
US 2008O137865A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2008/0137865 A1

Sabet-Sharghi et al. (43) Pub. Date: Jun. 12, 2008

(54) SYSTEM, METHOD, AND DEVICE FOR Related U.S. Application Data

SNESSERAUDIO, VIDEO (63) Continuation of application No. 10/006,554, filed on
NON-VOLATILE MEMORY CARDS, Dec. 6, 2001.
COMPACT DISKS, OR OTHER MEDIA (60) Provisional application No. 60/251,731, filed on Dec.

7, 2000.
(76) Inventors: Farshid Sabet-Sharghi, Los Altos Publication Classification

Hills, CA (US); Bahman Qawami
s s s 51) Int. Cl. San Jose, CA (US); Robert C. (- s G06F 2/14 (2006.01)

Chang, Danville, CA (US) H04L 9/00 (2006.01)
52) U.S. Cl. ... 380/2.77: 713/193

Correspondence Address: (52) s
WEAVER AUSTN VILLENEUVE SAMPSON (57) ABSTRACT
LLP
ATTN: SANDISK, P.O. BOX 70250
OAKLAND, CA 94612-0250

A secure Software package for original equipment manufac
turers to run in electronic devices in order to access and
dynamically decrypt encrypted audio video or other content
from a memory storage device Such as a memory card, optical

(21) Appl. No.: 11/901,577 or hard disk such that the user interface of the device need
only send simple commands and the decrypted content is

(22) Filed: Sep. 18, 2007 output.

13c.OGICALLAYER

MEDIAKEY
BLOCKS

MEDIA
IDENTIFER

SYSTEM AREA 43

MEDIA UNICUE
KEYS

RANDOM
CONTROLLER NUMBER KEY

HIDDEN AREA 45

ENCRYPTED
TLE KEY

ENCRYPTECC

PROTECTED AREA 47

ENCRYPTED
CONTENT

USER DATA AREA 41

Patent Application Publication Jun. 12, 2008 Sheet 1 of 10 US 2008/O137865 A1

64

FIG. 1

SYSTEM
MEMORY 27

SYSTEM BUS 23

SP 31 ROM 32 an OOODDD
31A)

HW CARD IF 29 15 PORTABLE DEVICE

MEMORY CARD13

Patent Application Publication Jun. 12, 2008 Sheet 2 of 10 US 2008/O137865 A1

39 DEVICE INTERFACE
ELECTRICAL CONTACTS

requests for content
dik ived and Keys receive 13a. APPLICATION LAYER

communicates with device
accessing Content

encrypted content
and encrypted
keys to decrypt

Content tran?mitted

13b. SECURITY LAYER

controls access to logical
and physical layers

MEMORY CARD

13C. LOGICALAYER

files, tracks, directory
Structure of Content

Corresponding to clusters,
AND encrypted keys

13d. PHYSICAL LAYER

clusters of memory
cells 33 with encrypted

content and keys

FIG.3A

Patent Application Publication Jun. 12, 2008 Sheet 3 of 10 US 2008/O137865 A1

13c. LOGICAL LAYER

MEDAKEY
BLOCKS

MEDIA
IDENTFER

SYSTEM AREA 43

MEDIA UNCRUE
KEYS

RANDOM
NUMBER KEY

HIDDEN AREA 45

ENCRYPTED
TTLE KEY

ENCRYPTED CC

PROTECTED AREA 47

ENCRYPTED
CONTENT

USER DATA AREA 41

FIG.3B

Patent Application Publication Jun. 12, 2008 Sheet 4 of 10 US 2008/O137865 A1

51 53 55

MULTIPLE OF 4 BYTES 1 BYTE 3 BYTES

RECORD RECORD RECORD KEY
TYPE LENGTH "MKB" CHUNK 50
K-512 bytes - T - T - >

DEVICE KEYS

Kd1 Kd2
(From Utilization Device)

DECRYPT
MKB

(one Record at a Time)

MEDAKEY BLOCK
(MKB)

(Read From Card)

57

MEDIA KEY
(KM)

59 MEDIA DENTIFIER
(DMEDIA-RLC From Card)

C2 G
FUNCTION

MEDIA UNIQUE KEY (K)

FIG.5

US 2008/O137865 A1 Jun. 12, 2008 Sheet 5 of 10 Patent Application Publication

GXWTSS300/g(!)
CldpueO ÁuouueWWOT

Patent Application Publication Jun. 12, 2008 Sheet 7 of 10 US 2008/O137865 A1

VIDEO
INTERFACE

11O

MAGNG
INTERFACE

115

AUDIO
INTERFACE

105

API 13OA

COMMAND DISPATCHER 130

SD VIDEO
ENGINE 150

SD IMAGE
ENGINE 160

SD AUDO
ENGINE 140

SSM MANAGER 18O

NON SECURE FILE
INTERFACE

170

190A

DEVICE DRIVER 190

SDK SW 1 OON J PORTABLE innin DEVICE 15 DDDDDDD
39 DEVICE INTERFACE

---. FIG.8

Patent Application Publication Jun. 12, 2008 Sheet 8 of 10 US 2008/O137865 A1

CORRESPONDING PROCESS MKB IMAGE 205
APN CODE MKB -> Kim -> Kmu

PARTIALLY PROCESSAKE 7-210
Kmu -> KS

SEC AKEAP
DELETE Knu 213

SEC ENC TKEYAP

USE SESSION KEY (Ks)
TO DECRYPT DOUBLY 215

ENCRYPTED TITLE KEY
E(E(Kt)) -> E(Kt)

STORE E(Kt) INA 22O
MEMORY OF THE DEVICE

225b)

225C

... SEC DEC TKEY AP

SEC GETCCIAP

SEC UPDATECCIAP

2.25d

225e

ALL
PORTIONS OF
TRACK READ

NO

YES
235 FIG.9

US 2008/O 137865 A1

SYSTEM, METHOD, AND DEVICE FOR
PLAYING BACK RECORDED AUDIO, VIDEO

OR OTHER CONTENT FROM
NON-VOLATILE MEMORY CARDS,
COMPACT DISKS, OR OTHER MEDIA

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. patent
application Ser. No. 10/006,554 filed Dec. 6, 2001 to Farshid
Sabet-Sharghi et al., entitled “System, Method, and Device
for Playing Back Recorded Audio, Video or Other Content
From Non-Volatile Memory Cards, Compact Disks, or Other
Media', which claims the benefit of U.S. Provisional Patent
Application Ser. No. 60/251,731 filed Dec. 7, 2000 to Farshid
Sabet-Sharghi et al., entitled “Secure Software System for
Playing Back Recorded Audio, Video or Other Content From
Non-Volatile Memory Cards, Compact Disks or Other
Media.
0002. This application is related to U.S. Pat. No. 7,227,
952, issued on Jun. 5, 2007 to Bahman Qawami et al. entitled
“System, Method, and Device for Playing Back Recorded
Audio, Video or Other Content From Non-Volatile Memory
Cards, Compact Disks or Other Media' and application Ser.
No. 1 1/809,222 filed May 31, 2007 to Bahman Qawami et al.,
entitled “System, Method, and Device for Playing Back
Recorded Audio, Video or Other Content From Non-Volatile
Memory Cards, Compact Disks or Other Media”.
0003. These applications are hereby incorporated by this
reference in their entirety.
0004 Source code is submitted on a compact disc accord
ing to 37 CFR 1.52 as an appendix containing the following
files, each of which is hereby incorporated by this reference in
its entirety: Sd security\Sd oem\Makefile, Nov. 05, 2001,
2KB: Sd security\Sd oem\Readme, Nov. 05, 2001, 3KB:
Sd security\Sd oem\Sd oem.c., Nov. 05, 2001, 6KB;
Sd security\Sd oem\Sd oem.h, Nov. 05, 2001, 1KB:
Sd security\Sd oem\Sd oem.inc., Nov. 05, 2001, 1KB;
Sd security\Sd oem\Sdtypes.h, Nov. 05, 2001, 3KB:
Sd security\Sd oem\Vssver.scc., Nov. 05, 2001, 1KB;
Sd security\Security\Tstsampl\Dotest.c., Nov. 05, 2001,
8KB: Sd security\Security\Tstsampl\Makefile, Nov. 05,
2001, 4KB; Sd security\Security\Tstsampl\Readme, Nov.
05, 2001, 3KB; Sd security\Security\Tstsampl\Regress.c.
Nov. 05, 2001, 26 KB: Sd security\Security\Tstsampl\Sdls.
C. Nov. 05, 2001, 1OKB;
Sd security\Security\Tstsampl\Sdrm.c, Nov. 05, 2001, 5KB:
Sd security\Security\Tstsampl\Securmmc.c. Nov. 05, 2001,
6KB; Sd security\Security\Tstsampl\Tstsamplinc, Nov. 05,
2001, 1KB; Sd security\Security\Tstsampl\Vssver.scc., Nov.
05, 2001, 1KB: Sd security\Security\Errh, Nov. 05, 2001,
1KB: Sd security\Security\Fsentry.c, Nov. 05, 2001, 7KB;
Sd security\Security\keyInfo.h, Nov. 05, 2001, 84KB:
Sd security\Security\Makefile, Nov. 05, 2001, 3KB:
Sd security\Security\Readme, Nov. 05, 2001, 4KB:
Sd security\Security\Scdrv.c, Nov. 05, 2001, 29 KB:
Sd security\Security\Scdrv.h, Nov. 05, 2001, 5KB:
Sd security\Security\Scfs.c., Nov. 05, 2001, 13KB:
Sd security\Security\Scfsh, Nov. 05, 2001, 4KB:
Sd security\Security\Sdsec.h, Nov. 05, 2001, 5KB:
Sd security\Security\Sdsys.c., Nov. 05, 2001, 2KB:
Sd security\Security\Security.c, Nov. 05, 2001, 64KB:
Sd security\Security\Smanager.c, Nov. 05, 2001, 7KB;
Sd security\Security\Smanager.h, Nov. 05, 2001, 2KB;

