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CONFIGURABLE ANALOG NEURAL
MEMORY SYSTEM FOR DEEP LEARNING
NEURAL NETWORK

PRIORITY CLAIM

This application claims priority to U.S. Provisional Patent
Application No. 62/723,360, filed on Aug. 27, 2018, and
titled, “Configurable Analog Neural Memory System for
Deep Learning Neural Network,” which is incorporated by
reference herein.

FIELD OF THE INVENTION

Numerous embodiments are disclosed for a configurable
hardware system for use in an analog neural memory system
for a deep learning neural network.

BACKGROUND OF THE INVENTION

Artificial neural networks mimic biological neural net-
works (the central nervous systems of animals, in particular
the brain) and are used to estimate or approximate functions
that can depend on a large number of inputs and are
generally unknown. Artificial neural networks generally
include layers of interconnected “neurons” which exchange
messages between each other.

FIG. 1 illustrates an artificial neural network, where the
circles represent the inputs or layers of neurons. The con-
nections (called synapses) are represented by arrows, and
have numeric weights that can be tuned based on experience.
This makes neural networks adaptive to inputs and capable
of learning. Typically, neural networks include a layer of
multiple inputs. There are typically one or more intermediate
layers of neurons, and an output layer of neurons that
provide the output of the neural network. The neurons at
each level individually or collectively make a decision based
on the received data from the synapses.

One of the major challenges in the development of
artificial neural networks for high-performance information
processing is a lack of adequate hardware technology.
Indeed, practical neural networks rely on a very large
number of synapses, enabling high connectivity between
neurons, i.e. a very high computational parallelism. In
principle, such complexity can be achieved with digital
supercomputers or specialized graphics processing unit clus-
ters. However, in addition to high cost, these approaches also
suffer from mediocre energy efficiency as compared to
biological networks, which consume much less energy pri-
marily because they perform low-precision analog compu-
tation. CMOS analog circuits have been used for artificial
neural networks, but most CMOS-implemented synapses
have been too bulky given the high number of neurons and
synapses.

Applicant previously disclosed an artificial (analog) neu-
ral network that utilizes one or more non-volatile memory
arrays as the synapses in U.S. patent application Ser. No.
15/594,439, which is incorporated by reference. The non-
volatile memory arrays operate as an analog neuromorphic
memory. The neural network device includes a first plurality
of synapses configured to receive a first plurality of inputs
and to generate therefrom a first plurality of outputs, and a
first plurality of neurons configured to receive the first
plurality of outputs. The first plurality of synapses includes
a plurality of memory cells, wherein each of the memory
cells includes spaced apart source and drain regions formed
in a semiconductor substrate with a channel region extend-
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ing there between, a floating gate disposed over and insu-
lated from a first portion of the channel region and a
non-floating gate disposed over and insulated from a second
portion of the channel region. Each of the plurality of
memory cells is configured to store a weight value corre-
sponding to a number of electrons on the floating gate. The
plurality of memory cells is configured to multiply the first
plurality of inputs by the stored weight values to generate the
first plurality of outputs.

Each non-volatile memory cells used in the analog neu-
romorphic memory system must be erased and programmed
to hold a very specific and precise amount of charge, i.e., the
number of electrons, in the floating gate. For example, each
floating gate must hold one of N different values, where N
is the number of different weights that can be indicated by
each cell. Examples of N include 16, 32, 64, 128, and 256.

One challenge of implementing analog neuro memory
systems is that various layers containing arrays of different
sizes are required. Arrays of different sizes have different
needs for supporting circuitry outside of the array. Providing
customized hardware for each system can become costly and
time-consuming.

What is needed is a configurable architecture for an
analog neuro memory system that can provide various layers
of vector-by-matrix multiplication arrays of various sizes,
along with supporting circuitry of the right size, such that the
same hardware can be used in analog neural memory
systems with different requirements.

SUMMARY OF THE INVENTION

Numerous embodiments are disclosed for a configurable
hardware system for use in an analog neural memory system
for a deep learning neural network. The components within
the configurable hardware system that are configurable can
include vector-by-matrix multiplication arrays, summer cir-
cuits, activation circuits, inputs, reference devices, neurons,
and testing circuits. These devices can be configured to
provide various layers or vector-by-matrix multiplication
arrays of various sizes, such that the same hardware can be
used in analog neural memory systems with different
requirements.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram that illustrates a prior art artificial
neural network.

FIG. 2 is a cross-sectional side view of a conventional
2-gate non-volatile memory cell.

FIG. 3 is a cross-sectional side view of a conventional
4-gate non-volatile memory cell.

FIG. 4 is a side cross-sectional side view of conventional
3-gate non-volatile memory cell.

FIG. 5 is a cross-sectional side view of another conven-
tional 2-gate non-volatile memory cell.

FIG. 6 is a diagram illustrating the different levels of an
exemplary artificial neural network utilizing a non-volatile
memory array.

FIG. 7 is a block diagram illustrating a vector multiplier
matrix.

FIG. 8 is a block diagram illustrating various levels of a
vector multiplier matrix.

FIG. 9 depicts another embodiment of a vector multiplier
matrix.

FIG. 10 depicts another embodiment of a vector multi-
plier matrix.
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FIG. 11 depicts another embodiment of a vector multiplier
matrix.

FIG. 12 depicts another embodiment of a vector multi-
plier matrix.

FIG. 13 depicts another embodiment of a vector multi-
plier matrix.

FIG. 14 depicts a prior art long short term memory
system.

FIG. 15 depicts an exemplary cell in a prior art long short
term memory system.

FIG. 16 depicts an implementation of the exemplary cell
in a long short term memory system of FIG. 15.

FIG. 17 depicts another implementation of the exemplary
cell in a long short term memory system of FIG. 15.

FIG. 18 depicts a prior art gated recurrent unit system.

FIG. 19 depicts an exemplary cell in a prior art gated
recurrent unit system.

FIG. 20 depicts an implementation of the exemplary cell
in the gated recurrent unit system of FIG. 19.

FIG. 21 depicts another embodiment of the exemplary
cell in the gated recurrent unit system of FIG. 19.

FIG. 22 depicts a configurable flash analog neuro memory
system.

FIG. 23 depicts another configurable flash analog neuro
memory system.

FIG. 24 depicts a vector-by-matrix multiplication (VMM)
sub-system within the configurable flash analog neuro
memory systems of FIG. 22 or 23.

FIG. 25 depicts a configurable VMM array within the
VMM sub-system of FIG. 24.

FIG. 26 depicts a configurable summer block within the
VMM sub-system of FIG. 24.

FIG. 27 depicts an adaptable neuron for use in the
configurable flash analog neuro memory systems of FIG. 22
or 23.

FIG. 28 depicts an activation function circuit for use in the
configurable flash analog neuro memory systems of FIG. 22
or 23.

FIG. 29 depicts an operation amplifier for use in the
adaptable neuron of FIG. 27.

FIG. 30 depicts various blocks used in conjunction with
vector-by-matrix multiplication arrays for use in the config-
urable flash analog neuro memory systems of FIG. 22 or 23.

FIG. 31 depicts a program and sense block for use in the
configurable flash analog neuro memory systems of FIG. 22
or 23.

FIG. 32 depicts a reference array system for use in the
configurable flash analog neuro memory systems of FIG. 22
or 23.

FIG. 33 depicts decoding circuitry for use in the config-
urable flash analog neuro memory systems of FIG. 22 or 23.

FIG. 34 depicts decoding circuitry for use in the config-
urable flash analog neuro memory systems of FIG. 22 or 23

FIG. 35 depicts an adaptable output neuron circuit.

FIG. 36 depicts sample and hold circuits.

FIG. 37 depicts an array architecture that is suitable for
memory cells operating in the linear region.

DETAILED DESCRIPTION OF THE
INVENTION

The artificial neural networks of the present invention
utilize a combination of CMOS technology and non-volatile
memory arrays.

Non-Volatile Memory Cells

Digital non-volatile memories are well known. For
example, U.S. Pat. No. 5,029,130 (“the 130 patent™), which
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is incorporated herein by reference, discloses an array of
split gate non-volatile memory cells, which are a type of
flash memory cells, and is incorporated herein by reference
for all purposes. Such a memory cell 210 is shown in FIG.
2. Each memory cell 210 includes source region 14 and
drain region 16 formed in a semiconductor substrate 12, with
a channel region 18 there between. A floating gate 20 is
formed over and insulated from (and controls the conduc-
tivity of) a first portion of the channel region 18, and over
a portion of the source region 14. A word line terminal 22
(which is typically coupled to a word line) has a first portion
that is disposed over and insulated from (and controls the
conductivity of) a second portion of the channel region 18,
and a second portion that extends up and over the floating
gate 20. The floating gate 20 and word line terminal 22 are
insulated from the substrate 12 by a gate oxide. Bitline 24 is
coupled to drain region 16.

Memory cell 210 is erased (where electrons are removed
from the floating gate) by placing a high positive voltage on
the word line terminal 22, which causes electrons on the
floating gate 20 to tunnel through the intermediate insulation
from the floating gate 20 to the word line terminal 22 via
Fowler-Nordheim tunneling.

Memory cell 210 is programmed (where electrons are
placed on the floating gate) by placing a positive voltage on
the word line terminal 22, and a positive voltage on the
source region 14. Electron current will flow from the source
region 14 towards the drain region 16. The electrons will
accelerate and become heated when they reach the gap
between the word line terminal 22 and the floating gate 20.
Some of the heated electrons will be injected through the
gate oxide onto the floating gate 20 due to the attractive
electrostatic force from the floating gate 20.

