132). Error-related interrupts
(e.g., bad block detection) may cause the execution of the cluster-level portion of the process
1101 in FIG. 11B, with the centralized host processor portions of the process 1101 being
invoked if a problem is too large for the cluster 130 to fix on its own (e.g., too many bad
blocks).

FIG. 12 is a block diagram overview of example components used for virtualization in
the architecture of FIG. 1. The features in FIG. 12 are based on those discussed in connection
with FIGS. 1 to 10. Ancillary components such as the bit-field extractors 756 and 958 are
omitted in FIG. 12 to simplify the overview. Also to simplify the overview, a single

comparator 760/960 is illustrated, but as illustrated in FIG. 9, each L2 router 132 will have its
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own comparator 960 to determine whether the M-bits 208 indicates that virtual addressing is
n use.

FIG. 13 is a block diagram overview of including alternative components used for
virtualization in the architecture of FIG. 1. The comparator(s) 760/960 are each replaced
with a NAND gate 1390 to determine whether virtual addressing is being used, as indicated
by the M-bits 208 being zero (0). So long as M=0 is used to indicate use of virtual
addressing, the digital comparators 760/960 and the NAND gate(s) 1390 are interchangeable.
The use of a NAND gate 1390 to generate the selection signals 762/962 in FIG. 13
demonstrates that various logic circuits can be used to generate the selection signals 762/962,
tailored to assert the selection signals 762/962 if the header indicates that virtual addressing is
in use. The use of M=0 to indicate virtualization is a design choice, and different values may
be used to indicate virtualization. Likewise, if a “V” bit was included in the header to
indicate that virtual addressing is used, and a value of zero (V=0) indicates that an address is
virtual, then the selection signals 762/962 could be generated by inputting the extracted value
of the V bit into an inverter, with the output of the inverter serving as the selection signal
762/962. 1f a “V™ bit was included and a value of one (V=1) indicates that an address is
virtual, the value of the bit as-extracted could be used to provide the selection signals
762/962.

In terms of the physical space required, the multiplexer 764 in FIG. 12 is relatively
large in terms of gate count. FIG. 13 illustrates an alternative approach to determining the
selected port ID 752. One extra entry is added in the virtual to physical addressing table (real
cluster number table 1308). In the first entry (address 0), a fixed value of zero (0) is added.
Each of the other entries from the table 108 is moved up by one “spot” in table 1308 (i.e., the
entry for virtual cluster 0 is in address 1, the entry for virtual cluster 1 in address 2, and so
on). However, the non-zero entries in the table 1308 do not hold the actual real physical
address. Instead, each is filled with a bitwise exclusive OR of the virtual address and the
physical address.

As shown in FIG. 13, translation of a virtual cluster number 230 start by doing a
logical NAND of the M-bits 208 to produce the selection signal 762. As previously
described, the selection signal 762 is asserted in response to a header 202 indicating that a

packet is using virtual addressing. This produces a one (1) if M=0, and otherwise produces a
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zero (0).

The extracted cluster number 214/230 is incremented by one. This may be
accomplished, among other ways, by adding one (1) to the value of the extracted cluster
number 214/230 (e.g., using an adder 1388). If the entire range of “Q” bits is used to
designate clusters (e.g., 5 bits are used to designate 32 clusters), then the incremented cluster
number 214/230 may require Q+1 bits to express.

The selection signal is then logically ANDed (on a bitwise basis) with the
incremented cluster number. In FIG. 13, this operation is illustrated by the Q+1 AND gates
1392. A first input of each AND gate 1392 receives the selection signal 762. A second input
of each AND gate receives one bit of the incremented cluster number. The outputs of the
AND gates 1392 serve as the register address used to read the table 1308.

