-UK Patent ..GB .,2537115 DB

(45)Date of B Publication 25.08.2021

(54) Title of the Invention: EveNt monitoring in a multi-threaded data processing
apparatus

(51) INT CL: GO6F 9/48 (2006.01) GO6F 11/30 (2006.01) GO6F 21/60 (2013.01)

(21) Application No: 15057771 (72) Inventor(s):

Michael John Williams
(22) Date of Filing: 02.04.2015 Simon John Craske
(43) Date of A Publication 12.10.2016 (73) Proprietor(s):

ARM Limited

(Incorporated in the United Kingdom)
110 Fulbourn Road, Cherry Hinton, CAMBRIDGE,

(56) Documents Cited: CB1 9NJ, United Kingdom
US 5297283 A US 20130179886 A1
US 20120089979 A1 US 20090290712 A1 (74) Agent and/or Address for Service:
US 20050183065 A1 D Young & Co LLP

120 Holborn, LONDON, EC1N 2DY, United Kingdom
(58) Field of Search:
As for published application 2537115 A viz:
INT CL GO6F
Other: EPODOC, WPI; TXTE; NPL (INSPEC, XPI3E,
XPIEE, XPLNCS, XPMISC, XPESP, XPSPRNG,
XPIPCOM, TDB, XPRD)
updated as appropriate

Additional Fields
Other: None

g Gl1/€9¢ 89

06 05 15

10
o
1 MULTI-THREADED DATA
, PROCESSING APPARATLS
pROFLNG |2 r 28
')

HLETON 1124 12B 12 12D 12E 12F /
i1 N N N SNPIRRINE 2 1 proRLnG
FETCH |, W 1 SAWPLE |
ISSUE -1 | GENERATION

//' 3 I i l E

22 FVENT
14 INFORMATION 16
“ LATTRIBUTES .
{ COUNTER
14A - . o
N COUNTER ATTRIBUTION < CONFIGURATION
148~ EVSEL <> MT
a3) EVSEL<n> SEL
PCRe.._ MTD
¥ ¥
CACHE 30
MEMORY 20

FIG. 1

e

CIS
RO SR N N
ot 3

e \
R R N AN

Videodecsder.

/Adé@@mﬂa///

%/// 2000

3

ICERMCERNC] PV B
O«;f i

:
13

=

=

NN
{bY
J
)
§§@§§§k

=

r"
v

}edocaahobotodod
B RN

¥ g
R |

D

4 g

N
tfo

.
G

fea

events

i

-

Counter

s

single-thread
ST} counting

visible only to

ount
owner th

f
{
i
Ia
A%

contigured for

N AN
x P\I‘v‘
0

2/8

Ins i
RO IVE
) S

FIG. 2a
M
3

erson

[N

T+

ithreaded Processor
] EIV‘C FM
SN0

=M
3
ntersona

NN
§
’;j‘,

0unt

Multithreaded Processor

PMCZH
/ {
MCO/
ulf
S\

reo i S o =5 = e AN (oY o0
FeT o H 252 o%: D.,./// L EA o 4 D
Ryn Bt MR (5 5 o = SN iy (ST Ras=

el
AV
ven
e
N
f
IR ;{I [HREEN]
RN ?a RN

PNC | PMC §PM
1

0

] | et

efo

.....

Trpapaf

Svisih

210600

!

n
¢
1}
IRENIEE NN RN P}

£
MES
==
AT —i 1t

;
o
e
il

o

'DH'
4

uuuuu

e

S
{
>
1

ounte
fiqured
-thread
coun
Disabled counter
\\\\ N

NTG

RUCRRNE
I

N\
PMCO
K
Sﬁi

1

KEY.

G1 G090

FIG. 2b

3/8

WNU@G
M

e e RN
0y RN

=01

T AN
(] NN
e

Videodecoder.

g
/ Wi
D%{E{Q
0

=

‘

e
[
NN NN

FiG. 2¢

il
3.

p e

D
i awe
th

ithreaded Processor
BN
RRMG
0
Al

N

S
L‘&' q
%0
FH
&
7
SV

£
onme
wiis

il

e

uuuuuu

i I%ﬂii
e
1
j

G1 G090

06 05 15

PEQ
COUNT
EVENTS
FROM: PE1
PE2
PE3
MTD=
PED
COUNT
EVENTS
FROM: PE1
PEZ
PES
VMID=

4/8

COUNT EVENTS ON:
PEQ PE1 PE2 PE3

v v v v

FIG. 3A
COUNT EVENTS ON:
PEC PE1 PEZ PE3
e v * *
e v * *
% ® v v
® x v v

06 05 15

5/8

COUNT EVENTS ON:
PEO PE1 PEZ PE3
PED v v e e
COUNT
EVENTS
FROM: PE1 v e ¥ v
PEZ % % v v
PE3 % % e g
VMID= OxD x0 0x1 Ox1
VMTD= 0 0 1 1
FiG. 3C
COUNT EVENTS ON:
PEQ PE1 PEZ PE3
PED v v v v
COUNT
EVENTS
FROM: PE1 v v v e
PEZ ® ® e v
FPE3 4 ® v e

MIMASK: tix 1x1 tx00 x101
FIG. 3D

06 05 15

6/8

EVENT INFORMATION

50~

¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

54+ EVENT SELECTION
(MUX)
56| ATTRIBUTION

52~

EVONTR <n>

60

FIG. 4

EVSEL<n> SEL

EVSEL<>MT
PMCRse, MTD
PMCRgg, MTD

06 05 15

7/8

RECEIVE EVENT INFORMATION | 100
AND ATTRIBUTES

" DOES INDICATED ~~_

" ATTRIBUTION OF EVENT ™
INFORMATION CORRESPOND
TO THREAD ASSOCIATED

WITH THIS COUNTER

e\ 106

" COUNTER "_
o CONFIGURED FOR™
_ MULTI-THREAD

_COUNTING

. 7

18 N 110
o MTIDBIT
 FORTHREAD ™
.................. ¢ INDICATEDBY >
_ ATTRIBUTION

¥

108

Z

. SET

DISALLOW
COUNT

COUNT \104

FIG. 5

06 05 15

8/8

EL3 SECURE MONITOR 164
FL2 HYPERVISOR 162
""""""" 150 /?5)2
EL1 i D i
} OSA H i OS B §
wwwwwww { i i
H i i }
' 154 156 ' ' 158 160
ELO ; i z P z & i
CoiapplapPl L 1APPL APP]
} i] H
o vmor oo VM1
FIG. BA
180 170
Z ;
NON-SECURE (NS) SECURE ()
184 174
OPEN-APPLICATION(S) TRUSTED APPLICATION(S)
182 172
NON-SECURF vyl »
PLATFORM OS SECURE 05
: 164
HYPERVISOR LA~ 183 SECURE MONITOR |47 6