Memory cell 210 is read by placing positive read voltages
on the drain region 16 and word line terminal 22 (which
turns on the portion of the channel region 18 under the word
line terminal). If the floating gate 20 is positively charged
(i.e. erased of electrons), then the portion of the channel
region 18 under the floating gate 20 is turned on as well, and
current will flow across the channel region 18, which is
sensed as the erased or “1” state. If the floating gate 20 is
negatively charged (i.e. programmed with electrons), then
the portion of the channel region under the floating gate 20
is mostly or entirely turned off, and current will not flow (or
there will be little flow) across the channel region 18, which
is sensed as the programmed or “0” state.

Table No. 1 depicts typical voltage ranges that can be
applied to the terminals of memory cell 110 for performing
read, erase, and program operations:

TABLE No. 1

Operation of Flash Memory Cell 210 of FIG. 3

WL BL SL
Read 23V 0.6-2V ov
Erase ~11-13 V oV oV
Program 12V 1-3 pA 9-10V

Other split gate memory cell configurations, which are
other types of flash memory cells, are known. For example,
FIG. 3 depicts a four-gate memory cell 310 comprising
source region 14, drain region 16, floating gate 20 over a first
portion of channel region 18, a select gate 22 (typically
coupled to a word line, WL) over a second portion of the
channel region 18, a control gate 28 over the floating gate
20, and an erase gate 30 over the source region 14. This
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configuration is described in U.S. Pat. No. 6,747,310, which
is incorporated herein by reference for all purposes). Here,
all gates are non-floating gates except floating gate 20,
meaning that they are electrically connected or connectable
to a voltage source. Programming is performed by heated
electrons from the channel region 18 injecting themselves
onto the floating gate 20. Erasing is performed by electrons
tunneling from the floating gate 20 to the erase gate 30.

Table No. 2 depicts typical voltage ranges that can be
applied to the terminals of memory cell 310 for performing
read, erase, and program operations:

TABLE No. 2

Operation of Flash Memory Cell 310 of FIG. 3

WL/SG BL CG EG SL
Read 1.0-2V 062V 026V 026V ov
Erase -0.5V/IOV ov 0vV/-8V 812V ov
Program 1V 1 pA 8-11V 459V 455V

FIG. 4 depicts a three-gate memory cell 410, which is
another type of flash memory cell. Memory cell 410 is
identical to the memory cell 310 of FIG. 3 except that
memory cell 410 does not have a separate control gate. The
erase operation (Whereby erasing occurs through use of the
erase gate) and read operation are similar to that of the FIG.
3 except there is no control gate bias applied. The program-
ming operation also is done without the control gate bias,
and as a result, a higher voltage must be applied on the
source line during a program operation to compensate for a
lack of control gate bias.

Table No. 3 depicts typical voltage ranges that can be
applied to the terminals of memory cell 410 for performing
read, erase, and program operations:

TABLE No. 3

Operation of Flash Memory Cell 410 of FIG. 4

WL/SG BL EG SL
Read 07-22V 062V 026V ov
Erase —05VIOV oV 15V ov
Program v 2-3 pA 45V 79V

FIG. 5 depicts stacked gate memory cell 510, which is
another type of flash memory cell. Memory cell 510 is
similar to memory cell 210 of FIG. 2, except that floating
gate 20 extends over the entire channel region 18, and
control gate 22 (which here will be coupled to a word line)
extends over floating gate 20, separated by an insulating
layer (not shown). The erase, programming, and read opera-
tions operate in a similar manner to that described previ-
ously for memory cell 210.

Table No. 4 depicts typical voltage ranges that can be
applied to the terminals of memory cell 510 and substrate 12
for performing read, erase, and program operations:

TABLE No. 4

Operation of Flash Memory Cell 510 of FIG. 5

CG BL SL Substrate
Read 2-5V 0.6-2V ov ov
Erase -8to -10 VIOV FLT FLT 8-10 V/15-20 V
Program 8-12V 3-5V ov ov

10

15

20

25

30

35

40

45

50

55

60

65

6

In order to utilize the memory arrays comprising one of
the types of non-volatile memory cells described above in an
artificial neural network, two modifications are made. First,
the lines are configured so that each memory cell can be
individually programmed, erased, and read without
adversely affecting the memory state of other memory cells
in the array, as further explained below. Second, continuous
(analog) programming of the memory cells is provided.

Specifically, the memory state (i.e. charge on the floating
gate) of each memory cell in the array can be continuously
changed from a fully erased state to a fully programmed
state, independently and with minimal disturbance of other
memory cells. In another embodiment, the memory state
(i.e., charge on the floating gate) of each memory cell in the
array can be continuously changed from a fully programmed
state to a fully erased state, and vice-versa, independently
and with minimal disturbance of other memory cells. This
means the cell storage is analog or at the very least can store
one of many discrete values (such as 16 or 64 different
values), which allows for very precise and individual tuning
of all the cells in the memory array, and which makes the
memory array ideal for storing and making fine tuning
adjustments to the synapsis weights of the neural network.

Neural Networks Employing Non-Volatile Memory Cell
Arrays

FIG. 6 conceptually illustrates a non-limiting example of
a neural network utilizing a non-volatile memory array of
the present embodiments. This example uses the non-vola-
tile memory array neural network for a facial recognition
application, but any other appropriate application could be
implemented using a non-volatile memory array based neu-
ral network.

S0 is the input layer, which for this example is a 32x32
pixel RGB image with 5 bit precision (i.e. three 32x32 pixel
arrays, one for each color R, G and B, each pixel being 5 bit
precision). The synapses CB1 going from input layer SO to
layer C1 apply different sets of weights in some instances
and shared weights in other instances, and scan the input
image with 3x3 pixel overlapping filters (kernel), shifting
the filter by 1 pixel (or more than 1 pixel as dictated by the
model). Specifically, values for 9 pixels in a 3x3 portion of
the image (i.e., referred to as a filter or kernel) are provided
to the synapses CB1, where these 9 input values are multi-
plied by the appropriate weights and, after summing the
outputs of that multiplication, a single output value is
determined and provided by a first synapse of CB1 for
generating a pixel of one of the layers of feature map C1.
The 3x3 filter is then shifted one pixel to the right within
input layer SO (i.e., adding the column of three pixels on the
right, and dropping the column of three pixels on the left),
whereby the 9 pixel values in this newly positioned filter are
provided to the synapses CB1, where they are multiplied by
the same weights and a second single output value is
determined by the associated synapse. This process is con-
tinued until the 3x3 filter scans across the entire 32x32 pixel
image of input layer S0, for all three colors and for all bits
(precision values). The process is then repeated using dif-
ferent sets of weights to generate a different feature map of
C1, until all the features maps of layer C1 have been
calculated.

In layer C1, in the present example, there are 16 feature
maps, with 30x30 pixels each. Each pixel is a new feature
pixel extracted from multiplying the inputs and kernel, and
therefore each feature map is a two dimensional array, and
thus in this example layer C1 constitutes 16 layers of two
dimensional arrays (keeping in mind that the layers and
arrays referenced herein are logical relationships, not nec-
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essarily physical relationships—i.e., the arrays are not nec-
essarily oriented in physical two dimensional arrays). Each
of the 16 feature maps in layer C1 is generated by one of
sixteen different sets of synapse weights applied to the filter
scans. The C1 feature maps could all be directed to different
aspects of the same image feature, such as boundary iden-
tification. For example, the first map (generated using a first
weight set, shared for all scans used to generate this first
map) could identify circular edges, the second map (gener-
ated using a second weight set different from the first weight
set) could identify rectangular edges, or the aspect ratio of
certain features, and so on.

An activation function P1 (pooling) is applied before
going from layer C1 to layer S1, which pools values from
consecutive, non-overlapping 2x2 regions in each feature
map. The purpose of the pooling function is to average out
the nearby location (or a max function can also be used), to
reduce the dependence of the edge location for example and
to reduce the data size before going to the next stage. At
layer S1, there are 16 15x15 feature maps (i.e., sixteen
different arrays of 15x15 pixels each). The synapses CB2
going from layer S1 to layer C2 scan maps in S1 with 4x4
filters, with a filter shift of 1 pixel. At layer C2, there are 22
12x12 feature maps. An activation function P2 (pooling) is
applied before going from layer C2 to layer S2, which pools
values from consecutive non-overlapping 2x2 regions in
each feature map. At layer S2, there are 22 6x6 feature maps.
An activation function (pooling) is applied at the synapses
CB3 going from layer S2 to layer C3, where every neuron
in layer C3 connects to every map in layer S2 via a
respective synapse of CB3. At layer C3, there are 64
neurons. The synapses CB4 going from layer C3 to the
output layer S3 fully connects C3 to S3, i.e. every neuron in
layer C3 is connected to every neuron in layer S3. The
output at S3 includes 10 neurons, where the highest output
neuron determines the class. This output could, for example,
be indicative of an identification or classification of the
contents of the original image.

Each layer of synapses is implemented using an array, or
a portion of an array, of non-volatile memory cells.

FIG. 7 is a block diagram of an array that can be used for
that purpose. Vector-by-matrix multiplication (VMM) array
32 includes non-volatile memory cells and is utilized as the
synapses (such as CB1, CB2, CB3, and CB4 in FIG. 6)
between one layer and the next layer. Specifically, VMM
array 32 includes an array of non-volatile memory cells 33,
erase gate and word line gate decoder 34, control gate
decoder 35, bit line decoder 36 and source line decoder 37,
which decode the respective inputs for the non-volatile
memory cell array 33. Input to VMM array 32 can be from
the erase gate and wordline gate decoder 34 or from the
control gate decoder 35. Source line decoder 37 in this
example also decodes the output of the non-volatile memory
cell array 33. Alternatively, bit line decoder 36 can decode
the output of the non-volatile memory cell array 33.

