
US 2015O169897A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0169897 A1

Leggette et al. (43) Pub. Date: Jun. 18, 2015

(54) EFFICIENT AND SECURE DATA STORAGE Publication Classification
UTILIZING A DSPERSED DATA STORAGE
SYSTEM (51) Int. Cl.

G06F2L/62 (2006.01)
(71) Applicant: CLEVERSAFE, INC., CHICAGO, IL H04L 9/06 (2006.01)

(US) (52) U.S. Cl.
CPC G06F2I/6227 (2013.01); H04L 9/0618

(72) Inventors: Wesley Leggette, Chicago, IL (US); (2013.01)
Jason K. Resch, Chicago, IL (US)

(73) Assignee: CLEVERSAFE, INC., CHICAGO, IL
(US) (57) ABSTRACT

(21) Appl. No.: 14/633,315 A method of securely storing data to a dispersed data storage
(22) Filed: Feb. 27, 2015 system is disclosed. A data segment is arranged along the

O O columns or rows of an appropriately sized matrix. Data slices
Related U.S. Application Data are then created based on either the columns or the rows so

(62) Division of application No. 12/426,727, filed on Apr. that no consecutive data is stored in a data slice. Each data
20, 2009. slice is then stored in a separate storage node.

Manager Computer
03

Internet
Network

Slice Servers Stand-alone Client Grid Access
Computers

115

100 Access Client

Patent Application Publication Jun. 18, 2015 Sheet 1 of 12 US 2015/O169897 A1

101 Figure 1

103

Internet /
Network

Slice Servers Stand-alone Client Grid Access
Computers

/N
115 4.

internet

117

100 Access Client

Patent Application Publication Jun. 18, 2015 Sheet 2 of 12 US 2015/O169897 A1

Figure 2

- 202
Character Q u C K - b O W n - fi O X

Position: O 3 4. 5 6 8 9 O 11 12 13 4 15

Break into slices with
a threshold of 8

- 2O6

fioor (Position 18)

