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ABSTRACT 

An approach for detecting a transient error in a body fluid sample based on 

the shape of a response curve of a sensor is provided. The response curve is 

represented by an equation including at least one coefficient describing a curvature 

5 or slope of the response curve. The approach includes comparing the coefficient to a 

range of coefficients which includes coefficients of response curves corresponding 

to known analyte concentrations. The approach further includes detecting a 

transient error based on the comparison. In some examples of the approach, the 

comparison and detection are performed by a processing transient error detector 

10 executing computer readable instructions embodied in a non-transitory computer

readable medium. Other examples of the approach determine a concentration of the 

analyte based on the equation. Advantageously, various examples of the approach 

can expedite detection of transient errors at the time of measuring and before 

reporting sample result.



DETECTING A TRANSIENT ERROR IN A BODY FLUID SAMPLE 

RELATED APPLICATION 

The present application is a divisional application of Australian patent 

application number 2016233815 (filing date 1 March 2016), the entire disclosure of 

5 which is incorporated herein by reference.  

FIELD OF THE INVENTION 

The present invention relates generally to a quality assurance program for 

detecting errors during a testing process. More specifically, the present invention 

relates to an approach for detecting a transient error in a body fluid sample that is 

10 based on the shape of a response curve of a sensor.  

BACKGROUND OF THE INVENTION 

Since primary users of point-of-care (POC) devices are health professionals 

from a non-laboratory background, POC clinical analyzers should be designed for 

ease of use, low maintenance, and well-controlled. A key requirement in developing 

15 such a system is having a total quality assurance (QA) program with the capability 

to detect errors during each stage of the testing process, that is, pre-analytical, 

analytical and post analytical.  

The Intelligent Quality Management (iQM) in the GEM Premier line of 

automated clinical analyzers for measurement of blood gases, electrolytes, 

20 metabolites and CO-Oximetry produced by Instrumentation Laboratory of Bedford, 

Massachusetts is an example of such comprehensive QA program. The primary 

method of error detection is based on monitoring sensor drift by the process control 

solutions and using drift limit as control parameter for detecting errors. The source 

of error, such as interfering substances and blood clots, is detected through 

25 identifying specific known drift patterns.  

SUMMARY OF THE INVENTION 

According to an aspect of the present invention, there is provided a system, 

comprising: an automated clinical analyzer, comprising: a processing transient error 

detector; a memory in communication with the processing transient error detector, 

30 the memory storing a range of coefficients library and a transient error detecting 

application, the transient error detecting application including a comparison module;



and an interface coupled to the automated clinical analyzer, the interface configured 

for receiving a mathematical expression representing a response curve of a sensor 

coupled to the automated clinical analyzer, the equation including at least one 

coefficient; wherein the comparison module is executable by the processing 

5 transient error detector to compare the at least one coefficient to a range of 

coefficients in the range or coefficients library, the range of coefficients including 

coefficients of response curves of the sensor corresponding to known concentrations 

of the analyte.  

According to another aspect of the present invention, there is provided an 

10 automated clinical analyzer comprising: a transient error detector comprising a 

comparison module communicatively coupled to a detection module; and, an 

interface for receiving equations representing sensor response curves, wherein the 

interface receives the equations as they are determined by an analyte concentration 

measurement application.  

15 Also disclosed herein is a system for detecting a transient error in a body 

fluid sample includes memory having computer executable instructions thereupon 

and at least one interface for receiving an equation representing a response curve of 

a sensor and for determining a concentration of an analyte in a body fluid sample.  

The equation includes at least one coefficient describing any one of a curvature of 

20 the response curve and a slope of the response curve. The system further includes a 

transient error detector coupled to the memory and the at least one interface. The 

transient error detector is configured to execute the instructions and compare the at 

least one coefficient to a range of coefficients. The range of coefficients includes 

coefficients of response curves corresponding to known concentrations of the 

25 analyte. The transient error detector detects a transient error in the body fluid 

sample based on the comparison.  

In other examples of the system, the equation representing the response 

curve is any one of logarithmic equation and quadratic equation.  

In some examples of the system, the range of coefficients for a given 

30 concentration of analyte includes a mean coefficient determined from a mean of 

coefficients of response curves corresponding to the given concentration of analyte.  

The range of coefficients further includes a lower limit defined by a negative



number of standard deviations from the mean coefficient and an upper limit defined 

by a positive number of standard deviations from the mean coefficient.  

Also disclosed herein is a tangible non-transitory computer-readable storage 

medium having computer readable instructions stored therein for detecting a 

5 transient error in a body fluid sample is provided. When the instructions are 

executed by one or more processors that are provided with an equation representing 

a response curve of a sensor and for determining a concentration of an analyte in a 

body fluid sample, and the equation including at least one coefficient describing any 

one of a curvature of the response curve and a slope of the response curve, the one 

10 or more processors are caused to compare the at least one coefficient to a range of 

coefficients, the range of coefficients including coefficients of response curves 

corresponding to known concentrations of the analyte. The one or more processors 

are further caused to detect a transient error in the body fluid sample based on the 

comparison.  

15 In other examples of the tangible non-transitory computer-readable storage 

medium, the equation representing the response curve is any one of logarithmic 

equation and quadratic equation.  

In some examples of the tangible non-transitory computer-readable storage 

medium, the range of coefficients for a given concentration of analyte includes a 

20 mean coefficient determined from a mean of coefficients of response curves 

corresponding to the given concentration of analyte. The range of coefficients 

further includes a lower limit defined by a negative number of standard deviations 

from the mean coefficient and an upper limit defined by a positive number of 

standard deviations from the mean coefficient.  

25 Also disclosed herein is a method for detecting a transient error in a body 

fluid sample taken from a patient includes, in a clinical analyzer provided with an 

equation representing a response curve of a sensor and for determining a 

concentration of an analyte in a body fluid sample, and the equation including at 

least one coefficient describing any one of a curvature of the response curve and a 

30 slope of the response curve, comparing the at least one coefficient to a range of 

coefficients, the range of coefficients including coefficients of response curves 

corresponding to known concentrations of the analyte. The method further includes 

detecting a transient error in the body fluid sample based on the comparison. The



comparison and the detection are performed by a processing transient error detector 

executing computer readable instructions embodied in a non-transitory computer

readable medium.  

In some examples of the method, the equation representing the response 

5 curve is any one of logarithmic equation and quadratic equation.  

In other examples of the method, the equation is associated with the analyte 

being sensed by the sensor.  

In some examples of the method, comparing includes comparing a 

coefficient describing the curvature of the response curve to the range of coefficients 

10 and comparing a coefficient describing the slope of the response curve to a second 

range of coefficients different than the range of coefficients. In these examples, 

detecting includes detecting the transient error in the body fluid sample based on the 

comparison of the coefficient describing the curvature of the response curve and the 

comparison of the coefficient describing the slope of the response curve.  

15 In other examples of the method, the range of coefficients for a given 

concentration of analyte includes a mean coefficient determined from a mean of 

coefficients of response curves corresponding to the given concentration of analyte.  

The range of coefficients further includes a lower limit defined by a negative 

number of standard deviations from the mean coefficient and an upper limit defined 

20 by a positive number of standard deviations from the mean coefficient.  

In some examples of the method, an absolute value of the negative number 

of standard deviations from the mean coefficient and an absolute value of the 

positive number of standard deviations from the mean coefficient are different 

In other examples of the method, the lower limit and the upper limit of the 

25 range of coefficients are invariant to changes in concentration of the analyte.  

In some examples of the method, at least one of the lower limit and the upper 

limit of the range of coefficients varies with changes in concentration of the analyte.  

Another example of the method further includes revising the range of 

coefficients based on the coefficient of the response curve corresponding to the 

30 concentration of the analyte in the body fluid sample.  

A



In some examples of the method, the known concentrations of the analyte are 

determined from at least one of previously collected body fluid samples and 

standardized solutions.  

In other examples of the method, the range of coefficients depends on a 

5 matrix of the body fluid sample.  

Another example of the method further includes based on a result of the 

detection, determining the concentration of the analyte in the body fluid sample 

based on the equation.  

Yet another example of the method further includes determining the 

10 concentration of the analyte in the body fluid sample based the equation. In this 

example, detecting the transient error includes detecting the transient error in the 

determined concentration of the analyte based on the comparison.  

Still yet another example of the method further includes based on the 

detection, reporting to a user of the analyzer that a transient error is detected in the 

15 body fluid sample.  

In some examples, reporting includes to providing a visual alarm, an audible 

alarm or a combination thereof to the user.  

Another example of the method further includes based on the detection, 

stopping a sample measurement process including determining the concentration of 

20 the analyte.  