Non-volatile memory cell array 33 serves two purposes.
First, it stores the weights that will be used by the VMM
array 32. Second, the non-volatile memory cell array 33
effectively multiplies the inputs by the weights stored in the
non-volatile memory cell array 33 and adds them up per
output line (source line or bit line) to produce the output,
which will be the input to the next layer or input to the final
layer. By performing the multiplication and addition func-
tion, the non-volatile memory cell array 33 negates the need
for separate multiplication and addition logic circuits and is
also power efficient due to its in-situ memory computation.
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The output of non-volatile memory cell array 33 is
supplied to a differential summer (such as a summing
op-amp or a summing current mirror) 38, which sums up the
outputs of the non-volatile memory cell array 33 to create a
single value for that convolution. The differential summer 38
is arranged to perform summation of positive weight and
negative weight.

The summed up output values of differential summer 38
are then supplied to an activation function circuit 39, which
rectifies the output. The activation function circuit 39 may
provide sigmoid, tan h, or ReLLU functions. The rectified
output values of activation function circuit 39 become an
element of a feature map as the next layer (e.g. C1 in FIG.
6), and are then applied to the next synapse to produce the
next feature map layer or final layer. Therefore, in this
example, non-volatile memory cell array 33 constitutes a
plurality of synapses (which receive their inputs from the
prior layer of neurons or from an input layer such as an
image database), and summing op-amp 38 and activation
function circuit 39 constitute a plurality of neurons.

The input to VMM array 32 in FIG. 7 (WLx, EGx, CGx,
and optionally BLx and SLx) can be analog level, binary
level, or digital bits (in which case a DAC is provided to
convert digital bits to appropriate input analog level) and the
output can be analog level, binary level, or digital bits (in
which case an output ADC is provided to convert output
analog level into digital bits).

FIG. 8 is a block diagram depicting the usage of numerous
layers of VMM arrays 32, here labeled as VMM arrays 32a,
32b, 32¢, 32d, and 32e. As shown in FIG. 8, the input,
denoted Inputx, is converted from digital to analog by a
digital-to-analog converter 31, and provided to input VMM
array 32a. The converted analog inputs could be voltage or
current. The input D/A conversion for the first layer could be
done by using a function or a LUT (look up table) that maps
the inputs Inputx to appropriate analog levels for the matrix
multiplier of input VMM array 32a. The input conversion
could also be done by an analog to analog (A/A) converter
to convert an external analog input to a mapped analog input
to the input VMM array 32a.

The output generated by input VMM array 32q is pro-
vided as an input to the next VMM array (hidden level 1)
32b, which in turn generates an output that is provided as an
input to the next VMM array (hidden level 2) 32¢, and so on.
The various layers of VMM array 32 function as different
layers of synapses and neurons of a convolutional neural
network (CNN). Each VMM array 32a, 325, 32¢, 32d, and
32¢ can be a stand-alone, physical non-volatile memory
array, or multiple VMM arrays could utilize different por-
tions of the same physical non-volatile memory array, or
multiple VMM arrays could utilize overlapping portions of
the same physical non-volatile memory array. The example
shown in FIG. 8 contains five layers (32a,325,32¢,32d,32¢):
one input layer (32a), two hidden layers (326,32¢), and two
fully connected layers (32d,32¢). One of ordinary skill in the
art will appreciate that this is merely exemplary and that a
system instead could comprise more than two hidden layers
and more than two fully connected layers.

Vector-By-Matrix Multiplication (VMM) Arrays

FIG. 9 depicts neuron VMM array 900, which is particu-
larly suited for memory cells 310 as shown in FIG. 3, and is
utilized as the synapses and parts of neurons between an
input layer and the next layer. VMM array 900 comprises
memory array 901 of non-volatile memory cells and refer-
ence array 902 (at the top of the array) of non-volatile
reference memory cells. Alternatively, another reference
array can be placed at the bottom.
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In VMM array 900, control gate lines, such as control gate
line 903, run in a vertical direction (hence reference array
902 in the row direction is orthogonal to control gate line
903), and erase gate lines, such as erase gate line 904, run
in a horizontal direction. Here, the inputs to VMM array 900
are provided on the control gate lines (CG0, CG1, CG2,
C@G3), and the output of VMM array 900 emerges on the
source lines (SL.0, SL.1). In one embodiment, only even rows
are used, and in another embodiment, only odd rows are
used. The current placed on each source line (SLO, SL1,
respectively) performs a summing function of all the cur-
rents from the memory cells connected to that particular
source line.

As described herein for neural networks, the non-volatile
memory cells of VMM array 900, i.e. the flash memory of
VMM array 900, are preferably configured to operate in a
sub-threshold region.

The non-volatile reference memory cells and the non-
volatile memory cells described herein are biased in weak
inversion:

Tds=Io *e Ve VY iVi=y uy,u( Vg)kVt,

where w :e(—Vth)/kVt

For an I-to-V log converter using a memory cell (such as
a reference memory cell or a peripheral memory cell) or a
transistor to convert input current into an input voltage:

Vg=k*Vit*log [lds/wp*lo]

Here, wp is w of a reference or peripheral memory cell.
For a memory array used as a vector matrix multiplier
VMM array, the output current is:

*6( Ve)kVe

Tout=wa*lo , namely

Tout=(wa/wp)*Iin=W*[in
W=eVi—Viha)yiVe

Here, wa=w of each memory cell in the memory array.

A wordline or control gate can be used as the input for the
memory cell for the input voltage.

Alternatively, the flash memory cells of VMM arrays
described herein can be configured to operate in the linear
region:

Tds=beta*(Vgs—Vith)*Vds; beta=u*Cox*W/L

Wa(Vgs-Vth)
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that application. a sourceline or a bitline can be used as the
neuron output (current summation output).

FIG. 10 depicts neuron VMM array 1000, which is
particularly suited for memory cells 210 as shown in FIG. 2,
and is utilized as the synapses between an input layer and the
next layer. VMM array 1000 comprises a memory array
1003 of non-volatile memory cells, reference array 1001 of
first non-volatile reference memory cells, and reference
array 1002 of second non-volatile reference memory cells.
Reference arrays 1001 and 1002, arranged in the column
direction of the array, serve to convert current inputs flowing
into terminals BLR0, BLR1, BLR2, and BLR3 into voltage
inputs WLO, WL1, WL2, and WL3. In effect, the first and
second non-volatile reference memory cells are diode-con-
nected through multiplexors 1014 with current inputs flow-
ing into them. The reference cells are tuned (e.g., pro-
grammed) to target reference levels. The target reference
levels are provided by a reference mini-array matrix (not
shown).

Memory array 1003 serves two purposes. First, it stores
the weights that will be used by the VMM array 1000 on
respective memory cells thereof. Second, memory array
1003 effectively multiplies the inputs (i.e. current inputs
provided in terminals BLRO, BLR1, BLR2, and BLR3,
which reference arrays 1001 and 1002 convert into the input
voltages to supply to wordlines WL0, WL1, WL2, and WL3)
by the weights stored in the memory array 1003 and then
adds all the results (memory cell currents) to produce the
output on the respective bit lines (BLO-BLN), which will be
the input to the next layer or input to the final layer. By
performing the multiplication and addition function,
memory array 1003 negates the need for separate multipli-
cation and addition logic circuits and is also power efficient.
Here, the voltage inputs are provided on the word lines
WLO, WL1, WL2, and WL3, and the output emerges on the
respective bit lines BLO-BLN during a read (inference)
operation. The current placed on each of the bit lines
BLO-BLN performs a summing function of the currents
from all non-volatile memory cells connected to that par-
ticular bitline.

Table No. 5 depicts operating voltages for VMM array
1000. The columns in the table indicate the voltages placed
on word lines for selected cells, word lines for unselected
cells, bit lines for selected cells, bit lines for unselected cells,
source lines for selected cells, and source lines for unse-
lected cells. The rows indicate the operations of read, erase,
and program.

TABLE No. 5

Operation of VMM Array 1000 of FIG. 10:

WL WL-unsel BL BL-unsel SL SL-unsel
Read 1-3.5V  -05V/0V 0.6-2V (Ineuron) 0.6 V-2 V/OV ov ov
Erase ~3-13V ov ov ov ov ov
Program 1-2V  -05V/0V 0.1-3uA Vinh ~2.5V 410V 0-1 V/FLT
55

A wordline or control gate or bitline or sourceline can be
used as the input for the memory cell operated in the linear
region for the input voltage.

For an I-to-V linear converter, a memory cell (such as a
reference memory cell or a peripheral memory cell) or a
transistor operating in the linear region can be used to
linearly convert an input/output current into an input/output
voltage.

Other embodiments for VMM array 32 of FIG. 7 are
described in U.S. patent application Ser. No. 15/826,345,
which is incorporated by reference herein. As described in
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FIG. 11 depicts neuron VMM array 1100, which is
particularly suited for memory cells 210 as shown in FIG. 2,
and is utilized as the synapses and parts of neurons between
an input layer and the next layer. VMM array 1100 com-
prises a memory array 1103 of non-volatile memory cells,
reference array 1101 of first non-volatile reference memory
cells, and reference array 1102 of second non-volatile ref-
erence memory cells. Reference arrays 1101 and 1102 run in
row direction of the VMM array 1100. VMM array is similar
to VMM 1000 except that in VMM array 1100, the word
lines run in the vertical direction. Here, the inputs are
provided on the word lines (WLAO, WLB0, WLA1, WLB2,
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WLA2, WLB2, WLA3, WLB3), and the output emerges on
the source line (SLO, SL.1) during a read operation. The
current placed on each source line performs a summing
function of all the currents from the memory cells connected
to that particular source line.

