US008745372B2

a2z United States Patent (10) Patent No.: US 8,745,372 B2
Orsini et al. 45) Date of Patent: Jun. 3,2014
(54) SYSTEMS AND METHODS FOR SECURING USPC 380/37, 42, 255;705/76; 713/168, 186,
DATA IN MOTION 713/150, 156, 175, 151, 155; 726/15
. . See application file for complete search history.
(75) Inventors: Rick L. Orsini, Flower Mound, TX
(US); Mark S. O’Hare, Coto De Caza, (56) References Cited
CA (US); Stephen C. Bono, Baltimore,
MD (US); Gabriel D. Landau, U.S. PATENT DOCUMENTS
Baltimore, MD (US); Seth James
Nielson, Lutherville, MD (US) 4,453,074 A 6/1984 Weinstein
4,924,513 A 5/1990 Herbison et al.
(73) Assignee: Security First Corp., Rancho Santa (Continued)
Margarita, CA (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this AU 004248616 612000
atent is extended or adjusted under 35
UsC. 154(b) by 232 dayjs. EP 346180 12/1989
(Continued)
(21) Appl. No.: 12/953,877 OTHER PUBLICATIONS
(22) Filed: Nov. 24,2010 Pattam, “Enhancing Security in 802.11 and 802.1X Networks with
. N Intrusion Detection”, Jan. 20, 2006, University of New Orleans The-
(65) Prior Publication Data ses and Dissertations, Paper 1034, 111 pages.*
US 2011/0202755 Al Aug. 18,2011 .
(Continued)
Related U.S. Application Data
(60) Provisional application No. 61/264,464, filed on Now. Primary Examiner — Andrew Nalven
25, 2009. Assistant Examiner — Walter Malinowski
(74) Attorney, Agent, or Firm — Ropes & Gray LLP
(51) Imt.ClL
Ho4L 29/06 (2006.01) (57) ABSTRACT
GO6F 15/16 (2006.01) Systems and methods are provided for distributing trust
HO4L 9/00 (2006.01) among a set of certificate authorities. One approach provides
Ho4L 12/46 (2006.01) methods and systems in which the secure data parser is used
(52) US.CL to distribute trust in a set of certificate authorities during
CPC e HO4L 9/00 (2013.01); HO4L 63/0272 initial negotiation of a connection between two devices.
(2013.01); HO4L 63/0823 (2013.01); HO4L. Another approach provides methods and systems in which
12/4641 (2013.01) the secure data parser is used to disperse packets of data into
USPC 713/151; 713/155; 713/156; 713/168,; shares. A set of tunnels is established within a communication
726/15 channel using a set of certificate authorities, keys developed
(58) Field of Classification Search during the establishment of the tunnels are used to encrypt

CPC HOA4L 9/00; HO4L 9/006; HO4L 9/0827,
HO4L 12/4633; HO4L 12/4641; HOAL

29/06612; HO4L 63/0272; HOAL 63/0823;

HO4L 2012/5621

4800~

shares of data, and the shares of data are transmitted through
each of the tunnels.

37 Claims, 53 Drawing Sheets

4810

Establish a Secure Communication Channel

4815

Establish Secure Communication Tunnels
within the Communication Channel, Each
Using a Certificate Obtained from a Unique
Certificate Authority, Each Tunnel Associated
with a Respective Unique Certificate Authority

4820

Cryptographically Split Each Data Packet into
Shares Using Multi-factored Secret Sharing

4825

Encrypt Each of the Shares Using a
Key Associated with the Establishment of
One of the Secure Communication Tunnels

4830

Transmit Each of the Encrypted Shares on the
Tunnel Associated with the Unique Certificate
Authority Under Which that Tunnel was Established|

US 8,745,372 B2

Page 2
(56) References Cited 6,386,451 Bl 5/2002 Sehr
6,411,716 Bl 6/2002 Brickell
U.S. PATENT DOCUMENTS 6,415,373 Bl 7/2002 Peters et al.
6,424,718 Bl 7/2002 Holloway
4,932,057 A 6/1990 Kolbert 6,438,690 Bl 8/2002 Patel et al.
5,010,572 A 4/1991 Bathrick et al. 6,446,204 Bl 9/2002 Pangetal.
5016274 A 5/1991 Micali et al. 6,449,730 B2 9/2002 Mann et al.
5051745 A 9/1991 Katz 6453416 Bl 9/2002 Epstein
5,150,407 A 0/1992 Chan 6,483,921 Bl 11/2002 Harkins
5 163’096 A 11/1992 Clark et al. 6,505,216 Bl 1/2003 Schutzman et al.
5268963 A 12/1993 Monroe cf al. 6,553,493 Bl 4/2003 Okumura et al.
5375944 A 12/1994 McNair 6,615,347 Bl 9/2003 de Silva et al.
5386104 A 1/1995 Sime 6,625,734 Bl 9/2003 Marvit et al.
5,450,099 A 9/1995 Stephenson et al. 6,631,201 Bl 10/2003 Dickinson et al.
5485474 A 1/1996 Rabin 6,684,330 Bl 1/2004 Wack et al.
5,524,073 A 6/1996 Stambler 6,687,375 Bl 2/2004 Matyas, Jr. et al.
5.603.003 A 2/1997 Akizawa et al. 6,701,303 B1* 3/2004 Dunnetal. ... 705/75
5615260 A 3/1997 Micali 6,731,755 Bl 5/2004 Cocks
5:623.540 A * 4/1907 RItCr woovvrvrrorrsror 380/37 6,785,768 B2 82004 Pelers el al.
5,642,508 A 6/1997 Miyazawa 6,789,198 Bl 9/2004 Chan
5,666,414 A 9/1997 Micali 6,819,766 Bl 11/2004 Weidong
5,666,416 A 9/1997 Micali 6,852,988 B2 2/2005 Li
5,666,514 A 9/1997 Cheriton 6,856,383 Bl 2/2005 Vachris et al.
5.682.425 A 10/1997 Enari 6,915,436 B1* 7/2005 Boothetal. 726/3
5703907 A 12/1997 James 6,952,684 B2 10/2005 Toshikage et al.
5717758 A 5/1998 Micall 6,959,383 Bl 10/2005 Terada et al.
5748735 A 5/1998 Ganesan 6,965,993 B2 11/2005 Baker
5761306 A 6/1998 Lewis 6,978,367 Bl 12/2005 Hind et al.
5,768’382 A 6/1998 Schneier et al. 7,003,531 B2 2/2006 Holenstein et al.
5,768:519 A 6/1998 Swift et al. 7,050,580 B1 5/2006 Ferre Herrero
5,790,677 A 8/1998 TFox et al. 7,050,583 B2 5/2006 Montgomery
5.823.048 A 10/1998 Ross. Jr. et al. 7,069,451 Bl 6/2006 Ginter et al.
5.003.652 A 5/1999 Mital 7,072,917 B2 7/2006 Wong et al.
5,903,882 A 5/1999 Asay et al. 7,085,854 B2* 82006 Keaneetal. ... 709/250
5,910,987 A 6/1999 Ginfer et al. 7,096,494 Bl 82006 Chen
5,915,019 A 6/1999 Ginter et al. 7,107,385 B2 9/2006 Rajan etal.
5917913 A 6/1999 Wang 7,117,365 B1 10/2006 Rump et al.
5,937,066 A 8/1999 Gennaro et al. 7,133,845 B1 11/2006 Ginter et al.
5,940,507 A 8/1999 Cane et al. 7,143,289 B2 112006 Denning et al.
5,960,083 A 9/1999 Micali 7,171,685 B2* 1/2007 Batraetal.c..coovne. 726/14
5,966,444 A 10/1999 Yuan et al. 7,174,385 B2 22007 Li
5.066.448 A 10/1999 Namba et al. 7,187,771 Bl 3/2007 Dickinson et al.
5074144 A 10/1999 Brandman 7,203,871 B2 4/2007 Turner et al.
5982322 A 11/1999 Bickley et al. 7,218,736 Bl 5/2007 Nishimura et al.
5,987,232 A 11/1999 Tabuki 7,225,158 B2 5/2007 Toshikage et al.
5991414 A 11/1999 Garay et al. 7,277,958 B2 10/2007 Chungetal.
5,995,630 A 11/1999 Borza 7,302,583 B2 11/2007 Forrest
6,009,177 A 12/1999 Sudia 7,304,990 B2 12/2007 Rajwan
6.023.508 A 2/2000 Bombard et al. 7,337,320 B2 2/2008 Tada et al.
6.026.163 A 5/2000 Micali 75349,539 B2 3/2008 Wee et al.
6.061.790 A 5/2000 Bodnar 7,391,865 B2 6/2008 Orsini et al.
6,073:237 A 6/2000 Ellison 7,412,462 B2 8/2008 Margolus et al.
6,092,201 A 7/2000 Turnbull et al. 7,428,751 B2 9/2008 Oom Temudo de Castro et al.
6,094,485 A 7/2000 Weinstein et al. 7,428,754 B2* 9/2008 Neumann et al. 726/15
6,118,874 A 9/2000 Okamoto et al. 7444421 B2 10/2008 Katayama
6,134,550 A 10/2000 Van Oorschot et al. 7,472,105 B2 12/2008 Staddon et al.
6,192,472 Bl 2/2001 Garay et al. 7,535905 B2 52009 Narayanan et al.
6,229,894 Bl 5/2001 Van Oorschot et al. 7,546,427 B2 6/2009 Gladwin et al.
6,240,183 Bl 5/2001 Marchant 7.596,570 Bl 9/2009 Emigh etal.
6,240,187 Bl 5/2001 Lewis 7,627,125 B2 12/2009 Lumsden et al.
6,256,737 Bl 7/2001 Bianco et al. 7,649,992 B2 1/2010 Raju etal.
6,260,125 Bl 7/2001 McDowell 7,693,992 B2 42010 Watson
6.266.413 Bl 7/2001 Shefi 7,721,150 B2 5/2010 Belyakov et al.
6269432 Bl 7/2001 Smith 7,752,482 B2 7/2010 Gredone et al.
6,289:455 Bl 9/2001 Kocher et al. 7,801,781 B2* 9/2010 Olinetal.ccoevennn. 705/34
6,289,509 Bl 9/2001 Kryloff 7,865,741 B1* 1/2011 Woodetal. 713/193
6,292,568 Bl 9/2001 AKins, III et al. 7,869,597 B2 1/2011 Nakai et al.
6.292.782 Bl 9/2001 Weideman 7,921,288 Bl 4/2011 Hildebrand
6:301:659 Bl 10/2001 Micali 8,151,333 B2 4/2012 Zhu et al.
6,307,940 Bl 10/2001 Yamamoto et al. 8,347,084 B2* 1/2013 Tavernier etal. 713/162
6,314,409 B2 11/2001 Schneck et al. 8,397,288 B2* 3/2013 Melvinetal.cccooneee. 726/15
6,324,650 B1 11/2001 Ogilvie 2001/0001876 Al 5/2001 Morgan et al.
6,336,186 Bl 1/2002 Dyksterhouse et al. 2001/0051902 Al 12/2001 Messner
6,345,101 Bl 2/2002 Shukla 2002/0010679 Al 1/2002 Felsher
6,345,314 Bl 2/2002 Cole et al. 2002/0016926 Al* 2/2002 Nguyen et al. ...cc..o.c...... 713/201
6,356,941 Bl 3/2002 Cohen 2002/0023210 A1* 2/2002 Tuomenoksa et al. 713/161
6,363,425 Bl 3/2002 Hook et al. 2002/0032663 Al 3/2002 Messner
6,363,481 Bl 3/2002 Hardjono 2002/0046359 Al 4/2002 Boden
6,385,318 Bl 5/2002 Oishi 2002/0071566 Al 6/2002 Kurn