Yet another example of the method further includes based on the detection, 

reporting to a user of the analyzer that the body fluid sample may be compromised 

by a transient error; and continuing a sample measurement process including 

determining the concentration of the analyte.  

25 BRIEF DESCRIPTION OF THE DRAWINGS 

These embodiments and other aspects of this invention will be readily 

apparent from the detailed description below and the appended drawings, which are 

meant to illustrate and not to limit the invention, and in which: 

Figures 1 a and lb show an exemplary block diagram of an automated 

30 clinical analyzer according to one embodiment of the invention.



Figure 2 shows an exemplary plot of voltage versus time for experimental 

data generated by a sensor for measuring the concentration of glucose according to 

one embodiment of the invention; 

Figure 3 shows an exemplary plot of voltage versus logarithmic function of 

5 time using a portion of the experimental data of Figure 2 according to one 

embodiment of the invention; 

Figure 4 is an exemplary logical flow diagram for predicting the end point 

response of the sensor according to one embodiment of the invention; 

Figures 5a and 5b are exemplary logical flow diagram for analysis of 

10 samples according to embodiments of the invention; 

Figures 6a and 6b are exemplary logical flow diagram for determining and 

improving usefulness of the curve fitting equation according to embodiments of the 

invention; 

Figures 7a and 7b are other exemplary logical flow diagram for determining 

15 and improving usefulness of the curve fitting equation according to exemplary 

embodiments of the invention; and 

Figures 8a, 8b and 8c show an exemplary graphical representations of 

voltage versus time for experimental data generated by a sensor for measuring the 

concentration of sodium according to one embodiment of the invention.  

20 Figure 9 shows an exemplary block diagram of a processing transient error 

detector according to one embodiment of the invention.  

Figure 10 is exemplary logical flow diagram for detecting a transient error in 

a body fluid sample according to one embodiment of the invention.  

Figures 1 la-c show an exemplary graphical representations of range of 

25 coefficients created from previously collected samples according to one embodiment 

of the invention.  

DESCRIPTION 

The present invention will be more completely understood through the 

following description, which should be read in conjunction with the attached 

30 drawings. In this description, like numbers refer to similar elements within various 

embodiments of the present invention. Within this description, the claimed



invention will be explained with respect to embodiments. The skilled artisan will 

readily appreciate that the methods and systems described herein are merely 

exemplary and that variations can be made without departing from the spirit and 

scope of the invention.  

5 Figures 1 a and lb show an example of an automated clinical analyzer 102 for 

measuring analytes, such as potassium, chloride, sodium, glucose, lactate, creatinine, 

creatine, urea, 02, C02, and the like, in a body fluid sample (e.g., whole blood) 

taken from a patient. The automated clinical analyzer is generally configured to 

communicate with one or more sensors 140A-N, generally referred to hereinafter as 

10 sensors 140. In various examples of the automated clinical analyzer, the sensors 140 

may be electrochemical sensors that generate voltmetric or amperometric signals in 

response to being exposed to analytes. In various examples, a first sensor 140A may 

be responsive to a first analyte within a body fluid sample, a second sensor 140B 

may be responsive to a second analyte within the body fluid sample, and an nth 

15 sensor 140N may be responsive to an nth analyte within the body fluid sample, and 

so forth. Further details regarding the sensors 140 are provided below.  

An operator (e.g., a health professional) loads a body fluid sample into the 

automated clinical analyzer 102 and starts a sample measurement process (analysis) 

for a particular analyte. In particular, the operation uses a user interface 170, such as 

20 a keyboard and/or mouse, communicatively coupled to the automated clinical 

analyzer 102 to start the process. In analyzing the body fluid sample for the analyte, 

the automated clinical analyzer 102 can detect transient errors in the body fluid 

sample. Transient errors, such as an air bubble, a blood clot or other interfering 

substance in the body fluid sample, can lead to errors in sample measurements, for 

25 example, an erroneous analyte concentration. An approach to detecting transient 

errors in the body fluid sample that is based on the shape of a response curve of the 

sensor is described below.  

The senor 140 generates signals in response to sensing the analyte in the 

body fluid sample. The generated signals can be used to create the response curve 

30 of the sensor (described in more detail below). The response curve can be 

mathematically represented by an equation including logarithmic and quadratic 

equations. Examples of the equation can include a coefficient describing a curvature



of the response curve, a coefficient describing the slope of the response curve or 

both.  

When the equation coefficient(s) falls inside a range of coefficients, the 

response curve is defined as having a "good" shape. When the equation 

5 coefficient(s) falls outside a range of coefficients, the response curve is defined as 

having a "bad" shape. The automated clinical analyzer 102 determines there is no 

transient error in the body fluid sample when the response curve of the sensor 140 

has a good shape. The automated clinical analyzer 102 determines there is transient 

error in the body fluid sample when the response curve of the sensor 140 has a bad 

10 shape. The automated clinical analyzer 102 notifies the operator whether there is a 

transient error in the body fluid sample. For example, the notification is presented to 

the operator using a display 172 communicatively coupled to the automated clinical 

analyzer 102.  

In analyzing the analyte, the automated clinical analyzer 102 can also 

15 determine the concentration of the analyte based on the signals generated by the 

sensor 140. In a convenient example, the concentration of the analyte is determined 

according an approach for increasing sample throughput, as described below in 

greater detail. The automated clinical analyzer 102 notifies the operator of the 

concentration of the analyte, for example, through the display 172. In some cases, 

20 when the automated clinical analyzer 102 detects a transient error in the body fluid 

sample, the automated clinical analyzer 102 stops the sample measurement process 

and does not determine the concentration of the analyte.  

Continuing with Figures la and 1b, the automated clinical analyzer 102 

includes a processor 104, a memory 106, a processing transient error detector 108, 

25 an analyte concentration measurement application 110, a transient error detection 

application 128, and a range of coefficients library 130. In some examples of the 

automated clinical analyzer 102, the processor 104 includes the processing transient 

error detector 108. The memory 106 stores the analyte concentration measurement 

application 110, the transient error detection application 128, and the range of 

30 coefficients library 130. Operation of the automated clinical analyzer 102 is 

described below in greater detail starting with a discussion of the processing 

transient error detector 108 and the transient error detection application 128. The



analyte concentration measurement application 110 is discussed in the second half of 

the disclosure.  

The processing transient error detector or simply "transient error detector" 

108 runs the transient error detection application 128. As shown, an example of the 

5 transient error detection application 128 includes a comparison module 150 and a 

detection module 152 configured to perform specific functions or tasks in order to 

detect a transient error in a body fluid sample that is based on the shape of a 

response curve of a sensor. Other examples include more or fewer modules.  

Operation of the transient error detector 108 is described below with reference to the 

10 functional block diagram of Figure 9 and the flow diagram of Figure 10.  

Figure 9 shows an example of the transient error detector 108. The transient 

error detector 108 includes the comparison module 150 and the detection module 

152 communicatively coupled as shown. The transient error detector 108 further 

includes an interface 154 for receiving equations 156 representing senor response 

15 curves. In some use cases, the interface 154 receives the equations 156 as they are 

determined by the analyte concentration measurement application 110.  

Advantageously, this enables real or near real-time detection of transient errors in 

body fluid samples. For example, the automated clinical analyzer 102 notifies the 

operator of a detected transient error during the sample measurement process. In 

20 other use cases, the interface 154 receives equations previously determined.  

Asynchronous detection of transient errors can be beneficial when batch (i.e., more 

than one) processing of samples is desirable. For example, equations determined by 

a separate instrument are sent to the automated clinical analyzer 102 to detect 

transient errors. As shown, the range of coefficients library provides a range of 

25 coefficients 158 for a particular analyte used to detect a transient error in the body 

fluid sample.  

Figure 10 shows an example routine 500 for detecting transit errors in body 

fluid samples. The routine 500 starts at operation 502 with the comparison module 

150 being provided with the equation 156 representing a response curve. The 

30 response curve is for a sensor sensing a particular analyte in a body fluid sample and 

for ease of reference is called a "response curve under test." The equation 156 may 

include a coefficient describing a curvature of the response curve under test, a 

coefficient describing a slope of the response curve under test or both.



At operation 504, a convenient example of the comparison module 150 

compares the coefficient (describing curvature or slope) against the range of 

coefficients 158. The comparison operation 504 is described in greater detail with 

reference to Figure Ila. The figure shows a graphical representation of an example 

5 range of coefficients 602, specifically, for a sensor sensing oxygen in the body fluid 

sample. Coefficient values are on shown on the horizontal axis of the graph and 

oxygen concentration values are on shown on the vertical axis of the graph. The 

range of coefficients 602 includes a lower limit 604 and an upper limit 606 that both 

vary with a changing in oxygen concentration.  

