wo 2015/058102 A1 |1 I} NN OO0 OO0 AR

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/058102 A1

23 April 2015 (23.04.2015) WIPOIPCT
(51) International Patent Classification: (74) Agents: POWSNER, David, J. et al.; Nutter Mcclennen &
GO6F 9/54 (2006.01) Fish LLP, Seaport West, 155 Seaport Boulevard, Boston,
MA 02210-2604 .
(21) International Application Number: Us)

PCT/US2014/061171 (81) Designated States (unless otherwise indicated, for every
. .) kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: 17 Octaber 2014 (17.102014 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
ctober 2014 (17.10.2014) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
o . HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(26) Publication Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
(30) Priority Data: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
61/892,896 18 October 2013 (18.10.2013) Us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
14/061,288 23 October 2013 (23.10.2013) Us SD, SE, SG, SK, SL, SM, ST, 8V, 8Y, TH, TJ, TM, TN,

61/983,698 24 April 2014 (24.04.2014) Us TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
61/984.976 28 April 2014 (28.04.2014) US (84) Designated States (unless otherwise indicated, for every
(71) Applicant: OPENMOBILE WORLD WI])E, INC. kind Of regional pl‘OleCliOl’l available): ARIPO (BW, GH,
[US/US]; 111 Speen Street, Suite 114, Framingham, MA GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
01701 (US). TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(72) Inventor: HAMZATA, Thierno, Diallo; 45 Aubum DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

Street, Apt. #9, Framingham, MA 01701 (US).

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: MULTI-OPERATING SYSTEM WITH BROWSER PROXY APPLICATIONS

1 16
\ NATIVE APP RUNTIVE ENV. -
LN app#t |82
10 PROXY 0 PROXY
HOSTED HOSTED
i~ V|| wpPet S hppsy || APRLGHTION |1 g
AP ||LAUNGHER[[™46 |LAUNGHER LAYER (AL
PROXY PROXY H

APPLCATION RUNTIVE LBRARES [+~ 20

RESOURCES 1
KERNEL 22

GRAPHICS/ \

NATIVE VIDEO il I
FRAME | —26 Dve Dve
BUFFER TOUCH!

OTHER USER

GRAPHI\CS\\ INPUT

SET
TOUCH
SCREEN

(57) Abstract: The invention provides, in some aspects, a
computing device that includes a central processing unit that
is coupled to a hardware interface and that executes a native
operating system including one or more native runtime en-
vironments within which native software applications are
executing. A first native software application executing
within the one or more native runtime environments defines
one or more hosted runtime environments within which hos-
ted software applications are executing. One or more further
native software applications ("IO proxies"), each executing
within the one or more native runtime environments and
each corresponding to a respective one of the one or more
hosted software applications, receives the graphics generated
by the respective hosted software application and eftects
writing of those graphics to the video frame buffer for
presentation on the display of the computing device.

WO 2015/058102 A1 AT 00T VAT 00 O

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, _ before the expiration of the time limit for amending the

GW, KM, ML, MR, NE, SN, TD, TG). claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

WO 2015/058102 PCT/US2014/061171

MULTI-OPERATING SYSTEM MOBILE AND OTHER COMPUTING DEVICES WITH
PROXY APPLICATIONS RUNNING UNDER A BROWSER

BACKGROUND OF THE INVENTION

This application claims the benefit of priority of United States Patent
Application Serial No. 61/984,976, filed April 28, 2014, entitled MULTI-
OPERATING SYSTEM MOBILE AND OTHER COMPUTING DEVICES WITH PROXY
APPLICATIONS RUNNING UNDER A BROWSER and United States Patent
Application Serial No. 61/983,698, filed April 24, 2014, entitled HOSTED APP
INTEGRATION SERVICES IN MULTI-OPERATING SYSTEM MOBILE AND OTHER
COMPUTING DEVICES. This application is a continuation-in-part of United
States Patent Application Serial No. 14/061,288 (now, U.S. Patent Publication
No. US 2014-0115606), filed October 23, 2013, enfitled "MULTI-PLATFORM
MOBILE AND OTHER COMPUTING DEVICES AND METHODS," which claims the
benefit of filing of United States Patent Application Serial No.: 61/892,896, filed
October 18, 2013, entitled MULTI-PLATFORM MOBILE AND OTHER COMPUTING
DEVICES AND METHODS, United States Patent Application Serial No.
61/717,764, filed October 24, 2012, entitled BRIDGING NOTIFICATION SYSTEMS,
and United States Patent Application Serial No. 61/717,731, also filed October
24, 2012, entitled SEMANTICALLY DIFFERENT TASK MANAGEMENT SYSTEM IN A
SINGLE OPERATING SYSTEM. The teachings of all of the foregoing are

incorporated herein by reference.

The invention pertains to digital data processing and, more particularly,
to methods and apparatus for executing on a single hardware/software
platform applications ("apps’) made for execution on multiple different such
platforms. The invention has application in supporfing cross-platform
compatibility among apps for smart mobile devices, e.g., smart phones,
tablet computers, set-top boxes, connected felevisions, in-vehicle
infotainment systems, or in-flight entertainment systems, and the like, all by

way of non-limiting example.

WO 2015/058102 PCT/US2014/061171

The smart mobile device market has grown nearly 40% in the past year,
according to analysts. This has been fueled, to a large degree, by the sale of
devices running variants of the open-source Linux and Android operating
systems. While a boon to the marketplace, those devices suffer as a result of
the lack of cross-compatibility of the apps developed for them. Thus, for
example, apps developed for mobile devices running the Meego operating
system do not run on those executing the Tizen or Android operating systems.
That problem is compounded, of course, when one turns to operating
systems of entirely different lineages. For example, apps developed for Tizen

do not run on those running WebOS or Windows OS's; and so forth.

This is not just a problem for consumers who have purchase new mobile
devices that lack compatibility with old apps. It is also a problem for
manufacturers, carriers and others in the supply chain whose efforts to deliver
new hardware/software platforms are stymied by the lack of a large
ecosystem of available apps. App developers, too, suffer from fragmentation
in the marketplace, since they may be forced to port apps to a variety of

platforms in order to establish or maintain product viability.

A few prior art efforts to resolve cross-compatibility issues have met with
limited success. For example, Acer's Aspire One supported dual boot modes:
one for Windows OS and one for Android. However, the device could not run

apps for both operating systems in a single mode.

In view of the foregoing, an object of the invention is to provide
improved systems and methods for digital data processing. Another, more
particular, object is to provide such systems and methods as support
executing on a single hardware/software platform applications ("apps")
made for execution on multiple different hardware/software platforms. Still
another object is to provide such systems and methods as support cross-
platform compatibility among apps for smart mobile devices, e.g., smart

phones, tablet computers, set-top boxes, connected televisions, in-vehicle

2

WO 2015/058102 PCT/US2014/061171

infotainment systems, or in-flight enterfainment systems and the like, all by

way of non-limiting example.

These and other objects are evident in the text that follows and in the

drawings.

WO 2015/058102 PCT/US2014/061171

SUMMARY OF THE INVENTION

Multi-Operating System Mobile and Other Computing Devices

The foregoing are among the objects attained by the invention, which
provides a computing device that includes a central processing unit that is
coupled to a hardware interface (including at least a display and an
associated video frame buffer) and that executes a native operating system
including one or more nafive runfime environments within which nafive
software applications are executing, where each such natfive software
application has instructions for execution under the native operating system.
A first native software application ("ACL") executing within one or more of the
natfive runtime environments defines one or more hosted runtime
environments within which hosted software applications are executing. Thus,
for example, according to some practices of the invention, the first natfive
software application executes code comprising those hosted runtime
environment or portions thereof (such as virtual machines); whereas, in other
practices, the first native software application can, instead or in addifion,
effect the installation, instantiation and/or invocation of services/processes
executing outside the context of that application that make up those
environments or portions thereof. Each such hosted software application has
instructions for execution under a hosted operating system that differs from

the native operating system.

One or more of the hosted software applications executing within the
runtime environments each executes instructions to interact with a user of the
computing device via graphics generated (as part of a graphical user
interface) by the respective hosted software application, using a hosted
windowing subsystem that is common to the one or more hosted runtime
environments. That windowing subsystem is coupled to, and loads, one or

more buffers with those graphics.

WO 2015/058102 PCT/US2014/061171

One or more native software applications ("launch proxies”), each
corresponding to a respective one of the hosted software applications and
each associated with an icon or other identifier, that is presented on the
hardware interface for selection by the user of the computing device,
responds to notification of such selection by activating the respective hosted

software application.

One or more further native software applications ("lO proxies"), each
executing within the one or more native runtfime environments and each
corresponding to a respective one of the one or more hosted software
applications, receives the graphics generated by the respective hosted
software application and effects writing of those graphics to the video frame

buffer for presentation on the display of the computing device.

The invention provides in other aspects a computing device, e.g., as

described above, in which

e the one or more native runtime environments notify applications
executing within them, including the IO proxies, of user input made

with respect to those applications, and

e hosted software applications executing within the one or more
hosted runtime environments receive nofifications of events from a
hosted event handler subsystem that forms part of the one or more
hosted runtime environments and that is common fto the one or

more hosted software applications.

Each 1O proxy responds to nofification of user input by transmitting
information with respect thereto received from the one or more nafive
runtime environments to the hosted event handler, which nofifies the hosted
software application corresponding to 10 proxy that received that

noftification of that user input.

WO 2015/058102 PCT/US2014/061171

Yet still other aspects of the invention provide a computing device,
e.g., as described above, in which a first native software application installs
an 1O proxy and launch proxy for execution under the one or more nafive
runtime environments in connection with installation of a respective hosted
software application for execution under the one or more hosted runtime

environments.

Related aspects of the invention provide a computing device, e.g., as
described above, that is a mobile computing device, such as, by way of
nonlimiting example, a smart phone, tablet computer, set-top box,
connected felevision, in-vehicle infotainment system, or in-flight

entertainment system.

Further related aspects of the invention provide a computing device,
e.g., as described above, in which the hosted operating system is a Linux-
based operating system, such as, by way of nonlimiting example, an Android-
based operating system. In still further related aspects of the invention, the
hosted and nafive operating systems are differing variants of Linux-based
operating systems. And, in yet still further related aspects of the invention, the
hosted and native operating systems are differing variants of Android-based

operating systems.

Hosted Application Display in Multi-Operating System Mobile and Other

Computing Devices

Further aspects of the invention provide a computing device that
includes a central processing unit that is coupled to a hardware interface
(including at least a display and an associated video frame buffer) and that
executes a native operating system including one or more nafive runtime
environments within which native software applications are executing. Each
such native software application has instructions for execution under the

native operating system.

WO 2015/058102 PCT/US2014/061171

A first native software application ("ACL") executing within the one or
more native runtime environments defines one or more hosted runtime
environments within which hosted software applications are executing, e.g.,
the first native software application executes code comprising those
environments (or portions thereof) and/or it effects the installation,
instantiation and/or invocation of services/processes that make them (or
portions thereof) up. Each such hosted software application has instructions
for execution under a hosted operating system that differs from the nafive

operating system.

One or more of the hosted software applications executing within the
hosted runtime environments each executes instructions to interact with @
user of the computing device via graphics generated, as part of a graphical
user interface, by the respective hosted software application using a hosted
windowing subsystem that is common to the one or more hosted runtime
environments. Those graphics can be, for example, a graphical window
representing execution of the respective hosted software application. That
windowing subsystem is coupled to and loads one or more buffers with those

graphics.

One or more native software applications ("IO proxies”), each
executing within the one or more native runtfime environments and each
corresponding to a respective one of the one or more hosted software
applications, receives the graphics generated by the respective hosted
software application and effects writing of those graphics to the video frame

buffer for presentation on the display of the computing device.

Related aspects of the invention provide a computing device, e.g., as
described above, that is a mobile computing device, such as, by way of
nonlimiting example, a smart phone, tablet computer, set-top box,
connected felevision, in-vehicle infotainment system, or in-flight

entertainment system.

WO 2015/058102 PCT/US2014/061171

Further related aspects of the invention provide a computing device,
e.g., as described above, in which the hosted operating system is a Linux-
based operating system, such as, by way of nonlimiting example, an Android-
based operating system. In still further related aspects of the invention, the
hosted and nafive operating systems are differing variants of Linux-based
operating systems. And, in yet still further related aspects of the invention, the
hosted and native operating systems are differing variants of Android-based

operating systems.

Still further related aspects of the invention provide a computing
device, e.g., as described above, in which each of the native software
applications executes instructions to interact with the user of the computing
device via graphics generated as part of a graphical user interface by the
respective native software application using a native windowing subsystem
that is common to the one or more native runtime environments. That
windowing subsystem effects loading of the native frame buffer with those

graphics for presentation on the display of the computing device.

Yet still further related aspects of the invention provide a computing
device, e.g., as described above, in which the one or more buffers loaded

by the hosted windowing subsystem is a virtual frame buffer.

Still yet further related aspects of the invention provide a computing
device, e.g., as described above, in which the graphics generated by the
hosted software applications using the hosted windowing subsystem are

applications windows.

Further related aspects of the invention provide a computing device,
e.g., as described above, in which any of the native operating system and
the one or more native runtime environments effects loading of the nafive
frame buffer with graphics representing a status bar for presentation on the

display of the computing device. The native software applications

8

WO 2015/058102 PCT/US2014/061171

corresponding to the hosted software applications (i.e., the 10 proxies) effect
writing to the video frame buffer of the graphics received from those hosted
software applications so as to preserve presentation of the status bar on the

display.

The invention provides in other aspects a computing device, e.g., as
described above, in which (i) the one or more native runtime environments
notify applications executing within them, including the 10 proxies, of user
input made with respect to those applications, and (i) hosted software
applications executing within the one or more hosted runtime environments
receive noftifications of events from a hosted event handler subsystem that
forms part of the one or more hosted runtime environments and that is
common to the one or more hosted software applications. Each 1O proxy
responds to notification of user input by transmitting information with respect
thereto received from the one or more nafive runtime environments to the
hosted event handler, which nofifies the hosted software application
corresponding to the IO proxy that received that nofification of that user

inpuft.

According to other related aspects of the invention, a computing
device, e.g., as described above, includes one or more further nafive
software applications ("launch proxies"), each corresponding to a respective
one of the hosted software applications and each associated with an icon or
other identifier that is presented on the hardware interface for selection by
the user of the computing device. Each launch proxy responds to notification

of such selection by acftivating the respective hosted software application.

In related aspects of the invention, a launch proxy effects activation of
the respective hosted software application by transmitting a launch message
to the hosted event handler, which activates that hosted software

application within one of more of the hosted runtime environments.

WO 2015/058102 PCT/US2014/061171

Yet still other aspects of the invention provide a computing device,
e.g., as described above, in which the first native software application installs
an 1O proxy and launch proxy for execution under the one or more nafive
runtime environments in connection with installation of a respective hosted
software application for execution under the one or more hosted runtime

environments.