Table No. 6 depicts operating voltages for VMM array
1100. The columns in the table indicate the voltages placed
on word lines for selected cells, word lines for unselected
cells, bit lines for selected cells, bit lines for unselected cells,
source lines for selected cells, and source lines for unse-
lected cells. The rows indicate the operations of read, erase,
and program.

TABLE No. 6

5
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addition function, the memory array negates the need for
separate multiplication and addition logic circuits and is also
power efficient. Here, the inputs are provided on the control
gate lines (CGO, CG1, CG2, and CG3), and the output
emerges on the bitlines (BLO-BLN) during a read operation.
The current placed on each bitline performs a summing
function of all the currents from the memory cells connected
to that particular bitline.

VMM array 1200 implements uni-directional tuning for
non-volatile memory cells in memory array 1203. That is,
each non-volatile memory cell is erased and then partially
programmed until the desired charge on the floating gate is

Operation of VMM Array 1100 of FIG. 11

WL WL-unsel BL BL-unsel SL SL-unsel
Read 135V -03V/OV 062V 0.6 V-2V/OV ~03-1V ov
(Ineuron)
Erase ~5-13V ov ov ov ov SL-inhibit (~4-8 V)
Program 12V -05V/OV 0.1-3uA Vinh ~2.5V 4-10V 0-1 V/FLT

FIG. 12 depicts neuron VMM array 1200, which is
particularly suited for memory cells 310 as shown in FIG. 3,
and is utilized as the synapses and parts of neurons between
an input layer and the next layer. VMM array 1200 com-
prises a memory array 1203 of non-volatile memory cells,
reference array 1201 of first non-volatile reference memory
cells, and reference array 1202 of second non-volatile ref-
erence memory cells. Reference arrays 1201 and 1202 serve
to convert current inputs flowing into terminals BLRO,
BLR1, BLR2, and BLR3 into voltage inputs CG0, CG1,
CG2, and CG3. In effect, the first and second non-volatile
reference memory cells are diode-connected through multi-
plexors 1212 with current inputs flowing into them through
BLRO, BLR1, BLR2, and BLR3. Multiplexors 1212 each
include a respective multiplexor 1205 and a cascoding
transistor 1204 to ensure a constant voltage on the bitline
(such as BLRO) of each of the first and second non-volatile
reference memory cells during a read operation. The refer-
ence cells are tuned to target reference levels.

Memory array 1203 serves two purposes. First, it stores
the weights that will be used by the VMM array 1200.
Second, memory array 1203 effectively multiplies the inputs
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reached. This can be performed, for example, using the
novel precision programming techniques described below. If
too much charge is placed on the floating gate (such that the
wrong value is stored in the cell), the cell must be erased and
the sequence of partial programming operations must start
over. As shown, two rows sharing the same erase gate (such
as EG0 or EG1) need to be erased together (which is known
as a page erase), and thereafter, each cell is partially pro-
grammed until the desired charge on the floating gate is
reached.

Table No. 7 depicts operating voltages for VMM array
1200. The columns in the table indicate the voltages placed
on word lines for selected cells, word lines for unselected
cells, bit lines for selected cells, bit lines for unselected cells,
control gates for selected cells, control gates for unselected
cells in the same sector as the selected cells, control gates for
unselected cells in a different sector than the selected cells,
erase gates for selected cells, erase gates for unselected cells,
source lines for selected cells, and source lines for unse-
lected cells. The rows indicate the operations of read, erase,
and program.

TABLE No. 7

Operation of VMM Array 1200 of FIG. 12

CG-
unsel
WL- BL- same CG- EG- SL-
WL unsel BL unsel CG sector  unsel EG unsel SL unsel
Read 1.0-2V -05V/OV 062V 0OV 026V 026V 026V 026V 026V ov ov
(Ineuron)
Erase ov ov ov ov OV 026V 026V 512V 026V ov ov
Program 0.7-1V -05V/ OV 01-1uA Vioh 411V 026V 026V 455V 026V 455V 0-1V

a-2vy

(current inputs provided to terminals BLR0, BLR1, BLR2,
and BLR3, for which reference arrays 1201 and 1202
convert these current inputs into the input voltages to supply
to the control gates (CG0, CG1, CG2, and CG3) by the
weights stored in the memory array and then add all the
results (cell currents) to produce the output, which appears
on BLO-BLN, and will be the input to the next layer or input
to the final layer. By performing the multiplication and
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FIG. 13 depicts neuron VMM array 1300, which is
particularly suited for memory cells 310 as shown in FIG. 3,
and is utilized as the synapses and parts of neurons between
an input layer and the next layer. VMM array 1300 com-
prises a memory array 1303 of non-volatile memory cells,
reference array 1301 or first non-volatile reference memory
cells, and reference array 1302 of second non-volatile ref-
erence memory cells. EG lines EGR0, EG0, EG1 and EGR1
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are run vertically while CG lines CG0, CG1, CG2 and CG3
and SL lines WLO, WL1, WL2 and WL3 are run horizon-
tally. VMM array 1300 is similar to VMM array 1400,
except that VMM array 1300 implements bi-directional
tuning, where each individual cell can be completely erased,
partially programmed, and partially erased as needed to
reach the desired amount of charge on the floating gate due
to the use of separate EG lines. As shown, reference arrays
1301 and 1302 convert input current in the terminal BLRO,
BLR1, BLR2, and BLR3 into control gate voltages CGO,
CG1, CG2, and CG3 (through the action of diode-connected
reference cells through multiplexors 1314) to be applied to
the memory cells in the row direction. The current output
(neuron) is in the bitlines BLO-BLN, where each bit line
sums all currents from the non-volatile memory cells con-
nected to that particular bitline.

Table No. 8 depicts operating voltages for VMM array
1300. The columns in the table indicate the voltages placed
on word lines for selected cells, word lines for unselected
cells, bit lines for selected cells, bit lines for unselected cells,
control gates for selected cells, control gates for unselected
cells in the same sector as the selected cells, control gates for
unselected cells in a different sector than the selected cells,
erase gates for selected cells, erase gates for unselected cells,
source lines for selected cells, and source lines for unse-
lected cells. The rows indicate the operations of read, erase,
and program.

TABLE No. 8
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1403, and 1404 in FIG. 14. LSTM cell 1500 receives input
vector x(t), cell state vector c(t-1) from a preceding cell, and
output vector h(t-1) from a preceding cell, and generates
cell state vector c(t) and output vector h(t).

LSTM cell 1500 comprises sigmoid function devices
1501, 1502, and 1503, each of which applies a number
between 0 and 1 to control how much of each component in
the input vector is allowed through to the output vector.
LSTM cell 1500 also comprises tan h devices 1504 and 1505
to apply a hyperbolic tangent function to an input vector,
multiplier devices 1506, 1507, and 1508 to multiply two
vectors together, and addition device 1509 to add two
vectors together. Output vector h(t) can be provided to the
next LSTM cell in the system, or it can be accessed for other
purposes.

FIG. 16 depicts an LSTM cell 1600, which is an example
of an implementation of LSTM cell 1500. For the reader’s
convenience, the same numbering from LSTM cell 1500 is
used in LSTM cell 1600. Sigmoid function devices 1501,
1502, and 1503 and tan h device 1504 each comprise
multiple VMM arrays 1601 and activation circuit blocks
1602. Thus, it can be seen that VMM arrays are particular
useful in LSTM cells used in certain neural network sys-
tems.

An alternative to LSTM cell 1600 (and another example
of'an implementation of LSTM cell 1500) is shown in. FIG.
17. In FIG. 17, sigmoid function devices 1501, 1502, and

Operation of VMM Array 1300 of FIG. 13

CG-unsel
WL- BL- same CG- EG- SL-
WL unsel BL unsel CG sector unsel EG unsel SL unsel
Read 1.02V -05V/ 0.62V OV 026V 026V 026V 026V 026V ov ov
ov (Ineuron)
Erase ov oV ov ov ov 49V 026V 512V 026V ov ov
Program 07-1V -05V/ 01-1uA  Vinh 4-11V 026V 026V 455V 026V 4535V 0-1V
ov (1-2V)

Long Short-Term Memory

The prior art includes a concept known as long short-term
memory (LSTM). LSTM units often are used in neural
networks. LSTM allows a neural network to remember
information over predetermined arbitrary time intervals and
to use that information in subsequent operations. A conven-
tional LSTM unit comprises a cell, an input gate, an output
gate, and a forget gate. The three gates regulate the flow of
information into and out of the cell and the time interval that
the information is remembered in the LSTM. VMMs are
particularly useful in LSTM units.

FIG. 14 depicts an exemplary LSTM 1400. LSTM 1400
in this example comprises cells 1401, 1402, 1403, and 1404.
Cell 1401 receives input vector X, and generates output
vector h,, and cell state vector c,. Cell 1402 receives input
vector X,, the output vector (hidden state) h, from cell 1401,
and cell state ¢, from cell 1401 and generates output vector
h, and cell state vector c,. Cell 1403 receives input vector X,,
the output vector (hidden state) h;, from cell 1402, and cell
state ¢, from cell 1402 and generates output vector h, and
cell state vector c,. Cell 1404 receives input vector X5, the
output vector (hidden state) h, from cell 1403, and cell state
¢, from cell 1403 and generates output vector h,. Additional
cells can be used, and an LSTM with four cells is merely an
example.

