
US010353714B1 

( 12 ) United States Patent 
Gokam et al . 

( 10 ) Patent No . : US 10 , 353 , 714 B1 
( 45 ) Date of Patent : Jul . 16 , 2019 

( 56 ) ( 54 ) NON - DISRUPTIVE UPGRADE OF 
MULTIPATH DRIVERS IN INFORMATION 
PROCESSING SYSTEM 

References Cited 
U . S . PATENT DOCUMENTS 

( 71 ) Applicant : EMC IP Holding Company LLC , 
Hopkinton , MA ( US ) 

( 72 ) Inventors : Kurumurthy Gokam , Bangalore ( IN ) ; 
Gopinath Marappan , Bangalore ( IN ) ; 
Madhu L . Tarikere , Bangalore ( IN ) 

7 , 890 , 664 B1 2 / 2011 Tao et al . 
2007 / 0174849 A1 * 7 / 2007 Cheung . . . . . . . . . . . . . GO6F 8 / 656 

719 / 321 
2010 / 0313063 Al * 12 / 2010 Venkataraja . . . . . . . . . . GO6F 9 / 5022 

714 / 4 . 1 
2014 / 0105068 A1 * 4 / 2014 Xu . . . . . . . . . . . . . . . . . . . . . . . . . HO4L 67 / 34 

370 / 255 

* cited by examiner ( 73 ) Assignee : EMC IP Holding Company LLC , 
Hopkinton , MA ( US ) 

( * ) Notice : Subject to any disclaimer , the term of this 
patent is extended or adjusted under 35 
U . S . C . 154 ( b ) by 0 days . 

Primary Examiner — Henry Tsai 
Assistant Examiner — John B Roche 
( 74 ) Attorney , Agent , or Firm — Ryan , Mason & Lewis , 
LLP 

( 21 ) Appl . No . : 15 / 869 , 826 
( 22 ) Filed : Jan . 12 , 2018 
( 51 ) 

( 52 ) 

Int . CI . 
G06F 9 / 44 ( 2018 . 01 ) 
GO6F 9 / 4401 ( 2018 . 01 ) 
G06F 13 / 42 ( 2006 . 01 ) 
G06F 3 / 06 ( 2006 . 01 ) 
U . S . CI . 
CPC . . . . . . . . . . . . G06F 9 / 4411 ( 2013 . 01 ) ; G06F 3 / 067 

( 2013 . 01 ) ; G06F 3 / 0607 ( 2013 . 01 ) ; G06F 
370635 ( 2013 . 01 ) ; G06F 370665 ( 2013 . 01 ) ; 

G06F 3 / 0689 ( 2013 . 01 ) ; G06F 13 / 4282 
( 2013 . 01 ) 

Field of Classification Search 
CPC . . . . GO6F 9 / 4411 ; G06F 3 / 0607 ; G06F 3 / 0635 ; 

G06F 3 / 0665 ; G06F 3 / 067 ; G06F 3 / 0689 ; 
GO6F 13 / 4282 

See application file for complete search history . 

( 57 ) ABSTRACT 
Techniques are provided to enable non - disruptive upgrades 
of multipath device drivers . A multipath device driver 
includes a core module and a thin module . The core module 
is configured to implement all multipathing functionality of 
the multipath device driver , and the thin module is config 
ured to create and maintain an instance of a multipath 
device , which is utilized by the core module to control I / O 
operations over a plurality of I / O paths from the host system 
to an array of data storage devices . In response to an upgrade 
command , the thin module replaces I / O entry points of the 
core module so that I / O operation requests are routed to the 
thin module during an upgrade operation of the core module . 
The thin module utilizes the instance of the multipath device 
during the upgrade operation to execute the I / O operation 
requests that are routed to the thin module . 

( 58 ) 

20 Claims , 5 Drawing Sheets 

110 100 

HOST SYSTEM 

115 - 1 115 - 2 - 115 - N 

APPLICATION APPLICATION APPLICATION 

12 

- - - - 

THIN MULTIPATH 
DEVICE DRIVER 

MODULE 
130 

MULTIPATH 
DEVICE 

NATNE 
DEVICE MAP 

CORE MULTIPATH DEVICE DRIVER MODULE 
149 

GPX MODULE 142 

MULTIPATHING EXTENSION MODULE 144 
- - - - - - - - - - - - - 

STORAGE INTERFACE DRIVER 
160 

VO ADAPTER DEVICE DRIVER 

170 - M 170 - 1 
PHYSICAL WO 
ADAPTER 

170 - 20 
PHYSICAL I / O 
ADAPTER 

PHYSICAL IO 
ADAPTER 

STORAGE NETWORK FABRIC 
190 

DATA STORAGE SYSTEM 
192 - 2 - 192 - 1 192 - S 

STORAGE 
DEVICE 

STORAGE 
DEVICE 

STORAGE 
DEVICE 



U . S . Patent Jul . 16 , 2019 Sheet 1 of 5 US 10 , 353 , 714 B1 

110 100 

HOST SYSTEM 
115 - 1 - 115 - 2 115 - N - 

APPLICATION APPLICATION * * * APPLICATION 

120 
wwwwwwwwwwwwwww wwwwwwwwwwwwwwwww 

THIN MULTIPATH 
DEVICE DRIVER 

MODULE I 
MULTIPATH 
DEVICE 

NATIVE 
DEVICE MAP 

130 

CORE MULTIPATH DEVICE DRIVER MODULE 
140 

GPX MODULE 142 142 
MULTIPATHING EXTENSION MODULE 144 

150 
STORAGE INTERFACE DRIVER 

160 
IO ADAPTER DEVICE DRIVER 

170 - M 170 - 1 
PHYSICAL 10 
ADAPTER 

170 - 2 
PHYSICAL 1 / 0 
ADAPTER ADSACRERIO . . PHYSICAL I / O 

ADAPTER 

STORAGE NETWORK FABRIC 

190 

DATA STORAGE SYSTEM 
192 - 1 192 - 2 192 - S 

STORAGE 
DEVICE 

STORAGE 
DEVICE 

* * * STORAGE 
DEVICE 

FIG . 1 



U . S . Patent Jul . 16 , 2019 Sheet 2 of 5 US 10 , 353 , 714 B1 

2004 COMMENCE PROCESS TO INSTANTIATE 
MULTIPATH DEVICE 

202 
CORE MULTIPATH DEVICE DRIVER MODULE SENDS 
REQUEST TO THIN MULTIPATH DEVICE DRIVER 
MODULE TO CREATE A SPECIFIED MULTIPATH 