User/Hosted Application Interaction in Multi-Operating System Mobile

and Other Computing Devices

Other aspects of the invention provide a computing device that
includes a central processing unit that is coupled to a hardware interface
and that executes a native operating system including one or more nafive
runtime environments within which nafive software applications are
executing, where each such native software application has instructions for

execution under the native operating system.

A first native software application ("ACL") executing within the one or
more native runtime environments defines one or more hosted runtime
environments within which hosted software applications are executing, e.g.,
the first native software application executes code comprising those
environments or portions thereof and/or it effects the installation, instantiation
and/or invocation of services/processes that make them (or portions thereof)
up. Each such hosted software application has instructions for execution
under a hosted operating system that differs from the native operating
system. One or more of the hosted software applications executing within the
one or more hosted runtime environments receive notifications of events from
a hosted event handler subsystem that forms part of the one or more hosted
runtime environments and that is common to the one or more hosted

software applications.

10

WO 2015/058102 PCT/US2014/061171

One or more native software applications ("IO proxies”), each
executing within the one or more native runtfime environments and each
corresponding to a respective one of the one or more hosted software
applications, receive notification of user input made with respect to them
from the one or more native runtime environments. Each 1O proxy responds to
nofification of user input by transmitting information with respect thereto
received from the one or more native runtime environments to the hosted
event handler, which nofifies the hosted software application corresponding

to the 10O proxy that received that noftification of that user input.

According to related aspects of the invention, the hardware interface
of a computing device, e.g., as described above, includes a user input
device such as, for example, a touch screen, keyboard, trackball, touch
stick, and so forth, that is in communications coupling with the one or more
native runtime environments. Those one or more native runtfime environments
respond to a touch or other user input from the input device by transmitting
respective touch or other input data to a said 1O proxy with respect to which

the input was made.

Related aspects of the invention provide a computing device, e.g., as
described above, that is a mobile computing device, such as, by way of
nonlimiting example, a smart phone, tablet computer, set-top box,
connected felevision, in-vehicle infotainment system, or in-flight

entertainment system.

Further related aspects of the invention provide a computing device,
e.g., as described above, in which the hosted operating system is a Linux-
based operating system, such as, by way of nonlimiting example, an Android-
based operating system. In still further related aspects of the invention, the
hosted and nafive operating systems are differing variants of Linux-based

operating systems. And, in yet still further related aspects of the invention, the

11

WO 2015/058102 PCT/US2014/061171

hosted and native operating systems are differing variants of Android-based

operating systems.

According to other related aspects of the invention, a computing
device, e.g., as described above, includes one or more further nafive
software applications ("launch proxies"), each corresponding to a respective
one of the hosted software applications and each associated with an icon or
other identifier that is presented on the hardware interface for selection by
the user of the computing device. Each launch proxy responds to notification

of such selection by acftivating the respective hosted software application.

In related aspects of the invention, a launch proxy effects activation of
the respective hosted software application by transmitting a launch message
to the hosted event handler, which activates that hosted software

application within one of more of the hosted runtime environments.

Yet still other aspects of the invention provide a computing device,
e.g., as described above, in which first native software applicatfion installs an
IO proxy and launch proxy for executfion under the one or more native
runtime environments in connection with installation of a respective hosted
software application for execution under the one or more hosted runtime

environments.

Coordination of Foreground Application Tasks in Multi-Operating

System Mobile and Other Computing Devices

According to further aspects of the invention, there is provided a
computing device that includes a central processing unit that is coupled to a
hardware interface (including at least a display and an associated video
frame buffer) and that executes a native operating system including one or

more native runtime environments within which native software applications

12

WO 2015/058102 PCT/US2014/061171

are executing. Each such native software application has instructions for

execution under the native operating system.

A first native software application ("ACL") executing within the one or
more native runtime environments defines one or more hosted runtime
environments within which hosted software applications are executing, e.g.,
the first native software application executes code comprising those
environments or portions thereof and/or it effects the installation, instantiation
and/or invocation of services/processes that make them (or portions thereof)
up. Each such hosted software application has instructions for execution
under a hosted operating system that differs from the native operating

system.

One or more of the hosted software applications executing within the
one or more hosted runtime environments each executes instructions to
interact with a user of the computing device via graphics generated as part
of a graphical user interface by the respective hosted software application
using a hosted windowing subsystem that is common to the one or more
hosted runtime environments. That windowing subsystem is coupled to and

loads one or more buffers with those graphics.

One or more native software applications ("IO proxies”), each
executing within the one or more native runtfime environments and each
corresponding to a respective one of the one or more hosted software
applications, receives the graphics generated by the respective hosted
software application and effects writing of those graphics to the video frame

buffer for presentation on the display of the computing device.

The nafive operating system and/or the one or more native runtime
environments responds to user selection of an executing one of the nafive
software applications by bringing a graphical window representing execution

of that application to a foreground of the display and making it "active"

13

WO 2015/058102 PCT/US2014/061171

within the one or more native runtime environments. According to related
aspects of the invention, the first native software application, e.g., upon
being brought to the foreground and/or being made active, effects making
the the first hosted software application active within the one or more hosted

runtime environments as if it had been brought to the foreground in them.

According to related aspects of the invention, the hardware interface
of a computing device, e.g., as described above, includes a user input
device such as, for example, a touch screen, keyboard, trackball, touch
stick, and so forth, that is in communications coupling with the 1O proxies. An
event handler executes within the one or more hosted runtime environments
and is in communications coupling with the one or more hosted software
applications. A 10 proxy with respect to which a touch or other input data is
received from the user input device fransmits touch or other input data to the
event handler, which nofifies the corresponding hosted software application
of same, e.g., thereby making it active within the one or more hosted runtime

environments.

According fo related aspects of the invention, in a computing device,
e.g., as described above, the graphics generated as part of a graphical user
interface by the respective hosted software application can be a graphical
window representing execution of the respective hosted software

application.

According to other related aspects of the invention, in a computing
device, e.g., as described above, the windowing subsystem is coupled to
and loads one or more buffers with those graphics. The first native software
application determines whether the corresponding hosted software
application is active in the one or more hosted application runtime

environments using those one or more buffers.

14

WO 2015/058102 PCT/US2014/061171

Yet still further related aspects of the invention provide a computing
device, e.g., as described above, in which the one or more buffers loaded

by the hosted windowing subsystem is a virtual frame buffer.

According to further related aspects of the invention, the 10 proxy with
respect to which a touch or other input data is received from the user input
device of a computing device, e.g., as described above, determines
whether the corresponding hosted software application is active in the one
or more hosted application runtime environments by checking whether a
graphical window representing that application is in the virtual foreground

and/or active in the aforesaid one or more buffers.

According to still further related aspects of the invention, the IO proxy
with respect to which a touch or other input data is received from the user
input device of a computing device, e.g., as described above, executes one
or more waits upon being brought to the foreground and/or being made
active, until determining that the corresponding hosted software application

is active in the one or more hosted application runtime environments.

Yet still other aspects of the invention provide a computing device,
e.g., as described above, in which a first natfive software application installs a
said 1O proxy for execution under the one or more nafive runtime
environments in connection with installation of a respective hosted software
application for execution under the one or more hosted runtime

environments.

Related aspects of the invention provide a computing device, e.g., as
described above, that is a mobile computing device, such as, by way of
nonlimiting example, a smart phone, tablet computer, set-top box,
connected felevision, in-vehicle infotainment system, or in-flight

entertainment system.

15

WO 2015/058102 PCT/US2014/061171

Further related aspects of the invention provide a computing device,
e.g., as described above, in which the hosted operating system is a Linux-
based operating system, such as, by way of nonlimiting example, an Android-
based operating system. In still further related aspects of the invention, the
hosted and nafive operating systems are differing variants of Linux-based
operating systems. And, in yet still further related aspects of the invention, the
hosted and native operating systems are differing variants of Android-based

operating systems.

Notification and Reply Adaptation for Hosted Applications in Multi-

Operating System Mobile and Other Computing Devices

Further aspects of the invention provide a computing device that
supports execution of applications under multiple operating systems and that
adapts user noftifications and replies for applications executing on non-native

ones of those operating systems.

According to these aspects of the invention, there is provided a
computing device, e.g., of the type described above, that includes a central
processing unit that is coupled to a hardware interface (including at least a
display and an associated video frame buffer) and that executes a native
operating system including one or more native runtime environments within
which native software applications are executing, where each such native
software application has instructions for execution under the native operating
system. A first native software application ("ACL") executing within the one or
more native runtime environments defines one or more hosted runtime
environments within which hosted software applications are executing, e.g.,
the first native software application executes code comprising those
environments or portions thereof and/or it effects the installation, instantiation
and/or invocation of services/processes that make them (or portions thereof)

up. Each such hosted software application has instructions for execution

16

WO 2015/058102 PCT/US2014/061171

under a hosted operating system that differs from the native operating

system.

The one or more native runtime environments include a common
native noftification subsystem that is in communications coupling with the
native software applications and that marshals notifications generated by

them for presentation to the user via the hardware interface.

The one or more hosted runtime environments include a common
hosted nofification subsystem that is in communications coupling with the
hosted software applications and that marshals nofifications generated by
them for presentation to the user via the hardware interface. The hosted
nofification subsystem comprises instructions for execution under the hosted
operating system and executes on the central processing unit within one of
more of the hosted runtime environments. The native nofification subsystem
comprises instructions for execution under the native operating system and
executes on the central processing unit within one of more of the hosted

runtfime environments.

A plurality of hosted software applications that each comprise
instructions for execution under that hosted operating system execute on the
central processing unit within one of more of the hosted runtime
environments. One or more of those applications generate noftifications for
presentation to a user of the device and tfransmit those noftifications to the
hosted nofification subsystem, which is in communications coupling with an
adaptation layer that adapts noftifications received from the one or more
hosted software applications for, and transmits them to, the native hosted
nofification subsystem, which effects their presentation on the hardware

interface of noftifications from the hosted software applications.

Related aspects of the invention provide a computing device, e.g., as

described above, in which the adaptation layer comprises a hosted

17

WO 2015/058102 PCT/US2014/061171

component that includes instructions for execution under the hosted
operating system and executes on the central processing unit within one of
more of the hosted runtime environments, and a native component that
includes instructions for execution under the nafive operafing system and
executes on the central processing unit within one of more of the nafive

runtfime environments.

Further related aspects of the invention provide a computing device,
e.g., as described above, in which the hosted component of the adaptation
layer communicates with the hosted software applications executing within
the one or more hosted runtime environments via a first infer process
communications (IPC) protocol, and in which the native component of the
adaptation layer communicates with the nafive software applications
executing within the one or more native runtime environments via a second

IPC protocol.

Still further aspects of the invention provide a computing device, e.g.,
as described above, in which a first one of the plural hosted software
applications and the first native software application, together, effect
presentation of a graphical window representing execution of the first hosted
software application on the display of the computing device. At least one of
the native operafing system and the one or more nafive runtime
environments bring to a foreground of the display a graphical window
representing execution of a native software application (i) which generated
a noftification for presentation by the native notification subsystem, and (i) to
which nofification the user has responded—thereby making that native
software application "active" within the one or more native runtime
environments. According to these aspects of the invention, the first nafive
software application, e.g., upon being brought to the foreground and/or
being made active, effects making the first hosted software application
active within the one or more hosted runtime environments as if it had been

brought to the foreground in them.

18

WO 2015/058102 PCT/US2014/061171

According to further related aspects of the invention, the computing
device, e.g., as described above, includes an event handler that executes
within the hosted runfime execution environment and with which the first
hosted application is in communications coupling. The first natfive software
application responds to a touch or other user input from the input device by
fransmitting respective touch or other input data to the event handler, which
noftifies the first hosted application of same, e.g., thereby making it active

within the one or more hosted runtime environments.

Still other aspects of the invention provide a computing device, e.g., as
described above, in which the translation layer adapts notifications received
from the one or more hosted software applications by converting them to a
format presentable by the one or more native runtime environments via the
user inferface. Related aspects of the invention provide such a device in
which the franslation layer adapts nofifications received from the one or
more hosted software applications by converting them to a format

displayable by the one or more native runtime environments via the display.

Still other aspects of the invention provide a computing device, e.g., as
described above, in which the translation layer adapts notifications received
from the one or more hosted software applications by mapping parameters
of the notifications to corresponding parameters of the one or more natfive

runtfime environments.

Still other aspects of the invention provide a computing device, e.g., as
described above, in which the translation layer adapts notifications received
from the one or more hosted software applications that include messages
that are to be delivered based on the user’'s interaction with the notification
by registering the message with the first native software application and
posting to the nafive nofification subsystem a notification that includes a

reference to that registered message in lieu of the message itself.

19

WO 2015/058102 PCT/US2014/061171

A related aspect of the invention provides a computing device, e.g.,
as described above, in which the first native software application responds to
receipt, from the native notification subsystem, of a return message including
such an aforesaid reference by effecting delivery to the first hosted software

application of a reply message including the referenced registered message.

HOSTED APP INTEGRATION SERVICES IN MULTI-OPERATING SYSTEM
MOBILE AND OTHER COMPUTING DEVICES

Further aspects of the invention provide a computing device, e.g., as
described above, that includes a central processing unit that is coupled to a
hardware interface (including at least a display and an associated video
frame buffer) and that executes a native operating system including one or
more native runtime environments within which native software applications
are executing, where each such native software application has instructions

for execution under the native operating system.

A first native software application ("ACL") executing within one or more
of the native runfime environments effects installation, instantiation and/or
invocation of services/processes that run outside the context of the first native
software application and that make up one or more hosted runtime
environments within which hosted software applications are executing (or
portions of those runtime environments) and may, according to some
aspects of the invention, execute the hosted runtime environments and/or
portions thereof. Each such hosted software application has instructions for
execution under a hosted operating system that differs from the nafive

operating system.

One or more of the hosted software applications executing within the
runtime environments each executes instructions to interact with a user of the
computing device via graphics generated (as part of a graphical user

interface) by the respective hosted software application, using a hosted

20

WO 2015/058102 PCT/US2014/061171

windowing subsystem that is common to the one or more hosted runtime
environments. That windowing subsystem is coupled to, and loads, one or

more buffers with those graphics.

One or more native software applications ("launch proxies”), each
corresponding to a respective one of the hosted software applications and
each associated with an icon or other identifier, that is presented on the
hardware interface for selection by the user of the computing device,
responds to notification of such selection by activating the respective hosted

software application.

One or more further native software applications ("lO proxies"), each
executing within the one or more native runtfime environments and each
corresponding to a respective one of the one or more hosted software
applications, receives the graphics generated by the respective hosted
software application and effects writing of those graphics to the video frame

buffer for presentation on the display of the computing device.