FIG. 6B

Intellectual
Property
Office

Application No. GB1505777.1 RTM Date :25 September 2015

The following terms are registered trade marks and should be read as such wherever
they occur in this document:

TrustZone

Intellectual Property Office is an operating name of the Patent Office www.gov.uk /ipo

10

15

20

25

30

EVENT MONITORING IN A MULTI-THREADED DATA PROCESSING
APPARATUS

TECHNICAL FIELD

The present disclosure relates to a data processing apparatus. More particularly
it relates to a data processing apparatus which can perform multi-threaded data

processing operations.

BACKGROUND

It is known to provide a data processing apparatus which has the capability to
perform multi-threaded data processing, according to which multiple threads of
software are handled by the data processing circuitry of the multi-threaded data
processing apparatus. The data processing apparatus then switches between the
threads according to a defined scheme in order to make forward progress in the data
processing operations defined by the instructions in each thread. For example this may
involve a time-division multiplexing approach, and may also involve context switching
from a first thread to a second thread when the first thread is held up, for example
whilst waiting for data requested by a load operation to return from memory. Another
approach is simultaneous multithreading, where the processor decides on each cycle,
from the set of instructions available from all threads, which threads to execute and
can therefore execute instructions from the same thread simultaneously. There are
various known techniques for handling multiple threads in a data processing apparatus
with which one of ordinary skill in the art will be familiar. It is further known to
provide various types of monitoring capability within a data processing apparatus
which can gather event information relating to the data processing operations which

the data processing circuitry of the data processing apparatus is carrying out.

SUMMARY

Viewed from a first aspect the present techniques provide apparatus for multi-
threaded data processing circuitry to perform data processing operations for each
thread of multiple threads; event handling circuitry to receive event information from

the data processing circuitry indicative of an event which has occurred during the data

10

15

20

25

30

processing operations; and visibility configuration storage to hold a set of visibility
configuration values, each visibility configuration value associated with a thread of the
multiple threads, wherein the event handling circuitry is responsive on receipt of the
event information to adapt its use of the event information to restrict visibility of the
event information for software of threads other than the thread which generated the
event information when a visibility configuration value for the thread which generated

the event information has a predetermined value.

Viewed from a second aspect the present techniques provide a method of
multi-threaded data processing comprising the steps of: performing data processing
operations for each thread of multiple threads; storing a set of visibility configuration
values, each visibility configuration value associated with a thread of the multiple
threads; receiving event information indicative of an event which has occurred during
the data processing operations; and adapting usage of the event information to restrict
visibility of the event information for software of threads other than the thread which
generated the event information when a visibility configuration value for the thread

which generated the event information has a predetermined value.

Viewed from a third aspect the present techniques provide an apparatus for
multi-threaded data processing comprising the steps of performing data processing
operations for each thread of multiple threads; storing a set of visibility configuration
values, each visibility configuration value associated with a thread of the multiple
threads; receiving event information indicative of an event which has occurred during
the data processing operations; and adapting usage of the event information to restrict
visibility of the event information for software of threads other than the thread which
generated the event information when a visibility configuration value for the thread

which generated the event information has a predetermined value.

Viewed from a fourth aspect the present techniques provide a computer
readable storage medium storing in a non-transient form software which when
executed on a computing device causes the computing device to carry out the method

of the second aspect.

10

15

20

25

30

Viewed from a fifth aspect the present techniques provide software which
when executed on a computing device causes the computing device to carry out the

method of the second aspect.

BRIEF DESCRIPTION OF THE DRAWINGS

The present techniques will be described further, by way of example only, with
reference to embodiments thereof as illustrated in the accompanying drawings, in
which:

Figure 1 schematically illustrates an apparatus for multi-threaded data
processing in one embodiment;

Figures 2A, 2B and 2C show different examples of the use of visibility
configuration values to control the visibility of event counts between different threads
being executed by a multi-threaded data processing apparatus in some embodiments;

Figures 3A, 3B, 3C and 3D show four different types of visibility configuration
values and example values thereof leading to different styles of event counting
between the four threads being executed in some embodiments.

Figure 4 schematically illustrates the reception of event information by event
handling circuitry in one embodiment and its configuration to gather event count
information on the basis of the received event information and visibility configuration
values;

Figure 5 is a flow diagram illustrating a sequence of steps which are taken
when carrying out the method of one embodiment to determine if a particular counter
should count events derived from event information;

Figure 6A schematically illustrates four execution levels (privilege levels)
which are implemented in the apparatus of one embodiment; and

Figure 6B schematically illustrates the subdivision of an apparatus into a non-

secure world and a secure world in one embodiment.

DESCRIPTION OF EMBODIMENTS

At least some embodiments provide an apparatus for multi-threaded data

processing comprising data processing circuitry to perform data processing operations

10

15

20

25

30

for each thread of multiple threads; event handling circuitry to receive event
information from the data processing circuitry indicative of an event which has
occurred during the data processing operations; and visibility configuration storage to
hold a set of visibility configuration values, each visibility configuration value
associated with a thread of the multiple threads, wherein the event handling circuitry is
responsive on receipt of the event information to adapt its use of the event information
to restrict visibility of the event information for software of threads other than the
thread which generated the event information when a visibility configuration value for

the thread which generated the event information has a predetermined value.