Jun. 12, 2008

Sd security\Security\Ssmapi.c, Nov. 05, 2001, 3KB:
Sd security\Security \vssver.scc., Nov. 05, 2001, 1KB;
Sdaudlib\HostFunc.c. Nov. 05, 2001, 3KB;
Sdaudlib\Impoutp.c. Nov. 05, 2001, 1KB; Sdaudlib\ms.sccprj.
scc., Nov. 05, 2001, 1KB: Sdaudlib\plm Info.h, Nov. 05, 2001,
16KB: Sdaudlib\Sd plm.h, Nov. 05, 2001, 5KB;
Sdaudlib\Sd tkm.h, Nov. 05, 2001, 4KB: Sdaudlib\Sd
types.h, Nov. 05, 2001, 2KB: Sdaudlib\Sdapilh, Nov. 05,
2001, 2KB: Sdaudlib\Sdaudapi.c, Nov. 05, 2001, 91KB:
Sdaudlib\Sdaudapi.h, Nov. 05, 2001, 8KB;
Sdaudlib\Sdaudlib.dsp, Nov. 05, 2001, 4KB;
Sdaudlib\Sdaudlib.dsw, Nov. 05, 2001, 1KB;
Sdaudlib\vssver.scc., Nov. 05, 2001, 1KB.

BACKGROUND

0005 1. Field of the Invention
0006. This invention relates generally and specifically to
secure playback of digital audio, video or other content from
memory cards, compacts disks or other media.
0007 2. Related Art
0008. The potential of electronic distribution of copy
righted music over the Internet, by other communication sys
tems or through retail kiosks, is being limited by concerns
about unauthorized copying of the music. This is also the case
for other audio, as well as video, content. The content is
typically provided to the ultimate customer in encrypted
form, and the customer records the encrypted content files
onto some storage media, Such as a personal computer
memory, a memory of a portable playing device, a writable
compact disk (CD) or a non-volatile memory card. Providers
of the content would like to eliminate the possibility of unau
thorized copying of the content but have to be satisfied with
taking steps that minimize the amount of copying that occurs.
This includes providing protection of the content on the
recording media. The protection of content stored on non
Volatile memory cards is described herein, as specific
examples, but the same content protection techniques can be
applied to compact disks or other recordable media.
0009. There are several commercially available non-vola

tile memory cards that are Suitable for use as the content data
storage media. One is the CompactFlash (CF) card, another is
the MultiMediaCard (MMC), and yet another is the Secure
Digital (SD) memory card that is closely related to the MMC
card. All three, and others, are available in various storage
capacities from SanDisk Corporation of Milpitas, Calif.,
assignee of the present application. The physical and electri
cal specifications for the MMC are given in “The MultiMe
diaCard System Specification' that is updated and published
from time-to-time by the MultiMediaCard Association
(“MMCA') of Cupertino, Calif. Versions 2.11 and 2.2 of that
Specification, dated June 1999 and January 2000, respec
tively, are expressly incorporated herein by this reference.
The MMC products are also described in a “MultiMediaCard
Product Manual.” Revision 2, dated April 2000, published by
SanDisk corporation, which Manual is expressly incorpo
rated herein by this reference. Certain aspects of the electrical
operation of the MMC products are also described in patent
applications of Thomas N. Toombs and Micky Holtzman, Ser.
No. 09/185,649, now U.S. Pat. Nos. 6,279,114, and 09/186,
064, now U.S. Pat. No. 6,901,457, both filed Nov. 4, 1998, and
assigned to SanDisk Corporation. The physical card structure
and a method of manufacturing it are described in U.S. Pat.
No. 6,040,622, assigned to SanDisk Corporation. These pat
ents are also expressly incorporated herein by this reference.

US 2008/O 137865 A1

0010. The newer SD Card is similar to the MMC card,
having the same in plan view. A primary difference between
them is that the SD Card includes additional data contacts in
order to enable faster data transfer between the card and a
host. The other contacts of the SD Card are the same as those
of the MMC card in order that sockets designed to accept the
SD Card will also accept the MMC card. The electrical inter
face with the SD card is further made to be, for the most part,
backward compatible with the MMC product described in
version 2.11 of its specification referenced above, in order
that few changes to the operation of the host need be made in
order to accommodate both types of card. The electrical inter
face of the SD Card, and its operation, are described in co
pending patent application Ser. No. 09/641,023, filed Aug.
17, 2000, now U.S. Pat. No. 6,820,148, which application is
incorporated herein in its entirety by this reference.

SUMMARY OF THE INVENTION

0011 Encrypted content is difficult to access, and memory
cards or compact disks with encrypted content each have
specific structures that require specific commands and rou
tines to access encrypted and unencrypted content. The Soft
ware of the present invention is a simple solution that any
original equipment manufacturer (OEM) can install and run
on a myriad of different types of devices having a myriad of
different types of microprocessors. These devices range from
personal computers to portable devices to car stereos, and
include any device from which one would like to access
content that may be encrypted. The portable devices may be
portable audio players or cellphones orportable organizers or
generally any microprocessor controlled portable device. The
storage media may be flash memory or any type of recordable
disk. The devices may have a simple or powerful micropro
cessor with a small or large amount of memory. The Software
utilizes and requires only a small buffer for encryption pur
poses and is designed to run efficiently even in environments
with limited processing power and memory. It can be run by
any type of general purpose microprocessor, or special pur
pose microprocessors such as a DSP or an ASIC. Addition
ally, computationally demanding portions of the Software,
Such as the encryption and decryption (security) engine may
be executed by the DSP, while other portions of the software
may be executed by another microprocessor or an ASIC.
0012. The software has audio, video and image interfaces

to receive commands for each of the respective types of files.
These interfaces can organize playback and recording,
including managing playlists and other convenient features.
Thus, whatever the device, it need only issue a command to an
interface and the Software will take care of reading or writing
data from the secure media, and decoding and decompressing
the data from any well known audio, video or image file
formats within the audio video or image engines.
0013 The encryption and decryption takes place in an
isolated module that is very difficult to access and thus iso
lated from any attempts from unauthorized persons wishing
to access encryption keys in order to copy the files from the
media or the device. Content is only decrypted in Small por
tions, and a method of dynamic key generation and deletion
minimizes exposure of decrypted keys.

BRIEF DESCRIPTION OF THE FIGURES

0014 FIG. 1 is an illustration of the devices used to read
and write information on a secure media.

Jun. 12, 2008

0015 FIG. 2 is a schematic diagram of a device used to
access the secure media.
0016 FIG.3A is an abstract illustration of the layers of the
secure media.
0017 FIG. 3B is an illustration of the physical and logical
structure of the memory cells of the secure media.
0018 FIG. 3C is an illustration of the track structure and
the component parts of a track.
(0019 FIG. 4 is an illustration of a media key block (MKB)
image broken into its component chunks.
0020 FIG. 5 is an illustration of a portion of the authenti
cation and decryption process.
0021 FIG. 6 is an illustration of the authentication and
encryption process.
0022 FIG. 7 is a schematic of the authentication key
exchange process shown in FIG. 6.
0023 FIG. 8A is a block diagram of the software of the
present invention.
0024 FIG. 8B is a block diagram illustrating the modules
of the software of the present invention.
(0025 FIG. 8C is a flow chart overview of the pre-play and
play process according to the present invention, with the
related API modules/calls shown.
0026 FIG. 8D is an expanded flow chart of audio content
initialization phase in FIG. 8C.
0027 FIG. 8E is an illustration of information blocks cre
ated during the pre-play process 805 of FIG. 8C.
(0028 FIG.9 is a flow chart overview of the playback of an
audio track according to the present invention.
(0029 FIG. 10 is a flow chart of the processing of an MKB
image seen in FIG. 4, a step of FIG. 9.