HOSTED APPLICATION DISPLAY

Further aspects of the invention provide a computing device, e.g., as
described above, that includes a central processing unit that is coupled to a
hardware interface (including at least a display and an associated video
frame buffer) and that executes a native operating system including one or
more native runtime environments within which native software applications
are executing. Each such native software application has instructions for

execution under the native operating system.

A first native software application ("ACL") executing within one or more
of the native runtime environments effects installation, instantiation and/or
invocation of services/processes that run outside the context of the first native

software application and that make up one or more hosted runtime

21

WO 2015/058102 PCT/US2014/061171

environments within which hosted software applications are executing (or
portions of those runtime environments) and may, according to some
aspects of the invention, execute the hosted runtime environments and/or
portions thereof. Each such hosted software application has instructions for
execution under a hosted operating system that differs from the nafive

operating system.

One or more of the hosted software applications executing within the
hosted runtime environments each executes instructions to interact with @
user of the computing device via graphics generated, as part of a graphical
user interface, by the respective hosted software application using a hosted
windowing subsystem that is common to the one or more hosted runtime
environments. Those graphics can be, for example, a graphical window
representing execution of the respective hosted software application. That
windowing subsystem is coupled to and loads one or more buffers with those

graphics.

One or more native software applications ("IO proxies”), each
executing within the one or more native runtfime environments and each
corresponding to a respective one of the one or more hosted software
applications, receives the graphics generated by the respective hosted
software application and effects writing of those graphics to the video frame

buffer for presentation on the display of the computing device.

USER/HOSTED APPLICATION INTERACTION

Other aspects of the invention provide a computing device, e.g., as
described above, that includes a central processing unit that is coupled to a
hardware interface and that executes a native operating system including
one or more native runtime environments within which nafive software
applications are executing, where each such native software application has

instructions for execution under the native operating system.

22

WO 2015/058102 PCT/US2014/061171

A first native software application ("ACL") executing within one or more
of the native runfime environments effects installation, instantiation and/or
invocation of services/processes that run outside the context of the first native
software application and that make up one or more hosted runtime
environments within which hosted software applications are executing (or
portions of those runtime environments) and may, according to some
aspects of the invention, execute the hosted runtime environments and/or
portions thereof. Each such hosted software application has instructions for
execution under a hosted operating system that differs from the nafive
operating system. One or more of the hosted software applications executing
within the one or more hosted runtime environments receive notifications of
events from a hosted event handler subsystem that forms part of the one or
more hosted runtime environments and that is common to the one or more

hosted software applications.

One or more native software applications ("IO proxies”), each
executing within the one or more native runtfime environments and each
corresponding to a respective one of the one or more hosted software
applications, receive notification of user input made with respect to them
from the one or more native runtime environments. Each 1O proxy responds to
nofification of user input by transmitting information with respect thereto
received from the one or more native runtime environments to the hosted
event handler, which nofifies the hosted software application corresponding

to the 10O proxy that received that noftification of that user input.

COORDINATION OF FOREGROUND APPLICATION TASKS

According to further aspects of the invention, there is provided a
computing device, e.g., as described above, that includes a central
processing unit that is coupled to a hardware interface (including at least a
display and an associated video frame buffer) and that executes a native

operating system including one or more native runtime environments within

23

WO 2015/058102 PCT/US2014/061171

which native software applications are executing. Each such native software

application has instructions for execution under the native operating system.

A first native software application ("ACL") executing within one or more
of the native runfime environments effects installation, instantiation and/or
invocation of services/processes that run outside the context of the first native
software application and that make up one or more hosted runtime
environments within which hosted software applications are executing (or
portions of those runtime environments) and may, according to some
aspects of the invention, execute the hosted runtime environments and/or
portions thereof. Each such hosted software application has instructions for
execution under a hosted operating system that differs from the nafive

operating system.

One or more of the hosted software applications executing within the
one or more hosted runtime environments each executes instructions to
interact with a user of the computing device via graphics generated as part
of a graphical user interface by the respective hosted software application
using a hosted windowing subsystem that is common to the one or more
hosted runtime environments. That windowing subsystem is coupled to and

loads one or more buffers with those graphics.

One or more native software applications ("lO proxies'), each
executing within the one or more native runtfime environments and each
corresponding to a respective one of the one or more hosted software
applications, receives the graphics generated by the respective hosted
software application and effects writing of those graphics to the video frame

buffer for presentation on the display of the computing device.

The native operating system and/or the one or more native runtime
environments responds to user selection of an executing one of the nafive

software applications by bringing a graphical window representing execution

24

WO 2015/058102 PCT/US2014/061171

of that application to a foreground of the display and making it "active"
within the one or more native runtime environments. According to related
aspects of the invention, the first native software application, e.g., upon
being brought to the foreground and/or being made active, effects making
the the first hosted software application active within the one or more hosted

runtime environments as if it had been brought to the foreground in them.

NOTIFICATION AND REPLY ADAPTATION FOR HOSTED APPLICATIONS

Further aspects of the invention provide a computing device, e.g., as
described above, that supports execution of applications under multiple
operating systems and that adapts user nofifications and replies for

applications executing on non-native ones of those operating systems.

According to these aspects of the invention, there is provided a
computing device, e.g., of the type described above, that includes a central
processing unit that is coupled to a hardware interface (including at least a
display and an associated video frame buffer) and that executes a native
operating system including one or more native runtime environments within
which native software applications are executing, where each such native
software application has instructions for execution under the native operating
system. A first native software application ("ACL") executing within one or
more of the native runtime environments effects installation, instantiation
and/or invocation of services/processes that run outside the context of the
first native software applicafion and that make up one or more hosted
runtime environments within - which hosted software applications are
executing (or portions of those runtime environments) and may, according to
some aspects of the invention, execute the hosted runtfime environments
and/or portfions thereof. Each such hosted software application has
instructions for execution under a hosted operating system that differs from

the native operating system.

25

WO 2015/058102 PCT/US2014/061171

The one or more native runtime environments include a common
native noftification subsystem that is in communications coupling with the
native software applications and that marshals notifications generated by

them for presentation to the user via the hardware interface.

The one or more hosted runtime environments include a common
hosted nofification subsystem that is in communications coupling with the
hosted software applications and that marshals nofifications generated by
them for presentation to the user via the hardware interface. The hosted
nofification subsystem comprises instructions for execution under the hosted
operating system and executes on the central processing unit within one of
more of the hosted runtime environments. The native nofification subsystem
comprises instructions for execution under the native operating system and
executes on the central processing unit within one of more of the hosted

runtfime environments.

A plurality of hosted software applications that each comprise
instructions for execution under that hosted operating system execute on the
central processing unit within one of more of the hosted runtime
environments. One or more of those applications generate noftifications for
presentation to a user of the device and tfransmit those noftifications to the
hosted nofification subsystem, which is in communications coupling with an
adaptation layer that adapts noftifications received from the one or more
hosted software applications for, and transmits them to, the native hosted
nofification subsystem, which effects their presentation on the hardware

interface of noftifications from the hosted software applications.

MULTI-OPERATING SYSTEM MOBILE AND OTHER COMPUTING DEVICES
WITH PROXY APPLICATIONS RUNNING UNDER A BROWSER

Further aspects of the invention provide a computing device, e.g., as

described above, that includes a central processing unit that is coupled to a

26

WO 2015/058102 PCT/US2014/061171

hardware interface (including at least a display) and that executes a native
operating system including one or more native runtime environments within
which one or more native software applications—including at least a
browser—are executing, where each such native software application has

instructions for execution under the native operating system.

The central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing services
that make up one or more hosted runtime environments (or portions thereof)
within which one or more hosted software applications are executing. Each
such hosted software application has instructions for execution under a
hosted operating system that differs from the application execution
environment defined within the browser and that may also differ from the

native operating system.

One or more applications (“proxies”) executing within the browser,
each corresponding to a respective one of the hosted software applications
and each associated with an icon or other identifier that is presented on the
hardware interface for selection by the user of the browser, responds to
noftification of such selection by activating the respective hosted software

application.

The browser defines an application execution environment for
executing applications in Javascript, HTMLS, CSS or other
scripting/programming languages common to web apps. Though referred o
here and throughout this document as an application, the term “browser” as
used herein also refers to layers within a software stack or architecture
executing the computing device. An example of such a browser
“application” is the Gecko layer of the commercially available on Mozilla's

Firefox Operating System (Firefox OS).

27

WO 2015/058102 PCT/US2014/061171

In some aspects of the invention, the browser is a “web browser” of the
type that, additionally, permits users to access and navigate resources (such
as web pages) on a network such as the Internet, an extranet and so forth.
Examples of such browsers include Morzilla's Firefox™, Google's Chrome™,

Apple’s Safari™ and so forth.

HOSTED APPLICATION DISPLAY

Further aspects of the invention provide a computing device, e.g., as
described above, that includes a central processing unit that is coupled to a
hardware interface (including at least a display) and that executes a native
operating system including one or more native runtime environments within
which one or more native software applications—including at least a
browser—are executing, where each such native software application has

instructions for execution under the native operating system.

The central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing services
that make up one or more hosted runtime environments (or portions thereof)
within which one or more hosted software applications are executing. Each
such hosted software application has instructions for execution under a
hosted operating system that differs from the application execution
environment defined within the browser and that may also differ from the

native operating system.

One or more of the hosted software applications executing within the
hosted runtime environments each executes instructions to interact with @
user of the computing device via graphics generated (as part of a graphical
user interface) by the respective hosted software application, using a hosted
windowing subsystem that is common to the one or more hosted runtime
environments. That windowing subsystem is coupled to, and loads, one or

more buffers with those graphics.

28

WO 2015/058102 PCT/US2014/061171

One or more applications (“proxies”) executing within the browser,
each corresponding to a respective one of the one or more hosted software
applications, receives the graphics generated by the respective hosted
software application and effects writing of those graphics to the video frame

buffer for presentation on the display of the computing device.

USER/HOSTED APPLICATION INTERACTION

Further aspects of the invention provide a computing device, e.g., as
described above, that includes a central processing unit that is coupled to a
hardware interface (including at least a display) and that executes a native
operating system including one or more native runtime environments within
which one or more native software applications—including at least a
browser—are executing, where each such native software application has

instructions for execution under the native operating system.

The central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing services
that make up one or more hosted runtime environments (or portions thereof)
within which one or more hosted software applications are executing. Each
such hosted software application has instructions for execution under a
hosted operating system that differs from the application execution
environment defined within the browser and that may also differ from the

native operating system.

One or more of the hosted software applications executing within the
one or more hosted runtime environments receive notifications of events from
a hosted event handler subsystem that forms part of the one or more hosted
runtime environments and that is common to the one or more hosted

software applications.

29

WO 2015/058102 PCT/US2014/061171

One or more applications (“proxies”) executing within the browser,
each corresponding to a respective one of the one or more hosted software
applications, receive notification of user input made with respect to them
from the one or more native runtime environments and/or from the browser.
Each proxy responds to nofification of user input by fransmitting information
with respect thereto received from the one or more native runtime
environments to the hosted event handler, which nofifies the hosted software
application corresponding to the proxy that received that notification of that

user input.

COORDINATION OF FOREGROUND APPLICATION TASKS

Further aspects of the invention provide a computing device, e.g., as
described above, that includes a central processing unit that is coupled to a
hardware interface (including at least a display) and that executes a native
operating system including one or more native runtime environments within
which one or more native software applications—including at least a
browser—are executing, where each such native software application has

instructions for execution under the native operating system.

The central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing services
that make up one or more hosted runtime environments (or portions thereof)
within which one or more hosted software applications are executing. Each
such hosted software application has instructions for execution under a
hosted operating system that differs from the application execution
environment defined within the browser and that may also differ from the

native operating system.

The native operating system and/or the one or more native runtime
environments responds to user selection of an executing one of the nafive

software applications by bringing a graphical window representing execution

30

WO 2015/058102 PCT/US2014/061171

of that application to a foreground of the display and making it "active"
within the one or more native runtime environments. One or more
applications (“proxies”) executing within the browser, each corresponding o
a respective one of the hosted software applications, responds to begin
brought to the foreground and/or being made active, by making the
corresponding hosted software application active within the one or more
hosted runtime environments as if it had been brought to the foreground in

them.

NOTIFICATION AND REPLY ADAPTATION FOR HOSTED APPLICATIONS

Further aspects of the invention provide a computing device, e.g., as
described above, that includes a central processing unit that is coupled to a
hardware interface (including at least a display) and that executes a native
operating system including one or more native runtime environments within
which one or more native software applications—including at least a
browser—are executing, where each such native software application has

instructions for execution under the native operating system.

The central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing services
that make up one or more hosted runtime environments (or portions thereof)
within which one or more hosted software applications are executing. Each
such hosted software application has instructions for execution under a
hosted operating system that differs from the application execution
environment defined within the browser and that may also differ from the

native operating system.

The one or more native runtime environments and/or the browser
include a common native noftification subsystem that is in communications

coupling with applications executing under the browser and that marshals

31

WO 2015/058102 PCT/US2014/061171

noftifications generated by them for presentation to the user via the hardware

interface.

The one or more hosted runtime environments likewise include a
common hosted nofification subsystem that is in communications coupling
with the hosted software applications and that marshals notifications

generated by them for presentation to the user.

A plurality of hosted software applications that each comprise
instructions for execution under that hosted operating system execute on the
central processing unit within one of more of the hosted runtime
environments. One or more of those applications generate noftifications for
presentation to a user of the device and tfransmit those noftifications to the
hosted nofification subsystem, which is in communications coupling with an
adaptation layer that adapts noftifications received from the one or more
hosted software applications for, and fransmits them to, the common native
nofification subsystem, which effects their presentation on the hardware

interface of noftifications from the hosted software applications.

The foregoing and other aspects of the invention are evident in the

discussion that follows and in the drawings.

32

WO 2015/058102 PCT/US2014/061171

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the invention may be atftained by

reference to the drawings, in which:

Figures TA-1C depict a computing device of the type embodying the

invention;

Figure 2 depicts a native operating system of the type executing in the

device of Figure 1;

Figure 3 depicts one or more hosted runtime environments defined by
a native software application for execution of hosted software applications in

the device of Figure 1;

Figure 4 depicts the interaction of components in launching an
exemplary hosted software application based on user interaction with that
applicafion’s launch proxy executing in a natfive runtime environment,
displaying an application window representing operation of the hosted
software application via that application’'s 10 proxy, and fransmitting user

input from that proxy back to the hosted application;

Figure 5 is a block diagram illustrating task operations in both the
hosted application runtime environment and the native application runtime
environment, and a one-to-one correspondence between hosted
application tasks and proxy tasks, in accordance with an embodiment of the

invention;

Figure 6 is a block diagram illustrating the relationships between proxy
tasks in the native application runtime environment and the complex task
models and virtual frame buffer of the hosted application runtime

environment, according to the task switching method of Figure 8;

33

WO 2015/058102 PCT/US2014/061171

Figure 7 is a flow chart illustrating a task switching method occurring in
both the hosted application runtime environment and the native application
runtime environment of the device of Figure 5, in accordance with an

embodiment of the invention:;

Figure 8 depicts interaction of the notification subsystems of the hosted
runtime environments and native runtime environments in a system

according to the invention

Figure 9 depicts a nofification franslafion function in a system

according to the invention;

Figures 10-12 are flowcharts depicting nofification franslation in a

system according to the invention; and

Figures 13-14 parallel Figures 2-3 and depict implementations of hosted
runtime environments in systems utilizihg daemons according to some

practices of the invention.