FIG. 15 depicts an exemplary implementation of an
LSTM cell 1500, which can be used for cells 1401, 1402,
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1503 and tan h device 1504 share the same physical hard-
ware (VMM arrays 1701 and activation function block
1702) in a time-multiplexed fashion. LSTM cell 1700 also
comprises multiplier device 1703 to multiply two vectors
together, addition device 1708 to add two vectors together,
tan h device 1505 (which comprises activation circuit block
1702), register 1707 to store the value i(t) when i(t) is output
from sigmoid function block 1702, register 1704 to store the
value f(t)*c(t-1) when that value is output from multiplier
device 1703 through multiplexor 1710, register 1705 to store
the value i(t)*u(t) when that value is output from multiplier
device 1703 through multiplexor 1710, and register 1706 to
store the value o(t)*c~(t) when that value is output from
multiplier device 1703 through multiplexor 1710, and mul-
tiplexor 1709.

Whereas LSTM cell 1600 contains multiple sets of VMM
arrays 1601 and respective activation function blocks 1602,
LSTM cell 1700 contains only one set of VMM arrays 1701
and activation function block 1702, which are used to
represent multiple layers in the embodiment of LSTM cell
1700. LSTM cell 1700 will require less space than LSTM
1600, as LSTM cell 1700 will require ¥4 as much space for
VMMs and activation function blocks compared to LSTM
cell 1600.

It can be further appreciated that LSTM units will typi-
cally comprise multiple VMM arrays, each of which
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requires functionality provided by certain circuit blocks
outside of the VMM arrays, such as a summer and activation
circuit block and high voltage generation blocks. Providing
separate circuit blocks for each VMM array would require a
significant amount of space within the semiconductor device
and would be somewhat inefficient. The embodiments
described below therefore attempt to minimize the circuitry
required outside of the VMM arrays themselves.

Gated Recurrent Units

An analog VMM implementation can be utilized for a
GRU (gated recurrent unit) system. GRUs are a gating
mechanism in recurrent neural networks. GRUs are similar
to LSTMs, except that GRU cells generally contain fewer
components than an LSTM cell.

FIG. 18 depicts an exemplary GRU 1800. GRU 1800 in
this example comprises cells 1801, 1802, 1803, and 1804.
Cell 1801 receives input vector X, and generates output
vector hy. Cell 1802 receives input vector x,, the output
vector (hidden state) h, from cell 1801 and generates output
vector h;. Cell 1803 receives input vector x, and the output
vector (hidden state) h; from cell 1802 and generates output
vector h,. Cell 1804 receives input vector x; and the output
vector (hidden state) h, from cell 1803 and generates output
vector h;. Additional cells can be used, and an GRU with
four cells is merely an example.

FIG. 19 depicts an exemplary implementation of a GRU
cell 1900, which can be used for cells 1801, 1802, 1803, and
1804 of FIG. 18. GRU cell 1900 receives input vector x(t)
and output vector h(-1) from a preceding GRU cell and
generates output vector h(t). GRU cell 1900 comprises
sigmoid function devices 1901 and 1902, each of which
applies a number between 0 and 1 to components from
output vector h(-1) and input vector x(t). GRU cell 1900
also comprises a tan h device 1903 to apply a hyperbolic
tangent function to an input vector, a plurality of multiplier
devices 1904, 1905, and 1906 to multiply two vectors
together, an addition device 1907 to add two vectors
together, and a complementary device 1908 to subtract an
input from 1 to generate an output.

FIG. 20 depicts a GRU cell 2000, which is an example of
an implementation of GRU cell 1900. For the reader’s
convenience, the same numbering from GRU cell 1900 is
used in GRU cell 2000. As can be seen in FIG. 20, sigmoid
function devices 1901 and 1902, and tan h device 1903 each
comprise multiple VMM arrays 2001 and activation func-
tion blocks 2002. Thus, it can be seen that VMM arrays are
of particular use in GRU cells used in certain neural network
systems.

An alternative to GRU cell 2000 (and another example of
an implementation of GRU cell 1900) is shown in FIG. 21.
In FIG. 21, GRU cell 2100 utilizes VMM arrays 2101 and
activation function block 2102, which when configured as a
sigmoid function applies a number between 0 and 1 to
control how much of each component in the input vector is
allowed through to the output vector. In FIG. 21, sigmoid
function devices 1901 and 1902 and tan h device 1903 share
the same physical hardware (VMM arrays 2101 and activa-
tion function block 2102) in a time-multiplexed fashion.
GRU cell 2100 also comprises multiplier device 2103 to
multiply two vectors together, addition device 2105 to add
two vectors together, complementary device 2109 to sub-
tract an input from 1 to generate an output, multiplexor
2104, register 2106 to hold the value h(t-1)*r(t) when that
value is output from multiplier device 2103 through multi-
plexor 2104, register 2107 to hold the value h(t-1)*z(t)
when that value is output from multiplier device 2103
through multiplexor 2104, and register 2108 to hold the
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value h"(t)*(1-z(t)) when that value is output from multiplier
device 2103 through multiplexor 2104.

Whereas GRU cell 2000 contains multiple sets of VMM
arrays 2001 and activation function blocks 2002, GRU cell
2100 contains only one set of VMM arrays 2101 and
activation function block 2102, which are used to represent
multiple layers in the embodiment of GRU cell 2100. GRU
cell 2100 will require less space than GRU cell 2000, as
GRU cell 2100 will require Y3 as much space for VMMs and
activation function blocks compared to GRU cell 2000.

It can be further appreciated that GRU systems will
typically comprise multiple VMM arrays, each of which
requires functionality provided by certain circuit blocks
outside of the VMM arrays, such as a summer and activation
circuit block and high voltage generation blocks. Providing
separate circuit blocks for each VMM array would require a
significant amount of space within the semiconductor device
and would be somewhat inefficient. The embodiments
described below therefore attempt to minimize the circuitry
required outside of the VMM arrays themselves.

The input to the VMM arrays can be an analog level, a
binary level, or digital bits (in this case a DAC is needed to
convert digital bits to appropriate input analog level) and the
output can be an analog level, a binary level, or digital bits
(in this case an output ADC is needed to convert output
analog level into digital bits).

For each memory cell in a VMM array, each weight w can
be implemented by a single memory cell or by a differential
cell or by two blend memory cells (average of 2 cells). In the
differential cell case, two memory cells are needed to
implement a weight w as a differential weight (w=w+-w-).
In the two blend memory cells, two memory cells are needed
to implement a weight w as an average of two cells.

Configurable Arrays

FIG. 22 depicts configurable flash analog neuromorphic
memory system 2200. Configurable flash analog neuro
memory system 2200 comprises macro blocks 2201a,
22015, 2201c¢, 2201d, 2201e, and 2201f; neuron output (such
as summer circuit and a sample and hold S/H circuit) blocks
2202a, 22025, 2202¢, 2202d, 2202¢, and 2202f; activation
circuit blocks 2203a, 22035, 2203c, 2203d, 2203¢, and
2203f; horizontal multiplexors 2204a, 22045, 2204¢, and
2204d; vertical multiplexors 2205a, 22055, and 2205¢; and
cross multiplexors 2206a and 22065. Each of macro blocks
2201a, 22015, 2201c, 2201d, 2201e, and 2201f'is a VMM
sub-system containing a VMM array.

In one embodiment, neuron output blocks 22024, 22025,
2202c¢, 2202d, 2202¢, and 2202f each includes a buffer (e.g.,
op amp) low impedance output type circuit that can drive a
long, configurable interconnect. In one embodiment, activa-
tion circuit blocks 2203a, 22035, 2203¢, 2203d, 2203¢, and
2203/ provide the summing, high impedance current out-
puts. Alternatively, neuron output blocks 2202a, 22025,
2202¢, 2202d, 2202, and 2202f can include the activation
circuits, in which case additional low impedance buffers will
be needed to drive the outputs.

It is to be understood by one of ordinary skill in the art that
activation circuit blocks 2203a, 220354, 2203c¢, 22034,
2203e, and 2203/ are just one example of a type of input
block, and that configurable flash analog neuro memory
system 2200 instead can be designed with other input blocks
in place of activation circuit blocks 2203a, 22035, 2203c,
2203d, 2203e, and 2203/, such that those blocks become
input blocks 22034, 22035, 2203c¢, 22034, 2203¢, and 2203/

In one embodiment, neuron output blocks 22024, 22025,
2202¢, 2202d, 2202¢, and 2202f each comprises analog-to-
digital conversion block 2252 that output digital bits instead
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of analog signals. Those digital bits are then routed to the
desired location using configurable interconnects of FIG. 22.
In this embodiment, activation circuit blocks 2203a, 22035,
2203c, 2203d, 2203¢, and 2203/ each comprises digital-to-
analog conversion block 2251 that receives digital bits from
the interconnects of FIG. 22 and converts the digital bits into
analog signals.

In instances where configurable system 2200 is used to
implement an LSTM or GRU, output blocks 22024, 22025,
2202¢, 22024, 2202e, and 2202/ and/or input blocks 2203a,
22035, 2203¢, 22034d, 2203e, and 2203/ may include mul-
tiplier block, addition block, subtraction (output=1-input)
block as needed for LSTM/GRU architecture, and optionally
may include analog sample-and-hold circuits (such as cir-
cuits 3600 or 3650 in FIG. 36) or digital sample-and-hold
circuits (e.g., a register or SRAM) as needed.