- 208

Position modulus 8

Data Slice 1

Data Slice 2

Data Slice 3

Data Slice 4

Data Slice 5

Data Slice 6

Data Slice 7

Data Slice 8

209 210 211 ? -
Data Slice1 Data Slice 2 Data Slice.3 Data Slice 4
O O U W C
-

Data Slice 5 Data Slice 6 DataSlice 7 data Slice.8

k f O b x r

Q 212 Q- 214 Q 215

Patent Application Publication Jun. 18, 2015 Sheet 3 of 12 US 2015/O169897 A1

Figure 3
Apply all or
nothing

transformation

304

Generate
symmetric

encryption key

Encrypt data using
encryption key

Calculate the
digest of the

encrypted data

31 O

XOR the digest
with the encryption

key

Append
obfuscated

encryption key to
encrypted data

End

Patent Application Publication Jun. 18, 2015 Sheet 4 of 12 US 2015/O169897 A1

Figure 4
Remove a or

nothing
transformation

404

Calculate the
digest of the

encrypted data

- 406

Obtain obfuscated
encryption key
from end of data

- 4.08
XOR the
obfuscated

encryption key
with the Calculated
digest to obtain the

plaintext
encryption key

Decrypt the data
with the plaintext
encryption key

End

Patent Application Publication Jun. 18, 2015 Sheet 5 of 12 US 2015/O169897 A1

Figure 5
Write Operation

504

Apply transposition
CodeC

- 506

Apply IDA

- 508
Store slices to
dispersed data
storage system

Ed

Patent Application Publication Jun. 18, 2015 Sheet 6 of 12 US 2015/O169897 A1

Figure 6
Read Operation

Retrieve slices
from dispersed
data storage

system

(- 606

Apply reverse IDA

Apply reverse
transposition

Erd

Patent Application Publication

Figure 7

Jun. 18, 2015 Sheet 7 of 12

Write Operation

704

Encrypt data

Apply transposition
codec

708

710

Store slices to
dispersed data
storage system

US 2015/O169897 A1

Patent Application Publication Jun. 18, 2015 Sheet 8 of 12 US 2015/O169897 A1

Figure 8
Read Operation

804 -
Retrieve slices
from dispersed
data storage

system

Apply reverse IDA

- 808
Apply reverse
transposition

- 810

Decrypt data

Ed

Patent Application Publication Jun. 18, 2015 Sheet 9 of 12

Figure 9
Write Operation

-
Apply all or
nothing

transformation

r
Apply IDA

Store slices to
dispersed data
storage system

904

906

908

US 2015/O169897 A1

Patent Application Publication Jun. 18, 2015 Sheet 10 of 12 US 2015/O169897 A1

Figure 10
Read Operation

1004

Retrieve slices
from dispersed
data storage

system

Apply reverse IDA

- 1008
Apply reverse all

or nothing
transformation

End

Patent Application Publication Jun. 18, 2015 Sheet 11 of 12 US 2015/O169897 A1

Figure 11
Write Operation

1104

Encrypt data

1106 r
Apply all or
nothing

transformation

1108 r
Apply IDA

1110 -
Store slices to
dispersed data
storage system

End

Patent Application Publication Jun. 18, 2015 Sheet 12 of 12 US 2015/O169897 A1

Figure 12
Read Operation

1204

Retrieve slices
from dispersed
data storage

system

12O6 r
Apply reverse IDA

1208 r.
Apply reverse all

or nothing
transformation

1210 r
Decrypt data

End

US 2015/O 169897 A1

EFFICIENT AND SECURE DATA STORAGE
UTILIZING A DSPERSED DATA STORAGE

SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. The present U.S. Utility patent application claims
priority pursuant to 35 U.S.C. S 121 as a divisional of U.S.
Utility application Ser. No. 12/426,727, entitled “EFFI
CIENT AND SECURE DATA STORAGE UTILIZING A
DISPERSED DATA STORAGE SYSTEM”, filed Apr. 20,
2009, which is hereby incorporated herein by reference in its
entirety and made part of the present U.S. Utility patent
application for all purposes.

FIELD OF THE INVENTION

0002 The present invention relates generally to systems,
apparatus, and methods for securely storing data, and more
particularly to systems, apparatus, and methods for secure
distributed data storage using an information dispersal algo
rithm so that no one location will store an entire copy of stored
data.

DESCRIPTION OF THE PRIOR ART

0003 Storing data in digital form is a well-known problem
associated with all computer systems, and numerous solu
tions to this problem are known in the art. The simplest
solution involves merely storing digital data in a single loca
tion, such as a punch film, hard drive, or FLASH memory
device. However, storage of data in a single location is inher
ently unreliable. The device storing the data can malfunction
or be destroyed through natural disasters, such as a flood, or
through a malicious act, Such as arson. In addition, digital
data is generally stored in a usable file. Such as a document
that can be opened with the appropriate word processing
Software, or a financial ledger that can be opened with the
appropriate spreadsheet Software. Storing an entire usable file
in a single location is also inherently insecure as a malicious
hacker only need compromise that one location to obtain
access to the usable file.
0004 To address reliability concerns, digital data is often
“backed-up, i.e., an additional copy of the digital data is
made and maintained in a separate physical location. For
example, a backup tape of all network drives may be made by
a small office and maintained at the home of a trusted
employee. When a backup of digital data exists, the destruc
tion of either the original device holding the digital data or the
backup will not compromise the digital data. However, the
existence of the backup exacerbates the security problem, as
a malicious hacker can choose between two locations from
which to obtain the digital data. Further, the site where the
backup is stored may be far less secure than the original
location of the digital data, Such as in the case when an
employee stores the tape in her home.
0005. Another method used to address reliability and per
formance concerns is the use of a Redundant Array of Inde
pendent Drives (“RAID). RAID refers to a collection of data
storage schemes that divide and replicate data among mul
tiple storage units. Different configurations of RAID provide
increased performance, improved reliability, or both
increased performance and improved reliability. In certain
configurations of RAID, when digital data is stored, it is split
into multiple stripes, each of which is stored on a separate

Jun. 18, 2015

drive. Data Striping is performed in an algorithmically certain
way so that the data can be reconstructed. While certain RAID
configurations can improve reliability, RAID does nothing to
address security concerns associated with digital data Stor
age.