Figure 15 parallels Figure 13 and depicts implementations of runtime

environments in systems in which host proxies execute in a browser.

34

WO 2015/058102 PCT/US2014/061171

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENT

Architecture

Figure TA depicts a computing device 10 of the type embodying the
invention. The illustrated device 10 includes a central processing unit (CPU),
input/output (I/0), memory (RAM) and nonvolatie storage (MEM)
subsections, of the type commonly provided computing devices of the type
commercially available in the marketplace, all as adapted in accord with
the teachings hereof. In the illustrated embodiment, the device 10 comprises
a mobile computing device, such as a smart phone or tablet computer,
though, in other embodiments it may comprise other computing devices,
mobile or otherwise, e.g., a set-top box, connected television, in-vehicle

infotainment system, or in-flight entertainment system, just to name a few.

The device 10 may be connected permanently, intermittently or
otherwise to one or more other computing devices, servers, or other
apparatus capable of digital communications (not shown) by a network,
here, depicted by “cloud” 12, which may comprise an Internet, metropolitan
area network, wide area network, local area network, satellite network,
cellular network, point-to-point network and/or a combination of one or more
of the foregoing, in the conventional manner known in the art, as adapted in

accord with the tfeachings hereof.

The CPU of device 10 (e.g., in conjunction with the I/O, RAM and/or
MEM subsections) executes a native operating system 14 of the type
commercially available in the marketplace, as adapted in accord with the
teachings hereof. Examples of such operating systems include the Meego,
Tizen, Android, WebQOS, and Linux operating systems, to name just a few.
More generally and/or in addition, the native operating system 14 can be a
Linux-based operating system, such as, by way of nonlimiting example, an

Android-based operating system.

35

WO 2015/058102 PCT/US2014/061171

Native Runfime Environment(s)

Figure 2 depicts a native operating system 14 of the type executing on

illustrated device 10 of Figure 1.

Referring to that drawing, the native operating system 14 defines one
or more native runtime environments 16 of the type known in the art (as
adapted in accord with the teachings hereof) within which native software
applications of the type known in the art (as adapted in accord with the
teachings hereof)—i.e., applications having instructions for execution under
the native operating system—are executing. Such applications are labeled
15, 18 and 46-52 in the drawing. As used here and elsewhere herein, the

terms "application” and "app" are used interchangeably.

The native runtime environment(s) 16 may comprise one or more virtual
machines or otherwise, as is conventional in the art (as adapted in accord
with the teachings hereof), depending on the native operating system 14
and the specifics of its implementation on device 10. lllustrated nafive
runtime environment 16 includes, by way of nonlimiting example, application
resources 19 and runtime libraries 20, all of the type known in the art, as
adapted in accord with the teachings hereof. That runtime environment 16
also includes a kernel 24 of the type known in the art, as adapted in accord

with the teachings hereof.

Kermnel 24 (or alternate functionality provided in the runtime
environment(s) of alternate embodiments) serves inter alia as an interface, in
the conventional manner known in the art has adapted in accord with the
teachings hereof, between CPU 12 (and, more typically, the native
applications executing within the native runtime environment 16 executing
thereon) and hardware devices 24-30 integral or attached to device 10. This
includes display/touch screen 24 and the frame buffer 26 that drive displays

thereon in the conventional manner known in the art, as adapted in accord

36

WO 2015/058102 PCT/US2014/061171

with the teachings hereof. This can also include, by way of non-limiting
example, a keyboard, trackball, touch stfick, other user input devices, and/or
other integral or peripheral devices of the type known in the art. In the
discussion that follows, the display/touch screen 24, the frame buffer 26, and
other integral/peripheral devices supporting interactions between the device
10 and its user are referred to as a "hardware interface,” regardless of
whether they comprise hardware, software or (as is more typically the case)

a combination thereof.

A native software application 18, referred to, here, without intent of
limitation, as the "Applications Compatibility Layer” or "ACL", executing within
the one or more native runtfime environments 16, defines one or more hosted
runtime environments within - which hosted software applications are
executing. In this regard, the application 18 can execute code comprising
those hosted runtime environment(s) 32 or portions thereof (e.g., the virtual
machines that make up those hosted runtime environment(s) 32).
Alternatively, or in addition, the application 18 can effect the installation,
instantfiation and/or invocation of processes and, more typically, for example,
daemons, that make up those environments 32 or portions thereof. The
former approach is illustrated in Figures 2-3; the lafter is illustrated in Figures
13-14.

Each such hosted software application has instructions for execution
under a hosted operating system that differs from the native operating

system.

Native software applications 46-52 are proxies of hosted software
applications 34, 36 that afford them (the hosted software applications)
access to resources of the native operating system 14 and native runtime
environments 16, as well as of the hardware resources of the device 10.
Particularly, in the illustrated embodiment, each hosted software application

executing in hosted runtime environment 32 has two corresponding proxies

37

WO 2015/058102 PCT/US2014/061171

executing in the executing in native runtime environment 16: a launch proxy
and an 1O proxy. Here, the proxies of hosted software application 34 are
launch proxy 46 and 1O proxy 50. The proxies of hosted software application
36 are launch proxy 48 and 1O proxy 52. Although, both launch and 10O
proxies are used in the illustrated embodiment, in other embodiments hosted
software applications may have corresponding proxies of only one type (e.g.,
IO or launch) or otherwise. For example, in other embodiments, still more
proxies may be provided for each hosted application, and, yeft, in still other
embodiments, the functions of multiple such proxies may be combined into a

single proxy—all without deviating from the spirit hereof.

Hosted Runtime Environmeni(s)

The hosted operating system can be, for example, a Linux-based
operating system, such as, by way of nonlimiting example, an Android-based
operating system. The native operating system 14 can likewise be, for
example, a Linux-based and/or Android-based operating system, albeit, of a
different "flavor" than that of the hosted operating system. By way of more
particular example, where the native operating system 14 comprises one of
the aforementioned Tizen, WebQOS, Linux operating systems (as adapted in
accord with the teachings hereof), by way of nonlimiting example, the
hosted operating system can comprise a "flavor" of the commercially
available Android operating system (as adapted in accord with the

teachings hereof), again, by way of nonlimiting example.

Figure 3 depicts the one or more hosted runtime environments 32
defined by the native software application 18 (or ACL) for execution of
hosted software applications 34, 36 in the device 10 according to some
practices of the invention. The illustrated hosted runtime environment 32 is of
the type known in the art (as adapted in accord with the teachings hereof)

within which software applications having instructions for execution under the

38

WO 2015/058102 PCT/US2014/061171

hosted operating system (i.e., hosted software applications) are built and

infended to be executed.

The hosted runtime environment(s) 32 may comprise one or more
virtual machines or otherwise, as is conventional in the art (as adapted in
accord with the teachings hereof), depending on the type of the hosted
operating system and the specifics of its implementation within the runtime
environments 32. lllustrated hosted runtime environment 32 is intended for
executing Android-based software applications 34, 36 (though, other
embodiments may be intended for executing applications designed and
built for other operating systems) and includes, by way of non-limiting
example, a resource framework 38, virtual machines (VMs) 40, event handler
42 and run-time libraries 44, all by way of non-limiting example and all of the

type known in the art, as adapted in accord with the teachings hereof.

The illustrated runtime environment 32 does not include a kernel per se
(as might normally be included, for example, in the runtime environment of a
Linux-/Android-based operating system) in the sense of running operations in
a protected, kernel space of the type known in the art. Instead, some such
operations (e.g., operations that might normally be included, for example, in
the kernel of a Linux-/Android-based operating system) are executed in user

space.

By way of example are those kernel space operations relied upon by
the resource framework 38, virtual machines (VMs) 36, event handler 42, run-
time libraries 44, and/or other components of the runtime environment 32 o
load graphics to a frame buffer for presentation on a display. Rather than
executing in a kernel of hosted runtime environment 32, in the illustrated
embodiment those operations are elevated to user space and are employed
to load such graphics to a "virtual' frame buffer 54, which (as discussed
below) is shared with the native runtime environment 16 and the applications

executing there — particularly, the I/O proxy applications 50, 52.

39

WO 2015/058102 PCT/US2014/061171

The execution of other such kernel-space operations is avoided by
passing-off to native operating system 14 and its runtfime environment 16
operations and, more broadly, functions required for execution of hosted
software applications 34, 36 that would otherwise be performed within the

runtime environment 32 and, specifically, for example by a kernel thereof.

Such passing-off, in the illustrated embodiment, is effected, for
example, by the resource framework 38, virtual machines (VMs) 36, event
handler 42, run-time libraries 44, and/or other components of the runtime
environment 32, which communicate with and/or otherwise rely on the
native software application proxies 46-52 (executing in runtime environment
16) of hosted software applications 34, 36 to perform such functions or

alternates thereof.

A further appreciation of the foregoing maybe attained through the

discussion that follows and elsewhere herein.

Native and Hosted Software Application Installation

Native software applications, e.g., 15 and 18, are installed (upon
direction of the user or otherwise) on device 10 and, more particularly, for
execution within native runtime environments 14, in the conventional manner
of the art for installations of apps within operating systems of the type of
operating system 14, Such installation typically involves cooperative action of
hosted operating system 14 and the runtime environments 16 executing an
"installer" app (not shown) of the type conventional to OS 14 and typically
includes unpacking, from an applications package file (e.g., downloaded
from a developer site or otherwise), the to-be-installed application's
executable file, icon file, other support files, eftc., and storing those to
designated locations in stafic storage (MEM) on device 10, again, in the

conventional manner known in the art.

40

WO 2015/058102 PCT/US2014/061171

Hosted software applications 34, 36 are installed (upon direction of the
user or otherwise) under control of ACL 18 for execution under hosted runtime
environments 32. To that end, the ACL 18 can utilize an installer app the type
conventional to the hosted operating system, albeit, modified to unpack
from the application package files, or otherwise, the to-be-installed
application’s executable file, icon file, other support files, efc., to suitable
locations in static storage (MEM) on device 10, e.g., locations dictated by
native operating system 14, yet, consistent with the hosted operating system,

or otherwise.

Unlike other native software applications, e.g., 15 and 18, the native
software applications 46-52 that are proxies of a hosted software application
34, 36 are installed, by request from ACL 18 to native operatfing system 14, in
connection with the installation by ACL 18 of each respective hosted
software application. Each such proxy 46-52 is installed by the nafive
operating system 14 in the conventional manner, albeit, from application
package files (or otherwise) generated by ACL's 18 proxy installer interface

62, which triggers installation of those proxies.

Those package files can include, in lieu of the respective hosted

software application 34, 36 executable, a "stub" executable suitable for

execution under native operating system 14 and, particularly,

within native runtime environments 16,

ii. effecting the functions discussed below (and elsewhere herein)
affributable to the launch proxies and the 1O proxies,

respectively.

Those package files can also include icon files that are identical to or
variants of those originally supplied with the application package files (or

otherwise) for the respective hosted software applications 34, 36. Although, in

41

WO 2015/058102 PCT/US2014/061171

the illustrated embodiment, multiple proxies may be associated with each
hosted software application, only a single icon is associated with the proxies
as displayed on the graphical desktop, e.g., of Figure 1A—and, more
particularly, an icon may be associated with only a single one of the multiple

proxies that are associated with a given hosted software application.

Hosted Execution Environment Infegration

As illustrated in Figures 2-3, in some embodiments, the native
application 18 executes the code that makes up the hosted runtime
environment(s) 32, e.g., the code comprising the substituent resource
frameworks 38, virtual machines 40, event handlers 42, run-time libraries 44,
and/or other components of the environments 32. Execution of that code
can spawn threads or processes but, typically, they execute within the

context of the application 18 itself.

In the foregoing regards, application 18 can be likened to an emulator;
although that analogy break downs, for example, when the roles of the
native applications that serve as proxies 50, 52 are taken into account as

discussed herein.

The analogy also break downs in embodiments where the instruction
set utilized by the hosted application 34 is suitable for execution on the CPU
of device 10 (or, put another way, where the native and hosted operating
systems are both targeted to the same CPU, i.e., that provided by device 10).
In such embodiments, execution of the the hosted software application 34
instructions can be carried out directly by the CPU of device (and not, for
example, merely emulated by native software application 18)—though, the
handling of interrupts generated by and/or calls made in the course of such
execution may be handled by the hosted runtime environments 32 (whether,

themselves, executed by application 18 or otherwise).

42

WO 2015/058102 PCT/US2014/061171

Conversely, in other embodiments, application 18 can, instead, effect
the installation, instantiation and/or invocation of processes—and, more
typically, for example, daemons— that execute outside the context of
application 18 and that provide services making up those environments 32
without itself executing the code that makes them up. This is illustrated in
Figures 13-14, which parallel Figures 2-3 and which use like reference
numbers to identify like elements, showing daemons (or other background

processes) 33 which provide those services.

In some such embodiments, when native software application 18 is
installed on device 10 under native operating system 14, the application 18
itself, its installation package, or other functionality (e.g., the native operating
system 14) concurrently installs, instantiates and invokes daemons 33 on
device 10, e.qg., for execution as persistent background processes that auto-
load with each reboot of device 10 and/or operating system 14. In related
embodiments, native software application 18 effects installation, instantiation
and invocation of such persistent/auto-loading daemons 33 when the
application 18 is executed for a first time by the user of device 10. In yet
other embodiments, application 18 installs, instantiates and/or invokes the
daemons 33 on a one-time or short-term basis, persisting those daemons for
only so long as application 18 is itself executing on device 10. Still other
embodiments utilize other mechanisms for installing, instantiating and/or

invoking daemons 33, e.g., under control of application 18 or otherwise.

Of course, it will be appreciated that, although, multiple daemons 33
are shown in the drawing, in some embodiments other numbers of daemons
(for example, just one) may be utilized. And, although, the daemons may be
allocated on a per service basis in the illustrated embodiment, in other
embodiments they may be allocated on a per hosted application-basis, a

per proxy basis, or otherwise.