US 8,745,372 B2

Page 3
(56) References Cited 2009/0089879 Al 4/2009 Wang et al.
2009/0092252 Al* 4/2009 Nolletal.ccccooo...... 380/277
U.S. PATENT DOCUMENTS 2009/0097657 Al* 4/2009 Scheidtetal. 380/277
2009/0097661 Al* 4/2009 Orsinietal. 380/279
2002/0075844 AL* 6/2002 Hagencccoovvvvvinnnn. 370/351 2009/0113203 AL* 4/2009 Tsuge et al. 713/151
2002/0080888 Al* 6/2002 Shuetal. .cccocccoovnrnnen.. 375/295 2009/0113424 Al 4/2009 Chen ef al.
2002/0087866 Al 7/2002 Berson et al. 2000/0177894 AL* 7/2009 Orsini et al. oo, 713/193
2002/0091640 AL 712002 Gupta 2009/0209232 AL* 82009 Chaetal 455/411
2002/0129235 Al 9/2002 Okamoto et al. actal
2002/0129245 A1l 9/2002 Cassagnol et al. 2009/0254750 Al 10/2009 Bono et al.
2002/0157007 A1 10/2002 Sashihara 2009/0292919 Al* 112009 Englandccccoevnnne 713/168
2002/0162047 Al 10/2002 Peters et al. 2009/0300351 Al 12/2009 Lei et al.
2002/0172358 Al 11/2002 Hurich 2009/0304004 Al 12/2009 Huynh Van et al.
2002/0178355 Al* 11/2002 D’Saetal.coevn. 713/156 2009/0305900 Al 12/2009 Belouchi et al.
200310184444 AL+ 1272000 Shansors | J0o203 Z0L0/000SO028 AL - 12010 Hartley tal
andony .. : 2010/0054474 A1* 3/2010 Schneiderc......... 380/277
2003/0005094 A1* 1/2003 Yuanetal.c......... 709/221 5010/0077252 AL 37010 Siewert et al
2003/0023958 Al 1/2003 Patel et al. :
2003/0051054 Al 3/2003 Redlich et al. 2010/0125730 Al 5/2010 Dodgson et al.
2003/0051159 Al 3/2003 MecCown et al. 2010/0150341 Al 6/2010 Dodgson et al.
2003/0058274 Al 3/2003 Hill etal. 2010/0153670 A1 6/2010 Dodgson et al.
2003/0061481 Al* 3/2003 Levineetal. 713/163 2010/0153703 Al 6/2010 Dodgson et al.
2003/0070077 Al 4/2003 Redlich et al. 2010/0154053 Al 6/2010 Dodgson et al.
2003/0084020 Al 52003 Shu 2010/0223613 Al 9/2010 Schneider
2003/0084290 Al 5/2003 Murty et al. 2010/0287374 AL* 112010 ROy etal. ..oovvrorcrcrerrne 713/171
2003/0097564 Al 5/2003 Tewari et al. ©
2003/0167408 Al 9/2003 Fitzpatrick et al. 2010/0299313 AL 11/2010 Orsini et al.
2004/0093431 Al* 5/2004 Genty etal. .oooovoveeeee.. 709/245 2010/0332617 Al 12/2010 Goodwin et al.
2004/0111608 Al 6/2004 Oom Temudo de Castro et al. 2011/0085667 Al* 4/2011 Berrios et al. 380/282
2004/0122863 Al 6/2004 Sidman 2011/0093113 Al* 4/2011 Sageretal. 705/318
2004/0122960 Al* 6/2004 Halletal.ccco....... 709/229 2011/0179271 A1 7/2011 Orsini et al.
2004/0220879 Al 11/2004 Hughes 2011/0179287 Al 7/2011 Orsini et al.
2004/0225895 Al* 11/2004 Mukherjee et al. 713/201 2011/0296104 Al 12/2011 Noda et al.
2004/0268148 Al* 12/2004 Karjalaetal. 713/201 2012/0266231 Al* 10/2012 Spiersetal. 726/12
2005/0050004 AL~ 3/2005 Sheu et al. 2013/0042105 Al 2/2013 Orsini et al
2005/0132060 Al* 6/2005 Mo etal. .ooccoovvrrnnrnnen.. 709/227 :
2005/0132221 Al* 6/2005 Marcjan 713/201
2005/0160290 Al* 7/2005 Moonetal.cccccoe....... 713/201 FOREIGN PATENT DOCUMENTS
2005/0198306 A1* 9/2005 Palojarvi et al. 709/227
2006/0046728 Al* 3/2006 Jungetal. 455/445 EP 354774 2/1990
2006/0075222 Al* 4/2006 Moloney et al. . 713/156 EP 0485090 A2 5/1992
2006/0165060 Al* 7/2006 Dua 370/352 EP 636259 2/1995
2006/0177061 Al* 82006 Orsinietal.o....... 380/268 EP 0695997 A2 2/1996
2006/0184764 A1 8/2006 Osaki EP 793367 9/1997
2006/0232826 Al 10/2006 Bar-Fl EP 0821504 1/1998
2006/0282681 Al 12/2006 Scheidt et al. EP 0862301 9/1998
2006/0294378 Al 12/2006 Lumsden et al. EP 1011222 6/2000
2007/0006015 Al 1/2007 Raoetal. EP 1239384 A2 9/2002
2007/0033644 Al* 2/2007 Thomas etal.ccccc...... 726/10 GB 2237670 A 5/1991
2007/0064704 Al* 3/2007 Balay etal.ccooooe...n... 370/392 P 04297157 A 10/1992
2007/0071234 Al 3/2007 Lagrange et al. Jp 2006174152 A 6/2006
2007/0079082 Al* 4/2007 Gladwinetal. .. . 711/154 RU 2124814 1/1999
2007/0097885 Al* 5/2007 Traversat et al. 3701254 WO WO0-98/4709 Al 10/1998
2007/0124584 Al 5/2007 Gupta WO WO0-99/19845 A1 4/1999
2007/0157025 A1 7/2007 Sastry et al. WO WO0-99/46720 A1 9/1999
2007/0160198 A1* 7/2007 Orsinietal. ...ccoovrnnn. 38028 WO WO0-99/65207 Al 12/1999
2007/0162744 Al1* 7/2007 Hoshino et al. . 713/156 WO WO-00/36786 Al 6/2000
2007/0177894 Al* 8/2007 Nakano etal. 399/121 WO WO-00/76118 A1 12/2000
2007/0192586 Al 8/2007 McNeely WO WO-00/79367 Al 12/2000
2007/0281664 Al* 12/2007 Kanekoetal. ... 455/410 WO WO-01/22201 Al 3/2001
2008/0016334 Al* 1/2008 Kurapatietal. ... 713/155 WO WO-01/22319 Al 3/2001
2008/0037557 Al* 2/2008 Fujitaetal. ... 370/395.53 WO WO-01/22322 A2 3/2001
2008/0046752 Al* 2/2008 Bergeretal. .. e TI3/186 W WOOL/ 12650 A2 32001
2008/0046763 Al* 2/2008 Teramoto et al. L T713/194 o0 WODL2651 Az 3/2001
2008/0072035 Al* 3/2008 Johnsonetal. 713/153
2008/0082831 Al* 4/2008 Fujimaki ... 713178 WO WO-02/21283 AL 3/2002
j
2008/0108349 A1* 52008 Ihattula ..o.............. 45514351 WO WO-02/21761 A2~ 3/2002
2008/0126614 Al 5/2008 Ooi et al. WO WO 02062032 A2 * 8/2002
2008/0137855 Al* 6/2008 Enomoto etal. 380/255 WO WO-2004/111791 A2 12/2004
2008/0137857 Al 6/2008 Bellare et al. WO WO-2006/047694 Al 5/2006
2008/0155252 Al* 6/2008 Nambiarcocc.c.... 713/153 WO WO-2008/054406 A2 5/2008
2008/0170693 Al 7/2008 Spies et al. WO WO0-2008/070167 Al 6/2008
2008/0183992 Al* 7/2008 Martin etal. 711/162 WO WO-2008/127309 A2 10/2008
2008/0199003 A1 8/2008 Hennessey et al. WO WO0-2008/142440 Al 11/2008
2008/0240441 Al 10/2008 Kawakami WO WO0-2009/035674 Al 3/2009
2008/0244277 A1 10/2008 Orsini et al. WO WO0-2009/089015 Al 7/2009
2008/0270603 Al* 10/2008 Bergeretal. 709/224 WO WO-2009/105280 A2 8/2009
2009/0016357 Al* 1/2009 Blevinsetal. 370/395.53 WO WO-2010/057181 A2 5/2010
2009/0077379 Al 3/2009 Geyzel et al. WO WO0-2010/135412 A2 11/2010

US 8,745,372 B2
Page 4

(56) References Cited
FOREIGN PATENT DOCUMENTS

WO WO-2011/068738 A2 6/2011

WO WO-2011/123692 A2 10/2011

WO WO-2011/123699 A2 10/2011
OTHER PUBLICATIONS

Dierks, “The Transport Layer Security Protocol”, RFC 4346, Version
1.1, Apr. 2006, 86 pages.™

Kent, “Security Architecture for the Internet Protocol”, RFC 2401,
Nov. 1998, 67 pages.*

Grant, Lawrence, and Brian Fleming. “Secret Sharing and Splitting.”
White Paper) Notre Dame, Indiana (2002).*

Sengar, “MTPSec: Customizable Secure MTP3 Tunnels in the SS7
Network”, Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium, 2005, 8 pages.™

Mondal, “Mobile IP”, Chapter 7, Kluwer Academic/ Plenum Pub-
lishers, New York, 2003, pp. 173-202.*

Shaw, “Handbook on Electronic Commerce”, Conway, Chapter 31,
Springer-Verlag, Berlin Heidelberg, 2000, pp. 649-690.*

Hancock, “Network Security”, “IPV6 Security Enhancements Still
Not Everything You Need”, Elsevier Science Ltd., Jun. 1998, pp.
8-10.*

Nacht, “The Spectrum of Modern Firewalls”, Computers & Security,
16 (1997), pp. 54-56.*

Sengar, “MTPSec: Customizable Secure MTP3 Tunnels in the SS7
Network”, Proceedings of the 19” IEEE International Parallel and
Distributed Processing Symposium (IP’05), 8 pages.*

Rosen, “BGP/MPLS VPNs”, Network Working Group, RFC 2547,
Mar. 1999, 25 pages.™

“Decru Unveils Security Appliances for Storage Networks; Decru
DataFort (TM) Security Alliances Protect SAN and NAS Environ-
ments with Wire-Speed Encryption and Transparent Deployment”,
PR Newswire (PR Newswire Association. Inc.), Oct. 14, 2002.
“Lancope Announces Stealthwatch 3.0 for Enhanced Enterprise-
Wide Security and Improved Manageability”, Business Wire
(Newswire Association, Inc.), Apr. 14, 2003.

“Tactilesense TM White Paper—A Breakthrough in Fingerprint
Authentication”, Ethentica, Inc. By Security First Corporation, Jan.
2003.

“Trustengine TM White Paper—Enthentication Services, Secure
Storage and Authentication Solutions”, Ethentica, Inc. by Security
First Corporation, Jun. 2002.

Barlas, “RSA’s Security Showcase”, Line56.com—The E-Business
Executive Daily, Apr. 15, 2003.

Brainard, “A New Two-Server Approach for Authentication with
Short Secrets” RSA Laboratories, Bedford, MA (13 pages).
Cachin, “On-Line secret Sharing,” Cryptography and Coding. IMA
Conference, Proceedings, XX, XX, Dec. 18, 1995, pp. 190-198,
XP002137681.

Chan et. al., “Distributed Server Networks for Secure Multicast”,
Globcom’01: IEEE Global Telecommunications Conference (IEEE,
Piscataway, NJ) 3:1974-1978 (2001).

Chan et. al.,, “Distributed Servers Approach for Large-Scale
Multicase”, IEEE Journal on Selected Areas in Communications
(IEEE, Piscataway, NJ) Oct. 2002, 20(8)1500-1510.

Crescenzo et al.,, “Non-Interactive and Non-Malleable Commit-
ment,” Proceedings of the 30th Annual ACM Symposium on Theory
of Computing. Dallas, TX, May 23-26, 1998, [Proceedings of the
30th Annual ACM Symposium on Theory of Computing], New York,
NY: ACM, US, pp. 141-150; XP000970902; ISBN: 978-0-89791-
962-3.

Damgard et. al., “Non-interactive and Reusable Non-malleable Com-
mitment Schemes,” ACM STOC ’03; pp. 427-428; Jun. 9-11, 2003.
Doyle, “RSA Splits Data to Stop Hackers”, vaunet.com, Apr. 16,
2003.

Fisher, “RSA Looks to Lock Down Personal Data”, eWeek—Enter-
prise News & Reviews, Apr. 14, 2003.

Garay et. al., “Secure distributed storage and retrieval,” Theoretical
Comput. Sci., 243(1-2):363-389, Jul. 2000.

Gibson, “Opinion”, eWeek—Enterprise News & Reviews, Apr. 14,
2003.

Grant et. al., “Secret Sharing and Splitting”, (White Paper) Notre
Dame, Indiana, Dec. 16, 2002.

Hunter, “Simplifying PKI Usage Through a Client-Server Architec-
ture and Dynamic Propagation of Certificate Paths and Repository
Addresses”, Proceedings 13th International Workshop on Database
and Expert Systems Applications (IEEE Computer Soc., Los
Alamitos, CA), Sep. 2-6, 2002, p. 505-510.

International Search Report—International Application No. PCT/
US/06/45066, dated Jul. 17, 2008.

International Search Report and Written Opinion dated Dec. 14,2010
in International Application No. PCT/US2010/035377.
International Search Report and Written Opinion dated Sep. 8, 2009
in International Application No. PCT/Us2009/001158.
International Search Report dated Dec. 16, 2008, International Appli-
cation No. PCT/US07/023626.

International Search Report dated Mar. 10, 2009, International Appli-
cation No. PCT/US09/00083.

International Search Report dated Nov. 21, 2008, International Appli-
cation No. PCT/US08/10677.

Krawcezyk, “Distributed Fingerprints and Secure Information Dis-
persal,” 12" ACM, Symposium on Principles on Distributed Com-
puting, Ithaca, NY, ACM 0-89191-613-1/93/0008/0207, 1993, pp.
207-218.

Krawcezyk, “Secret sharing made Short” IBM T.J. Watson Research
Center, [Online] 1998, retrieved from the Internet: URL :http://www.
cs.cornell.edu/courses/cs754/200 1fa/secretshort.pdf> [retrieved on
Nov. 24, 2008].

Loutre et. al. “An EAP-BT Smartcard for Authentication in the Next
Generation of Wireless Communications”, Conference on Network
Control and Engineering for QoS Security and Mobility (Kluwer
Academic Publishers, Norwell, MA) Oct. 23-25, 2002, pp. 1-4-114.
Mayer et. al., “Generalized Secret Sharing and Group-Key Distribu-
tion Using Short Keys,” Compression and Complexity of Sequences
1997, Proceedings Salerno, Italy, Jun. 11-13, 1997, Los Alamitos,
CA, USA, IEEE Comput,. Soc, US, Jun. 11, 1997, pp. 30-44,
XP010274905, ISBN: 978-0/8186-8132-5.

McNamara, “Strong Crypto Freeware” (Secret Sharer Version 1.0)
Jul. 11, 1995.

Menezes, “Handbook of Applied Cryptography” 1997, CRC Press
LLC, XP001525007.

Mitchell, “Making Serial Number Based Authentication Robust
Against Loss of State”, Operating Systems Review, 34:3, pp. 1-5,
Nov. 24, 1999.

Myers et. al., “A secure, publisher-centric Web caching infrastruc-
ture” In: Infocom 2001 Proceedings. IEEE Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies
[online], vol. 3 p. 1235-1243. Published Apr. 22, 2001. [retrieved on
Jul. 8, 2008]. Retrieved from the interenet <URL: http://people.
ischool.berkeley.edw/-chuang/pubs/gemini.pdf>.

Nightingale, The New Secret-Splitting Technology from RSA . . .
NGBK DS 0403 http://developer.rsasecurity.com/labs/nightingale/
developer.rsasecurity.com/labs/nightingale/files/nightingale-bro-
chure.pdf.

Rabin, “Efficient Dispersal of Information for Security, Load Bal-
ancing and Fault Tolerance,” Journal of the Association for Comput-
ing Machinery, vol. 36, No. 2, pp. 335-348, Apr. 1989.

RSA SureFile: Software Powered by PKZIP . . . BSSF DS 0103
Authorized Reseller: Technical Specifications Platforms Microsoft®
Windows® 98 Second Edition ME NT 4.0 Workstation SP6A 2000
Professional SP2 . . . www.rsasecurity.com/products/bsafe/
datasheets/BSSF__DS_ 103.pdf.
Savage, “RSA Unveils Nightingale Technology”, CRN.com, Apr. 14,
2003.

Shamir, “How to Share a Secret,” Communications of the Association
for Computing Machinery, ACM, New York, NY, US, vol. 22, No. 11,
Nov. 1, 1979, pp. 1-4, XP002241399; ISSN: 0001-0782.

Shin et. al., “Design a Working Model of Secure Data Transfer Using
a Data Mart”, Proceedings of the ISCA 14th International Confer-
ence Computer Applications in Industry and Engineering (ISCA,
Cary, NC) Nov. 27-29, 2001, pp. 66-69.

US 8,745,372 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Vijayan, “RSA unveils Management, Encryption Products”,
Computerworld, Apr. 15, 2003.

Waldman et al., “Publius: A robust, tamper-evident, censorship-re-
sistant web publishing sytem,” Proceedings of the 9 Usenix Security
Symposum, Aug. 2000.

Waters, “RSA Integrates Id Management; discloses ‘Nightingale®”,
ADTmag.com, Apr. 21, 2003.

Baugher et al., “MSEC Group Key Management Architecture draft-
ietf-msec-gkmarch-06.txt; draft-ietf-msec-gkmarch-06.txt,” vol.
MSEC, No. 6, Sep. 8, 2003.

Butler et al., “Privacy Preserving Web-Based Email,” Info. Systems
Security Lecture Notes in Computer Science; Springer, Berlin, Ger-
many, pp. 116-131.

Decleene et al., “Secure group communications for wireless net-
works,” Milcom 2001 Proceedings, Communications for Network-
Centric Operations: Creating the Information Force; IEEE, US, vol.
1, Oct. 28, 2001, pp. 113-117.

Easter et al. “S/390 parallel enterprise server CMOS cryptographic
coprocessor,” IBM Journal of Research and Development, Interna-
tional Business Machines Corporation, New York, NY, US, vol. 43,
No. 5, Jan. 1, 1999, pp. 761-776, XP002335589, ISSN: 0018-8646.
Ertaul et al., “ECC Based Threshold Cryptography for Secure Data
Forwarding and Secure Key Exchange in MANET (I)”, Networking
2005. Networking Technologies, Services and Protocols; Perfor-
mance of Computer and Communication Networks; Mobile and
Wireless Communications Systems; vol. 3462/2005, pp. 102-113.
Ganger et al., “PASIS: A Distributed Framework for Perpetually
Available and Secure Information Systems, Final Technical rept. Jun.
1999-Dec. 2003,” (Jul. 1, 2005),pp. 1-302, XP55011444, Retrieved
from the Internet: URL:http://www.dtic/mil/cgi-bin/
GetTRDoc? AD=ADA436245&Location-U2&doc=GetTRDoc.pdf
(retrieved on Nov. 7, 2011].