Event handling circuitry which receives event information from data
processing circuitry in order to gather information with respect to the data processing
operations of that data processing circuitry has been recognised by the present
techniques to present a potential security vulnerability in the context of a multi-
threaded data processing apparatus. For example, the multiple threads being executed
by the data processing circuitry may be being run on different operating systems
supported by the data processing apparatus for which it is desirable that event
information originating in one operating system is not visible to the other operating
system. One example of this is where one thread being executed in one operating
system is carrying out data processing relating to data for which it is desired to provide
protection, such as private keys in a cryptographic context or particular data content
(e.g. personal data) which requires careful protection. Although the event information
may only relate to events occurring during the data processing operations carried out
for each thread which do not appear to have a security implication, such as cache
misses, the present techniques recognise that even such simple hardware based
information could in some ways jeopardise the desired security being maintained with
respect to the thread carrying out the data processing operations on the data which is to

be carefully protected.

The present techniques both recognise and address this problem by providing
visibility configuration storage (for example, in the form of a system control register)

which holds a set of visibility configuration values, each visibility configuration value

10

15

20

25

30

associated with one of the threads of the multiple threads. If the wvisibility
configuration value held for a given thread takes a particular (pre-determined) value
indicating that the visibility of event information should be restricted, the event
handling circuitry which receives the event information from the data processing
circuitry related to the data processing operation which it is carrying out can then take
steps to ensure that the visibility of event information related to the execution of that
thread is restricted for the software of other threads than the thread which generated
the event information. The thread which generated the event information, and in
particular the data which it handles, is thus better protected. The restriction on the
visibility of the event information may take a number of forms in different
embodiments (as is detailed below), for example this restriction may be absolute, so
that strictly only software of the thread which generated the event information has
visibility of it, or it may be slightly more permissive in that software of some other
threads, which are deemed to be trusted in association with the thread which generated

the event information, are also allowed visibility of the event information.

In some embodiments, not only is visibility of the event information restricted
for software of threads other than the thread which generated the event information (in
dependence on the corresponding visibility configuration value) but also each visibility
configuration value is not accessible to software of threads other than the
corresponding thread. This provides a further level of protection for that
corresponding thread, in that software of other threads not only can be prevented from
seeing event information relating to that thread, but they can also be prevented from
even knowing what the visibility configuration value held for that thread is, and

certainly cannot modify it.

The event handling circuitry may take a variety of forms, but in some
embodiments the event handling circuitry comprises at least one event counter. On the
basis of the event information received from the data processing circuitry the at least
one event counter can therefore accumulate a total count of the number of events of a
particular predetermined kind which are determined to have occurred on the basis of

that received event information.

10

15

20

25

30

Where the event handling circuitry comprises at least one event counter the
number of event counters may vary, but in some embodiments the at least one event
counter comprises an event counter for each thread of the multiple threads.
Accordingly, a corresponding accumulated event count can be kept for each of the

multiple threads.

Whilst each event counter could be configured only to count events for a single
corresponding thread, in some embodiments the at least one event counter is
configurable for multi-thread event counting and the at least one event counter counts
events for more than one thread. Thus this multi-thread counting event counter may be
configured in a range of ways for event counting, from only counting for a small sub-
set of the multiple threads, through to event counting for all of the multiple threads
being executed by a data processing circuitry. This is however subject to the
additional constraint according to the present techniques that a thread being executed
by the data processing circuitry which generates event information received by the
event counter can be excluded from this multi-thread event counting configured event
counter, by virtue of setting its corresponding visibility configuration value to the
predetermined value, and in response to this the event handling circuitry does not
allow event information from that thread to be registered as a count in the multi-thread

event counting counter.

Thus, in some embodiments responsive to the at least one event counter
performing multi-thread event counting the at least one event counter does not count
events for the thread which generated the event information when a visibility

configuration for the thread has the predetermined value.

The set of visibility configuration values held by the visibility configuration
storage may take a variety of forms, but in some embodiments the visibility
configuration storage is arranged to hold single bit configuration visibility
configuration values. For example, a single bit visibility configuration value may be

held by the visibility configuration storage for each thread of the multiple threads that

10

15

20

25

30

are handled by the data processing circuitry. Thus, each thread can have its event
information visibility for software of other threads defined by its own corresponding

single bit configuration visibility value.

In some embodiments, the visibility configuration storage is arranged to hold
multi-bit visibility configuration values, wherein the event handling circuitry is
responsive on receipt of the event information to adapt its use of the event information
such that visibility of the event information for software of each of the multiple threads
other than the thread which generated the event information is defined by a
corresponding bit of a multi-bit visibility configuration value stored for the thread
which generated the event information. These multi-bit visibility configuration values
held by the visibility configuration storage could take a range of forms, but in some
embodiments a multi-bit visibility configuration value is held by the visibility
configuration storage for each thread of the multiple threads. The multi-bit visibility
configuration value held for each thread can thus define whether the event information
generated by that thread is visible to software on each of the other multiple threads

individually.

There may be groupings of threads (for example having a logical, security or
other connection with one another), within which it is considered acceptable to share
event information and in some embodiments the thread which generated the event
information is comprised in a group of threads, and the event handling circuitry is
responsive on receipt of the event information to adapt its use of the event information
such that the event information is visible to software of threads in the group of threads
and such that the event information is not visible to software of threads not comprised
in the group of threads. Thus threads within the group have mutual event information
visibility within the group and threads outside the group have no visibility of event

information within the group.

In some embodiments the group of threads is defined by a group identifier, and
the event handling circuitry is responsive on receipt of the event information to use the

group identifier as the visibility configuration value. In other words, restriction of the

10

15

20

25

30

visibility of the event information for software of threads other than the thread which
generated the event information may be determined by the group identifier itself,

which characterises the group of threads as a group.

In other embodiments a group visibility configuration value for the group of
threads may be defined and in such embodiments the thread which generated the event
information is comprised in a group of threads, and the visibility configuration value is

given by a group visibility configuration value for the group of threads.

In some embodiments the event handling circuitry may impose a strict
“generating thread only” wvisibility rule, wherein (when the visibility configuration
value for the thread which generated the event information has the predetermined
value) the only software which is allowed visibility of the event information is the
thread which generated it, and in such embodiments the event handling circuitry is
responsive on receipt of the event information to adapt its use of the event information
such that the event information is not visible to software of threads other than the
thread which generated the event information when the visibility configuration value

for the thread which generated the event information has the predetermined value.