43

WO 2015/058102 PCT/US2014/061171

In yet other embodiments, application 18 takes a mix of the
approaches discussed above, e.g., executing code that makes up some
portions of the environments 32 (e.g., like shown in Figures 2-3, while installing,
instantfiating and/or invoking services/process to provide services making up

other portions of those environments (e.g., like shown in Figures 13-14).

Multi-Operating System Mobile and Other Computing Devices

The computing device 10 supports the seamless execution of
applications of multiple operating systems—or, put another way, it "merges"
the user experience so that applications executed in the hosted runtime
environment appear, to the user, as if they are executing within the nafive

operating system 14,

Thus, for example, application windows representing execution of the
hosted software applications are presented to the user without interfering
with the status bar that forms part of the "desktop" generated as part of the
overall graphical user interface by the native operating system 14 and/or
native runtime environment 16, thus, making the hosted software applications
appear similar to native software applications. This is shown, by way of

example, in Figures 1A-1C.

Referring to Figure 1A, the native operating system 14 drives the
computing device to display, on display/touch screen 24, a graphical
desktop with icons 58 representing applications that can be selected for
launch or other activation by the user of the device 10. In the illustrated
embodiment, these can be native software applications, e.g., 15, and hosted

software applications, e.g., 34, 36.

That desktop display includes a status bar 56 of the type conventional
in the art — and, particularly, conventional to native operating system 14

(although, some embodiments may vary in this regard). Here, that status bar

44

WO 2015/058102 PCT/US2014/061171

56 indicates the current date/time, carrier conductivity signal strength (e.g.,
Wi-Fi, cellular, etc.), active apps, and so forth., though, in other embodiments,

it may indicate other things.

Referring to Figure 1B, when a native software application, e.g. 15, is
activated by the operating system 14 and/or runtime environments 16 in
response to user selection, the application window 60 generated for it by the
native runtime environment 16 (reflecting execution of the application) for
presentation on the screen 24 occupies that screen along with the status bar
56—here, particularly, with the status bar 56 on the top fraction of the screen
and the application window 60 on the remainder. Put another way, the
operating system 14 and/or runtime environments 16 do not overwrite the
status bar 56 with the applications window 60. (Of course, it will be
appreciated that this is the default mode of operation of the operating
system 14 and/or runtime environments 16, and that in other modes, e.g., so
called "full screen” modes, the application window 60 may occupy the

enfirety of the screen).

Referring to Figure 1C, likewise, in the illustrated embodiment, when a
hosted software application 34, 36 is activated, the application window
generated for it (reflecting execution in the hosted runtime environments 32)
is presented identically on the screen 24 as that of a natfive software
application—that is, it is presented without overwriting the status bar 56 (e.g.,
at least when displaying in default mode). In the illustrated embodiment, this
is accomplished via operation of 1O proxies as discussed below in connection

with Figure 4.

Another example of the illustrated computing device's 10 merging the
user experience so that applications executed in the hosted runtime
environment appear, to the user, as if they are executing within the nafive

operating system 14 is the use of a common nofification mechanism, e.g.,

45

WO 2015/058102 PCT/US2014/061171

that of the native operating system 14 and/or runtime environments 16, e.g.,

as shown in Figures 8-12 and discussed below in connection therewith.

Still another example is the consistent activation of running software
applications in response to user replies to nofifications (and otherwise),
whether they are native applications, e.g., 15, or hosted software
applications 34, 36, e.g., as shown in Figures 5-7 and discussed below in

connection therewith.

Some of the mechanisms for effecting the foregoing, e.g., as noted
above, involve the use of natively executing proxies 46-52 to afford hosted
software applications executing in the hosted runtime environments 32
access to resources of the native operating system 14 and native runtime

environments 16, as well as of the hardware resources of the device 10.

Still other examples and the mechanisms by which they are
implemented will be evident to those skilled in the art from the discussion that

follows, the drawings, and elsewhere herein.

Hosted Application Display in Multi-Operating System Mobile and Other

Computing Devices

A further understanding of the operation of device 10 in these regards
may be appreciated by reference to Figure 4, which depicts the interaction
of the components discussed above in launching an exemplary hosted
software application 34 (here, labelled "App 1" in hosted runtime
environments 32 based on user interaction with that app's launch proxy 46
(here, labelled "App #1 Launch Stub") executing in native runtime
environments 16, displaying an application window representing operation of
hosted software application 34 via that app's IO proxy 50 (here, labelled
"App #1 10 Stub"), and transmitting user input from that proxy 50 back to the
app 34.

46

WO 2015/058102 PCT/US2014/061171

Prior to illustrated step 64, native runtime environments 16 (and/or
native operating system 14) present on the above-described graphical
desktop (see, e.g., Figure 1A) icons 58 representing native and hosted
software applications that can be selected for launch or other activation by
the user of the device 10. As noted above, those icons are provided to native
runtime environments 16 and/or native operating system 14 in connection

with installation of the respective apps.

As per convention of operating systems of the type of native operating
system 14, the native software application that is launch proxy 46 is launched
by native runtime environments 16 and/or native operating system 14 upon its
selection for acftivation by the user. See, step 6é4. Proxy 50 can be
simultaneously launched by nafive runtime environments 16 and/or nafive
operating system 14; alternatively, proxy 50 can be launched by proxy 46

upon its launch. Id.

Upon launch (or other noftification of activation from native runtime
environments 16 and/or native operating system 14), proxy 46 effects

acftivation of corresponding hosted software application 34. See, step 66.

In the illustrated embodiment, proxy 46 does this by fransmitting a
launch message to the event handler 42 that forms part of the hosted
runtime environments 32 and that is common to the one or more hosted
software applications 34, 36 (e.g., in that it is the common, shared recipient of
system level-events, such as user input to the hardware interface, which
events it distributes to appropriate hosted applications or other software
executing in the hosted runtime environments 32 or provided as part of the
hosted operating system). The launch message, which can be delivered to
event handler 42 by proxy 46 using any convention mechanism for inter
process communication (IPC), e.g., APls, mailboxes, etc., includes an
identifier of the proxy 46 and/or its corresponding hosted software

application 34, as well as any other information required by the hosted

47

WO 2015/058102 PCT/US2014/061171

operating system and/or hosted runtime environments 32 to effect launch of

a hosted software application.

In step 68, the event handler 42 launches the hosted software
application 34 in the conventional manner required of hosted operating
system and/or the hosted runtfime environments 32. Put more simply, that app

34 is launched as if it had been selected by the user of device 10 directly.

Following launch of hosted software application 34, event handler 42
uses IPC, e.g., as described above, to signal that hosted software application
34 has begun execution and, more aptly, to insure launch (if not already
effected) and activation of proxy application 50 with the native runtime

environments 16. See, step 70.

Following launch, hosted software application 34 runs in the
conventional manner within hosted runtime environments 32, generating
such inferrupts and makes such calls to the hosted resource framework 38,
hosted event handler 42 and run-time libraries 44, all by way of non-limiting
example, as it would otherwise make if it were installed on a device
executing a single operating system of the type of the hosted operating
system. This is advantageous in that it does not require special recoding (i.e.,
"porting") of the hosted software application 34 by the developer or publisher
thereof in order to make it possible to run in the multi-operating system

environment of device 10.

Hosted resource framework 38, hosted event handler 42 and run-time
libraries 44, and the other components of hosted runtime environments 32
respond to such interrupts and calls in the conventional manner known of
operating systems of the type of hosted operating system, except insofar as

evident from the teachings herein.

48

WO 2015/058102 PCT/US2014/061171

Thus, for example, as noted above, some such operations (e.g., those
for loading frame buffers) of the type that might normally be executed in a
privileged kernel space by hosted runtime environments 32 are, instead,
executed in user space. And, other such operations or, more broadly,
functions are passed-off to native operafing system 14 and its runtime

environment 16, e.g., via the proxies 46-52.

By way of example, in lieu of loading an actual frame buffer with
graphics defining an applications window representing execution of the
hosted software application 34, the hosted runtime environment 32 loads the
virtual frame buffer 54 with such graphics. See, step 72. The hosted runtime
environment 32 effects this through use of the windowing subsystem that
forms part of the hosted runtime environment 32 and that is common to the
one or more hosted software applications 34, 36 (e.g., in that it is the
common, shared system used by the hosted software applications for

generating applications windows for display to the user of device 10.)

The 10 proxy 50 of hosted software application 34 effects presentation
on screen 24 of the applications windows generated for application 34 by
hosted runfime environments 32, e.g., in the manner shown in Figure 1C and
discussed in connection therewith above. See, step 74. 10 proxy 50 does this
by transferring the graphics defining that applications window from virtual
frame buffer 54 to the native frame buffer 26, e.g., using an API provided by
native runtime environments 16 for such purpose or otherwise. Although in
some embodiments, the hosted runtime environments 32 utilizes messaging to
alert 1O proxy 50 of the need for effecting such a transfer, e.g., when the
window subsystem of hosted runtime environments 32 has generated an
updated applications window for hosted software application 34, when
hosted software application 34 becomes the active (or foreground) app in
hosted runtime environments 32, or otherwise, in other embodiments IO proxy

50 effects such transfers on its own accord on a periodic basis or otherwise.

49

WO 2015/058102 PCT/US2014/061171

User/Hosted Application Interaction in Multi-Operating System Mobile

and Other Computing Devices

IO proxy 50 utilizes a mechanism paralleling that discussed above in
connection with steps 64-68 in order to transmit taps and other input made
by the user to device 10 and specifically, for example, to display/touch
screen 24, a keyboard, tfrackball, touch stick, other user input devices. In this
regard, a common event handler (not shown) or other functionality of native
runtime environments 16 nofifies applications executfing within them,
including the 1O proxies 50, 52, of user input made with respect to them via
the touch screen 24 or those other input devices. Such nofifications are made
in the conventional manner known in the art of operating systems of the type
of native operating system 14, as adapted in accord with the teachings

hereof.

When 1O proxy 50 receives such a nofification, it transmits information
with respect thereto 1o its corresponding hosted software application 34 via
event handler 42, e.g., in a manner similar to that discussed above in
connection with step 66. See, step 76. That information, which can be
delivered to event handler 42 by IO proxy 50 using any conventional IPC
mechanism, can include and identifier of the 10 proxy 50 and/or its
corresponding hosted software application 34, an identifier of the device to
which input was made, the type of input, and relevant information with
respect thereto (e.g., location, time, duration and type of touch, key tapped,
pressure on pointer, etc.). That information is received by event handler 42
and applied to the corresponding hosted software application 34 in the
conventional manner required of hosted operating system and/or the hosted
runtime environments 32, e.g., as if the touch or other user input had been

made directly to hosted software application 34. See, step 78.

50

WO 2015/058102 PCT/US2014/061171

Hosted Application Utilization of Native Operating System Proxies in

Multi-Operating System Mobile and Other Computing Devices

As discussed above and elsewhere herein, the respective hosted
software applications (e.g., 34) utilize their corresponding proxies (e.g., 46) to

perform the following, by way of nonlimiting example:

e present (via operation of native operating system 14) icons on the
native operating system 14 graphical desktop of display/touch

screen 24 for selection by the user;

e present on display/screen 24 applications windows generated by

the respective hosted software applications;

e to relay to the hosted runtime environments 32 launch and
acftfivation requests, e.g., signaled by the user via via the

display/touch screen 24 and native operating system 14;

e to relay to the hosted runtime environments 32 taps and other input
made by the user to device 10 and specifically, for example, to
display/touch screen 24, a keyboard, frackball, touch stick, other

user input devices;

e to effect bringing the hosted software applications to the virtual

foreground in the hosted runtime environments 32.

The hosted software applications can similarly use proxies executing in
the nafive runtime environments 16—e.q., proxies 46-52 or otherwise—for
access to other resources of the native operating system 14 and nafive
runtime environments 16, as well as of the hardware resources of the device
10

51

WO 2015/058102 PCT/US2014/061171

Thus, for example, hosted software applications, e.g., 34, that utilize a
still, video or other camera provided with device 10 (e.g., natively or
otherwise) can access and/or alter pictures, movies of other image(s) and/or
related data generated by that camera and/or by associated application
resources 19 and/or runtime libraries 20 (and, more generally, by native
runtime environments 16) through use of the 1O proxy 50 or another proxy,

e.g., associated with that same hosted software application.

To this end, paralleling the actions discussed in connection with Step
72, when a camera subsystem that forms part of the hosted runtime
environment 32 (e.g., and that is common to the one or more hosted
software applications) is invoked by a hosted software application, that
subsystem loads a buffer and/or messages the nafively-executing proxy
corresponding to that hosted software application in order to identify
primitives to be executed within the native runtime environments 16.
Paralleling the actions discussed in Step 74, the proxy can utilize a camera
subsystem of the native runtime environments 16 (or other functionality) to
execute those primitives. The proxy can, them, reload that or another buffer
or otherwise generate a message with results of such execution and can pass
that back to the hosted runfime environments 32 via its event handler 42,
e.g., paralleling the actions discussed above in connection with Step 76. The
camera subsystem of the hosted runtime environments 32 responds to
nofification from that event handler 42 by returning to the requisite image(s)
and/or other information to the hosted software application that invoked

that subsystem.

By way of further nonlimiting example it will be appreciated that
natively-executing proxies can be ufilized by hosted software applications to
accesses a telephony-related services and/or related data provided by
device 10 and/or its natfive runtime environments 16. This includes not only use
of the so-called telephone function (i.e., to make and receive calls), but also

telephone logs, address books and other contact information.

52

WO 2015/058102 PCT/US2014/061171

Coordination of Foreground Application Tasks in Multi-Operating

System Mobile and Other Computing Devices

Native runtime environments 16 responds to activation of an executing
native application, e.g., via user selection of the corresponding applications
window or icon on the desktop of display 24, or otherwise, by bringing that
applications window to the foreground and making it the active task with
which the user interacts (and to which user input is directed). Similar
functionality is provided by the event handler 42 of hosted runtime
environments 32, albeit with respect to executing hosted software
applications, with respect to a virtual desktop residing on virtual frame buffer

54, and with respect to virtual user input devices.

In order to more fully merge the user experience so that applications
executed in the hosted runtime environments 32 appear, to the user, as if
they are executing within the native operating system 14, when |O proxy 50 is
brought to the foreground of the graphical user interface presented on the
aforementioned desktop by the windowing subsystem of native runtime
environments 16 (e.g., as a result of a user tap on the application window for
IO proxy 50, as a result of issuance of a nofification with respect to that
application or otherwise), that 10 proxy 50 effects making the corresponding
hosted software application 34 active within the one or more hosted runtime

environments 32, as if it had been brought to the foreground in them.