Ganger et al., “Survivable storage systems,” DARPA Information
Survivability Conference & Exposition II, 2001. Disc Ex *01. Proc.
Jun. 12-14, 2001, Piscataway, NJ, USA, IEEE, vo. 2, pp. 184-195,
XP010548746.

Hand et al., Spread Spectrum Storage with Mnemosyne, 2003,
Retrieved from the Internet <URL: springerlink.com/content/
9vdp5b40ep2pjvba/>, pp. 1-5 as printed.

Haniotakis et al., “Security Enhancement Through Multiple Path
Transmission in Ad Hoc Networks,” IEEE Intl. Conference on Com-
munications, Jun. 20-24, 2004, 5 pgs.

Home et al., Escrow services and incentives in Peer-to-Peer Net-
works, 2001, Retrieved from the Internet URL:dl.acm.org.citation.
cfm?id=501168, pp. 1-10 as printed.

“How to burn the ISO CD image to a blank CD in Windows,”
XP55025538, Retrieved from the Internet: URL:http://web/archive.
org/web/20100817210432/http://webconverger.org/iso/[retrieved
on Apr. 24, 2012].

Kubiatowicz et al., OceanStore: an architecture for global-scale per-
sistent storage, Retrieved from the Internet <URL: dl.acm.org/cita-
tion.cfm?id=356989.357007>, pp. 1-12 as printed.

Lee et al., “Efficient Public Key Broadcast Encryption Using Identi-
fier of Receivers,” Information Security Practice and Experience
Lecture Notes in Computer Science, Springer, Berlin, DE, pp. 153-
164, Jan. 1, 2006.

Menezes et al., “Handbook of Applied Cryptography, Key Manage-
ment Techniques,” pp. 543-590, XP002246921, section 13.5.2(i)
(Jan. 1, 1996).

Menezes et al., “Handbook of Applied Cryptography, Key Establish-
ment Protocols,” pp. 489-541, XP002304953, section 12.7 (Jan. 1,
1997).

Ogata et al., “Fault Tolerant Anonymous Channel,” Info. and Com-
munications Security First Intl. Conference Proceedings, ICIS 97,
Beijing China; vol. 1334/1997, pp. 440-444, 1997.

Rivest, “All-Or-Nothing Encryption and The Package Transform,”
Proc. of the 4th Intl. Workshop on Fast Software Encryption (1997),
9 pgs.

Schnitzer et al., “Secured storage using secureParser,” Storagess’05.
Proceedings of the 2005 ACM Workshop on Storage Security and
Survivability, [Proceedings of the ACM Workshop on Storage Secu-
rity and Survivability. Storagess], New York, NY: ACM, US, P, Nov.
1, 2005 (Jan. 1, 2005); XP002582438, ISBN: 978-1-59593-233-4;
Retrieved from the Internet: URL:http://delivery.acm.org/10.1145/
1110000/1103801/p135-schnitzer.pdf?key1=1103801
&key2=6709743721&co011=GUIDE&d1=GUIDE
&CFID=8777408 2&CFTOKEN+51146011][retrieved on May 10,
2010].

“Webconverger 2.30 CD versions and above,” Jul. 26, 2010,
XP55025541, Retrieved from the Internet: URL:http://web.archive.
org/web/20100726105024/http://webconverger.org/homepage/[re-
trieved on Apr. 24, 2012].

Johnson, “MLS-Net and Secure Parser: A New Method for Securing
and Segregating Network Data [Online] Jul. 8, 2007”XP002582437
Sth International Symposium on Risk Management and Informatic:
WMS12007, Orlando Florida, USA.

Klensin, J., “Simple Mail Transfer Protocol; rfs5321.txt,” Simple
Mail Transfer Protocol; RFC5321.TXT, Internet Engineering Task
Force, IETF; Standard, Internet Society (ISOC) 4, Rue Des Falaises
CH- 1205 Geneva, Switzerland, XP015060297 (Oct. 2008) (Resub-
mitted).

Kog, Erol, “Access Control in Peer-to-Peer Storage Systems,” Oct. 1,
2006, XP55036196, Retrieved from the Internet: URL:ftp://ftp.tik.
ee.ethz.ch/pub/studfents/2006-So/MA-2006-10.pdf [retrieved on
Aug. 23, 2012] p. 61-62 (Resubmitted).

Xu, “Locality Driven Key Management Architecture for Mobile Ad-
hoc Networks, 2004 IEEE International Conference on Mobile Ad-
hoc and Sensor Systems,” pp. 436-446.

* cited by examiner

US 8,745,372 B2

Sheet 1 of 53

Jun. 3,2014

U.S. Patent

y
oLl

g1} | Awouny
ajeayyyed

ejeq
uopeopuayny | | A

auibuz jsnay

1ss

I7s$

1 "OId

Nur

uolesIunwwon

aIss

o))

(=
(=
-

walsAg
10puU3ap

walsAg
19sM

ao1naQ
aujswolg

US 8,745,372 B2

Sheet 2 of 53

Jun. 3,2014

U.S. Patent

¢ Old

abeiolg ssey

aulbug
aydei1boijdAin

aulbug
uofjesnuayiny

H

ejeq
uopesnuayIny

sfay|

fioysodaq

0ze~

Gle~

N
/

oLe”

auibug
uonoesuel|

Ry
!
/

S0¢C -

aulbugjisna]

Ll
—SS—» uojjedunuwo)

oL

oL

US 8,745,372 B2

Sheet 3 of 53

Jun. 3,2014

U.S. Patent

obelo)g ssey 0] <«

auibug osiydesboldAin o] <«

aulbug uojjesnuayiny o «

Alojisodaqg 0] «

Ui UonEdIUNWIWO) O] <—

G0c

€ Old
—
woysAg
188 Bunesado ‘ 1ss <
)
Ggoe
I

v auibug uonoesuel]

auibuz sydeiboyjdAin woiy
au|bug uonesjjuayIny wo.4

Ui uojedunwwos wol4

US 8,745,372 B2

Sheet 4 of 53

Jun. 3,2014

U.S. Patent

¥ "Old

auibu3j osydeiboydAin o] <«

aulbug uonesnuayiny o

abelo)g ssep 0] <

ejeqg
uoljesnuaYINY

ejeq
A3y
<=
Sop—
vV Vv
«4—+au|bug uonjoesuel] woli4
ss |« wayshs bupesado ¢ | 1SS (¢} auiBug s1ydesboydLi wou 4
<4—9uibu3] uonesjuayiny woa
oLz—" Aojisodaqg

US 8,745,372 B2

Sheet 5 of 53

Jun. 3,2014

U.S. Patent

auibug uonoesuel] o] «

G "Old
. 5 a|npop mmm) Jaywi ydwany
/
gzZS uljquisssy ejeq
' SOl)SlIN9dH
a|npopn 0€s
Bumids ejeq
028
- Jojeledwon
GlS

Aioyisodag o) ¢

_L

auibu3 osiydeiboydAin o] «

1ss

P

gLz

¢ waysAg
1SS P BuneiadQ
G505
e Koy ajeald
0Lg

— AMiojisodag wou

— aulbug uoljoesuel] WO

auibu3z uonesnuayiny

US 8,745,372 B2

Sheet 6 of 53

Jun. 3,2014

U.S. Patent

fio)isodag o] <«

9 'Old

m:_m:m_A

uojjoesuel] o]

aulbuz

fr

uoljesnuaYyINy wo.4

—— A1ojisodaqg woi4

/ a|npolp Buijpuey s1ydeiboydAin
629
waysAg
188 A|> Bupesadp [€ | 1SS
09
— SINpoN —~ S|npon
0zg | Pullqwassy ejeqg 0L Bunnids ejeq

auibu3j uoljoesuel] wol4

0ze —

auibu3 sydeisboldAin

US 8,745,372 B2

Sheet 7 of 53

Jun. 3,2014

U.S. Patent

L Old

auibug
oiydesboydAin wou4

aulbuz
oiydeaboydAig wouay

auibug
uoljesnuayiny woli4

auibug
uoljesijuayiny wou4

aulbug
uoljoesuel] wou4

U.S. Patent Jun. 3, 2014 Sheet 8 of 53 US 8,745,372 B2
Begin
= e
////
| 4
S = Received | 90°
Data -
Generate Generate 820
Random 8/10 Random \J/
Number I~ Number
A C
Generate 825 Generate 930
B=AXORS |— D=CXORS [
Distribute
A C 835
A, D _/
B C, And
BD

FIG. 8

U.S. Patent Jun. 3, 2014 Sheet 9 of 53 US 8,745,372 B2

. 900
’/,//4
Enroliment Data Flow
Send Receive SSL Action
Transmit Enroliment Authentication
. Data (B) and the User ID (UID) 905
User Ega"lfgc(t}‘é'; 172 |encrypted with the Public Key of |~
9 the Authentication Engine (AE) as
(PUB_AE(UID,B))
915
TE AE Full |Forward Transmission -
AE Decrypts and Splits Forwarded 9/20
Data -
925
The Xth . .
AE Depository (DX) Full |Store Respective Portion of Data —
When Digital Certificate Requested
Cryptographic : %30
AE Engine (CE) Full [Request Key Generation —
935
CE Generates and Splits Key L/
. . 945
Transmit Request for Digital 7
CE TE Full lcertificate -
. 950
Certification . Y,
TE Authority (CA) 1/2 |Transmit Request -
955
CA TE 1/2 |Transmit Digital Certificate .
960
TE User 1/2 |Transmit Digital Certificate !
TE MS Full |Store Digital Certificate
965
CE DX Full [Store Respective Portion of Key | _~/

FIG. 9, Panel A

U.S. Patent

Perform Action

FIG. 9, Panel B

Jun. 3, 2014 Sheet 10 of 53 US 8,745,
900
970
>
Begin
972
Determine
Certificate Type
Does User own
Yes this type of No 978
Certificate? v //ﬂ
_ No—|Does User Own Cross- |
> Certified Certificate?
y
Select Certificate Authority that| _ 980
issues Certificate or Cross- |
Certified Certificate
y - 982
Does User meet current
No—— Certification Authority’s Yes
£ Authentication Requirements?
Are there other
Certificate |~ 986 Yes
Authorities having
-Yes different No
Authentication y 088
Requirements? Update User ;
Authentication
’ 984
Acquire Certificate from /
Certificate Authority
>i<
-~ 976

372 B2

U.S. Patent Jun. 3, 2014 Sheet 11 of 53 US 8,745,372 B2
~— 1000
v
Authentication Data Flow
SEND RECEIVE SSL ACTION
1005 Transaction occurs, such as selecting
| User Vendor 1/2 purchase
101\9/ Vendor User 1/2 Transmit transaction ID (TID) and
authentication request (AR)
Authentication data (B’) is gathered
from User
1015 Transmit TID and B’ wrapped in the
| User TE 1/2 Public Key of the Authentication
Engine (AE), as (PUB_AE(TID, B’))
1020
| TE AE Full | Forward transmission
Enroliment authentication data (B) is
requested and gathered
1025 - i
> | Vendor |Transaction Engine| ¢ | Transmits TID, AR
1030 .
| TE Mass Storage (MS)| Full | Create Record in database
1035 i
X TE The Xth Depository Full | UID, TID
(DX)
Transmit the TID and the portion of
1040 DX AE Full | the authentication data stored at
el u enrolliment (BX) as (PUB_AE(TID,
BX))
104\5 AE assembles B and compares to B’
1050
| AE TE Full | TID, the filled in AR
1055
| TE Vendor Full | TID, Yes/No
TE User 1/2 TID, confirmation message

FIG.

10

U.S. Patent Jun. 3, 2014 Sheet 12 of 53 US 8,745,372 B2

—1100
\4
Signing Data Flow
SEND RECEIVE SSL ACTION
User Vendor 1/2 Transaction occurs, such as agreeing on
a deal
Transmit transaction identification
Vendor User 1/2 | number (TID), authentication request
(AR), and agreement or message (M)

Current authentication data (B’) and a
hash of the message received by the
User (h(M’)) is is gathered from User

Transmit TID, B’, AR, and h(M’) wrapped

User TE 1/2 | in the Public Key of the Authentication
Engine (AE), as (PUB_AE(TID, B’, h(M’))
TE AE Full | Forward transmission

Gather enrollment authentication data
Transmits UID, TID, AR, and a hash of

Transaction Engine

Vendar (TE) Full | the message (h(M)).

TE Mass Storage (MS)| Full | Create Record in database
The Xth Depository

TE (DX) Full | UID, TID

Transmit the TID and the portion of the
DX AE Full | authentication data stored at Enrollment
(BX), as (PUB_AE(TID, BX))

The original vendor message is
transmitted to the AE

TE AE Full | Transmit h(M)
1103 AE assembles B, compares to B’ and
N compares h(M) to h(M’)
; Request for digital signature and a
1105 | AE CEr%pEggr(aggl)c Full | message to be signed, for example, the
111\6 9 hashed message
| AE DX Full | TID, signing UID
1115 Transmit the portion of the Crypto-
‘1 DX CE Full | graphic Key corresponding to the signing
1120 party
NG CE assembles key and signs
1125 Transmit the digital signature (S) of
| CE AE Full signing party
302 TE Full | TID, the filled in AR, h(M), and S
TID, a receipt=(TID, Yes/No, and S), and
1135 the digital signature of the trust engine,
A TE Vendor Full | for example, a hash of the receipt
encrypted with the trust engine’s Private
1140 Key (Priv_TE(h(receipt)))
1 TE User 1/2 | TID, confirmation message

FIG. 11

U.S. Patent Jun. 3, 2014 Sheet 13 of 53 US 8,745,372 B2

1200
v

Encryption/Decryption Data Flow

Send Receive SSL Action

Decryption

Perform Authentication Data Process
1000, include the Session Key (sync) in
the AR, where the sync has been
encrypted with the Public Key of the User
as PUB_USER(SYNC)

Authenticate the User 1205
AE CE Full |Forward PUB_USER(SYNC) to CE v
1210
AE DX Full |UID, TID .
Transmit the TID and the portion of the 1215
DX CE Full [Private Key as (PUB_AE(TID, S
KEY_USERY))
CE assembles the Cryptographic Key and | 1220
decrypts the sync —
CE AE Full TID, the filled in AR including decrypted \ 1225
sync —
AE TE Full |Forward to TE 1330
Requesting
TE APPNendor 1/2 |TID, Yes/No, Sync
Encryption
Requesting 1235
APP/ TE 1/2 |Request for Public Key of User s
Vendor
. . 1240
TE MS Full |Request Digital Certificate _J
MS TE Full |Transmit Digital Certificate \\1%45
i 12
TE Eggf\f:;'ggr 1/2 |Transmit Digital Certificate 1750

FIG. 12

US 8,745,372 B2

Sheet 14 of 53

Jun. 3,2014

U.S. Patent

00cl—

€l "Old
1|||
|
) auibug auibug _
0celL— _ uoljesnuayiny Aioysodag uoljoesueld] _
Y Sl SRl j
e
| |
| aujbug aulbug |
cle F_ uoljesnuayny Aioyisodag uogoesuel) | |
_ T
Y SR S mN|m|F ||||||| B J
_1|||||||||||||| R
|
_ aulbug aulbug |
0LE v\\ _ uoljesijuayIny Aioyisodag uoljoesuel | _
)/ TN A\ . “
-y N ————— |
|
| auibug aulbug _ _
_ uolnjesijuayIny Aioyisodag uoljoesuel] | _
GoelL- _ 7 / _
A dadd]

qur
uojjesiunwwo?
wol4/o]

US 8,745,372 B2

Sheet 15 of 53

Jun. 3,2014

U.S. Patent

vl Old
1||
|
| a|npop suibug Kiolusods auibug _
| Kouepunpoy uoljesjuayny " d uoljoesued] |
S \N N/ S _

0cvl—
I Y U A NV 22 1
| |
! 9|NpoN aulbug aulbug |
_ Kouepunpay uoljesnuayiny Aioysodag uoljoesueld | 4_/
| |
o A\ NS S _
Syl
T T T T T Tt TTTTTT YT TTTTTT T T T
|
[9|npol auibug auibug !
_ Aauepunpay uolesjuayny Mioyisodaq uojjoesue. | m
S N . _
oLyl
/A O\ |
|
_ 9|npon auibug auibug !
_ Kouepunpay uojjespuayny Moysodag uonpoesueay | |
| |

~-00vlL

yur
uolnesIUNWLWOY
wou4

U.S. Patent Jun. 3, 2014 Sheet 16 of 53 US 8,745,372 B2

Redundancy
From A1 Module
L p To A4
From A2 » Comparator ——» Transaction
> Engine
From A3

FIG. 15

U.S. Patent Jun. 3, 2014 Sheet 17 of 53 US 8,745,372 B2

Receive Authentication Data
and Enrollment Data

l 1605

Extract Data for Each
Authentication Instance Used

l(-1630
| /

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| | Generate Reliability Based on | ~1610
I Authentication Instance '

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Select Next Authentication

Technique Instance
l 1615 T
/
Generate Reliability Based on YES

Authentication Instance Data
and Circumstances

l 1620

Generate a Reliability
for this Authentication
Instance

—1625
Was an Additional
Authentication
Instance Used?