DEVICE 

204 
THIN MULTIPATH DEVICE DRIVER MODULE 

SEARCHES FOR SPECIFIED MULTIPATH DEVICE IN 
LIST OF EXISTING MULTIPATH DEVICES 

MULTIPATH DEVICE 
FOUND IN THE LIST ? NO 

208 
THIN MULTIPATH DEVICE DRIVER 
MODULE RETURNS A REFERENCE 
TO THE SPECIFIED MULTIPATH 
DEVICE FOUND IN THE LIST 

2104 
THIN MULTIPATH DEVICE DRIVER 
MODULE CREATES A MULTIPATH 

DEVICE AND GENERATES 
ASSOCIATED DATA STRUCTURES 

UPDATE MAPPING OF MULTIPATH DEVICES 
TO NATIVE DEVICES MAINTAINED IN CORE 
MODULE AND UPDATE COPY OF CURRENT 

MAPPING TO THIN MODULE 
212 

FIG . 2 



U . S . Patent Jul . 16 , 2019 Sheet 3 of 5 US 10 , 353 , 714 B1 

COMMENCE PROCESS TO UPGRADE OR TERMINATE 
MULTIPATH DEVICE 

302 
CORE MULTIPATH DEVICE DRIVER MODULE SENDS 

REQUEST TO UPGRADE OR TERMINATE A 
SPECIFIED MULTIPATH DEVICE 

304 THIN MULTIPATH DEVICE DRIVER MODULE 
SEARCHES LIST OF EXISTING MULTIPATH DEVICES 

306 
UPGRADE OR TERMINATE 

OPERATION ? 

UPGRADE TERMINATE 

308 
THIN MULTIPATH DEVICE DRIVER 
MODULE MAINTAINS EXISTING 
MULTIPATH DEVICE ( S ) DURING 
MULTIPATH DEVICE DRIVER 
UPGRADE OPERATION 

THIN MULTIPATH DEVICE DRIVER 
MODULE TERMINATES MULTIPATH 

DEVICE AND UPDATES DATA 
STRUCTURES 

310 

FIG . 3 



atent Jul . 16 , 2019 Sheet 4 of 5 US 10 , 353 , 714 B1 

400 - 44 COMMENCE MULTIPATH DEVICE UPGRADE PROCESS 

402 SEND I / O CONTROL COMMAND TO CORE MULTIPATH DEVICE DRIVER 
MODULE TO COMMENCE MULTIPATH DEVICE DRIVER UPGRADE 

404 CORE MULTIPATH DEVICE DRIVER MODULE NOTIFIES 
THIN MULTIPATH DEVICE DRIVER MODULE OF UPGRADE 

406 

THIN MODULE REPLACES I / O ENTRY POINTS IN EACH MULTIPATH DEVICE 
FROM THE STRATEGY ROUTINE OF THE CORE MODULE TO THE STRATEGY 
ROUTINE OF THE THIN MODULE , AND SYSTEM WAITS FOR ALL PENDING 
1 / O OPERATIONS IN CORE MODULE TO PROPERLY COMPLETE BEFORE 

TERMINATING CORE MODULE 

408 ramena 
THIN MODULE RECEIVES ALL SUBSEQUENT VO OPERATIONS , AND DISPATCHES 
VO OPERATIONS DIRECTLY TO THE NATIVE DEVICES USING THE NATIVE DEVICE 

MAPPING TABLE MAINTAINED BY THIN MODULE 

NO 
410 ALL PENDING VO OPERATIONS OF 

CORE MODULE COMPLETE ? 

YES 

412 TERMINATE CORE MULTIPATH DEVICE DRIVER MODULE 

41424 INSTALL NEW CORE MULTIPATH DEVICE DRIVER MODULE 

416 
NEW CORE MULTIPATH DEVICE DRIVER MODULE RECREATES 
DATA STRUCTURES AND MAPPING TABLE BY QUERYING THE 

THIN MULTIPATH DEVICE DRIVER MODULE 

418 
VO ENTRY POINTS ARE REPLACED TO STRATEGY ROUTINE 
OF NEW CORE MULTIPATH DEVICE DRIVER MODULE AND 

VO OPERATIONS ARE DIRECTED TO THE NEW CORE MODULE 

FIG . 4 



U . S . Patent Jul . 16 , 2019 Sheet 5 of 5 US 10 , 353 , 714 B1 

500 

510 - 1 510 - 2 

HOST SYSTEM HOST SYSTEM 
520 - 2 

MULTIPATH DEVICE DRIVER 
( Core and Thin Modules ) 

MULTIPATH DEVICE DRIVER 
( Core and Thin Modules ) 

590 

NETWORK 

510 - 3 

HOST SYSTEM 520 - 3 
580 MULTIPATH DEVICE DRIVER 

( Core and Thin Modules ) 
530 DATA STORAGE 

SYSTEM PROCESSORS 
540 

SYSTEM MEMORY 
550 

STORAGE INTERFACE 

560 FIG . 5 
NETWORK INTERFACE 

570 
VIRTUALIZATION RESOURCES 



US 10 , 353 , 714 B1 

NON - DISRUPTIVE UPGRADE OF 
MULTIPATH DRIVERS IN INFORMATION 

PROCESSING SYSTEM 

FIELD 

device driver module , the instance of the multipath device 
during the upgrade operation to execute the I / O operation 
requests that are routed to the thin multipath device driver 
module . In some embodiments , the instances of multipath 

5 devices are not destroyed and recreated , but rather main 
tained across the driver upgrade process . 

These and other illustrative embodiments include , without 
limitation , apparatus , systems , methods and computer pro 
gram products comprising processor - readable storage 

10 media . 

The field relates generally to information processing 
systems , and more particularly to systems and methods for 
enabling multipath device driver upgrades in information 
processing systems . 

