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(57) Abstract: A method for monitoring blood glucose levels includes receiving a time-varying electrical signal from an analyte sensor
during a temporal phase of a monitoring session and selecting a calibration model from a plurality of calibration models. The selected
calibration model includes one or more calibration model parameters. The method further includes estimating at least one of the one
or more calibration model parameters of the selected calibration model based on at least the time-varying electrical signal during the
temporal phase and estimating the blood glucose level of the user based on the selected calibration model and the at least one estimated
parameter. An apparatus and non-transitory computer readable medium can carry out similar functionality.
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CONTINUOUS GLUCOSE MONITORS AND RELATED SENSORS UTILIZING MIXED
MODEL AND BAYESIAN CALIBRATION ALGORITHMS

INCORPORATION BY REFERENCE TO RELATED APPLICATION

[0001] Any and all priority claims identified in the Application Data Sheet, or any
correction thereto, are hereby incorporated by reference under 37 CFR 1.57. This application
claims the benefit of U.S. Provisional Application No. 62/548,328, filed August 21, 2017. The
aforementioned application is incorporated by reference herein in its entirety, and is hereby
expressly made a part of this specification.

FIELD OF THE DISCLOSURE

[0002] Embodiments of continuous glucose monitors and related sensors utilizing mixed
model and Bayesian calibration algorithms and associated methods of their use and/or manufacture
are provided.

BACKGROUND

[0003] Diabetes mellitus is a chronic disorder of metabolism that occurs either when the
pancreas is no longer able to produce insulin (Type 1 diabetes) and/or if body tissues and organs
cannot effectively utilize the insulin produced (Type 2 diabetes). The lack of insulin production or
an ineffective action of the available insulin causes a failure in the metabolism process, leading
primarily to high values of glucose in the blood. Untreated diabetes results in both short and long
term complications, such as cardiovascular and renal problems, retinopathy, neuropathy induced
by hyperglycemia as well as acute adverse events related to hypoglycemia.

[0004] The standard therapy for diabetes management consists of patients acquiring
measurements of self-monitoring of blood glucose samples (SMBG), by the patient by the use of
lancet devices. Due to the lack of comfort associated with finger pricks, patients usually acquire
only 3-4 SMBG samples per day. The few measures available do not provide a complete
description of the glucose profile over time. Hyperglycemic or hypoglycemic events, occurring in
the time between consecutive SMBG measurements, cannot be immediately detected, causing
dangerous side effects.

[0005] A more modern device to monitor blood glucose is based on the minimally-invasive
continuous glucose monitoring (CGM) sensor technology, which has become more popular and
received significant clinical attention recently. This device has a sensor that is inserted

subcutaneously and measures the concentration of glucose in the interstitial fluid by exploiting,
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for example, the glucose-oxidase enzymatic reaction. In some cases, the sensor reveals
observations of a raw signal generated by the reaction on a fine, uniformly spaced, time grid, e.g.
a sample every 5 min. In real-time, the device may transform these samples of electrical nature
through a calibration procedure, employing a suitable mathematical model, into a time-series of
blood glucose concentration levels, e.g., in milligrams per deciliter (mg/dL). A display may present
these levels to the user. The mathematical model that transforms samples of an electrical signal
into levels of glucose concentration has a crucial role in the accuracy of a CGM sensor. To improve
effectiveness of this model during sensor functioning, calibration of its parameters can be, from
time to time, estimated using SMBG values collected as reference. A typical recommended
calibration frequency for the minimally-invasive sensors currently on the market is one every 12
hours. Sensor calibration is, however, of obvious discomfort and inconvenience for the patient. On
the other hand, calibrations that are too temporally sparse may result in severe sensor inaccuracy
and in potential threats for a patient’s own safety.
SUMMARY

[0006] The present disclosure relates to systems, apparatuses and methods for measuring
an analyte in a user. The various embodiments of the present systems and methods have several
features, no single one of which is solely responsible for their desirable attributes.

[0007] In some embodiments, a method for monitoring a blood glucose level of a user is
provided. The method includes receiving a time-varying electrical signal from an analyte sensor
during a temporal phase of a monitoring session. The method includes selecting a calibration
model from a plurality of calibration models, wherein the selected calibration model comprises
one or more calibration model parameters. The method includes estimating at least one of the one
or more calibration model parameters of the selected calibration model based on at least the time-
varying electrical signal during the temporal phase of the monitoring session. The method includes
estimating the blood glucose level of the user based on the selected calibration model and using
the at least one estimated parameter.

[0008] In some embodiments, the method further includes receiving a reference input. In
some embodiments, selecting the calibration model is based at least in part on the selected
calibration model having the highest probability, of the plurality of candidate calibration models,
of predicting an actual blood glucose level of the user utilizing the time-varying electrical signal.

In some embodiments, the probability is a Bayesian probability. In some embodiments, selecting



WO 2019/038661 PCT/IB2018/056295

the calibration model is further based at least in part on detecting a pattern corresponding to the
selected calibration model in the time-varying electrical signal. In some embodiments, the
temporal phase is defined to span a respective predefined interval of time. In some embodiments,
at least one of a start and an end of the temporal phase is determined based on occurrence of
corresponding patterns in the time-varying electrical signal. In some embodiments, one of the
corresponding patterns is a noise component of the time-varying electrical signal satisfying a
threshold.

[0009] In some embodiments, estimating at least one of the one or more calibration model
parameters of the selected calibration model comprises: setting the one or more calibration model
parameters to an initial value, transforming the time-varying electrical signal into an estimated
interstitial glucose level of the user utilizing the selected calibration model and the initial value of
the one or more calibration model parameters, estimating the blood glucose level based on the
estimated interstitial glucose level, updating the one or more calibration model parameters based
on a difference between the estimated blood glucose level and a reference input of the blood
glucose level of the user, and recursively re-estimating the interstitial glucose level and the blood
glucose level based on the selected calibration model and the one or more updated calibration
model parameters until a predefined relationship between the reference input of the blood glucose
level of the user and at least one of the estimated interstitial glucose level and the estimated blood
glucose level is present.

[0010] In some embodiments, the predefined relationship comprises at least one of the
estimated interstitial glucose level and the estimated blood glucose level being within a
predetermined accuracy of the reference input of the blood glucose level. In some embodiments,
the initial value of the one or more calibration model parameters is a prior average value for the
one or more calibration model parameters. In some embodiments, the plurality of candidate
calibration models comprise a common global calibration model, each utilizing one or more unique
calibration model parameters. In some embodiments, the global calibration model comprises a first
portion corresponding to a baseline behavior of the analyte sensor and a second portion
corresponding to a sensitivity of the analyte sensor. In some embodiments, time-varying electrical
signal comprises a plurality of sensor data points. In some embodiments, the reference input

comprises at least one of a blood glucose reference, a noise metric of the time-varying electrical
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signal, an impedance of the analyte sensor, an input from a sensor configured to measure at least
one of an acceleration of the user, a temperature and an atmospheric pressure.

[0011] In some embodiments, an apparatus configured to monitor a blood glucose level of
a user 1s provided. The apparatus includes a memory, and a processor configured to receive a time-
varying electrical signal from an analyte sensor during a temporal phase of a monitoring session.
The processor is further configured to select a calibration model from a plurality of calibration
models, wherein the selected calibration model comprises one or more calibration model
parameters. The processor is further configured to estimate at least one of the one or more
calibration model parameters of the selected calibration model based on at least the time-varying
electrical signal and the reference input during the temporal phase of the monitoring session. The
processor is further configured to estimate the blood glucose level of the user based on the selected
calibration model and using the at least one estimated parameter.

[0012] In some embodiments, the apparatus further includes the analyte sensor. In some
embodiments, the processor is further configured to receive a reference input. In some
embodiments, the processor is configured to select the calibration model based at least in part on
the selected calibration model having the highest probability, of the plurality of candidate
calibration models, of predicting an actual blood glucose level of the user utilizing the time-varying
electrical signal. In some embodiments, the probability is a Bayesian probability. In some
embodiments, the processor is configured to select the calibration model based at least in part on
detecting a pattern corresponding to the selected calibration model in the time-varying electrical
signal. In some embodiments, the temporal phase is defined to span a respective predefined
interval of time. In some embodiments, the processor is configured to determine at least one of a
start and an end of the temporal phase based on occurrence of corresponding patterns in the time-
varying electrical signal. In some embodiments, one of the corresponding patterns is a noise
component of the time-varying electrical signal satisfying a threshold.

[0013] In some embodiments, the processor is configured to estimate at least one of the
one or more calibration model parameters of the selected calibration model by setting the one or
more calibration model parameters to an initial value, transforming the time-varying electrical
signal into an estimated interstitial glucose level of the user utilizing the selected calibration model
and the initial value of the one or more calibration model parameters, estimating the blood glucose

level based on the estimated interstitial glucose level, updating the one or more calibration model
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parameters based on a difference between the estimated blood glucose level and a reference input
of the blood glucose level of the user, and recursively re-estimating the interstitial glucose level
and the blood glucose level based on the selected calibration model and the one or more updated
calibration model parameters until a predefined relationship between the reference input of the
blood glucose level of the user and at least one of the estimated interstitial glucose level and the
estimated blood glucose level is present.

[0014] In some embodiments, the predefined relationship comprises at least one of the
estimated interstitial glucose level and the estimated blood glucose level being within a
predetermined accuracy of the reference input of the blood glucose level. In some embodiments,
the initial value of the one or more calibration model parameters is a prior average value for the
one or more calibration model parameters. In some embodiments, the plurality of candidate
calibration models comprise a common global calibration model, each utilizing one or more unique
calibration model parameters. In some embodiments, the global calibration model comprises a first
portion corresponding to a baseline behavior of the analyte sensor and a second portion
corresponding to a sensitivity of the analyte sensor. In some embodiments, the time-varying
electrical signal comprises a plurality of sensor data points. In some embodiments, the reference
input comprises at least one of a blood glucose reference, a noise metric of the time-varying
electrical signal, an impedance of the analyte sensor, an input from a sensor configured to measure
at least one of an acceleration of the user, a temperature and an atmospheric pressure.

[0015] In some embodiments, a non-transitory, computer-readable medium comprising
code is provided. The code, when executed, causes a processor of an apparatus configured to
monitor a blood glucose level of a user to receive a time-varying electrical signal from an analyte
sensor during a temporal phase of a monitoring session. The code, when executed, further causes
the processor to select a calibration model from a plurality of calibration models, wherein the
selected calibration model comprises one or more calibration model parameters. The code, when
executed, further causes the processor to estimate at least one of the one or more calibration model
parameters of the selected calibration model based on at least the time-varying electrical signal
and the reference input during the temporal phase of the monitoring session. The code, when
executed, further causes the processor to estimate the blood glucose level of the user based on the

selected calibration model and using the at least one estimated parameter.
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[0016] In some embodiments, the code, when executed, further causes the processor to
receive a reference input. In some embodiments, selecting the calibration model is based at least
in part on the selected calibration model having the highest probability, of the plurality of candidate
calibration models, of predicting an actual blood glucose level of the user utilizing the time-varying
electrical signal. In some embodiments, the probability is a Bayesian probability. In some
embodiments, selecting the calibration model is further based at least in part on detecting a pattern
corresponding to the selected calibration model in the time-varying electrical signal. In some
embodiments, the temporal phase 1s defined to span a respective predefined interval of time. In
some embodiments, at least one of a start and an end of the temporal phase is determined based on
occurrence of corresponding patterns in the time-varying electrical signal. In some embodiments,
one of the corresponding patterns is a noise component of the time-varying electrical signal
satisfying a threshold.

[0017] In some embodiments, estimating at least one of the one or more calibration model
parameters of the selected calibration model includes the processor: setting the one or more
calibration model parameters to an initial value, transforming the time-varying electrical signal
into an estimated interstitial glucose level of the user utilizing the selected calibration model and
the initial value of the one or more calibration model parameters, estimating the blood glucose
level based on the estimated interstitial glucose level, updating the one or more calibration model
parameters based on a difference between the estimated blood glucose level and a reference input
of the blood glucose level of the user, and recursively re-estimating the interstitial glucose level
and the blood glucose level based on the selected calibration model and the one or more updated
calibration model parameters until a predefined relationship between the reference input of the
blood glucose level of the user and at least one of the estimated interstitial glucose level and the
estimated blood glucose level is present.

[0018] In some embodiments, the predefined relationship comprises at least one of the
estimated interstitial glucose level and the estimated blood glucose level being within a
predetermined accuracy of the reference input of the blood glucose level. In some embodiments,
the initial value of the one or more calibration model parameters is a prior average value for the
one or more calibration model parameters. In some embodiments, the plurality of candidate
calibration models comprise a common global calibration model, each utilizing one or more unique

calibration model parameters. In some embodiments, the global calibration model comprises a first
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portion corresponding to a baseline behavior of the analyte sensor and a second portion
corresponding to a sensitivity of the analyte sensor. In some embodiments, the time-varying
electrical signal comprises a plurality of sensor data points. In some embodiments, the reference
input comprises at least one of a blood glucose reference, a noise metric of the time-varying
electrical signal, an impedance of the analyte sensor, an input from a sensor configured to measure
at least one of an acceleration of the user, a temperature and an atmospheric pressure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] These and other features, aspects, and advantages are described below with
reference to the drawings, which are intended to illustrate, but not to limit, the invention. In the
drawings, like reference characters denote corresponding features consistently throughout the
depicted embodiments.

[0020] FIG. 1 illustrates a schematic view of a continuous analyte sensor system, in
accordance with some embodiments.

[0021] FIG. 2 illustrates a box diagram of several components of the continuous analyte
sensor system of FIG. 1, in accordance with some embodiments.

[0022] FIG. 3 illustrates a box diagram of a model for illustrating a relation between a
sensor signal and self-monitored blood glucose samples, in accordance with some embodiments.

[0023] FIG. 4 illustrates a beginning-phase component in a sensor signal, in accordance
with some embodiments.

[0024] FIG. 5 illustrates an end-phase component in a sensor signal, in accordance with
some embodiments.

[0025] FIG. 6 illustrates an effect that a first calibration model parameter has on an
estimation of blood glucose levels of a user, in accordance with some embodiments.

[0026] FIG. 7 illustrates a difference between the 5™ and 95" percentile of the effect of the
first calibration model parameter on the estimated blood glucose levels of the user as shown in
FIG. 6.

[0027] FIG. 8 illustrates an effect that a second calibration model parameter has on an
estimation of blood glucose levels of a user, in accordance with some embodiments.

[0028] FIG. 9 illustrates a difference between the 5™ and 95™ percentile of the effect of the
second calibration model parameter on the estimated blood glucose levels of the user as shown in

FIG. 8.
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[0029] FIG. 10 illustrates an effect that a third calibration model parameter has on an
estimation of blood glucose levels of a user, in accordance with some embodiments.

[0030] FIG. 11 illustrates a difference between the 5® and 95 percentile of the effect of
the third calibration model parameter on the estimated blood glucose levels of the user as shown
in FIG. 10.

[0031] FIG. 12 illustrates an effect that a fifth calibration model parameter has on an
estimation of blood glucose levels of a user, in accordance with some embodiments.

[0032] FIG. 13 illustrates a difference between the 5® and 95 percentile of the effect of
the fifth calibration model parameter on the estimated blood glucose levels of the user as shown
in FIG. 12.

[0033] FIG. 14 illustrates a sample application of the calibration model parameters of
FIGs. 6-13 to different temporal phases of a glucose monitoring session, in accordance with some
embodiments.