Nf 1635

/

Combine Reliability of Individual
Authentication Instances to
Produce Authentication
Confidence Level

i 1640
!

Fill in
Authentication Request

FIG. 16

U.S. Patent Jun. 3, 2014 Sheet 18 of 53 US 8,745,372 B2

1050

/
J

ransaction Engine Receives
TID and Completed
Authentication Request

Generate Required Trust Level
Based on Size/Risk of
Transaction Specified in
Authentication Request

l 1720
[

Compare Required Trust Level
and Authentication
Confidence Level

1730 1750

Is Authentication
Confidence Level
greater than Required
Trust Level?

NO Perform Trust Arbitrage

YES 1740

Generate Passive
Authentication

Send Authentication
Result to Vendor

FIG. 17

U.S. Patent

Is Further
Arbitrage
Permitted?

YES

Jun. 3,2014

Sheet 19 of 53

1810

US 8,745,372 B2

1055

/

NO-»

Generate Negative
Authentication

Send Authentication
Result to Vendor

1830

y

Contact User:
Request Additional
Authentication and

Offer Insurance

Has User
Provided

—1820

/

Contact Vendor:
Confirm Required
Trust Level and
Offer Insurance

Additional
Data?

YES 1015

Send New
Authentication Data to
Authentication Engine

1850

/

Wait for Response
Period to Expire

«+NO

Confidence Level and

1835

Has Vendor
Adjusted Required
Trust Level?

YES 1730

Compare
Authentication

equired Trust Leve

Was Insurance
Purchased?

Adjust
Authentication
Confidence Level
and Required
Trust Level Based
on Insurance
Purchased

FIG. 18

1845

US 8,745,372 B2

Sheet 20 of 53

Jun. 3,2014

U.S. Patent

Go6L

0c6lL —

gzel—

026l

GLeL-

(19sn Aq paubig) Joenuon
JO yseH pue (auibugz jsnij
Aq paubig) 1dianay aA1999Yy

61 Old

auibug)sni] Aq paubig
193] 0} }19eIJUO0) plemio

aulbu3 isniy
0} }sanbay uojespuayiny
pue }oeijuo) Jo YseH puas

A 4

(1opuap
Aq paubig) 1oenuo) jo
yseH pue (auibug isniy Aq
paubig) 1diaoay aA1909y

*

ainjeubig }sanbay
pue 13as[) 0} JoBI1JUCY) pUIS

aulbugz isni]
0} jJoenuo Jo YseH pue
ejeq uojjednuayiny puag

%

ejeQ uonesnuaYINy
9jelauan)

%

+

}9BIJUOY) JJRIDUIL)

*

w04 paubig paalasay

TOpuUsp

JoBIUO0D MBIADY

0/61—" {Aay| 9leAlld S JOPUSA
Yiim joR1U0D JO YyseH ubig
4 6L
aulbuz isnij Aq
paubig Iopuap 0} joeljuon
piemio Aoy 9jeAlld S 198N
Yiim joeU0D JO YyseH ubig
0961 s
19sM jo <
cceL— uonesijuayiny AjLap
4
q JOPUB3A Jo 0g61
uonesnuayiny Ayiap /
; 1977451
/
ge6l—
g
)
ov6l—
w04 Jo yseH poaubig _u:mo_o_<A
pue uoljesnuayiny AJLIOA
0L6L—" G061~
0061~

SubUg JSNIL

uolnesnuayny jsanbay
pue wio4 Jwgng

*

abed qom S.JOPUSA uo
auljuQ wuo4 J9piQ INQ |14

FELT))

U.S. Patent Jun. 3, 2014 Sheet 21 of 53 US 8,745,372 B2

105
[
. 2000
User System Application
l T 2010
/
Capi
| 1 J f am | 1
SPM - Software . / Cryptographic
Library SPM - Driver SBM
\ A I A
~~2015 2030
A 4

] -2025
Hardware Device |

Communication Link

Trust Engine

FIG. 20

U.S. Patent

Jun. 3,2014

Sheet 22 of 53

Data to be
parsed
Encrypt
(8]
RC4 .
Sonerste | |y | Enoryptior /S,
master ke with session secured
Y Master key
A A 4
Access ; Access Split Session
session a?cpz)“rtdciir?g;ato Parser key according
master session key Master to Parser
key key Master key

US 8,745,372 B2

Parse
Encrypted/Session Ené:arg) ted efes)',o ncrypt ession
data key //Encrypted Sessmn share 3/ share 3// data key
share 1/ share 1 data key share n / share n

share 2/ share 2
y y \ 4 A
Generate Generate Generate Generate
share 1 key 5 share 2 keycI share 3 key o share n key s

Encrypt
Pieces
A A
Encrypt share Encrypt share Encrypt share Encrypt share
1 data with 2 data with 3 data with n data with
share share share share
1 key 2 key 3 key n key
h 4 A\ 4
Encrypted Key n Encrypted Key 2
share 1 (data / share 3 (data /
session key) session key)

Encrypted
share 2 (data /
session key)

Encrypted share
Key 1 n (data / session Key 3
key)

FIG. 21

Obfuscate /

U.S. Patent Jun. 3, 2014 Sheet 23 of 53 US 8,745,372 B2

ﬁ)ata to be parseo/

Encrypt
a y
RC4
Gsir;tsairg;e | | Encryption ‘/ Session key
master ke with session 7 to be secured
y Master key
Session key Store
management [transaction TGenerat’_[e
ID: / Session ranlsSc 1on
Y Split transaction
/Access session/ I ac?crglrt d?r?éat o Q:rcseesrs ID according to
master key session key Parselz'el\;laster
Parse

Encrypted Trans Encrypted Trans Encrypted/ Trans Encrypted/ Trans
data data data ID data ID
share 1 share 1 share 2 share 2 share 3/ share 3 sharen / sharen

A A \ 4
Generate Generate Generate Generate
share 1 share 2 share 3 share n

key ? key & key /& key s
Encrypt
Pieces

y Y \ 4
Encrypt Encrypt Encrypt Encrypt
share 1 share 2 share 3 share n
data with data with data with data with
share 1 share 2 share 3 share n

key key key key
v ‘
Encrypted / Key Encrypted Key
share 1 n share 3 2
(data/trans ID) (data/trans ID)
4 \ 4
Obfuscate Encrypted Key Encrypted Key
share 2 1 share n 3
(data/trans ID) (data/trans ID)

FIG. 22

U.S. Patent Jun. 3, 2014 Sheet 24 of 53 US 8,745,372 B2
Data to be parsed
Access
Parser
master ke
Generate Session
Session Master key
Master to be secured
key
Interm\e/diary E t dat
Key (Parser ncrvy\/’rﬁh ala
M%setggi)énOR "] | Intermediary
Master key
Session key Store v
management [transaction Generate
ID: / Session Transaction
Key ID
Encrypt \ 4
Access Split data Access Split transaction
Intermediary according to Parser ID according to
key Intermediary Master key, Parser Master
key key

Encrypt
data

Trans Encrypt Trans
data
share 2 share 2 share 3 share 3

v

v

Generate Generate Generate Generate
share 1 share 2 share 3 share n
ke ke ke ke
y ’E y 5 Y 5 Y 5
Encrypt
Pieces y
Encrypt\’ Encrypt Encrypt Encrypt
share 1 share 2 share 3 share n
data with data with data with data with
share 1 share 2 share 3 share n
key key key key
\ 4 A 4
Encrypted Key Encrypted Key
share 1 n share 3 2
(data/trans ID) (data/trans ID)
\4
Obfuscate Encrypted Key Encrypted Key
share 2 1 share n 3

(data/trans ID)

(data/trans ID)

FIG. 23

U.S. Patent

Jun. 3,2014 Sheet 25 of 53 US 8,745,372 B2
/Data to be parseo/
Access
Parser
master ke
Generate Session
Session Master key
Master to be secured
key
Intermediar Y
rmediary
Key (Parser Encr\mthdata
Mass;(;gi)énOR Encrvbt ' Intermediary
Master) yel key
Session key Store \ 4
management [transaction Generate
ID: / Session Tranls[a)ctlon
Access Split data Split transaction
Intermediary according to ID according to
key Intermediary Parser Master
key key

Parse

Encrypted Tran Encrypted Trans Encrypted Trans Encrypt Trans
data data data data
share 1 share 1 share 2 share 2 share 3 share 3 share n share n

Generate Generate Generate Generate
share 1 share 2 share 3 share n
ke ke ke ke
Y r y 5 Y 5 Y 5
Encrypt
Pieces
Encrypt Encrypt Encrypt) Encrypt
share 1 share 2 share 3 share n
data with data with data with data with
share 1 share 2 share 3 share n
key key key key

Encrypted
share 3

Encrypted
share 1
(data/trans ID) (data/trans ID)
Obfuscate Encrypted Encrypted Key
share 2 share n 3
(data/trans ID) (data/trans ID)

FIG. 24

US 8,745,372 B2

Sheet 26 of 53

Jun. 3,2014

U.S. Patent

GZ "Old

> <%

Za

T % <%

|eJsauasg) |esauan
daoueul4 daoueul4
< 5
it At
dnoig jjeis Heis

dnoio jjejg aojuag

<~

jjels Joluag

dnoug) aAlpnoaxy

< -

< =

aAIN29X]

‘ujwpy 1030911Qq
yomjoN Bunoyiep

Bunoyiep

dA

19Beuep

dv

040

030

U.S. Patent

Jun. 3, 2014 Sheet 27 of 53

2500

Storage Area

2502

Portion of
Parsed Data

2508
\

~—

2504

Token
2506

Portion of
Parsed Data

FIG. 26

US 8,745,372 B2

U.S. Patent Jun. 3, 2014 Sheet 28 of 53

Storage
Device

<2604

2600
C

Existing System

2602
C
Parser
Storage
Device
<2604

FIG. 27

US 8,745,372 B2

Storage
Device

<2604

U.S. Patent

Jun. 3,2014 Sheet 29 of 53 US 8,745,372 B2

Recipient

Network

2706

2710
-

2708

2706

Parser

2702
[/

2704

Message |/

Sender

2700
[

FIG. 28

U.S. Patent

Jun. 3,2014 Sheet 30 of 53 US 8,745,372 B2

Recipient

2810
-

Network

2806

2808

2806

2800
-

Parser

2802
[

Message

2804
[/

Sender

FIG. 29

US 8,745,372 B2

Sheet 31 of 53

Jun. 3,2014

U.S. Patent

0€ Old
0cog)
juswabeuep _ V
Aoy _ uoBNAISIA | | fouepunpayy uonealn
(2dAy Aue) V aleys aleys
uondAioug 5 v :
9106 B 900¢ 00€ 200g
9106 ﬁ wyjuob|y yseH
\ l0je1auan) Aa
vrowaomw_vmm"_mosnw_ﬁo 8109 lasied kje(ainsag
) lojelauan)
ZLoe \JequinN wopuey 3
000€ "~
N
s|[eD |eu9)x3 ~ Jayng ejeq |
920¢ oL06 | S4°HNg seseys H__o_m\ PaIqUIasSY | g00c
Jaslied ejeq 924n29g ~2c0¢
J9he Jaddeipp/IdY ~beoe
J9Ae uonesddy

US 8,745,372 B2

Sheet 32 of 53

Jun. 3,2014

U.S. Patent

1€ Old

juswabeuep
Koyl

X

A4

(adAy Aue)
uondAioug

X

ﬁsﬁ_homi yseH _AH

lojeldudc) Aay
yoeqpaa4 1aydid

lojesauan)

OwnE:z wopuey

s||e eula)x
@Nom//v e | 1X3
19sied ejeq ainosas

A

uoninquisiq

A/

N 7

ateys

.