So, for example, if M=0 (indicating virtual addressing), the outputs of the AND gates
1392 will correspond to the virtual cluster number 230 incremented by one (1). The
incremented virtual cluster number 230 is used to look up an entry in the translation table
1308. The entry is equal to a logical XOR of the virtual and physical cluster number
addresses. A bitwise XOR is then performed on the output from the table 1308 with the
virtual cluster number address 230 from the input packet, which produces a physical cluster
number address ( (A XOR B) XOR A) == ((A XOR A) XOR B) = 0 XOR B ==B). This
physical cluster number address serves as the selected port ID 752, which is input to the
demultiplexer 750 to choose the real cluster to which the L1 router 102 directs the packet.

If, however, the M-bits 208 do not indicate virtual addressing (e.g., M not equal to
zero (0)), the selection signal 762 is not asserted (i.e., the output of the NAND gate 1390
equals logic zero (0)) and the L1 router 102 will use physical addressing. The selection
signal 762 is again input into the AND gates 1392, along with the bitwise real cluster number
214 incremented by one, not asserted, then the output from the NAND will be 0. Since zero
(0) ANDed with anything is zero (0), the output of the AND gates 1392 will be an address of
zero. This results in the first entry of the translation table 1308 being read, which as noted
above, contains a value of zero (0). That value of zero goes to the XOR gates 1396. The
XOR gates XOR the input (already physical) cluster number 214 with 0 (which does not
change the cluster number 214: A XOR 0 = A. This result output by XOR gates 1396 serves
as the selected port ID 752, which is input to the demultiplexer 750 to choose the real cluster
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to which the L1 router 102 directs the packet.

When the M-bits 208 (or V bit, if used) indicate that virtual addressing is used, the
selection signal 762 is asserted and the XOR-based routing circuit produces the real cluster
number 430 corresponding to the virtual cluster number 230. When the selection signal 762
is not asserted, the XOR-based routing circuit produces the physical cluster number 214 as
extracted from the header 202.

The advantage of this XOR-based approach is fairly simple: potentially, there is a
reduction in gate count in comparison to the multiplexer-based approach in FIG. 12, since
multiplexers tend to be fairly large in terms of the space used on the semiconductor substrate.
If there is a relatively small number of clusters, the difference between the multiplexer-based
approach in FIG. 12 and the XOR-based approach in FIG. 13 may be small (in terms of
overall gate count). However, as the number of clusters increases, the number of bits
required to designate the cluster number increases, increasing the size and complexity of the
multiplexer, such that the XOR-based approach may have advantages on some chips.

In FIG. 13, although the same multiplexer-based approach is used as the cluster level
as was used in FIG. 12, an XOR-based approach may also be used by the L2 routers 132 in
the clusters 130. To implement an XOR-based solution at the cluster level, the look-up table
registers are configured to store an exclusive OR of each virtual block ID 340 with the
corresponding real block base address 540, using XOR gates to determine the real block base
address 540 in the same manner that the XOR gates 1396 in FIG. 13 are used to determine
the port ID 752.

A chip/device 100 may mix multiplexer-based and XOR-based virtual address
resolution, or use the same approach at both the .1 and L2 router levels. Examples of mixed
approaches include using an XOR-based solution in the L1 router 102 and a multiplexer-
based solution in the L2 routers 132 (as illustrated in FIG. 13), and using a multiplexer-based
solution in the L1 router 102 and an XOR-based solution in the L2 routers 132 (not
illustrated).

FIGS. 14A and 14B are examples of routing processes performed by the architecture
in FIG. 1. In FIGS. 14A and 14B, a dotted line 1499 delineates operations performed by the
L1 router 102 (above line 1499) and operations performed by the L2 routers 132 (below line
1499).
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In the process 1400 in FIG. 14A, the process begins with the L1 router 102 receiving
(1410) a packet. A determination (1412) is made as to whether the packet is addressed to the
chip/device containing the L1 router 102 (e.g., based on the device ID 212 in the packet
header 202). If the packet is not addressed to the chip/device (1412 “No™), then the packet is
routed (1414) to an external port 103 and transmitted out of the chip/device. Otherwise (1412
“No™), a determination (1416) is made as to whether the packet is addressed to the supervisor
processor 110 of the chip/device (e.g., based on the M-bits 208 indicating M=1). If the
packet is addressed to the supervisor, then the packet is routed (1418) to the supervisor via
the supervisor port 109.