BACKGROUND BRIEF DESCRIPTION OF THE DRAWINGS 
Multipath device driver software is utilized to manage FIG . 1 is a block diagram of an information processing 

multiple I / O ( input / output ) paths through an information 15 system comprising a host system which is configured to 
processing system . A host can have multiple storage LUNs enable non - disruptive upgrades of a multipath device driver , 
connected from a storage array . Each storage LUN can have according to an embodiment of the invention . 
multiple I / O paths from the host to the storage array . A FIG . 2 is a flow diagram of a method implemented by a 
multipathing driver groups all such I / O paths from a host to multipath device driver to create a multipath device , accord 
each array LUN into logical devices known as multipath 20 ing to an embodiment of the invention . 
devices . Each individual block device representing each I / O FIG . 3 is a flow diagram that illustrates methods imple 
path is referred to as a native device . Applications running mented by a multipath device driver for managing a multi 
on a host system utilize multipath devices for I / O operations path device when performing an upgrade operation or an 
so that the I / O operations can be distributed across all unload operation , according to an embodiment of the inven 
available I / O paths . In this regard , multipathing is utilized to 25 tion . 
support load balancing to increase efficiency of I / O opera - FIG . 4 is a flow diagram of a method for upgrading a 
tions , and to provide failover in response to component multipath device driver , according to an embodiment of the 
failure ( e . g . , I / O adapter failure ) . invention . 

In conventional systems , when a new multipath device FIG . 5 schematically illustrates a distributed computing 
driver upgrade is needed , the applications which utilize the 30 system comprising a plurality of host systems which are 
associated multipath device for 1 / 0 operations must be configured to enable non - disruptive upgrades of multipath 
stopped to perform the driver upgrade , and then restarted device drivers , according to an embodiment of the invention . 
after the driver upgrade process is completed . Indeed , since 
the multipath device is an entity created by the multipath DETAILED DESCRIPTION 
device driver , the multipath device driver cannot be 35 
unloaded and upgraded without first terminating the multi - Illustrative embodiments will now be described in further 
path device . Due to these challenges , an upgrade of a detail with regard to systems and methods that are config 
multipath device driver requires application downtime and ured to enable non - disruptive upgrades of multipath device 
or a reboot of the host system , which can significantly drivers by retaining an existing multipath device and redi 
impact system operation . 40 recting I / O operations . As explained in further detail below , 

a non - disruptive upgrade of a multipath device driver is 
SUMMARY realized by dividing the multipath device driver into a core 

multipath device driver module and a thin multipath device 
Illustrative embodiments include systems and methods to driver module . The core multipath device driver module 

enable non - disruptive upgrades of multipath device drivers . 45 comprises full multipathing functionality such as failover , 
In one embodiment , a method comprises : running a multi - load balancing , etc . , while the thin multipath device module 
path device driver on a host system , wherein the multipath comprises basic intelligence to create a multipath device 
device driver comprises a core multipath device driver with the assistance of the core multipath device driver 
module and a thin multipath device driver module , wherein module , and manage I / O operations using a mapping table 
the core multipath device driver module is configured to 50 during an upgrade of the core multipath device driver 
implement all multipathing functionality of the multipath module . During normal operations , the I / O will pass through 
device , and wherein the thin multipath device driver module the core multipath device driver module and not the thin 
is configured to create and maintain an instance of a mul - multipath device driver module . When a multipath device 
tipath device , which is utilized by the core multipath device driver upgrade operation is to be performed , the thin mul 
driver module to control input / output ( I / O ) operations over 55 tipath device driver module will replace I / O entry points so 
a plurality of I / O paths from the host system to an array of that I / O operations will be intercepted by the thin multipath 
data storage devices of a data storage system ; receiving , by device driver module . The thin multipath device driver 
the core multipath device driver module , an upgrade com - module will redirect the I / O operations from the multipath 
mand from an operating system of the host system ; sending device to native devices directly , while bypassing the core 
an upgrade notification from the core multipath device 60 multipath device driver module . Since the core multipath 
driver module to the thin multipath device driver module ; device driver module is not utilized , the core multipath 
responsive the upgrade notification , the thin multipath device driver module can be unloaded and a newer version 
device driver module replacing I / O entry points of the core of the core multipath device driver module can be installed . 
multipath device driver module so that I / O operation The thin multipath device driver module will then replace 
requests are routed to the thin multipath device driver 65 the I / O entry points to that of the new core multipath device 
module during an upgrade operation of the core multipath driver module and subsequent I / O operations will be 
device driver module ; and utilizing , by the thin multipath handled by the core multipath device driver module directly . 



US 10 , 353 , 714 B1 

The multipath device instances are not destroyed and rec drives ( HDDs ) , which provides a repository for data which 
reated , but rather are maintained across the driver upgrade . is utilized by the host system 110 . In a SAN system , the data 

Illustrative embodiments will be described herein with within a disk array is typically organized into Logical Units 
reference to exemplary information processing systems and ( LUs ) , wherein storage I / O commands ( e . g . , Small Com 
associated computers , servers , storage devices and other 5 puter Systems Interface ( SCSI ) 1 / 0 commands , or other 
processing devices . It is to be appreciated , however , that storage interface protocols ) are sent to a storage target and 
embodiments of the present disclosure are not restricted to executed by an LU within that target . A Logical Unit 
use with the particular illustrative system and device con Number ( LUN ) is a unique identifier that is used to distin 
figurations shown . Accordingly , the term “ information pro guish between separate devices , or logical units , that share 

the same bus ( e . g . , SCSI bus ) . A LUN can represent a single cessing system ” as used herein is intended to be broadly 10 HDD , a portion of an HDD , or a full storage array . The construed , so as to encompass , for example , processing storage I / O commands that are sent to a data storage systems comprising cloud computing and storage systems , controller ( e . g . , SCSI controller ) utilize LUNs to identify as well as other types of processing systems comprising target storage devices . 
various combinations of physical and virtual processing The storage interface driver 150 is configured to control 
resources . An information processing system may therefore 15 data access operations for storing or accessing data to and 
comprise , for example , at least one data center that includes from the storage devices 192 of the data storage system 190 . 
one or more clouds hosting multiple tenants that share cloud In one embodiment , the storage interface driver 150 imple 
resources . Numerous other types of enterprise and cloud - ments a SCSI protocol , although other types of storage 
based computing and storage systems are also encompassed interface protocols such as Fibre Channel , serial attached 
by the term “ information processing system ” as that term is 20 storage ( SAS / SATA ) , etc . , can be implemented depending 
broadly used herein . on the system architecture . The I / O adapter device driver 