0006. One method that prior art solutions have addressed
security concerns is through the use of encryption. Encrypted
data is mathematically coded so that only users with access to
a certain key can decrypt and use the data. While modern
encryption methods are difficult to break, numerous instances
of successful attacks are known, Some of which have resulted
in valuable data being compromised. Furthermore, if a mali
cious hacker should gain access to the encryption key asso
ciated with the encrypted data, the entirety of the data is
recoverable.
0007 While modern encryption tends to utilize block
ciphers, such as, for example, 3-way, AES, Anubis, Blowfish,
BMGL CAST, CRYPTON, CS-Cipher, DEAL, DES,
DESede, DESX, DFC, DFCv2, Diamond2, E2, FROG,
GOST, HPC-1, HPC-2, ICE, IDEA, ISAAC, JEROBOAM,
LEVIATHAN, LOKI91, LOKI97, MAGENTA, MARS,
MDC, MISTY1, MISTY2, Noekeon, Noekeon Direct,
Panama, Rainbow, RC2, RC4, RC4-drop, RC5, Rijndael,
SAFER-K, SAFER-SK, SAFER+, SAFER++, SAFER++-
64, Sapphire-II, Scream, Scream-F. SEAL-3.0, Serpent,
SHARK, SKIPJACK, SNOW, SOBER, SPEED, Square,
TEA, Twofish, WAKE-CFB, WiderWake4+1, WiderWake4+
3, PBE-PKCS5, PBE-PKCS12, etc., other methods have been
used in the past. One early form of encoding is transposition.
Transposition involves the deterministic Swapping of mem
bers within a set. For example, if a five member set X is
defined as X={a,b,c,d,e}, a transposition function a may be
defined as follows:

0008. Therefore, the application of the transposition func
tion to the entire set X would yield a new set X={a,e, c, d, b}.
0009. By transposing information transmitted in a mes
sage, the usability of the transposed information is reduced or
eliminated. However, transposition schemes are easily bro
ken by modern computers.
0010. In 1979, two researchers independently developed a
method for splitting data among multiple recipients called
“secret sharing.” One of the characteristics of secret sharing is
that a piece of data may be split among n recipients, but
cannot be known unless at least t recipients share their data,
where net. For example, a trivial form of secret sharing can be
implemented by assigning a single random byte to every
recipient but one, who would receive the actual data byte after
it had been bitwise exclusive orred with the random bytes. In
other words, for a group of four recipients, three of the recipi
ents would be given random bytes, and the fourth would be
given a byte calculated by the following formula:

s'=seBrDr. Dr.

where S is the original source data, r, r, and rare random
bytes given to three of the four recipients, and s'is the encoded

US 2015/O 169897 A1

byte given to the fourth recipient. The original bytes can be
recovered by bitwise exclusive-orring all four bytes together.
0011. A cryptosystem, such as secret sharing, is called
information-theoretically secure if its security derives purely
from information theory; meaning that its security can be
proven even if an adversary has access to unlimited comput
ing power. As a secret sharing scheme can guarantee that no
usable information can be recovered unless an attacker gains
access to a threshold number of shares, secret sharing is
information-theoretically secure. However, each data share is
of equal size as the original data, so secret sharing makes for
an inefficient storage mechanism.
0012 All-or-nothing encryption is a recent development
in cryptography, with the property that the entire cyphertext
must be known before even a portion of the original data can
be recovered. The original motivation behind all-or-nothing
encryption was to increase the time required by brute force
attacks to Successfully compromise an encrypted cyphertext
by a factor equal to the number of message blocks within the
cyphertext. All-or-nothing encryption is described in All-Or
Nothing Encryption and the Package Transform.” by Ronald
L. Rivest, which is hereby incorporated by reference. Addi
tional properties of all-or-nothing encryption are described in
“Exposure-Resilient Functions and All-Or-Nothing Trans
forms.” by Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal
Kushilevitz, and Amit Sahai, as well as “On the Security
Properties of OAEP as an All-Or-Nothing Transform.” by
Victor Boyko, both of which are hereby incorporated by
reference.
0013 Dispersed data storage systems involved utilizing an
information dispersal algorithm to slice data. Schemes for
implementing dispersed data storage systems, such as dis
persed data storage networks (“DDSNs), are also known in
the art. For example, U.S. Pat. No. 5,485.474, issued to
Michael O. Rabin, describes a system for splitting a segment
of digital information into n data slices, which are stored in
separate devices. When the data segment must be retrieved,
only m of the original data slices are required to reconstruct
the data segment, where n>m.
0014 Generally, dispersed data storage systems provide
Some level of security, as each data slice will contain less
information than the original digital information. Further
more, as each slice is stored on a separate computer, it will
generally be harder for a malicious hacker to break into m
computers and gather enough data slices to reconstruct the
original information. However, depending on the information
dispersal algorithm utilized, each data slice will contain up to
1/m part of the original data. Generally, the information will
be retained in the data slice as it existed in the original digital
information. Accordingly, by compromising a storage node, a
malicious hacker could access up to 1/m part of the original
data.