Configurability includes the width of neurons (number of
outputs convolution layer, such as bitlines), the width of
inputs (number of inputs per convolution layer, such as
number of rows) by combining multiple macros and/or
configuring each individual macros to have only parts of
neuron output and/or input circuit active.

Within a VMM array, time multiplexing can be used to
enable multiple timed passes to maximize usage of the array.
For example first N rows or N columns of an array can be
enabled (sampled) at time t0 and its result is held in a t0
sample and hold S/H circuit, the next N rows or N columns
can be enabled at time t1 and its result is held in a t1 sample
and hold S/H circuit, and so on. And at final time tf, all
previous S/H results is combined appropriately to give final
output.

As can be appreciated, one requirement of an analog
neuro memory system is the ability to collect outputs from
one layer and provide them as inputs to another layer. This
results in a complicated routing scheme where the outputs
from one VMM array might need to be routed as inputs to
another VMM array that is not necessarily immediately
adjacent to it. In FIG. 22, this routing function is provided
by horizontal multiplexors 2204a, 22045, 2204¢, and 22044,
vertical multiplexors 2205q, 22056, and 2205¢; and cross
multiplexors 2206a and 22065. Using these multiplexors,
the outputs from any of the macro blocks 2201a, 22015,
2201¢, 2201d, 2201e, and 2201/ can be routed as inputs to
any of the other macro blocks in 2201a, 22015, 2201c,
2201d, 2201e, and 22017 This functionality is critical to
creating a configurable system.

Configurable flash analog neuro memory system 2200
also comprises controller or control logic 2250. Controller
or control logic 2250 optionally is a microcontroller running
software code to perform the configurations described herein
(controller), or hardware logic for performing the configu-
rations described herein (control logic), including activation
of horizontal multiplexors 2204a, 22045, 2204¢, and 22044,
vertical multiplexors 2205q, 22056, and 2205¢; and cross
multiplexors 22064 and 22065 to perform the needed rout-
ing functions at each cycle.

FIG. 23 depicts configurable flash analog neuro memory
system 2300. Configurable flash analog neuro memory
system 2300 comprises macro blocks 2301a, 23015, 2301c,
2301d, 2301e, and 2301f; neuron output blocks (such as
summer circuit and a sample and hold S/H circuit) 23024,
23025, and 2302c; activation circuit blocks 2303a, 23035,
2303¢, 2303d, 2303e, and 2303/, horizontal multiplexors
2304a, 23045, 2304c¢, and 2304d; vertical multiplexors
2305a, 23055, 2305¢, 23054, 2305¢, and 2305/, and cross
multiplexors 2306a and 23065. Each of macro blocks
2301a, 23015, 2301c, 23014, 2301e, and 2301f'is a VMM
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sub-system containing a VMM array. Neuron output blocks
2302a, 230254, and 2302c¢ are configured to be shared across
macros.

As can be seen, the systems of FIGS. 22 and 23 are similar
except that the system of FIG. 23 has shared configurable
neuron output blocks (i.e., neuron output blocks 2302a,
2302b, and 2302¢). In FIG. 23, the routing function is
provided by horizontal multiplexors 2304a, 23045, 2304c,
and 23044, vertical multiplexors 2305a, 23055, 2305c¢,
2305d, 2305d, and 2305/ and cross multiplexors 2306a and
23065. Using these multiplexors, the outputs from any of the
macro blocks 2301a, 23015, 2301c, 23014, 2301e, and
2301f can be routed as inputs to some (but not all) of the
other macro blocks in 2301a, 23015, 2301c¢, 23014, 2301e,
and 23017 This allows some configurability with a lesser
space requirement than the system of FIG. 22 due to the lack
of vertical multiplexors.

Neuron output blocks 2302a, 23025, and 2302¢ may
include current summer circuit blocks and/or activation
circuit blocks. Neuron output block 2302a, for example, can
be configured to connect to an output of the macro block
2301a or to an output of the macro block 2301d. Or the
neuron output block 2302a, for example, can be configured
to connect to part of an output of the macro block 2301a and
part of an output of the macro block 2301d.

It is to be understood by one of ordinary skill in the art that
activation circuit blocks 2303a, 230354, 2303c¢, 23034,
2303e, and 2303/ are just one example of a type of input
block, and that configurable flash analog neuro memory
system 2300 instead can be designed with other input blocks
in place of activation circuit blocks 2303a, 23035, 2303c¢,
2303d, 2303e, and 2303/, such that those blocks become
input blocks 23034, 23035, 2303c¢, 23034, 2303¢, and 2303/

In one embodiment, neuron output blocks 23024, 23025,
and 2302¢ each comprises analog-to-digital conversion
block 2352 that output digital bits instead of analog signals.
Those digital bits are then routed to the desired location
using configurable interconnects of FIG. 23. In this embodi-
ment, activation circuit blocks 2303a, 23035, 2303¢, 23034,
2303e, and 2303/ each comprises digital-to-analog conver-
sion block 2351 that receives digital bits from the intercon-
nects of FIG. 23 and converts the digital bits into analog
signals.

In instances where configurable system 2300 is used to
implement an LSTM or GRU, output blocks 23024, 23025,
2302¢, 23024, 2302e, and 2302/ and/or input blocks 2303a,
23035, 2303¢, 23034, 2303e, and 2303/ may include mul-
tiplier block, addition block, subtraction (output=1-input)
block as needed for LSTM/GRU architecture, and optionally
may include analog sample-and-hold circuits (such as cir-
cuits 3600 or 3650 in FIG. 36) or digital sample-and-hold
circuits (e.g., a register or SRAM) as needed.

Configurable flash analog neuro memory system 2300
also comprises controller or control logic 2250. As in FIG.
21, controller or control logic 2250 optionally is a micro-
controller running software code to perform the configura-
tions described herein (controller), or hardware logic for
performing the configurations described herein (control
logic), including activation of horizontal multiplexors
2304a, 23045, 2304c¢, and 2304d; vertical multiplexors
23054, 23055, 2305¢, 2305d, 2305¢, and 2305f; and cross
multiplexors 23064 and 23065 to perform the needed rout-
ing functions at each cycle.

FIG. 24 depicts VMM system 2400. VMM system 2400
comprises macro block 2420 (which can be used to imple-
ment macro blocks 2201a, 22015, 2201c, 2201d, 2201e,
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22011, 2301a, 23015, 2301c, 2301d, 2301e, and 2301/ in
FIGS. 22 and 23) and activation function block 2414 and
summer block 2413.

VMM system 2400 comprises VMM array 2401, low
voltage row decoder 2402, high voltage row decoder 2403,
and low voltage reference column decoder 2404. Low
voltage row decoder 2402 provides a bias voltage for read
and program operations and provides a decoding signal for
high voltage row decoder 2403. High voltage row decoder
2403 provides a high voltage bias signal for program and
erase operations.

VMM system 2400 further comprises redundancy arrays
2405 and 2406. Redundancy arrays 2405 and 2406 provides
array redundancy for replacing a defective portion in array
2401. VMM system 2400 further comprises NVR (non-
volatile register, aka info sector) sector 2407, which are
array sectors used to store user info, device 1D, password,
security key, trimbits, configuration bits, manufacturing
info, etc. VMM system 2400 further comprises reference
sector 2408 for providing reference cells to be used in a
sense operation; predecoder 2409 for decoding addresses for
decoders 240, 2403, and/or 2404; bit line multiplexor 2410;
macro control logic 2411; and macro analog circuit block
2412, each of which performs functions at the VMM array
level (as opposed to the system level comprising all VMM
arrays).

FIG. 25 depicts examples of array configurability, which
can be used in the embodiments of FIGS. 22-24. Configur-
able array 2500 comprises an array of M rows by N columns.
Configurable array 2500 can be a flash memory cell array
containing cells of the types shown in FIGS. 2-5. In the
embodiments of FIGS. 22-24, each VMM array can be
configured into one or more sub-arrays of different sizes that
are smaller than configurable array 2500. For instance,
configurable array can be divided into sub-array 2501 of A
rows by B columns, sub-array 2502 of C rows by D
columns, and sub-array 2503 of E rows by F columns. This
configuration can be implemented by controller or control
logic 2250. Once each of the desired sub-arrays is created,
controller or control logic 2250 can configure the horizontal,
vertical, and cross multiplexors of FIGS. 22 and 23 to
perform the appropriate routing from each sub-array to the
appropriate location at the appropriate time. Ideally, only
one sub-array in each configurable array will be accessed
during any given cycle at time t (for example, through array
time multiplexing). For example, only one of the sub-arrays
in configurable array 2500 will be accessed during a single
cycle. However, the sub-arrays can be accessed during
different time cycles, which allows the same physical array
to provide multiple sub-arrays for use in a time-multiplexed
fashion.

Examples of embodiments of the circuit blocks shown in
FIGS. 22-24 will now be described.

FIG. 26 depicts neuron output summer block 2600 (which
can be used as neuron output summer blocks 2202a, 22025,
2202¢, 2202d, 2202, and 2201f'in FIG. 22; neuron output
summer blocks 2302, 230254, 2302¢, 2302d, 2302¢, and
2302f'in FIG. 23; and neuron output summer block 2413 in
FIG. 24. It can be seen that neuron output summer block
2600 comprises a plurality of smaller summer blocks 2601a,
26015, . . . 26014, each of which can operate on a portion of
a corresponding VMM array (such as a single column in the
array). Controller or control logic 2250 can activate the
appropriate summer blocks 2601a, 26015, . . . 2601/ during
each cycle as needed. The summer circuit can be imple-
mented as an op amp based summer circuit or a current
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mirror circuit. The summer circuit may include an ADC
circuit to convert analog into output digital bits.