FIG . 1 is a block diagram of an information processing 160 implements multiple instances of 1 / 0 adaptor device 
system 100 comprising a host system 110 which is config - drivers to control the physical 1 / 0 adapters 170 - 1 , 
ured to enable non - disruptive upgrades of a multipath device 170 - 2 , . . . , 170 - M ( e . g . , there is one instance of an I / O 
driver , according to an embodiment of the invention . The 25 adaptor device driver for each physical I / O adapter 170 . The 
host system 100 is configured to host a plurality of appli - physical I / O adapters 170 provide the physical I / O process 
cations 115 - 1 , 115 - 2 , . . . , 115 - N ( collectively referred to as ing and connectivity between the host system 110 and the 
applications 115 ) which are executed by the host system storage devices 192 of the data storage system 190 . The 
100 . The applications 115 may comprise different types of physical I / O adapters 170 can be implement using , e . g . , 
applications such as bare metal applications , container appli - 30 network interface cards ( NICs ) , converged network adapter 
cations , virtual machine applications which execute on vir - cards , host bus adapter ( HBA ) cards , or other types of 
tual machines , or any combination of different types of devices for physically connecting the host system 110 to the 
applications . The host system 110 further comprises a mul - data storage system 190 through the storage network fabric 
tipath device driver 120 , which comprises a thin multipath 180 . 
device driver module 130 ( or “ thin module ” ) , and a core 35 The multipath device driver 120 is configured to provide 
multipath device driver module 140 ( or “ core module ” ) . The multiple storage I / O paths from a given application 115 to 
thin module 130 creates and maintains at least one multipath the storage devices 192 of the data storage system 190 . The 
device 132 and a native device mapping table 134 . The core native device mapping table 134 comprises a data structure 
module 140 implements various application programming which comprises a mapping of all I / O paths from the host 
interface ( API ) modules 142 and 144 to support multipath - 40 system 110 to the LUNs . As noted above , the multipathing 
ing functions . The host system 110 further comprises a device driver 120 groups all I / O paths from a host to each 
storage interface driver 150 , an I / O adapter device driver array LUN into logical devices known as multipath devices . 
160 , and a plurality of physical 1 / 0 adapters 170 - 1 , Each individual block device representing each I / O path is 
170 - 2 , . . . , 170 - M ( collectively I / O adapters 170 ) . referred to as a native device . During normal operation 

The API module 142 may be implemented using the 45 ( when no multipath device driver upgrade is being per 
General Purpose Extension module which is part of the Dell formed ) , the core multipath device driver module 140 is 
ECM PowerPath family of software products to support configured to implement all multipathing functionality of 
multipathing functionality , such as optimizing I / O paths in the multipath device driver 120 , wherein the core multipath 
physical and virtual environments , adjusting I / O paths to device driver module 140 utilizes the multipath device 132 
dynamically rebalance the application environment for peak 50 to control I / O operations over a plurality of I / O paths from 
performance , providing failover and recovery management the host system 100 to the array of data storage devices 192 
to route application requests to alternative resources in the of the data storage system 190 . The particular 1 / 0 path 
event of component failures or user errors , etc . Further , the chosen for accessing the storage devices 192 is determined 
API module 144 can be implemented using the Dell EMC by the core multipath device driver module 140 . The core 
Multipathing Extension Module ( MEM ) for VMware® 55 multipath device driver module 140 will add routing infor 
vSphere® , so support multipath I / O access to PS Series mation to I / O operation requests to ensure proper routing of 
storage systems . the I / O operation requests through the I / O selected path to a 

The information processing system 100 further comprises target storage device 192 . 
a storage network fabric 180 and a data storage system 190 , Although one instance of a multipath device 132 is shown 
which is network connected to the host system 110 via the 60 in FIG . 1 for ease of illustration , in one embodiment , there 
storage network fabric 180 . The data storage system 190 is one instance of a multipath device 132 created for each 
comprises a plurality of storage devices 192 - 1 , 192 - 2 , . . . , LUN in the data storage system 190 connected to the host 
192 - S ( collectively , storage devices 192 ) . In one embodi system 110 . For example , there can be ten ( 10 ) LUNS 
ment , the data storage system 190 comprises a storage area connected to the host system 110 , in which case there will 
network ( SAN ) which includes a storage array implemented 65 be ten ( 10 ) instances of the multipath device 132 created by 
by the storage devices 192 . In one embodiment , the storage the multipath device driver 120 . Further , each LUN can be 
devices 192 are configured as a storage array of hard disk presented through multiple I / O paths . For example , each 



US 10 , 353 , 714 B1 

LUN can be accessed through four I / O paths . In that case , data structures which comprise information regarding cur 
there will be four native devices for each LUN , for a total of rently existing multipath devices . The multipath device list 
10x4 = 40 native devices on the host system 110 . The comprises an up - to - date list of multipath devices , which is 
instances of the multipath device 132 are created one time by updated when new multipath devices are instantiated or 
the multipath device driver 120 and are retained and utilized 5 when existing multipath devices are terminated . 
during an upgrade of the core multipath device driver If the specified multipath device is found in the multipath 
module 140 using methods as discussed in further detail device list ( affirmative determination in block 206 ) , the thin 
below . multipath device driver module 130 will return a reference 

During normal operation , when a given application 115 to the specified multipath device found in the list ( block 
sends an I / O operation request to the multipath device driver 10 208 ) . The core multipath device driver module 140 will then 
120 , the core multipath device driver module 140 will select update a mapping data structure maintained in the core 
an I / O path for the I / O operation request , and send the I / O multipath device driver module 140 , which comprises a 
operation request to the appropriate instance of the storage mapping of multipath devices to native devices , and then 
interface driver 150 . The storage interface driver 150 con update a copy of the current mapping data structure in the 
verts the I / O operation request into one or more appropriate 15 thin multipath device driver module 130 ( block 212 ) . On the 
I / O command for the target storage device 192 . The storage other hand , if the specified multipath device is not found in 
interface driver 150 sends the I / O commands to a target the multipath device list ( negative determination in block 
instance of the I / O adapter device driver 160 , and the I / O 206 ) , the thin multipath device driver module 130 will create 
adapter device driver 160 transmits the I / O operation request a new multipath device and generate associated data struc 
to an appropriate port of the data storage system 190 via one 20 tures based on the new multipath device ( block 210 ) . The 
of the physical I / O adapters 170 . For example , in one mapping data structures are then updated in the core and thin 
embodiment , the I / O operation request specifies a target multipath device driver modules ( block 212 ) . 
LUN of a storage device 192 which is the target of the I / O FIG . 3 is a flow diagram that illustrates methods imple 
operation request . mented by a multipath device driver for managing a multi 