OBJECTS OF THE INVENTION

0015. Accordingly, it is an object of this invention to pro
vide a system, apparatus, and method for efficiently imple
menting a secure dispersed data storage system.
0016. Another object of the invention is to provide a sys
tem, apparatus, and method for implementing a secure dis
persed data storage system without significantly increasing
the amount of stored data.

0017. Another object of the invention is to provide a sys
tem, apparatus, and method for implementing a secure dis

Jun. 18, 2015

persed data storage system with a level of security that
approaches information theoretic security.
0018. Another object of the invention is to provide a sys
tem, apparatus, and method for implementing a secure dis
persed data storage system so that an attacker can gain no
information about a stored data segment unless the attacker is
able to compromise a threshold number (m) data slices.
0019. Other advantages of the disclosed invention will be
clear to a person of ordinary skill in the art. It should be
understood, however, that a system, method, or apparatus
could practice the disclosed invention while not achieving all
of the enumerated advantages, and that the protected inven
tion is defined by the claims.

SUMMARY OF THE INVENTION

0020. The disclosed invention achieves its objectives by
providing a method for securely storing data to a multi-node
storage system, the method comprising the steps of arranging
a data segment comprised of a plurality of data units in accor
dance with a matrix having rows and k columns so that each
data unit of the data segment is associated with a position of
the matrix. The arranged data segment is then sliced in accor
dance with either the rows or the columns of the matrix to
produce a plurality of data slices so that each data slice does
not contain consecutive data units as they were arranged in the
original data segment. Each of the data slices is then stored to
a separate storage node.
0021 Inafurther embodiment, a data string is padded with
pad data prior to the step of arrangement as described above.
0022. In an alternative embodiment, a method for securely
storing data using a multi-node storage system is described,
the method starting with the step of encrypting a data segment
comprised of a plurality of data units using a suitable block
cipher. The encrypted data segment is then arranged in accor
dance with a matrix having rows and k columns so that each
data unit of the encrypted data segment is associated with a
position of the matrix. The encrypted arranged data segment
is then sliced in accordance with either the rows or the col
umns of the matrix to produce a plurality of data slices so that
each data slice does not contain consecutive data units as they
were arranged in the original data segment. Each of the data
slices is then stored to a separate storage node.
0023. In a further embodiment of the disclosed invention,
a method for securely storing data using a multi-node storage
system comprises the steps of applying an all-or-nothing
transformation to a data segment, slicing the all-or-nothing
encrypted data segment using an information dispersal algo
rithm, and storing each of the resultant plurality of data slices
on a separate storage node.
0024. In a still further embodiment of the disclosed inven
tion, a method of securely storing data using a multi-node
storage system comprises the steps of encrypting a data seg
ment using a first block cipher, applying an all-or-nothing
transform to the encrypted data segment, slicing the all-or
nothing encrypted data segment using an information dis
persal algorithm, and storing each of the resultant data slices
on a separate storage node.
0025. The application of an all or nothing transform can
comprise the steps of generating an encryption key using, for
example, a random key generator, and encrypting a data seg
ment using the generated encryption key. The digest of the
encrypted data is then calculated using an appropriate hash
ing algorithm, and the encryption key is exclusive-orred with
the digest to produce an obfuscated encryption key. The

US 2015/O 169897 A1

obfuscated encryption key is then packaged with the data
segment by, for example, appending the encryption key to the
end of the data segment.
0026. The disclosed invention can be operated by different
computers. For example, in one embodiment of the disclosed
invention, an access computer comprises a network port and
a processor. The processor receives a data segment from the
network port, arranges the data segment in accordance with a
matrix having rows and k columns, and slices the arranged
data segment in accordance with the rows or columns of the
matrix. The processor then sends each data slice to a separate
storage node. In a separate embodiment, a stand-alone client
comprises a network port and a processor. The processor
retrieves a data segment and arranges the data segment in
accordance with a matrix having rows and k columns. The
processor then slices the arranged data segment in accordance
with the rows or columns of the matrix, and sends each data
slice to a separate storage node.