Otherwise (1416 “No™), by process of elimination, the packet is destined for one of
the clusters 130. A determination (1420/802) as to whether the address contained in the
header is virtual (e.g., based on the M-bits or V-bit). If the address is physical (1420/802
“No™), the real cluster ID 214 is extracted (1430) from the address, and the packet is routed
(1436) to the internal port 111 associated with the real cluster ID 214. The L2 router 132
receives the packet at the cluster 130, and accesses (1460) the physical address (either
directly or indirectly through an intermediate component receiving the address from the L2
router 132).

If the address is virtual (1420/802 “Yes™), the virtual cluster ID 230 is extracted
(1432) from the address, and the virtual cluster ID 230 is translated (1434/804) into a real
cluster ID 430. The packet is routed (1438) to the internal port 111 associated with the real
cluster ID 430. The L2 router 132 receives the packet at the cluster 130 and extracts (1442)
the virtual block ID bits 340 and extracts (1444) the offset bits from the header address. The
L2 router 132 translates (1448/1004) the extracted virtual block ID 340 into a real block ID
540. The L2 router determines (1450) the physical address by combining the block ID 540
with the offset 342, and accesses (1460) the physical address.

In the process 1401 in FIG. 14B, the processes performed by the L1 router 102 (those
above line 1499) are the same as in FIG. 14A. However, in additional detail is included in
the L2 router 132. If the address is real (1420 “No”), the L2 router 132 extracts (1440) the
real block ID bits 341 and the offset bits 342 from the address. The L2 router 132 determines
the physical address by combining the extracted offset bits 342 with the real block ID 341 or
the real block ID 540, depending upon whether or not the address is physical or virtual. The
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combined physical address is then accessed (1460).

While it has not been addressed in the illustrations, if the packet address 210 is a
physical processing element-level address 210d (M=3), the L1 router 102 will route the
packet to the cluster in the same manner as a physical cluster-level address 210c (M=2). In
comparison, the L2 router may route the packet directly to the destination processing element
134 if the M-bits indicate a physical processing element-level address 210d (M=3), bypassing
the packet interface processor 137.

FIG. 15 is a block diagram conceptually illustrating example components of a
processing element of the architecture in FIG. 1. A data transaction interface 1572 sends and
receives packets and connects the processor core 1590 to its associated program memory
1574. The processor core 1590 may be of a conventional “pipelined” design, and may be
coupled to sub-processors such as an arithmetic logic unit 1594 and a floating point unit
1596. The processor core 1590 includes a plurality of execution registers 1580 that are used
by the core 1590 to perform operations. The registers 1580 may include, for example,
instruction registers 1582, operand registers 1584, and various special purpose registers 1586.
These registers 1580 are ordinarily for the exclusive use of the core 1590 for the execution of
operations. Instructions and data are loaded into the execution registers 1580 to “feed” an
instruction pipeline 1592. While a processor core 1590 may experience no latency (or a
latency of one-or-two cycles of the clock controlling timing of a micro-sequencer 1591) when
accessing its own execution registers 1580, accessing memory that is external to the core
1590 may produce a larger latency due to (among other things) the physical distance between
the core 1590 and the memory.

The instruction registers 1582 store instructions loaded into the core that are
being/will be executed by an instruction pipeline 1592. The operand registers 1584 store data
that has been loaded into the core 1590 that is to be processed by an executed instruction.

The operand registers 1584 also receive the results of operations executed by the core 1590
via an operand write-back unit 1598. The special purpose registers 1586 may be used for
various “administrative” functions, such as being set to indicate divide-by-zero errors, to
increment or decrement transaction counters, to indicate core interrupt “events,” etc.