[0034] FIG. 15 illustrates a graphical relationship between blood glucose levels estimated
by a global calibration model, blood glucose levels estimated by a model utilizing phase-specific
calibration models, and actual self-measured blood glucose levels of a user, in accordance with
some embodiments.

[0035] FIG. 16 illustrates a flowchart for estimating unknown calibration model
parameters, in accordance with some embodiments.

[0036] FIG. 17 illustrates a flowchart of a method for monitoring a blood glucose level of
a user, 1n accordance with some embodiments.

[0037] FIG. 18 illustrates a flowchart for verifying calibration models via simulating blood
glucose, interstitial glucose (IG), self-measured blood glucose, and sensor signal values, in
accordance with some embodiments.

[0038] FIG. 19 illustrates results of the simulated values of FIG. 18, in accordance with
some embodiments.

[0039] FIG. 20 illustrates relationships between a sensor signal and IG levels estimated via
global calibration model, phase-specific calibration models, and self-measured blood glucose

levels, in accordance with some embodiments.
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[0040] FIG. 21 illustrates another set of relationships between a sensor signal and IG levels
estimated via a global calibration model, phase-specific calibration models, and self-measured
blood glucose levels, in accordance with some embodiments.

[0041] FIG. 22 illustrates a relationship between a sensor signal and a noise metric utilized
in selecting a phase-specific calibration model, in accordance with some embodiments.

[0042] FIG. 23 illustrates a set of relationships between a sensor signal and IG levels
estimated via a global calibration model, phase-specific calibration models, and self-measured
blood glucose levels, in accordance with some embodiments.

DETAILED DESCRIPTION

[0043] The following description and examples illustrate some example embodiments in
detail. Those of skill in the art will recognize that there are numerous variations and modifications
of the disclosed embodiments that are encompassed by its scope. Accordingly, the description of
a certain example embodiment should not be deemed to limit the scope of the present disclosure.

[0044] The present application is directed to embodiments of continuous glucose monitors
and related sensors utilizing mixed model and Bayesian calibration algorithms and associated
methods of their use and manufacture. As will be described in more detail in connection with the
figures below, certain features of the described monitors, sensors, and calibration methods provide
novel and inventive solutions to problems associated with previous monitor, sensor and calibration
designs and methods or their use or manufacture.

System Introduction

[0045] FIG. 1 is a schematic of a continuous analyte sensor system 100 attached to a user
(e.g., a person). The analyte sensor system 100 may include an on-skin sensor assembly 110
configured to communicate with a monitor 120a-120d (which may be located remotely from the
user). The on-skin sensor assembly 106 is fastened to the skin of a user via a base (not shown),
which may be a disposable housing.

[0046] The system 100 includes a transcutaneous analyte sensor 102 and an electronics
unit (referred to interchangeably as sensor electronics, transceiver or transmitter) 104 for
wirelessly transmitting analyte information to a receiver (e.g., a transceiver) within the monitor
120a-120d (not shown in FIG. 1). The term transceiver may be considered to include either or
both of a transmitter configured to transmit a signal and a receiver configured to receive a signal.

In some embodiments, the monitor 120a-120d includes a display screen, which can display
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information to a person such as the user. Example monitors include computers such as dedicated
display devices, mobile electronics, smartphones, smartwatches, tablet computers, laptop
computers, and desktop computers. In some embodiments, Apple Watches, iPhones, and iPads
made by Apple Inc., may function as the monitor. Monitors may be running customized or stock
operating systems such as, but not limited to, Linux, i0OS by Apple Inc., Android by Google Inc.,
or Windows by Microsoft.

[0047] In some embodiments, the monitor 120a-120d is mechanically coupled to the
electronics unit 104 to enable the monitor 120a-120d to receive data (e.g., analyte data) from the
electronics unit 104. To increase the convenience to users, in several embodiments, the monitor
120a-120d does not need to be mechanically coupled to the electronics unit 104 and can even
receive data wirelessly from the electronics unit 104 over great distances (e.g., when the receiver
is many feet or even many miles from the electronics unit 104).

[0048] During use, a sensing portion of the sensor 102 can be under the user's skin and a
contact portion of the sensor 102 can be electrically connected to the electronics unit 104. The
electronics unit 104 can be engaged with a housing (e.g., a base) or directly coupled to an adhesive
patch fastened to the skin of the user.

[0049] The on-skin sensor assembly 110 may be attached to the user with use of an
applicator adapted to provide convenient and secure application. Such an applicator may also be
used for attaching the electronics unit 104 to a base, inserting the sensor 102 through the user's
skin, and/or connecting the sensor 102 to the electronics unit 104. Once the electronics unit 104
is engaged with the base and the sensor 102 has been inserted into the skin (and is connected to
the electronics unit 104), the sensor assembly can detach from the applicator.

[0050] The continuous analyte sensor system 100 can include a sensor configuration that
provides an output signal indicative of a concentration of an analyte. The output signal (e.g.,
sensor data, such as a raw data stream, filtered data, smoothed data, and/or otherwise transformed
sensor data) is sent to the monitor 120a-120d.

[0051] In some embodiments, the analyte sensor system 100 includes a transcutaneous
glucose sensor, such as is described in U.S. Patent Publication No. US-2011-0027127-A1, the
entire contents of which are hereby incorporated by reference. In some embodiments, the sensor
system 100 includes a continuous glucose sensor and comprises a transcutaneous sensor (e.g., as

described in U.S. Pat. No. 6,565,509, as described in U.S. Pat. No. 6,579,690, as described in U.S.

-10 -
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Pat. No. 6,484,046). The contents of U.S. Pat. No. 6,565,509, U.S. Pat. No. 6,579,690, and U.S.
Pat. No. 6,484,046 are hereby incorporated by reference in their entirety.

[0052] In several embodiments, the sensor system 100 includes a continuous glucose
sensor and comprises a refillable subcutaneous sensor (e.g., as described in U.S. Pat. No.
6,512,939). In some embodiments, the sensor system 100 includes a continuous glucose sensor
and comprises an intravascular sensor (e.g., as described in U.S. Pat. No. 6,477,395, as described
in U.S. Pat. No. 6,424,847). The contents of U.S. Pat. No. 6,512,939, U.S. Pat. No. 6,477,395,
and U.S. Pat. No. 6,424,847 are hereby incorporated by reference in their entirety.

[0053] Various signal processing techniques and glucose monitoring system embodiments
suitable for use with the embodiments described herein are described in U.S. Patent Publication
No. US-2005-0203360-A1 and U.S. Patent Publication No. US-2009-0192745-A1, the contents of
which are hereby incorporated by reference in their entirety. The sensor can extend through a
housing, which can maintain the sensor on the skin and can provide for electrical connection of
the sensor to sensor electronics, which can be provided in the electronics unit 104.

[0054] One or more repeaters, receivers and/or display devices, such as a key fob repeater,
a medical device receiver (e.g., an insulin delivery device and/or a dedicated glucose sensor
receiver), a smartphone, a portable computer, and the like can be communicatively coupled to the
electronics unit 104 (e.g., to receive data from the electronics unit 104). The electronics unit 104
can also be referred to as a transmitter. In some embodiments, the monitor 120a-120d transmits
data to the electronics unit 104. The sensor data can be transmitted from the sensor electronics
unit 104 to one or more of the key fob repeater, the medical device receiver, the smartphone, the
portable computer, and the like. In some embodiments, analyte values are displayed on a display
device of the monitor 120a-120d.

[0055] The electronics unit 104 may communicate with the monitor 120a-120d, and/or any
number of additional devices, via any suitable communication protocol. Example communication
protocols include radio frequency; Bluetooth; universal serial bus; any of the wireless local area
network (WLAN) communication standards, including the IEEE 802.11, 802.15, 802.20, 802.22
and other 802 communication protocols; ZigBee; wireless (e.g., cellular) telecommunication;
paging network communication, magnetic induction; satellite data communication; and/or a

proprietary communication protocol.
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[0056] Any sensor shown or described herein can be an analyte sensor; a glucose sensor;
and/or any other suitable sensor. A sensor described in the context of any embodiment can be any
sensor described herein or incorporated by reference, such as an analyte sensor; a glucose sensor;
any sensor described herein; and any sensor incorporated by reference. Sensors shown or
described herein can be configured to sense, measure, detect, and/or interact with any analyte.

[0057] As used herein, the term analyte is a broad term, and is to be given its ordinary and
customary meaning to a person of ordinary skill in the art (and is not to be limited to a special or
customized meaning), and refers without limitation to a substance or chemical constituent in a
biological fluid (for example, blood, interstitial fluid, cerebral spinal fluid, lymph fluid, urine,
sweat, saliva, etc.) that can be analyzed. Analytes can include naturally occurring substances,
artificial substances, metabolites, or reaction products.

[0058] In some embodiments, the analyte for measurement by the sensing regions, devices,
systems, and methods is glucose. However, other analytes are contemplated as well, including,
but not limited to ketone bodies; Acetyl Co A; acarboxyprothrombin; acylcarnitine; adenine
phosphoribosyl transferase; adenosine deaminase; albumin; alpha-fetoprotein; amino acid profiles
(arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine,
tryptophan); andrenostenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine
(cocaine); biotinidase; biopterin; c-reactive protein; carnitine; carnosinase, CD4; ceruloplasmin;
chenodeoxycholic acid; chloroquine; cholesterol; cholinesterase; cortisol; testosterone; choline;
creatine kinase; creatine kinase MM isoenzyme; cyclosporin A; d-penicillamine; de-
ethylchloroquine; dehydroepiandrosterone sulfate; DNA (acetylator polymorphism, alcohol
dehydrogenase, alpha 1-antitrypsin, cystic fibrosis, Duchenne/Becker muscular dystrophy,
glucose-6-phosphate dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin C, hemoglobin
D, hemoglobin E, hemoglobin F, D-Punjab, beta-thalassemia, hepatitis B virus, HCMV, HIV-1,
HTLV-1, Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plasmodium vivax, sexual
differentiation,  21-deoxycortisol);  desbutylhalofantrine;  dihydropteridine  reductase;
diptheria/tetanus antitoxin; erythrocyte arginase; erythrocyte protoporphyrin; esterase D, fatty
acids/acylglycines; triglycerides; glycerol; free B-human chorionic gonadotropin; free erythrocyte
porphyrin; free thyroxine (FT4); free tri-iodothyronine (FT3); fumarylacetoacetase; galactose/gal-
1-phosphate;  galactose-1-phosphate uridyltransferase; gentamicin; glucose-6-phosphate
dehydrogenase; glutathione; glutathione perioxidase; glycocholic acid; glycosylated hemoglobin;
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halofantrine; hemoglobin variants; hexosaminidase A; human erythrocyte carbonic anhydrase I;
17-alpha-hydroxyprogesterone; hypoxanthine phosphoribosyl transferase; immunoreactive
trypsin; lactate; lead; lipoproteins ((a), B/A-1, B); lysozyme; mefloquine;, netilmicin;
phenobarbitone; phenytoin; phytanic/pristanic acid; progesterone; prolactin; prolidase; purine
nucleoside phosphorylase; quinine; reverse tri-iodothyronine (r'T3); selenium; serum pancreatic
lipase; sissomicin, somatomedin C; specific antibodies (adenovirus, anti-nuclear antibody, anti-
zeta antibody, arbovirus, Aujeszky’s disease virus, dengue virus, Dracunculus medinensis,
Echinococcus granulosus, Entamoeba histolytica, enterovirus, Giardia duodenalisa, Helicobacter
pylori, hepatitis B virus, herpes virus, HIV-1, IgE (atopic disease), influenza virus, Leishmania
donovani, leptospira, measles/mumps/rubella, Mycobacterium leprae, Mycoplasma pneumoniae,
Myoglobin, Onchocerca volvulus, parainfluenza virus, Plasmodium falciparum, poliovirus,
Pseudomonas aeruginosa, respiratory syncytial virus, rickettsia (scrub typhus), Schistosoma
mansoni, Toxoplasma gondii, Trepenoma pallidium, Trypanosoma cruzi/rangeli, vesicular
stomatis virus, Wuchereria bancrofti, yellow fever virus); specific antigens (hepatitis B virus, HIV-
1); acetone (e.g., succinylacetone); acetoacetic acid; sulfadoxine; theophylline; thyrotropin (TSH);
thyroxine (T4), thyroxine-binding globulin; trace elements; transferrin, UDP-galactose-4-
epimerase; urea; uroporphyrinogen I synthase; vitamin A; white blood cells; and zinc
protoporphyrin.

[0059] Salts, sugar, protein, fat, vitamins, and hormones naturally occurring in blood or
interstitial fluids can also constitute analytes in certain embodiments. The analyte can be naturally
present in the biological fluid or endogenous, for example, a metabolic product, a hormone, an
antigen, an antibody, and the like. Alternatively, the analyte can be introduced into the body or
exogenous, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a
fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not
limited to insulin, glucagon; ethanol, cannabis (marijuana, tetrahydrocannabinol, hashish);
inhalants (nitrous oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocarbons); cocaine
(crack cocaine); stimulants (amphetamines, methamphetamines, Ritalin, Cylert, Preludin, Didrex,
PreState, Voranil, Sandrex, Plegine); depressants (barbiturates, methaqualone, tranquilizers such
as Valium, Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens (phencyclidine, lysergic
acid, mescaline, peyote, psilocybin); narcotics (heroin, codeine, morphine, opium, meperidine,

Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, Lomotil); designer drugs (analogs of
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fentanyl, meperidine, amphetamines, methamphetamines, and phencyclidine, for example,
Ecstasy); anabolic steroids; and nicotine. The metabolic products of drugs and pharmaceutical
compositions are also contemplated analytes. Analytes such as neurochemicals and other
chemicals generated within the body can also be analyzed, such as, for example, ascorbic acid,
uric acid, dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-dihydroxyphenylacetic acid
(DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (SHT), 5-hydroxyindoleacetic acid
(FHIAA), and intermediaries in the Citric Acid Cycle.

[0060] The terms continuous analyte sensor, and continuous glucose sensor, as used
herein, are broad terms, and are to be given their ordinary and customary meaning to a person of
ordinary skill in the art (and are not to be limited to a special or customized meaning), and refer
without limitation to a device that continuously or continually measures a concentration of an
analyte/glucose and/or calibrates the device (e.g., by continuously or continually adjusting or
determining the sensor's sensitivity and background), for example, at time intervals ranging from
fractions of a second up to, for example, 1, 2, or 5 minutes, or longer.

[0061] The terms raw data stream and data stream, as used herein, are broad terms, and are
to be given their ordinary and customary meaning to a person of ordinary skill in the art (and are
not to be limited to a special or customized meaning), and refer without limitation to an analog or
digital signal directly related to the analyte concentration measured by the analyte sensor. In one
example, the raw data stream 1s digital data in counts converted by an A/D converter from an
analog signal (for example, voltage or current) representative of an analyte concentration. The
terms broadly encompass a plurality of time spaced data points from a substantially continuous
analyte sensor, which comprises individual measurements taken at time intervals ranging from
fractions of a second up to, for example, 1, 2, or 5 minutes or longer.