10 As shown, point A has a coefficient value below the lower limit 604 and is 

outside the range of coefficients 602. Point B has a coefficient value above the 

upper limit 606 and is outside the range of coefficients 602. Because point A and 

point B are outside the range of coefficients 602 the comparison module 150 

determines that the response curve under test having a coefficient value of either 

15 these points has a bad shape. Point C has a coefficient value between the lower 

limit 604 and the upper limit 606, and is within the range of coefficients 602.  

Because point C is within the range of coefficients 602 the comparison module 150 

determines that the response curve under test having a coefficient value of point C 

has a good shape.  

20 Returning to Figures 9 and 10, at operation 506, based on a result of the 

comparison 160 (i.e., the response curve under test has a good shape or has a bad 

shape), the detection module 152 detects whether there is a transient error in the 

body fluid sample and returns a detection 162 (i.e., transient error detected or no 

transient error detected). A convenient example of the detection module 152 

25 identifies no transient error in the body fluid sample when the coefficient of the 

response curve under test is within the range of coefficient. The detection module 

152 identifies there is a transient error in the body fluid sample when the coefficient 

of the response curve under test is outside the range of coefficient. The routine 500 

end at operation 508 with the detection module 152 returning a detection 162 (i.e., 

30 transient error detected or no transient error detected).  

The usefulness of the transient error detector 108 can be further enhanced by 

considering two or more coefficients when determining whether the response curve 

under test has a good shape or bad shape. In a convenient example of the transient 

1 I\



error detector 108, the comparison module 150 compares a coefficient describing the 

curvature of the response curve under test to a first range of coefficients and 

compares a coefficient describing the slope of the response curve under test to a 

second range of coefficients. The detection module 152 determines whether there is 

5 a transient error in the body fluid sample based on the result of comparing the 

curvature (first comparison) and the result of comparing the slope (second 

comparison). The detection module 152 combines the results, for example by 

weighting them equally or differently. Including additional determinants or factors 

in the detection process is advantageous because it enables transient errors to be 

10 detected with greater granularity.  

Upon detecting the transient error in the body fluid sample, a convenient 

example of the automated clinical analyzer 102 terminates the sample measurement 

process and reports to the technician (operator) by means of a visual and/or audible 

alarm (e.g., through the monitor 172 of Figure. 1). The alarm informs the technician 

15 that the transient error detector 108 has detected a transient error for that body fluid 

sample for that analyte. Another example of the automated clinical analyzer 102 

continues with the sample measurement process and notifies the technician 

(operator) by means of a visual and/or audible alarm (e.g., through the monitor 172 

of Figure. 1) that the body fluid sample result for that analyte is potentially 

20 compromised by a transient error.  

Upon determining there is no transient error in the body fluid sample, 

another convenient example of the automated clinical analyzer 102 determines the 

concentration of the analyte in the body fluid sample based on the equation 156, as 

described in greater detail below. Advantageously, this can save on processing time 

25 and resources by only computing the concentration when there is no transient error 

that could cause the concentration to be computed incorrectly.  

Another example of the automated clinical analyzer 102 determines both the 

concentration of the analyte in the body fluid sample based on the equation 156 

(described in greater detail below) and detects whether there is a transient error in 

30 the body fluid sample. Advantageously, this example of the automated clinical 

analyzer 102 identifies whether there is transient error in the determined 

concentration improving the usefulness automated clinical analyzer 102.  

1 1



An example of a procedure for creating a range of coefficients from 

previously collected samples is now described with reference to Figures 1 la through 

1 Ic. The previously collected samples include body fluid samples and standardized 

aqueous solutions of a particular analyte at varied concentrations. The analyte 

5 concentration of each of the previously collected samples is measured. The sample 

measurements are then verified to be within an allowable analyte accuracy limit. It 

should be readily apparent that the verifying can be performed according to any one 

of a number of well-known techniques, for example, testing the same sample using a 

number of identical analyzers. Examples of the procedure are not limited to any one 

10 particular verification technique.  

Response curves generated while measuring analyte concentrations of the 

previously collected samples are analyzed, including determining equations 

representing the response curves. For equation coefficients associated with 

previously collected samples having similar or the same measured analyte 

15 concentration (e.g., samples having a concentration plus or minus 5 percentage are 

considered similar), a mean coefficient is determined. The mean coefficients for 

different measured analyte concentrations are used to determine a lower limit and an 

upper limit of a response curve.  

Referring to Figure 11 a, each data point shown in the figure is a mean 

20 coefficient for a particular analyte concentration. As an example, for a mean 

coefficient 608 for a particular analyte concentration, a lower limit point 610 of the 

range of coefficients 602 is defined as a selected first number of negative standard 

deviations 612 from the mean coefficient 608. An upper limit point 614 of the range 

of coefficients 602 is defined as a selected second number of standard deviations 

25 616 from the mean coefficient 608. In some examples, the selected number of 

standard deviations (or sigmas) can be between four to six. The selected first 

number and the selected second number of standard deviations (612, 616) can be the 

same (i.e. have the same magnitude) or can be different (i.e. have different 

magnitudes) depending on the analyte. For each of the different analyte 

30 concentrations, a lower limit point and an upper limit point of the range of 

coefficients 602 at a subject concentration is determined in a similar fashion.  

The lower limit 604 of the range of coefficients 602 is determined by 

computing a best-fit line through the lower limit points. The upper limit 606 of the



range of coefficients 602 is determined by computing a best-fit line through the 

upper limit points. As can be seen, the lower limit 604 and the upper limit 606 

varies with oxygen concentration. For example at an oxygen concentration of 100, 

the lower limit is -30 and the upper limit is +45. The lower limit of the range of 

5 coefficients changes to -85 and the upper limit changes to +10 when the oxygen 

concentration changes to 500.  

Depending on an analyte, a lower limit and/or an upper limit of a range of 

coefficients may be invariant to changes in analyte concentration (i.e., the limit does 

not change with analyte concentration). For example, Figure 1 lb shows an example 

10 range of coefficients for sodium 640 in which a lower limit 642 and an upper limit 

644 do not vary with sodium concentration. The lower limit 642 is fixed at -1.75 

and the upper limit 644 is fixed at 3 for all concentrations of sodium. Figure 1 Ic 

shows an example range of coefficients for glucose 660. A lower limit 662 of the 

range of coefficients 660 does not vary with glucose concentration and is fixed at -2.  

15 An upper limit 664 of the range of coefficients 660 varies with glucose 

concentration. The upper limit 664 of the range of coefficients 660 increases 

(approximately) linearly with an increase in glucose construction.  

Turing now to the approach for increasing sample throughput in an 

automated clinical analyzer, the approach includes predicting the end point response 

20 time of a sensor for the analysis of an analyte in a sample, such as a body fluid 

sample, and for improving measurement reliability by detecting outliers and 

qualifying parameters in curve fitting equations. According to various embodiments 

described herein, the present invention describes techniques for extrapolating an end 

point response of a sensor by determining a curve fitting equation derived from data 

25 signals generated by the sensor in response to being exposed to a sample. In various 

embodiments, the curve fitting equation will be a second degree logarithmic 

polynomial having a general form of s(t) = a(log(t))2 + b(log(t)) + c, where a, b, and 

c are the polynomial coefficients that are determined based on the converted data 

points, and s(t) is the calculated sensor output at a particular time t. In this way, a 

30 sample analysis system may no longer need to wait the entire duration of the sensor 

end point response time to analyze a sample and provide a determination of the 

concentration of the analyte measured by the sensor in the sample. Moreover, by 

reducing the sensor response time, and therefore, the sample exposure time, the



sensor recovery time, which is the time the sensor takes to recover is also reduced, 

allowing for greater throughput.  

In order to further elucidate the present teachings, the following definitions 

are provided.  

5 "Critical points," as used herein, refers to local extremum points and 

inflection points.  

A "local extremum point," as used herein, refers to a point in a function at 

which the first derivative exists and is zero.  

An "inflection point," as used herein, refers to a point in a function at which 

10 the second derivative changes sign.  

An "outlier," as used herein, refers to a sample data point that is numerically 

distant from the rest of the data.  

A "residual," as used herein, is the difference between a sample data point 

and the estimated function value as obtained by a curve fitting equation.  

15 A "Studentized residual," as used herein, is the quantity resulting from the 

division of a residual by an estimate of its standard deviation.  

"DFFITS," as used herein, is an expression that quantifies how influential a 

point is in a statistical regression. In its classical definition, DFFITS equals the 

Studentized residual times hi/ (1 - , where kI is the leverage for the 

20 point; leverage, hii, is defined as elements hii of the Hat Matrix, H, which identifies 

the amount of leverage exerted by the ith observation yi on the ith fitted value.  