DETAILED DESCRIPTION OF THE INVENTION

0030 Encrypted content is difficult to access, and memory
cards or compact disks with encrypted content each have
specific structures that require specific commands and rou
tines to access encrypted and unencrypted content. The Soft
ware of the present invention is a simple solution that any
original equipment manufacturer (OEM) can install and run
on a myriad of different types of devices having a myriad of
different types of microprocessors. These devices range from
personal computers to portable devices to car stereos, and
include any device from which one would like to access
content that may be encrypted. The portable devices may be
portable audio players or cellphones orportable organizers or
generally any microprocessor controlled portable device. The
storage media may be flash memory or any type of recordable
disk. The devices may have a simple or powerful micropro
cessor with a small or large amount of memory. The Software
utilizes and requires only a small buffer for encryption pur
poses and is designed to run efficiently even in environments
with limited processing power and memory. It can be run by
any type of general purpose microprocessor, special purpose
microprocessors such as a DSP or an ASIC. Additionally,
computationally demanding portions of the Software, such as
the encryption and decryption (security) engine may be
executed by the DSP while other portions of the software may
be executed by another microprocessor or an ASIC. The
source code referred to in the Cross Reference section forms
apart of this application, and is hereby expressly incorporated
in its entirety by this reference.
0031. With reference to FIG. 1, an exemplary system is
described in which content protection is applied to audio
content such as music. A host computer device 11 may be a

US 2008/O 137865 A1

personal computer (PC), as shown, a kiosk located in a retail
store to distribute music or other content, or the like. An SD
memory card 13 is used in this example to store music. The
card 13 is insertable into a utilization device, in this case a
portable device (PD) 15 that operates from batteries to play
the music or other audio content recorded on the card 13
through personal earphones. The music may be stored on the
card 13 when inserted into the device 15 by connecting the
device 15 to the host 11, such as through a computer universal
serial bus (USB) connection 17. Alternatively, if the player
device 15 is not provided with the capability of recording
content onto the card 13, or if it is otherwise desirable, a card
writer/reader 19 may be connected to the computer through a
USB connection 21, and the card 13 inserted into it for record
ing music on the card. The card 13 is then removed from the
writer/reader 19 and inserted into the portable device 15 to
play the audio content recorded on the card. The host 11 is
termed a licensed compliant module (LCM) when it includes
the software necessary to write to and read from the card 13
content data in accordance with the security and authentica
tion protocols of the 4C Entity and the SD Group.
0032. The electronic system within the example portable

utilization device 15 is illustrated in FIG. 2. Operably con
nected together through a bus 23 are a computing unit (MCU)
25, preferably with some non-volatile flash memory 25A,
system memory 27, which is preferably a high speed random
access memory (RAM), and interface circuits 29 for connect
ing with the memory card 13. The USB connection 17 is also
optionally provided to the MCU25. A digital signal processor
(DSP) 31 is also included, when needed, for decompressing
and/or decrypting content data, Such as audio or video data,
that is stored in a compressed and/or encrypted form. DSP 31
also has its own RAM memory 31A included as part of the
processor. DSP 31 may or may not be included. Furthermore,
if a DSP processor is included, it may perform the function
ality of MCU 25, and thus MCU 25 may therefore be elimi
nated. Read only memory (ROM) 32 can store part or all of
the software of the invention. Software instructions and data
in ROM32 can be executed or read directly from ROM 32 or
first shadowed into any RAM memory included in the cir
cuitry of the device.
0033 Specifications for the protection of content on
recordable media have been jointly established by Intel Cor
poration, International Business Machines Corporation, Mat
sushita Electric Industrial Co., Ltd. and Toshiba Corporation
(4C Entity). Particularly relevant here are the following three
publications of the 4C Entity, which are expressly incorpo
rated herein by this reference: “Content Protection for
Recordable Media Specification, Introduction and Common
Cryptographic Elements. Revision 0.94, October, 2000,
“Content Protection for Recordable Media Specification, SD
Memory Card Book.” Revision 0.95, May, 2001, and “C2
Block Cipher Specification. Revision 0.9. January, 2000,
and “Content Protection for Recordable MediaSpecification,
DVD Book.” Revision 0.95, May, 2001. Additional detailed
specifications for implementing these 4C Entity specifica
tions on SD memory cards have been established by Mat
sushita Electric Industrial Co., Ltd. (MEI), SanDisk Corpo
ration and Toshiba Corporation (SD Group).
0034 Referring to FIG. 3A, a memory card 13 can be
thought of as having four distinct layers. Such layers may also
be present in other types of secure media.
0035. At its most basic level, data is stored in memory cells
arranged inclusters on the physical layer 13d of memory card

Jun. 12, 2008

13. The data is encrypted or secure if it is copyrighted material
or otherwise worthy of encryption. Keys used to encrypt and
decrypt the secure content are also encrypted and stored in a
secure area of the physical layer.
0036. The software of the present invention runs within a
device to allow the device to store and retrieve encrypted
information without the manufacturer (OEM) having to pro
gram very specific instructions to access the memory cells
containing encrypted data and keys. It contains methods of
sending the encrypted data to the device, decrypting the data
within the device, and decompressing and playing audio,
Video and image files upon requests from the device. In short,
a device need only send a command Such as "play track. The
Software will accept the command, retrieve the encrypted data
stored in the memory cells, retrieve the encrypted keys, orga
nize and decrypt the data, decompress and format it, and play
the song back.
0037 Logical layer 13c contains the organizational struc
ture for the memory cells and clusters of physical layer 13d.
The two layers 13c and 13d contain and logically structure the
memory of card 13. As card 13 is a secure card, security layer
13b controls and limits access to the secure data housed in the
layers below.
0038 Application layer 13a is the part of memory card 13
that communicates with a device accessing the content stored
in the card. It does this through a device interface or contacts
39. Memory card 13 preferably includes a controller that
manages the operation of the card and functionality of the
application layer 13 together with control of all layers 13a-d
of the card.
0039. The physical and logical structure of a recording
media, the SD card 13, according to the foregoing specifica
tions, and corresponding to layers 13c and 13d of FIG.3A, is
illustrated in FIG. 3B. The card includes an array of memory
cells 33 and a memory controller 35. User data, commands
and status signals are communicated between the controller
35 and the memory array 33 over a circuit 37. The controller
35 communicates with a host device connected to a socket in
which the card is inserted through a series of electrical con
tacts 39 on the card.

0040. The memory cells of the array 33 are divided into the
four non-overlapping areas of cells that are individually des
ignated to store different types of data. A largest storage
capacity area 41 is designated to store user data, in this case,
encrypted audio, video or other data. The user data may or
may not also include unencrypted data. A system area 43 of
the memory stores a 64-bit media identifier (IDmedia) of the
card manufacturer, and 16 media key blocks (MKB) provided
by the 4C Entity, each MKB having a maximum size of 4k
bytes, all being pre-recorded by the card manufacturer. One of
the 16 MKBs is specified for use with audio user data, another
for use with video user data, another for use of image data,
and so on. The system area 43 is a write-protected area that is
accessible for reading from outside of the card. A hidden area
45 carries 16 pre-recorded media unique keys (Kmu) corre
sponding to the 16 distinct media key blocks (MKB) stored in
the system area 43. The hidden area 45 is a write-protected
area that is accessible only by the memory card itself. A
protected area 47 is a read/write area that is accessible only
after a successful explicit mutual authentication has occurred.
Randomly picked title keys (Kt) and copy control information
(CCI) are stored in the protected area 47 in an encrypted form.
Each piece (file) of content stored in the user data area 41 is
encrypted with a unique title key that is also stored in an

US 2008/O 137865 A1

encrypted form in the protected area 47. The title keys and
CCI stored in the protected area 47 are concatenated and
encrypted together by the media unique key, which is unique
for each memory card and stored in its hidden area 45.
0041. The file system of the user data area 41 is typically
an ordinary FAT file system. The FAT system describes what
memory clusters make up what tracks and the various Sub
components of the tracks. Audio or video tracks within user
data area 41 may comprise multiple files as illustrated in FIG.
3C. Audio files are referred to as audio objects (AOB's) and
picture files are referred to a picture objects (POB's). A track
may comprise both. Track 300, for example is composed of
AOB 304 and AOB308, and track 302 is composed of AOB
306 and the last track XXX is composed of AOB XXX and POB
XXX. Each AOB or POB is also broken down into sub com
ponents. AOB 304 is shown broken down into AOB blocks
312, which are further broken down into AOB elements 316
with header 318. Each element may be stored in one or more
memory clusters of memory card 13. AOB elements are
divided into the lowest component level, AOB frames 320.
Depending on the encoding and compression of the content,
each two seconds may comprise a varying number of frames.
A time search table (TMSRT) has information about the
number of frames and data size which corresponds to “every
two seconds of playback. This information is used when an
audio or video track and the component AOB's elements and
frames are accessed for fast forward and rewind. Also, as will
be discussed later with regard to FIGS. 9 and 10, at title key
(Kt) is an a decrypted State only for the time it takes to access
this “every two seconds' of content, although anywhere from
less than one to ten seconds of content may be decrypted at a
time. For further detail, please refer to the CPRM Specifica
tion, SD Memory Card Book, which was previously incorpo
rated by reference.
0042. The media key block (MKB), as stored in the system
area 43 of the card memory, contains a sequence of contigu
ous records, one such record being illustrated in FIG. 4. The
entire MKB image 49 is 64 Kbytes. It is broken into 128
chunks of 512 bytes, and chunk 1, which contains all or part
of the first record, and is labeled MKB chunk 50 in the figure,
is enlarged to show its component parts. Chunk 50 may also
contain multiple records. A first field 51 contains the record
type, a second field 53 the total length of the record, and the
remaining field 55 the key itself. The data in the record type
and length fields 51 and 53 are not encrypted. Each record of
the MKB is a multiple of 4 bytes in total length. As illustrated
by a block 57 of FIG. 5, the MKB key records are decrypted
by device keys stored in the portable device (PD), licensed
compliant module (LCM) or other device that utilizes a
memory card for reading or programming content data stored
on it. Device keys Kd1. Kd2, Kd3 . . . are written into a
memory of the utilization device, such as non-volatile flash
memory within the MCU 25 of the portable audio player of
FIG. 2, by the manufacturer of the device. The device keys are
provided to device manufacturers by the 4C Entity, and are
maintained in confidence. The number of device keys which
are stored in a given utilization device depends upon the type
of the device.