The instruction fetch circuitry of a micro-sequencer 1591 fetches a stream of

instructions for execution by the instruction pipeline 1592 in accordance with an address
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generated by a program counter 1593. The micro-sequencer 1591 may, for example, may
fetch an instruction every “clock™ cycle, where the clock is a signal that controls the timing of
operations by the micro-sequencers 1591 and the instruction pipelines 1592 within a cluster
130. The instruction pipeline 1592 comprises a plurality of “stages,” such as an instruction
decode stage, an operand fetch stage, an instruction execute stage, and an operand write-back
stage. Each stage corresponds to circuitry.

In addition to the black listing of blocks discovered during chip operations, the cluster
memories 136 may be tested at the time of manufacture, and bad bits/blocks either masked
out or stored to be added to the blacklist(s) used to generate the tables. A chip may maintain
a blacklist for all cluster memories on the chip (e.g., in nonvolatile memory at the L1 router
level), and/or clusters may maintain a blacklist its own cluster memory. The centralized host
processor that manages CLUT tables 108 may poll the chips/clusters for blacklist data, and
maintain a master list that contains information spanning across multiple chips.

Although the examples include chunks 142 containing an integer number of blocks, a
system could be configured to contain partial blocks within a virtual cluster. Due to the way
addressing works, this would produce gaps in the virtual address space, where the non-
existent portion of a block would have to be masked out.

As described above, virtual addressing allows internal and external processors access
to memory and processing without any knowledge of device IDs, chip architecture, or packet
routing. Among the advantages of the system are the removal of the physical clusters from
the virtual address space, the bypassing of bad clusters to increase chip yield and reliability,
rapid dataflow and virtual space remapping, heterogeneous memory mapping, and reduced
overhead. The reduction of overhead includes a reduction (or elimination of) the latency
associated with the used of page tables, the large amount of space required for page tables
that map the entire virtual address space, and a reduction of bus traffic associated with virtual
address resolution.

Another advantage is the elimination of table translation caching. The page tables
normally occupy enough storage that they need to be stored in main memory. Heavily used
parts of the page tables are then cached in a "translation lookaside buffer," typically using
some variant of least-recently used replacement. This typically occupies a substantial amount

of chip area, and depending on data usage patterns can still be relatively slow, as references
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to memory require loading different page table entries. For example, to minimize the need to
map large amounts of contiguous memory from graphics adapters, most current processors
also include support of multiple sizes of pages--normal pages of a few kilobytes (typically 4K
or 8K) and large pages of a few megabytes. In recent iterations, still larger pages a few
hundred megabytes or perhaps a gigabyte or so may be used for paging. Dealing with these
multiple sizes further increases the complexity of circuitry for page translation.

The design, by contrast, provides high speed access to memory regardless of memory
access patterns, because all the data needed for address translation is stored within the multi-
processor chip 100 itself, eliminating the need for table caching. In addition to being simpler
to maintain and update, the virtual address translation tables 108 and 138 are significantly
smaller than conventional page tables, making the use of localized high-speed registers (e.g.,
SRAM-based registers) to store the tables practical, in comparison to the slower but
physically smaller dynamic random access memory (DRAM) conventionally needed to store
page tables.

The above aspects of the present disclosure are meant to be illustrative. They were
chosen to explain the principles and application of the disclosure and are not intended to be
exhaustive or to limit the disclosure. Many modifications and variations of the disclosed
aspects may be apparent to those of skill in the art. Persons having ordinary skill in the field
of computers, microprocessor design, and network architectures should recognize that
components and process steps described herein may be interchangeable with other
components or steps, or combinations of components or steps, and still achieve the benefits
and advantages of the present disclosure. Moreover, it should be apparent to one skilled in
the art, that the disclosure may be practiced without some or all of the specific details and
steps disclosed herein.