BRIEF DESCRIPTION OF THE DRAWINGS

0027. Although the characteristic features of this inven
tion will be particularly pointed out in the claims, the inven
tion itself, and the manner in which it may be made and used,
may be better understood by referring to the following
description taken in connection with the accompanying draw
ings forming a part hereof, wherein like reference numerals
refer to like parts throughout the several views and in which:
0028 FIG. 1 is a network diagram of a dispersed data
storage system utilizing the disclosed security Schemes;
0029 FIG. 2 is an illustration of the principles of transpo
sition as applied to a dispersed data storage system;
0030 FIG. 3 is a flowchart illustrating the application of
an all-or-nothing transformation to a data segment;
0031 FIG. 4 is a flowchart illustrating the removal of an
all-or-nothing transformation from a data segment;
0032 FIG.5 is a flow chart illustrating a write operation to
a dispersed data system utilizing a columnar transposition
cipher and an information dispersal algorithm;
0033 FIG. 6 is a flow chart illustrating a read operation
from a dispersed data storage system utilizing a columnar
transposition cipher and an information dispersal algorithm;
0034 FIG. 7 is a flow chart illustrating a write operation to
a dispersed data storage system utilizing encryption, transpo
sition, and an information dispersal algorithm;
0035 FIG. 8 is a flow chart illustrating a read operation
from a dispersed data storage system utilizing encryption,
transposition, and an information dispersal algorithm;
0036 FIG.9 is a flow chart illustrating a write operation to
a dispersed data storage system utilizing an all-or-nothing
transformation and an information dispersal algorithm;
0037 FIG. 10 is a flow chart illustrating a read operation
from a dispersed data storage system utilizing an all-or-noth
ing transformation and an information dispersal algorithm;
0038 FIG. 11 is a flow chart illustrating a write operation
to a dispersed data storage system utilizing encryption, an
all-or-nothing transformation, and an information dispersal
algorithm; and
0039 FIG. 12 is a flow chart illustrating a read operation
from a dispersed data storage system utilizing encryption, an
all-or-nothing transformation, and an information dispersal
algorithm.

Jun. 18, 2015

DETAILED DESCRIPTION OF THE
ILLUSTRATED EMBODIMENT

0040 Turning to the Figures, and to FIG. 1 in particular, a
dispersed data storage system 100 is shown. An arbitrary
number of storage nodes, such as slice servers 109 store data
slices sent to them by source computers 111, 117. Storage
nodes 109 may be networked slice servers as illustrated, or
may merely be a collection of drives. In a networked imple
mentation, some number of grid access computers 113 may
serve access clients 117 in providing access to the storage
nodes 109. Alternatively, the source computers may include
the software required to access the storage nodes 109 directly,
such as stand-alone client 111. All of the computers may be
general purpose computers, comprised of, for example, a
housing containing a processor, fast memory, such as
dynamic RAM, one or more storage drives, such as rotating
media drives or flash drives, a plurality of input/output ports,
such as USB ports or Firewire ports, one or more network
ports, such as Ethernet ports or 802.11 ports, as well as an
external display, and one or more input/output devices. Such
as a keyboard for data entry, and a mouse or touchpad for
cursor control. Alternatively, access computers and storage
nodes may be thinner devices. For example, an access com
puter may be comprised of a housing containing a processor,
fast memory, and one or more network ports. Further by way
of example, a storage node could be comprised of a housing
containing a processor, fast memory, one or more network
ports, and one or more storage drives.
0041 FIG. 2 presents an overview of a process to secure a
data segment in accordance with an embodiment of the dis
closed invention. A data segment 202 is comprised of 16 bytes
of ASCII data expressing the phrase “Ouick brown fox!' It
should be noted that the type of encoding of the data, as well
as the size of a data unit, is irrelevant to the invention. There
fore, Unicode instead of ASCII could be used to encode the
phrase, and the size of a data unit could be set to word (16
bits), double word (32 bits), or any other size. Furthermore, a
data segment could be 32 bytes, 48 bytes, etc.
0042. Where a higher level of security is required, the data
segment 202 can be encrypted using an appropriate block
cipher, such as DES or AES. While the use of encryption will
increase security for the data storage system, it will also
increase processor load on computers accessing the storage
system. Accordingly, the performance of the system will be
lowered, as computers writing data to the dispersed data
storage system will need to encrypt data prior to writing it out,
and systems reading data will likewise need to decrypt data.
For those systems where high performance is more important
than high security, the system administrator can elect to dis
able encryption. In this case, a moderate level of security is
still attained by the disclosed system through the use of trans
position, as explained below.
0043 Regardless of whether the data segment is encrypted
or not, the data within the data segment is arranged in a matrix
206. The matrix 206 is sized so that (1) every element of the
data segment is assigned to a particular matrix entry, and (2)
the number of data slices created is a multiple of the number
of data slices created per data segment. In the depicted
example, which assumes that eight data slices are created per
data segment, an 8X2 matrix is used to fit the 16 data unit data
segment, with the data segment arranged sequentially along
the columns.