0043. The utilization device (PD, LCM or other device)
which performs the processing of FIG.5 calculates the media
key Kim as part of the decryption of block 57, which is dis
cussed in further detail with regard to FIGS. 9 and 10. Each
record (FIG. 4) of the MKB read from the system area of an
inserted memory card is usually processed in this manner.

Jun. 12, 2008

After processing of the MKB is completed, the most recently
calculated Kim Value is taken as the secret media key output of
the block 57. This media key Km and the media identifier
IDmedia are combined by use of a C2 one-way function, as
indicated by a block 59 of FIG.5, to produce the media unique
key Kmu. Additional details of this processing may be had by
reference to the 4C Entity publications referenced previously.
0044 FIG. 6 illustrates all of the authentication and
encryption processing that takes place when either recording
audio content onto, or playing audio content from, a memory
card 13 having the memory space allocation of FIG. 3. Pro
cessing that takes place in a personal computer or other LCM
63 is illustrated for recording audio or other content onto the
card 13. Similarly, the processing of a portable audio or other
utilization device 65 is shown for reading the recorded con
tent from the card 13. Included in both is the processing
described with respect to FIG. 5, the processing blocks 57 and
59 being part of the utilization device 65 and corresponding
processing blocks 57 and 59' being part of the content record
ing system 63.
0045. As part of recording content, an arbitrarily assigned

title key Kt is input at a line 67 for use by an encryption
module 69 to encrypt one file (piece) of audio or other content
input at line 71. The encrypted file is then stored in the user
data area 41 of the memory card 13. In order to make the title
key available for decrypting the recorded content, an
encrypted version of the title key (Kt) is stored in the pro
tected card memory area 47, as previously described. An
encrypted version of the title key (Kt) is also stored in either
system memory 27, RAM memory 25A of MCU 25, or RAM
memory 31A of DSP 31. Storing the encrypted title key (Kt)
in a memory of the device eliminates the need to access
protected card memory area 47. This is significant because it
saves considerable time and processing capacity in compari
son to accessing the protected area 47 for each read. This will
be discussed later with regard to FIG. 9. The title key Kt and
copy control information CCI are encrypted by a series of
encryption modules 75, 77 and 79 in the LCM 63, and a
module 81 on the memory card 61. The media unique key
Kmu is used by the module 77. An authentication key
exchange (AKE) module 83 combines the media unique keys
Kmu as calculated by the module 59' and stored in the hidden
area 45 of the card 61, to generate a session key Ks that is used
by each of the modules 79 and 81. In order for the utilization
device 65 to decrypt the recorded encrypted content, corre
sponding modules, indicated with the same reference num
bers but with a prime () added, are utilized to perform an
inverse of the encryption process.
0046 FIG. 7 illustrates a technique for accessing the pro
tected area 47 of a memory card, utilizing an authentication
and key exchange (AKE) challenge-response protocol
between a card and some LCM or utilization device. When
this authentication is successful, the card and the other mod
ule or device share a secure common session key Ks. Addi
tional details of the forgoing processing and protocols may be
had by reference to the 4C Entity publications previously
identified.

0047 FIGS. 8A and 8B illustrate an embodiment of a
software system designed to run in a portable device or LCM
in order to access information encrypted with the aforemen
tioned processes. The SanDisk software, SW 100, is a com
plete turn-key software solution that enables OEM music
players and recorders to readily Support secure media includ
ing the secure digital (SD) memory card. SW 100 shown

US 2008/O 137865 A1

within portable device 15 in order to access SD card 13. SW
100 may also be installed in any licensed compliant module
Such as a personal computer. As seen in FIG. 8A, at its highest
level, SW100 receives calls from device 15, particularly a
user interface of device 15, retrieves encrypted content from
the Secure Digital card 13, and returns decrypted content to
the device. Thus only simple calls are required to execute
many complicated processes. The complicated processes of
retrieving encrypted content stored in memory locations of
card 13, and then Subsequently decrypting and formatting the
content are handled by SW 100.
0048 Performing accesses to the authentication area of
the SD Memory Card requires using secret device keys that
OEMs must license from the 4C Entity, as mentioned previ
ously. Protecting these key values and restricting their expo
sure within SDK SW 100 software layers is one of the central
considerations in the Software design. Isolation of these keys
(and other resultant values such as session keys) within a
single internal module while enabling a secure media Such as
the SD memory card device driver to perform operations
dependent on these values is achieved in a robust and secure
interface methodology. Once again, the SD memory card is
used to illustrate the invention; however, the invention can be
used on any secure media Such as CDS or other secure
memory that may be in a card or even in a remotely located
storage device.
0049 FIG. 8B illustrates the layered structure of SW 100
in more detail. Audio interface 105, video interface 110, and
imaging interface 115 are the points of communication to the
device. These interfaces provide a single point of communi
cation for the device and generally receive simple commands
from the device so that the device does not have to get
involved with the intricacies of getting encrypted data from a
secure media, then decrypting and processing the data. All of
these complex processes are handled by SW 100. Interfaces
105, 110, and 115 also manage the arrangement of playback
Such as managing playlists and the correlation of images Such
as that of an artist with the songs of the artist or the various
playlists. Application programming interface (API) 130A
resides within command dispatcher (CD) 130. CD 130 and
API 130A receive commands from interfaces 105, 110, and
115, relay information to the interfaces, and organize all of
the processes that take place in the SW 100—the processes of
device 15 related to the playback and recording of content
stored on the secure media, with all of the requisite encryp
tion, decryption, and compression algorithms.
0050 SD audio engine (SDAE) 140, SD video engine
(SDVE) 150, and SD image engine (SDIE) 160 respectively
process audio, video, and image content residing on the
secure media, upon receipt of instructions from CD 130. This
means SDAE 140 can process any of the well known formats
for audio, such as AAC, WMA, and MP3. Likewise, SDVE
150 can process any of the well known formats for video clips
such as Windows media files or real networks files MPEGs or
any other well known type of video files. Finally, SDIE 160
can process any well known type of image files Such as TIF,
GIF, JPEG, bitmaps, etc. Each interface has a secure API
(SAPI) and a non-secure API (NSAPI). The content pro
cessed may or may not be encrypted. Encrypted content is
accessed through SAPIs 140A, 150A, and 160A. These
SAPIs communicate with SanDisk security manager (SSM)
180. All commands having to do with secure content are
channeled through SSM 180. Secure digital security engine
(SDSE) 175, which will be described later in further detail,

Jun. 12, 2008

handles all encryption and decryption processes. Keys used to
authenticate the media and decrypt the content are contained
within and handled exclusively by SDSE 175. Unencrypted
content residing on the card is accessed through NSAPI
140B, 150B, and 160B. These NSAPIs communicate with a
non-secure file interface (NSFI) 170 in order to access unen
crypted content on the media.
0051. In order to read or write data in the storage media,
NSFI 170 and SDSE 175 communicate with device driver
190. Device driver 190 in the example of the SD card manages
and drives signals to and from the device interface 39's con
tacts of the SD card 13. Device driver 190 will be tailored to
the specific type of device interface 39 of various devices or
media. In the case of a memory card device, driver 190 man
ages and drives signals to and from contacts located on device
15. In the case of optical media, device driver 190 may man
age and drive signals from various hardware components
including an optical pick-up unit. Alternatively, in the case of
a hard disk drive (hdd), device driver 190 will manage and
drive the required hdd signals. Device driver 190 contains a
secure device driverinterface (SDDI) 190A, and a non-secure
device driver interface (NSDDI) 190B. SDDI 190A and
NSDDI 190B are isolated from each other within device
driver 190. SDDI 190A communicates exclusively with
SDSE 175, while NSDDI 190B communicates exclusively
With NSFI 17O.