As used in this disclosure, the term “a” or “one” may include one or more items
unless specifically stated otherwise. Further, the phrase “based on™ is intended to mean
“based at least in part on” unless specifically stated otherwise.

This case can be understood in reference to the following clauses, which describe
aspects of the above:

CLAUSES:

1. A method comprising;
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receiving, by a first device, data comprising a first address;

extracting first virtual address bits from the first address;

translating the first virtual address bits into first physical address bits;

routing the data to a first port of a plurality of ports based on the first physical address
bits, wherein the first port is associated with a first physical memory of a plurality of separate
physical memories;

extracting second virtual address bits and address offset bits from the first address, as
received via the first port;

translating the second virtual address bits into second physical address bits;

combining the second physical address bits and the address offset bits to determine a
first physical address within the first physical memory; and

reading from or writing to the first physical address.
2. The method of claim 1, wherein:

translating the first virtual address bits comprises accessing a first register storing the
first physical address bits, the first register having a first register address based on the first
virtual address bits, and

translating the second virtual address bits comprises accessing a second register
storing the second physical address bits, the second register having a second register address
based on the second virtual address bits.
3. The method of claim 1, wherein translating the first virtual address bits comprises:

accessing a register storing a first value equal to a bitwise exclusive OR of the first
virtual address bits and the first physical address bits, the register having a register address
based on the first virtual address bits; and

performing a bitwise exclusive OR of the first value with the first virtual address bits
to obtain the first physical address bits.
4, The method of claim 3, wherein translating the first virtual address bits further
comprises:

incrementing the first virtual address bits to produce incremented virtual address bits,

wherein the register address of the register comprises the incremented virtual address
bits.

5. The method of claim 1, wherein translating the second virtual address bits comprises:
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accessing a register storing a value equal to a bitwise exclusive OR of the second
virtual address bits and the second physical address bits, the register having a register address
based on the second virtual address bits; and

performing a bitwise exclusive OR of the value with the second virtual address bits to
obtain the first physical address bits.
6. The method of claim 1, wherein the data comprises a header indicating use of either
virtual addressing or a physical addressing, the method further comprising:

determining from the header of the data that the first address is a virtual address.
7. The method of claim 1, wherein:

the second virtual address bits identify a virtual block of memory in a virtual memory
space, and

the second physical address bits identify a physical block of the first physical
memory.
8. The method of claim 1, wherein each of the plurality of separate physical memories is
associated with a different clusters of processors, each cluster of processors being accessible
via a same port of the plurality of ports as the associated physical memory.
9. The method of claim 1, further comprising:

storing a first lookup table in a first plurality of registers, the first plurality of registers
comprising a first register, wherein the translating of the first virtual address bits into the first
physical address bits is based on a first value of the first lookup table stored in the first
register; and

storing a second lookup table in a second plurality of registers, the second plurality of
registers comprising a second register, wherein the translating of the second virtual address
bits into the second physical address bits is based on a second value of the second lookup
table stored in the second register.
10. The method of claim 9, further comprising:

sending the second lookup table via the first port to be stored in the second plurality
of registers.
11. The method of claim 9, wherein the second virtual address bits identify a virtual block
of memory in a virtual memory space, and the second physical address bits identify a first

physical block of the first physical memory, the method further comprising:
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determining that the first physical block comprises one or more bad bits; and

revising one or both of the first lookup table and the second lookup table to
reassociate the virtual block with a second physical block that is different than the first
physical block.

12. The method of claim 9, wherein the first device is one of a plurality of devices in a
system, each device comprising a respective plurality of separate physical memories, the
method further comprising:

determining that a second device has been added to or removed from the plurality of
devices, that software executed in the system has new memory needs, or that there is an
imbalance in transactions between the plurality of devices using virtual addresses; and

revising one or both of the first lookup table and the second lookup table.
13. The method of claim 1, further comprising:

determining that the first address is an address within the first device.