The multiple threads may be grouped together into at least one group of threads
for which a visibility configuration value is defined for the group as a whole and thus
in some embodiments at least one visibility configuration value corresponds to a group
of threads of the multiple threads, and the event handling circuitry is responsive on
receipt of the event information to adapt its use of the event information such that the
event information is not visible to software of threads other than threads in the group
of threads which includes the thread which generated the event information when the
visibility configuration value for the group of threads including the thread which

generated the event information has the predetermined value.

The grouping of threads in this manner may correspond to a range of different
logical, security-based, or other chosen groupings, for example in some embodiments

the group of threads may be defined to correspond to a given virtual machine identifier

10

15

20

25

30

being used within the apparatus, where the data processing circuitry is capable of
supporting multiple virtual machines which are each identified by such a virtual
machine identifier. Where threads are defined to belong to the same virtual machine

identifier grouping then they will have visibility of each others’ event information.

In some embodiments the data processing circuitry is arranged to perform data
processing operations for each thread of multiple threads at a selected execution level
of multiple execution levels, wherein each visibility configuration value is not
accessible to threads being executed at a lower execution level than the selected
execution level. The multiple execution levels thus can be arranged as a privilege
hierarchy, according to which higher execution levels have access to the visibility

configuration values of lower execution levels but not vice versa.

Indeed in some embodiments each visibility configuration value is not
accessible to software of threads being executed at a same execution level as the
selected execution level. This may be made use of in particular at the lower end of the
privilege hierarchy of execution levels, such that software of threads being executed at

lower execution levels can only access their own visibility configuration value.

The multiple execution levels may take a variety of forms, but in some
embodiments the multiple execution levels comprise multiple exception levels. In
some embodiments the multiple execution levels comprise multiple security levels.
Maintenance of the integrity of the privilege hierarchy, whatever particular form it

takes, is thus supported by the present techniques in such embodiments.

Whatever form the execution levels may take, in some embodiments the
apparatus is arranged to update the visibility configuration value when context
switching between execution levels. This also helps to maintain the integrity of the

privilege hierarchy when the apparatus context switches.

In some embodiments the data processing circuitry is arranged to perform the

data processing operations in response to instructions and to select a subset of the

10

15

20

25

30

10

instructions which it executes for profiling, the profiling being on the basis of event
information generated for the subset of instructions, wherein the profiling comprises
storing to a storage unit profiling data comprising the event information or further
information derived from the event information, and wherein the data processing
circuitry is arranged to prevent storage of the profiling data when the visibility
configuration value for the thread which generated the event information has the
predetermined value. The ability to perform profiling for a subset of instructions may
thus be supported, whilst still protecting the thread which generated the event
information (by setting the visibility configuration value to the predetermined value),
since profiling data on the basis of the event information received (for the thread being
protected) will not be stored to the storage unit. The manner in which storage of the
profiling data is prevented may vary, for example it may comprise excluding
instructions from the subset on the basis of the visibility configuration value. It may
comprise steps being taken to prevent particular event information (or further
information derived from the event information) from being stored as profiling data to

the storage unit.

At least some embodiments provide a data processing system comprising the

apparatus as set out in any of the above described embodiments and a storage unit.

At least some embodiments provide a method of multi-threaded data
processing comprising the steps of performing data processing operations for each
thread of multiple threads; storing a set of wvisibility configuration values, each
visibility configuration value associated with a thread of the multiple threads;
receiving event information indicative of an event which has occurred during the data
processing operations; and adapting usage of the event information to restrict visibility
of the event information for software of threads other than the thread which generated
the event information when a visibility configuration value for the thread which

generated the event information has a predetermined value.

At least some embodiments provide an apparatus for multi-threaded data

processing comprising means for performing data processing operations for each

10

15

20

25

30

11

thread of multiple threads; means for storing a set of visibility configuration values,
each visibility configuration value associated with a thread of the multiple threads;
means for receiving event information from the means for performing data processing
operations indicative of an event which has occurred during the data processing
operations;, and means for adapting usage of the event information to restrict visibility
of the event information for software of threads other than the thread which generated
the event information when a visibility configuration value for the thread which

generated the event information has a predetermined value.

At least some embodiments provide a computer readable storage medium
storing in a non-transient form software which when executed on a computing device

causes the computing device to carry out the above mentioned method.

At least some embodiments provide software which when executed on a
computing device causes the computing device to carry out the above mentioned

method.

Figure 1 schematically illustrates a multi-threaded data processing apparatus in
one embodiment. This multi-threaded data processing apparatus 10 has an overall
configuration according to which its data processing circuitry performs data processing
operations on the basis of data processing instructions. In the example of Figure 1, the
data processing circuitry is represented by the execution pipeline 12, for which a
fetch/issue unit 22 is provided to retrieve a sequence of data processing instructions
from memory 20 and to issue these appropriately into the execution pipeline 12, in a
manner in which one of ordinary skill in the art will be familiar. Furthermore, the
execution pipeline 12 comprises a final writeback (WB) stage 12F which causes the
result of the data processing operations to be written back to the memory 20, also in a
manner in which ordinary skilled in the art will be familiar. The data processing
apparatus 10 is not only capable of executing a single thread of data processing
instructions, but is configured as a multi-threaded data processing apparatus, such that
multiple threads of data processing instructions can be concurrently handled by the

data processing apparatus 10, and the fetch/issue unit 22 is configured to administer

10

15

20

25

30

12

the retrieval and issuance of the instructions for each of these respective multiple
threads, and to appropriately issue a next data processing instruction into the execution
pipeline 12 for one of these threads. One of ordinary skill in the art will be familiar
with the various ways in which a multi-threaded data processing apparatus can handle
and switch between its multiple threads, and further detailed description of this aspect

of the operation of the data processing apparatus is omitted here for brevity.