An understanding of how this is effected in the illustrated embodiment

may be attained by reference to the discussion that follows, in which:
e the term "task" is used in place of the term "application”;
e the term "interactive task" is used in reference to an application for

which an applications window is generated as part of the graphical

53

WO 2015/058102 PCT/US2014/061171

user interface of the respective operating system and/or runtime

environment reflecting execution that application;

e the term "foreground task” is used in reference to an application

with which the user of device 10 is currently interacting;

e the term "simple interactive task" refers to an application running in

one process,

e the term "complex interactive task” refers to an application running

in more than one process; and

e Jalthough a differing elemental numbering scheme is used, like
names are used for like components discussed above and shown in

Figures 1-4.

The teachings below provide for managing tasks (i.e., applications)
where the designation of a foreground task in the hosted application runtime
environment 32 is independent of the designation of a foreground task in the
native application runtime environment 16, and where tasks in the hosted
application runtime environment 32 may (or may not) span multiple

processes.

With reference to Figure 5, in accordance with the illustrated
embodiment of the invention, native application tasks in operafing systems
with simple task models (such as native operating system 105) are each
associated with a single process. Interactive native application tasks 230, 231
are further differentiated from non-interactive tasks (not shown) by their
utilization of the graphics stack 255 of the native application runtime
environment 110. The graphics stack 255, comprised of drawing module 245
and compositing module 250, updates the contents of the native frame
buffer 260 with the visual portions of the foreground task for display to a user

via display/touch screen 24.
54

WO 2015/058102 PCT/US2014/061171

Hosted (or non-native) application tasks 205, 206 reside within the
hosted application runfime environment 120. If the hosted application
runtime environment 120 employs a different task model than the nafive
operating system 105, each hosted application task 205, 206 is associated
with a proxy (or client) task 235, 236, respectively. The proxy tasks 235, 236
reside within the native application runfime environment 110 along with the
native application tasks 230, 231, and are managed by the same native task
management system in the native application runtime environment 110 as

the native application tasks 230, 231.

The proxy tasks 235, 236 monitor the state (foreground or background)
of the hosted application tasks 205, 206, and enable the hosted application
tasks 205, 206 to be fully functional within the device 100, despite the
differences between the application runtime environments 110 and 120. In
the illustrated embodiment, proxy tasks are created when the hosted tasks

are created, but this is not a limitation of the invention.

Hosted application runtime environment 120 comprises a drawing
module 210, a windowing module 212, and a compositing module 215, that
together provide the visual portions of the hosted application tasks 230, 231

to the virtual frame (or screen) buffer 220.

As shown in Figure 6, hosted application runtime environment 120
further comprises a task 405 operating in accord with the complex task
model and having two processes 411, 412, and a task 406 operating in
accord with the simple task model and having one process 413). Regardless,
in the illustrated embodiment, each of the tasks 405, 406 is associated with
one proxy (or client) task 235, 236 respectively, and also associated with one

hosted application 205, 206 respectively.

Together, the proxy (or client) tasks 235, 236, the task models 405, 406,
the hosted system of drawing 210, windowing 212, and compositing 215

20

WO 2015/058102 PCT/US2014/061171

modules, and the virtual frame (or screen) buffer 220, provide the following
functions: (i) enabling the hosted application tasks 205, 206 to run as
background tasks within the native application runtime environment 110; {ii)
enabling the hosted application runtime environment’s 120 foreground status
to be abstracted from the operation and semantics of the task management
system in the native application runtime environment 110; and (i) integrating
and coordinating the operation of the hosted application runtime
environment 120 and the native application runtime environment 110 such
that the user cannot discern any differences between the functioning of the

native application tasks 230, 231 and the hosted application tasks 205, 206.

Figure 7 illustrates the method of switching between interactive tasks
and, more particularly, of coordinating foreground/active tasks, as between
the native and posted runfime environments, in accordance with a preferred
embodiment of the invention. In particular, Figure 7 illustrates how the task
displayed in the virtual frame buffer 220 of the hosted application interface
environment 120 is coordinated with its corresponding proxy task and the

foreground task of the native application runtime environment 110.

In step 310, the user selects an interactive task from the task list in the

native system.

Both native application tasks 230, 231 and proxy tasks 235, 236 (as
stated above and shown in Figure 6, proxy tasks 235, 236 are tasks within the
native application runtime environment 230 that act as proxies for hosted
application tasks 205, 206 respectively), are available in the task list for
selection by the user. At step 315, the method determines whether the user
has selected a proxy task or a native application task. Proxy tasks are
distinguished from naftfive application tasks by convention. Any property
where a value or a string can be modified can be used, by convention, to

identify a proxy task. In a preferred embodiment, task names are used fo

56

WO 2015/058102 PCT/US2014/061171

distinguish between proxy tasks and naftive application tasks, although this is

not a limitation of the invention.

If the user selects a native application task (i.e., one of 230, 231) at step
315, the method proceeds to step 322. At step 322, the native application
runtime environment 110 switches to the process associated with the
selected native application task, and brings the selected native application

task to the foreground of the native application runtime environment 110.

Alternatively, if the user selects a proxy task (i.e., one of 235, 236) at
step 315, the method proceeds to step 320. At step 320, the nafive
application runtime environment 110 switches to the process associated with
the selected proxy task (e.g., as discussed elsewhere herein) and brings the
selected proxy task to the foreground of the native application runtime

environment 110.

At this point, the task switch has occurred in the native application
runtime environment 110, and may need to be propagated to the hosted
application runtime environment 120. At step 325, the method determines
whether or not the task switch needs to be propagated to the hosted

applicafion runtime environment.

At step 325, the method determines whether the hosted application
task is in the virtual foreground of the hosted application runtime environment
120. This determination is made using information obtained by the proxy task
235, 236 about the state of the virtual frame buffer 220 in the hosted
application runtime environment 120. Specifically, the proxy tasks monitor the

state (foreground or background) of the hosted application tasks.

If the hosted application task is in the virtual foreground of the hosted
application runtime environment 120, the task switch does not need to be

propagated, and the method proceeds to step 330. At step 330, the hosted

of

WO 2015/058102 PCT/US2014/061171

application task's view of the virtual frame buffer 220 is updated to the native
fraome buffer 260. At this point, the hosted application task is in the
foreground, and the user will be able to view and make use of the user-
selected task. The seamless fransition allows the user to view the hosted

application task 205, 206 as if viewing a native application task.

Referring again to step 325, if the hosted application task is not in the
virtual foreground of the hosted application runtime environment 120, the
task switch needs to be propagated, and the method proceeds to step 340.
At step 340, the hosted application runtime environment 120 switches to the
hosted application task 205, 206 associated with the proxy task 235, 236 as
described in step 320.

At step 345, the method determines whether the hosted application
task 205, 206 is now in the virtual foreground of the hosted application
runtime environment 120. If the hosted application task is not in virfual
foreground of the hosted application runtime environment 120, the method
waits until the hosted application task moves to the virtual foreground of the
hosted application runtime environment 120. At this point, the method

proceeds to step 330, as described above.

Notification and Reply Adaptation for Hosted Applications in Multi-

Operating System Mobile and Other Computing Devices

As noted above, another example of the illustrated computing
device's 10 merging the user experience so that applications executed in the
hosted runtime environment appear, to the user, as if they are executing
within the native operating system 14 is the use of a common nofification
mechanism, e.g., that of the native operating system 14 and/or runtime

environments 16.

58

WO 2015/058102 PCT/US2014/061171

An understanding of how this is effected may be atftained by reference

fo the discussion that follows, in which

e |t will be appreciated that, as a general matter of background,
some computer operating systems have noftification systems, where
applications native to those operating systems post notifications.
Users can interact with those nofifications, and the interactions are
conveyed to the applications that posted those notifications. Unlike
applications, nofification systems are singletons—there is one per

(operating) system;

e In the illustrated embodiment, the foregoing is likewise true of the
native operating system 14 and, more parficularly, of the nafive
runtime environment 16 — there is a single noftification subsystem

that is common to all executing native software applications;

e In the illustrated embodiment, the foregoing is likewise true of the
hosted operating system and, more particularly, of the hosted
runtime environments 32 — there is a single notification subsystem

that is common to all executing hosted software applications;

e The native and hosted operating systems are assumed to have
diverse implementations of nofification systems: Each might have a
different set of standard prompts, visual indicators, and interprocess
messages, on different inferprocess message systems, used to noftify

applications of user interactions with noftifications;

e |tis assumed that it would be confusing to the user of device 10 if
notifications were presented from two different nofification systems,
e.g., some from the nofification subsystem of the natfive operating
system and some from the notification subsystem of the hosted

operating system;

59

WO 2015/058102 PCT/US2014/061171

e Although a differing elemental numbering scheme is used, like
names are used for like components discussed above and shown in

Figures 1-7

Described below is a mechanism for enabling hosted applications to

use and interact with native system nofification subsystems.

Referring to Figure 8, native operatfing system 14 has a nofification
subsystem 1102 that provides a visual display of nofifications 1101,
Applications 1103 post notifications, using an APl of subsystem,1102, and,
optionally, can interact with notifications by specifying that they be nofified
of touches and other user actions through that API, which may use inter-
process communication to convey the information about intferactions to the

application.

Similarly, hosted runtime environments 32 provides a nofification
subsystem 1105 that is employed by hosted (nonnative) apps 1106. Those
applications post nofifications, using an APl of subsystem 1105, and,
optionally, normally interact with nofifications by specifying that they be
noftified of touches and other user actions through that API, which may use
inter-process communication to convey the informatfion about interactions to

the application.

When a runtime environment for applications designed for a different
operating system, or a cross-platform runtime environment that integrates
with native-environment noftifications is added to and operating system, an
adaptation layer 1104 can be used to translate nofifications between the

two systems.

The adaptation layer 1104 provides the following functionality to

facilitate adaptation:

60

WO 2015/058102 PCT/US2014/061171

e The semantics of nofification: If, for example, in the native OS, an
application is brought to the foreground when a notification is
acknowledged by the user, the semantics of this interaction are
appropriately translated into actions on tasks in the hosted non-
nafive environment. In the illustrated embodiment, this is effected in
a manner like that shown in the Figure 8 and discussed above in
connection with coordinating foreground/active tasks as between

the native and hosted runtime environments.

e |Infterfaces: If the nafive environment uses a different infer-process
communications mechanism (IPC) than the hosted non-native
environment, the adaptation layer uses the native inter-process
communications system and is a proxy for non-native applications
to the native environment, and uses the non-native IPC mechanism

fo communicate with the non-native applications 1106.

e Graphical assets: Referring to Figure 9, if a non-native application
1201 uses the non-natfive APl and thereby the nofifications
franslation layer 1202 of the adaptation layer 1104 to post a
nofification, and if that notification either lacks a corresponding
graphical asset in the native environment, non-native graphical
assets 1203 that are included in the hosted runtime environment or
non-native applications will be used, and, if necessary, converted
to a format displayable in the native environment visual display of
notifications 1101. The translation layer 1202 can be implemented in
the native component and/or the non-native component of the

adaptation layer 1104, as needed.

In the illustrated embodiment, adaptation layer 1104 has a non-native
component and a native component which provide the aforementioned
functionality. The non-native component has instructions for execution under

the hosted operatfing system and executing on the central processing unit

61

WO 2015/058102 PCT/US2014/061171

within one of more of the hosted runtime environments. It can communicate
With the hosted notification APl via the hosted IPC protocol. The nafive
component has instructions for execution under the native operating system
and executing on the central processing unit within one of more of the native
runtime environments. It can communicate With the native notification API

via the native IPC protocol.

Referring to Figure 10, when an application 1201 in the hosted, non-
native environment posts a nofification, the adaptation layer decides if the
hosted application is posting a simple nofification 1301, without graphical
assets, standard prompts that need to be mapped, or a return message. If
that is the case, the parameters of the hosted system’s (i.e., the hosted
operating system's) method are translated to the corresponding parameters
in the host system (i.e., the native operating system), and the nofification is
posted 1302.

If the notification is not simple, then it is determined if the applicatfion is
posting a notification with standard, predetermined prompt text, or with a
prompt that is application-specific 1303. If the nofification being posted uses
a standard prompt with a counterpart in the host system, the reference to
that prompt is mapped to a reference to the counterpart in the host system
1304.

If the prompt is application-specific, or if there is no counterpart to @
standard prompt in the host system, the prompt text is passed to the host
system to be used in the call to post the nofification 1305. If there are
graphical assets such as a nofification icon in the notification and the asset to
be used is from the hosted system 1306 any necessary format conversion is
performed 1307. If a graphical asset from the host system is to be used in the
noftification, the specification or reference to the graphical asset is translated

into one used in the host system 1308.

62

WO 2015/058102 PCT/US2014/061171

Referring to Figure 11, if there is a message (in the hosted environment’s
inter-process communicatfion (IPC) system’s format) attached to the
notification, to be delivered based on the user's interaction with the
noftification 1401, that message is registered with a proxy program with an
interface to the host system’s IPC system, and a message addressed to this
proxy program containing a reference to the hosted system’s reply message.

Now the nofification containing:

e a prompt text, or a reference to a standard prompt in the host

system,

e any graphical assets that go with the message or references to host

system graphical assets, and,

e if present, a reply message that will be delivered to a proxy
program that stores the hosted system’s reply messages, is posted

1403 to the host system’s notification system.

Referring to Figure 12, if the user interacts with the notification 1501,
and if the nofification return message is not addressed to the proxy 1502, it is
a notification for host system applications, and is processed as usual in the
host system 1503. If the return message is addressed to the proxy for return
messages, it is delivered to the proxy using the host system’s inter-process
communications mechanism 1504. The proxy uses the reference contained in
the refurn message to find a refurn message registered with the proxy when
the nofification was posted, and this message is delivered to the hosted
application, using the hosted system's IPC mechanism, as if it were sent by

the hosted system’s notificafion system 1505.

Proxy Applications Running Under Browser

In some embodiments, one or more of the proxy applications 46-52 do

not execute under the native operating system 14 as discussed in connection
63

WO 2015/058102 PCT/US2014/061171

with Figures 1-14 but, rather, execute under a browser that, ifself, executes
under that operating system 14, Such is the case, for example, of computing
devices that support native browsers capable of running applications
composed of Javascript, HTML5, CSS and/or other browser-compatible
instructions sets. Such embodiments of the invention operate as discussed
above, as adapted in accord with the comments below and in accord with
Figure 15, which parallels Figures 2 and 13 and uses like reference numbers to

identify like elements.

Native Runtime Environment(s). Referring to Figure 15, element 15’ is a
browser software application native to operating system 14. It functions and
operates as discussed above with respect to native software application 15,
albeit it comprises a browser of the type that defines an execution
environment for executing applications in Javascript, HTML5, CSS or other
scripting/ programming languages common to web apps. Though referred
to here and throughout this document as an application, the term “browser”
as used herein also refers to layers within a software stack or architecture
executing the computing device. An example of such a browser
“application” is the Gecko layer of the commercially available on Mozilla's

Firefox Operating System (Firefox OS).