14. A semiconductor chip, comprising:

a first router;

a plurality of separate physical memories each associated with a different port of a
plurality of ports of the first router, including a first physical memory associated with a first
port;

a second router associated with the first port;

wherein the first router is configured to:

receive a data packet comprising a first address,

extract first virtual address bits from the first address,

translate the first virtual address bits into first physical address bits based on a
first lookup table, and

transmit the data packet via the first port based on the first physical address
bits; and

wherein the second router is configured to:

receive the data packet via the first port,
extract second virtual address bits and address offset bits from the first
address,

translate the second virtual address bits into second physical address bits based
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on a second lookup table, and
combine the second physical address bits and the address offset bits to
determine a first physical address within the first physical memory.
15. The semiconductor chip of claim 14, further comprising;

a digital comparator or gate logic circuit that receives one or more bits from a header
of the data packet and outputs a selection signal indicating whether the first address is a
virtual address or physical address based on the one or more bits.

16.  The semiconductor chip of claim 14, wherein the first router is configured to translate
the first virtual address bits by accessing a first register of a first plurality of registers, the first
plurality of registers storing the first lookup table, and the first register having a register
address based on the first virtual address bits,

the first router comprising:

a multiplexer configured to output the first physical address bits based on the
first address being a virtual address; and
a demultiplexer having a plurality of outputs, each output corresponding to
one of the plurality of ports), wherein the demultiplexer is configured to select one
of the plurality of ports using the first physical address bits.
17.  The semiconductor chip of claim 14, wherein the second router is configured to
translate the second virtual address bits by accessing a first register of a second plurality of
registers, the second plurality of registers storing the second lookup table, and the first
register having a register address based on the second virtual address bits.
18. The semiconductor chip of claim 14, the first router further comprising;

a plurality of XOR logic gates that receive the first virtual address bits and perform a
bitwise exclusive OR of the first virtual address bits and another value to obtain the first
physical address bits.

19. The semiconductor chip of claim 14, further comprising a plurality of processors
configured into a plurality of clusters, each cluster associated with a different port of the
plurality of ports and including a different physical memory of the plurality of separate
physical memories,

the second router further configured to route data received from the first router via the

first port to processors in the cluster associated with the first port.
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20. A device comprising;
means for receiving data comprising an address;
means for extracting first virtual address bits from the address;
means for translating the first virtual address bits into first physical address bits;
5 means for routing the data to a first port of a plurality of ports;
means for extracting second virtual address bits and address offset bits from the
address;
means for translating the second virtual address bits into second physical address bits;
and
10 means for determining a physical address in a physical memory using the second

physical address bits and the address offset bits.
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CLAIMS

WHAT IS CLAIMED IS:
1. A method comprising;

receiving, by a first device, data comprising a first address;

extracting first virtual address bits from the first address;

translating the first virtual address bits into first physical address bits;

routing the data to a first port of a plurality of ports based on the first physical address
bits, wherein the first port is associated with a first physical memory of a plurality of separate
physical memories;

extracting second virtual address bits and address offset bits from the first address, as
received via the first port;

translating the second virtual address bits into second physical address bits;

combining the second physical address bits and the address offset bits to determine a
first physical address within the first physical memory; and

reading from or writing to the first physical address.

2. The method of claim 1, wherein:

translating the first virtual address bits comprises accessing a first register storing the
first physical address bits, the first register having a first register address based on the first
virtual address bits, and

translating the second virtual address bits comprises accessing a second register
storing the second physical address bits, the second register having a second register address

based on the second virtual address bits.

3. The method of claim 1, wherein translating the first virtual address bits comprises:
accessing a register storing a first value equal to a bitwise exclusive OR of the first
virtual address bits and the first physical address bits, the register having a register address
based on the first virtual address bits; and
performing a bitwise exclusive OR of the first value with the first virtual address bits

to obtain the first physical address bits.
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4, The method of claim 3, wherein translating the first virtual address bits further
comprises:
incrementing the first virtual address bits to produce incremented virtual address bits,
wherein the register address of the register comprises the incremented virtual address

bits.