As a data processing instruction progresses through the execution pipeline 12,
the response of the execution pipeline stages (12A-F) may result in event information
being generated which is passed to the set of counters 14. There is no particular
constraint here on the nature that this event information may take, and it may relate to
any aspect of the operation of the execution pipeline 12, of the data processing
apparatus 10, or indeed to an indication received by the data processing apparatus 10
relating to a component of the wider data processing system (of which the data
processing apparatus 10 forms part, for example including the memory 20 and the

cache 30 in the example of Figure 1).

One manner in which the event information is used in the example of Figure 1
is by the provision of the set of counters 14 in association with the execution pipeline
12. Event information indications are received from the execution pipeline 12 by the
counters 14, together with further attribute information associated therewith (for
example an indication of the thread which caused the generation of that event
information). The counters 14 comprise a set of counter attribution circuitry 14A
together with multiple individual counters 14B, which in the example of Figure 1
comprise 16 separate individual counters. On the basis of the event information and
associated attributes received, the counter attributions can cause at least one of the
individual counters 14B to increment its count. Further detail of the operation of the
counter attribution circuitry 14A is given below with reference to Figures 4 and 5. The
particular manner in which the counter attribution circuitry 14A will operate is defined
by the counter configuration unit 16, which in the example of Figure 1 takes the form
of system control registers, and in accordance with the present techniques these can

hold the illustrated values EVSEL<n>MT, EVSEL<n> SEL and PMCRpg<y>MTD

10

15

20

25

30

13

the use of which will be described below with reference to Figure 4. Central to the
present techniques is the value MTD (a “visibility configuration value”) for each

thread, the use of which will be described below with reference to Figures 2A-C.

A further aspect of the configuration of the data processing apparatus 10 in
Figure 1 is provided by the profiling selection circuitry 24 and the profiling sample
generation circuitry 26. In order to gather profiling information relating to the
operation of the data processing apparatus, in particular with a regard to the manner in
which particular instructions are handled by the data processing apparatus 10, the
profiling selection circuitry 12 monitors the instructions being retrieved from memory
by the fetch/issue unit 22 and has a configuration to cause selected instructions of
those instructions to be tagged for profiling as they pass through the execution pipeline
12. The profiling sample generation circuitry 26, for the tagged instructions which
have been selected for profiling by the profiling selection circuitry 24, generates
profiling data which it then causes to be stored in memory 20 for later analysis. In
order to determine which instructions should be selected for profiling, the profiling
selection circuitry 24 also has access to the system control registers, and in accordance
with the present techniques in particular the system control register holding the
PMCRpg<m>MTD, the setting of this value for a particular thread n causing
instructions of that thread be opted out of the profiling.

Figures 2A-2C give an overview of how a set of sixteen individual counters
(such as the sixteen counters 14B in the multi-threaded data processing apparatus 10 of
Figure 1) may be configured to count events occurring within the multi-threaded
processing system, in which four threads are being handled. As labelled in Figures
2A-2C, these four (hardware) threads are represented by PE (processing element) 0-3.
As can also be seen in the examples of Figure 2A-C, threads PE 0-2 are running a
platform operating system (“Platform OS”), whilst the thread PE 3 is running a

dedicated video decoder.

As can be seen in Figures 2A-2C, each thread (PE) is allocated four counters.

In the example shown in Figure 2A two of the counters allocated to each PE are

10

15

20

25

30

14

configured for single-thread (ST) counting. These are labelled PMC 2 and PMC 3.
Conversely, various counters have been configured for multi-thread (MT) counting,
namely: PMC 0 and PMC 1 for PE 0; PMC 0 for PE 2; and PMCO for PE 3. The
unshaded counters (PMC 0 and PMC 1 for PE 1, and PMC 1 for PE 2 and PE 3) are
disabled. In the example of Figure 2A, the control bit MTD has been set for PE 3 to be
1, whilst it has been set for PE 0-2 to be 0. This “opts out” PE 3 (i.e. the thread
executing the video decoder) from the multi-threaded view of the other threads (i.e.
those executing the platform OS). Where this control bit is clear (i.e. zero) for PE 0-2,
the data processing operations of each of those threads is visible to the other MT
threads in the current MT cluster (i.e. PE 0-2). When the operating setup shown in
Figure 2A is implemented by the data processing apparatus by providing one virtual
machine (VM) for the platform OS and another for the video decoder, when the
hypervisor of the system context switches between these VMs the control bit is
updated by the hypervisor along with the state of the guest operating system, so that
information from a more secure VM (i.e. the video decoder) can be hidden from the

other virtual machine (i.e. the operating system).

Thus, in the example shown in Figure 2A, the counters configured as MT and
allocated to any PE can be used to monitor (i.e. count) the platform OS events (in the
figure diagonally hatched top left to bottom right), i.e. events attributable to PE 0-2.
PE 3 is running a dedicated video decoder (in the figure diagonally hatched bottom left
to top right) which the hypervisor has determined should be protected, and its
operation hidden from the platform OS. Hence the control bit MTD has been set for
this PE, such that the video decoder events, i.e. events attributable to PE 3, are visible
to PE 3 only, and so are never counted by the counters allocated to PE 0-2.
Accordingly, by this use of the MTD control bit for each processing element, multi-
threaded event counting can be supported whilst maintaining the security required

between the threads being executed.

Figure 2B shows a variation on the configuration of Figure 2A, in particular
where a 2-bit control value (labelled in this example as MTG) is used to group the PEs

together so that multi-threaded (MT) counting can occur amongst PEs which are

10

15

20

25

30

15

allocated to the same group. In the example of Figure 2B, the MTG control value is a
two-bit value and is set for the respective PEs such that PE 0-2 form one group (MTG
= 0b00), whilst PE 3 forms its own “group” (MTG = 0b01). The particular effect of
this grouping with regard to the visibility of events attributable to PE 0-2 (compared to
the example of Figure 2A) is that events attributable to PE 0-2 are now no longer
visible to PE 3. This is due to the fact that PE 3 forms its own “group” (by being the
only PE having the MTG value 0b01).