Another version of an expression that quantifies how influential a point is in a 

statistical regression is a measure that indicates the change at an extrapolated point 

caused by removing an individual point from the regression fit.; examples of such 

25 measure, where 55 is the time corresponding to the extrapolated point are 

[1 logo 55] * A * [ 10  * R 
Delta55. = l1 

1 - Hu 

For a linear fit in log(t) (where A is a matrix related to the Hat Matrix and defined 

as 

A = (XT*X)-i) 

1 A



and 

[1 log10 55 (logo 55)2] A log10 t Ri 

Deltagi = 1 - iii 19(log 1 0 t)21 

For a quadratic fit in log(t). The above expressions are variations of the classical 

DFITTS or DFFITS2 .  

5 "DFFITS," as used herein, refers to the classical definition or the measure 

that indicates the change at an extrapolated point caused by removing an individual 

point from the regression fit.  

The "hat matrix, H," as used herein, sometimes also called projection matrix, 

is a matrix that maps the vector of observed values to the vector of fitted values.  

10 Returning to Figure 1 a, the analyte concentration measurement application 

110 may generally be configured to communicate with the sensors 140. The analyte 

concentration measurement application 110 may include one or more modules 

configured to perform specific functions or tasks in order to determine the 

concentration of an analyte within a sample. In various embodiments, the analyte 

15 concentration measurement application 110 may include a sensor communication 

module 112, a data point reporting module 114, a data point selection module 116, a 

curve fitting module 118, an extrapolation module 120, a validation module 122, an 

analyte concentration reporting module 124 and a curve fit quality module 126. It 

should be appreciated that in various embodiments, the analyte concentration 

20 measurement application 110 may include additional modules for performing 

additional tasks, or may include only some of the modules listed above.  

The analyte concentration measurement application 110 may generally be 

configured to receive data signals generated by a sensor upon being exposed to an 

analyte within a sample, record data points extracted from the data signals, evaluate 

25 the data points on a function of time scale, a logarithmic function of time scale in 

one embodiment, determine a curve that matches the evaluated data points, 

determine a curve fitting equation that can be utilized to extrapolate an end point 

response of the sensor, and accurately estimate the concentration of the analyte 

based on the extrapolated end point response of the sensor.  

1 CZ



In various embodiments, the sensor communication module 112 may be 

configured to receive data signals from the sensors 140. In some embodiments 

where the sensors may be electrochemical sensors, the data signals may represent an 

amperometric output that may be measured in Amperes, or a voltmetric output that 

5 may be measured in Volts. In various embodiments, these data signals may vary 

over time, and typically may generate an output value that eventually stabilizes over 

time. The stabilized output value may typically be the end point response of the 

sensor. It should be appreciated that any type of sensor that can generate a data 

output signal in response to being exposed to an analyte may be utilized as a sensor 

10 140.  

The data point recording module 114 may be configured to capture and 

record data points from the generated data signals. The data points may be stored in 

the memory of the automated clinical analyzer 102, or at any other storage medium 

accessible by the analyte concentration measurement application 110. In various 

15 embodiments, the data point recording module 114 may record a measurement of the 

data signal after every nth fixed period of time. The fixed period of time may be 

predefined by the analyte concentration measurement application 110. It should be 

appreciated that the fixed period of time may be defined by the technological 

limitations of existing systems and is not intended to be limited to any particular 

20 range. However, in some embodiments, the fixed period of time may range from a 

millisecond to a few seconds. In alternate embodiments, the data point recording 

module 114 may record a measurement of the data signal after random or variable 

periods of time.  

The data point selection module 116 may be configured to select pertinent 

25 data points from the recorded data points. In various embodiments, the data point 

selection module 116 may select data points that when plotted on a function of time 

scale, a logarithmic function of time scale in one embodiment, may allow the analyte 

concentration measurement application to determine a curve that closely fits the 

selected data points and also results in predicting an end point response of the sensor 

30 that is within acceptable limits. In various embodiments, data points that may 

provide the most accurate results may be selected from a time range that is 

empirically determined, and may vary depending on characteristics of the sensor and 

the analyte.



In various embodiments, the data point selection module 116 may select a 

series of data points corresponding to a kinetic region time range from the recorded 

data points. The kinetic region time range refers to any time range in which the data 

points are within the kinetic region of a sensor response. Typically, the kinetic 

5 region occurs from a first time when the sensor is exposed to the analyte, to a second 

time when the data signals generated by the sensor are not substantially similar to 

the end point response of the sensor i.e. before the sensor response reaches 

equilibrium. In other words, once the data signals generated by the sensor become 

substantially similar to the end point response of the sensor, the data signals are 

10 being generated in an equilibrium region. In various embodiments, the data point 

selection module 116 may select a series of data points corresponding to a portion of 

a kinetic region time range. In one embodiment, the time range may begin at about 

fifteen seconds after the sensor is exposed to the analyte. Moreover, the time range 

may end at about thirty seconds after the sensor is exposed to the analyte.  

15 Additional details regarding which data points to select are provided below with 

respect to Figure 4.  

The curve fitting module 118 may be configured, in one embodiment, to 

convert the selected data points to a function of time scale, a logarithmic function of 

time scale in one embodiment, such that the converted data points can be evaluated 

20 on a function of time scale. The curve fitting module may then determine a curve 

that closely matches the evaluated data points. The curve fitting module may use 

conventional curve fitting methods such as regression analysis or least square 

methods.  

In various embodiments, the equation describing the curve (also referred to 

25 as the curve fitting equation) is a polynomial in a function of time, in one 

embodiment, a logarithm of time (log (t)), and a predetermined value of the function 

of time (in one embodiment, a logarithm of time) at which a critical point occurs is 

provided, the predetermined value providing a relationship between polynomial 

coefficients.  

30 In various embodiments, the curve fitting module 118 may plot the selected 

data points on a logarithmic function of time scale, and determine a curve that 

closely matches or fits the plotted data points.  

1 I



Upon determining the curve, the curve fitting module may determine a curve 

fitting equation corresponding to the curve. In various embodiments, the curve 

fitting equation is of the form s(t) = a*(log(t))A2 + b*log(t) + c, wherein t represents 

time and a, b and c are fit parameters for a second order polynomial, the critical 

5 point is an extremum point, and the predetermined value (V) provides a relationship 

between the fit parameters b and a of the form b=-2aV; the fit parameters a and c 

being determined based on the initial sensor response. The precise values of a, b, and 

c, which are determined empirically for each sensor configuration used, depend in 

part upon the concentration of the analyte, the size of the sample, the temperature, 

10 the geometry of the sensor apparatus setup, and other parameters.  

In one instance, the invention not been limited to that instance, the 

predetermined value of the time at which time at which a critical point occurs is 

selected to be the time at which the end point is desired. In other instances, not a 

limitation of the invention, times beyond the endpoint time can be selected as the 

15 predetermined time.  

The extrapolation module 120 may be configured to extrapolate an end point 

response of the sensor by solving the curve fitting equation for a time within the 

equilibrium region of the curve. In various embodiments, the analyte concentration 

measurement application 102 may utilize empirical methods to determine a time that 

20 is within the equilibrium region of the curve, and then store the determined 

equilibrium region time as a predefined time with which to solve the curve fitting 

equation.  

The validation module 122 may be configured to validate the calculated end 

point response by determining the coefficient of variation (CV) and the coefficient 

25 of determination (R2). The following formulas for determining the coefficient of 

variation (CV) and the coefficient of determination (R2) are well known in the art 

and may be used by the validation module 122 to validate the calculated end point 

response.  

CV = standard deviation(yi)/mean(yi); and 

30 R2= 1-(sum((yi-fi) 2)/(sum((yi-mean(yi)) 2); 

where yi and fi are the observed and calculated values at a specified time, 

respectively.



The curve fit quality module 126 may be configured to determine and 

improve usefulness of the curve fitting equation corresponding to the analyte. In one 

or more embodiments, the curve fit quality module 126 may be configured to, after 

the curve fitting equation has been obtained, to perform the analysis described herein 

5 below. The curve fit quality module 126 may be configured to determine an outlier 

candidate with a largest residual. Conventional methods for determining an outlier 

candidate with a largest residual, such as the Studentized residual or Dixon methods, 

can be used. Once the outlier candidate with largest residual is selected, the residual 

of the outlier candidate is compared to a residual limit. The residual limit can be 

10 predetermined from past experience, analytical considerations or other approaches.  