US 2015/O 169897 A1

0044) The data is then dispersed into data slices 208-215,
each containing one row of data. As depicted, each data slice
208-215 contains entirely non-consecutive data from the
original data segment.
0045. A variety of sizes of matrices can be used to achieve
many of the advantages of the disclosed system. For example,
for a 16 byte data segment being stored on a system that slices
data into 4 data slices, a 4x4 matrix could be used; data could
be arranged along either the rows or columns, with the other
serving as the basis for the data slices. However, while such an
arrangement would increase security for the stored informa
tion, as no consecutive data units would be stored in a single
slice, the optimal increase insecurity is achieved by sizing the
matrix so that one dimension of the matrix, rows or columns,
is equal to the threshold of the dispersed data storage network.
For example, in system with a threshold m of eight and the
data segment size is set to 16 bytes, an 8X2 matrix could be
used as described above. It should be noted that additional,
code slices containing redundant data would be generated if
the total slice number n for the system is above eight. In this
case, if a malicious hacker should recover two consecutive
slices, a minimal number of consecutive data units will be
recovered, i.e., two strips of data, each two data units in
length.
0046 Persons of skill in the art will realize that the deci
sion to arrange data along the columns of the matrix is an
arbitrary decision. For example, a 2x8 matrix could be used,
and data could be arranged along the rows, instead of the
columns. The data slices would then be made from the col

S.

0047 FIG.3 depicts a method for applying an all-or-noth
ing transformation to a data segment. In a first step 304, a
symmetric encryption key is generated. In step 306, the data
segment is encrypted using the generated encryption key. In
step 308, the digest of the encrypted data is calculated, by
applying a hashing algorithm to the data segment; Suitable
hashing algorithms include MD5, SHA-1, SHA-2, and any
other secure cryptographic hashing algorithm. The digest is
then XOR-ed with the encryption key in step 310, and the
obfuscated encryption key is appended to the data segment in
step 312. From this process, it is apparent that the encryption
key generated in step 304 is not “secret information, as it will
be appended to the data with trivial protection.
0048 FIG. 4 depicts a method for removing an all-or
nothing transformation from a data segment. In step 404, the
digest of the encrypted data is calculated; note that the obfus
cated digest placed at the end of the data segment in the
method of FIG. 3 is not included in this calculation. It should
also be noted that the plaintext encryption key is never stored,
but rather, is calculated in memory, and obfuscated before it is
appended to the data segment. In step 406, the obfuscated
encryption key is read into a memory location, or otherwise
obtained, and in step 408, the digest is XOR-ed with the
obfuscated encryption key to obtain the plaintext encryption
key. Finally, in step 410 data segment is decrypted with the
encryption key.
0049 FIG. 5 depicts the steps required to write data from
an access computer or an integrated client to a dispersed data
storage system in accordance with a first embodiment of the
disclosed invention. In step 502 a write operation is initiated.
The initiation of the write operation involves accepting a data
string of arbitrary size, and then, if necessary, padding the
string to the dispersed data storage system's data segment
size. In step 504 a transposition cipher is applied to the data