A similar result is produced by the alternative shown in Figure 2C, in which
instead of the grouping of the PEs being provided by the setting of the MTG value of
Figure 2B, in Figure 2C this is provided by reference to the VMID values, i.e.
identifier values attributed to different virtual machines (VMs) which are provided in
this multi-threaded processor. In the example of Figure 2C PEs 0-2 belong to VMO
(VMID = 0x0), whilst PE 3 belongs to VM1 (VMID = 0x1).

Figures 3A-3D show different examples of control values being used to
configure the manner in which events occurring for a set of four PEs are counted on
four counters respectively attributed to those four PEs. In the example of Figure 3A,
the control bit MTD is clear (0) for PEO and PE1 whilst it is set (1) for PE 2 and PE 3.
This has the effect that, and noting that all counters in this example are configured for
multi-threaded (MT) counting, the counters allocated to any PE will count events from
PE 0 and PE 1, but events from PE 2 are only counted by a counter allocated to PE 2

and similarly events from PE 3 are only counted on a counter allocated to PE 3.

In the example of Figure 3B, grouping of the PEs for the purpose of event
counting and event counting visibility, is achieved with reference to the above-
mentioned VMID values. As can be seen in Figure 3B, PE 0 and PE 1 belong to
VMID 0, whilst PE 2 and PE3 belong to VMID 1. As a result, and again bearing in
mind that all counters in this example are configured for MT operation, a configuration
is provided in which counts from PEs in a VMID group are only counted on counters
attributed to that VMID group, and the resulting counts are then visible only to PEs
within that VMID group. Thus, in the example shown in Figure 3B it can be seen that

10

15

20

25

30

16

for VMID group O counts of events from PE 0 and PE 1 are made on counters
allocated to PE 0 and PE 1 (only), whilst events from PE 2 and PE 3 are counted (only)
on counters allocated to PE 2 and PE 3. There is no cross-counting between the two

VMID groups.

Figure 3C shows a variant on the embodiment of Figure 3B, again using the
virtual machine identifier VMID, but in addition using an associated group control bit
(VMTD) to further define the visibility of event counts between the two groups. In
this example, PE 0 and PE 1 belong to a first virtual machine (VMID = 0) and PE 2
and PE 3 belong to a second virtual machine (VMID = 1) and correspondingly the
value of VMTD set for PE 0 and PE 1 is 0 and the value of VMTD set for PE 2 and PE
3 is 1. As can be seen in Figure 6, this has the effect, compared to the example of
Figure 3B, that additionally events from PE O and PE 1 are counted on counters

allocated to PE 2 and PE 3.

Finally, Figure 3D shows an example in which the visibility of event counts
between threads is controlled by a use of a mask value (MTMASK) stored for each
thread. The MTMASK value stored for each thread is shown at the bottom of Figure
3D corresponding to the “count events on” column for the corresponding thread. The
MTMASK values are shown in a little endian format with respect to the thread
numbering and it can therefore be seen that no explicit value is stored for the thread
itself (and the value is instead indicated in the figure by “x”, which is effectively
treated as a set value of “17). The effect of setting up these mask values with the bit
patterns shown in Figure 3D is that events from PE O and PE 1 are counted on all
counters, whilst events from PE 2 are only counted on counters allocated to PE 2 and

PE 3. The counters for PE 2 and PE 3 count events for themselves and for each other,

and in addition events from PE 3 are counted on a counter allocated to PE 0.

Figure 4 shows an example of how the counter circuitry of 14 of Figure 1 is
configured in one embodiment. Thus, in Figure 4 the counter attribution circuitry
(14A in Figure 1) is shown by reference 50, whilst an example counter (14B in Figure

1) is shown by reference 52. The counter attribution circuitry 50 comprises event

10

15

20

25

30

17

selection circuitry (essentially a multiplexer) 54 and attribution circuitry 56. The
counter 52 comprises an adder 58 and a value storage 60 attributed to this particular
counter (label “n”). The event selection multiplexer 54 is steered on the basis of the
control value EVSEL<n> SEL which it receives from the counter configuration unit
(16 in the example of Figure 1). Here “n” corresponds to the particular counter under
consideration and thus the EVSEL<n> SEL value selects one of the received events
for the counter <n>. In the illustrated example (where the event selection multiplexer
is shown receiving event information from 8 different sources) EVSEL<n> SEL is a 3-
bit selecting value, allowing the selection of one of the eight events. The selected
event information (a single bit indicating that an event for which a count may be
recorded has been observed) is passed to the attribution circuitry 56. The attribution
circuitry 56 will pass an event count signal for the thread to which a given counter is
allocated (as indicated by the attribute value received with that information that event
information) on to the event counter 52 without further filtering. However, the
attribution circuitry 56 also receives a bit value MT of the EVSEL<n> value indicating
whether counter n is currently configured for multi-thread counting. Thus, for event
counts received that are attributed to a different thread, the attribution circuitry 56 also
determines if the counter is permitted accumulate this count value. If the event counter
is configured for multi-thread counting then the attribution circuitry 56 further
determines if the MTD bit (given by PMCRpg<nreag>- MTD) corresponding to the thread
indicated by the attribute information received is set. If this value is set, then this
indicates that the thread which generated this event information has been configured to
be “opted out” of the multi-thread view of other threads and the attribution circuitry 56
does not pass the indication of the event occurring on to any counter 52 which is not
allocated to that thread. However, if the MTD bit is not set for the thread which owns
this event information then the attribution circuitry 56 does pass the event (count)
indication on to other event counters 52 which are allocated to other threads (and are
configured (by the setting of their MT bit) for multi-thread counting). An individual
counter 52 then adds (using its adder 58) the indication of the event occurrence to its
currently stored (in storage 60) value for the number of counts seen by this counter for

thread n.