There are two 1 / 0 entry points implemented by the 25 path device when performing an upgrade operation or an 
multipath device driver 120 , one entry point in the thin unload operation , according to an embodiment of the inven 
module 130 and one entry point in the core module 140 . tion . In the context of the information processing system 100 
These entry points are commonly known as “ strategy rou - of FIG . 1 , the operating system of the host system 110 issues 
tines ” in Linux . A strategy routine is essentially a link a command to the multipath device driver 120 to commence 
between the multipath device driver 120 and an instance of 30 a process to upgrade the multipath device driver 120 or to 
the I / O adapter device driver 160 for all normal I / O requests . terminate an existing multipath device ( block 300 ) . In 
Whenever the multipath device driver 120 receives a call , it response to the command , the core multipath device driver 
builds a certain data structure ( e . g . , scsi _ buf structure ) with module 140 sends a request to the thin multipath device 
requisite parameters , and then passes the data structure to the driver module 130 to either upgrade the multipath device 
strategy routine , which in turn queues the I / O request for 35 driver module or to terminate an existing multipath device 
processing . During normal operations , the strategy routine ( block 302 ) . The thin multipath device driver module 130 
of the core module 140 is utilized by all instances of the accesses and searches the list of existing multipath devices 
multipath device 132 , while the strategy routine of the thin ( block 304 ) . 
module 130 will remain idle . As such , during normal opera - If the request is determined ( in block 306 ) to be an 
tions , all I / O operations to the multipath device 132 will go 40 upgrade operation , the thin multipath device driver module 
directly to the core module 140 , and therefore will have full 130 will identify the existing multipath device instances 
multipathing functionality . from the list and maintain the existing multipath device 

However , during an upgrade operation wherein the core instances during the multipath device driver upgrade opera 
module 140 is unloaded and replaced with a new core tion ( block 308 ) . The thin multipath device driver module 
module , the instances of the multipath device 132 are 45 130 will then proceed with certain actions to support the 
maintained , and the strategy routine of the thin module 130 upgrade operation , as discussed below with reference to 
is utilized by the multipath device 132 instances such that FIG . 4 . On the other hand , if the request is determined ( in 
I / O operations to the multipath device 132 will go directly block 306 ) to be a multipath device termination request , the 
to the thin module 130 , bypassing the core module 140 ( as thin multipath device driver module 130 will terminate the 
schematically illustrated by the dashed arrow in FIG . 1 from 50 specified multipath device , and then update the multipath 
the thin module 130 to the storage interface driver 150 ) . device list , and the associated data structures ( block 310 ) . 
Various operating modes of the multipath device driver 120 FIG . 4 is a flow diagram of a method for upgrading a 
will now be discussed in further detail with reference to multipath device driver module , according to an embodi 
FIGS . 2 , 3 and 4 . ment of the invention . In the context of the information 

FIG . 2 is a flow diagram of a method implemented by a 55 processing system 100 of FIG . 1 , the operating system of the 
multipath device driver to create a multipath device , accord - host system 110 issues a command to the multipath device 
ing to an embodiment of the invention . In the context of the driver 120 to commence an upgrade process ( block 400 ) . In 
information processing system 100 of FIG . 1 , the operating response to the command , the multipath device driver 120 
system of the host system 110 issues a command to the sends an I / O control command to the core multipath device 
multipath device driver 120 to commence a process to 60 driver module 140 to commence the upgrade process ( block 
instantiate a multipath device ( block 200 ) . In response to the 402 ) . The core multipath device driver module 140 sends an 
command , the core multipath device driver module 140 upgrade notification / request to the thin multipath device 
sends a request to the thin multipath device driver module driver module 130 ( block 404 ) . 
130 to create the specified multipath device ( block 202 ) . The In response to the upgrade notification , the thin multipath 
thin multipath device driver module 130 searches for the 65 device driver module 130 accesses the list of currently 
specified multipath device in a list of multipath devices existing multipath devices , replaces the I / O entry points in 
( block 204 ) . The multipath device list comprises an array of each existing multipath device from the strategy routine of 



US 10 , 353 , 714 B1 

the core multipath device driver 140 to the strategy routine nications networks each comprising network devices con 
of the thin multipath device driver module 130 , and the figured to communicate using Internet Protocol ( IP ) or other 
system waits for all pending I / O operations in the core related communication protocols . The network 590 com 
multipath device driver module 140 to properly complete prises intermediate points ( such as routers , switches , etc . ) 
before terminating the core multipath device driver module 5 and other elements that form a network backbone to estab 
140 ( block 406 ) . The thin multipath device driver module lish communication paths and enable communication 
130 will receive all subsequent I / O operations and dispatch between network endpoints . 
the I / O operations directly to the native devices using the The host systems 510 - 1 , 510 - 2 , and 510 - 3 comprises 
native device mapping table 134 maintained by the thin respective multipath device driver modules 520 - 1 , 520 - 2 , 
multipath device driver module 130 ( block 408 ) . In one 10 and 520 - 3 , which comprise core and thin driver modules as 
embodiment , during the upgrade operation , the thin multi - discussed above , and which implement the same or similar 
path device driver module 130 provides basic multipathing functionalities as discussed above to enable access to the 
functions such as round robin I / O distribution and redirect data storage system 580 through multiple I / O paths . The host 
ing I / Os in the case of path failures , etc . systems 510 - 1 , 510 - 2 , and 510 - 3 each comprise processors 
When all pending I / O operations in the core multipath 15 530 , system memory 540 , a storage interface 550 , a network 

device driver module 140 are properly completed ( affirma - interface 560 , and virtualization resources 570 . Applications 
tive determination in block 410 ) , the existing core multipath and native operating systems executing on the host systems 
device driver module 140 will be terminated and unloaded 510 are loaded into the system memory 540 and executed by 
( block 412 ) . Despite the core multipath device driver mod the processors 530 to perform various functions as described 
ule 140 being unloaded , the multipath device ( s ) existing at 20 herein . In this regard , the system memory 540 and other 
the time of the upgrade process are maintained and utilized memory or storage media as described herein , which have 
by the thin multipath device driver module 130 and , conse - program code and data tangibly embodied thereon , are 
quently , the I / O operations are continued ( and not sus examples of what is more generally referred to herein as 
pended ) during the upgrade process . A new core multipath “ processor - readable storage media ” that store executable 
device driver module for the multipath device driver 120 is 25 program code of one or more software programs . Articles of 
then installed under operation of the host operating system manufacture comprising such processor - readable storage 
( block 414 ) . media are considered embodiments of the invention . An 
When loaded and executed for the first time , the newly article of manufacture may comprise , for example , a storage 