[0062] The terms sensor data and sensor signal as used herein is a broad term and is to be
given its ordinary and customary meaning to a person of ordinary skill in the art (and are not to be
limited to a special or customized meaning), and furthermore refers without limitation to any data
associated with a sensor, such as a continuous analyte sensor. Sensor data includes a raw data
stream of analog or digital signals directly related to a measured analyte from an analyte sensor
(or other signal received from another sensor), as well as calibrated and/or filtered raw data. In one
example, the sensor data or sensor signal comprises digital data in counts converted by an A/D

converter from an analog signal (e.g., voltage or current) and includes one or more data points
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representative of a glucose concentration. Thus, the terms sensor data point and data point refer
generally to a digital representation of sensor data at a particular time. The terms broadly
encompass a plurality of time spaced data points from a sensor, such as a from a substantially
continuous glucose sensor, which comprises individual measurements taken at time intervals
ranging from fractions of a second up to, e.g., 1, 2, or 5 minutes or longer. In another example, the
sensor data or sensor signal includes an integrated digital value representative of one or more data
points averaged over a time period. Sensor data may include calibrated data, smoothed data,
filtered data, transformed data, and/or any other data associated with a sensor.

[0063] FIG. 2 illustrates a box diagram 200 of several components of the continuous
analyte sensor system of FIG. 1, in accordance with some embodiments. The analyte sensor system
may comprise a sensor assembly 210 and a glucose monitor 220, substantially corresponding to
the sensor assembly 110 and the monitor 120a-120d previously described in connection with FIG.
1. In some embodiments, the analyte sensor system may further include a server 250 configured
to provide offline computing and/or provision of data utilized in calibrating blood glucose readings
by monitor 220 and sensor assembly 210.

[0064] Sensor assembly 210 may comprise a sensor 202, a transceiver 204 (e.g,
transmitter) a processor 206, a memory 208, and a power source (e.g., battery) 201. The sensor
202 and transceiver 204 may correspond substantially to the sensor 102 and transceiver 104,
respectively, of FIG. 1. The sensor 202 may be configured to sense a level of one or more analytes
on or within the user, to generate a signal (e.g., continuous or discrete electrical current or electrical
voltage or discrete communications thereof) indicative of the level of the one or more analytes,
and to provide the signal to transceiver 204 and/or to processor 206. In some embodiments,
processor 206 may be configured to process the raw signal from sensor 202. Transceiver 204 may
be configured to communicate the raw signal from sensor 202 to glucose monitor 220 or to
communicate the processed signal from processor 206 and/or memory 208 to glucose monitor 220.
Such communication may be either wired or wireless, as indicated by the dotted double sided
arrow and wave-like lines, respectively. The battery 201 may be configured to supply operational
power to transceiver 204, processor 206, memory 208 and/or sensor 202.

[0065] In some embodiments, sensor assembly 210 may further include a sensor 205
configured to receive power from battery 201 and to measure at least one of an acceleration of the

user, a temperature, a galvanic response, an impedance of the sensor and/or tissue, a second
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electrochemical sensor, an atmospheric pressure, or any other physical property that may be
subsequently utilized in calibration of a sensor signal from sensor 202. In such embodiments,
sensor 205 may either provide a raw sensor signal to transceiver 204 for communication to glucose
monitor 220 or to processor 206 and/or memory 208 for processing before communication to
glucose monitor 220 via transceiver 204.

[0066] Glucose monitor 220 may comprise a transceiver 224 (e.g., transmitter and/or
receiver) configured to communicate at least with sensor assembly 210, for example, receiving a
time-varying sensor signal, or an indication thereof, from sensor assembly 210. Monitor 220
further comprises one or more processors 226 and a memory 228 configured to process the sensor
signal as described below. Monitor 220 may further comprise a user interface (UI) 230 configured
to receive input from the user, for example, one or more blood glucose reference measurements.
Monitor 220 may further comprise a display 232 configured to present information to the user, for
example, estimated blood glucose levels of the user. In some embodiments, display 232 may be a
part of UI 230. Monitor 220 may further comprise a battery 221 configured to provide electrical
power to any of transceiver 224, memory 228, processor(s) 226, UI 230, display 232 or any other
portion of monitor 220.

[0067] As will be described in more detail below, in some embodiments, one or more
parameters, variables or probabilities for calibrating blood glucose measurements may be
determined offline (e.g., by a separate server 250) and communicated to monitor 220. Likewise,
where substantial calibrating computations are utilized, such computations, or portions thereof,
may be performed by server 250 after pertinent data is communicated from monitor 220 to server
250, and the result may be communicated from server 250 to monitor 220. In this way, monitor
220 may leverage an increased processing capability provided by server 250 and thereby reduce a
requirement for computational power in monitor 220 itself. Accordingly, in some embodiments,
server 250 may comprise a transceiver 254 configured to communicate with monitor 220 via
transceiver 224. Server 250 may further comprise one or more processors 256 and a memory 258
configured to determine one or more parameters, variables or probabilities for calibrating blood
glucose measurements offline, as will be described in more detail below, and communicate the
one or more parameters, variables, probabilities or any other data to monitor 220 via transceiver
254 at server 250 and transceiver 244 at monitor 220.

Calibration Model Introduction
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[0068] A continuous glucose monitoring (CGM) device typically includes an
electrochemical needle sensor placed subcutaneously in the abdomen or in the arm. This sensor
periodically measures (e.g., every 1-5 minutes) a current or voltage signal generated by the
glucose-oxidase reaction and thus related to the glucose concentration in the interstitial fluid. The
raw current or voltage signal is converted into an interstitial glucose (IG) concentration and then
into a blood glucose concentration utilizing transformation algorithms or conversion functions
whose parameters are estimated by a calibration procedure that, in some embodiments, exploits
self-monitored blood glucose (SMBG) samples and/or other reference inputs. The output value for
blood glucose levels that results from the calibration process may then be displayed to the user in
real-time with almost continuous-time glucose measurements, usually expressed in milligrams per
deciliter (mg/dL).

[0069] The variability of the relation between sensor current and IG concentration typically
requires CGM sensors to be periodically recalibrated, for example every 12 hours, in order to
preserve sensor accuracy. While not wanting to be bound by theory, principal causes of inaccuracy
are, if not properly compensated, the blood glucose (BG) to interstitial glucose (IG) kinetics, the
variability of sensor sensitivity and baseline, and the noise affecting the measurements.

[0070] Several algorithms that directly process the raw current signal and exploit frequent
BG references have been proposed with the aim of mitigating calibration error. Recently, Bayesian
strategies have been utilized to estimate calibration function parameters, exploiting approximately
two calibrations per day and improving accuracy compared to manufacturer calibration. Further
improvements in day one accuracy, and consequently in global sensor performance, have been
obtained by using, for the calibration function parameters, Bayesian priors specifically derived
from the first twelve hours of monitoring. This Bayesian approach provides not only improved
accuracy but also reduced frequency of calibrations from two to one per day with consequent
reduction of user discomfort associated with SMBG sample collection.

[0071] Although these Bayesian approaches show promising results, further reduction of
calibrations, which is desirable for both ease-of-use and cost-of-use, has not been achievable with
previously proposed calibration models at least because models that utilize linear approximations
of the time-varying relation between sensor current and IG concentrations limits their domain of
validity to short time windows between blood glucose calibrations. To overcome these limitations

and further reduce the frequency of calibrations, a global model valid for the entire monitoring
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session is desirable. A monitoring session may be defined as a continuous period during which an
analyte concentration, e.g., glucose concentration, is monitored by a particular sensor.

[0072] The present application presents a new calibration methodology, based on a global
calibration model that is defined for the entire monitoring session, which processes the raw current
or voltage signal and calibration inputs that can include one or more BG references, additional
sensors, and/or signal metrics in real-time and outputs the calibrated IG profile utilizing a Bayesian
statistical framework. In particular, according to some embodiments, a calibration model based on
the global calibration model, but utilizing a set of calibration model parameters unique to the
calibration model, is selected from a predefined set of candidate calibration models. The selection
is based on the selected calibration model having a highest a priori probability of accurately
predicting blood glucose levels that match received references of measured blood glucose, utilizing
at least an analyte sensor signal as an input to the model. Statistical expectations are available on
probabilities relating to each candidate model, to the unknown model parameters of each candidate
model, and to the time-variability of each candidate model as the sensor ages through its usable
life.

[0073] A global model is used because sensor properties, such as sensitivity and baseline
generally evolve continuously over the sensor session. For example, a global model could describe
sensor sensitivity with a mathematical function that characterizes the typical time required to reach
a stable value when a new sensor is inserted under the skin. Within this global model framework
there might be several candidate models to describe sensor aging. For example, a first model could
have a function describing the behavior observed in the majority of subject where the sensor
equilibrates to a stable value. A second model, could have additional mathematical equations or
adjustable parameters to describe sensors with slowly declining sensitivity at the end of the use
period that might occur less frequently or only in a small fraction of subjects.

[0074] Considering that the time-varying nature of sensor characteristics shows different
patterns throughout a given monitoring session, in some embodiments the specific set of candidate
calibration models may be different for different temporal phases of the continuous glucose
monitoring (CGM) session, e.g., a beginning phase, a middle phase, and an ending phase. For
example, some baseline-related factors may have more influence at the beginning of the
monitoring session than at the end, thus requiring the definition of specific models, based on the

global calibration model, in the candidates for the beginning phase. Yet other sensitivity-related
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factors may influence the likelihood of the estimations more at the end of the session than at the
beginning, with the consequent introduction of specific models, based on the global calibration
model, in the candidates for the end phase. In some embodiments, a middle phase may be
characterized by a simpler model, in which some calibration factors related to aspects of a
beginning phase or of an ending phase of a monitoring session could be ignored or given a reduced
weight.

[0075] In some embodiments, a change in a device-physiology interface state may be
determined by estimating a confidence in each model correctly describing a current state of an
analyte sensor, where each temporal phase of the monitoring session may be associated with one
or more different interface states. The device-physiology interface state depends on the local
physiology surrounding the sensor and can change due to sensor insertion trauma, foreign body
response, and wound healing in ways that include changes in blood flow and tissue composition.
In some cases, the sensor calibration can be changed due to fouling of the membrane surface or
changes in the relationship between interstitial glucose and blood glucose. A transition from one
such state to another may be identified by one candidate calibration model becoming more likely
than another to accurately describe the current state of the analyte sensor based on one or more
real-time inputs, as guided by a statistical knowledge of how similar sensors behave under similar
conditions. Identification of such transitions may be accomplished utilizing a statistical test rather
than a set of heuristic rules or thresholds. Thus, the teachings of the present application go beyond
merely compensating for sensor manufacturing differences, but further account for sensor
properties including: sensitivity, baseline, and noise as they change through the lifetime of the
sensor(s).

[0076] Accordingly, some embodiments of the calibration process proceed as follows.
Every time a new blood glucose reference value, e.g., a self-measured blood glucose (SMBG)
reference from a finger stick, is available for calibration, a Bayesian statistical framework is
utilized to select one calibration model from among a set of candidate calibration models
associated with or utilizable for the current phase of the monitoring session. The different
candidate models are treated as competing hypotheses. Applying the Bayesian approach to
hypothesis testing, the probability that a particular calibration model will accurately predict at least
the new blood glucose reference (but also all previous blood glucose references in some

embodiments) utilizing at least an analyte sensor signal as an input to the model is represented by
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statistical models. Bayes’ theorem is then used to obtain the posterior probability for each
candidate calibration model. In particular, the integrated likelihood of a match is computed for
each candidate calibration model associated with or utilizable for the current phase of a monitoring
session by carrying out asymptotic calculations through, for example, Monte Carlo simulation
methods. Once a calibration model has been selected, unknown model parameters for the selected
calibration model may be determined by means of a Bayesian estimation procedure that exploits a
priori statistical knowledge of each parameter derived from an independent training set, and non-
parametric deconvolution that compensates for the BG-to-IG kinetics

[0077] In other embodiments, the hypothesis testing step and resulting model selection can
also be triggered by changes in the sensor signal characteristics including noise magnitude,
frequency content, or other aspects of its statistical distribution or time series. These signal-based
metrics can indicate changes in the device-physiology interface or aging of the sensor that can be
used to evaluate the best candidate model. These sensor signal based metrics can be used alone or
in combination with the blood glucose calibrations. Several aspects of the calibration
methodology will now be described in more detail.

Global Calibration Model

[0078] According to some embodiments, a calibration model having a set of calibration
model parameters processes or transforms a sensor signal y;(t) (e.g., an electrical current or
voltage) provided by a sensor (e.g., sensor 102, 202 of FIGs. 1 and 2) to obtain an estimated IG
profile u;(t) utilizing SMBG references uz(t) acquired by finger prick devices or any other
method of blood glucose reference acquisition. The two input measures (the sensor signal y; (t)
and the SMBG samples uz(t)) belong to different physical domains, e.g. the current or voltage
domain and the glucose domain, as well as to different physiological sites. For example, SMBG
measurements are acquired in the blood, while the sensor current is measured in the interstitial
fluid. Thus, to calibrate the sensor signal y,(t) exploiting BG references uz(t), a global calibration
model describing the relation between the sensor signal y;(t) and the SMBG samples uz(t) may
be used.

[0079] A schematic representation of a suitable conceptual model for illustrating the
relation between a sensor signal y,;(t) and SMBG samples ug(t) is shown in FIG. 3. Modeling
how a blood glucose profile ug (t) translates to a sensor signal profile y;(t) may be conceptualized

as a two-step process. First, block 302 considers the relationship between a blood glucose profile
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up(t) and an interstitial glucose (IG) profile u;(t), according to the first-order differential equation

Eq. 1:

7Sy (t) = —uy (£) + up(t) (Eq. 1)

where the variable 1, expected to show variability between subjects, is the diffusion time-constant
between plasma and interstitium.

[0080]  Accordingly, it can be shown that the IG profile u;(t) is the output of a first-order
linear dynamic system, having the BG profile uz(t) as input and an impulse response h(t), given

by Eq. 2.
1 -t
h(t) = -er (Eq. 2)

[0081] h(t) has a low-pass filtering effect, imparting both amplitude attenuation and phase
delay, thereby causing u;(t) to be a distorted version of ugz(t). Accordingly, the IG profile u;(t)
can be described as a convolution of the BG profile ug (t) with impulse response h(t), according

to Eq. 3, where ® indicates a convolution operation:

() = up(O@ e (Eq. 3)

[0082] Next, with reference to FIG. 3, block 304 represents a calibration function that
receives the IG profile u;(t) as an input and outputs the sensor signal y; (t), which is derived from

the sensor measuring IG, corrupted by additive noise w(t), described by Eq. 4:

yi(®) = [, (t) + b(0)] - s(6) + w(t) (Eq. 4)

where w(t) is a noise profile, b(t) is a baseline profile of the glucose profile, and s(t) is a
sensitivity of the sensor.

[0083] In comparison with previous calibration approaches, where the calibration models
have domains of validity restricted to the time windows between consecutive calibrations, the
domain of validity of Eq. 4 is the entire monitoring session. Accordingly, Eq. 4 provides a global
calibration model that is valid across the entire monitoring session from which candidate
calibration models may be derived.

[0084] Working in reverse from the two step model of FIG. 3, estimating the BG profile

ug(t) from the sensor signal y,(t) may also be conceptualized as a two-step process: firstly
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estimating the IG profile u;(t) from the sensor signal y;(t), and secondly, estimating the BG
profile ug (t) from the estimated IG profile v, (t).
[0085]  Regarding the first step, solving Eq. 4 for the IG profile u;(t) and neglecting the

noise profile w(t) results in Eq. 5:

() =42 - b(©) (Eq. 5)

[0086] Regarding the second step, solving Eq. 3 for blood glucose profile ugz(t) includes
deconvolution of the IG profile u; (t) with the impulse function h(t) of Eq. 2.
Calibration Models Based on the Global Calibration Model

[0087] As shown by Eq. 5, the actual interstitial glucose profile u;(t) as a function of the
sensor signal y,(t) depends on at least the baseline profile b(t) and the sensor sensitivity profile
s(t), which are not necessarily static functions across an entire monitoring session.