5. The method of claim 1, wherein translating the second virtual address bits comprises:
accessing a register storing a value equal to a bitwise exclusive OR of the second
virtual address bits and the second physical address bits, the register having a register address
based on the second virtual address bits; and
performing a bitwise exclusive OR of the value with the second virtual address bits to

obtain the first physical address bits.

6. The method of claim 1, wherein the data comprises a header indicating use of either
virtual addressing or a physical addressing, the method further comprising:

determining from the header of the data that the first address is a virtual address.

7. The method of claim 1, wherein:

the second virtual address bits identify a virtual block of memory in a virtual memory
space, and

the second physical address bits identify a physical block of the first physical

memory.

8. The method of claim 1, further comprising:

storing a first lookup table in a first plurality of registers, the first plurality of registers
comprising a first register, wherein the translating of the first virtual address bits into the first
physical address bits is based on a first value of the first lookup table stored in the first
register; and

storing a second lookup table in a second plurality of registers, the second plurality of
registers comprising a second register, wherein the translating of the second virtual address

bits into the second physical address bits is based on a second value of the second lookup
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table stored in the second register.

9. The method of claim 8, further comprising:
sending the second lookup table via the first port to be stored in the second plurality

of registers.

10. The method of claim 8, wherein the second virtual address bits identify a virtual block
of memory in a virtual memory space, and the second physical address bits identify a first
physical block of the first physical memory, the method further comprising:

determining that the first physical block comprises one or more bad bits; and

revising one or both of the first lookup table and the second lookup table to
reassociate the virtual block with a second physical block that is different than the first

physical block.

11. A semiconductor chip, comprising:

a first router;

a plurality of separate physical memories each associated with a different port of a
plurality of ports of the first router, including a first physical memory associated with a first
port;

a second router associated with the first port;

wherein the first router is configured to:

receive a data packet comprising a first address,

extract first virtual address bits from the first address,

translate the first virtual address bits into first physical address bits based on a
first lookup table, and

transmit the data packet via the first port based on the first physical address
bits; and

wherein the second router is configured to:

receive the data packet via the first port,
extract second virtual address bits and address offset bits from the first

address,
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translate the second virtual address bits into second physical address bits based
on a second lookup table, and
combine the second physical address bits and the address offset bits to

determine a first physical address within the first physical memory.

12. The semiconductor chip of claim 11, further comprising;
a digital comparator or gate logic circuit that receives one or more bits from a header
of the data packet and outputs a selection signal indicating whether the first address is a

virtual address or physical address based on the one or more bits.

13.  The semiconductor chip of claim 11, wherein the first router is configured to translate
the first virtual address bits by accessing a first register of a first plurality of registers, the first
plurality of registers storing the first lookup table, and the first register having a register
address based on the first virtual address bits,
the first router comprising:
a multiplexer configured to output the first physical address bits based on the
first address being a virtual address; and
a demultiplexer having a plurality of outputs, each output corresponding to
one of the plurality of ports), wherein the demultiplexer is configured to select one

of the plurality of ports using the first physical address bits.

14.  The semiconductor chip of claim 11, wherein the second router is configured to
translate the second virtual address bits by accessing a first register of a second plurality of
registers, the second plurality of registers storing the second lookup table, and the first

register having a register address based on the second virtual address bits.

15. A device comprising;
means for receiving data comprising an address;
means for extracting first virtual address bits from the address;
means for translating the first virtual address bits into first physical address bits;

means for routing the data to a first port of a plurality of ports;
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means for extracting second virtual address bits and address offset bits from the

address;

means for translating the second virtual address bits into second physical address bits;

and

means for determining a physical address in a physical memory using the second

physical address bits and the address offset bits.
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