Kouepunpay

uoljealn

aleys

2109 Jasied ejeq aindoeg

/
000¢

siayyng saleys ji/ds
.

r N

layng ejeq |
pajquiassy | gooe

)
¢z0e

90LE
J2Ae Jaddeipn/IdY

uonjeuLioyul gl
aleys / sweusd|i4

saleys jJO uoljeao|
uo uoljewioyu]

saJeys jndino ajLIpA

uoijew.ojul
aleys/oweuayl} 3o

uolles0| aleys 199

uoljeuLioju; aleys
joweuajly aAesg

13jnq ojul
ejep ndul weang

)
A

J19Ae uoneslddy

lasied
ejeq 2Inoag ||en

painsas
aq 0] ejep 99|98

Jiwsued] /Hasu] [SHIM

US 8,745,372 B2

Sheet 33 of 53

Jun. 3,2014

U.S. Patent

¢¢ "Old

juswabeuep
Koy

X

(odAy Aue)
uondAioug

X

s||e) |eula)xg

m wyyoBb|y yseH _A
Jojeiauan) Aay
yoeqpaad Jaydio
Jojeiauan)
JaquinN wopuey

VoV WV

N [

N 7

uonnquisia
aleys

Kouepunpay

oneoio |
uoijealn

aleyg ;

2109 lasled ejeq ainoag

000

-

d9jjng ejeq |-

d ,
@Nom/\v fm._mtsm_ saleys | mk palqWassy | gooe
lasied ejeq 2.1n2%9g
uonjeuuojuil q| siajnq Jew.oy
aleys / aweua|i4 saleys jijds peoT ejep |euiblio [E——
> uojjewioul 0} uopewuojul |
,,\vmom saleys JO uoljedso| —| @4eys/sweus|y 199 _om_.“u_w&m.m_w@wm__ M voce
19Ae 1addelpp/IdY uo uoljew.ojul ¢0C€ | uoneao| aleys 329 :
1asied
ejeq ai1noag ||
<
J19Ae uonesiddy — poalojsal
00ZE | ©q 0} ejep 309|9g

BA1909Y [}09]9S | pesay

US 8,745,372 B2

Sheet 34 of 53

Jun. 3,2014

U.S. Patent

v aleys
Jids zv /161 /| 2R

inding

€e¢ "Old

Z aleys
asied

nding

9g /| € 81eys v9 / 6tz
asied
indinQ

|||||

| ateys
asled

1hding

A9y uoissag

¥oeqpaagy
Jaydio

90¢€€

ﬂ
NENENENENE

A
ule|d

PEONGHGEDS FEPESPN EpNpHUNY SPNHY RNy Uy N, S

%

A9y uoissag

)
0oge -

US 8,745,372 B2

Sheet 35 of 53

Jun. 3,2014

U.S. Patent

-90¢¢€

(

210)s59Yy \ N \

VEVEVEVE

*

xal
ulejd

00E€
)

A3ay| uoissag

v

Kay| uoissag

¥oeqpaag
Jaydip

v aleys
asled

ndino

€ aleys
asled

indino

Z aleys
asled

indino

| aleys
asled

Indino

US 8,745,372 B2

Sheet 36 of 53

Jun. 3,2014

U.S. Patent

G€ Old
Z aleys | aleys
indino mdino
A p A N
l 0 0 0 0 0 0 0
ysew
nqz ssew 31q 9

06

(zg) yids

K9y uoissoag
yoeqpaag s8ydid

3 I 0| O 3 0 L[O 0 F 0|0 I | 0 3 0

A9y uoissag

US 8,745,372 B2

Sheet 37 of 53

Jun. 3,2014

U.S. Patent

9¢ 'Old

pojo|dwon

619€ -,

VSO
Z-981 Sdid

pue (962
VHS) UseH
Z-08l Sdid

saleyg |enplAlpul
(leuondo)
ydAioug isod

%

.

(sanjeubig

[enbia / OVIN / YyseH)
uoneosnuayiny aleys

A
on 8L oy

(u jo w)

Pe

/19€

919¢

~| @Inquysiq / asteqd

£9%uelId|o] jne4

%

(190 1 00|Ig
/)11dg 11g wopuey)

S

(Bupieys 101099) (Bumyds
K9y uoissag uoipdAioug -1810988)
—» |eudaju] 9.nosag A3y Jlweys
)
GL9E—, mw> GlL9¢- _
, | i
(Burieys jai109g)]
P Aay uojssag jiids :om%w_onm__m%hwﬁ (LNOVY)
a1noag A9y : wojsuel |
|] w.iojsues) SOAIN
A BulyIoN Jo |y 190
ON wm_; %
(18s uado)
Aoy uoissag (saqg 10 96Z ‘z61 ‘9ZL-s3V) |~ (952 ‘¢6l
— MHds wuojsues) 1dAidug-aud Aoy [eulaju| azlL) 161
| BulyloN Jo v A Sdid s3av
rloc % ~ElL9¢
choe - % Aoy uoissag uondAioug
Koy uoissag leussiu] (ONUJSI) (Iss usdo)
—»{ 11dS (ONNJS)) uoljelauan) A3y 981 Sdld
uoljelauan) Aay| A .
_ mm__ A clog
r>._zo 3SYVd—ON—| ¢ Palinbay uondAiouz
on
_ MO M Ags uado)
S3A ¢ydAiouz [(962 ‘261
——au01g Aoy [ewsa1xg wouy Kay—p -ald Aoy |eutayxg ‘9zL) /61
A Sdid s3av
o_z
STA éeleqg -
b paydAioug Ajsnolaald 01L9¢
309E (edA) Auy ejeq indup)

US 8,745,372 B2

Sheet 38 of 53

Jun. 3,2014

U.S. Patent

L€ "Old

¥s €S

Zs IS s

saleys KAioua-3sod

0zi

simeudls [eybia i ds yo0|g Koy) 1ids pue uondAious LNOY Wlojsuel] (Dg 10
OVIN / UseH ujow / 1g wopuey Joj uopnquisig Aoy Jiweys| | H1D) S3v uonessuss Asy
uoljesnuayiny aleys aouesd|o] jne4q ajnquysiq/asted alnoag Aoy wuojsued] jdAiouy
])))
5] A aLLe— rLiE - - cLlie - 0 WA J
(jeuondo) 1dA1ous-aud 20/€
90 m> lasied ejeq aindag
YA
A
4 A
- aivy uondAioug |
b0.E Bupo.n sede] dnyoeg 20/
0Lg

US 8,745,372 B2

Sheet 39 of 53

Jun. 3,2014

U.S. Patent

8¢ Old

saieys

ejeqg

)
808¢€

Aoy yids
ejeq

908¢

¥06¢€

08¢
Koy
uondAioug
uondAioug
Nowmk
008¢€

018¢€

US 8,745,372 B2

Sheet 40 of 53

Jun. 3,2014

U.S. Patent

6€ Old

saleys

ermm

Hdg ejeq

]
oLee

Aay
yidg ejeq

806¢€

Aoy
uopdAioug
pajdAiouz

ondAioug
Koy dnoibyiopp

/
vomm‘ﬁ

Aoy
uondAioug

uondAioug

/
c06e—

(=
(=
(o2
o)

US 8,745,372 B2

Sheet 41 of 53

Jun. 3,2014

U.S. Patent

d0v "Old

¥a

H| €d

ca

1a

Vvory "Old

\

/

yidg ejeq

H yseH

pLoy

Aoy

yids ymdAiouz

ZLop -

(=
-
(=
<

!

M

ToL0¥

™ e (A IX

<

(yds nweys “6-9)
Bureyg ja129g

900t —

I |
|
m despp Aoy sV "

voomﬁg &

uolje.lausr)
Aoy yidg

2007 —

(=
(=
(=
<t

U.S. Patent Jun. 3, 2014 Sheet 42 of 53 US 8,745,372 B2

Data

4104
Data

(=

<

1
|
A
FIG. 41

Data

4106 > <4108

4102

/
Header

U.S. Patent Jun. 3, 2014 Sheet 43 of 53 US 8,745,372 B2

CA-2
S
o

CA-2.1 / \ CA-2.2

FIG. 42

CA-1

US 8,745,372 B2

Sheet 44 of 53

Jun. 3,2014

U.S. Patent

(V"°dg

ozer |

€V 'Old
- o
(sebessay M)oug
Zhedy LAedy)g = 3 Noeey (HPUg ehely (0y)g =

29919 ledlned W o

U.S. Patent Jun. 3, 2014 Sheet 45 of 53 US 8,745,372 B2

(Begin)

4410\ /
Generate Secret Information

Y

4420~
Disperse Secret Information into Shares

4430\ \
Encrypt Shares of Secret Information Based on
Public Keys of Unique Certificate Authorities

Recover
Secret
Information??

4450~ y 4460~ 1y
Do Not Exchange Exchange
Messages Messages

FIG. 44

U.S. Patent Jun. 3, 2014 Sheet 46 of 53 US 8,745,372 B2

(Begin)

Devices Exchange Random Numbers and
Certificates Associated with Public Keys, Each
Public Key Issued by a Unique Certificate Authority

4515\ 1 4

First Device Generates Secret Information

4520~ v
First Device Disperses Secret Information into
Shares
4525~ 4552_7_1 __________________
First Device Encrypts Each Share Based on One ofthe| i First Device Performs |
Public Keys Issued by a Different Certificate Authority i_________[(_e_y_vyr_a_p_________j
4530~ y 4535~
First Device Transmits Encrypted Shares to Second | | Second Device Attempts to
Device Decrypt Encrypted Shares
4545~ v 4540~ v
Devices Independently Compute Shared Encryption Second Device Attempts to
Key Based on Exchanged Random Numbers, and Restore Secret Information
Computed or Original Secret Information Based on Decrypted Shares

Devices

Agree on Shared

Encryption Key
?

4555~ 4560
Devices Do Not Devices Exchange
Exchange Messages Messages

FIG. 45

US 8,745,372 B2

Sheet 47 of 53

Jun. 3,2014

U.S. Patent

9% Old < >

(sebessa|y “H)oug
 (PsSyWo =y N~ ocor (s u u)o = i
(%es 23 ©15)i01599 = 5 o
2o ettt

-t}
(°zs *Seand)ou3z ‘(°zs ‘Szand)ouz ‘(°Ls “Lgnd)oug

M (°s) esiadsiq = °¢s “zs IS
Og ojesousn)

mw mm<o-toonmm<o-tmo,£<o-tmo.mm
| Sy ejeleus)

029% "

U.S. Patent Jun. 3, 2014 Sheet 48 of 53 US 8,745,372 B2

(Begin)

4710\
Establish a Communication Channel

4720\

Establish Secure Communication
Tunnels Within the First Communication
Channel Based on Distributed Trust Among
Certificate Authorities

4730\

Prepare Data Packets for Transmission
Over the Secure Communication Tunnels
Based on the Set of Certificate Authorities

and Multi-factored Secret Sharing

4740\
Transmit Prepared Data Packets

4750~ ;
Receive Transmitted Data Packets

4760\

Restore Data Packets Based on the Set
of Certificate Authorities and Multi-factored
Secret Sharing

End

FIG. 47

U.S. Patent Jun. 3, 2014 Sheet 49 of 53 US 8,745,372 B2

4800-\‘
(Begin)

4810\ L
Establish a Secure Communication Channel

4815~ \

Establish Secure Communication Tunnels
within the Communication Channel, Each
Using a Certificate Obtained from a Unique
Certificate Authority, Each Tunnel Associated
with a Respective Unique Certificate Authority

4820\ L J

Cryptographically Split Each Data Packet into
Shares Using Multi-factored Secret Sharing

4825~ !

Encrypt Each of the Shares Using a
Key Associated with the Establishment of
One of the Secure Communication Tunnels

4830~ v

Transmit Each of the Encrypted Shares on the
Tunnel Associated with the Unique Certificate
Authority Under Which that Tunnel was Established

End
FIG. 48A

U.S. Patent Jun. 3, 2014 Sheet 50 of 53 US 8,745,372 B2

(Begin)

4835~ Y

Receive Encrypted Shares, Each on a
Respective Secure Communication Tunnel

4840\

Decrypt Each of the Shares Based on the
Key Associated With the Establishment of
the Respective Secure Communication Tunnel

4845~ v

Restore Decrypted Shares into the Original
Data Packet

End

FIG. 48B

US 8,745,372 B2

Sheet 51 of 53

Jun. 3,2014

U.S. Patent

J8Y "OId

Evo

1dAiou]
\-G/8¥

£v0 ybnouy L jeuueyo-gns s1

[

\-9/8¥

A

|

S}o)OBd| alo)say
eleq | 1©19ed
Nwmw \-6.8%

ALY

1dAioug
\-£/8v

FATA0) cmjo.__._._. [lpuueyd-gqng

[

.8V

VO

J|ds Jexoed
olydesb6oydAin

sjeyoed

eleq

/

1dAioug
~1.8%

L0 ybnouy | [suueyo-gns S1

[

\-zZ.8V

[suuey) uolediunwwo) ST1L

\-088Y

\-g/8t

118Y

US 8,745,372 B2

Sheet 52 of 53

Jun. 3,2014

U.S. Patent

14%51%

6V 'Ol4
a :(*a ‘¢q ‘tg)eaioisay ds
°a g)
| 2 g
| €320 **q (@)esied ds ‘a T
| slopeoH al101SeY dS !
_N.N.%u-:------------------_HuumHmumHmHHHHHHHH_
. °H
i
| &
\ W “ evO uybnoiyl STL
W 2vO ybnoiyl s11
m _ lvoubnomislL
0261~ ﬁ \-o¢6v

FEYVETS

US 8,745,372 B2

Sheet 53 of 53

Jun. 3,2014

U.S. Patent

0S 'Old

[auuey) uoiiediuptuwio)

[UuUey) uojesiunwwo)

200G Jouisylg oS
— = _
Y - >
\o/ﬂ/ | cvopuegvoupnonr sl A (eruseRqpaYL)
S| £Peee / T
]| ©/eus 0v0S
S Z mem;m eleq vcooomv
S 110G
~ T aleus | 19UUBYD UOJEOIUNLILIOD YA
0205 © vouybnoyL sl m oIeys ejeq Jsii4 v
\ \-Z10S
10A198 0€0S sl
0005

US 8,745,372 B2

1

SYSTEMS AND METHODS FOR SECURING
DATA IN MOTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. provisional
application No. 61/264,464, filed on Nov. 25, 2009, which is
hereby incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

The present invention relates in general to systems and
methods for securing communications by distributing trust
among certificate authorities. The systems and methods
described herein may be used in conjunction with other sys-
tems and methods described in commonly-owned U.S. Pat.
No. 7,391,865 and commonly-owned U.S. patent application
Ser.No. 11/258,839, filed Oct. 25, 2005, Ser. No. 11/602,667,
filed Nov. 20, 2006, Ser. No. 11/983,355, filed Nov. 7, 2007,
Ser. No. 11/999,575, filed Dec. 5, 2007, Ser. No. 12/148,365,
filed Apr. 18, 2008, Ser. No. 12/209,703, filed Sep. 12, 2008,
Ser. No. 12/349,897, filed Jan. 7, 2009, Ser. No. 12/391,025,
filed Feb. 23, 2009, all of which are hereby incorporated by
reference herein in their entireties.

BACKGROUND OF THE INVENTION

In today’s society, individuals and businesses conduct an
ever-increasing amount of activities on and over computer
systems. These computer systems, including proprietary and
non-proprietary computer networks, are often storing,
archiving, and transmitting all types of sensitive information.
Thus, an ever-increasing need exists for ensuring data stored
and transmitted over these systems cannot be read or other-
wise compromised.

One solution is to secure the data using keys of a certificate
authority. Certificate authorities may be run by trusted third-
party organizations or companies that issue digital certifi-
cates, such as, for example, VeriSign, Baltimore, Entrust, or
the like. The digital certificate certifies the ownership of a
public key by the named subject of the certificate. This allows
others to rely upon signatures or assertions made by the
private key that corresponds to the public key that is certified.
Requests for a digital certificate may be made through digital
certificate protocols, such as, for example, PKCS10. In
response to a request, the certificate authority will issue a
certificate in a number of differing protocols, such as, for
example, PKCS7. Messages may be exchanged between
devices based on the issued certificates.

If the certificate authority is compromised, then the secu-
rity of the system may be lost for each user for whom the
certificate authority is certifying a link between a public key
and an identity. For example, an attacker may compromise a
certificate authority by inducing that certificate authority to
issue a certificate that falsely claims to represent an entity.
The attacker would have the private key associated with the
certificate authority’s certificate. The attacker could then use
this certificate to send digitally signed messages to a user, and
trick that user into believing that the message was from the
trusted entity. The user may respond to the digitally signed
messages, which the attacker may decrypt using the private
key. Accordingly, the trust that the user placed in the certifi-
cate authority may be compromised.

20

25

30

35

40

45

50

55

60

65

2
SUMMARY OF THE INVENTION

Based on the foregoing, a need exists to provide a secure
proxy service that includes a system that secures communi-
cations by distributing trust among a set of certificate authori-
ties.