10

15

20

25

30

18

Figure 5 shows a flow diagram indicating a sequence of steps which are taken
in one embodiment to determine if received event information and attributes should
result in an incremented count for a particular counter. New event information and
attributes (which may for example simply be a set bit indicating the occurrence of a
particular event and an indication of the owning thread) are received at step 100. Then
at step 102 it is determined if the indicated attribution of the event information (i.e. the
owning thread) correspond to the thread to which the particular counter under
consideration is allocated. If it does, then the flow proceeds directly to step 104 where
this event is allowed to increment this counter (NB assuming this counter is currently
enabled). If however at step 102 it is determined that the event information
corresponds to a thread not associated with this counter, then the flow proceeds to step
106 where it is determined if the counter under consideration is currently configured
for multi-threaded counting. If it is not, then the flow proceeds to step 108 and the
corresponding counter is not allowed to increment. If however this counter is
configured for multi-thread counting then the flow proceeds to step 110 where it is
determined if the MTD bit is currently set for the thread indicated by the attribution
information associated with this event indication. If this MTD bit is set then the flow
also proceeds to step 108 and the counter is not allowed to increment. If however at
step 110 it is found that the MTD bit is not set then the flow proceeds to step 104
where the increment of the relevant counter is allowed (assuming that the counter is

currently enabled).

As described above, some embodiments may make use of a virtual machine
identifier (VMID) in place of, or in addition to, the control bit MTD and Figure 6A
schematically illustrates the logical internal configuration of data processing apparatus
supporting multiple virtual machines. Thus, Figure 6A schematically illustrates an
embodiment in which a virtualised operating environment is provided. Two guest
operating systems OS A 150 and OS B 152 are shown (but more may be supported,
but are not illustrated here for clarity) under the control of which respective
applications 154, 156, 158, 160 are executed. Overall control of these guest operating
systems and the applications they execute is maintained by a hypervisor 162 which

further maintains overall control of the virtualised operating environment and dictates

10

15

20

25

30

19

what a particular virtual machine (i.e. guest operating system and the applications it is
running) can see and interact with in the system. In the example shown in Figure 6A,
guest operating system OS A 150 and the applications which it runs represent a first
virtual machine (VMO) and the second guest operating system OS B 152 and the
applications which it runs can be considered to be a second virtual machine (VM1).
Figure 6A also schematically illustrates the fact that different components of the
system shown operate at different “exception levels” (ELO-3), which essentially
represent different levels of privilege within the system and correspond to the level of
control and visibility of other components of the system that a given component has.
Thus, a privilege hierarchy is supported with the applications 154-160 operating at the
lowest level of that hierarchy, the guest operating systems 150 and 152 operating at a
next higher level of that hierarchy, and the hypervisor 160 operating at still higher
level. Note also that in Figure 6A a further higher level of this privilege hierarchy is
shown, namely the secure monitor 164, which operates at the highest level of privilege
supported in the system in order to maintain strict control over the sub-division of the
system into a “secure world” and a “non-secure world” to provide a reliable security
division between trusted applications / operating systems which may handle security-
sensitive data and other applications / operating systems to which such trust is not
afforded. This is discussed below with reference to Figure 6B. With particular
reference to the present techniques, a given PE (thread) which is executed in order to
run one of the applications 154-160 will, as described above, have a particular value of
a control bit set (which may be a dedicated control bit such as MTD stored in a system
control register, or may be represented by the virtual machine identifier VMID (held
by the system to identify virtual machines VMO and VM1), or any of the other variants
thereon discussed above). The hypervisor 162 is responsible for context switching
between the virtual machines and thus when such a context switch is carried out and
the state of one guest OS (and more generally virtual machine) is replaced by another,
the hypervisor 162 is also responsible for appropriately switching the relevant control
bit (whether embodied as a single per-thread bit, or as a group bit, or as a mask value
in accordance with the embodiments described above) such that the desired control

over the visibility between threads is maintained. In particular, this ensures that event

10 05 21

10

15

20

25

30

20

information (e.g. count values) for a more trusted (secure) virtual machine can be

hidden from a less trusted virtual machine.

Figure 6B schematically illustrates the sub-division of the data processing
system into the above-mentioned secure (S) and non-secure (NS) worlds. This may be
implemented by the use of the TrustZone (RTM) technology provided by ARM
Limited of Cambridge, UK. Control of this sub-division and the transition between the
secure and non-secure worlds is maintained by the secure monitor 164, which
therefore itself forms part of the secure world 170, and in terms of the privilege
hierarchy shown in Figure 6A operates at the highest level thereof. Also comprised
within the secure world 170 are any guest operating systems which are trusted to
operate within this space, e.g. secure operating system 172, as well as at least one
trusted application 174. The non-secure world 180 comprises the non-secure platform
operating system 182, the hypervisor 183, and at least one open application 184.
Hence, the division of the system into a secure world 170 and the non-secure world
180 thus represents another example of a sub-division of the system into parts for
which event information on one side may require restricting in terms of its visibility
for components on the other side. As such, as part of the control which the secure
monitor 164 exerts over the system as a whole, it ensures that the visibility
configuration value (i.e. control bit, group bit, VMID value, mask value etc.) used for
a given thread executed within the secure world is set appropriately such that event
information relating to the execution of that thread is not visible (if required) to
software of threads operating in the non-secure world. Moreover, the secure monitor
164 further ensures that these values held for threads operating in the secure world are

not even visible to threads operating in the non-secure world.

Thus by way of overall summary, in an apparatus performing multi-threaded
data processing event handling circuitry receives event information from the data
processing circuitry indicative of an event which has occurred during the data
processing operations. Visibility configuration storage holds a set of visibility
configuration values, each visibility configuration value associated with a thread of the

multiple threads and the event handling circuitry adapts its use of the event

10

15

20

25

21

information to restrict visibility of the event information for software of threads other
than the thread which generated the event information if a visibility configuration
value for the thread which generated the event information has a predetermined value.
This allows multi-threaded event monitoring to be supported, whilst protecting event
information from a particular thread for which it is desired to limit its visibility to

software of other threads.

In the present application, the words “configured to...” and “arranged to” are
used to mean that an element of an apparatus has a configuration able to carry out the
defined operation. In this context, a “configuration” means an arrangement or manner
of interconnection of hardware or software. For example, the apparatus may have
dedicated hardware which provides the defined operation, or a processor or other
processing device may be programmed to perform the function. “Configured to” or
“arranged to” does not imply that the apparatus element needs to be changed in any

way in order to provide the defined operation.