0.052 Device keys and other values central to the SD
Audio security scheme are housed within one restricted secu
rity software module, SD security engine (SDSE) 175. All
manipulation of these values is solely restricted to this mod
ule. Values are never passed in or out to software layers above
SDSE 175. All requests for the security services involving
these keys are controlled and monitored by SSM 180 that
shields this security module. Beneath the security module, the
SD Memory Card device driver 190 carries out security
accesses. Requests for these driver services are made via a
private driversecurity interface, secure device driverinterface
(SDDI) 190A, that is only known to the security module.
SDSE 175 uses this interface 190A to perform special secu
rity commands such as Get Media Key Block (MKB). Non
secure device driver interface (NSDDI) 190B also utilizes
device driver 190 to access any unencrypted files in user area
41 of card 13.

0053. The security of SW100 architecture resides in the
security of its keys. Secret “soft keys” are not stored in tem
porary secure areas for a long period of time, since this
increases the possibility of compromising the keys and thus
the encrypted content. SW 100 utilizes a scheme within
SDSE 175 of dynamically generating the needed keys (or
“soft keys”) and deleting them when there is no immediate
need for those specific keys.
0054 Operation of SW 100 is now described in more
detail. SW 100, in particular, command dispatcher 130/API
130A have a number of API routines that can be called upon
to perform a certain function. Although there are many rou
tines, only 22 of the routines are accessed externally by device
15. These routines are accessed by calls, which are also
referred to as commands. In order to retrieve the content in
memory card (or other media) 13, the device need only send
one of the 22 calls and the content will be retrieved, decrypted
if necessary, and decoded. In the case of audio, for example,
the device need only send the “play” call, and the music will
Start.

US 2008/O 137865 A1

0055. The following listed APIs allow applications to
interface to device compliant with the Secure Digital (SD)
standard. Although implementation of the invention is illus
trated with the SD standard, the present invention can be used
with many different standards.

TABLE 1.

API Routines, Calls

Call name API routine
(as seen in appended

Function of call API routine Source code)

1. Initialize audio system SdInitAudioSystem
2. Mount media (if necessary) ScMountAudio
3. Unmount audio (if necessary) ScUnMountAudio
4. Check the free space available SdDriveFreeSpace
5. Eject media SdEjectCard
6. Get number of playlists SdGetPlayList Count
7. Get playlists SdGetPlayLists
8. Get the track title (x) SdGetTrackTitle
9. Get the track information SdGetTrackInfo

10. Open the track SdOpenTrack
11. Play the track SdPlayTrack
12. Go to the next track SdNextTrack
13. Stop playback SdStopPlay
14. Pause playback ScPauseTrack
15. Resume playback SciResumeTrack
16. Reset playlist SdResetPlayList
17. Fast forward rewind playback (+/-) SdForward
18. Add track index to playlist SdAddTKItOPLM
19. Delete track index from playlist SdDelTKItOPLM
20. Delete track index from track SdDelTKItOTMG

manager
21. Covert MP3 to internal playback ScConvertMP3ToSA1

format
22. Convert AAC to internal playback ScConvertAACTOSA1

format

0056. The principle API routines which can be called by
device 15 will now be described in detail. Reference will be
made to FIGS. 8A-8E.

0057. As can be seen in FIG. 8C, there is a pre-play pro
cess 805 and a play process 810. The blocks of FIG. 8E are
created during the processes of FIG. 8C. The related API
modules are executed when called upon by the user interface
of device 15. In the case of audio playback, calls to the
modules are sent by the user interface of device 15 to the
audio interface 105 as seen in FIG. 8B. The primary calls/
modules that carry out the functionality listed in the flowchart
are indicated on the right. Many of these modules execute
other internally and externally accessed modules, and the list
is not meant to be exhaustive, but is meant to be a reference to
the Software code on compact disc that was previously incor
porated by reference and forms a part of this application. For
further detail please refer to the software code.
0058. The device is first powered up in step 803, after
which the pre-play process 805 commences. The pre-play
process has two major phases: a power up initialization phase
805.10, and an audio content initialization phase 805.20.
Audio content initialization phase will be described in further
detail with regard to FIG. 8D.
0059 Generally speaking, in pre-play process 805 the
device and media are initialized and certain information from
the media is read from the media and stored in a buffer of a
RAM memory of device 15. As seen previously in FIG. 2 this
RAM memory may either be system memory 27, RAM
memory 31A of DSP 31, or RAM memory 25A of MCU 25.
In step 805ASW 100 will get the drive number of the media.

Jun. 12, 2008

In some applications there may be more than one memory
card or disk being accessed by device15. In this step it will get
all the drive numbers in order that content on each of the
drives can be properly accessed. This is accomplished with
API routine SdInitAudioSystem, and can either be called
upon by device 15 or can be internally called by SW 100 as
part of a pre-play routine. SW 100 will then initialize SSM
180 and SDSE 175 within SW 100. This is necessary before
any encrypted keys and content from the media can be pro
cessed. SW 100 will also initialize the playlist and track
manager in card 13.
0060. In step 805B, SW 100 will initialize and verify the
media. In the case of the SD card illustrated here, the MKB
process of FIGS. 5-7 will be performed. This MKB process
can also be executed during step 805A, and if previously
executed it will not be executed again in step 805B. For
further detail of this process please see FIGS. 5-7 and the 4C
documents incorporated earlier. This process will also be
discussed in greater detail with regard to FIG. 10. In step
805B, media information values will be copied from the card
13 and stored in locations of media information block 850 of
FIG. 8E in a RAM memory of device 13. This is accom
plished with API routine SdMountAudio, and can either be
called upon by device 15 or can be internally called by SW
100 as part of a pre-play routine. Thus values for playlist
general information (pTGInfo), the validity number of the
media (SanDisk), the drive number (drivenum), the security
system of the media (security) and the mounting status of the
media (mounted) will be filled in their respective locations.
These locations can then be subsequently read from the RAM
of device 15 when called upon by any number of API calls
without having to read them from card 13.
0061. After the power-up initialization 805.10 is com
pleted, audio content initialization 805.20 commences. Gen
erally speaking, during audio content initialization 805.20,
information specifying location and sequencing of the
encrypted audio content of an individual track and multiple
audio tracks (playlists) are copied from the card (or other
media) 13 into a small buffer in a RAM of device 15. This
information, shown in blocks in FIG.8E, is thus quickly and
easily accessible within the device and does not need to be
constantly read from or updated to card 13 during the subse
quent play process 810.
0062 Referring to FIG. 8D, the audio content initializa
tion phase 805.20 will be described in more detail. This phase
creates a number of structures that act as a local roadmap or
directory to the encrypted content on memory card (or other
media) 13.
0063. In step 805C, device 15 calls API module SdGet
PlayListCount. This call, and all of the following calls, are
generally sent from the software of a user interface of device
15 to one of the interface modules of SW100. In this illustra
tion of audio playback the call is sent from the user interface
to audio interface 105. In the case of video playback, the call
would be sent to video interface 110 and in the case of image
reproduction, the call would be sent to imaging interface 115.
The call is then relayed to command dispatcher 130 which
contains the API modules within API 130A.
0064. In step 805D, SdGetPlayListCount will fill in the
values for the Playlist Info block 860 by copying the infor
mation from card 13 into a RAM memory of device15. It will
select the appropriate authorized drive(s) by referring to
media info block 850. The total number of playlists for all
authorized drives will be copied into a RAM of device 15.

US 2008/O 137865 A1

0065. In step 805E, device 15 calls API module SdGet
Playlist.
0066. In step 805F, SdGetPlaylist will fill in the values for
the playlist info block 860 by copying the information from
card 13 into a RAM memory of device 15. It will select the
appropriate authorized drive where the playlist info resides by
referring to media info block 850. The total playback time of
the selected or default playlist in milliseconds (pListTime),
the number of tracks in the playlist (tracks.InPlist), the index
number corresponding to the current playlist (index), the
playlist name string length (Length), and the playlist name
(pListName) will be filled into their respective locations of
Playlist Info block 860.
0067. In step 805G device 15 calls API module
SdGetTrackInfo.