[0088] Accordingly, different temporal intervals, or phases, of a monitoring session may
be defined by at least different sensitivity and baseline behaviors, each of which may be described
or predicted accurately utilizing different sets of candidate calibration models best suited for a
particular phase or state of a monitoring session, wherein each candidate calibration model is based
on the global calibration model of Eqs. 4 and 5, however, incorporating unique baseline profiles
b(t) and/or sensor sensitivity profiles s(t).

[0089] For example, FIG. 4 illustrates a beginning-phase component in a sensor signal, in
accordance with some embodiments. Graph 400 illustrates a sensor signal 402 over the course of
a monitoring session depicted as lasting ten days. Graph 450 illustrates a blood glucose level 404
estimated utilizing a static calibration algorithm based on sensor signal 402 as an input. A negative
drop in sensor signal 402 around the first day of monitoring is not congruent with SMBG reference
measurements 406 during interval 408, and results in large errors in estimated blood glucose level
404, compared to SMBG reference measurements 406 during interval 408. Such behaviors, for
instance, may be related to signal artifacts occurring due to an immune system response or other
components occurring in the first days after sensor insertion. Accordingly, a set of candidate
calibration models associated with a beginning phase of a monitoring session may each include a
different formulation of the baseline profile b(t) describing and accounting for one of, for
example: no negative drop in the sensor signal y;(t), a moderate negative drop of approximately

a first amount in the sensor signal y;(t), and a severe negative drop of approximately a second
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amount greater than the first amount in the sensor signal y;(t) during at least a portion of a
beginning phase of a monitoring session. The calibration model most accurately describing the
behavior of the particular sensor signal y;(t) being calibrated may then be selected based on a
Bayesian statistical framework.

[0090] An example baseline profile b(t) for candidate calibration models may take several
forms depending on the type of analyte sensor used, the insertion mechanism, and the formation
device-physiology interface state. In some cases, the baseline has a steady value that can be
quantified in terms of it equivalent analyte concentration (for example +5 mg/dL or -5 mg/dL) for
the entire duration. In another case the baseline has a steady value that can be quantified in terms
of it equivalent analyte signal (for example +50 pico amperes (pA) or -50 pA) for the entire
duration. In cases the magnitude of the baseline varies over time, either increasing or decreasing,
and can be modeled a variety of functions, including, but not limited to, a linear function (including
a constant function), logarithmic function, quadratic function, cubic function, square root function,
power function, polynomial function, rational function, exponential function, sinusoidal function,
and variations and combinations thereof.

[0091] In other case, the baseline profile b(t) may have periods of time where it drops or
dips below its typical value followed by a period of time where it returns to the typical value. One
example is the form of Eq. 6. However, the present concepts are not so limited and the baseline
profile b(t), including profiles accounting for negative drops in the sensor signal y,(t), may take

any appropriate form.
b(t) =by e —p-e ™ +b, (Eq. 6)

where u,7n, and p are fixed values, where u and n represent exponential decay constants that
model the time course (such that small values represent slow changes in the signal over time),
where p represents the relative contribution of the two time profiles, and by, and b, are model
parameters, where b, represents an initial baseline condition (that may occur when a sensor is
initially inserted into the tissue) and by represents a final condition (when the device-physiology
interface state has stabilized).

[0092] Similarly, the end phase of a monitoring session may be characterized by specific

time-varying components, e.g., loss of sensor sensitivity.
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[0093] FIG. 5 illustrates an end-phase component in a sensor signal, in accordance with
some embodiments. Graph 500 illustrates a sensor signal 502 produced where sensor sensitivity
declines in the last days of monitoring, as shown for interval 504. Such a decline in sensor
sensitivity leads to a decrease in amplitude in sensor signal 502, and a subsequent underestimation
of the blood glucose level when utilizing a static calibration algorithm that uses sensor signal 502
as an input. Accordingly, a set of candidate calibration models associated with an ending phase of
a monitoring session may each include a different formulation of the sensitivity profile s(t)
describing and accounting for different levels of sensor sensitivity decline.

[0094] Example sensor sensitivity profiles s(t) of different candidate calibration models
for the ending phase may have the generic form given by any one of Eqgs. 7-9, illustrating an
example bi-exponential profile, mono-exponential profile, and linear profile, respectively.
However, the present concepts are not so limited and the sensor sensitivity profile s(t) may take

any appropriate form.

si(®) =me {1 +=L=2[r(1=e™) + (A=) A -e )] (Eq.7)
$:(8) =my - |1+ 7L (1 - emot)] (Eq. 8)
s3(t) =my + wt (Eq. 9)

where a, B,r, T are constant values represent exponential decay constants that model the time
course of the sensor equilibration , and my and my are calibration model parameters (m, represents
an initial sensitivity condition that may occur when a sensor is initially inserted into the tissue and
m; represents a final condition) that must be subsequently determined.

[0095] In some embodiments, switching between the different candidate calibration
models could be based on time by determining the time-phases in which the different calibration
factors act. For example, a beginning phase may be defined to begin at the beginning of a
monitoring session and extend for a first predetermined interval of time. A middle phase may be
defined to begin at the end of the beginning phase and to extend for a second predetermined
interval of time. Such a middle phase could be characterized by calibration factors having a
substantial effect during the middle phase, while aspects substantially affecting only the beginning

phase or the ending phase of the monitoring session could be neglected. An ending phase may be
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defined to begin at the end of the middle phase and to extend for a third predetermined interval of
time, ending at the end of the monitoring session.

[0096] In some other embodiments, the switching between candidate calibration models
may be based at least in part on detecting patterns in the sensor signal y,(t), e.g., noise levels or
dips or surges in the sensor signal satisfying a predefined shape, pattern, frequency, duration or
threshold, and/or from any other information derived from the calibration model itself.

Relative Effects of Calibration Model Parameters During Respective Phases

[0097] In some embodiments, candidate calibration models specific for each phase of the
monitoring session, derived from a global calibration model, may consider only the calibration
model parameters that substantially affect the calibration during the respective phase for which the
candidate calibration model is most accurate.

[0098]  In some embodiments, the baseline profile b(t) of Eqs. 4 and 5 may be described
by the form given by Eq. 10:

b(t) = 0,b,(t) + 6, (Eq. 10)

where 6, and 0, are calibration model parameters to be subsequently determined, and b, (t) is any
fixed functions of time weighted by 6;.

[0099] Where multiple candidate calibration models consider baseline profile b(t) in a
particular phase of the monitoring session, each candidate calibration model may utilize different
parameters 6, and 6, and/or a different fixed function b, (t).

[0100] In some embodiments, the sensor sensitivity profile s(t) may have the generic form

described by Eq. 11:

where s, (t) and s(t) are fixed functions of time whose formulations may be sensor specific and

may be determined accordingly to the manufacturer, and 65, 6,, and 65 are calibration model
parameters to be subsequently determined, subject to the constraints of Eq. 12 and Eq. 13, where

@ has a fixed value:
03,04, 05 > 0 (Eq. 12)

O3
04

=@ (Eq. 13)
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[0101] Where multiple candidate calibration models consider sensitivity profile s(t) in a
particular phase of the monitoring session, each candidate calibration model may utilize different
parameters 03, 64, 05 and/or different fixed functions s, (t) and sz(t).

[0102] Accordingly, from Eqs. 10-13 and the dependence between sensitivity parameters
(8; = @ - 0,), the final parameters vector, i.e., the collection of calibration model parameters, for

subsequent determination, of a candidate calibration model may be given by Eq. 14:
T
6= [91,92, 93,95] (Eq 14)

[0103] As shown by Eq. 13, because 8, depends directly from 85, 8, need not be included
in the parameters vector 8. In some embodiments, starting from the global model of Eqs. 4 and 5
defined on the entire monitoring session, the relative impact of each calibration model parameter
0., 0,, 05, 65 on the estimated glucose values in different phases of the monitoring session may be
determined. On the basis of this determination, different candidate calibration models, derived
from the initial global calibration model of Eqs. 4 and 5, are defined for each temporal phase. The
calibration process may select, for each calibration, the appropriate candidate calibration model,
estimating only the calibration model parameters useful to explain the specific dynamic of the
sensor signal y;(t) in the considered phase.

[0104] The relative contribution of each of the calibration parameters 64, 0, 03, 85 over
time may be assessed by simulating, from the raw sensor signal y;(t), different calibrated profiles
as functions of a single one of the parameters, keeping constant the other parameters. Based on

Eqgs. 5 and 10-13, the related calibrated IG profile may be given by Eq. 15:

t
w(t, 0,02, 03, 05) = 40~ — b(t,6;,0,) (Eq. 15)

[0105] Thus, the influence of each calibration model parameter on the estimated interstitial
glucose profile u;(t) may be assessed by varying its value over a meaningful range, while fixing
the other calibration model parameters to constant values. Each calibration model parameter is
analyzed, individually, in the following sections.

Parameter 6,
[0106]  The estimated interstitial glucose profile u;(t, 6;), as a function of time t and

parameter p;, is obtained from the sensor signal y;(t) utilizing Eq. 16:
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t
w (t,0,) = 28 — b(t, 6,) (Eq. 16)

where all other model parameters, 6,, 85, 8,, 05, are fixed to any meaningful value in the range of
their prior distributions, e.g., to the mean value of their prior distributions.

[0107] An example simulation of Eq. 16 is shown in FIG. 6, which illustrates an effect 600
of the calibration model parameter 8, on estimated blood glucose levels u,;(t,6;) of a user.
Calibration model parameter 6 is varied through its domain of validity and the variability bands
at the 5" and 95 percentile 606, 602, respectively, are reported together with the mean profile
604. FIG. 6 illustrates that the estimated glucose profile v, (t) substantially depends on calibration
model parameter 6; only in the first two days, during interval 608, while almost no influence is
evident after day two.

[0108] FIG. 7 illustrates a difference 702 between the 5® and 95" percentile 606, 602 of
the effect of the calibration model parameter 6, on the estimated blood glucose levels u; (t) of the
user as shown in FIG. 6. A threshold 704 of a 10mg/dl difference in estimated blood glucose levels
between the 5" and 95 percentile 606, 602 is shown, indicating a predetermined threshold below
which the calibration model parameter 6; may be determined not to have a substantial effect on
the estimated blood glucose levels u;(t). However, the predetermined threshold of 10mg/dl is
exemplary and not limiting. Any higher or lower predetermined threshold value may be utilized.
Accordingly, this simulation indicates that the calibration model parameter 8; has a substantial
effect on the estimated blood glucose levels u; (t) during the first 2-3 days.

Parameter 8,
[0109] The estimated glucose profile u;(t, 8,), as a function of time t and parameter 6,

is obtained from the signal y, (t) utilizing Eq. 17:

t
w(t,0,) = 22— b(t,0,) (Eq. 17)

where all other model parameters, 64, 85, 8,, 05 are fixed to any meaningful value in the range of
their prior distributions, e.g., to the mean value of their prior distributions.

[0110] An example simulation of Eq. 17 1s shown in FIG. 8, which illustrates an effect 800
of the calibration model parameter 8, on estimated blood glucose levels u,;(t, 8,) of a user.
Calibration model parameter 6, is varied through its domain of validity and the variability bands

at the 5" and 95" percentile 806, 802, respectively, are reported together with the mean profile
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804. FIG. 8 illustrates that the estimated glucose profile u; (t) substantially depends on calibration
model parameter 8, across the entire monitoring session.

[0111] FIG. 9 illustrates a difference 902 between the 5" and 95" percentile 806, 802 of
the effect of the calibration model parameter 6, on the estimated blood glucose levels u; (t) of the
user as shown in FIG. 8. A threshold 904 of a 10mg/dl difference in estimated blood glucose levels
between the 5" and 95 percentile 806, 802 is shown, indicating a predetermined threshold below
which the calibration model parameter 8, may be determined not to have a substantial effect on
the estimated blood glucose levels u;(t). However, the predetermined threshold of 10mg/dl is
exemplary and not limiting. Any predetermined threshold value may be utilized. Accordingly, this
simulation indicates that the calibration model parameter 6, has a substantial effect on the
estimated blood glucose levels u; (t) during the entire monitoring session.

Parameter 0
[0112] The estimated glucose profile u;(t, 85), as a function of time t and parameter ps,

is obtained from the raw signal y;(t) utilizing Eq. 18:

t
w(t,05) = 22— b(t, 05) (Eq. 18)

where all other model parameters, 64, 8,, 8,, 05 are fixed to any meaningful value in the range of
their prior distributions, e.g., to the mean value of their prior distributions.

[0113] An example simulation of Eq. 18 is shown in FIG. 10, which illustrates an effect
1000 of the calibration model parameter 85 on estimated blood glucose levels u, (t, 85) of a user.
Calibration model parameter 03 is varied through its domain of validity and the variability bands
at the 5" and 95" percentile 1006, 1002, respectively, are reported together with the mean profile
1004. FIG. 10 illustrates that the estimated glucose profile u;(t) substantially depends on
calibration model parameter 85 across the entire monitoring session. However, noting that the
influence of calibration model parameter 8; on the calibration process is more evident at the end
of the monitoring session than at the beginning.

[0114] FIG. 11 illustrates a difference 1102 between the 5 and 95" percentile 1006, 1002
of the effect of the calibration model parameter 85 on the estimated blood glucose levels u;(t) of
the user as shown in FIG. 10. A threshold 1104 of a 10mg/dl difference in estimated blood glucose
levels between the 5% and 95" percentile 1006, 1002 is shown, indicating a predetermined

threshold below which the calibration model parameter 8; may be determined not to have a

-28 -



WO 2019/038661 PCT/IB2018/056295

substantial effect on the estimated blood glucose levels u;(t). However, the predetermined
threshold of 10mg/dl is exemplary and not limiting. Any predetermined threshold value may be
utilized. Accordingly, this simulation indicates that the calibration model parameter p; has a
substantial effect on the estimated blood glucose levels u;(t) during the entire monitoring session
and particularly at the end of the monitoring session.
Parameter 0

[0115]  The estimated interstitial glucose profile u;(t,8s), as a function of time t and

parameter O, is obtained from the raw sensor signal y;(t) utilizing Eq. 19:

t
w(t,05) = 22— b(2, 65) (Eq. 19)

where all other model parameters, 6,, 85, 8,, 05, are fixed to any meaningful value in the range of
their prior distributions, e.g., to the mean value of their prior distributions.

[0116] An example simulation of Eq. 19 is shown in FIG. 12, which illustrates an effect
1200 of the calibration model parameter 85 on estimated blood glucose levels u; (t, 65) of a user.
Calibration model parameter 6 is varied through its domain of validity and the variability bands
at the 5" and 95" percentile 1205, 1202, respectively, are reported together with the mean profile
1204. FIG. 12 illustrates that the estimated glucose profile u;(t) substantially depends on
calibration model parameter 8; during approximately the first seven days, during interval 1208,
while almost no influence is evident after day seven.