installed core multipath device driver module will recreate device such as a storage disk , a storage array or an integrated 
the requisite data structures , and mapping tables , by query - 30 circuit containing memory . The term " article of manufac 
ing the thin multipath device driver module 130 for the ture ” as used herein should be understood to exclude tran 
information needed to recreate the data structures and map - sitory , propagating signals . 
ping tables ( block 416 ) . The newly installed core multipath The processors 530 are configured to process program 
device driver module will not create new multipath devices , instructions and data to execute a native operating system 
but rather use the multipath devices existing prior to the 35 and applications that run on the host systems 510 . For 
upgrade process . In particular , the I / O entry points of the example , the processors 530 may comprise one or more of 
existing multipath devices are replaced to the strategy rou - a computer processor , a microprocessor , a microcontroller , 
tine of the new multipath device driver module , and all new an application - specific integrated circuit ( ASIC ) , a field 
I / O requests will be processed directly by the new core programmable gate array ( FPGA ) , and other types of pro 
multipath device driver module which provides full multi - 40 cessors , as well as portions or combinations of such proces 
pathing functionality ( block 418 ) . sors . The term “ processor ” as used herein is intended to be 

FIG . 5 schematically illustrates a distributed computing broadly construed so as to include any type of processor that 
system 500 comprising a plurality of host systems which are performs processing functions based on software , hardware , 
configured to enable non - disruptive upgrades of multipath firmware , etc . For example , a " processor ” is broadly con 
device drivers , according to an embodiment of the invention . 45 strued so as to encompass all types of hardware processors 
While FIG . 1 illustrates an information processing system including , for example , ( i ) general purpose processors which 
comprising a single host system 110 connected to a data comprise " performance cores ” ( e . g . , low latency cores ) , and 
storage system 190 , the exemplary embodiment of FIG . 5 ( ii ) workload - optimized processors , which comprise any 
illustrates a cloud based system or data center implementa possible combination of multiple " throughput cores ” and / or 
tion wherein multiple host systems 510 - 1 , 510 - 2 , and 510 - 3 50 multiple hardware - based accelerators . Examples of work 
( collectively , host systems 510 ) are connected to a data load - optimized processors include , for example , GPUs , digi 
storage system 580 through a network 590 . The data storage tal signal processors ( DSPs ) , system - on - chip ( SoC ) , appli 
system 580 is implemented using the same or similar data cation - specific integrated circuits ( ASICs ) , and field 
storage devices and storage control protocols as the data programmable gate array ( FPGAs ) , and other types of 
storage system 190 of FIG . 1 . 55 specialized processors or coprocessors that are configured to 

The network 590 may comprise any known communica - execute one or more fixed functions . The term “ hardware 
tion network such as , a global computer network ( e . g . , the accelerator " broadly refers to any hardware that performs 
Internet ) , a wide area network ( WAN ) , a local area network “ hardware acceleration ” to perform certain functions faster 
( LAN ) , a satellite network , a cable network , a SAN , a and more efficient than is possible for executing such 
wireless network such as Wi - Fi or WiMAX , or various 60 functions in software running on a more general - purpose 
portions or combinations of these and other types of net - processor . 
works . The term “ network ” as used herein is therefore The system memory 540 comprises electronic storage 
intended to be broadly construed so as to encompass a wide media such as random - access memory ( RAM ) , read - only 
variety of different network arrangements , including com - memory ( ROM ) , or other types of memory , in any combi 
binations of multiple networks possibly of different types . In 65 nation . The term “ memory ” or “ system memory ” as used 
this regard , the network 590 in some embodiments com - herein refers to volatile and / or non - volatile memory which 
prises a combination of multiple different types of commu is utilized to store application program instructions that are 



US 10 , 353 , 714 B1 
10 

read and processed by the processors 530 to execute a native another embodiment , containers may be used in combina 
operating system and one or more applications hosted by the tion with other virtualization infrastructure such as virtual 
host systems 510 , and to temporarily store data that is machines implemented using a hypervisor , wherein Docker 
utilized and / or generated by the native OS and application containers or other types of LXCs are configured to run on 
programs running on the host system 510 . For example , the 5 virtual machines in a multi - tenant environment . 
system memory 540 may comprise a dynamic random - It is emphasized that the above - described embodiments of 
access memory ( e . g . , DRAM ) or other forms of volatile the invention are presented for purposes of illustration only . 
RAM , or a non - volatile memory ( e . g . , storage - class memory Many variations and other alternative embodiments may be 
( SCM ) ) that is accessible as a memory resource such as used . For example , the disclosed techniques are applicable 
NAND Flash storage device , a SSD storage device , or other 10 to a wide variety of other types of information processing 
types of next generation low - latency non - volatile , byte - systems , utilizing other arrangements of host devices , net 
addressable memory devices . The storage interface circuitry works , storage systems , storage arrays , processors , memo 
550 and network interface circuitry 560 implement the same ries , controllers , switches , storage devices and other com 
or similar functions , protocols , architectures , etc . , as the ponents . Also , the particular configurations of system and 
storage interface driver 150 , 1 / 0 adapter device driver 160 , 15 device elements and associated processing operations illus 
and physical I / O adapters 170 as discussed above . tratively shown in the drawings can be varied in other 

The virtualization resources 570 can be instantiated to embodiments . Moreover , the various assumptions made 
execute one or more applications or functions which are above in the course of describing the illustrative embodi 
hosted by the host systems 510 . For example , in one m ents should also be viewed as exemplary rather than as 
embodiment , the virtualization resources 570 comprise vir - 20 requirements or limitations of the invention . Numerous 
tual machines that are implemented using a hypervisor other alternative embodiments within the scope of the 
platform which executes on the host system 510 , wherein appended claims will be readily apparent to those skilled in 
one or more virtual machines can be instantiated to execute the art . 
functions of the host system 510 . As is known in the art , We claim : 
virtual machines are logical processing elements that may be 25 1 . A method , comprising : 
instantiated on one or more physical processing elements running a multipath device driver on a host system , 
( e . g . , servers , computers , or other processing devices ) . That wherein the multipath device driver comprises a core 
is , a “ virtual machine ” generally refers to a software imple multipath device driver module and a thin multipath 
mentation of a machine ( i . e . , a computer ) that executes device driver module , wherein the core multipath 
programs in a manner similar to that of a physical machine . 30 device driver module is configured to implement all 
Thus , different virtual machines can run different operating multipathing functionality of the multipath device 
systems and multiple applications on the same physical driver during a first mode of operation of the multipath 
computer . device driver , and wherein the thin multipath device 