If the residual of the outlier candidate exceeds the residual limit, the outlier 

candidate is classified as an outlier. If the residual of the outlier candidate, which 

had the largest residual, is less than or equal to the residual limit, the curve fit 

quality module 126 can pass operation to another module since other residual 

15 candidates with similar residuals will also be within the residual limit. If the outlier 

candidate has been classified as an outlier, the curve fit quality module 126 is 

configured to obtain a measure of the effect of the outlier on the parameters of the 

curve fitting equation. Conventional methods for obtaining a measure of the effect of 

the outlier such as, but not limited to, Cook distance, DFFITS and DFBETAS, may 

20 be used. The measure of the effect of the outlier is compared to a predetermined 

measure limit. The measure limit can be predetermined from past experience, 

analytical considerations or other approaches. If the measure of the effect of the 

outlier exceeds the predetermined measurement limit, an outlier count, initially set to 

zero, is incremented, the outlier count is compared to a predetermined outlier limit, 

25 and the outlier is removed from the data points. A modified set of data points is 

obtained by removing the outlier or the outlier candidate from the data points and 

the above analysis is performed again.  

It should be appreciated that by way of the present disclosure, the sample 

exposure time is reduced as the sensor response time is reduced. As a result of the 

30 reduced sample exposure time, the sensors, and in particular, enzymatic sensors, 

including but not limited to sensors for measuring glucose and lactate, may have 

shortened sensor recovery times. As the sensors can recover faster, a greater 

throughput can be achieved.



EXEMPLIFICATION 

The following exemplary embodiments are presented to further elucidate the 

invention but it should be noted that the invention is not limited only to the 

exemplary embodiments.  

5 The analyte concentration recording module 124 determines the 

concentration of the analyte within the sample using the calculated end point 

response and report the analyte concentration with a flag if the validation module 

122 determines that the CV and R 2 are not within acceptable limits. Conversely, if 

the CV and R 2 are within acceptable limits, then the analyte concentration recording 

10 module 124 may report the concentration of the analyte without a flag. Analytes 

that may be measured according to the method of the invention include, but are not 

limited to for example, hematocrit, the ion concentration of calcium, potassium, 

chloride, sodium, glucose, lactate, creatinine, creatine, urea, partial pressure of 02 

and/or C02, or any other analyte for which a sensor exists. In various embodiments, 

15 the flag may be a data bit that may be represented visually as a flag, a symbol, or 

aurally, as a beep, a tone, or in any other manifestation that may indicate to a user 

that the either the CV or the R2 is not within acceptable limits.  

Referring now to Figure 2, an exemplary plot of voltage versus time for 

experimental data generated by a sensor for measuring the concentration of glucose 

20 is shown. In particular, the plot shows a series of data points 202A-N that are 

captured from a data signal generated by the sensor 140. The data points indicate an 

output value, such as a voltage, current, or charge. In various embodiments, data 

points from the generated signal may be recorded over time and plotted against time.  

The plot shown in Figure 2 is generated by plotting the recorded data points 202A-N 

25 against time. In the present embodiment, the data points are recorded every second.  

However, in various embodiments, data points may be recorded at time intervals that 

are less than or more than a second.  

It should be appreciated that by recording data points at time intervals less 

than a second, more data is generated, which may allow for a more accurate plot, but 

30 may also utilize additional computing resources, which may be undesirable, 

depending on system resources. Alternatively, data points that are recorded at time 

intervals substantially exceeding a second may provide a less accurate plot. In any 

event, the length of the time intervals between data points is an implementation



choice that may be determined based on various factors, such as the end point 

response time of the sensor, limitations with respect to computing resources, the 

nature of the sensor and analyte, and the like.  

Referring now to Figure 3, an exemplary plot of voltage versus a logarithmic 

5 function of time using a portion of the experimental glucose data of Figure 2 is 

shown. As described above, once the data points corresponding to the data signals 

received from the sensor are recorded, the data point selection module 116 may 

select pertinent data points from the recorded data points. The selected data points 

may then be converted to a logarithmic scale, such as base 10 or natural log. Upon 

10 converting the data points to the logarithmic scale, the converted data points 302A-N 

are plotted as voltage values versus logarithmic function of time.  

As shown in Figure 3, once the converted data points302A-N are plotted on 

the voltage versus logarithmic function of time scale, the plot 300 may be shown.  

This allows the curve fitting module 118 to determine a curve 306 that closely 

15 matches the converted data points 302A-N. Then, the curve fitting module 118 may 

determine a curve fitting equation based on the curve 306 that is simpler than 

existing curve fitting equations utilized in sensor technologies. Existing curve 

fitting equations require finding roots of non-linear equations, whereas the 

techniques disclosed herein do not require finding such roots. Finding roots of non

20 linear equations is computationally intensive, and when dealing with systems that 

have high throughputs, the severity of the problem becomes even more apparent. As 

a result, by utilizing curve fitting equations that do not require finding roots of non

linear equations, the automated clinical analyzer 10 requires fewer computational 

resources than existing systems. This translates to various advantages over existing 

25 systems, including but not limited to increased throughputs, reduced costs of 

manufacture, and a smaller physical and energy footprint. Further, it should be 

appreciated that the display step may not be necessary as the curve fitting equation 

may be determined without having to plot data points or draw a curve that fits the 

data points.  

30 According to various embodiments, the curve fitting equation may typically 

be a second degree logarithmic equation that has a general form of 

s(t) = a(log(t))2 + b(log(t)) + c,



where a, b, and c are the polynomial coefficients that are determined based 

on the converted data points, and s(t) is the calculated sensor output at a particular 

time t. In one embodiment, a predetermined value of the logarithm of time at which 

a critical point occurs is provided, the predetermined value providing a relationship 

5 between polynomial coefficients. The precise values of a, b, and c. which are 

determined experimentally or analytically (for example, using regression analysis) 

for each sensor configuration used, depend in part upon the concentration of the 

analyte, the size of the sample, the temperature, the geometry of the sensor 

transducer setup, and other parameters. In one instance, the critical point is an 

10 extremum point, and the predetermined value (V) provides a relationship between 

the fit parameters b and a of the form b=-2aV; the fit parameters a and c being 

determined based on the sensor response by curve fitting techniques (such as, but 

not limited to, regression analysis and least square methods). Once the values of a, 

b, and c have been determined for a sensor configuration, the curve fitting equation 

15 may be used to rapidly estimate the concentration of the analyte in the sample.  

According to the invention, there is no need to wait for the sensor to provide its final 

reading to determine the analyte concentration.  

It should be appreciated that the selection of the data points to be converted 

plays an important role in determining the accuracy of the curve fitting equation.  

20 Although conventional wisdom would suggest that the greater the number of data 

points utilized for determining the curve fit, the better.  

The present invention discloses that such wisdom is not necessarily true.  

Rather, the range from which the data points are selected may play an even more 

important role. In various embodiments, the data points selected to be converted to 

25 the logarithmic function of time scale were the data points generated from 15-30 

seconds after the analyte was first exposed to the sensor. In other embodiments, 

data points from 15-35 seconds after the analyte was first exposed to the sensor were 

used without significant improvements in accuracy. Similarly, data points from 10

25 seconds after the analyte was first exposed to the sensor were used but produced 

30 some results that were not accurate enough. It should be appreciated that the data 

points selected may vary based on the type of sensor and analyte, end point response 

time, amongst other factors. In various embodiments, the time range for selecting 

the data points may be determined through empirical methods.



As described above, the end point response value of the sensor may be 

calculated by solving the equation for a time that is within the equilibrium region of 

the sensor response curve. Once the end point analyte related value is calculated 

using the curve fitting equation, the end point response value is converted to a value 

5 corresponding to the concentration of the analyte, using, for example, a method 

comprising a calibration value (e.g. a ration, a calibration point, a difference value, 

etc.).  

Referring now to Figure 4, an exemplary logical flow diagram for estimating 

the concentration of an analyte within a sample is shown. A routine 400 begins at 

10 operation 402, where the sensor 140 is exposed to a sample containing the analyte.  

As described above, the electrochemical sensor 140 may be responsive to the levels 

of concentration of an analyte within the sample.  

From operation 402, the routine 400 proceeds to operation 404, where the 

sensor 140 may generate one or more data signals in response to the exposure to the 

15 analyte. In various embodiments, the data signals may be in the form of a voltage, 

current, charge, or any other type of measurable output. These data signals are 

continuously being generated by the sensor 140 while being exposed to the analyte.  

From operation 404, the routine 400 proceeds to operation 406, where the 

data point recording module 114 may record data points from the data signals. The 

20 granularity at which these data points are recorded may be determined by the type of 

sensor, the amount of analyte, the size of the sample, the temperature, amongst other 

factors. In one embodiment, the data signals are recorded every second. However, 

it should be appreciated that the frequency at which these data points are recorded 

may be greater than or less than one data point per second. The data points may be 

25 stored within the memory of the automated clinical analyzer 102, or may be stored 

remotely at a location that is accessible by the analyte concentration measurement 

application 110.  