[0117] FIG. 13 illustrates a difference 1302 between the 5 and 95" percentile 1205, 1202
of the effect of the calibration model parameter 65 on the estimated blood glucose levels u;(t) of
the user as shown in FIG. 12. A threshold 1304 of a 10mg/dl difference in estimated blood glucose
levels between the 5% and 95" percentile 1205, 1202 is shown, indicating a predetermined
threshold below which the calibration model parameter s may be determined not to have a
substantial effect on the estimated blood glucose levels u,(t). However, the predetermined
threshold of 10mg/dl is exemplary and not limiting. Any predetermined threshold value may be
utilized. Accordingly, this simulation indicates that the calibration model parameter 85 has a
substantial effect on the estimated blood glucose levels u; (t) during the first 6-7 days.

[0118] From the results of the global analysis, illustrated by FIGs. 6-13, FIG. 14 illustrates
a sample application of the calibration model parameters 6;, 8,, 83, 85 of FIGs. 6-13 to different

temporal phases 1402, 1404, 1406 of a glucose monitoring session, in accordance with some
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embodiments. As shown, the influence of baseline parameter 6, on the calibration process may be
restricted to a beginning phase 1402, e.g., the first two days of monitoring, while parameter 6, is
relevant for all phases 1402, 1404, 1406, e.g., the entire session. The influence of sensitivity
parameter 83 on the calibration process is relevant for all phases 1402, 1404, 1406, e.g., the entire
monitoring session, while parameter 05 only characterizes the beginning phase 1402 and the
middle phase 1404, e.g., the first seven days, but not the end phase 1406, e.g., the last three days
of the monitoring session. Therefore, the entire monitoring session may be characterized by
different temporal phases, in which only the relevant calibration model parameters may be
considered and estimated during the calibration process. Consequently, in some embodiments, the
global calibration model would be defined by distinct candidate calibration models specific for
each phase of the monitoring session, derived from the global calibration model of Eqs. 4 and 5
by considering only the meaningful calibration model parameters in each phase.

[0119] Calibrating the sensor signal y;(t) in each phase of the monitoring session utilizing
candidate calibration models valid for each specific phase results in more accurate estimations of
the blood glucose levels of a user, as illustrated by FIG. 15, which illustrates interstitial glucose
levels 1504, estimated utilizing different calibration model parameters for different temporal
phases of the monitoring session, as more accurately predicting blood glucose level references
1506 measured by SMBG, compared to interstitial glucose levels 1502 estimated utilizing a static
calibration model, in accordance with some embodiments.

[0120] In some embodiments, the technique described above in connection with at least
FIGs. 6-13 can be extended to further development. Indeed, the definition of different candidate
calibration models may be based on time, as described above, but may also or alternatively be
based at least in part on detecting patterns in the sensor signal y,(t) that correspond to a particular
candidate calibration model, e.g., noise levels in the signal satisfying a threshold, dips or surges in
the sensor signal y,(t) satisfying a predefined shape, duration, frequency, pattern, or threshold,
and/or from any other information derived from the calibration model itself. For example, in some
embodiments, a decrease in the average level of the sensor signal y;(t) over an interval of time
satisfying a threshold may indicate that sensor sensitivity is declining and that a particular phase
of the monitoring session has been or should be entered, for example the ending phase as
previously described. As another example, in some embodiments, a dip in the sensor signal

satisfying either a predetermined shape or satisfying a threshold dip amplitude may indicate that
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beginning phase characteristics are present and the beginning phase as previously described has
been or should be entered. Such examples illustrate at least some ways in which determination of
a phase of a monitoring session, and accordingly, selection of an appropriate calibration model
may be made utilizing only the sensor signal y,(t) and not requiring periodic verification by
SMBG reference samples from the user.

[0121] Other examples of metrics that can be used at least in part to determine the
calibration model may be selected from the list including, but not limited to: the number of days
the sensor has been in use (e.g., implanted); sensor sensitivity or whether there has been a decrease
in signal sensitivity (e.g., change in amplitude and/or variability of the sensitivity of the sensor
compared to one or more predetermined criteria), including magnitude and history; noise analysis
(e.g., EOL noise factors (skewness, spikiness, & rotations)), duration, magnitude and history,
spectral content analysis, pattern recognition); oxygen (e.g., concentration and/or whether there is
a predetermined oxygen concentration pattern), glucose patterns (e.g., mean, variability, meal
characteristics such as peak-to-peak excursion, expected vs. unexpected behavior such as after a
meal if glucose is not rising as expected);

Selecting a Calibration Model from a Set of Candidate Calibration Models

[0122] The Bayesian approach suggests a probabilistic setup for model uncertainty, where
different models are under consideration for a given phase of a monitoring session. In particular,
let Y be the data provided by discrete data points of sensor signal y;(t) and M = {M, ..., M} be
a set of K candidate calibration models under consideration for calibrating Y within the given phase
of the monitoring session. The probability density function of ¥ under the specific candidate

calibration model M;, where i = 1, ..., K is given by Eq. 20:
p(Y10;, M;) (Eq. 20)

where 6; 1s the vector of unknown parameters for the specific candidate calibration model M;.
[0123] Eq. 20 may be interpreted as the probability that the data Y would result when the

values of the parameters in 8; are utilized in the candidate calibration model M;. In order to

evaluate Eq. 20, prior distributions for the probabilities of all of the parameters of each candidate

calibration model p(6;|M;) and for the models p(M;) themselves are introduced.
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[0124] Selection of a calibration model may include determining the posterior probability
(e.g., utilizing historical data) that each candidate calibration model M; under consideration would

predict the data Y, utilizing Bayes’ theorem given by Eq. 21:

p(M;]Y) YK, p(rIMOp(M) (Eq. 21)

where p(Y|M;) may be interpreted as the probability that data Y would occur from utilizing
candidate calibration model M;, where p(M;) may be interpreted as the probability of candidate
calibration model M; being utilized, and where X, p(Y|M;)p(M;) may be interpreted as the sum
of the probability that data Y would occur from utilizing candidate calibration model M; multiplied
by the probability of candidate calibration model M; being utilized, for each of the K candidate
calibration models.

[0125] p(Y|M;) given in the numerator of Eq. 21 may be further described by Eq. 22:
p(YIM;) = [ p(Y|M;, 0;)p(6;|M,)d6; (Eq. 22)

where the right side of Eq. 22 describes the integrated likelihood of M; and may be interpreted as
the integral performed across a range of unknown parameters in the vector 8; of the probability
that data Y would occur from utilizing candidate calibration model M; utilizing the particular value
of unknown parameters vector 8; multiplied by the probability of the particular value of unknown
parameters vector 0; being utilized for candidate calibration model M;.

[0126] Eq. 22 may be computed by different numerical integration strategies, for example
utilizing Monte Carlo simulation methods.

[0127] Assume, for example, given a monitoring session of 10 days, that we can identify
three generic sensor phases: a beginning phase (approximatively the first 2 days), an ending phase
(approximatively the last 2-3 days) and a middle phase (between the beginning and ending phases).
The phases may then be termed Mbeg, Mmid, and Menda. Each sensor session may be characterized
by its specific set of K candidate calibration models, M; = {M;, M,, ..., M}.

[0128] For example, within beginning phase Mg, M™ indicates a model utilizing a
beginning-session component, e.g., a signal artifact, as previously described, for the generic model
M. Thus, considering all K candidate models, at the beginning of the session it is desirable to
account for the possible presence of these components. Thus, the set of candidate calibration

models for the beginning of the session becomes My, = {M;", My, ..., Mg, My}, where for each of
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the K models we account for both the possible presence and the possible absence of beginning-
phase components/artifacts. In an analogous way, in some embodiments, the same K candidate
models M,,;q = {M;, M,, ..., M} may describe the middle phase. The last days of the monitoring
session may be characterized by specific time-varying components, e.g., signal loss of sensitivity,
as previously described. With ending phase Mena, M™ indicates a model utilizing an end-of-session
component. Thus, the set of candidate calibration models for the end of the session becomes
Mong = {M{, My, ..., Mg, My}, where for each of the K models we account for both the possible
presence and the possible absence of end-phase components/artifacts.

[0129] In a real-time calibration scenario, given a set of data measures Y (which may be
derived from SMBG measurements and/or from auto-calibration processes), evaluation of a
posteriori model probability is performed for each candidate calibration model for the specific
time-phase during which the calibration occurs, utilizing Eq. 21, and the candidate calibration
model having the highest probability is selected.

[0130] Implementing such a process requires: 1) the specification of all a priori probability
distributions for each model and each model’s unknown parameters; and 2) the computation of the
integrated likelihood p(Y|M;) as described in Eq. 22. Strategies for both are presented in the
following paragraphs.

Specifying a Priori Probabilities for Candidate Calibration Model Selection

[0131] Both a priori models probabilities for both the models themselves and for the
unknown model parameters of each model are needed for selecting a particular candidate
calibration model. Such a priori probabilities may be provided by deriving average distributions
on real-data in a cross-validation scenario. For instance, the probability of each model being
utilized in a particular population may be derived by off-line fitting of all candidate calibration
models on real datasets previously recorded from monitoring sessions of the same or different
users. For example, server 250 of FIG. 2, having memory 258 and processor(s) 256, may be
configured to perform such off-line fitting and communicate a result to monitor 220 via transceiver
254 and transceiver 224. For each sensor type, the candidate calibration model that best fits the
data may be selected and the probability of utilizing a specific calibration model in the population
may be averaged from that results. As previously described, in some embodiments, the probability
of a specific candidate model may also be modified in real-time by examining the sensor signal.

Indeed, specific signal patterns that are strictly related to a specific model candidate may be
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detected in real-time thereby increasing the probability of utilizing the corresponding candidate
calibration model. Such real-time examination may be performed, for example, by server 250 of
FIG. 2 after communicating the sensor data from monitor 220 to server 250 via transceivers 254,
224, or alternatively by monitor 220 itself.

[0132] Similarly, a priori probabilities for the unknown model parameters may be derived
from real data by off-line identification, for example, by server 250 of FIG. 2. Given the
probabilistic framework for calibration, it is important to consider correlations between all model
parameters. Indeed, different candidate models may have similar mean values for their parameters,
but different correlations between parameters. Accordingly, independence between parameters is
not assumed. Instead, all parameters correlations may be estimated from real data. Specifically,
given a training size of N samples, let 6 be the vector of estimated parameters for the generic
model M. Parameters vector 8 is assumed to be distributed with prior mean yy and prior covariance
matrix Xy, where the i element y; of ug, and the ij'" element g; ; of Xg, are defined as averages
taken across the N samples according to Eqgs. 23 and 24, respectively:

1

Hi=5

1
0ij = v Zn=1(On; — 1) (Onj — 1)) (Eq. 24)

Computing the Integrated Likelihood of the Candidate Calibration Models for Model Selection

n=10n (Eq. 23)

[0133] In some cases, the integral of Eq. 22 may be evaluated analytically, while in others
it may be computed by numerical approximation methods. Several approximation techniques, such
as asymptotic approximation through Laplace’s method, Monte Carlo integration, variance
reduction techniques such as importance sampling, Gaussian quadrature and Markov chain Monte
Carlo methods are contemplated. However the present application is not so limited and any
appropriate approximation technique may be utilized.

[0134] In some embodiments, the use of Monte Carlo techniques may be particularly
suitable for this specific application. The simple Monte Carlo integration approximates the
marginal likelihood that data Y would be accurately predicted by calibration model M; by

averaging the likelihood values over a set of N;;,, iterations, as shown by Eq. 25:

A 1 iter
PIYIM) = =207 p(YIM;, 6,) (Eq. 25)

-34 -



WO 2019/038661 PCT/IB2018/056295

where at each iteration n a set of model parameters 6, is sampled from the prior distribution of
offline samples, as described above, and the probability of the observed data Y, given the specific
set of parameters 6, is computed, for example by server 250 of FIG. 2 and communicated to
monitor 220 via transceivers 254, 224.

[0135] Accordingly, the integrated likelihood of Eq. 22 may be approximated by averaging

over the Nj;,, iterations:

1 iter
[ p(Y|M;,0)p(0;|M;)db; = E[p(Y|M;, 91‘)]NFMZN oYM, 0,) (Eq. 26)

n=1

where E[p(Y|M;, 8;)] 1s the expected value of the integrated likelihood of Eq. 22, the average of
the likelihoods of the sampled parameters values ({6,:n = 1, ..., Nier }).

[0136] In some circumstances, a majority of the sampled parameters values 8,, may have
small likelihood values, requiring a large number of iterations to reach convergence. In such
circumstances, the precision of the simple Monte Carlo integration may be improved by the use of
variance reduction techniques such as importance sampling.

Estimating Unknown Model Parameters for the Selected Calibration Model

[0137] Once a calibration model M is selected as having the highest a posteriori
probability for accurately calibrating the sensor signal, the correspondent vector of model
parameters 6 may be estimated so that actual calibration using calibration model M can be carried
out.

[0138] Each time a new SMBG is acquired for calibration at time ¢t;,{ = 1,2, ..., S (where
S represents the total number of BG samples used for calibration), the set of parameters 8 may be
updated to exploit each new measure uz(t;) and, in some embodiments, all previously acquired
BG samples. In particular, a relation between the BG reference samples uy and estimated blood
glucose values 1iz(60), obtained by transforming the current samples contained in vector y;
utilizing the selected calibration model M and the calibration model parameters in the vector 8,

may be expressed in vector form as shown in Eq. 27:

where up 1s the i X 1 vector containing the SMBG samples acquired at calibration times t;, j =
1,..,i(i=1..5), ug = [ug(ty), ... up(ti—), up (t;)]*, 1iz(@) is the i X 1 vector obtained

transforming the estimated blood glucose values of the i X 1 vector y;, containing y,(tj), j=
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1,...,1, into BG values utilizing the selected calibration model M and the calibration model
parameters in the vector 8, and i X 1 vector e represents the error between ugz and 1ig(0).

[0139] In some embodiments, error vector e is assumed to contain white noise samples,
uncorrelated with 8, having zero mean, and covariance matrix Y. The error variance is assumed
constant over time and its value is estimated from an off-line training set of previously calibrations
for the same or another user. Note that the length i of the vectors in Eq. 27 increases by one unit
each time a new SMBG is acquired for calibration, since in some embodiments, all previous
measures are considered.

[0140] The correspondent vector of model parameters 6 may be estimated utilizing Eq. 28:
6 = argmin{[uy — (]2, [up — 25(O)] + (o — )72, (g — 0D} (Eq. 28)

where 0 is the vector of estimated model parameters, argmin indicates that values of the vector 8
0

that results in a minimum of the function in brackets are sought, uy is the vector containing SMBG
reference samples acquired via, for example finger prick, for calibration, iz () is the vector of
the estimated blood glucose values obtained by transforming the current samples contained in
vector y; utilizing the selected calibration model M and the calibration model parameters in the
vector 6, the matrix X, represents the covariance of the error between SMBG reference samples
and actual blood glucose levels, and where the unknown parameters vector 8 is estimated
exploiting the data contained in uz and y; in addition to some a priori knowledge on the
distribution of 6, described by the mean py and the covariance matrix Xg, which may be
determined utilizing Eqs. 23 and 24.