0068. In step 805H, SdGetTrackInfo will fill in the values
for the track information block 870 by copying the informa
tion from card 13 into a RAM of device 15. It will select the
appropriate authorized drive where the playlist info resides by
referring to media info block 850. It will select the tracks
within each playlist by referring to the Playlist infoblock 860.
The total track time (trackTime) in milli-seconds including
the related track units (“TKI's) in the track, the total track
size in bytes (bytesize), including the related TKI's, the num
ber of TKI's in the track (tkisinTrack), the track number
(tracknum), the index corresponding the current track (in
dex), and the track information from the media (trkInforma
tion) will be filled into their respective locations.
0069. In step 805I device 15 calls API module SdOpen
Track.
0070. In step 805J, SdOpenTrack fills in some of the val
ues for the Track Gen Info block 880 by copying the infor
mation from card 13 into a RAM of device15. It will select the
appropriate drive by referring to media info block 850, and it
will select the tracks within the appropriate playlists and
tracks by referring to Playlist Info block 860 and Track Info
block 870, the total playback time of the playlist in millisec
onds (pListTime), the current playlist number (plistinum), the
track number to be played (tracknum), the first AOB block for
the track (firstAOB), and the current AOB being decrypted
(currentAOB).
(0071. In step 805K SdOpenTrack fills Track Index Info
block 875 by copying the information from card 13 into a
RAM of device 15. It will select the authorized drive where
the playlist info resides by referring to media info block 850
and playlist info block 860, and it will select the proper tracks
within the proper playlists by referring to Playlist info block
860 and Track Info block 870.

0072. After Track info block 870 is created, in step 805L,
SdOpenTrack will fill in the remaining values of Track Gen
eral Info Block 880 by copying the information from card 13
into a RAM of device 15. The following values will be filled
into their respective locations of block 880: a verification
number for the media (SanDisk), an operation command
(CMD), the audio format such as MP3, AAC, or WMA (au
dioformat), the codec sampling frequency (Sampfreq), the
application attribute, e.g., music, book image, etc. (appAtrib),
the size of the audio object in bytes (size AOB), the last AOB
block for the track(lastAOB), the total number of AOB's for
the track (countAOB), the current position of sync position in
AOB (syncword) also known as the header, the seek position
within the AOB(seekpoSAOB), the elapsed time of the track
in milliseconds (trkElapsedTime), the total play time of the
track in milliseconds (trkTotalTime), the total track size in

Jun. 12, 2008

bytes including related TKI's (bytesize), the playtime of each
element in milliseconds (elementplaytime), the forward seek
time (fwTime), the time to the next track (fwNext), the num
ber of the tracks in the playlist (tracks.InPlist), the size of the
current element (elementsize), the offset within the current
element (element offset), the current elements in the AOB
(currentelement), the total number of elements in the AOB
(totalelements), and the file handle of the AOB (faAOB). In a
different embodiment of the invention, step 805J will com
pletely fill the values of Track General Infoblock 880 and step
805K will be eliminated. Track Index Info block 875 is a
subset of Track Gen Info block 880 and is designed to save
space and processing time. It is meant to be referred to by the
user interface of device 15 in the event that it is just browsing
the information. Once the user interface has selected a par
ticular track for playback, Track Gen info block 880 will be
filled, including the subset of information contained in block
875.
0073) SdOpenTrack and can either be called upon by
device 15 or can be internally called by SW 100 as part of a
pre-play routine.
0074 Having the blocks and the information of the blocks
contained in a memory of the device is an advantage because
if there is any failure in the playback process, it is not neces
sary to reset the media, i.e., perform steps 805A or 805B of
power up initialization 805.10. Also, it should normally not
be necessary to read the information needed for playback
from card 13. The information in the blocks can be used to
access the next content (audio, video etc.) frame because the
information in the blocks 850, 860, 870, 875, and 880 is used
as a pointer to the content contained in the next frame. The
blocks of FIG.8E detail the location within memory card 13
of the files, elements and frames that make up and audio or
video track are located within memory card 13, as was earlier
described with regard to FIG. 3C.
0075. The pre-play process of step 805 can be triggered by
a number of calls (the numbers in parenthesis indicate the call
in Table 1). As seen in FIG. 8C, the external calls that will
trigger audio content initialization 805.20 are: SdOpenTrack,
SdGetPlaylistCount, SdGetPlaylist, and SdGetTrackInfo.
SdOpenTrack (10) is internally called by SdnextTrack (12),
SdStopPlay (13), and SdResetPlaylist (16). API modules
SdGetPlaylistCount, SdGetPlaylist, and SdGetTrackInfo can
also be called internally by SdOpenTrack. Generally, it will
be called upon by device 15 for such device functions as
displaying the track time, rewinding, fast forwarding, chang
ing playlists, changing graphic user interface displays, or
deleting tracks. Once the pre-play process 805 is complete,
the play process 810 can commence.
0076. In play process 810, calls that will initiate, stop, or
pause playback of one or more audio or video tracks are
received by the audio interface 105, video interface 110, or
imaging interface 115 of FIG. 8B in step 810A. These calls
can be seen in FIG. 8C next to play process 810 and are
SdPlayTrack, SdNextTrack, SdStopPlay, SdPauseTrack,
SdResumeTrack, SdResetPlayList, SdPorward, SdAddTKI
toPLM, SdDelTKItoPLM, SdDelTKItoTMG,
SdConvertMP3ToSA1, and SdConvertAACToSA1.
0077 Regardless of how many API modules are executed,
either internally or when called upon by the device, two
primary modules will always be required in order to play an
audio track. These modules are SdOpenTrack (10) and
SdPlayTrack (11). SdOpenTrack (10) and SdPlayTrack (11)
will read the information in Track General Info block 880 in

US 2008/O 137865 A1

order to access the encrypted content in the memory locations
of clusters of memory card 13.
0078 SdOpenTrack (10) is internally called by SdNext
Track (12), SdStopPlay (13), and SdResetPlaylist (16). Gen
erally, it will be called upon by device 15 for such device
functions as displaying the track time, rewinding, fast for
warding, changing playlists, changing graphic user interface
displays, or deleting tracks.
0079 SdPlayTrack (11) is the core API that plays the
music or video track. It is generally used by a device when the
user wants to play the current track, the next track, or when he
wants to rewindorfast forward within a track. It is called upon
by other API's such as SdnextTrack (12) SdResumeTrack
(15) and SdForward (17). SdPlayTrack finds the AOB for the
selected track, checks the audio format (MP3, AAC, or WMA
etc.) and decodes the track.
0080 Referring to FIGS. 8B, 9, and 10, playback of an
encrypted track, step 810B of FIG. 8C, will now be described.
0081. If encrypted content is desired, then commands are
issued to/from device 15 and SW 100 which require the
OEM’s 4C-licensed device keys to be used. All processing of
these keys is solely limited to the SDSE 175 module which is
housed beneath the SSM 180. If nonsecure or non-encrypted
contentis requested, NSFI 170 and NSAPI's 140B, 150B, and
160B and NSDD 190B will access the content.
I0082. When SSM 180 receives a request for security ser
vices, it carries it out by passing the command request packet
to the process security function within SDSE 175. Key val
ues are never contained within the request packets or exposed
at software layers above SDSE 175.
I0083. When needed internally by SDSE 175, device keys
are retrieved via a function call into an OEM-supplied library.
The library of SDSE 175, security.lib, contains the following
APIs designed to reduce the time that a decrypted key resides
in the secure area of the system:
0084. 1) SEC AKE API:
I0085 2) SEC ENC TKEY API:
I0086) 3) SEC DEC TKEY API:
I0087. 4) SEC GETCCIAPI:
I0088 5) SEC UPDATECCIAPI.
I0089. The functionality and the structure of SW 100 are
described in the text of this application and more specifically,
the functionality of APIs 1-5 above are shown within the
flowchart of FIG. 9. The APIs are shown next to the corre
sponding functions that they implement. Further detail of the
implementation of these APIs, as well as all of SW 100, can be
seen in the Source code that is Submitted in an appendix of this
application.
0090. Once obtained, the device key is combined with the
Media Key Block (MKB) from the SD Memory Card to form
the “media key.” This value is kept within SDSE 175 for use
in processing Subsequent requests. Note, however, the
“unique media key” (Kmu) is never retained inside SDSE
175. This value, which forms the basis for all security
accesses, is always calculated on a real-time basis (and never
cached) as an extra security precaution. Detailed description
of the processing of the keys within SDSE 175 follows.
0091. The encryption process is in general terms designed
to stop unauthorized copying of the content located on the
secure media. There are many aspects of the invention that
achieve this. First, an entire file, for example, a song, is never
decrypted at once and stored into memory where it may be
Vulnerable. The portable device allocates a buffer and SDSE

Jun. 12, 2008

175 reads chunks of encrypted content at a time, decrypts it,
and then writes over the same buffer over and over again until
the end of the file.