Accordingly, the present invention provides two
approaches to distributing trust among a set of certificate
authorities. Both approaches are equally secure. In each
approach, a secure data parser may be integrated with any
suitable encryption technology. It will be understood that in
some embodiments the secure proxy service may be imple-
mented by integrating a secure data parser with the full Trans-
port Layer Security (“TLS”) protocol, with the Secure Sock-
ets Layer (SSL) protocol, with SSL. and full TLS, or
implementing the secure data parser without the use of SSL.
and/or full TLS. In addition, it will be understood that in some
embodiments the secure proxy service may be implemented
in conjunction with any suitable protocol that makes use of
certificate authorities to ensure the confidentiality, integrity,
and authenticity of exchanged messages.

Accordingly, one approach of the present invention pro-
vides methods and systems in which the secure data parser is
used to distribute trust in a set of certificate authorities during
initial negotiation (e.g., the key establishment phase) of a
connection between devices. The certificate authorities may
be unique in that the certificates issued by each have different
public and private key pairs. This offers the assurance that if
some (but fewer than a quorum) of the certificate authorities
have been compromised, the connection can still be estab-
lished, and messages may be exchanged without disrupting
the confidentiality or integrity of the communication.

One aspect of this approach is to provide methods and
systems for computing shared encryption keys. This compu-
tation of shared encryption keys may be part of a key estab-
lishment phase of secure communications between devices.
Secret information may be generated, and public keys may be
obtained from unique certificate authorities. The secret infor-
mation may be dispersed into any number of shares of secret
information. Each share of secret information may be
encrypted based on a public key of a certificate associated
with a different one of the unique certificate authorities.
Optionally, each of the shares of secret information may be
encrypted based on a keywrap. The keywrap may be based on
a workgroup key. In some embodiments, the shares may be
recombined, and data may be transmitted based on the recom-
bined shares.

In some embodiments, a set of random numbers may be
generated. A first shared encryption key may be computed
based on the set of random numbers and the original secret
information. A second shared encryption key may be com-
puted based on the set of random numbers and the recom-
bined shares. Data may be transmitted based on the first and
second shared encryption keys. In some embodiments, the
first and second shared encryption keys may be compared. A
determination may be made whether to transmit data based on
this comparison, and data may be transmitted based on this
determination.

Another approach of the present invention is to provide
methods and systems in which the secure data parser is used
to pre-process packets of data. The pre-processed data may
then be dispersed into shares. A set of tunnels may be estab-
lished within a communication channel using certificates
issued by unique certificate authorities, keys developed dur-
ing this establishment may be used to encrypt data for each of
the tunnels, and the individual shares of data may be trans-
mitted on each of the tunnels. Thus, in the second approach

US 8,745,372 B2

3

trust may be distributed among a set of certificate authorities
in the structure of the communication channel itself.

One aspect of this approach is to provide methods and
systems for securing data in motion. The data in motion may
include original data packets. A secure communication chan-
nel may be established. Any number of secure communica-
tion tunnels may be established within the secure communi-
cation channel based on a distributed trust among unique
certificate authorities. In some embodiments, each of the
secure communication tunnels may be established using a
certificate issued by a different one of unique certificate
authorities. Each of the original data packets may be prepared
for transmission over the secure communication tunnels
based on the distributed trust among the set of certificate
authorities and multi-factored secret sharing. In some
embodiments, each of the original data packets may be dis-
persed into a plurality of shares based on multi-factored secret
sharing. Optionally, this dispersing may be based on an M of
N cryptosplit. The shares may be encrypted based on a key
associated with the establishment of a different one of the
secure communication tunnels. In some embodiments, each
of the encrypted shares may be transmitted over the secure
communication tunnel used to encrypt that share.

In some embodiments, each secure communication tunnels
may be established based on the certificate associated with a
different one of the unique certificate authorities. In some
embodiments, each secure communication tunnel may be
associated with a certificate issued by one of the unique
certificate authorities under which the secure communication
tunnels were established. For example, there may be a one-
to-one correspondence between a certificate of one of the
unique certificate authorities and the secure communication
tunnels. In some embodiments, these associations may be
dynamic. In some embodiments, the shares may be restored
by recombining at least a quorum of the shares.

In some embodiments, each of the encrypted shares may be
received on a respective one of the secure communication
tunnels. Each of the shares may be decrypted based on the
keys associated with the establishment of the secure commu-
nication tunnels. The original data packets may be restored
based on, for example the multi-factored secret sharing.

In some embodiments, a certificate authority hierarchy
may be generated. The certificate authority hierarchy may
include a set of root certificate authorities, a set of minor
certificate authorities, or both. The set of certificate authori-
ties may include the set of root certificate authorities, the set
of minor certificate authorities, or both from the generated
certificate authority hierarchy.

In some embodiments, each of the N secure communica-
tion tunnels may be established over different physical trans-
port mediums. In some embodiments, at least one of the
physical transport mediums may fail, but the original data
packets may be restored without a loss of data integrity. In
some embodiments, a portion of the shares is designated for
transmission over at least one of the failed physical transport
mediums, but some of the physical transport mediums may be
operational. In such embodiments, additional secure commu-
nication tunnels may be established within at least one of the
operational physical transport mediums. The portion of the
shares designated for transmission over the at least one failed
physical transport mediums may be transmitted over the addi-
tional secure communication tunnels.

In some embodiments, the two approaches may be com-
bined in any suitable way. For example, any number of the
secure communication tunnels in the second approach may be
established using the key establishment techniques of the first
approach.

20

25

30

35

40

45

50

55

60

65

4
BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described in more detail below in
connection with the attached drawings, which are meant to
illustrate and not to limit the invention, and in which:

FIG. 1 illustrates a block diagram of a cryptographic sys-
tem, according to aspects of an embodiment of the invention;

FIG. 2 illustrates a block diagram of the trust engine of
FIG. 1, according to aspects of an embodiment of the inven-
tion;

FIG. 3 illustrates a block diagram of the transaction engine
of FIG. 2, according to aspects of an embodiment of the
invention;

FIG. 4 illustrates a block diagram of the depository of FI1G.
2, according to aspects of an embodiment of the invention;

FIG. 5 illustrates a block diagram of the authentication
engine of FIG. 2, according to aspects of an embodiment of
the invention;

FIG. 6 illustrates a block diagram of the cryptographic
engine of FIG. 2, according to aspects of an embodiment of
the invention;

FIG. 7 illustrates a block diagram of a depository system,
according to aspects of another embodiment of the invention;

FIG. 8 illustrates a flow chart of a data splitting process
according to aspects of an embodiment of the invention;

FIG. 9, Panel A illustrates a data flow of an enrollment
process according to aspects of an embodiment of the inven-
tion;

FIG. 9, Panel B illustrates a flow chart of an interoperabil-
ity process according to aspects of an embodiment of the
invention;

FIG. 10 illustrates a data flow of an authentication process
according to aspects of an embodiment of the invention;

FIG. 11 illustrates a data flow of a signing process accord-
ing to aspects of an embodiment of the invention;

FIG. 12 illustrates a data flow and an encryption/decryp-
tion process according to aspects and yet another embodi-
ment of the invention;

FIG. 13 illustrates a simplified block diagram of a trust
engine system according to aspects of another embodiment of
the invention;

FIG. 14 illustrates a simplified block diagram of a trust
engine system according to aspects of another embodiment of
the invention;

FIG. 15 illustrates a block diagram of the redundancy mod-
ule of FIG. 14, according to aspects of an embodiment of the
invention;

FIG. 16 illustrates a process for evaluating authentications
according to one aspect of the invention;

FIG. 17 illustrates a process for assigning a value to an
authentication according to one aspect as shown in FIG. 16 of
the invention;

FIG. 18 illustrates a process for performing trust arbitrage
in an aspect of the invention as shown in FIG. 17; and

FIG. 19 illustrates a sample transaction between a user and
avendor according to aspects of an embodiment of the inven-
tion where an initial web based contact leads to a sales con-
tract signed by both parties.

FIG. 20 illustrates a sample user system with a crypto-
graphic service provider module which provides security
functions to a user system.

FIG. 21 illustrates a process for parsing, splitting and/or
separating data with encryption and storage of the encryption
master key with the data.

FIG. 22 illustrates a process for parsing, splitting and/or
separating data with encryption and storing the encryption
master key separately from the data.

US 8,745,372 B2

5

FIG. 23 illustrates the intermediary key process for pars-
ing, splitting and/or separating data with encryption and stor-
age of the encryption master key with the data.

FIG. 24 illustrates the intermediary key process for pars-
ing, splitting and/or separating data with encryption and stor-
ing the encryption master key separately from the data.

FIG. 25 illustrates utilization of the cryptographic methods
and systems of the present invention with a small working
group.

FIG. 26 is a block diagram of an illustrative physical token
security system employing the secure data parser in accor-
dance with one embodiment of the present invention.

FIG. 27 is a block diagram of an illustrative arrangement in
which the secure data parser is integrated into a system in
accordance with one embodiment of the present invention.

FIG. 28 is a block diagram of an illustrative data in motion
system in accordance with one embodiment of the present
invention.

FIG. 29 is a block diagram of another illustrative data in
motion system in accordance with one embodiment of the
present invention.

FIG. 30-32 are block diagrams of an illustrative system
having the secure data parser integrated in accordance with
one embodiment of the present invention.

FIG. 33 is a process flow diagram of an illustrative process
for parsing and splitting data in accordance with one embodi-
ment of the present invention.

FIG. 34 is a process flow diagram of an illustrative process
for restoring portions of data into original data in accordance
with one embodiment of the present invention.

FIG. 35 is a process flow diagram of an illustrative process
for splitting data at the bit level in accordance with one
embodiment of the present invention.

FIG. 36 is a process flow diagram of illustrative steps and
features in accordance with one embodiment of the present
invention.

FIG. 37 is a process flow diagram of illustrative steps and
features in accordance with one embodiment of the present
invention.

FIG. 38 is a simplified block diagram of the storage ofkey
and data components within shares in accordance with one
embodiment of the present invention.

FIG. 39 is a simplified block diagram of the storage ofkey
and data components within shares using a workgroup key in
accordance with one embodiment of the present invention.

FIGS. 40A and 40B are simplified and illustrative process
flow diagrams for header generation and data splitting for
data in motion in accordance with one embodiment of the
present invention.

FIG. 41 is a simplified block diagram of an illustrative
share format in accordance with one embodiment of the
present invention.

FIG. 42 is a simplified and a illustrative hierarchy of cer-
tificate authorities in accordance with one embodiment of the
present invention.

FIGS. 43-47, 48A, and 48B are process flow diagrams of
illustrative steps and features for a secure proxy service in
accordance with one embodiment of the present invention.

FIG. 48C is a simplified block diagram of a secure proxy
service that distributes trust among a set of certificate authori-
ties in the structure of communication channels in accordance
with one embodiment of the present invention.

FIGS. 49 and 50 are process flow diagrams of illustrated
steps and features for a secure proxy service that distributes
trust among a set of certificate authorities in the structure of
communication channels in accordance with one embodi-
ment of the present invention.

20

25

30

35

40

45

50

55

60

65

6
DETAILED DESCRIPTION OF THE INVENTION

One aspect of the present invention is to provide a crypto-
graphic system where one or more secure servers, or a trust
engine, stores cryptographic keys and user authentication
data. Users access the functionality of conventional crypto-
graphic systems through network access to the trust engine,
however, the trust engine does not release actual keys and
other authentication data and therefore, the keys and data
remain secure. This server-centric storage ofkeys and authen-
tication data provides for user-independent security, portabil-
ity, availability, and straightforwardness.

Because users can be confident in, or trust, the crypto-
graphic system to perform user and document authentication
and other cryptographic functions, a wide variety of function-
ality may be incorporated into the system. For example, the
trust engine provider can ensure against agreement repudia-
tion by, for example, authenticating the agreement partici-
pants, digitally signing the agreement on behalf of or for the
participants, and storing a record of the agreement digitally
signed by each participant. In addition, the cryptographic
system may monitor agreements and determine to apply vary-
ing degrees of authentication, based on, for example, price,
user, vendor, geographic location, place of use, or the like.

To facilitate a complete understanding of the invention, the
remainder of the detailed description describes the invention
with reference to the figures, wherein like elements are ref-
erenced with like numerals throughout.

FIG. 1 illustrates a block diagram of a cryptographic sys-
tem 100, according to aspects of an embodiment of the inven-
tion. As shown in FIG. 1, the cryptographic system 100
includes a user system 105, a trust engine 110, a certificate
authority 115, and a vendor system 120, communicating
through a communication link 125.

According to one embodiment of the invention, the user
system 105 comprises a conventional general-purpose com-
puter having one or more microprocessors, such as, for
example, an Intel-based processor. Moreover, the user system
105 includes an appropriate operating system, such as, for
example, an operating system capable of including graphics
or windows, such as Windows, Unix, Linux, or the like. As
shown in FIG. 1, the user system 105 may include a biometric
device 107. The biometric device 107 may advantageously
capture a user’s biometric and transfer the captured biometric
to the trust engine 110. According to one embodiment of the
invention, the biometric device may advantageously com-
prise a device having attributes and features similar to those
disclosed in U.S. patent application Ser. No. 08/926,277, filed
on Sep. 5, 1997, entitled “RELIEF OBJECT IMAGE GEN-
ERATOR,” U.S. patent application Ser. No. 09/558,634, filed
on Apr. 26, 2000, entitled “IMAGING DEVICE FOR A
RELIEF OBJECT AND SYSTEM AND METHOD OF
USING THE IMAGE DEVICE,” U.S. patent application Ser.
No. 09/435,011, filed on Nov. 5, 1999, entitled “RELIEF
OBJECT SENSOR ADAPTOR,” and U.S. patent application
Ser.No. 09/477,943, filed on Jan. 5, 2000, entitled “PLANAR
OPTICAL IMAGE SENSOR AND SYSTEM FOR GENER-
ATING AN ELECTRONIC IMAGE OF A RELIEF OBJECT
FOR FINGERPRINT READING,” all of which are owned by
the instant assignee, and all of which are hereby incorporated
by reference herein.

In addition, the user system 105 may connect to the com-
munication link 125 through a conventional service provider,
such as, for example, a dial up, digital subscriber line (DSL),
cable modem, fiber connection, or the like. According to
another embodiment, the user system 105 connects the com-
munication link 125 through network connectivity such as,

US 8,745,372 B2

7

for example, a local or wide area network. According to one
embodiment, the operating system includes a TCP/IP stack
that handles all incoming and outgoing message traffic passed
over the communication link 125.

Although the user system 105 is disclosed with reference to
the foregoing embodiments, the invention is not intended to
be limited thereby. Rather, a skilled artisan will recognize
from the disclosure herein, a wide number of alternatives
embodiments of the user system 105, including almost any
computing device capable of sending or receiving informa-
tion from another computer system. For example, the user
system 105 may include, but is not limited to, a computer
workstation, an interactive television, an interactive kiosk, a
personal mobile computing device, such as a digital assistant,
mobile phone, laptop, or the like, personal networking equip-
ment, such as a home router, a network storage device
(“NAS”), personal hotspot, or the like, or a wireless commu-
nications device, a smartcard, an embedded computing
device, or the like, which can interact with the communica-
tion link 125. In such alternative systems, the operating sys-
tems will likely differ and be adapted for the particular device.
However, according to one embodiment, the operating sys-
tems advantageously continue to provide the appropriate
communications protocols needed to establish communica-
tion with the communication link 125.