From operation 406, the routine 400 proceeds to operation 408, where the 

data point selection module 116 may select a portion of the data points recorded by 

30 the data point recording module 114. In various embodiments, the data point 

selection module 116 may select data points that, when plotted, may help determine 

a curve that has an equation, which, when extrapolated to a time in the future, 

generates a result that is proximate to the actual result of the sensor 140. In various



embodiments, the data point selection module 116 may select any number of data 

points. There is a countervailing balance that the data point selection module 116 

has to consider when selecting data points. Selecting too many data points may also 

increase the number of outliers, which may adversely affect the accuracy of the 

5 curve being fitted, as well as selecting data points that are too far ahead in time may 

delay the time in which the automated clinical analyzer 102 may determine the 

analyte concentration. In particular, selecting the first few data points that are 

recorded may cause the automated clinical analyzer 102 to produce inaccurate 

results. This is because the sensors 140, when initially exposed to the analyte, may 

10 generate noise signals, amongst other undesirable affects. Accordingly, based on 

empirical methods, data points selected from the kinetic region but after the initial 

response of the sensor 140 may generate the most accurate results, while balancing 

the need to determine the concentration of analyte in the shortest time, without 

significantly compromising on accuracy.  

15 From operation 408, the routine 400 proceeds to operation 410, where the 

curve fitting module 118 converts the selected data points having an output value 

corresponding to a particular time to a unit of logarithmic function of time. In 

various embodiments, the base of the logarithmic scale may be base 10, or natural 

log (ln e). By doing so, a curve generated by the plotted converted data points may 

20 be more accurate and utilizes less data points than existing curve fitting equations.  

From operation 410, the routine 400 proceeds to operation 412, where the 

curve fitting module 118 may plot the converted data points on a graph. In various 

embodiments, the Y-axis is an output value gathered from the data signal generated 

by the sensor 140, and the X-axis is a logarithmic function of time. From operation 

25 412, the routine 400 proceeds to operation 414, where the curve fitting module 118 

may determine a curve fitting equation for the plotted graph. In various 

embodiments, the curve fitting module 118 may determine a curve fitting equation 

that is a second degree logarithmic polynomial having the form s(t) = a(log(t)) 2 + 

b(log(t)) + c, where a, b, and c are the polynomial coefficients that are determined 

30 based on the converted data points, and s(t) is the calculated sensor output at a 

particular time t. The precise values of a, b, and c. which are determined 

experimentally or analytically for each sensor configuration used, depend in part 

upon the concentration of the analyte, the size of the sample, the temperature, the



geometry of the setup, and other parameters. It should be appreciated that the curve 

fitting module may not necessarily plot the data points to determine a curve that fits 

the data points. In some embodiments, the curve fitting module 118 may be able to 

determine a curve that fits the data points without having to plot the data points.  

5 Commercially available curve fitting software may be utilized to determine a curve 

and a corresponding equation that fits the selected data points.  

From operation 414, the routine 400 proceeds to operation 416, where the 

extrapolation module 120 extrapolates the calculated end point response of the 

sensor 140 by solving the curve fitting equation for a time that falls within the 

10 equilibrium region. From operation 416, the routine 400 proceeds to operation 418, 

where the validation module 122 validates the end point response for accuracy.  

According to some embodiments, the validation process includes determining the 

coefficient of variation (CV) and the coefficient of determination (R2) using the 

formulas of CV and R2 that are presented above.  

15 From operation 418, the routine 400 proceeds to operation 420, where the 

validation module 122 determines whether the CV and the R2 are within acceptable 

limits predefined by the automated clinical analyzer 102. In various embodiments, 

these limits may allow for the CV and R2 to fall within an acceptable range, which 

may be known by those persons having ordinary skill in the art. In one embodiment, 

20 the limits may allow for the R2 to fall between 0.98 and 1. The coefficient of 

determination (R2) indicates how well the data and the curve fit function match. The 

closer the value of R2, the better the match.  

If, at operation 420, the validation module 122 determines that either the CV, 

, or both the CV and R2 not within the acceptable limit, the routine 400 proceeds 

25 to operation 422, where the analyte concentration reporting module 124 determines 

the concentration of the analyte using the extrapolated end point response, and 

reports the analyte concentration with a flag indicating that the result does not fall 

within the acceptable limits.  

However, if at operation 420, the validation module 122 determines that both 

30 the CV and R 2 are within the acceptable limit, the routine 400 proceeds to operation 

424, where the analyte concentration reporting module 124 determines the 

concentration of the analyte using the extrapolated end point response, and reports



the analyte concentration without a flag. From operation 422 and 424, the routine 

400 ends at operation 426.  

According to various embodiments, it may be desirable to provide a system 

for calibration of the sensors 140. A self-calibration system for measuring the 

5 analyte concentration may be used to correct for imprecision in the manufacturing of 

the sensor, thus reducing the time and cost of manufacture. In addition, the self

calibration system may be used to compensate for small magnitudes of noise 

generated by the sensor or other components of the automated clinical analyzer 102.  

Referring to Figure 5a, an exemplary flow diagram for determining and 

10 improving the usefulness of the curve fitting equation is shown therein. Another 

examples of routine 400 begins at operation 402, where the sensor 140 is exposed to 

a sample containing the analyte. As described above, the electrochemical sensor 

140 may be responsive to the levels of concentration of an analyte within the 

sample.  

15 From operation 402, the routine 400 proceeds to operation 404, where the 

sensor 140 may generate one or more data signals in response to the exposure to the 

analyte. In various embodiments, the data signals may be in the form of a voltage, 

current, charge, or any other type of measurable output. These data signals are 

continuously being generated by the sensor 140 while being exposed to the analyte.  

20 The routine 400 then proceeds through operations 406 to 410, as described herein 

above.  

From operation 410, the routine 400 proceeds to operation 415 in which a 

curve fitting equation is determined for the selected data points. The curve fitting 

equation may be determined by conventional methods such as, but not limited to, 

25 regression analysis or the least square methods. According to various embodiments, 

the curve fitting equation may typically be a second degree logarithmic equation that 

has a general form of 

s(t) = a(log(t))2 + b(log(t)) + c, 

where a, b, and c are the polynomial coefficients that are determined based on the 

30 converted data points, and s(t) is the calculated sensor output at a particular time t.  

In one embodiment, a predetermined value of the logarithm of time at which a 

critical point occurs is provided, the predetermined value providing a relationship 

between polynomial coefficients. The precise values of a, b, and c. which are



determined experimentally or analytically (for example, using regression analysis) 

for each sensor configuration used, depend in part upon the concentration of the 

analyte, the size of the sample, the temperature, the geometry of the sensor 

transducer setup, and other parameters. In one instance, the critical point is an local 

5 extremum point, and the predetermined value (V) provides a relationship between 

the fit parameters b and a of the form b=-2aV, the fit parameters a and c being 

determined based on the sensor response.  

From operation 415, the routine 400 proceeds to operation 416, where the 

extrapolation module 120 extrapolates the calculated end point response of the 

10 sensor 140 by solving the curve fitting equation for a time that falls within the 

equilibrium region. From operation 416, the routine 400 proceeds to operation 430 

in which the curve fit quality module 126 determines and improves the usefulness of 

the curve fitting equation. Embodiments of the logic flow diagram for operation 430 

are shown in Figures 6a, 6b, 7a, 7c.  

15 Another embodiment of the logic flow diagram for analyzing data for an 

analyte is presented in Figure 5b. As stated above, embodiments in which only some 

of the modules in the automated clinical analyzer 102 shown in Figure 1 are used are 

within the scope of this invention. There are numerous automated clinical analyzers 

in which a curve describing a fit for the data points can be used even if the curve 

20 fitting equation is not used for extrapolation. In the embodiment shown in Figure 5b, 

operation 416 is omitted to emphasize that embodiments in which extrapolation is 

not present are also within the scope of these teachings.  

One embodiment of the logic flow diagram for determining and improving 

the usefulness of the curve fitting equation is shown in Figures 6a and 6b. Referring 

25 to Figure 6a, the logic flow diagram shown therein starts from the curve fit and data 

points obtained from the flow diagram shown in Figures 5a or 5 b or equivalently 

obtained from the data point recording module 114, data point selection module 116 

and curve fitting module 118 in Figure 1. The outlier count is initially set to zero. An 

outlier candidate with the largest residual is determined (operation 440). The logic 

30 flow diagram then proceeds to comparing the residual of the outlier candidate with a 

predetermined residual limit (operation 444). The residual of the outlier candidate is 

then compared to a predetermined residual limit. If the residual of the outlier 

candidate with the largest residual is less than or equal to the predetermined residual



limit, the operation stops since any other outlier candidate will have a smaller 

residual and would be within the predetermined residual limit. If the residual of the 

outlier candidate is greater than the predetermined residual limit, the outlier 

candidate with the largest residual is classified as an outlier (operation 448). The 

5 logic flow diagram then proceeds to obtain a measure of the effect of the outlier on 

the parameters of the curve fitting equation (operation 450). The logic flow diagram 

is continued in Figure 6b. Referring to Figure 6b, the measure of the effect of the 

outlier on the parameters of the curve fitting equation, obtained in operation 450, is 

compared to the predetermined measure limit. If the comparison of the measure of 

10 the effect of the outlier on the parameters of the curve fitting equation with the 

predetermined measure limit indicates that the outlier has a significant effect on the 

parameters of the curve fitting equation, the outlier count is incremented by one 

(operation 454), the outlier count is compared to a predetermined outlier numbers 

limit (operation 458) and the outlier is removed from the data points (operation 460).  