0092. As was seen in FIGS. 6 and 7, the media unique key
(Kmu) and title key (Kt) are the keys finally used to decrypt
the content. There are many ways to protect the title key. One
is to store the keys in a very secure area of device 15, another
is to read the title key from the protected area 47 of card 13
each time the encrypted buffer is read and decrypted. FIG.9
is a flow chart depicting the preferred method.
(0093. Returning to FIG. 9, in step 205, an MKB image,
which, as seen in FIG.4, is 64 kilobytes, is read to process the
media key (Kim), as seen in FIG. 6, to yield the media unique
key (Kmu). This step is further detailed in FIG. 10 which will
be described later. After mutual authentication of the device
and the media is complete in step 205, the AKE process is
undergone to yield a session key (KS) that can only be used
during that session (as long as the device is turned on or is in
an active state) in step 210. The AKE process can be seen by
referring once again to FIG. 6. In step 213, the media unique
key (Kmu) is deleted. In step 215, the session key (Ks) is used
to decrypt the doubly encrypted title key E(E(Kt)) stored in
protected area 47 of memory card 13. The result is a singly
encrypted title key (E(Kt)). In step 220, this encrypted title
key (E(Kt)) is stored in a memory of the device 15. The
(E(Kt)) may be stored in system memory 27, RAM memory
25A of MCU 25, or RAM memory 31A of DSP 31. The title
key Kt is specific for each title, referred to as a track in the
realm of audio and on FIG. 9 used to illustrate the invention.
Each track may be made of multiple files, for example, in the
case of a long classical Song. For large video clips, a title may
comprise many files. Thus, for all Subsequent reading and
decryption of the encrypted content of the track, the title key
need not be retrieved from the memory card because it is
stored in a local memory, and precious time and computing
resources can be saved, while at the same time, the title key
remains encrypted for security purposes.
0094. In step 225, a portion of the track is played back.
This portion may be in any of the files that comprise the track.
In step 225a, the media unique key (Kmu) is calculated once
again. In step 225b, the encrypted title key stored in local
memory is decrypted. Then, in step 225c, the title key is used
to decrypt the content from the buffer of device 15 containing
content from the user area 41 of card memory card 13. Imme
diately after the buffer is decrypted, the title key is deleted in
step 225d and the media unique key is deleted in step 225e.
The order of steps 225d and 225e is not important, but it is
important that both keys are only exposed for the time it takes
to read a portion of the track. This portion may be anywhere
from a fraction of a second of playback (decrypted, decom
pressed, and decoded) content, audio or otherwise, to about
ten seconds. Preferably it is two seconds. The time it takes to
read the portion is dependent on many factors including the
processing speed and the buffer size of the device. As dis
cussed previously, SW 100 can be executed by either the
MCU 25 or DSP31 and stored in any of the memory 27, 25A,
31A or 32 of device 15, thus, the processing times can vary.
This is repeated until all portions of the track are read as seen
in step 230. Once all portions have been read the system can
move on to the next track, as shown in step 235, if playback is
to continue. This may be the case, for example, if the user has
chosen to play an entire playlist.
(0095. When the all portions of track have been read and
the reading of the next track is to commence, the process will

US 2008/O 137865 A1

begin again at step 215 and will retrieve the next doubly
encrypted title key from the protected area 47 of card 13. This
is generally the case if the user has set the device in motion to
play an entire playlist that includes multiple tracks. If the
session is closed (i.e., device 15 has been turned on or off),
then a new session key will have to be generated and the
process will initiate at step 210. If memory card is removed or
freshly inserted, the device and media will have to be re
authenticated and the process will begin again at step 205 in
order to read a track.
0096 FIG. 10 describes the operation of processing the
Media Key Block, step 205 of FIG.9 described above. As was
seen in FIG. 4, an MKB image 49 is 64 Kbytes in length.
Reading the entire image 49 at once to calculate the MKB
would be inefficient, requiring a large RAM and long pro
cessing times. The present system reduces RAM require
ments and decreases processing time. The MKB image 49 is
divided into chunks 1 through 128. Each chunk is 512 bytes
and may contain one of four different types of records of the
MKB: the verify media key record (VMKR) known as 0x81;
the calculate media key record (CMKR) known as 0x01; the
conditionally calculate media key record (CCMKR) known
as 0x82; or the end media key record (EMKR) known as
0x02. These records are described in the Content Protection
for Recordable Media (CPRM) Specification of the 4C Entity,
referenced above.
0097. In this example, the chunk length and the buffer
length are the same. However, the buffer length and chunk
length can both range from 256 bytes to 4096 bytes. Each
record is examined to perform specific operations based on
the record type and certain data will be saved for later to
obtain the Media Key. The record length is added to the total
length of the buffer offset every time a record is identified.
The chunk number is calculated by dividing the total length
with the chunk length. The chunk number is the index to the
Media Key Block of a selected chunk data. The remainder of
the total length is the offset to the selected chunk data. The
row and column are used to figure out where the encrypted
media key and the conditional encrypted media key are.
Those encrypted keys are saved and the decryption C2 cipher
in Electronic Codebook Mode algorithm is performed to
obtain the Media Key. This Media Key is then verified for a
correct final Media Key (Km).
0098. The number of reads, T, required per MKB chunk
for obtaining the Media Key (Kim) from the MKB associated
with the number of records is shown below:

Number of Records <T<(Number of records*2)

(0099 T: Number of times required for accessing MKB
chunks

0100 Each record has different length and data values.
The information of each record can be obtained within two
reads. Since there are four records, between 4 and 8 reads will
be necessary to process the MKB chunk and obtain the
records.

0102 Suppose that it takes N ms to access 512-byte of
MKB data. It will take (128*N)ms to access an entire 64K
MKB image to obtain the Media Key from the first method. It
only takes, from the second method, (8*N)ms, as the worst
case scenario, to obtain the Media Key. Thus, there is a
considerable time saved using this scheme. On the average, to
obtain the Media Key (Kim), the number of reads would be in

Therefore, the number of reads, T, are:

Jun. 12, 2008

the range of 4 to 6, and the time necessary would be propor
tionately less than shown above.
(0103 Step 205 of FIG. 9, expanded here in FIG. 10, is
performed until a final media key is produced in step 205.75
or the media is rejected in step 205.80. Not all of the 128
chunks need to be read, and not all of the 512 bytes per chunk
need to be read in order to calculate the media key. Processing
MKB data is an operation that requires requesting a chunk of
data at a time, pointing to the desired location within that
specific chunk and computing the obtained values. Not all
MKB data is needed. The algorithm depicted in FIG. 10 will
provide a mathematical calculation to figure out exactly what
chunk of MKB data is needed, what record should be pro
cessed and where the encrypted data is located.
0104. In step 205.5, the buffer pointer is set to the data
buffer and the buffer offset is cleared. Next, in step 205.10, the
chunk number is checked to see if it is equal to or larger than
the maximum chunk number. If it is, an error will be returned
in step 205.15. If it is not, the chunk number will be incre
mented and new data will be loaded into the buffer in step
205.20. Then the buffer offset will be updated in step 205.25.
Thus, the pointer can be set to the correct location (the chunk
number plus offset). In step 205.30, the buffer pointer is set to
the buffer offset. In step 205.40 the buffer is read starting at
the offset where the pointer is located. The system will then
determine what type of record it is reading. As seen in step
205.40, the system will first check what type of record is
being read, and what record length is associated with that
record. The actions that will follow differ depending upon the
record type and length. The record length of each record will
be used to determine where the buffer pointer should be
located in reading the subsequent record. This is reflected by
steps 205.49, updating the buffer offset and setting the buffer
pointer at the new offset.
0105. If the record is a CMKR as shown in step 205.42.
then the system updates the buffer chunk number and offset to
the correct MKB location where the encrypted media key
(Km)is located in step 205.49. Each card has 16 MKBs. Thus,
the system will get the offset where the encrypted media key
is, go to the specific MKB chunk number, allocate buffer (16
blocksX512 bytes), and go to the offset within each block to
read the encrypted media key. Then the system uses a device
key (Kd) supplied from device 15 to decrypt (calculate) the
media key in step 205.50. Once the media key has been
calculated the next step is to verify the media key.
0106 If the record is a VMKR as evaluated in step 205.44,
the media key that was previously calculated, either on the
first attempt in step 205.50, or in a subsequent attempt in step
205.65, will be compared to a reference media key (Kim) in
step 205.55. In order to do this, reference media key will first
be stored locally. If the key is the same a pass will be returned,
which in hex is DEADBEEF, and the system will not need to
conditionally calculate the media key. In order to figure out
where to start reading the next record, the record length of the
VMKR is used to move the buffer pointer to the next record.
If it is not the same it then it will be calculated again when a
CCMKR record is read in step 205.46. When this record is
read, the media key will be calculated once again in step
205.65 after the buffer point has been set to read at the updated
buffer offset in step 205.49, and then it will be subsequently
verified when the next VMKR is read. The maximum number
of times the CCMKR is calculated may be set by the system
and preferably one.