[0141] Since no closed form solution exists for the minimization problem of Eq. 28, the
estimate 0 is found by iteratively stepping through each parameter possible value of the parameter
vector 6, schematically summarized by the flowchart 1600 of FIG. 16. In some embodiments, the
procedure described by flowchart 1600 may be performed by server 250 or by monitor 220 of FIG.
2, for example, specifically by processor(s) 256 and memory 258, or processor(s) 226 and memory
228, respectively. Moreover, such a method is not limited to the specific steps described in
flowchart 1600 and may omit one or more of the below-described steps and/or include one or more

additional steps not described in flowchart 1600 but described elsewhere in this application.
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[0142] At block 1602, model M is selected as having the highest a posteriori probability
of fitting the data, as previously described. For example, processor(s) 256 of server 250, or
processor(s) 226 of monitor 220 in FIG. 2 may perform the selection as previously described.
Flowchart 1600 advances from block 1602 to block 1604.

[0143] At block 1604, a parameters vector 8 is initialized or set to an initial value, e.g., its
prior mean value, 8y = ugy. For example, processor(s) 256 of server 250, or processor(s) 226 of
monitor 220 in FIG. 2 may perform the initialization of parameters vector 8 to 8y = pg in memory
258 or memory 228, respectively. Flowchart 1600 advances from block 1604 to block 1606 with
parameters vector 8 set to 8y = ug.

[0144] At block 1606, sensor signal y; may be received and utilized to estimate the IG
profile #;(0) according to the selected calibration model M using the parameters vector 6 set to
initial values 8, = g, as previously described in Eqs. 5 and 15. For example, processor(s) 256 of
server 250, utilizing memory 258, or processor(s) 226 of monitor 220, utilizing memory 228, in
FIG. 2 may transform the sensor signal y; into the estimated interstitial glucose level i;(8) of the
user utilizing the selected calibration model M and the initial value of the one or more calibration
model parameters 6,. Flowchart 1600 advances from block 1606 to block 1608.

[0145] At block 1608, BG profile, tiz(6) may be estimated from the estimated IG profile
11;(0), by means of deconvolution, utilizing for example a non-stochastic approach, as previously
described in connection with FIG. 3 and Eqs. 1-5, thereby accounting for the distortion introduced
by the BG-IG kinetics. For example, processor(s) 256 of server 250, utilizing memory 258, or
processor(s) 226 of monitor 220, utilizing memory 228, in FIG. 2 may estimate the blood glucose
level iz (0) based on the estimated interstitial glucose level 4, (8) by deconvolution.

[0146] For computational reasons, the deconvolution may be applied to temporal windows
containing the time instant t;, j = 1, ..., I at which each SMBG 1s acquired. Practically, for each of
the i SMBG measures collected in vector ug, a time window A from t; — 100 min to t; + 5 min
may be considered., although any other appropriate time window may also be utilized. Letting
Up(p) be the n X 1 vector containing the IG estimations of the previous step at the sampling instants
lying within A, a uniform sampling grid, with, e.g., 5-min steps, may be defined: Qg =
{t., ty, ..., t,}. In addition, w is defined as the n X 1 vector of measurement error w(t) at time
instants in (g, assumed to have zero mean and covariance matrix X,, = 02R, with 62 unknown

constant and R n X n known matrix whose structure reflects expectations on measurement error
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variance. Here, R = I, current signal with variance constant over time. The vector ug,) 1s defined

as the N X 1 unknown vector containing samples of uz(t) at time instants on a virtual grid £, =
{t,1, typ, -, tyn )}, which is independent of and usually denser than ;. Here an exemplary, non-
limiting, uniform 1-min step may be used. In order to allow initial condition transients to vanish,
0, starts from t; — 100 min, so that the reconstruction of uz(t) is not altered in the window of
interest A.

[0147] Once all variables have been defined, having ¢ and Q, both uniform, with Q4 €

Q,, the following matrix equation may be written as shown in Eq. 29:
u,(A) =H- uB(A) +w (Eq 29)

where H 1s the n X N matrix obtained by downsampling the N X N transfer matrix H,, of the BG-
IG system, maintaining only the rows correspondent to sampling instants in (.

[0148] According to the fact that vector ug 4y contains samples of a BG profile, which is
a biological signal expected to have a certain smoothness, a double integrated white noise model

of unknown variance A% may be chosen to describe entries of Ug(ay- Thus, the covariance matrix

of upg(4) may be expressed as Eq. 30:

Sp = A2(FTF)? (Eq. 30)

UB(A)

where F may be defined as a N x N Toeplitz lower-triangular matrix having [1, —2,1,0, ...,0]" as
a first column.

[0149] Assuming that ug 4y and w are uncorrelated, the following quadratic optimization

problem of Eq. 31 corresponds to the linear minimum error variance Bayesian estimate of ug,):

~ . T
fip(p) = argmln{(u,(A) — Hugy) R (wya — Hupy) + yuB(A)TFTFuB(A)} (Eq. 31)

UB(A)

2
where parameter y = Z_Z estimated by Maximum Likelihood, represents the regularization term

that balances the data fit with the smoothness of the estimated profile.

[0150] The optimization problem of Eq. 31 has a closed form solution, which may be
expressed as Eq. 32:

ﬁB(A) = (HTR_lH + }/FTF)_lHTR_luI(A) (Eq 32)
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[0151] For every SMBG measurement in vector ug, the BG profile #ig(,), which depends
on parameter vector 8;, may be estimated inside the window A that contains the time instant at
which the SMBG sample t;,j = 1, ..., [ is acquired.

[0152] Flowchart 1600 may then advance from block 1608 to block 1610, where an error
(e.g., a difference) may be determined between the estimated BG profile #i3(0) and actual SMBG
samples up, measured via finger prick or any other means of blood glucose reference
determination. For example, processor(s) 256 of server 250, utilizing memory 258, or processor(s)
226 of monitor 220, utilizing memory 228, in FIG. 2 may determine this error.

[0153] For example, for each SMBG sample in vector ug, acquired at time t;,j = 1, ..., i,
the correspondent estimated value of fi () at time t; is considered, composing the vector g (6y)

used in Eq. 28, as given by Eq. 33:

5 (0x) = [Up(ty, 0x), ..., g (ti—y, 0x), Up(ty, 61)]" (Eq. 33)

[0154] Flowchart 1600 may then advance from block 1610 to block 1612, where the
parameters vector 8 may be updated for the following iteration (from 8y, to 8;.,1). For example, at
each iteration k, the parameters vector 6 may be updated to a new set of values, Oy, using the
Nelder-Mead simplex algorithm, for example. In some embodiments, processor(s) 256 of server
250, utilizing memory 258, or processor(s) 226 of monitor 220, utilizing memory 228, in FIG. 2
may update the one or more calibration model parameters 8 based on the difference between the
estimated blood glucose level and a reference of the blood glucose level of the user.

[0155] Blocks 1606, 1608, 1610 and 1612 may be reiterated until one of the following
stopping criteria occurs: 1) the step size in parameters update is smaller than a fixed tolerance (e.g.
107%); 2) the relative change in the value of the objective function is lower than a fixed tolerance
(e.g. 107°). In some embodiments, processor(s) 256 of server 250, utilizing memory 258, or
processor(s) 226 of monitor 220, utilizing memory 228, in FIG. 2 may recursively re-estimate the
interstitial glucose level @;(6) and the blood glucose level iz (8) based on the selected calibration
model and the one or more updated calibration model parameters 8 until a predefined relationship
between the reference of the blood glucose level of the user and at least one of the estimated
interstitial glucose level and the estimated blood glucose level is present. For example, such a

predefined relationship may include but is not limited to at least one of the estimated interstitial
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glucose level and the estimated blood glucose level being within a predetermined accuracy of the
reference of the blood glucose level of the user.

[0156] For each of the S SMBG samples used for calibration, once calibration model
parameters vector  has been estimated as described in connection with FIG. 16, the parameters
vector 8 may be used to calibrate, in real-time, the current signal y,(t) utilizing Eq. 15.

[0157] In particular, being the SMBG samples acquired at times t;,{ = 1,2, ..., S, the
parameters estimated at the i calibration may be used to calibrate the sensor signal y,(t) from
t; + five min to t;.; + five min, or any other appropriate timing offset from contiguous time
instants. Indeed, the deconvolution window A is defined to end five min, or any other appropriate
timing offset, after the reference time of the BG measurement in order to avoid edge effects.

Some Embodiments of a Method for Monitoring a Blood Glucose Level of a User

[0158] Several embodiments of methods for monitoring blood glucose levels of a user are
described in this application. FIG. 17 illustrates an exemplary flowchart 1700 of a method for
monitoring a blood glucose level of a user, in accordance with some embodiments. One or more
of the steps presented in flowchart 1700 may be performed by processor(s) 256 of server 250,
utilizing memory 258, or processor(s) 226 of monitor 220, utilizing memory 228, as previously
described in connection with FIG. 2. Moreover, such a method for monitoring a blood glucose
level of a user 1s not limited to the specific steps described in flowchart 1700 and may omit one or
more of the below-described steps and/or include one or more additional steps not described in
flowchart 1700 but described elsewhere herein.

[0159] Flowchart 1700 includes block 1702, which includes receiving a time-varying
electrical signal from an analyte sensor during a temporal phase of a monitoring session. For
example, as previously described, processor(s) 256 of server 250 or processor(s) 226 of monitor
220 may be configured to receive the sensor signal y;(t) from sensor 202 of sensor assembly 210,
as shown in FIG. 2.

[0160] In some embodiments, a reference input may be received. For example, as
previously described, processor(s) 256 of server 250 or processor(s) 226 of monitor 220, as shown
in FIG. 2, may be configured to receive a reference input. The reference input may include any of
a blood glucose reference, a noise metric of the time-varying electrical signal, an impedance of the

analyte sensor 202, an input from a sensor 205 configured to measure at least one of an acceleration

- 40 -



WO 2019/038661 PCT/IB2018/056295

of the user, a galvanic response, an impedance of the sensor and/or tissue, a second electrochemical
sensor, a temperature and an atmospheric pressure.

[0161] Flowchart 1700 may advance from block 1702 to block 1704, which includes
selecting a calibration model from a plurality of calibration models, wherein the selected
calibration model comprises one or more calibration model parameters. For example, as previously
described, processor(s) 256 of server 250 or processor(s) 226 of monitor 220, as shown in FIG. 2,
may be configured to select a calibration model M from a plurality of calibration models M;... M
as previously described. The selected calibration model M includes one or more calibration model
parameters 6.

[0162] Flowchart 1700 may advance from block 1704 to block 1706, which includes
estimating at least one of the one or more calibration model parameters of the selected calibration
model based on at least the time-varying electrical signal during the temporal phase of the
monitoring session. For example, processor(s) 256 of server 250 or processor(s) 226 of monitor
220, as shown in FIG. 2, may be configured to estimate at least one of the one or more calibration
model parameters 6 of the selected calibration model M based on at least the time-varying
electrical signal y;(t) during the temporal phase of the monitoring session.

[0163] Flowchart 1700 may advance from block 1706 to block 1708, which includes
estimating the blood glucose level of the user based on the selected calibration model and using
the at least one estimated parameter. For example, processor(s) 256 of server 250 or processor(s)
226 of monitor 220, as shown in FIG. 2, may be configured to estimate the blood glucose level
1iz(0) of the user based on the selected calibration model M and using the at least one estimated
parameter 6.

Assessing the Accuracy of Methods. Utilizing Simulated Data

[0164] The accuracy of the mixture model Bayesian calibration approach described above
may be assessed using an example simulation graphically described by FIG. 18, which illustrates
a schematic diagram 1800 for simulating blood glucose, interstitial glucose, self-measured blood
glucose, and sensor signal values for verifying calibration models, in accordance with some
embodiments. As shown, a blood glucose (BG) trace is simulated using a UVA/Padova type 1
diabetes simulator. From the BG trace, random SMBG measures (approximatively one every 24h)
are simulated by adding noise e according to the model described by Eq. 27, where e~N (0, 52),

a? is the covariance of the error e, twenty in this example, and the mean of the error e is zero.

-4] -



WO 2019/038661 PCT/IB2018/056295

[0165] The interstitial glucose (IG) trace may be obtained from the BG profile accounting
for the BG-to-IG kinetics by means of convolution according to Eq. 3, where the parameter 7 is
sampled from its prior distribution (T ~ N(;, 62)), in some embodiments assumed to be a
lognormal distribution, here p,=7.5 and g7 = 2.25 are assumed.

[0166] An example of the simulated IG profile 1902 (solid line), BG profile 1904 (dotted
line) and SMBG measurements 1906, indicated by dots, are shown in first panel 1900 of FIG. 19.

[0167] The calibration model is chosen among the following set M of three example
candidate calibration models: M = {M;, M, ... M;}, where i=3. In particular, the structure of the set
M of candidate models is given by Eq. 5 with b(t) defined by Eq. 6, and s;(t), { = 1,2,3 specified
by Eqgs. 7-9, for i = 1,2,3 respectively.

[0168] In this specific simplified example, the three candidate models differ for the
definition of the sensitivity functions s;(t). Indeed, sensitivity s;(t) of model M, of Eq. 7 is
described by a bi-exponential function, sensitivity s,(t) of model M, of Eq. 8 is described by a
mono-exponential function, and sensitivity s3(t) of model M5 of Eq. 9 is described by a linear
function. Note that, in this simulation setup, no beginning-phase and end-phase components are
considered, rather a single phase of the monitoring session is described for simplicity only.

[0169] Each of the three models has a priori probability specified by p(M;),i = 1,2,3.
Specifically, p(M;) = 0.5, p(M,) =0.25, p(M;3) = 0.25. According to these probabilities,
one of the three models is sampled from the discrete distribution p(M). The simulated sensor
signal is obtained from the IG profile by using the specific model structure given by Eqs. 5 and 6
as well as the respective one of Eqs. 7-9, depending on the selected model. FIG. 19 depicts an
example of simulated sensitivity profile s; (t) 1922, obtained with model M, , in second panel 1920
of FIG. 19, and the corresponding simulated sensor signal y;(t) 1942 in third panel 1940 of FIG.
19.

[0170] Once the sensor signal y, (t) is simulated we apply the new mixture model Bayesian
calibration approach for model selection. The selected model may then be compared with the
model that actually generated the data (e.g., M; in this example) to assess the efficacy of this
method.

[0171] In order to find the model that actually generated the data (e.g., M; in this example),
following the Bayesian approach we need to evaluate the probability of each model given the set

of data just generated above and chose the model that maximizes this probability. Formally, for
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each of the three models, evaluation under Eq. 21 where Y, in this specific case, is the simulated
set of SMBGs.

[0172] As can be seen in Eq. 21, the denominator does not depend on the specific model.
Thus, to compare the different a posteriori probabilities only the numerators need be compared
for all the three models. As stated above, the prior probabilities are p(M,) = 0.5, p(M,) =
0.25, p(M;3) = 0.25 and the model likelihoods given by Eq. 22 are computed by simple Monte
Carlo integration as per Eq. 25 with, e.g., 108 iterations per model. The result of the Monte Carlo
simulation indicate M; as the most probable model a priori, which was the model utilized to
generate the data for the simulation. Thus, the present concepts are validated as an accurate method
for selecting calibration models that most accurately estimate blood glucose levels of a user.

Assessing the Accuracy of Methods. Utilizing Real Data

[0173] To assess the above-described method(s) on real data, a priori probabilities for each
parameter of each candidate model must be derived. Moreover, the assessment may be carried out
in a situation where different models would arrive at substantially different estimations of blood
glucose levels. For example, testing the above-described method(s) at the end of a sensor session
may be beneficial since different sensitivity models may capture a possible loss of sensitivity of
the sensor.