Hosted software application 34" of the illustrated embodiment
comprises instructions for execution under the hosted operating system that
differs from the application execution environment of browser 15. In other
embodiments, only the latter condifion holds true; this can be of particular
advantage, for example, in the case of computing devices 10 that are
configured for user extensibility only via installation of apps within native

browsers.

lllustrated proxy 50’ serves the roles of both launch proxy 46 and 1O
proxy 50 described above with respect to hosted software application 34,

albeit here for software application 34’, and it (proxy 50') operates in the

64

WO 2015/058102 PCT/US2014/061171

manner described above as to both proxies 46 and 50, albeit as adapted in
accord with the teachings below. Unlike proxies 46, 50, however, proxy 50’
operates under a native software application and, more specifically, a native
software application browser. In the illustrated embodiment, proxy 50’
comprises HTMLS and/or Javascript instructions suitable for execution under
browser 15; although, proxy 50° of other embodiments may comprises
instructions from other programming language instruction sets suitable for
execution under browser 15—which itself comprises instructions for execution
under the native operating system 14. And, although, only one proxy 50’ is
shown in the drawing, it will be appreciated that one or more of the functions

ascribed thereto herein may be affected by additional proxies (not shown).

Although only a single proxy app 50’ is shown by way of example in
Figure 15 and described below, it will be appreciated that these teachings
apply equally to embodiments in which more (and indeed all) of the proxy
apps 46-52 execute under a browser and not under the native operating

system 14,

Browser and Hosted Software Application Installation. Paralleling the
discussion, above, in the section enfitled "Native and Hosted Software
Application Installation,” proxy 50 is installed by request from ACL 18 to
browser 50" in connection with the installation by ACL 18 of the respective
hosted software application—in this case, hosted software application 34.
The proxy 50" is installed by browser 15 in the conventional manner, albeit,
from application package files (or otherwise) generated by ACL 18's proxy
installer interface 62, which triggers the proxy 50’ installation. As above, those
application package files can include icon files that are to be displayed by
browser 15 in connection with the proxy 50’ and that match icon files of the

corresponding hosted software application 34.

Host App Environment Integration. In the embodiment of Figure 15,

daemons 33 which provide services that make up host environment 32 are

65

WO 2015/058102 PCT/US2014/061171

installed and instantiated as persistent, auto-loading processes by nafive
software application 18; although, other embodiments may differ in one or

more of these regards.

Multi-Execution Environment Mobile and Other Computing Devices.
Paralleling the discussion, above, in the section entitled “Multi-Operating
System Mobile and Other Computing Devices,” the computing device of
Figure 15 merges the user experience so that hosted application 34 executed
in the hosted runtime environment appear, to the user, as if it were executing
within the browser 15'—as if the hosted application 34 were “native” to the

browser.

More generally, device 10 operates with respect to hosted software
applications that have proxies executing under the browser 15" in the same
manner as described above in connection hosted software applications that
have proxies executing under the native operating system 14, albeit, in the
case of hosted applications that have counterpart proxies executing under
the browser input from and output to the user is (or, at least, appears to the
user to be) via the browser 15, just as with an app natively running under that

browser 15'.

Thus, by way of nonlimiting example, analogous to that shown in Figure
1A, the browser 15 drives the computing device to display, on display/touch
screen 24, a graphical "desktop” with icons 58 representing applications that
can be selected for launch or other activation by the user of the browser 15.
In the illustrated embodiment, these can include hosted software
applications that, like application 34', have a counterpart proxy, like
application 50, installed for execution within that browser 15'. Referring to
Figures 1B-1C, by way of further example, when hosted software application
34’ is activated in response to user selection (or otherwise) of the proxy 50’,
the system generates a window or frame (collectively, “window") reflecting

execution of the application 34" substantially indistinguishable from that of

66

WO 2015/058102 PCT/US2014/061171

executing native browser software applications, e.g., Vis-a-vis status bars
and/or other indicia normally presented by native operafing system 14,
native runtime environments 16 and/or native browser 15 for launch or other

activation.

And, as above, other examples of merging the user experience include

e Uusing a common noftification mechanism, at least from a user
perspective, as between (a) hosted software applications that
have proxies executing under the browser 15 and (b) software
applications that execute native to the browser 15°;

e consistent activation of running software applications in response
to user replies to notifications (and otherwise), whether they are
hosted software applications that have proxies executing under
the browser 15, software applications that execute nafive to the
browser 15', native software application and/or hosted software
application that have proxies executing under the native

operating system.

Some of the mechanisms for effecting the foregoing, e.g., as noted
above, involve the use of a proxy 50’ to afford hosted software applications
executing in the hosted runtime environments 32 access to resources of the
native browser 15', native operating system 14, native runtime environments

16, and/or hardware resources of the device 10.

Hosted Application Display in Multi-Execution Environment Mobile and
Other Computing Devices. Paralleling the discussion, above, in the section
enfitled “Hosted Application Display in Multi-Operating System Mobile and
Other Computing Devices,” interaction of the components discussed above
in launching exemplary hosted software application 34" based on user
interaction with that app's launch proxy 50" executing in browser 15, in

displaying a browser window representing operatfion of hosted software

67

WO 2015/058102 PCT/US2014/061171

application 34" via that app's proxy 50°, and in fransmitting user input Vvis-a-vis

that proxy 50’ back to the app 34', proceeds as generally discussed above in

connection Figure 4 vis-a-vis such interactions between application 34 and

proxy 50', although in the case of hosted application 34" and proxy 50° :

acftivations and other input from the user, as well as presentations
of icons and other output to the user, are (or, at least, appears to
the user to be) via the browser 15'.

communications between the proxy 50°', on the one hand, and
the daemons 33 (or other other functionality embodying the
hosted runtime environment 32 and components thereof) and
the hosted software application 34', on the other hand, is
effected via socket-based connections, preferably, between the
proxy 50" and a specified one of the daemons 33, i.e., (which
funnels requests to/from the other daemons and/or the hosted
software application 34°.

proxy 50’ transmits launch and/or other nofifications to event
handler 42 via JSON (JavaScript Object Notation) or other
messaging protocol—industry-standard, proprietary, or
otherwise—using the aforementioned socket-based
connections.

operations or, more broadly, functions that are passed-off by the
hosted runtime environment 32 fo the browser are likewise
communicated to the browser 15’ via JSON or other messaging
protocol. These can include simple messages of the type
VIBRATE{"duration”:10} signaling the browser to generate a
vibrate command to the native operafing system 14, runtime
environment 12 and so forth, as well as more complex messages,
including, by way of nonlimiting example, (i) executable scripfs,
(i) graphics defining a window of application 34’ contained in
the virtual frame buffer 54 to be conveyed by proxy 50’ to

browser 15’ for presentation on screen 24.
68

WO 2015/058102 PCT/US2014/061171

e in lieu of transfer of the virtual frame buffer 54 to the proxy 50’ for
presentation as described above, in some embodiments, the
windowing subsystem that forms part of the hosted runtime
environment 32 accesses resources of the native operating
system 14, native runtime environments 16 and/or device 10 to
drive the frame buffer directly to video frame buffer 26 and,
thereby, to screen 24. In order to merge the user experience as
described above, the windowing subsystem effects placement
of pixels in the frame buffer 26 so that they fall within a otherwise
empty application window or frame displayed by proxy 50’ via

browser 15'.

User/Hosted Application Interaction in Multi-Execution Environment

Mobile and Other Computing Devices. Paralleling the discussion, above, in

the section entitled “User/Hosted Application Interaction in Multi-Operating

System Mobile and Other Computing Devices,” proxy 50' utilizes the

mechanism discussed above in order to fransmit taps and other input made
by the user to device 10 and specifically, for example, to display/touch
screen 24, a keyboard, trackball, touch sfick, other user input devices. In this
regard, when proxy 50" is nofified (by browser 15', nafive runtime
environments 16 or otherwise) of user input made with respect to it via the
touch screen 24 or those other input devices, it fransmits information with
respect thereto to its corresponding hosted software application 34" via JSON

or other messaging protocol.

Hosted Application Utilization of Natlive Browser Proxies in Multi-
Execution Environment Mobile and Other Computing Devices. Paralleling the
discussion, above, in the section enftitled “Hosted Application Ufilization of
Native Operating System Proxies in Multi-Operating System Mobile and Other
Computing Devices,” and as discussed elsewhere herein, the hosted software
applications 34" utilizes its corresponding proxies 50" to perform the following,
by way of nonlimiting example:

69

WO 2015/058102 PCT/US2014/061171

e present icons on the browser 15 graphical desktop of display/touch

screen 24 for selection by the user;

e present on display/screen 24 applications at least the frames of
applications windows to contain output of the respective hosted

software application 34’;

e to relay to the hosted runtime environments 32 launch and
acftfivation requests, e.g., signaled by the user via via the
display/touch screen 24, browser 15" and/or native operating

system 14;

e to relay to the hosted runtime environments 32 taps and other input
made by the user to device 10 and specifically, for example, to
display/touch screen 24, a keyboard, frackball, touch stick, other

user input devices;

e to effect bringing the hosted software applications to the virtual

foreground in the hosted runtime environments 32.

The hosted software application 34" can similarly use proxy 50
executing in the browser 15’ for access to other resources available to it, e.qg.,
of the native operating system 14 and native runtime environments 16, as well

as of the hardware resources of the device 10

Thus, for example, a hosted software application 34’ that utilizes a still,
video or other camera provided with device 10 (e.g., natively or otherwise)
can access and/or alter pictures, movies of other image(s) and/or related
data generated by that camera and/or by associated application resources
19 and/or runtime libraries 20 (and, more generally, by native runtime
environments 16) through use of the proxy 50’. This can proceed as discussed

above in the section entitled "Hosted Application Ufilization of Native

Operating System Proxies in Multi-Operating System Mobile and Other
70

WO 2015/058102 PCT/US2014/061171

Computing Devices,” albeit, with the camera and other subsystems that form

part of the hosted runtime environment 32 transferring buffer contents and
messages/notificaftions with their counterparts in the native runtime

environment 16 via JSON or other protocol communications.

By way of further nonlimiting example it will be appreciated that the
browser-based proxy 50' can be uftilized by hosted software application 34’
to accesses a telephony-related services and/or related data provided by
device 10 and/or its natfive runtime environments 16. This includes not only use
of the so-called telephone function (i.e., to make and receive calls), but also

telephone logs, address books and other contact information.

Coordination of Foreground Application Tasks in Multi-Executing
Environment Mobile and Other Computing Devices. In order to more fully
merge the user experience, when proxy 50’ is brought to the foreground
(e.g., as a result of a user tap on the application window for 1O proxy 50, as a
result of issuance of a nofification with respect to that application or
otherwise), it effects making the corresponding hosted software application
34’ active within the one or more hosted runtime environments 32, as if it had
been brought to the foreground in them, utilizing the mechanisms discussed
in the section entitled “Coordination of Foreground Application Tasks in Multi-
Operating System Mobile and Other Computing Devices,” albeit with proxy
50" notifying/ querying the event handler 42 of hosted runtime environments
32 (via JSON or other protocol communications) regarding foregoing tasks in

the browser/hosted environments, respectively.

Notification and Reply Adaptation for Hosted Applications in Multi-

Executing Environment Mobile and Other Computing Devices.

Applications (e.g., 34') executed in the hosted runtime environment
that have counterpart proxies (e.g., 50’) executing in the native browser 15’

use a mechanism paralleling that discussed in the section entitled

71

WO 2015/058102 PCT/US2014/061171

“Nofification and Reply Adaptation for Hosted Applications in Mulfi-
Operating System Mobile and Other Computing Devices” and elsewhere
herein for enabling hosted applications to use and interact with common
nofification subsystems of the native operating system 14, runtime
environments 16 and/or browser 15', albeit with proxy 50° communicating
with the components of the hosted runtime environments 32 via JSON or
other protocol communications and with adaptation layer 1104 and like
functionality implemented to the extent possible in the hosted runtime

environments 32.

Conclusion

Described above and shown in the drawings are devices and methods
meeting the desired objects, among others. Those skilled the art will
appreciate that the embodiments described and shown here in our merely
examples of the invention and that other embodiments, incorporating

changes to those here, fall within the scope of the invention, as well.

In view thereof, what we claim is:

72

WO 2015/058102 PCT/US2014/061171

Claims

MULTI-OPERATING SYSTEM MOBILE AND OTHER COMPUTING DEVICES
WITH PROXY APPLICATIONS RUNNING UNDER A BROWSER

1. A computing device, comprising

A. a central processing unit that is coupled to a hardware interface
including at least a display and that executes a native operating
system including one or more native runtime environments within which
one or more native software applications—including at least a
browser—are executing, where each such native software application

has instructions for execution under the native operating system,

B. the central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing
services that make up one or more hosted runtime environments, or
portions thereof, within which one or more hosted software
applications are executing, where each such hosted software
application has instructions for execution under a hosted operating
system that differs from the application execution environment defined
within the browser and that may also differ from the native operating

system,

C. one or more applications (“proxies”) executing within the browser,
each corresponding to a respective one of the hosted software
applications and each associated with an icon or other identifier that is
presented on the hardware interface for selection by the user of the
browser, responds to noftification of such selection by activating the

respective hosted software application.

2. A computing device, comprising:

7’3

WO 2015/058102 PCT/US2014/061171

a central processing unit that is coupled to a hardware interface that
includes at least a display and that executes a native operating system
including one or more native runtime environments within which one or
more native software applications—including at least a browser—are
executing, where each such native software application has

instructions for execution under the native operating system,

the central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing
services that make up one or more hosted runtime environments, or
portions thereof, within which one or more hosted software
applications are executing, where each such hosted software
application has instructions for execution under a hosted operating
system that differs from the application execution environment defined
within the browser and that may also differ from the native operating

system,

one or more of the hosted software applications executing within the
hosted runtime environments each executes instructions to interact
with a user of the computing device via graphics generated by the
respective hosted software application using a hosted windowing
subsystem that is common to the one or more hosted runtime
environments, where that windowing subsystem is coupled to, and

loads, one or more buffers with those graphics,

one or more applications (“proxies”) executing within the browser,
each corresponding to a respective one of the one or more hosted
software applications, receives the graphics generated by the
respective hosted software application and effects writing of those
graphics to the video frame buffer for presentation on the display of

the computing device.

74

WO 2015/058102 PCT/US2014/061171

A computing device, comprising:

a central processing unit that is coupled to a hardware interface that
includes at least a display and that executes a native operating system
including one or more native runtime environments within which one or
more native software applications—including at least a browser—are
executing, where each such native software application has

instructions for execution under the native operating system,

the central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing
services that make up one or more hosted runtime environments, or
portions thereof, within which one or more hosted software
applications are executing, where each such hosted software
application has instructions for execution under a hosted operating
system that differs from the application execution environment defined
within the browser and that may also differ from the native operating

system,

one or more of the hosted software applications executing within the
hosted runtime environments receive notifications of events from a
hosted event handler subsystem that forms part of the one or more
hosted runtime environments and that is common to the one or more

hosted software applications,

one or more applications (“proxies”) executing within the browser,
each corresponding to a respective one of the one or more hosted
software applications, receive nofification of user input made with
respect to them from the one or more native runtime environments

and/or from the browser,

75

WO 2015/058102 PCT/US2014/061171

each proxy responds to notification of user input by transmitting
information with respect thereto received from the one or more native
runtime environments to the hosted event handler, which notifies the
hosted software application corresponding to the proxy that received

that noftification of that user input.