US 2008/O 137865 A1

0107 The first calculation takes place when a CMKR is
found. If it is successfully calculated, as determined during
the verification process initiated whenaVMKR is found, then
there will be no need to conditionally calculate the media key
(Km). If the verification is unsuccessful then when a CCMKR
is found the media key (Kim) will be recalculated and re
verified. This means that there are two chances to calculate
the media key. Finally, if the record is an EMKR as evaluated
in step 205.48, then in step 205.75 the system will verify that
at the end of the recorda valid media key (Kim) is present, and
in step 205.75 the final media key (Kim) will be produced,
after the buffer pointer is set at a the proper offset for this type
of record in step 205.49. If, however, a valid media key is not
returned in step 205.70, the media will be rejected in step
205.80. If the final media key is returned in step 205.70, the
processing will continue at step 210 of FIG. 9, as shown by
step 205.85. Thus the MKB process is complete.
0108 Functions within SDSE 175 perform security
accesses such as Get MKB by using a secure device driver
interface (SDDI) 190A to device driver 190. This same device
driver, SDDI 190A also makes use of functions within SDSE
175 which it can call directly. For example, prior to issuing a
read of the authentication area, SDDI 190a must first call the
secake function within SDSE 175. The secake function
will in turn call back into SDDI 190A. This “dual calling
relationship” which facilitates the isolation of the device key
within SDSE 175 is unique to SW 100s implementation of the
SD-Audio standards.

0109 Since SDSE 175 handles all key-oriented process
ing, and these values are needed when certain SD commands
are received by the audio interface 105, video interface 110.
or image interface 115, the device driver must make use of
functions within SDSE 175 which it can call directly. When
carrying out the functions, SDSE module 175 must in turn
call back into the device driver 190’s private security inter
face, SDDI 190A. This “dual calling relationship' allows
interwoven requests between SDSE 175 and device driver
190, thus enabling key values to be isolated within the secu
rity module.
0110. The SDSE 175 software layer invokes security
device driver services via the private interface by initiating a
security driver request packet and calling the security driver
interface entry point passing a request packet pointer.
0111. In order to clarify the appended source code which
has been incorporated by reference, the following tables are
provided.
0112 The request packet (defined in scapi.h) consists of a
data type SSMSERVE which is defined as follows:

TABLE 2

Variable Variable name

Typedefstruct mySecured Drv

Data buffer
Number of data blocks
Application unique Number
Start address
Security flag
Drive number
Command index

UCHAR*buffer
UINT16 noBlocks
UINT16 mkb ID
UINT16 Iba
INT16 securityFlag
INT16 driveNo
INT16 opCode

Jun. 12, 2008

0113 Command index (INT16 opCode) holds the com
mand for the service being requested. Supported commands
include:

TABLE 3

Command Functional Code Routine

#define SDDRV IDENTO
#define SDDRV SECIDENT 1.
#define SDDRV SECRD 2
#define SDDRV SECWR3
#define SDDRV SECERASE 4
#define SDDRV. RDMKB 5
#define SDDRV GETMID 6
#define SDDRV SETCHALGE 7
#define SDDRV GETCHALGE 8
#define SDDRV SETRESP9
#define SDDRV GETRESP 10
#define SDDRV CHANGESA 11

Device identify
Security identify
Secure read
Secure write
Secure erase
Read MKB
Get MID
Set challenge
Get challenge
Set response
Get response
Change size of protected area

0114 Security device driver service requests are issued
from the SDSE 175module. For example, the Generate Chal
lenge 1 function sends challenge 1 as follows:

TABLE 4

Generate Challenge 1

Command Operation

Call security routine
Set drive number
Set memory address within media
Number of data blocks
Set challenge

SDSECURITYDRV mySecDrv
mySecDrv.driveNo = (INT16)dry
mySecDrv.lba = 0
mySecDrv.noBlocks = 1
mySecDrv.opCode =
SDDRV SETCHALGE
mySecDrv.buffer = Chlg1
scDDHandler(&mySecDrv)

Send challenge 1
Call to device driver

0115 Because all key manipulation is confined to SDSE
175, SSDI 190A must rely on SDSE 175 functions to perform
Authentication Key EXchange (AKE) or for decrypting data
that has been transferred across the bus (note that all data sent
across the bus is first encrypted using the “session key” which
is generated from each AKE..)
0116. When performing the AKE, SDSE 175 must send
commands to the SD Memory Card 13, thus, it must in turn
call into SDDI 190A. This calling relationship is outlined in
the diagram of FIG. 7 which depicts the steps necessary to
process a read of the authentication area.
0117 Notice that the secake function within the SDSE
175, when called by the security SDDI 190A, performs four
calls back into the security device driver via the private driver
interface. These four requests consist of SDDRV SETCH
ALGE, SDDRV GETCHALGE, SDDRV SETRESP, and
SDDRV GETRESP. This enables the security module to
carry out the requisite set challenge? get challenge, set
response/get response steps seen in FIG. 7. The resultant
session key is stored within the security module. This is used
to decrypt data when the security device driver calls into the
SDSE 175's bus decrypt function to get information from
SDDI 190A.

0118. The system and method of the present invention are
advantageous over prior techniques in many ways. The
present invention provides a turnkey solution for original
equipment manufacturers to access encrypted content with
out having to have any knowledge of the memory structure of
the storage media. The decryption process by itself is very

US 2008/0137865 A1

complex. Furthermore, simply reading and writing to a
memory card or compact disk is complex in and of itself. All
a manufacturer needs to do is send a simple command such as
“play” or “next track” and return the decrypted content from
whatever the memory device happens to be.
0119) Device keys and resultant session keys are manipu
lated in a very isolated and protected software layer. These are
never exposed in upper layers. Even the lower device driver
layer is not given direct access to the keys. Device keys are
retrieved from an OEM-supplied library when generating the
media key. This key is retained within the security engine, but
the media unique key (Kmu) which is the heart of the security
scheme is never stored. A private interface to the security
engine enables the security engine to gain low-level access to
the memory card while keeping the exposure of all security
related keys (e.g., device keys, media keys, session keys)
confined within the security engine. A "dual calling relation
ship' allows the security engine and the security device driver
to make interwoven use of each other's services.
0120 While particular embodiments of the present inven
tion and their advantages have been shown and described, it
should be understood that various changes, substitutions, and
alterations can be made therein without departing from the
spirit and scope of the invention as defined by the appended
claims. For example, although usage of an SD memory card
has been shown to illustrate the functioning of the invention,
the invention can be used on any media having encrypted
content. It can also be utilized by any type of device. Further
more, encrypted content can be decrypted from any type of
memory device, whether it be fixed or removable, and
whether it be solid state or rotating. The content is not limited
to audio or video, but can be any content worthy of encryp
tion.

What is claimed is:
1. A method of securing a storage device and providing

content to an authorized entity yet protecting the content from
unauthorized duplication:

providing a flash memory array within the storage device;
providing a freely accessible read/write area within the
memory array, the freely accessible read/write area
being a first distinct area;

providing a read/write area within the memory array that is
accessible only after a successful mutual authentication
between a host device and the storage device comprising
the flash memory array has occurred, the read/write area
within the memory array that is accessible only after a
successful mutual authentication being a second distinct
area within the memory array:

providing a write protected area within the memory array
that is accessible only by the storage device itself, the
write protected area being a third distinct area within the
memory array:

providing a write protected area that is accessible for read
ing from outside of the storage device, the write pro
tected area being a fourth distinct area within the
memory array; and

storing the content in an encrypted format in the freely
accessible read/write area.

Jun. 12, 2008

2. The method of claim 1, further comprising storing a
media unique key in the write protected area within the
memory array that is accessible only by the storage device
itself.

3. The method of claim 2, further comprising storing title
keys necessary to access content in the freely accessible read/
write area within the write protected area within the memory
array that is accessible only by the storage device itself.

4. The method of claim 3, further comprising:
providing copy control information within the read/write

area within the memory array that is accessible only
after a successful mutual authentication; and

concatenating and encrypting the title keys and the copy
control information together with the media unique key
stored in the write protected area within the memory
array that is accessible only by the storage device itself.

5. The method of claim 1, further comprising storing a
media identifier unique to each storage device within the
write protected area that is accessible for reading from out
side of the storage device.

6. The method of claim 5, further comprising storing media
key blocks within the write protected area that is accessible
for reading from outside of the storage device.

7. The method of claim 6, further comprising transferring
the media key blocks from the write protected area that is
accessible for reading from outside of the storage device to a
portable device, the portable device having a key able to
decrypt the transferred media key blocks.

8. The method of claim 7, further comprising transferring a
piece of the encrypted content from the freely accessible
read/write area to the portable storage device, the portable
storage device having an encrypted version of the title key
used to encrypt the piece of the encrypted content.

9. A system for providing and reproducing content for an
authorized entity yet protecting the content from unautho
rized duplication, the system comprising:

a host device for reproducing the content;
a storage device comprising a flash memory array;
a freely accessible read/write area within the memory

array, the freely accessible read/write area being a first
distinct area;

a read/write area within the memory array that is accessible
only after a successful mutual authentication between
the host device and the storage device has occurred, the
read/write area within the memory array that is acces
sible only after a successful mutual authentication being
a second distinct area within the memory array:

a write protected area within the memory array that is
accessible only by the storage device itself, the write
protected area being a third distinct area within the
memory array and having records ; and

a write protected area that is accessible for reading from
outside of the storage device, the write protected area
being a fourth distinct area within the memory array, the
content being freely accessible but only reproducible if
the host device can successfully mutually authenticate
with the storage device and access the second distinct
read/write area.