FIG. 27 depicts adaptable neuron circuit 2700 that com-
prises on an op amp that provides low impedance output, for
summing multiple current signals and converting the
summed current signal into a voltage signal, and which is an
embodiment of each summer block within summer block
2601aq, . . .,2601; in FIG. 26. Adaptable neuron circuit 2700
receives current from a VMM, such as VMM array 2401
(labeled I_NEU), which here is represented as current source
2702, which is provided to the inverting input of operational
amplifier 2701. The non-inverting input of operational
amplifier 2701 is coupled to a voltage source (labeled
VREF). The output (labeled VO) of operational amplifier
2701 is coupled to NMOS R_NEU transistor 2703, which
acts as a variable resistor of effective resistance R_NEU in
response to the signal VCONTROL, which is applied to the
gate of NMOS transistor 2703. The output voltage, Vo, is
equal to I_ NEU*R_NEU-VREF. The maximum value of
I_NEU depends on the number of synapses and weight value
contained in the VMM. R_NEU is a variable resistance and
can be adapted to the VMM size it is coupled to. For
instance, R_NEU, can be altered by changing IBIAS and/or
VDREF and/or VREF in FIG. 27. Further, the power of the
summing operational amplifier 2701 is adjusted in relation
the value of the R_NEU transistor 2703 to minimize power
consumption. As the value of R_NEU transistor 2703
increases, the bias (i.e., power) of the operational amplifier
2701 is reduced via current bias IBIAS_OPA 2704 and vice
versa. Since the op amp based summer circuit can provide
low impedance output, it is suitable to be configured to drive
a long interconnect and heavier loading.

FIG. 28 depicts activation function circuit 2800. Activa-
tion function circuit 2800 can be used for activation circuit
blocks 2203a, 22035, 2203¢, 2203d, 2203e, and 2203/ in
FIG. 22 and activation circuit blocks 2303a, 23035, 2303c,
2303d, 2303¢, and 2303/ in FIG. 23, and activation block
2414 in FIG. 24.

Activation function circuit 2800 converts an input voltage
pair (Vin+ and Vin-) into a current (Iout_neu) using a tan h
function, and which can be used with the VMM arrays
described above. Activation function circuit 2800 comprises
PMOS transistors 2801, 2802, 2803, 2804, 2805, and 2806
and NMOS transistors 2807, 2808, 2809, and 2810, config-
ured as shown. The transistors 2803, 2804, and 2806 serve
as cascoding transistors. The input NMOS pair 2807 and
2808 operates in sub-threshold region to realize the tan h
function. The current I_neu_max is the maximum neuron
current that can be received from the attached VMM (not
shown).

FIG. 29 depicts operational amplifier 2900 that can be
used as operational amplifier 2701 in FIG. 27. Operational
amplifier 2900 comprises PMOS transistors 2901, 2902, and
2905, NMOS transistors 2903, 2904, 2906, and 2907, and
NMOS transistor 2908 that acts as a variable bias, in the
configuration shown. The input terminals to operational
amplifier 2900 are labeled Vinn (applied to the gate of
NMOS transistor 2904) and Vin- (applied to the gate of
NMOS transistor 2903), and the output is VO.

FIG. 30 depicts high voltage generation block 3000,
control logic block 3004, analog circuit block 3005, and test
block 3008.

High voltage generation block 3000 comprises charge
pump 3001, charge pump regulator 3002, and high voltage
operational amplifier 3003. The voltage of the output of
charge pump regulator 3002 can be controlled based on the
signals sent to the gates of the NMOS transistors in charge
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pump regulator 3002. Control logic block 3004 receives
control logic inputs and generates control logic outputs.
Analog circuit block 3005 comprises current bias generator
3006 for receiving a reference voltage, Vref, and generating
a current that can be used to apply a bias signal, iBias, as
used elsewhere. Analog circuit block 3005 also comprises
voltage generator 3007 for receiving a set of trim bits,
TRBIT_WL, and generating a voltage to apply to word lines
during various operations. Test block 3008 receives signals
on a test pad, MONHV_PAD, and outputs various signals
for a designer to monitor during testing.

FIG. 31 depicts program and sensing block 3100, which
can be used during program and verify operations. Program
and sensing block 3100 comprises a plurality of individual
program and sense circuit blocks 3101a, 31015, . . . 3101;.
Controller or control logic 2250 can activate the appropriate
program and sense circuit blocks 3101q, 31015, . . . 31015
during each cycle as needed.

FIG. 32 depicts reference system 3200, which can be used
in place of reference sector 2408 in FIG. 24. Reference
system 3200 comprises reference array 3202, low voltage
row decoder 3201, high voltage row decoder 3203, and low
voltage reference column decoder 3204. Low voltage row
decoder 3201 provides a bias voltage for read and program
operations and provides a decoding signal for high voltage
row decoder 3203. High voltage row decoder 3203 provides
a high voltage bias signal for program and erase operations.

FIG. 33 depicts VMM high voltage decode circuits,
comprising word line decoder circuit 3301, source line
decoder circuit 3304, and high voltage level shifter 3308,
which are appropriate for use with memory cells of the type
shown in FIG. 2.

Word line decoder circuit 3301 comprises PMOS select
transistor 3302 (controlled by signal HVO_B) and NMOS
de-select transistor 3303 (controlled by signal HVO_B)
configured as shown.

Source line decoder circuit 3304 comprises NMOS moni-
tor transistors 3305 (controlled by signal HVO), driving
transistor 3306 (controlled by signal HVO), and de-select
transistor 3307 (controlled by signal HVO_B), configured as
shown.

High voltage level shifter 3308 received enable signal EN
and outputs high voltage signal HV and its complement
HVO_B.

FIG. 34 depicts VMM high voltage decode circuits,
comprising erase gate decoder circuit 3401, control gate
decoder circuit 3404, source line decoder circuit 3407, and
high voltage level shifter 3411, which are appropriate for use
with memory cells of the type shown in FIG. 3.

Erase gate decoder circuit 3401 and control gate decoder
circuit 3404 use the same design as word line decoder circuit
3301 in FIG. 33.

Source line decoder circuit 3407 uses the same design as
source line decoder circuit 3304 in FIG. 33.

High voltage level shifter 3411 uses the same design as
high voltage level shifter 3308 in FIG. 33.

FIG. 35 depicts adaptable neuron circuit 3500 that con-
verts an output neuron current into a voltage. Adaptable
neuron circuit 3500 uses only one PMOS transistor 3501 and
essentially is configured to mirror itself (i.e., a sample and
hold mirror) using switches 3502, 3503, and 3504. Initially,
switch 3502 and switch 3503 are closed and switch 3504 is
open, at which time PMOS transistor 3501 is coupled to
I_NEURON, which is a current source that represents the
current from a VMM. Then, switch 3502 and 3503 are
opened and switch 3504 is closed, which causes PMOS
transistor 3501 to send current I NEURON from its drain to
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variable resistor 3506. Thus, adaptable neuron 3500 con-
verts a current signal (I_NEURON) into a voltage signal
(VO). Basically, transistor 3501 samples the current I_NEU-
RON and holds it by storing a sampled gate-source voltage
on its gate. An op amp circuit can be used to buffer the output
voltage VO to drive the configurable interconnect.

FIG. 36 depicts current sample and hold S/H circuit 3600
and voltage sample and hold S/H circuit 3650. Current S/H
circuit 3600 includes sampling switches 3602 and 3603, S/H
capacitor 3605, input transistor 3604 and output transistor
3606. Input transistor 3604 is used to convert input current
3601 into an S/H voltage on the S/H capacitor 3605 and is
coupled to gate of the output transistor 3606. Voltage S/H
circuit 3650 includes sampling switch 3622, S/H capacitor
3653, and op amp 3654. Op amp 3654 is used to buffer the
S/H voltage on the capacitor 3653. S/H circuits 3600 and
3650 can be used with the output summer circuits and/or
activation circuits described herein. In an alternative
embodiment, digital sample and hold circuits can be used
instead of analog sample and hold circuits 3600 and 3650.

FIG. 37 shows an array architecture that is suitable for
memory cells operating in linear region. System 3700 com-
prises input block 3701, output block 3702, and array 3703
of memory cells. Input block 3701 is coupled to the drains
(source lines) of the memory cells in array 3703, and output
block 3702 is coupled to the bit lines of the memory cells in
array 3703. Alternatively, input block 3701 is coupled to the
wordlines of the memory cells in array 3703, and output
block 3702 is coupled to the bit lines of the memory cells in
array 3703.

In instances where system 3700 is used to implement an
LSTM or GRU, output block 3702 and/or input block 3701
may include multiplier block, addition block, subtraction
(output=1—-input) block as needed for LSTM/GRU architec-
ture, and optionally may include analog sample-and-hold
circuits (such as circuits 3600 or 3650 in FIG. 36) or digital
sample-and-hold circuits (e.g., a register or SRAM) as
needed.