Jun. 18, 2015

segment. While the transposition cipher is trivially reversible
if a malicious hacker should gain access to a threshold num
ber of slices, the compromise of a single slice will not yield
any consecutive information. In step 506 an information dis
persal algorithm is applied to the transposed data segment,
and the data slices are then written to different storage nodes
of the dispersed data storage system in step 508.
0050 FIG. 6 depicts the steps required to read data from a
dispersed data storage system in accordance with a first
embodiment of the disclosed invention. In step 602 a read
operation is initiated. In step 604, a threshold number of data
slices are retrieved from the dispersed data storage system,
where the threshold for a given dispersed data storage system
is the minimum number of slices required to reconstruct a
stored data segment. In step 406 a reverse information dis
persal algorithm is applied to obtain a transposed data seg
ment, and, in step 408 the transposition cipher is reversed to
produce a usable data segment.
0051 FIG. 7 depicts the steps required to write data from
an access computer or an integrated client to a dispersed data
storage system in accordance with a second embodiment of
the disclosed invention. In step 702 a write operation is initi
ated. The initiation of the write operation involves accepting
a data string of arbitrary size, and then, if necessary, padding
the string to the dispersed data storage system's data segment
size. In step 704, data is encrypted using any suitable block
cipher, such as those mentioned earlier in this specification. In
step 706 a transposition cipher is applied to the encrypted data
segment. The use of the transposition cipher will guarantee
that no consecutive data will be stored in any slice, and
therefore, even if a malicious hacker should compromise the
encryption key, she would still have to assemble a number of
slices equal to the dispersed data storage systems threshold
prior to gaining access to any usable information.
0052. In step 708 the encrypted and transposed data seg
ment is dispersed using a suitable information dispersal algo
rithm, such as Cauchy-Reed Solomon. The slices are then
stored to different nodes of the dispersed data storage system,
such as, for example, slice servers in step 710.
0053 FIG. 8 depicts the steps required to read data from a
dispersed data storage system in accordance with a second
embodiment of the disclosed invention. In step 802 a read
operation is initiated. In step 804, a threshold number of data
slices are retrieved from the dispersed data storage system,
and in step 806 a reverse information dispersal algorithm is
applied to obtain a transposed encrypted data segment. In step
808 the transposition cipher is reversed to produce an
encrypted data segment, and in step 810, decryption is applied
to produce a usable data segment.
0054 The first two embodiments of the disclosed inven
tion involved the use of transposition to improve the security
of data stored by a dispersed data storage network. The final
two embodiments of the disclosed invention involve the use
of all-or-nothing encryption to improve the security of data
stored by a dispersed data storage network. Specifically, the
use of all-or-nothing encryption, when combined with addi
tional encryption, can provide the advantage of an attacker
gaining access to no usable information unless the attacker is
able to compromise a threshold m number of data slices. This
approaches information theoretic security without the disad
Vantage of greatly increasing storage size.
0055 FIG.9 depicts the steps required to write data to a
dispersed data storage system in accordance with a third
embodiment of the disclosed invention. In step 904, an all

US 2015/O 169897 A1

nothing-transformation is applied to a data segment to be
stored, thereby producing an all-or-nothing encrypted data
segment. The all-or-nothing transformation could be that
described earlier in this document, or some other all-or-noth
ing transformation. In step 906 an information dispersal algo
rithm is applied to the all-or-nothing encrypted data segment
to produce a plurality of data slices, and in step 908, the
plurality of data slices is stored to a plurality of storage nodes.
0056 FIG. 10 depicts the steps required to read data from
a dispersed data storage system in accordance with a third
embodiment of the disclosed invention. In step 1004, a plu
rality of data slices corresponding to a stored data segment are
retrieved from a plurality of storage nodes, and a reverse
information dispersal algorithm is applied in step 1006. In
step 1008, the all-or-nothing transformation is removed by
using, for example, the method described earlier in this docu
ment, or some other method appropriate to the all-or-nothing
transformation to be removed.
0057 FIG. 11 depicts the steps required to write data from
a dispersed data storage system in accordance with a fourth
embodiment of the disclosed invention. In step 1104, a data
segment to be stored is encrypted using a block cipher, Such as
AES, RC4, or any of the block ciphers discussed earlier in this
document, thereby producing an encrypted data segment. In
step 1106, an all-nothing-transformation is applied to the
encrypted data segment to, thereby producing an all-or-noth
ing encrypted data segment. The all-or-nothing transforma
tion could be that described earlier in this document, or some
other all-or-nothing transformation. In step 1108, an infor
mation dispersal algorithm is applied to the all-or-nothing
encrypted data segment, producing a plurality of data slices,
which are stored to a plurality of storage nodes in step 1110.
0058 FIG. 12 depicts the steps required to read data from
a dispersed data storage system in accordance with a fourth
embodiment of the disclosed invention. In step 1204, a plu
rality of data slices corresponding to a stored data segment are
retrieved from a plurality of storage nodes. In step 1206, a
reverse information dispersal algorithm is applied, and in step
1208, the all-or-nothing transformation is removed by using,
for example, the method described earlier in this document or
another appropriate method. Finally, in step 1210, the read
data segment is decrypted.
0059. The foregoing description of the invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or to limit the invention to the
precise form disclosed. The description was selected to best
explain the principles of the invention and practical applica
tion of these principles to enable others skilled in the art to
best utilize the invention in various embodiments and various
modifications as are Suited to the particular use contemplated.
It is intended that the scope of the invention not be limited by
the specification, but be defined by the claims set forth below.
What is claimed is:

1. A method operating on a computer, the method com
prises:

applying an all-or-nothing transformation to a data seg
ment to produce an all-or-nothing data segment;

encoding, using an information dispersal algorithm, the
all-or-nothing data segment to produce a set of encoded
data slices; and

generating a set of write command to write the set of
encoded data slices to storage units of a dispersed stor
age network.

Jun. 18, 2015

2. The method of claim 1 wherein the applying an all-or
nothing transformation comprises:

generating an encryption key:
encrypting the data segment with said encryption key to

produce an encrypted data segment;
calculating a digest corresponding to the encrypted data

Segment,
obfuscating the encryption key by exclusive ORing said

encryption key with the digest to produce an obfuscated
encryption key; and

packaging the obfuscated encryption key with the
encrypted data segment to produce the all-or-nothing
data segment.

3. The method of claim 1 further comprises:
encrypting the data segment using a first block cipher prior

to the applying of the all-or-nothing transformation.
4. The method of claim 1 further comprises:
retrieving, by a second computer, at least a decode thresh

old number of encoded data slices of the set of encoded
data slices from the storage units;

decoding, by the second computer using the information
dispersal algorithm, the at least the decode threshold
number of encoded data slices to recover the all-or
nothing data segment; and

reversing, by the second computer, the all-or-nothing trans
formation on the recovered all-or-nothing data segment
to recover the data segment.

5. The method of claim 1 further comprises:
retrieving at least a decode threshold number of encoded

data slices of the set of encoded data slices from the
storage units:

decoding, using the information dispersal algorithm, the at
least the decode threshold number of encoded data slices
to recover the all-or-nothing data segment; and

reversing the all-or-nothing transformation on the recov
ered all-or-nothing data segment to recover the data
Segment.

6. The method of claim 5, wherein the reversing the all-or
nothing transformation comprises:

separating the all-or-nothing data segment into an
encrypted data segment and an obfuscated encryption
key:

calculating a digest based on the encrypted data segment;
exclusive ORing the obfuscated encryption key with the

digest to recover an encryption key; and
decrypting the encrypted data segment using the encryp

tion key to recover the data segment.
7. A computer comprising:
a network port adapted to couple with a network and

receive a data segment; and
a processor coupled to the network port wherein the pro
CSSO

applies an all-or-nothing transformation to the data seg
ment to produce an all-or-nothing data segment;

encodes, using an information dispersal algorithm, the
all-or-nothing data segment to produce a set of
encoded data slices; and

generates a set of write commands to write the set of
encoded data slices to storage nodes of a dispersed
storage network.

US 2015/O 169897 A1

8. The computer of claim 7, wherein the processor further
functions to apply the all-or-nothing transformation by:

generating an encryption key:
encrypting said data segment with said encryption key to

produce an encrypted data segment;
calculating a digest corresponding to said encrypted data

Segment,
obfuscating said encryption key by exclusive-ORing said

encryption key with said digest to produce an obfuscated
encryption key; and

packaging said obfuscated encryption key with said
encrypted data segment to produce the all-or-nothing
encrypted data segment.

9. The computer of claim 7, wherein the processor further
functions to:

encrypt the data segment using a first block cipher prior to
the applying of the all-or-nothing transformation.

10. The computer of claim 7, wherein the processor further
functions to:

Jun. 18, 2015

retrieve, via the network port, at least a decode threshold
number of encoded data slices of the set of encoded data
slices from the storage nodes;

decode, using the information dispersal algorithm, the at
least the decode threshold number of encoded data slices
to recover the all-or-nothing data segment; and

reverse the all-or-nothing transformation on the recovered
all-or-nothing data segment to recover the data segment.

11. The computer of claim 10, wherein the processor fur
ther functions to reverse the all-or-nothing transformation by:

separating the all-or-nothing data segment into an
encrypted data segment and an obfuscated encryption
key:

calculating a digest based on the encrypted data segment;
exclusive ORing the obfuscated encryption key with the

digest to recover an encryption key; and
decrypting the encrypted data segment using the encryp

tion key to recover the data segment.
k k k k k