FIG. 1 illustrates the trust engine 110. According to one
embodiment, the trust engine 110 comprises one or more
secure servers for accessing and storing sensitive informa-
tion, which may be any type or form of data, such as, but not
limited to text, audio, video, user authentication data and
public and private cryptographic keys. According to one
embodiment, the authentication data includes data designed
to uniquely identify a user of the cryptographic system 100.
For example, the authentication data may include a user iden-
tification number, one or more biometrics, and a series of
questions and answers generated by the trust engine 110 or
the user, but answered initially by the user at enrollment. The
foregoing questions may include demographic data, such as
place of birth, address, anniversary, or the like, personal data,
such as mother’s maiden name, favorite ice cream, or the like,
or other data designed to uniquely identify the user. The trust
engine 110 compares a user’s authentication data associated
with a current transaction, to the authentication data provided
at an earlier time, such as, for example, during enrollment.
The trust engine 110 may advantageously require the user to
produce the authentication data at the time of each transac-
tion, or, the trust engine 110 may advantageously allow the
user to periodically produce authentication data, such as at the
beginning of a string of transactions or the logging onto a
particular vendor website.

According to the embodiment where the user produces
biometric data, the user provides a physical characteristic,
such as, but not limited to, facial scan, hand scan, ear scan, iris
scan, retinal scan, vascular pattern, DNA, a fingerprint, writ-
ing or speech, to the biometric device 107. The biometric
device advantageously produces an electronic pattern, or bio-
metric, of the physical characteristic. The electronic pattern is
transferred through the user system 105 to the trust engine
110 for either enrollment or authentication purposes.

Once the user produces the appropriate authentication data
and the trust engine 110 determines a positive match between
that authentication data (current authentication data) and the
authentication data provided at the time of enrollment (enroll-
ment authentication data), the trust engine 110 provides the
user with complete cryptographic functionality. For example,
the properly authenticated user may advantageously employ
the trust engine 110 to perform hashing, digitally signing,

20

25

30

35

40

45

50

55

60

65

8

encrypting and decrypting (often together referred to only as
encrypting), creating or distributing digital certificates, and
the like. However, the private cryptographic keys used in the
cryptographic functions will not be available outside the trust
engine 110, thereby ensuring the integrity of the crypto-
graphic keys.

According to one embodiment, the trust engine 110 gen-
erates and stores cryptographic keys. According to another
embodiment, at least one cryptographic key is associated with
each user. Moreover, when the cryptographic keys include
public-key technology, each private key associated with a
user is generated within, and not released from, the trust
engine 110. Thus, so long as the user has access to the trust
engine 110, the user may perform cryptographic functions
using his or her private or public key. Such remote access
advantageously allows users to remain completely mobile
and access cryptographic functionality through practically
any Internet connection, such as cellular and satellite phones,
kiosks, laptops, hotel rooms and the like.

According to another embodiment, the trust engine 110
performs the cryptographic functionality using a key pair
generated for the trust engine 110. According to this embodi-
ment, the trust engine 110 first authenticates the user, and
after the user has properly produced authentication data
matching the enrollment authentication data, the trust engine
110 uses its own cryptographic key pair to perform crypto-
graphic functions on behalf of the authenticated user.

A skilled artisan will recognize from the disclosure herein
that the cryptographic keys may advantageously include
some or all of symmetric keys, public keys, and private keys.
In addition, a skilled artisan will recognize from the disclo-
sure herein that the foregoing keys may be implemented with
awide number of algorithms available from commercial tech-
nologies, such as, for example, RSA, ELGAMAL, or the like.

FIG. 1 also illustrates the certificate authority 115. Accord-
ing to one embodiment, the certificate authority 115 may
advantageously comprise a trusted third-party organization
or company that issues digital certificates, such as, for
example, VeriSign, Baltimore, Entrust, or the like. The trust
engine 110 may advantageously transmit requests for digital
certificates, through one or more conventional digital certifi-
cate protocols, such as, for example, PKCS10, to the certifi-
cate authority 115. In response, the certificate authority 115
will issue a digital certificate in one or more of a number of
differing protocols, such as, for example, PKCS7. According
to one embodiment of the invention, the trust engine 110
requests digital certificates from several or all of the promi-
nent certificate authorities 115 such that the trust engine 110
has access to a digital certificate corresponding to the certifi-
cate standard of any requesting party.

According to another embodiment, the trust engine 110
internally performs certificate issuances. In this embodiment,
the trust engine 110 may access a certificate system for gen-
erating certificates and/or may internally generate certificates
when they are requested, such as, for example, at the time of
key generation or in the certificate standard requested at the
time of the request. The trust engine 110 will be disclosed in
greater detail below.

FIG. 1 also illustrates the vendor system 120. According to
one embodiment, the vendor system 120 advantageously
comprises a Web server. Typical Web servers generally serve
content over the Internet using one of several internet markup
languages or document format standards, such as the Hyper-
Text Markup Language (HTML) or the Extensible Markup
Language (XML). The Web server accepts requests from
browsers like Netscape and Internet Explorer and then returns
the appropriate electronic documents. A number of server or

US 8,745,372 B2

9

client-side technologies can be used to increase the power of
the Web server beyond its ability to deliver standard elec-
tronic documents. For example, these technologies include
Common Gateway Interface (CGI) scripts, SSL security, and
Active Server Pages (ASPs). The vendor system 120 may
advantageously provide electronic content relating to com-
mercial, personal, educational, or other transactions.

Although the vendor system 120 is disclosed with refer-
ence to the foregoing embodiments, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize from the disclosure herein that the vendor system
120 may advantageously comprise any of the devices
described with reference to the user system 105 or combina-
tion thereof.

FIG.1alsoillustrates the communication link 125 connect-
ing the user system 105, the trust engine 110, the certificate
authority 115, and the vendor system 120. According to one
embodiment, the communication link 125 preferably com-
prises the Internet. The Internet, as used throughout this dis-
closure is a global network of computers. The structure of the
Internet, which is well known to those of ordinary skill in the
art, includes a network backbone with networks branching
from the backbone. These branches, in turn, have networks
branching from them, and so on. Routers move information
packets between network levels, and then from network to
network, until the packet reaches the neighborhood of its
destination. From the destination, the destination network’s
host directs the information packet to the appropriate termi-
nal, or node. In one advantageous embodiment, the Internet
routing hubs comprise domain name system (DNS) servers
using Transmission Control Protocol/Internet Protocol (TCP/
1P) as is well known in the art. The routing hubs connect to
one or more other routing hubs via high-speed communica-
tion links.

One popular part of the Internet is the World Wide Web.
The World Wide Web contains different computers, which
store documents capable of displaying graphical and textual
information. The computers that provide information on the
World Wide Web are typically called “websites.” A website is
defined by an Internet address that has an associated elec-
tronic page. The electronic page can be identified by a Uni-
form Resource Locator (URL). Generally, an electronic page
is a document that organizes the presentation of text, graphi-
cal images, audio, video, and so forth.

Although the communication link 125 is disclosed in terms
of its preferred embodiment, one of ordinary skill in the art
will recognize from the disclosure herein that the communi-
cation link 125 may include a wide range of interactive com-
munications links. For example, the communication link 125
may include interactive television networks, telephone net-
works, wireless data transmission systems, two-way cable
systems, customized private or public computer networks,
interactive kiosk networks, automatic teller machine net-
works, direct links, satellite or cellular networks, and the like.

FIG. 2 illustrates a block diagram of the trust engine 110 of
FIG. 1 according to aspects of an embodiment of the inven-
tion. As shown in FIG. 2, the trust engine 110 includes a
transaction engine 205, a depository 210, an authentication
engine 215, and a cryptographic engine 220. According to
one embodiment of the invention, the trust engine 110 also
includes mass storage 225. As further shown in FIG. 2, the
transaction engine 205 communicates with the depository
210, the authentication engine 215, and the cryptographic
engine 220, along with the mass storage 225. In addition, the
depository 210 communicates with the authentication engine
215, the cryptographic engine 220, and the mass storage 225.
Moreover, the authentication engine 215 communicates with

20

25

30

35

40

45

50

55

60

65

10

the cryptographic engine 220. According to one embodiment
of'the invention, some or all of the foregoing communications
may advantageously comprise the transmission of XML
documents to IP addresses that correspond to the receiving
device. As mentioned in the foregoing, XML documents
advantageously allow designers to create their own custom-
ized document tags, enabling the definition, transmission,
validation, and interpretation of data between applications
and between organizations. Moreover, some or all of the
foregoing communications may include conventional SSL
technologies.

According to one embodiment, the transaction engine 205
comprises a data routing device, such as a conventional Web
server available from Netscape, Microsoft, Apache, or the
like. For example, the Web server may advantageously
receive incoming data from the communication link 125.
According to one embodiment of the invention, the incoming
data is addressed to a front-end security system for the trust
engine 110. For example, the front-end security system may
advantageously include a firewall, an intrusion detection sys-
tem searching for known attack profiles, and/or a virus scan-
ner. After clearing the front-end security system, the data is
received by the transaction engine 205 and routed to one of
the depository 210, the authentication engine 215, the cryp-
tographic engine 220, and the mass storage 225. In addition,
the transaction engine 205 monitors incoming data from the
authentication engine 215 and cryptographic engine 220, and
routes the data to particular systems through the communica-
tion link 125. For example, the transaction engine 205 may
advantageously route data to the user system 105, the certifi-
cate authority 115, or the vendor system 120.

According to one embodiment, the data is routed using
conventional HTTP routing techniques, such as, for example,
employing URLs or Uniform Resource Indicators (URIs).
URIs are similar to URLs, however, URIs typically indicate
the source of files or actions, such as, for example,
executables, scripts, and the like. Therefore, according to the
one embodiment, the user system 105, the certificate author-
ity 115, the vendor system 120, and the components of the
trust engine 210, advantageously include sufficient data
within communication URLs or URIs for the transaction
engine 205 to properly route data throughout the crypto-
graphic system.

Although the data routing is disclosed with reference to its
preferred embodiment, a skilled artisan will recognize a wide
number of possible data routing solutions or strategies. For
example, XML or other data packets may advantageously be
unpacked and recognized by their format, content, or the like,
such that the transaction engine 205 may properly route data
throughout the trust engine 110. Moreover, a skilled artisan
will recognize that the data routing may advantageously be
adapted to the data transfer protocols conforming to particu-
lar network systems, such as, for example, when the commu-
nication link 125 comprises a local network.

According to yet another embodiment of the invention, the
transaction engine 205 includes conventional SSL. encryption
technologies, such that the foregoing systems may authenti-
cate themselves, and vise-versa, with transaction engine 205,
during particular communications. As will be used through-
out this disclosure, the term “Y2 SSL” refers to communica-
tions where a server but not necessarily the client, is SSL
authenticated, and the term “FULL SSL” refers to communi-
cations where the client and the server are SSL authenticated.
When the instant disclosure uses the term “SSL”, the com-
munication may comprise %2 or FULL SSL.

As the transaction engine 205 routes data to the various
components of the cryptographic system 100, the transaction

US 8,745,372 B2

11

engine 205 may advantageously create an audit trail. Accord-
ing to one embodiment, the audit trail includes a record of at
least the type and format of data routed by the transaction
engine 205 throughout the cryptographic system 100. Such
audit data may advantageously be stored in the mass storage
225.

FIG. 2 also illustrates the depository 210. According to one
embodiment, the depository 210 comprises one or more data
storage facilities, such as, for example, a directory server, a
database server, or the like. As shown in FIG. 2, the depository
210 stores cryptographic keys and enrollment authentication
data. The cryptographic keys may advantageously corre-
spond to the trust engine 110 or to users of the cryptographic
system 100, such as the user or vendor. The enrollment
authentication data may advantageously include data
designed to uniquely identify a user, such as, user 1D, pass-
words, answers to questions, biometric data, or the like. This
enrollment authentication data may advantageously be
acquired at enrollment of a user or another alternative later
time. For example, the trust engine 110 may include periodic
or other renewal or reissue of enrollment authentication data.

According to one embodiment, the communication from
the transaction engine 205 to and from the authentication
engine 215 and the cryptographic engine 220 comprises
secure communication, such as, for example conventional
SSL technology. In addition, as mentioned in the foregoing,
the data of the communications to and from the depository
210 may be transferred using URLs, URIs, HTTP or XML
documents, with any of the foregoing advantageously having
data requests and formats embedded therein.

As mentioned above, the depository 210 may advanta-
geously comprises a plurality of secure data storage facilities.
In such an embodiment, the secure data storage facilities may
be configured such that a compromise of the security in one
individual data storage facility will not compromise the cryp-
tographic keys or the authentication data stored therein. For
example, according to this embodiment, the cryptographic
keys and the authentication data are mathematically operated
on so as to statistically and substantially randomize the data
stored in each data storage facility. According to one embodi-
ment, the randomization of the data of an individual data
storage facility renders that data undecipherable. Thus, com-
promise of an individual data storage facility produces only a
randomized undecipherable number and does not compro-
mise the security of any cryptographic keys or the authenti-
cation data as a whole.

FIG. 2 also illustrates the trust engine 110 including the
authentication engine 215. According to one embodiment, the
authentication engine 215 comprises a data comparator con-
figured to compare data from the transaction engine 205 with
data from the depository 210. For example, during authenti-
cation, a user supplies current authentication data to the trust
engine 110 such that the transaction engine 205 receives the
current authentication data. As mentioned in the foregoing,
the transaction engine 205 recognizes the data requests, pref-
erably in the URL or URI, and routes the authentication data
to the authentication engine 215. Moreover, upon request, the
depository 210 forwards enrollment authentication data cor-
responding to the user to the authentication engine 215. Thus,
the authentication engine 215 has both the current authenti-
cation data and the enrollment authentication data for com-
parison.

According to one embodiment, the communications to the
authentication engine comprise secure communications, such
as, for example, SSL technology. Additionally, security can
be provided within the trust engine 110 components, such as,
for example, super-encryption using public key technologies.

5

20

25

30

35

40

45

55

60

12

For example, according to one embodiment, the user encrypts
the current authentication data with the public key of the
authentication engine 215. In addition, the depository 210
also encrypts the enrollment authentication data with the
public key of the authentication engine 215. In this way, only
the authentication engine’s private key can be used to decrypt
the transmissions.

As shown in FIG. 2, the trust engine 110 also includes the
cryptographic engine 220. According to one embodiment, the
cryptographic engine comprises a cryptographic handling
module, configured to advantageously provide conventional
cryptographic functions, such as, for example, public-key
infrastructure (PKI) functionality. For example, the crypto-
graphic engine 220 may advantageously issue public and
private keys for users of the cryptographic system 100. In this
manner, the cryptographic keys are generated at the crypto-
graphic engine 220 and forwarded to the depository 210 such
that at least the private cryptographic keys are not available
outside of the trust engine 110. According to another embodi-
ment, the cryptographic engine 220 randomizes and splits at
least the private cryptographic key data, thereby storing only
the randomized split data. Similar to the splitting of the
enrollment authentication data, the splitting process ensures
the stored keys are not available outside the cryptographic
engine 220. According to another embodiment, the functions
of the cryptographic engine can be combined with and per-
formed by the authentication engine 215.

According to one embodiment, communications to and
from the cryptographic engine include secure communica-
tions, such as SSL technology. In addition, XML documents
may advantageously be employed to transfer data and/or
make cryptographic function requests.