[0174] One simplified, non-limiting scenario would be a two-candidate calibration model
having a stable sensitivity model M, and a model factoring in a loss of sensitivity M;. For such a
scenario, a set M of candidate calibration models may have the form: M = {M;, M;} and may utilize
a set of previously received and/or archived SMBG samples from one or more users as data Y. For
such a model, sensitivity profiles for the stable sensitivity and for the loss of sensitivity models

may be given by Eqs. 34 and 35, respectively.
sg(t) =mg- {1+ % [driftCurve(t)]} (Eq. 34)
s;(t) =mg - {1 + % [driftCurve(t)]} +[a-t+b] (Eq. 35)

where driftCurve(t) is a function modeling a drift in the sensor sensitivity not accounting for as a
loss of sensitivity of the sensor and [a - t + b] is a term accounting for a loss of sensitivity of the

sensor, where the model M; is utilized after time Tswiren = -b/a.
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[0175] A sub-population of SMBGs may be determined offline for each sensitivity model
based on a fit with one or the other of s¢(t) and s;(t) and each sub-population of SMBGs may be
utilized to derive a priori distributions for each model itself and for all model parameters of each
model.

[0176] FIG. 20 illustrates a first plot 2000 including a sensor signal 2002 and a second plot
2020 including a IG level 2022 estimated by a global calibration model, a IG level 2024 estimated
by M, before time Tiwircn 2010 and M, thereafter, and SMBG references 2026 (dots). Estimated IG
level 2022 becomes increasingly inaccurate, compared to SMBG references 2026 after time Tswitch
2010. However, estimated IG level 2024 is much more accurate, tracking much more closely with
SMBG references 2026, especially after time Tswiren 2010. Accordingly, a calibration model which
switches from a stable sensitivity model to a sensitivity loss model based on time and utilizing
SMBGs is validated.

[0177] As previously described, assessment utilizing SMBG and other signal-based
metrics may be utilized to further increase the accuracy of the calibration model. Non-limiting
examples of such signal-based metrics may include identification of a downward drift metric, a
noise duration metric and a physiologic noise metric, each of which may indicate that a transition
to a different candidate calibration model (e.g., from stable model M to loss model M;) may yield
a more accurate glucose estimation. In some embodiments, if the likelihood of the presence of any
one or combination of these signal-based metrics in the sensor signal exceeds a threshold (e.g.,
0.5), a selection of and switch to the loss model may be validated. Further including the utilization
of signal-based metrics in the selection of a calibration model may allow an accurate selection
some time in advance of when an accurate selection would otherwise be made utilizing SMBG
samples alone.

[0178] One example of a downward drift metric may be determined based in part on a slow
moving average of raw sensor data (e.g., counts). This embodiment takes advantage of the fact
that for most patients, the average glucose over time (e.g., a few days or more) remain relatively
constant; thus, a change in the average of the sensor data (e.g., uncalibrated (raw or filtered) over
time (e.g., 2, 3, 4, 5, 6, 7 days or more) may be interpreted as a change sensitivity of the sensor
over time. The results of the slow-moving average could be a quantifiable amount and/or simple
yes/no indicators of a sensitivity decline that may be useful as one input or variable into the end-

of-life function. For example, the processor module may use an average of the last x hours (e.g.
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for 24 hours), a rectangular window averaging or an alpha filter with an exponential forgetting
factor to compute the slow-moving average to evaluate sensor sensitivity over time. In one
example of an alpha filter with exponential forgetting, ‘alpha’ may be used as follows:

parameter(n) = parameter(n-1) * (1-alpha) + new_info * alpha (Eq. 36)
wherein alpha defines how much of history one wants to remember (how soon to forget). If alpha
is 0.01, then in 1/0.01 (i.e., time constant of 100) samples, 63% of previous information is
forgotten. Accordingly, if a sampling rate is 12 samples/hr, then 63% of the signal would be
forgotten by 100 samples, e.g., ~8 hours. In such example, it would follow that with 3 time
parameters or constants, which is about 1 day, only 5% (i.e., 0.37*0.37*0.37 = 0.05) of signal left
from previous day would remain. In the above equation, alpha is a “forgetting factor.” Alpha may
vary between O and 1, and its value dictates how fast old measurements are forgotten by the model.
For values of alpha close to 1, the model adapts more quickly to recent measurements. For values
of alpha close to 0, the model adapts more slowly to recent measurements. The value of alpha
may depend on the elapsed time since the sensor was implanted. The calculation may be recursive
Or non-recursive.

[0179] One example of a noise detection algorithm, as described in more detail in Patent
No. 8,260,393, which is incorporated herein by reference, is used to quantify the sensor data as
clean or noisy (light, medium or severe) based on the amplitude of noise and the difference
between raw sensor and filtered sensor signal. The noise duration metric is determined based on
the length of noise of a certain severity. For example, the detection of noise episodes of a certain
severity (predetermined level of noise) for a certain length of time (for example 2 hours) would
increment this metric.

[0180] One example of a physiologic noise metrics determined based on algorithms that
evaluate the various aspects of the sensor signal related to noise: skewness of a short duration
(e.g., 2 hours) of noise, average rate of negative change of signal within this episode, and the
number of peaks and valleys in the episode (number of rotations), for example. Once these
parameters are calculated, a noise factor (e.g., between O and 1) is calculated by combining each
parameter as may be appreciated by one skilled in the art. The parameters and/or the physiologic
noise factor may be smoothed, for example using an exponential forgetting factor.

[0181] For example, FIG. 21 illustrates a first plot 2100 including a sensor signal 2102 and
a second plot 2121 including an IG level 2122 estimated by a global calibration model, an IG level
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2124 estimated by M, before time Tswircns 2110a and M, thereafter, SMBG references 2126 (dots),
and a reference Tiswircn2 2110b indicating when a switch would take place utilizing only SMBG
references 2126. As shown, utilizing only SMBG references 2126, as previously described in
connection with FIG. 20, would result in a selection of the loss model M; at Tswirenz 2110b.
However, by further utilizing signal-based metrics in the selection of a calibration model, selection
of the loss model M; may be made much earlier, for example, at Tswircnz 2110a, thereby validating
selection based on both SMBG and signal-based metrics within the sensor signal.

[0182] In some embodiments, selection of a candidate calibration model may be made
based on signal-based metrics alone, without the use of SMBGs in the determination. For example,
FIG. 22 illustrates a first plot 2200 including a sensor signal 2202 and a second plot 2222 including
a trace 2222 indicating a probability that a noise metric is present in sensor signal 2202, and a
reference Tswircn 2210 indicating when a switch would take place based on probability trace 2222
exceeding a threshold (e.g., 0.5). As shown, utilizing only sensor-based metrics present in sensor
signal 2202, selection of the loss model M; at Tswiren 2210 may be determined, thereby validating
selection based on signal-based metrics within the sensor signal alone.

[0183] Further to selection of a candidate calibration model based on signal-based metrics
alone, FIG. 23 illustrates a first plot 2300 including a sensor signal 2302 and a second plot 2323
including an IG level 2322 estimated by a global calibration model, an IG level 2324 estimated by
M; before time Tiswiren 2310 and M, thereafter, and SMBG references 2326 (dots). As shown,
utilizing only signal-based metrics, for example a noise duration metric as previously described in
connection with FIG. 22, would result in a selection of the loss model M; at Tswirer 2310. As can
be seen, estimated IG level 2322 utilizing the loss model M; tracks SMBG samples 2326 much
more accurately than estimated IG level 2324 utilizing a static global calibration model, after Tswitch
2310, thereby validating selection based on signal-based metrics within the sensor signal alone.

[0184] The Bayesian Calibration approach described herein provides the statistical
framework for selecting the best calibration model based on glucose sensor characteristics,
auxiliary sensor readings (e.g. impedance, nonenzyme sensors, temperature, or acceleration), and
blood glucose calibration as available. Such an approach provides rules that give rise to a more
accurate description of outlier behaviors not easily or accurately captured by a static global
calibration model approach of the type that is conventionally employed. Where sensor life depends

on subject physiology and manufacturing variability, the present application enables selection of
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a calibration model from several candidate calibration models that describe different cases of the
device-physiology interface state, e.g., stable sensitivity versus declining sensitivity. Where day
one behavior depends on subject physiology and variations in sensor insertion, the present
application enables selection from the candidate calibration models with no dip and recover,
moderate, or severe dip-and-recover time profiles across, e.g., day one. The present application
further contemplates retrospective fitting of the data provided by and for monitors described herein
for health care providers.

[0185] Thus, the various embodiments of the methods, processes and systems disclosed
herein overcome many of the deficiencies of conventional glucose monitoring systems by
providing a system having improved accuracy while also reducing the frequency at which
calibrations are required. These objectives are achieved using calibration models that are selected
in accordance with rules that specify when each of the various calibration models are most
applicable during a monitoring session.

[0186] It should be appreciated that all methods and processes disclosed herein may be
used in any glucose monitoring system, continuous or intermittent. It should further be appreciated
that the implementation and/or execution of all methods and processes may be performed by any
suitable devices or systems, whether local or remote. Further, any combination of devices or
systems may be used to implement the present methods and processes.

[0187] The above description presents the best mode contemplated for carrying out the
present invention, and of the manner and process of making and using it, in such full, clear, concise,
and exact terms as to enable any person skilled in the art to which it pertains to make and use this
invention. This invention is, however, susceptible to modifications and alternate constructions
from that discussed above that are fully equivalent. Consequently, this invention is not limited to
the particular embodiments disclosed. On the contrary, this invention covers all modifications and
alternate constructions coming within the spirit and scope of the invention as generally expressed
by the following claims, which particularly point out and distinctly claim the subject matter of the
invention. While the disclosure has been illustrated and described in detail in the drawings and
foregoing description, such illustration and description are to be considered illustrative or
exemplary and not restrictive.

[0188] All references cited herein are incorporated herein by reference in their entirety. To

the extent publications and patents or patent applications incorporated by reference contradict the
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disclosure contained in the specification, the specification is intended to supersede and/or take
precedence over any such contradictory material.

[0189] Unless otherwise defined, all terms (including technical and scientific terms) are to
be given their ordinary and customary meaning to a person of ordinary skill in the art, and are not
to be limited to a special or customized meaning unless expressly so defined herein. It should be
noted that the use of particular terminology when describing certain features or aspects of the
disclosure should not be taken to imply that the terminology is being re-defined herein to be
restricted to include any specific characteristics of the features or aspects of the disclosure with
which that terminology is associated. Terms and phrases used in this application, and variations
thereof, especially in the appended claims, unless otherwise expressly stated, should be construed
as open ended as opposed to limiting. As examples of the foregoing, the term ‘including’ should
be read to mean ‘including, without limitation,” ‘including but not limited to,” or the like; the term
‘comprising’ as used herein is synonymous with ‘including,” ‘containing,” or ‘characterized by,’
and 1s inclusive or open-ended and does not exclude additional, unrecited elements or method
steps; the term ‘having’ should be interpreted as ‘having at least;’ the term ‘includes’ should be
interpreted as ‘includes but is not limited to;” the term ‘example’ is used to provide exemplary
instances of the item in discussion, not an exhaustive or limiting list thereof, adjectives such as
‘known’, ‘normal’, ‘standard’, and terms of similar meaning should not be construed as limiting
the item described to a given time period or to an item available as of a given time, but instead
should be read to encompass known, normal, or standard technologies that may be available or
known now or at any time in the future; and use of terms like ‘preferably,” ‘preferred,” “desired,’
or ‘desirable,” and words of similar meaning should not be understood as implying that certain
features are critical, essential, or even important to the structure or function of the invention, but
instead as merely intended to highlight alternative or additional features that may or may not be
utilized in a particular embodiment of the invention. Likewise, a group of items linked with the
conjunction ‘and’ should not be read as requiring that each and every one of those items be present
in the grouping, but rather should be read as ‘and/or’ unless expressly stated otherwise. Similarly,
a group of items linked with the conjunction ‘or’ should not be read as requiring mutual exclusivity

among that group, but rather should be read as ‘and/or’ unless expressly stated otherwise.
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[0190] Where a range of values is provided, it is understood that the upper and lower limit,
and each intervening value between the upper and lower limit of the range is encompassed within
the embodiments.

[0191] With respect to the use of substantially any plural and/or singular terms herein,
those having skill in the art can translate from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application. The various singular/plural
permutations may be expressly set forth herein for sake of clarity. The indefinite article ‘a’ or ‘an’
does not exclude a plurality. A single processor or other unit may fulfill the functions of several
items recited in the claims. The mere fact that certain measures are recited in mutually different
dependent claims does not indicate that a combination of these measures cannot be used to
advantage. Any reference signs in the claims should not be construed as limiting the scope.

[0192] It will be further understood by those within the art that if a specific number of an
introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and
in the absence of such recitation no such intent is present. For example, as an aid to understanding,
the following appended claims may contain usage of the introductory phrases ‘at least one’ and
‘one or more’ to introduce claim recitations. However, the use of such phrases should not be
construed to imply that the introduction of a claim recitation by the indefinite articles ‘a’ or ‘an’
limits any particular claim containing such introduced claim recitation to embodiments containing
only one such recitation, even when the same claim includes the introductory phrases ‘one or more’
or ‘at least one’ and indefinite articles such as ‘a’ or ‘an’ (e.g., ‘a’ and/or ‘an’ should typically be
interpreted to mean ‘at least one’ or ‘one or more’); the same holds true for the use of definite
articles used to introduce claim recitations. In addition, even if a specific number of an introduced
claim recitation is explicitly recited, those skilled in the art will recognize that such recitation
should typically be interpreted to mean at least the recited number (e.g., the bare recitation of ‘two
recitations,” without other modifiers, typically means at least two recitations, or two or more
recitations). Furthermore, in those instances where a convention analogous to ‘at least one of A,
B, and C, etc.’ is used, in general such a construction is intended in the sense one having skill in
the art would understand the convention (e.g., ‘a system having at least one of A, B, and C” would
include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and
C together, B and C together, and/or A, B, and C together, etc.). In those instances where a

convention analogous to ‘at least one of A, B, or C, etc.” is used, in general such a construction is
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intended in the sense one having skill in the art would understand the convention (e.g., ‘a system
having at least one of A, B, or C’ would include but not be limited to systems that have A alone,
B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C
together, etc.). It will be further understood by those within the art that virtually any disjunctive
word and/or phrase presenting two or more alternative terms, whether in the description, claims,
or drawings, should be understood to contemplate the possibilities of including one of the terms,
either of the terms, or both terms. For example, the phrase ‘A or B” will be understood to include
the possibilities of ‘A’ or ‘B’ or ‘A and B.”

[0193] All numbers expressing quantities of ingredients, reaction conditions, and so forth
used in the specification are to be understood as being modified in all instances by the term ‘about.’
Accordingly, unless indicated to the contrary, the numerical parameters set forth herein are
approximations that may vary depending upon the desired properties sought to be obtained. At
the very least, and not as an attempt to limit the application of the doctrine of equivalents to the
scope of any claims in any application claiming priority to the present application, each numerical
parameter should be construed in light of the number of significant digits and ordinary rounding
approaches.