A computing device, comprising:

a central processing unit that is coupled to a hardware interface that
includes at least a display and that executes a native operating system
including one or more native runtime environments within which one or
more native software applications—including at least a browser—are
executing, where each such native software application has

instructions for execution under the native operating system,

the central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing
services that make up one or more hosted runtime environments, or
portions thereof, within which one or more hosted software
applications are executing, where each such hosted software
application has instructions for execution under a hosted operating
system that differs from the application execution environment defined
within the browser and that may also differ from the native operating

system,

the native operating system and/or the one or more native runtime
environments responds to user selection of an executing one of the
native software applications by bringing a graphical window
representing execution of that application to a foreground of the
display and making it "active" within the one or more native runtime

environments,

/6

WO 2015/058102 PCT/US2014/061171

one or more applications (“proxies”) executing within the browser,
each corresponding to a respective one of the hosted software
applications, responds to begin brought to the foreground and/or
being made active, by making the corresponding hosted software
application active within the one or more hosted runtime environments

as if it had been brought to the foreground in them.

A computing device, comprising

a central processing unit that is coupled to a hardware interface
including at least a display and that executes a native operating
system including one or more native runtime environments within which
one or more native software applications—including at least a
browser—are executing, where each such native software application

has instructions for execution under the native operating system,

the central processing unit additionally executes one or more
applications and/or processes (collectively, “processes”) providing
services that make up one or more hosted runtime environments, or
portions thereof, within which one or more hosted software
applications are executing, where each such hosted software
application has instructions for execution under a hosted operating
system that differs from the application execution environment defined
within the browser and that may also differ from the native operating

system,

the one or more native runtime environments and/or the browser
include a common native noftification subsystem that is in
communications coupling with applications executing under the
browser and that marshals notifications generated by them for

presentation to the user via the hardware interface,

77

WO 2015/058102 PCT/US2014/061171

the one or more hosted runtime environments include a common
hosted notification subsystem that is in communications coupling with
the hosted software applications and that marshals nofifications
generated by them for presentation to the user via the hardware

interface,

a plurality of hosted software applications that each comprise
instructions for execution under that hosted operating system execute
on the central processing unit within one of more of the hosted runtime

environments,

one or more of those applications generate notifications for
presentation to a user of the device and transmit those noftifications to
the hosted notification subsystem, which is in communications coupling
with an adaptation layer that adapts notifications received from the
one or more hosted software applications for, and fransmits them to,
the common native notification subsystem, which effects their
presentation on the hardware interface of notifications from the hosted

software applications.

/8

WO 2015/058102 PCT/US2014/061171

115

ICONS 58~
10~

FIG. 1A
56 56
R “ 14 §
ug 8 = ||+
4‘\\60 l \\62

FIG. 1B FIG. 1C

SUBSTITUTE SHEET (RULE 26)

WO 2015/058102 PCT/US2014/061171

2/15

10 PROXY |0 PROXY

S0~ App# APP# |52

HOSTED || 45| HOSTED y
5t INATIVE|| APP#1 APP#2 |-

N PP ||LAUNCHER| 6 |LAUNCHER CEQ¢2§}§%BY
PROXY PROXY F

LN APPLICATION L0
RESOURCES RUNTIME LIBRARIES |

~ ~

APPLICATION

Y

KERNEL i

A A

GRAPHii///// ‘\\\\
A J

NATIVE VIDEQ Hiw L—28| Hdw [—30

FRAME |~ 26 Dve Dve
BUFFER TOUCH/

OTHER USER
GRAPH& INPUT
DISPLAY/

ToucH %
SCREEN

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2015/058102

PCT/US2014/061171
3/15
18
TRIGGER INSTALLATION 4
OF HOSTED APP
PROXIES, 162
ROVDE STUES T =] ACL PROXY INSTALLER INTERFACE
SERVEAS PROXY ACL (HOSTEDAPP |32
EXECUTABLES RUNTIME ENVIRONMENT) |
34~ HOSTED| [HOSTED |3
APP# | | APPH2
APPLICATION FRAMEWORK | |.-34
(RESOURCES)
[4\
4~\| EVENT
N {ANDLER
— 4
~NTvE | RUNTIVE Vs
LIBRARIES [™-44
\
VIRTUAL FRAME |_~54
BUFFER

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/061171

WO 2015/058102

4/15

v Ol

o 9. d31S
/ 1#ddv OL LNdNI ¥3sn
B ——
e
e VLY LI 535N &0 dvl — 404 ¥344n9 INV¥4 JAILYN OL
TR (ILYVLS 1 ddv,)39YSSIN %&mﬁﬁ&zE_iwmzé
¥0 dvL
! 0Ld3Ls
¥344n9 IV i
WALIAOLILIMM | gdv
2LdaLS
(,}# ddY HONNY,)39YSSTN ke
1# ddY HONNYT ' .
99 LS SANLS 1 ddY HONNY
g9qats | SFIONVH INAS NODI £ ddY
\ NO dvL N330S
7 INFWNOMIANT FWILNNY AN3 FNILNNY
dd¥ 03LSOH - 10Y dd¥ JAILWN

/

€

SUBSTITUTE SHEET (RULE 26)

WO 2015/058102

PCT/US2014/061171

515
(" HOSTED 2 HOSTED 40
e B PR
TASK TASK
HOSTED
APPLICATION "
RUNTIVE -
ENVIRONMENT T~ DRAWING
120< 22~
] winpowinG
215~ Y
[~ COMPOSITING
¥
20~/ VRTUALFRAVE
. BUFFER
s 5 ;7/ _______________
NATIVE PROXY L2355 936 NATIVE
APPLICATION TASK | | TASK APPLICATION TASK
/
230
NATIVE
APPLICATION
RUNTIME 2~J" prRAWING
ENVIRONVENT
10 Y éngAPHICS STACK
B0~ covposTNG
1
Y 260
FRAME BUFFER
_

SUBSTITUTE SHEET (RULE 26)

f231

PCT/US2014/061171

WO 2015/058102

6/15

90l

MSYL
NOLLYDITddY
162" INLYN

yse| Axold

yse| Axold

YSYL 31dINIS
907"
"]
Y
0¢¢ ¥344N9
YSYL X31dINOD _\: JNvad TYNLYIA
A
"1 71p-"1
_
N
0zl

INAIWNOYIANT JWILNNY NOILYOITddY d3LSOH

057 MSvL
SNOILYDITddY
INIYN

01}

IN3INOYIANS
JNILNNY
NOILYIddY JAILYN
NI SSVL FAILIVEILNI

SUBSTITUTE SHEET (RULE 26)

WO 2015/058102

300

APP TASK

SWITCHTO | 0y 35 30~
PROCESS f
ASSOCIATED SUSER ™\ YES
TR SELECTED APROXY
APPLICATION TASK:
TASK

340~ APPLICATION TASK

NOW IN VIRTUAL
FOREGROUND?

7115

USER
SELECTS
TASK FROM TASK
LIST IN NATIVE
SYSTEM

SWITCHTO
PROCESS
ASSOCIATED
WITH
PROXY
TASK

SWITCH TO HOSTED

ASSOCIATED WITH
PROXY TASK

325

UPDATE
CONTENTS OF
NATIVE FRAME
BUFFER WITH
INFORMATION
FROM VIRTUAL
FRAME BUFFER

APP TASK

NOW IN VIRTUAL
FOREGROUND?

FIG. 7

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/061171

NATIVE
APPLICATION
RUNTIME
ENVIRONMENT

110

HOSTED
APPLICATION
RUNTIME
ENVIRONMENT
>120

WO 2015/058102 PCT/US2014/061171

8/15
NonNative NonNative
NATIVE APP 1 NATIVE APP 2 APP 1 PP
/ / / /
1103 1103 1106 1106
NATIVE NOTIFICATION SUBSYSTEM NonNative NOTIFICATION
(WITHAPI) SUBSYSTEM (WITH AP)
/ A A /
10 05 COMMUNICATION VIA (HOSTED
RUNTIME ENVIRONMENT IPC)
COMMUNICATION §============"-============ ':
VIA(NATIVE ! ADAPTATION LAYER L1104
RUNTIVE
ENVIRONMENT IPC) 1 !
: NonNative COMPONENT |
1101 g i
/ y ; NATIVE COMPONENT i
; (PROXY APP) |
NOTIFICATION DISPLAY L i

SUBSTITUTE SHEET (RULE 26)

WO 2015/058102 PCT/US2014/061171

915
1200~ NonNative NonNative | _~1201
APP | APP?

ADAPTATION LAYER ;*"'1104

5 5 — 1203

| NOTIFICATION TRANSLATOR | GRAPHICALASSETS

i | (INNATIVE OR NonNative COMPONENT) i

= = &

S RO .

Y
NOTIFICATION DISPLAY
(NATIVE) 10

SUBSTITUTE SHEET (RULE 26)

WO 2015/058102

TRANSLATE CALLTO
POSTNOTIFICATION [™-1302
STANDARD T"y1ap SPECIFICATION OF STANDARD |_~1304
PROMPT TO NATIVE ENVIRONMENT
APP-SPECIFIC PN
305~ SETTHESPECED |, o/feqroaioAL NOOTED [rmansLATE FoRMAT OF
PROMPT et GRAPHICAL ASSET

PCT/US2014/061171

10/15

|_~1307

SYSTEM?

NATIVE

1308

TRANSLATE SPECIFICATION OF

GRAPHICALASSET TO HOST
SYSTEM CONVENTIONS

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 2015/058102

PCT/US2014/061171

11/15

ARETURN
MESSAGE?

CREATE ARETURN MESSAGE INHOST SYSTEM

FORMAT ADDRESSED TO THE MESSAGE TRANSLATOR
PROXY, AND STORE THE HOSTED SYSTEM MESSAGE

IN THE PROXY

1402

POST NOTIFICATION IN THE
HOST SYSTEM FORMAT [™-1403

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 2015/058102

12/15

1501~d USERACKNOWLEDGES
NOTIFICATION

PCT/US2014/061171

IS THERE ARETURN NO
MESSAGE ADDRESSED TO

THE PROXY?

ITWASAHOST SYSTEM [_~1503

MESSAGE

DELIVER MESSAGE TO

Y

10~ MESSAGE TRANSLATION PROXY
USING HOST SYSTEM IPC

FIG. 12

PROXY USES PAYLOAD OF HOST
SYSTEM MESSAGE TO RETRIEVE
HOSTED-SYSTEM MESSAGE
AND DELIVERS MESSAGE VIA
HOSTED SYSTEM

_—1505

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/061171

13/15

WO 2015/058102

A=

NI
NTIdSI0
N SO0
EREMTe

HONOL 434408

Iq Iq g1 _ v

e oy | g o 03IA NLYN

A

SOV
. Y Y _
A QELEY
R m 2 m
m NN CIE IR A
! SNOW3YQ L¥0ddnS “ “
g i\ 1
m % L m
m / L o 0k gy [, 08 m
s || by | anawaroo | SZREF SRS

m g A7 NOLYONddY |1 g3190 [87 || aLson
m L {30V | AxOdd O / AXO¥d O
| oM INE LAY i /, il RO i N
Ot " - TAONd TV

SUBSTITUTE SHEET (RULE 26)

WO 2015/058102 PCT/US2014/061171

14/15

I T lt’32

-1

RUNTIME ENVIRONMENT 1

HoSTED | [HoSTED i
APP#1 APP#2 ;

/ /
3 %

R s etttk

-

- -
-

- ~ -

/" [APPLICATION FRAVEWORK | o3\
RESORCES) 0

12~ EVENT
N HANDLER |

¥

|

I

1

1

1

. I

\

\

\
\
\
\

UNTIVE V~ RUNTIME Vs
LIBRARIES |44 ;

\ Y ’

\ VIRTUALFRAME |_~54 .~
\ BUFFER e

-
~ -
-~ -
kP pupapEey 3

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/061171

15/15

WO 2015/058102

Gl Ol

NT380S
71 HONOL
AIdSIa
N SOIHAYD
¥ISN HIHIO
/HONOL ¥344n9
w1 wn | o 030N LN
A
SOIHAYD
Y Y
gEIYEY
m “ ST ININY [ALY
! SNOW3YQ L¥0ddNS “ e
g S ' 1
m % A
“ / A
| 8| odaaan] axoud | g [] Aodd || gy
i stddy | | VddY | 1 HALTIGYANOD|(| dy dv 3500
“ G3ISOH| | G3LSOH| § o A-NOUYINAGY || G3LSOH [gr || GaLSOH m
| LNGANOYIANG JWLNNY I [REENINboud ey vl NG
- P AITVISNIE R QAISOH |\ ddy [08
0f="tmm oo ' 19-7[AXOud TOV 4 |

gp--- LN ININE QY INIVN.]

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US14/61171

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 9154 (2015.01)
CPC - GO6F 9/54

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8): GOBF 9/44, 9/46, 9/54, 15/16, 15/177 (2014.01)
CPC: GO6F 9/44, 9/46, 9/54, 15/16, 15/177

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSeer (US, EP, WO, JP, DE, GB, CN, FR, KR, ES, AU, IN, CA, INPADOC Data); Espacenet; Keywords: mobile, operating system,
platform, native, environment, host, cloud, program, application, video, buffer, runtime, resource, browser

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X 1
----\-/---- US 2012/0220263 A1 (SMITH, C. et al.) 30 August 2012; figures 1-3; paragraphs [0023], [0040]. ;-5-,-
Y US 2011/0276661 A1 (GUJARATHI, A et al.) 10 November 2011; paragraphs [0232], [0236]. 2,3
Y US 2011/0270922 A1 (JONES, B. et al.), 03 November 2011; paragrabhs [0265], [0372). 4
Y us 2004/0698731 A1l (DEMSéY, S.etal) 20 May 2004; figures 1-3; paragraphs [0030], [0111]. [5

D Further documents are listed in the continuation of Box C.

uj

*_ Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited 1o establish the publication date of another citation or other

" special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X"” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y™ document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

05 March 2015 (05.03.2015)

Date of mailing of the international search report

25 MAR 2015

Name and mailing address of the [SA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Shane Thomas

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - claims
	Page 76 - claims
	Page 77 - claims
	Page 78 - claims
	Page 79 - claims
	Page 80 - claims
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - wo-search-report