15 If the outlier count is greater than the outlier number, the data set is identified for 

review. The logic flow diagram then forms a new set of data points with the outlier 

removed (operation 464). In one instance, a new set of curve fit parameters for the 

curve fitting equation are obtained using the new set of data points in the curve 

fitting module 118. The logic flow diagram then returns to determining a new outlier 

20 candidate with largest residual for the new data set of data points (operation 440, 

Fig. 6a). If the comparison of the measure of the effect of the outlier on the 

parameters of the curve fitting equation with the predetermined measure limit 

indicates that the outlier does not have a significant effect on the parameters of the 

curve fitting equation, the logic flow diagram proceeds to forming a new data set of 

25 points with the outlier candidate removed (operation 464). In one instance, a new set 

of curve fit parameters for the curve fitting equation are obtained using the new set 

of data points in the curve fitting module 118. The logic flow diagram then returns 

to determining a new outlier candidate with largest residual for the new data set of 

data points (operation 440, Fig. 6a). Another examples of the routine 400 proceeds 

30 until all outliers have been identified although it could be stopped if the outlier count 

exceeds the predetermined outlier number limit.  

An exemplary embodiment of the logic flow diagram for determining and 

improving the usefulness of the curve fitting equation is shown in Figures 7a and 7b.  

Referring to Figure 7a, the logic flow diagram shown therein starts from the curve fit



and data points obtained from the flow diagram shown in Figures 5a or 5 b or 

equivalently obtained from the data point recording module 114, data point selection 

module 116 and curve fitting module 118 in Figure 1. The outlier count is initially 

set to zero. The outlier count is initially set to zero. An outlier candidate with the 

5 largest Studentized residual is determined (operation 470). The logic flow diagram 

then proceeds to comparing the Studentized residual of the outlier candidate with a 

predetermined Studentized residual limit (operation 474). If the Studentized residual 

of the outlier candidate with the largest Studentized residual is less than or equal to 

the predetermined Studentized residual limit, the operation stops since any other 

10 outlier candidate will have a smaller Studentized residual and would be within the 

predetermined residual limit. If the Studentized residual of the outlier candidate is 

greater than the predetermined Studentized residual limit, the outlier candidate with 

the largest Studentized residual is classified as an outlier (operation 478). The logic 

flow diagram then proceeds to obtain a DFFITS value for the outlier (operation 

15 480). The logic flow diagram is continued in Figure 6b. Referring to Figure 7b, the 

DFFITS value for the outlier, obtained in operation 480, is compared to the 

predetermined DFFITS limit. If the comparison of the DFFITS value for the outlier 

with the predetermined DFFITS limit indicates that the outlier has a significant 

effect on the parameters of the curve fitting equation, the outlier count is 

20 incremented by one (operation 484), the outlier count is compared to a 

predetermined outlier numbers limit (operation 488) and the outlier is removed from 

the data points (operation 490). If the outlier count is greater than the outlier 

number, the data set is identified for review. The logic flow diagram then forms a 

new data set of points with the outlier removed (operation 494). In one instance, a 

25 new set of curve fit parameters for the curve fitting equation are obtained using the 

new set of data points in the curve fitting module 118. The logic flow diagram then 

returns to determining a new outlier candidate with largest Studentized residual for 

the new data set of data points (operation 470, Fig. 7a). If the comparison of the 

DFFITS value for the outlier with the predetermined DFFITS limit indicates that the 

30 outlier does not have a significant effect on the parameters of the curve fitting 

equation, the logic flow diagram proceeds to forming a new data set of points with 

the outlier candidate removed (operation 494). In one instance, a new set of curve fit 

parameters for the curve fitting equation are obtained using the new set of data 

points in the curve fitting module 118. The logic flow diagram then returns to



determining a new outlier candidate with largest residual for the new data set of data 

points (operation 470, Fig. 7a). Another examples of the routine 400 proceeds until 

all outliers have been identified although the routine 400 could be stopped if the 

outlier count exceeds the predetermined outlier number limit.  

5 An exemplary graphical representation of voltage versus time for 

experimental data generated by a sensor measuring sodium concentration is shown 

in Figure 8a. The exemplary graphical representation shows a series of data points 

capture from a data signal generated by a sodium sensor 140. The data points shown 

therein indicate an output value which for the exemplary graphical representation is 

10 shown in mVolts. A curve fitting equation, of the type ax2 +bx + c with a=0, is 

obtained from a curve fitting module 118. For the exemplary graphical 

representation shown there in the curve fitting equation is -0.1 126x - 280.24. In the 

exemplary embodiment disclosed herein below determining an outlier candidate 

with the largest residual is performed by determining a data point with a largest 

15 Studentized residual and obtaining a measure of the effect of the outlier is performed 

by obtaining a DFFITS value (DFFITS, in this exemplary embodiment, refers to the 

measure that indicates the change at an extrapolated point caused by removing an 

individual point from the regression fit.) The absolute value Studentized residual 

limit is 5; Studentized residuals having an absolute value higher than the one we 

20 consider outliers. The absolute value of the DFFITS limit is 0.04; any DFFITS 

absolute value higher than this limit will indicate that the outlier has a significant 

effect on the parameters of the curve fitting equation and should be removed. The 

maximum number of outliers is set equal to 2. Is the sample has more than two 

outliers, the sample will be set aside for review since it may be considered to be in 

25 error. Table 1 below displays the sensor output, Studentized residuals and DFFITS 

values for each update times in which the measurement was taken.  

Table 1 

Time sensor output Studentized DFFIT 

(S) Log time (mV) Res. (delta55) 

15 1.176091 -280.41814 -0.167969237 0.02924 
16 1.20412 -280.55 -0.584557754 0.07786 
17 1.230449 -280.38466 -0.031943123 0.00324 
18 1.255273 -280.36149 0.048486072 -0.00351 
19 1.278754 -280.34518 0.105178236 -0.00484 
20 1.30103 -280.33188 0.151657918 -0.00331



21 1.322219 -280.30999 0.223545623 0.00016 
22 1.342423 -280.29411 0.277612041 0.00612 
23 1.361728 -280.27652 0.337580624 0.01431 
24 1.380211 -280.26493 0.380544209 0.02363 
25 1.39794 -280.24605 0.447273738 0.03632 
26 1.414973 -280.23704 0.485403754 0.04858 
27 1.431364 -280.22931 0.521192884 0.06190 
28 1.447158 -281.55 -33.69556139 -0.49856 
29 1.462398 -280.20571 0.625390089 0.09754 
30 1.477121 -280.18897 0.698680225 0.12198 

As can be seen from Table 1, the Studentized residual at time 28 seconds has 

the maximum absolute value, -33.7, and the Studentized residual with the maximum 

absolute value is higher than the Studentized residual absolutely limit. The value at 

time 28 seconds is classified as an outlier. The DFFITS value for the Studentized 

5 residual with the maximum absolute value is 0.499 and is outside the DFFITS limit.  

The outlier is then removed. The outlier count is set to 1.  

Figure 8b shows the exemplary graphical representation of the data in Figure 

8a with the outlier at time 28 seconds removed. A curve fitting equation, of the type 

ax2 +bx + c with a=0, is obtained from a curve fitting module 118 for the data set 

10 with the outlier at time 28 seconds removed. For the exemplary graphical 

representation shown there in the curve fitting equation is 0.9299x -281.55. As can 

be seen from Table 2 below, the Studentized residual at time 16 seconds has the 

maximum absolute value, -38.7, and the Studentized residual with the maximum 

absolute value is higher than the Studentized residual absolutely limit. The value at 

15 time 16 seconds is classified as an outlier. The DFFITS value for the Studentized 

residual with the maximum absolute value is -0.5 and is outside the DFFITS limit.  

The outlier is then removed. The outlier count is set to 2.  