[0194] Furthermore, although the foregoing has been described in some detail by way of
illustrations and examples for purposes of clarity and understanding, it is apparent to those skilled
in the art that certain changes and modifications may be practiced. Therefore, the description and
examples should not be construed as limiting the scope of the invention to the specific
embodiments and examples described herein, but rather to also cover all modification and

alternatives coming with the true scope and spirit of the invention.
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WHAT IS CLAIMED IS:

1. A method for monitoring a blood glucose level of a user, the method comprising:

receiving a time-varying electrical signal from an analyte sensor during a temporal
phase of a monitoring session;

selecting a calibration model from a plurality of calibration models, wherein the
selected calibration model comprises one or more calibration model parameters;

estimating at least one of the one or more calibration model parameters of the
selected calibration model based on at least the time-varying electrical signal during the
temporal phase of the monitoring session; and

estimating the blood glucose level of the user based on the selected calibration
model and using the at least one estimated parameter.

2. The method of Claim 1, further comprising receiving a reference input.

3. The method of any one of Claims 1 to 2, wherein selecting the calibration model is
based at least in part on the selected calibration model having the highest probability, of the
plurality of candidate calibration models, of predicting an actual blood glucose level of the user
utilizing the time-varying electrical signal.

4. The method of Claim 3, wherein the probability is a Bayesian probability.

5. The method of any one of Claims 1 to 4, wherein selecting the calibration model is
further based at least in part on detecting a pattern corresponding to the selected calibration model
in the time-varying electrical signal.

6. The method of any one of Claims 1 to 5, wherein the temporal phase is defined to
span a respective predefined interval of time.

7. The method of any one of Claims 1 to 6, wherein at least one of a start and an end
of the temporal phase is determined based on occurrence of corresponding patterns in the time-
varying electrical signal.

8. The method of Claim 7, wherein one of the corresponding patterns is a noise
component of the time-varying electrical signal satisfying a threshold.

9. The method of any one of Claims 1 to 8, wherein estimating at least one of the one
or more calibration model parameters of the selected calibration model comprises:

setting the one or more calibration model parameters to an initial value;
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transforming the time-varying electrical signal into an estimated interstitial glucose
level of the user utilizing the selected calibration model and the initial value of the one or
more calibration model parameters;

estimating the blood glucose level based on the estimated interstitial glucose level;

updating the one or more calibration model parameters based on a difference
between the estimated blood glucose level and a reference input of the blood glucose level
of the user; and

recursively re-estimating the interstitial glucose level and the blood glucose level
based on the selected calibration model and the one or more updated calibration model
parameters until a predefined relationship between the reference input of the blood glucose
level of the user and at least one of the estimated interstitial glucose level and the estimated
blood glucose level is present.

10. The method of Claim 9, wherein the predefined relationship comprises at least one
of the estimated interstitial glucose level and the estimated blood glucose level being within a
predetermined accuracy of the reference input of the blood glucose level.

11. The method of Claim 9, wherein the initial value of the one or more calibration
model parameters is a prior average value for the one or more calibration model parameters.

12. The method of any one of Claims 1 to 11, wherein the plurality of candidate
calibration models comprise a common global calibration model, each utilizing one or more unique
calibration model parameters.

13. The method of Claim 12, wherein the global calibration model comprises a first
portion corresponding to a baseline behavior of the analyte sensor and a second portion
corresponding to a sensitivity of the analyte sensor.

14. The method of any one of Claims 1 to 13, wherein the time-varying electrical signal
comprises a plurality of sensor data points.

15. The method of Claim 2, wherein the reference input comprises at least one of a
blood glucose reference, a noise metric of the time-varying electrical signal, an impedance of the
analyte sensor, an input from a sensor configured to measure at least one of an acceleration of the
user, a temperature and an atmospheric pressure.

16. An apparatus configured to monitor a blood glucose level of a user, the apparatus

comprising;
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a memory; and
a processor configured to:
receive a time-varying electrical signal from an analyte sensor during a
temporal phase of a monitoring session,
select a calibration model from a plurality of calibration models, wherein
the selected calibration model comprises one or more calibration model parameters,
estimate at least one of the one or more calibration model parameters of the
selected calibration model based on at least the time-varying electrical signal and
the reference input during the temporal phase of the monitoring session, and
estimate the blood glucose level of the user based on the selected calibration
model and using the at least one estimated parameter.

17. The apparatus of Claim 16, further comprising the analyte sensor.

18. The apparatus of any one of Claims 16 to 17, wherein the processor is further
configured to receive a reference input.

19. The apparatus of any one of Claims 16 to 18, wherein the processor is configured
to select the calibration model based at least in part on the selected calibration model having the
highest probability, of the plurality of candidate calibration models, of predicting an actual blood
glucose level of the user utilizing the time-varying electrical signal.

20. The apparatus of Claim 19, wherein the probability is a Bayesian probability.

21. The apparatus of any one of Claims 16 to 20, wherein the processor is configured
to select the calibration model based at least in part on detecting a pattern corresponding to the
selected calibration model in the time-varying electrical signal.

22. The apparatus of any one of Claims 16 to 21, wherein the temporal phase is defined
to span a respective predefined interval of time.

23. The apparatus of any one of Claims 16 to 22, wherein the processor is configured
to determine at least one of a start and an end of the temporal phase based on occurrence of
corresponding patterns in the time-varying electrical signal.

24, The apparatus of Claim 23, wherein one of the corresponding patterns is a noise

component of the time-varying electrical signal satisfying a threshold.
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25. The apparatus of any one of Claims 16 to 24, wherein the processor is configured
to estimate at least one of the one or more calibration model parameters of the selected calibration
model by:

setting the one or more calibration model parameters to an initial value;

transforming the time-varying electrical signal into an estimated interstitial glucose
level of the user utilizing the selected calibration model and the initial value of the one or
more calibration model parameters;

estimating the blood glucose level based on the estimated interstitial glucose level;

updating the one or more calibration model parameters based on a difference
between the estimated blood glucose level and a reference input of the blood glucose level
of the user; and

recursively re-estimating the interstitial glucose level and the blood glucose level
based on the selected calibration model and the one or more updated calibration model
parameters until a predefined relationship between the reference input of the blood glucose
level of the user and at least one of the estimated interstitial glucose level and the estimated
blood glucose level is present.

26. The apparatus of Claim 25, wherein the predefined relationship comprises at least
one of the estimated interstitial glucose level and the estimated blood glucose level being within a
predetermined accuracy of the reference input of the blood glucose level.

27. The apparatus of Claim 25, wherein the initial value of the one or more calibration
model parameters is a prior average value for the one or more calibration model parameters.

28. The apparatus of any one of Claims 16 to 27, wherein the plurality of candidate
calibration models comprise a common global calibration model, each utilizing one or more unique
calibration model parameters.

29. The apparatus of Claim 28, wherein the global calibration model comprises a first
portion corresponding to a baseline behavior of the analyte sensor and a second portion
corresponding to a sensitivity of the analyte sensor.

30. The apparatus of any one of Claims 16 to 29, wherein the time-varying electrical
signal comprises a plurality of sensor data points.

31. The apparatus of Claim 18, wherein the reference input comprises at least one of a

blood glucose reference, a noise metric of the time-varying electrical signal, an impedance of the
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analyte sensor, an input from a sensor configured to measure at least one of an acceleration of the
user, a temperature and an atmospheric pressure.

32. A non-transitory, computer-readable medium comprising code that, when
executed, causes a processor of an apparatus configured to monitor a blood glucose level of a user
to:

receive a time-varying electrical signal from an analyte sensor during a temporal
phase of a monitoring session;

select a calibration model from a plurality of calibration models, wherein the
selected calibration model comprises one or more calibration model parameters;

estimate at least one of the one or more calibration model parameters of the selected
calibration model based on at least the time-varying electrical signal and the reference input
during the temporal phase of the monitoring session; and

estimate the blood glucose level of the user based on the selected calibration model
and using the at least one estimated parameter.

33. The non-transitory, computer-readable medium of Claim 32, further comprising
code that, when executed, causes the processor to receive a reference input.

34. The non-transitory, computer-readable medium of any one of Claims 32 to 33,
wherein selecting the calibration model is based at least in part on the selected calibration model
having the highest probability, of the plurality of candidate calibration models, of predicting an
actual blood glucose level of the user utilizing the time-varying electrical signal.

35. The non-transitory, computer-readable medium of Claim 34, wherein the
probability is a Bayesian probability.

36. The non-transitory, computer-readable medium of any one of Claims 32 to 35,
wherein selecting the calibration model is further based at least in part on detecting a pattern
corresponding to the selected calibration model in the time-varying electrical signal.

37. The non-transitory, computer-readable medium of any one of Claims 32 to 36,
wherein the temporal phase is defined to span a respective predefined interval of time.

38. The non-transitory, computer-readable medium of any one of Claims 32 to 37,
wherein at least one of a start and an end of the temporal phase is determined based on occurrence

of corresponding patterns in the time-varying electrical signal.
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39. The non-transitory, computer-readable medium of Claim 38, wherein one of the
corresponding patterns is a noise component of the time-varying electrical signal satisfying a
threshold.

40. The non-transitory, computer-readable medium of any one of Claims 32 to 39,
wherein estimating at least one of the one or more calibration model parameters of the selected
calibration model comprises the processor:

setting the one or more calibration model parameters to an initial value;

transforming the time-varying electrical signal into an estimated interstitial glucose
level of the user utilizing the selected calibration model and the initial value of the one or
more calibration model parameters;

estimating the blood glucose level based on the estimated interstitial glucose level;

updating the one or more calibration model parameters based on a difference
between the estimated blood glucose level and a reference input of the blood glucose level
of the user; and

recursively re-estimating the interstitial glucose level and the blood glucose level
based on the selected calibration model and the one or more updated calibration model
parameters until a predefined relationship between the reference input of the blood glucose
level of the user and at least one of the estimated interstitial glucose level and the estimated
blood glucose level is present.

41. The non-transitory, computer-readable medium of Claim 40, wherein the
predefined relationship comprises at least one of the estimated interstitial glucose level and the
estimated blood glucose level being within a predetermined accuracy of the reference input of the
blood glucose level.

42. The non-transitory, computer-readable medium of Claim 40, wherein the initial
value of the one or more calibration model parameters is a prior average value for the one or more
calibration model parameters.

43. The non-transitory, computer-readable medium of any one of Claims 32 to 42,
wherein the plurality of candidate calibration models comprise a common global calibration

model, each utilizing one or more unique calibration model parameters.
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44, The non-transitory, computer-readable medium of Claim 43, wherein the global
calibration model comprises a first portion corresponding to a baseline behavior of the analyte
sensor and a second portion corresponding to a sensitivity of the analyte sensor.

45. The non-transitory, computer-readable medium of any one of Claims 32 to 44,
wherein the time-varying electrical signal comprises a plurality of sensor data points.

46. The non-transitory, computer-readable medium of Claim 33, wherein the reference
input comprises at least one of a blood glucose reference, a noise metric of the time-varying
electrical signal, an impedance of the analyte sensor, an input from a sensor configured to measure
at least one of an acceleration of the user, a temperature and an atmospheric pressure.

47. A method for monitoring a blood glucose level of a user, the method comprising:

receiving time-varying electrical signals from an analyte sensor during at least first
and second temporal phases of a monitoring session, each of the first and second temporal
phases being different phases of the monitoring session;

selecting a first calibration model from a plurality of calibration models for the first
temporal phase and a second calibration model for the second temporal phase, wherein
each of the first and second calibration models comprises one or more calibration model
parameters, the calibration model selected for the first temporal phase being different from
the calibration model selected for the second temporal phase;

estimating at least one of the one or more calibration model parameters of each of
the first and second calibration models based on at least the time-varying electrical signals
respectively received during the first and second temporal phase of the monitoring session;
and

estimating the blood glucose level of the user during the first and second temporal
phases based on the first and second calibration models, respectively, wherein the first and
second calibration models use the at least one estimated parameter of the first and second
calibration models, respectively.

48. The method of Claim 47, further comprising receiving a reference input.

49. The method of any one of Claims 47 to 48, wherein selecting the first and second
calibration models is based at least in part on the selected first and second calibration models

having the highest probability, of the plurality of candidate calibration models, of predicting during
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the first and second temporal phases, respectively, an actual blood glucose level of the user
utilizing the time-varying electrical signals.

50. The method of Claim 49, wherein the probability is a Bayesian probability.

S1. The method of any one of Claims 47 to 50, wherein selecting at least one of the
first and second calibration models is further based at least in part on detecting a pattern
corresponding to the selected calibration model in the time-varying electrical signal.

52. The method of any one of Claims 47 to 51, wherein the first and second temporal
phases are defined to span different predefined intervals of time.

53. The method of any one of Claims 47 to 52, wherein at least one of a start and an
end of at least one the first and second temporal phase is determined based on occurrence of
corresponding patterns in the time-varying electrical signal received during the at least one of the
first and second temporal phases.

54. The method of Claim 53, wherein one of the corresponding patterns is a noise
component of the time-varying electrical signal satisfying a threshold.

55. The method of any one of Claims 47 to 54, wherein estimating at least one of the
one or more calibration model parameters of the selected first or second calibration model
comprises:

setting the one or more calibration model parameters to an initial value;

transforming the time-varying electrical signal into an estimated interstitial glucose
level of the user utilizing the selected calibration model and the initial value of the one or
more calibration model parameters;

estimating the blood glucose level based on the estimated interstitial glucose level;

updating the one or more calibration model parameters based on a difference
between the estimated blood glucose level and a reference input of the blood glucose level
of the user; and

recursively re-estimating the interstitial glucose level and the blood glucose level
based on the selected calibration model and the one or more updated calibration model
parameters until a predefined relationship between the reference input of the blood glucose
level of the user and at least one of the estimated interstitial glucose level and the estimated

blood glucose level is present.
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6. The method of Claim 55, wherein the predefined relationship comprises at least one
of the estimated interstitial glucose level and the estimated blood glucose level being within a
predetermined accuracy of the reference input of the blood glucose level.

57. The method of Claim 55, wherein the initial value of the one or more calibration
model parameters is a prior average value for the one or more calibration model parameters.

58. The method of any one of Claims 47 to 57, wherein the plurality of candidate
calibration models comprise a common global calibration model, each utilizing one or more unique
calibration model parameters.

59. The method of Claim 58, wherein the global calibration model comprises a first
portion corresponding to a baseline behavior of the analyte sensor and a second portion
corresponding to a sensitivity of the analyte sensor.

60. The method of any one of Claims 47 to 59, wherein the time-varying electrical
signals each comprises a plurality of sensor data points.

61. The method of Claim 48, wherein the reference input comprises at least one of a
blood glucose reference, a noise metric of the time-varying electrical signal, an impedance of the
analyte sensor, an input from a sensor configured to measure at least one of an acceleration of the
user, a temperature and an atmospheric pressure.

62. An apparatus configured to monitor a blood glucose level of a user, the apparatus
comprising;

a memory; and
a processor configured to:

receive time-varying electrical signals from an analyte sensor during at least
first and second temporal phases of a monitoring session, each of the first and
second temporal phases being different phases of the monitoring session,

select a first calibration model from a plurality of calibration models for the
first temporal phase and a second calibration model for the second temporal phase,
wherein each of the first and second calibration models comprises one or more
calibration model parameters, the calibration model selected for the first temporal
phase being different from the calibration model selected for the second temporal

phase,
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estimate at least one of the one or more calibration model parameters of
each of the first and second calibration models based on at least the time-varying
electrical signals respectively received during the first and second temporal phase
of the monitoring session, and

estimate the blood glucose level of the user during the first and second
temporal phases based on the first and second calibration models, respectively,
wherein the first and second calibration models use the at least one estimated

parameter of the first and second calibration models, respectively
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