Although illustrative embodiments have been described in detail herein with
reference to the accompanying drawings, it is to be understood that the invention is not
limited to those precise embodiments, and that various changes, additions and
modifications can be effected therein by one skilled in the art without departing from
the scope and spirit of the invention as defined by the appended claims. For example,
various combinations of the features of the dependent claims could be made with the
features of the independent claims without departing from the scope of the present

invention.

10 05 21

10

15

20

25

30

22

CLAIMS

1. Apparatus for multi-threaded data processing comprising:

data processing circuitry to perform data processing operations for each thread
of multiple threads;

event handling circuitry to receive event information from the data processing
circuitry indicative of an event which has occurred during the data processing
operations; and

visibility configuration storage to hold a set of visibility configuration values,
each visibility configuration value associated with a thread of the multiple threads,

wherein the event handling circuitry is responsive on receipt of the event
information to adapt its use of the event information to restrict visibility of the event
information for software of threads other than the thread which generated the event
information when a visibility configuration value for the thread which generated the

event information has a predetermined value.

2. The apparatus as claimed in claim 1, wherein each visibility configuration

value is not accessible to software of threads other than the corresponding thread.

3. The apparatus as claimed in claim 1 or claim 2, wherein the event handling

circuitry comprises at least one event counter.

4. The apparatus as claimed in claim 3, wherein the at least one event counter

comprises an event counter for each thread of the multiple threads.

5. The apparatus as claimed in any claim 3 or claim 4, wherein the at least one
event counter is configurable for multi-thread event counting and the at least one event

counter counts events for more than one thread.

6. The apparatus as claimed in claim 5, wherein responsive to the at least one

event counter performing multi-thread event counting the at least one event counter

10 05 21

10

15

20

25

30

23

does not count events for the thread which generated the event information when a

visibility configuration value for the thread has the predetermined value.

7. The apparatus as claimed in any preceding claim, wherein the visibility

configuration storage is arranged to hold single bit visibility configuration values.

8. The apparatus as claimed in any preceding claim, wherein the visibility
configuration storage is arranged to hold multi-bit visibility configuration values,
wherein the event handling circuitry is responsive on receipt of the event
information to adapt its use of the event information such that visibility of the event
information for software of each of the multiple threads other than the thread which
generated the event information is defined by a corresponding bit of a multi-bit
visibility configuration value stored for the thread which generated the event

information.

0. The apparatus as claimed in any of claims 1-8, wherein the thread which
generated the event information is comprised in a group of threads,

and the event handling circuitry is responsive on receipt of the event
information to adapt its use of the event information such that the event information is
visible to software of threads in the group of threads and such that the event

information is not visible to software of threads not comprised in the group of threads.

10. The apparatus as claimed in claim 9, wherein the group of threads is defined by
a group identifier, and the event handling circuitry is responsive on receipt of the event

information to use the group identifier as the visibility configuration value.

11. The apparatus as claimed in any of claims 1-8, wherein the thread which
generated the event information is comprised in a group of threads, and the visibility
configuration value is given by a group visibility configuration value for the group of

threads.

10 05 21

10

15

20

25

30

24

12. The apparatus as claimed in any of claims 1-8, wherein the event handling
circuitry is responsive on receipt of the event information to adapt its use of the event
information such that the event information is not visible to software of threads other
than the thread which generated the event information when the wisibility
configuration value for the thread which generated the event information has the

predetermined value.

13. The apparatus as claimed in any preceding claim, wherein the data processing
circuitry is arranged to perform data processing operations for each thread of multiple
threads at a selected execution level of multiple execution levels, wherein each
visibility configuration value is not accessible to threads being executed at a lower

execution level than the selected execution level.

14. The apparatus as claimed in claim 13, wherein the multiple execution levels

comprise multiple exception levels.

15. The apparatus as claimed in claim 13 or claim 14, wherein the multiple

execution levels comprise multiple security levels.

16. The apparatus as claimed in any of claims 13-15, wherein the apparatus is
arranged to update the visibility configuration value when context switching between

execution levels.

17. The apparatus as claimed in any preceding claim, wherein the data processing
circuitry 1s arranged to perform the data processing operations in response to
instructions and to select a subset of the instructions which it executes for profiling, the
profiling being on the basis of event information generated for the subset of
instructions,

wherein the profiling comprises storing to a storage unit profiling data
comprising the event information or further information derived from the event

information,

10 05 21

10

15

20

25

30

25

and wherein the data processing circuitry is arranged to prevent storage of the
profiling data when the visibility configuration value for the thread which generated

the event information has the predetermined value.

18. A data processing system comprising the apparatus as claimed in any preceding

claim and a storage unit.

19. A method of multi-threaded data processing comprising the steps of:
performing data processing operations for each thread of multiple threads;
storing a set of visibility configuration values, each visibility configuration
value associated with a thread of the multiple threads;
receiving event information indicative of an event which has occurred during
the data processing operations; and

adapting usage of the event information to restrict visibility of the event
information for software of threads other than the thread which generated the event
information when a visibility configuration value for the thread which generated the

event information has a predetermined value.

20. Apparatus for multi-threaded data processing comprising:

means for performing data processing operations for each thread of multiple
threads;

means for storing a set of visibility configuration values, each visibility
configuration value associated with a thread of the multiple threads;

means for receiving event information from the means for performing data
processing operations indicative of an event which has occurred during the data
processing operations; and

means for adapting usage of the event information to restrict visibility of the
event information for software of threads other than the thread which generated the
event information when a visibility configuration value for the thread which generated

the event information has a predetermined value.

10 05 21

10

26

21. A computer readable storage medium storing in a non-transient form software
which when executed on a computing device causes the computing device to carry out

the method of claim 19.

22. Software which when executed on a computing device causes the computing

device to carry out the method of claim 19.

	Page 1 - BIBLIOGRAPHY
	Page 2 - DRAWINGS
	Page 3 - DRAWINGS
	Page 4 - DRAWINGS
	Page 5 - DRAWINGS
	Page 6 - DRAWINGS
	Page 7 - DRAWINGS
	Page 8 - DRAWINGS
	Page 9 - DRAWINGS
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - CLAIMS
	Page 33 - CLAIMS
	Page 34 - CLAIMS
	Page 35 - CLAIMS
	Page 36 - CLAIMS