A hypervisor is an example of what is more generally driver module is configured to create and maintain an 
referred to as “ virtualization infrastructure . ” The hypervisor 35 instance of a multipath device , which is utilized by the 
runs on physical infrastructure , e . g . , CPUs and / or storage core multipath device driver module during the first 
devices , of the host system 510 , and emulates the CPUs , mode of operation of the multipath device driver to 
memory , hard disk , network and other hardware resources of control input / output ( 1 / 0 ) operations over a plurality of 
a host system , enabling multiple virtual machines to share I / O paths from the host system to an array of data 
the resources . The hypervisor can emulate multiple virtual 40 storage devices of a data storage system ; 
hardware platforms that are isolated from each other , allow routing an I / O request , which is received by the instance 
ing virtual machines to run , e . g . , Linux and Windows Server of the multipath device during the first mode of opera 
operating systems on the same underlying physical host . An tion of the multipath device driver , to the core multipath 
example of a commercially available hypervisor platform device driver module for handling the received I / O 
that may be used to implement one or more of the virtual 45 request ; 
machines in one or more embodiments of the invention is the receiving , by the multipath device driver , an upgrade 
VMware vSphereTM which may have an associated virtual command to initiate a second mode of operation to 
infrastructure management system such as the VMware upgrade the core multipath device driver module ; 
vCenterTM . The underlying physical infrastructure may com sending an upgrade notification from the core multipath 
prise one or more commercially available distributed pro - 50 device driver module to the thin multipath device driver 
cessing platforms which are suitable for the target applica module , in response to the upgrade command received 
tion . by the multipath device driver ; 

In another embodiment , the virtualization resources 570 responsive to the upgrade notification , the thin multipath 
comprise containers such as Docker containers or other device driver module replacing 1 / 0 entry points of the 
types of Linux containers ( LXCs ) . As is known in the art , in 55 core multipath device driver module so that I / O 
a container - based application framework , each application requests received by the instance of the multipath 
container comprises a separate application and associated device are routed to the thin multipath device driver 
dependencies and other components to provide a complete module during the second mode of operation of the 
filesystem , but shares the kernel functions of a host operat multipath device driver ; and 
ing system with the other application containers . Each 60 routing an I / O request , which is received by the instance 
application container executes as an isolated process in user of the multipath device during the second mode of 
space of a host operating system . In particular , a container operation of the multipath device driver , to the thin 
system utilizes an underlying operating system that provides multipath device driver module for handling the 
the basic services to all containerized applications using received I / O request . 
virtual - memory support for isolation . One or more contain - 65 2 . The method of claim 1 , wherein the instance of the 
ers can be instantiated to execute one or more applications multipath device is maintained and utilized during and after 
or functions of the host computing system 500 . In yet the upgrade . 



US 10 , 353 , 714 B1 
11 12 

10 

20 

3 . The method of claim 1 , further comprising maintaining , instance of a multipath device , which is utilized by the 
by the thin multipath device driver module , a data structure core multipath device driver module during the first 
which comprises a mapping of the instance of the multipath mode of operation of the multipath device driver to 
device to individual block devices that represent each I / O control input / output ( I / O ) operations over a plurality of 
path of the plurality of I / O paths from the host system to the 5 I / O paths from the host system to an array of data 
array of data storage devices . storage devices of a data storage system ; 

4 . The method of claim 1 , further comprising : routing an I / O request , which is received by the instance enabling the core multipath device driver module to of the multipath device during the first mode of opera complete all pending I / O operations that are pending at tion of the multipath device driver , to the core multipath a start of the upgrade ; device driver module for handling the received I / O unloading the core multipath device driver module when request ; all pending I / O operations are complete ; and 
loading an upgraded core multipath device driver module . receiving , by the multipath device driver , an upgrade 
5 . The method of claim 1 , wherein the thin multipath command to initiate a second mode of operation to 

device driver module replaces the I / O entry points of the 15 upgrade the core multipath device driver module ; 
core multipath device driver module by replacing the I / O sending an upgrade notification from the core multipath 
entry points in the instance of the multipath device from a device driver module to the thin multipath device driver 
strategy routine of the core multipath device driver module module , in response to the upgrade command received 
to a strategy routine of the thin multipath device driver by the multipath device driver ; 
module . responsive to the upgrade notification , the thin multipath 

6 . The method of claim 1 , further comprising : device driver module replacing I / O entry points of the 
loading an upgraded core multipath device driver module core multipath device driver module so that I / O 
of the multipath device driver ; requests received by the instance of the multipath 

accessing , by the upgraded core multipath device driver device are routed to the thin multipath device driver 
module , information from the thin multipath device 25 module during the second mode of operation of the 
driver module which enables the upgraded core multi multipath device driver ; and 
path device driver module to create a data structure routing an I / O request , which is received by the instance 
which comprises a mapping of the instance of the of the multipath device during the second mode of 
multipath device to the individual block devices that operation of the multipath device driver , to the thin represent each 1 / 0 path of the plurality of 1 / 0 paths 30 multipath device driver module for handling the from the host system to the array of data storage received I / O request . devices ; 

replacing , by the upgraded core multipath device driver 9 . The computer program product of claim 8 , wherein the 
module , the I / O entry points of the instance of the instance of the multipath device is maintained and utilized 
multipath device so that I / O requests are routed from 35 aur om 35 during and after the upgrade . 
the instance of the multipath device to the upgraded 10 . The computer program product of claim 8 , wherein 
core multipath device driver module after completion the process further comprises maintaining , by the thin mul 
of the upgrade ; and tipath device driver module , a data structure which com 

routing an I / O request , which is received by the instance prises a mapping of the instance of the multipath device to 
of the multipath device after completion of the upgrade , 40 individual block devices that represent each I / O path of the 
to the upgraded core device driver module for handling plurality of I / O paths from the host system to the array of 
the received I / O request . data storage devices . 