It should be noted that, as used herein, the terms “over”
and “on” both inclusively include “directly on” (no inter-
mediate materials, elements or space disposed therebe-
tween) and “indirectly on” (intermediate materials, elements
or space disposed therebetween). Likewise, the term “adja-
cent” includes “directly adjacent” (no intermediate materi-
als, elements or space disposed therebetween) and “indi-
rectly adjacent” (intermediate materials, elements or space
disposed there between), “mounted to” includes “directly
mounted to” (no intermediate materials, elements or space
disposed there between) and “indirectly mounted to” (inter-
mediate materials, elements or spaced disposed there
between), and “electrically coupled” includes “directly elec-
trically coupled to” (no intermediate materials or elements
there between that electrically connect the elements
together) and “indirectly electrically coupled to” (interme-
diate materials or elements there between that electrically
connect the elements together). For example, forming an
element “over a substrate” can include forming the element
directly on the substrate with no intermediate materials/
elements therebetween, as well as forming the element
indirectly on the substrate with one or more intermediate
materials/elements there between.

What is claimed is:

1. A configurable vector-by-matrix multiplication system,
comprising:

an array of memory cells arranged into rows and columns;

an output block coupled to the array for generating a

vector of output voltages in response to current
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received from a plurality of memory cells in the array
during a vector matrix multiplier operation;

an activation block coupled to the array for generating a

vector of input currents in response to a vector of input
voltages and providing the vector of input currents to a
plurality of memory cells in the array during a vector
matrix multiplier operation, wherein during a first
cycle, a first sub-array is generated in the array and the
output block is coupled to the first sub-array and the
activation block is coupled to the first sub-array, and
wherein during a second cycle, a second sub-array is
generated within the array and the output block is
coupled to the second sub-array and the activation
block is coupled to the second sub-array, the first
sub-array and second sub-array consisting of different
memory cells in the array; and

routing circuitry for routing a vector of output voltages

from the output block in response to current received
from the first sub-array to the activation block for
vector matrix multiplier operation of the second sub-
array.

2. The system of claim 1, wherein the routing circuitry
comprises one or more multiplexors.

3. The system of claim 1, further comprising a controller
for generating the first sub-array and the second sub-array.

4. The system of claim 1, further comprising control logic
for generating the first sub-array and the second sub-array.

5. The system of claim 1, wherein the memory cells are
split-gate flash memory cells.

6. The system of claim 1, wherein the output block is a
current summer block.

7. The system of claim 1, wherein the system provides a
capability of configuring an output width of a neuron within
the system.

8. The system of claim 1, wherein the system provides a
capability of configuring an input width of a neuron within
the system.

9. The system of claim 1, wherein the output block
outputs digital bits.

10. The system of claim 1, further comprising one or more
of a current sample-and-hold circuit or a voltage sample-
and-hold circuit.

11. The system of claim 1, wherein the vector-by-matrix
multiplication system is part of a long short term memory
cell.

12. The system of claim 1, wherein the vector-by-matrix
multiplication system is part of a gated recurrent unit cell.

13. A configurable vector-by-matrix multiplication sys-
tem, comprising:

an array of memory cells arranged into rows and columns;

an output block coupled to the array for generating a

vector of outputs in response to current received from
a plurality of memory cells in the array during a vector
matrix multiplier operation, wherein during a first
cycle, a first sub-array is generated in the array and the
output block is coupled to the first sub-array and the
activation block is coupled to the first sub-array, and
wherein during a second cycle, a second sub-array is
generated within the array and the output block is
coupled to the second sub-array and the activation
block is coupled to the second sub-array, the first
sub-array and second sub-array consisting of different
memory cells in the array; and

routing circuitry for routing a vector of output voltages

from the output block in response to current received
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from the first sub-array to the activation block for
vector matrix multiplier operation of the second sub-
array.

14. The system of claim 13, wherein the routing circuitry
comprises one or more multiplexors.

15. The system of claim 13, further comprising a con-
troller for generating the first sub-array and the second
sub-array.

16. The system of claim 13, further comprising control
logic for generating the first sub-array and the second
sub-array.

17. The system of claim 13, wherein the memory cells are
split-gate flash memory cells.

18. The system of claim 13, wherein the output block is
a current summer block.

19. The system of claim 13, wherein the system provides
a capability of configuring an output width of a neuron
within the system.

20. The system of claim 13, wherein the system provides
a capability of configuring an input width of a neuron within
the system.

21. The system of claim 13, wherein the output block
outputs digital bits.

22. The system of claim 13, wherein the output block
outputs analog levels.

23. The system of claim 13, further comprising one or
more of a current sample-and-hold circuit and a voltage
sample-and-hold circuit.

24. The system of claim 13, wherein the output block
comprises an analog-to-digital conversion block.

25. The system of claim 13, further comprising an input
block.

26. The system of claim 25, wherein the input block
comprises an activation block.

27. The system of claim 25, wherein the input block
comprises a digital-to-analog conversion block.

28. The system of claim 13, wherein the vector-by-matrix
multiplication system is part of a long short term memory
cell.

29. The system of claim 13, wherein the vector-by-matrix
multiplication system is part of a gated recurrent unit cell.

30. The system of claim 13, wherein a weight is stored in
a differential cell.

31. The system of claim 13, wherein a weight is stored in
two blend memory cells.

32. A configurable vector-by-matrix multiplication sys-
tem, comprising:

an array of memory cells arranged into rows and columns;

an input block coupled to the array for generating a vector

of inputs in response to input data to a plurality of
memory cells in the array during a vector matrix
multiplier operation, wherein during a first cycle, a first
sub-array is generated in the array and the input block
is coupled to the first sub-array, and wherein during a
second cycle, a second sub-array is generated within
the array and the input block is coupled to the second
sub-array, the first sub-array and second sub-array
consisting of different memory cells in the array; and
routing circuitry for routing a vector of input vector from
the input block in response to input data coupled to the
first sub-array for vector matrix multiplier operation.

33. The system of claim 32, wherein the routing circuitry
comprises one or more multiplexors.

34. The system of claim 32, further comprising a con-
troller for generating the first sub-array and the second
sub-array.
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35. The system of claim 32, further comprising control
logic for generating the first sub-array and the second
sub-array.

36. The system of claim 32, wherein the memory cells are
split-gate flash memory cells.

37. The system of claim 32, further comprising an output
block generating an output vector.

38. The system of claim 37, wherein the output block is
a current summer block.

39. The system of claim 32, wherein the system provides 10

a capability of configuring an output width of a neuron
within the system.

40. The system of claim 32, wherein the system provides
a capability of configuring an input width of a neuron within
the system.

41. The system of claim 32, wherein the output block
outputs digital bits.

42. The system of claim 32, wherein the output block
outputs analog levels.

43. The system of claim 32, further comprising one or
more of a current sample-and-hold circuit and a voltage
sample-and-hold circuit.

44. The system of claim 32, wherein the output block
comprises an analog-to-digital conversion block.

45. The system of claim 33, wherein the output block
comprises an analog-to-digital conversion block.

46. The system of claim 32, wherein the input block
comprises an activation block.

47. The system of claim 32, wherein the input block
comprises a digital-to-analog conversion block.

48. The system of claim 32, wherein the input block is
coupled to a source gate of each memory cell in the array of
memory cells.

49. The system of claim 32, wherein the input block is
coupled to a word line gate of each memory cell in the array
of memory cells.

50. The system of claim 32, wherein the vector-by-matrix
multiplication system is part of a long short term memory
cell.

51. The system of claim 32, wherein the vector-by-matrix
multiplication system is part of a gated recurrent unit cell.

52. The system of claim 32, wherein a weight is stored in
a differential cell.

53. The system of claim 32, wherein a weight is stored in
two blend memory cells.

54. An analog neuro memory system, comprising:

a plurality of vector-by-matrix multiplication sub-sys-
tems, each vector-by-matrix sub-system comprising:
an array of memory cells arranged into rows and

columns;
an output block coupled to the array for generating a
vector of output voltages in response to current
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received from a plurality of memory cells in the
array during a vector matrix multiplier operation;
and
an activation block coupled to the array for generating
a vector of input currents in response to a vector of
input voltages and providing the vector of input
currents to a plurality of memory cells in the array
during a vector matrix multiplier operation; and
routing circuitry for routing a vector of output voltages
from an output block coupled to a first sub-array
contained within a first array in one of the plurality of
vector-by-matrix multiplication sub-systems to an acti-
vation block coupled to a second sub-array contained
within a second array in another of the plurality of
vector-by-matrix multiplication sub-systems.

55. The system of claim 54, wherein the routing circuitry
comprises one or more multiplexors.

56. The system of claim 54, further comprising a con-
troller for generating the first sub-array and the second
sub-array.

57. The system of claim 54, further comprising control
logic for generating the first sub-array and the second
sub-array.

58. The system of claim 54, wherein some or all of the
vector-by-matrix multiplication sub-systems form a long
short term memory cell.

59. The system of claim 54, wherein some or all of the
vector-by-matrix multiplication sub-systems form a gated
recurrent unit cell.

60. The system of claim 54, wherein the memory cells are
split-gate flash memory cells.

61. The system of claim 54, wherein the output block is
a current summer block.

62. The system of claim 54, wherein the system provides
a capability of configuring an output width of a neuron
within the system.

63. The system of claim 54, wherein the system provides
a capability of configuring an input width of a neuron within
the system.

64. The system of claim 54, wherein the output block
outputs digital bits.

65. The system of claim 54, further comprising current
sample-and-hold circuits or voltage sample-and-hold cir-
cuits.

66. The system of claim 54, wherein the vector-by-matrix
multiplication system is part of a long short term memory
cell.

67. The system of claim 54, wherein the vector-by-matrix
multiplication system is part of a gated recurrent unit cell.
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