Table 2 

Time Log time sensor output Studentized DFFIT 

(S) (mV) Res. (delta55) 
15 1.176091 -280.41814 1.302207232 -0.02519 
16 1.20412 -280.55 -38.75323932 0.05453 
17 1.230449 -280.38466 0.659093643 -0.00758 
18 1.255273 -280.36149 0.646980468 -0.00515 
19 1.278754 -280.34518 0.480296708 -0.00232 
20 1.30103 -280.33188 0.271488649 -0.00051 
21 1.322219 -280.30999 0.329904217 0.00029



22 1.342423 -280.29411 0.250562512 0.00088 
23 1.361728 -280.27652 0.241429866 0.00146 
24 1.380211 -280.26493 0.090161186 0.00077 
25 1.39794 -280.24605 0.156690447 0.00172 
26 1.414973 -280.23704 -0.030955726 -0.00041 
27 1.431364 -280.22931 -0.242884222 -0.00383 
28 1.447158 
29 1.462398 -280.20571 -0.406073413 -0.00749 
30 1.477121 -280.18897 -0.322605674 -0.00679 

Figure 8c shows the exemplary graphical representation of the data in Figure 

8a with the outlier at time 28 seconds removed and the outlier at time 16 seconds 

removed .A curve fitting equation, of the type ax 2 +bx + c with a=0, is obtained 

from a curve fitting module 118 for the data set with the outlier at time 28 seconds 

5 removed and the outlier at time 16 seconds removed. For the exemplary graphical 

representation shown there in the curve fitting equation is 0.7705x-281.33. As can 

be seen from Table 3 below, all the Studentized Residual values are within the limit 

and no DFFITS calculation are required. The outlier count is not higher than the 

outlier number limit.  

10 Table 3 

Time sensor output Studentized DFFIT 

(S) Log time (mV) Res. (delta55) 
15 1.176091 -280.41814 -0.355455044 not required 
16 1.20412 not required 
17 1.230449 -280.38466 0.170223356 not required 
18 1.255273 -280.36149 -0.082739835 not required 
19 1.278754 -280.34518 0.02875639 not required 
20 1.30103 -280.33188 0.27049187 not required 
21 1.322219 -280.30999 -0.077578419 not required 
22 1.342423 -280.29411 -0.097178392 not required 
23 1.361728 -280.27652 -0.267056658 not required 
24 1.380211 -280.26493 -0.101176941 not required 
25 1.39794 -280.24605 -0.427747325 not required 
26 1.414973 -280.23704 -0.170357329 not required 
27 1.431364 -280.22931 0.136120199 not required 
28 1.447158 not required 
29 1.462398 -280.20571 0.155631715 not required 
30 1.477121 -280.18897 -0.181933585 not required 

After the outlier detection is completed, each fit parameter from the last 

group of fit parameters, a =0, b = 0.7705 and c = -281.33, is compared to the



corresponding fit parameter limits. If any one of the parameters is outside the fit 

parameter limits for that parameter, the sample will be set aside for review since it 

may be considered to be in error. If all of the three parameters are within the 

corresponding fit parameter limit, extrapolation will take place and the results for the 

5 sample will be reported. For the exemplary embodiment shown in Figures8a-8c, the 

fit parameter limits for parameter "b" are from 0.6 to 1.0 and the fit parameter limits 

for parameter "c" are from -290 to -260. Comparing each of the fit parameters from 

the last group of fit parameters, a =0, b = 0.7705 and c = -281.33, to the fit 

parameter limits, each one of the each of the fit parameters from the last group of fit 

10 parameters is within the corresponding fit parameter limit. The sample value would 

be then reported. It should be noted that if the fit parameters from the first two 

groups of fit parameters had been compared to the corresponding fit parameter 

limits, they fit parameters would have been found to be outside of the fit parameter 

limits 

15 According to various embodiments, the disclosure presented herein may be 

utilized to reduce the time for determining an important response time of 

electrochemical sensors. In some embodiments, the electrochemical sensors may be 

used in a diffusion control response environment such as to calculate concentration 

levels of p02, pCO2, glucose and lactate. In addition, the methodology may also be 

20 used for the end point detection of ion selective electrodes, such as and Na, K, Cl 

and Ca. Although some sensors typically exhibit fast responses and therefore an 

endpoint sensor response prediction may not be necessary, a curve fit may still be 

useful and the determination and improvement of the curve fit equation is still of 

importance.  

25 Reference herein to background art is not an admission that the art forms a 

part of the common general knowledge in the art, in Australia or any other country.  

In the claims which follow and in the preceding description of the invention, 

except where the context requires otherwise due to express language or necessary 

implication, the word "comprise" or variations such as "comprises" or "comprising" 

30 is used in an inclusive sense, i.e. to specify the presence of the stated features but not 

to preclude the presence or addition of further features in various embodiments of 

the invention.



The claims defining the invention are as follows: 

1. A system, comprising: 

an automated clinical analyzer, comprising: 

5 a processing transient error detector; 

a memory in communication with the processing transient error detector, the 

memory storing a range of coefficients library and a transient error detecting 

application, the transient error detecting application including a comparison module; 

and 

10 an interface coupled to the automated clinical analyzer, the interface 

configured for receiving a mathematical expression representing a response curve of 

a sensor coupled to the automated clinical analyzer, the equation including at least 

one coefficient; 

wherein the comparison module is executable by the processing transient 

15 error detector to compare the at least one coefficient to a range of coefficients in the 

range or coefficients library, the range of coefficients including coefficients of 

response curves of the sensor corresponding to known concentrations of the analyte.  

2. The system of claim 1, 

20 wherein the transient error detecting application comprises a detection 

module, the detection module executable by the processing transient error detector 

to determine a concentration of an analyte in a body fluid sample; and 

wherein the comparison module is executable by the processing transient 

error detector to detect a transient error in the body fluid sample based on the 

25 comparison.  

3. The system of claim 1, wherein the mathematical expression comprises any 

one of a logarithmic relationship and a quadratic relationship.  

30 4. The system of claim 1, wherein the comparing includes comparing a 

coefficient describing the curvature of the sample response curve to the range of 

coefficients and comparing a coefficient describing the slope of the sample response 

curve to a second range of coefficients different than the range of coefficients; and



wherein the detecting includes detecting the transient error in the body fluid sample 

based on the comparison of the coefficient describing the curvature of the sample 

response curve and the comparison of the coefficient describing the slope of the 

sample response curve.  

5 

5. The system of claim 1, wherein the range of coefficients for a given 

concentration of analyte includes a mean coefficient determined from a mean of 

coefficients of the predetermined response curves corresponding to the given 

concentration of analyte; 

10 a lower limit defined by a negative number of standard deviations from the 

mean coefficient; and 

an upper limit defined by a positive number of standard deviations from the 

mean coefficient.  

15 6. The system of claim 5, wherein an absolute value of the negative number of 

standard deviations from the mean coefficient and an absolute value of the positive 

number of standard deviations from the mean coefficient are different.  

7. The system of claim 5, wherein the lower limit and the upper limit of the 

20 range of coefficients are invariant to changes in concentration of the analyte.  

8. The system of claim 5, wherein at least one of the lower limit and the upper 

limit of the range of coefficients varies with changes in concentration of the analyte.  

25 9. The system of claim 5, wherein the transient error detection application is 

executable by the processing transient error detector to revise the range of 

coefficients based on the coefficient of the sample response curve corresponding to 

the concentration of the analyte in the body fluid sample.  

30 10. The system of claim 1, wherein the known concentrations of the analyte are 

determined from at least one of previously collected body fluid samples and 

standardized solutions.



11. The system of claim 1 wherein the range of coefficients depends on a matrix 

of the body fluid sample.  

12. An automated clinical analyzer comprising: 

5 a transient error detector comprising a comparison module communicatively 

coupled to a detection module; and, 

an interface for receiving equations representing sensor response curves, 

wherein the interface receives the equations as they are determined by an analyte 

concentration measurement application.  

10 

13. The automated clinical analyzer of claim 12, further comprising a range of 

coefficients library, said library provides a range of coefficients for a particular 

analyte used to detect a transient error in the body fluid sample.  

15 14. The automated clinical analyzer of claim 12, further comprising a processor.  

15. The automated clinical analyzer of claim 12, further comprising a memory, 

said memory stores the analyte concentration measurement application.  

20 16. The automated clinical analyzer of claim 12, further comprising an alarm 

mechanism.  

17. The automated clinical analyzer of claim 12, further comprising one or more 

sensors, said sensors configured to communicate with the analyte concentration 

25 measurement application.  

18. The automated clinical analyzer of claim 17, wherein said one or more 

sensors are electrochemical sensors.  

30 19. The automated clinical analyzer of claim 12, wherein said analyte 

concentration measurement application further comprises one or more of a sensor 

communication module, a data point reporting module, a data point selection 

module, a curve fitting module, an extrapolation module, a validation module, an 

analyte concentration reporting module or a curve fit quality module.



20. The automated clinical analyzer of claim 19, wherein the data point 

recording module records a measurement of the data signal after random or variable 

periods of time.  

5
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