7 . The method of claim 1 , further comprising : 11 . The computer program product of claim 8 , wherein the 
sending a request from the core multipath device driver process further comprises : 
module to the thin multipath device driver module to 45 enabling the core multipath device driver module to 
create a new instance of a multipath device ; complete all pending I / O operations that are pending at 

creating , by the thin multipath device driver module , the a start of the upgrade ; 
new instance of the multipath device ; and unloading the core multipath device driver module when 

utilizing the new instance of the multipath device , by the all pending I / O operations are complete ; and 
core multipath device driver module , to control the I / O 50 loading an upgraded core multipath device driver module . 
operations over the plurality of I / O paths from the host 12 . The computer program product of claim 8 , wherein 
system to the array of data storage devices of the data the thin multipath device driver module replaces the I / O 
storage system . entry points of the core multipath device driver module by 

8 . A computer program product comprising a non - transi replacing the I / O entry points in the instance of the multipath 
tory processor - readable storage medium having stored 55 device from a strategy routine of the core multipath device 
therein program code of one or more software programs , driver module to a strategy routine of the thin multipath 
wherein the program code , when executed by computing device driver module . 
device , implements a process comprising : 13 . The computer program product of claim 8 , wherein 

running a multipath device driver on a host system , the process further comprises : 
wherein the multipath device driver comprises a core 60 loading an upgraded core multipath device driver module 
multipath device driver module and a thin multipath of the multipath device driver ; 
device driver module , wherein the core multipath accessing , by the upgraded core multipath device driver 
device driver module is configured to implement all module , information from the thin multipath device 
multipathing functionality of the multipath device driver module which enables the upgraded core multi 
driver during a first mode of operation of the multipath 65 path device driver module to create a data structure 
device driver , and wherein the thin multipath device which comprises a mapping of the instance of the 
driver module is configured to create and maintain an multipath device to the individual block devices that 



US 10 , 353 , 714 B1 
13 14 

represent each I / O path of the plurality of I / O paths module during the second mode of operation of the 
from the host system to the array of data storage multipath device driver ; and 
devices ; route an I / O request , which is received by the instance of 

replacing , by the upgraded core multipath device driver the multipath device during the second mode of opera 
module , the I / O entry points of the instance of the 5 tion of the multipath device driver , to the thin multipath 

device driver module for handling the received I / O multipath device so that I / O requests are routed from request . 
the instance of the multipath device to the upgraded 16 . The system of claim 15 , wherein the instance of the 
core multipath device driver module after completion multipath device is maintained and utilized during and after 
of the upgrade ; and the upgrade . 10 routing an I / O request , which is received by the instance 17 . The system of claim 15 , wherein the multipath device 
of the multipath device after completion of the upgrade , driver is further configured to maintain , by the thin multipath 
to the upgraded core device driver module for handling device driver module , a data structure which comprises a 
the received I / O request . mapping of the instance of the multipath device to individual 

14 . The computer program product of claim 8 , wherein block devices that represent each I / O path of the plurality of 
15 1 / 0 paths from the host system to the array of data storage the process further comprises : 

sending a request from the core multipath device driver devices . 
module to the thin multipath device driver module to 18 . The system of claim 15 , wherein the multipath device 

driver is further configured to : create a new instance of a multipath device ; 
creating , by the thin multipath device driver module , the 20 enable the core multipath device driver module to com 
new instance of the multipath device ; and plete all pending I / O operations that are pending at a 

utilizing the new instance of the multipath device , by the start of the upgrade ; 
core multipath device driver module , to control the I / O unload the core multipath device driver module when all 
operations over the plurality of I / O paths from the host pending I / O operations are complete ; and 
system to the array of data storage devices of the data 25 load an upgraded core multipath device driver module . 

5 19 . The system of claim 15 , wherein the thin multipath storage system . 
15 . A system comprising : device driver module replaces the 1 / 0 entry points of the 

core multipath device driver module by replacing the I / O a host system ; and 
a data storage system comprising an array of data storage entry points in the instance of the multipath device from a 

devices which are configured to communicate over one 30 strategy routine of the core multipath device driver module 
30 to a strategy routine of the thin multipath device driver or more networks with the host system ; 

wherein the host system comprises a multipath device module . 
driver , wherein the multipath device driver comprises a 20 . The system of claim 15 , wherein the multipath device 

driver is further configured to : core multipath device driver module and a thin multi 
path device driver module , wherein the core multipath 25 load an upgraded core multipath device driver module of 
device driver module is configured to implement all the multipath device driver ; 
multipathing functionality of the multipath device access , by the upgraded core multipath device driver 

module , information from the thin multipath device driver during a first mode of operation of the multipath 
device driver , and wherein the thin multipath device driver module which enables the upgraded core multi 
driver module is configured to create and maintain an 40 path device driver module to create a data structure 
instance of a multipath device , which is utilized by the which comprises a mapping of the instance of the 
core multipath device driver module during the first multipath device to the individual block devices that 
mode of operation of the multipath device driver to represent each I / O path of the plurality of I / O paths 
control input / output ( I / O ) operations over a plurality of from the host system to the array of data storage 
I / O paths from the host system to an array of data 45 devices ; 
storage devices of a data storage system ; replace , by the upgraded core multipath device driver 

wherein the multipath device driver is configured to : module , the 1 / 0 entry points of the instance of the 
route an I / O request , which is received by the instance of multipath device so that I / O requests are routed from 

the multipath device during the first mode of operation the instance of the multipath device to the upgraded 
of the multipath device driver , to the core multipath 50 core multipath device driver module after completion 
device driver module for handling the received 1 / 0 of the upgrade ; and 
request ; route an I / O request , which is received by the instance of 

receive , by the multipath device driver , an upgrade com the multipath device after completion of the upgrade , to 
mand to initiate a second mode of operation to upgrade the upgraded core device driver module for handling 
the core multipath device driver module ; the received I / O request ; 

responsive to the upgrade notification , replace , by the thin utilize , by the upgraded core multipath device driver 
multipath device driver module , I / O entry points of the module , the instance of the multipath device to execute 
core multipath device driver module so that I / O the I / O operation requests that are routed to the 
requests received by the instance of the multipath upgraded core multipath device driver module . 
device are routed to the thin multipath device driver * * * 