FIG. 2 also illustrates the trust engine 110 having the mass
storage 225. As mentioned in the foregoing, the transaction
engine 205 keeps data corresponding to an audit trail and
stores such data in the mass storage 225. Similarly, according
to one embodiment of the invention, the depository 210 keeps
data corresponding to an audit trail and stores such data in the
mass storage device 225. The depository audit trail data is
similar to that of the transaction engine 205 in that the audit
trail data comprises a record of the requests received by the
depository 210 and the response thereof. In addition, the mass
storage 225 may be used to store digital certificates having the
public key of a user contained therein.

Although the trust engine 110 is disclosed with reference to
its preferred and alternative embodiments, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize in the disclosure herein, a wide number of alterna-
tives for the trust engine 110. For example, the trust engine
110, may advantageously perform only authentication, or
alternatively, only some or all of the cryptographic functions,
such as data encryption and decryption. According to such
embodiments, one of the authentication engine 215 and the
cryptographic engine 220 may advantageously be removed,
thereby creating a more straightforward design for the trust
engine 110. In addition, the cryptographic engine 220 may
also communicate with a certificate authority such that the
certificate authority is embodied within the trust engine 110.
According to yet another embodiment, the trust engine 110
may advantageously perform authentication and one or more
cryptographic functions, such as, for example, digital sign-
ing.

FIG. 3 illustrates a block diagram of the transaction engine
205 of FIG. 2, according to aspects of an embodiment of the
invention. According to this embodiment, the transaction
engine 205 comprises an operating system 305 having a han-
dling thread and a listening thread. The operating system 305

US 8,745,372 B2

13

may advantageously be similar to those found in conventional
high volume servers, such as, for example, Web servers avail-
able from Apache. The listening thread monitors the incom-
ing communication from one of the communication link 125,
the authentication engine 215, and the cryptographic engine
220 for incoming data flow. The handling thread recognizes
particular data structures of the incoming data flow, such as,
for example, the foregoing data structures, thereby routing the
incoming data to one of the communication link 125, the
depository 210, the authentication engine 215, the crypto-
graphic engine 220, or the mass storage 225. As shown in
FIG. 3, the incoming and outgoing data may advantageously
be secured through, for example, SSL technology.

FIG. 4 illustrates a block diagram of the depository 210 of
FIG. 2 according to aspects of an embodiment of the inven-
tion. According to this embodiment, the depository 210 com-
prises one or more lightweight directory access protocol
(LDAP) servers. LDAP directory servers are available from a
wide variety of manufacturers such as Netscape, ISO, and
others. FIG. 4 also shows that the directory server preferably
stores data 405 corresponding to the cryptographic keys and
data 410 corresponding to the enrollment authentication data.
According to one embodiment, the depository 210 comprises
a single logical memory structure indexing authentication
data and cryptographic key data to a unique user ID. The
single logical memory structure preferably includes mecha-
nisms to ensure a high degree of trust, or security, in the data
stored therein. For example, the physical location of the
depository 210 may advantageously include a wide number
of conventional security measures, such as limited employee
access, modern surveillance systems, and the like. In addition
to, or in lieu of, the physical securities, the computer system
or server may advantageously include software solutions to
protect the stored data. For example, the depository 210 may
advantageously create and store data 415 corresponding to an
audit trail of actions taken. In addition, the incoming and
outgoing communications may advantageously be encrypted
with public key encryption coupled with conventional SSL,
technologies.

According to another embodiment, the depository 210 may
comprise distinct and physically separated data storage facili-
ties, as disclosed further with reference to FIG. 7.

FIG. 5 illustrates a block diagram of the authentication
engine 215 of FIG. 2 according to aspects of an embodiment
of'the invention. Similar to the transaction engine 205 of FIG.
3, the authentication engine 215 comprises an operating sys-
tem 505 having at least a listening and a handling thread of a
modified version of a conventional Web server, such as, for
example, Web servers available from Apache. As shown in
FIG. 5, the authentication engine 215 includes access to at
least one private key 510. The private key 510 may advanta-
geously be used for example, to decrypt data from the trans-
action engine 205 or the depository 210, which was encrypted
with a corresponding public key of the authentication engine
215.

FIG. 5 also illustrates the authentication engine 215 com-
prising a comparator 515, a data splitting module 520, and a
data assembling module 525. According to the preferred
embodiment of the invention, the comparator 515 includes
technology capable of comparing potentially complex pat-
terns related to the foregoing biometric authentication data.
The technology may include hardware, software, or com-
bined solutions for pattern comparisons, such as, for example,
those representing finger print patterns or voice patterns. In
addition, according to one embodiment, the comparator 515
of the authentication engine 215 may advantageously com-
pare conventional hashes of documents in order to render a

20

25

30

35

40

45

50

55

60

65

14

comparison result. According to one embodiment of the
invention, the comparator 515 includes the application of
heuristics 530 to the comparison. The heuristics 530 may
advantageously address circumstances surrounding an
authentication attempt, such as, for example, the time of day,
IP address or subnet mask, purchasing profile, email address,
processor serial number or ID, or the like.

Moreover, the nature of biometric data comparisons may
result in varying degrees of confidence being produced from
the matching of current biometric authentication data to
enrollment data. For example, unlike a traditional password
which may only return a positive or negative match, a finger-
print may be determined to be a partial match, e.g. a 90%
match, a 75% match, or a 10% match, rather than simply
being correct or incorrect. Other biometric identifiers such as
voice print analysis or face recognition may share this prop-
erty of probabilistic authentication, rather than absolute
authentication.

When working with such probabilistic authentication or in
other cases where an authentication is considered less than
absolutely reliable, it is desirable to apply the heuristics 530
to determine whether the level of confidence in the authenti-
cation provided is sufficiently high to authenticate the trans-
action which is being made.

It will sometimes be the case that the transaction at issue is
a relatively low value transaction where it is acceptable to be
authenticated to a lower level of confidence. This could
include a transaction which has a low dollar value associated
with it (e.g., a $10 purchase) or a transaction with low risk
(e.g., admission to a members-only web site).

Conversely, for authenticating other transactions, it may be
desirable to require a high degree of confidence in the authen-
tication before allowing the transaction to proceed. Such
transactions may include transactions of large dollar value
(e.g., signing a multi-million dollar supply contract) or trans-
action with a high risk if an improper authentication occurs
(e.g., remotely logging onto a government computer).

The use of the heuristics 530 in combination with confi-
dence levels and transactions values may be used as will be
described below to allow the comparator to provide a
dynamic context-sensitive authentication system.

According to another embodiment of the invention, the
comparator 515 may advantageously track authentication
attempts for a particular transaction. For example, when a
transaction fails, the trust engine 110 may request the user to
re-enter his or her current authentication data. The compara-
tor 515 of the authentication engine 215 may advantageously
employ an attempt limiter 535 to limit the number of authen-
tication attempts, thereby prohibiting brute-force attempts to
impersonate a user’s authentication data. According to one
embodiment, the attempt limiter 535 comprises a software
module monitoring transactions for repeating authentication
attempts and, for example, limiting the authentication
attempts for a given transaction to three. Thus, the attempt
limiter 535 will limit an automated attempt to impersonate an
individual’s authentication data to, for example, simply three
“guesses.” Upon three failures, the attempt limiter 535 may
advantageously deny additional authentication attempts.
Such denial may advantageously be implemented through,
for example, the comparator 515 returning a negative result
regardless of the current authentication data being transmit-
ted. On the other hand, the transaction engine 205 may advan-
tageously block any additional authentication attempts per-
taining to a transaction in which three attempts have
previously failed.

The authentication engine 215 also includes the data split-
ting module 520 and the data assembling module 525. The

US 8,745,372 B2

15

data splitting module 520 advantageously comprises a soft-
ware, hardware, or combination module having the ability to
mathematically operate on various data so as to substantially
randomize and split the data into portions. According to one
embodiment, original data is not recreatable from an indi-
vidual portion. The data assembling module 525 advanta-
geously comprises a software, hardware, or combination
module configured to mathematically operate on the forego-
ing substantially randomized portions, such that the combi-
nation thereof provides the original deciphered data. Accord-
ing to one embodiment, the authentication engine 215
employs the data splitting module 520 to randomize and split
enrollment authentication data into portions, and employs the
data assembling module 525 to reassemble the portions into
usable enrollment authentication data.

FIG. 6 illustrates a block diagram of the cryptographic
engine 220 of the trust engine 200 of FIG. 2 according to
aspects of one embodiment of the invention. Similar to the
transaction engine 205 of FIG. 3, the cryptographic engine
220 comprises an operating system 605 having at least a
listening and a handling thread of a modified version of a
conventional Web server, such as, for example, Web servers
available from Apache. As shown in FIG. 6, the cryptographic
engine 220 comprises a data splitting module 610 and a data
assembling module 620 that function similar to those of FIG.
5. However, according to one embodiment, the data splitting
module 610 and the data assembling module 620 process
cryptographic key data, as opposed to the foregoing enroll-
ment authentication data. Although, a skilled artisan will
recognize from the disclosure herein that the data splitting
module 910 and the data splitting module 620 may be com-
bined with those of the authentication engine 215.

The cryptographic engine 220 also comprises a crypto-
graphic handling module 625 configured to perform one,
some or all of a wide number of cryptographic functions.
According to one embodiment, the cryptographic handling
module 625 may comprise software modules or programs,
hardware, or both. According to another embodiment, the
cryptographic handling module 625 may perform data com-
parisons, data parsing, data splitting, data separating, data
hashing, data encryption or decryption, digital signature veri-
fication or creation, digital certificate generation, storage, or
requests, cryptographic key generation, or the like. Moreover,
a skilled artisan will recognize from the disclosure herein that
the cryptographic handling module 825 may advantageously
comprises a public-key infrastructure, such as Pretty Good
Privacy (PGP), an RSA-based public-key system, or a wide
number of alternative key management systems. In addition,
the cryptographic handling module 625 may perform public-
key encryption, symmetric-key encryption, or both. In addi-
tion to the foregoing, the cryptographic handling module 625
may include one or more computer programs or modules,
hardware, or both, for implementing seamless, transparent,
interoperability functions.

A skilled artisan will also recognize from the disclosure
herein that the cryptographic functionality may include a
wide number or variety of functions generally relating to
cryptographic key management systems.

FIG. 7 illustrates a simplified block diagram of a deposi-
tory system 700 according to aspects of an embodiment of the
invention. As shown in FIG. 7, the depository system 700
advantageously comprises multiple data storage facilities, for
example, data storage facilities D1, D2, D3, and D4. How-
ever, it is readily understood by those of ordinary skill in the
art that the depository system may have only one data storage
facility. According to one embodiment of the invention, each
of the data storage facilities D1 through D4 may advanta-

20

25

30

35

40

45

50

55

60

65

16

geously comprise some or all of the elements disclosed with
reference to the depository 210 of FIG. 4. Similar to the
depository 210, the data storage facilities D1 through D4
communicate with the transaction engine 205, the authenti-
cation engine 215, and the cryptographic engine 220, prefer-
ably through conventional SSL.. Communication links trans-
ferring, for example, XML documents. Communications
from the transaction engine 205 may advantageously include
requests for data, wherein the request is advantageously
broadcast to the IP address of each data storage facility D1
through D4. On the other hand, the transaction engine 205
may broadcast requests to particular data storage facilities
based on a wide number of criteria, such as, for example,
response time, server loads, maintenance schedules, or the
like.

In response to requests for data from the transaction engine
205, the depository system 700 advantageously forwards
stored data to the authentication engine 215 and the crypto-
graphic engine 220. The respective data assembling modules
receive the forwarded data and assemble the data into useable
formats. On the other hand, communications from the authen-
tication engine 215 and the cryptographic engine 220 to the
data storage facilities D1 through D4 may include the trans-
mission of sensitive data to be stored. For example, according
to one embodiment, the authentication engine 215 and the
cryptographic engine 220 may advantageously employ their
respective data splitting modules to divide sensitive data into
undecipherable portions, and then transmit one or more unde-
cipherable portions of the sensitive data to a particular data
storage facility.

According to one embodiment, each data storage facility,
D1 through D4, comprises a separate and independent storage
system, such as, for example, a directory server. According to
another embodiment of the invention, the depository system
700 comprises multiple geographically separated indepen-
dent data storage systems. By distributing the sensitive data
into distinct and independent storage facilities D1 through
D4, some or all of which may be advantageously geographi-
cally separated, the depository system 700 provides redun-
dancy along with additional security measures. For example,
according to one embodiment, only data from two of the
multiple data storage facilities, D1 through D4, are needed to
decipher and reassemble the sensitive data. Thus, as many as
two of the four data storage facilities D1 through D4 may be
inoperative due to maintenance, system failure, power failure,
or the like, without affecting the functionality of the trust
engine 110. In addition, because, according to one embodi-
ment, the data stored in each data storage facility is random-
ized and undecipherable, compromise of any individual data
storage facility does not necessarily compromise the sensitive
data. Moreover, in the embodiment having geographical
separation of the data storage facilities, a compromise of
multiple geographically remote facilities becomes increas-
ingly difficult. In fact, even a rogue employee will be greatly
challenged to subvert the needed multiple independent geo-
graphically remote data storage facilities.

Although the depository system 700 is disclosed with ref-
erence to its preferred and alternative embodiments, the
invention is not intended to be limited thereby. Rather, a
skilled artisan will recognize from the disclosure herein, a
wide number of alternatives for the depository system 700.
For example, the depository system 700 may comprise one,
two or more data storage facilities. In addition, sensitive data
may be mathematically operated such that portions from two
or more data storage facilities are needed to reassemble and
decipher the sensitive data.

US 8,745,372 B2

17

As mentioned in the foregoing, the authentication engine
215 and the cryptographic engine 220 each include a data
splitting module 520 and 610, respectively, for splitting any
type or form of sensitive data, such as, for example, text,
audio, video, the authentication data and the cryptographic
key data. FIG. 8 illustrates a flowchart of a data splitting
process 800 performed by the data splitting module according
to aspects of an embodiment of the invention. As shown in
FIG. 8, the data splitting process 800 begins at step 805 when
sensitive data “S” is received by the data splitting module of
the authentication engine 215 or the cryptographic engine
220. Preferably, in step 810, the data splitting module then
generates a substantially random number, value, or string or
set of bits, “A.”” For example, the random number A may be
generated in a wide number of varying conventional tech-
niques available to one of ordinary skill in the art, for produc-
ing high quality random numbers suitable for use in crypto-
graphic applications. In addition, according to one
embodiment, the random number A comprises a bit length
which may be any suitable length, such as shorter, longer or
equal to the bit length of the sensitive data, S.

In addition, in step 820 the data splitting process 800 gen-
erates another statistically random number “C.” According to
the preferred embodiment, the generation of the statistically
random numbers A and C may advantageously be done in
parallel. The data splitting module then combines the num-
bers A and C with the sensitive data S such that new numbers
“B” and “D” are generated. For example, number B may
comprise the binary combination of A XOR S and number D
may comprise the binary combination of C XOR S. The XOR
function, or the “exclusive-or” function, is well known to
those of ordinary skill in the art. The foregoing combinations
preferably occur in steps 825 and 830, respectively, and,
according to one embodiment, the foregoing combinations
also occur in parallel. The data splitting process 800 then
proceeds to step 835 where the random numbers A and C and
the numbers B and D are paired such that none of the pairings
contain sufficient data, by themselves, to reorganize and deci-
pher the original sensitive data S. For example, the numbers
may be paired as follows: AC, AD, BC, and BD. According to
one embodiment, each of the foregoing pairings is distributed
to one of the depositories D1 through D4 of FIG. 7. According
to another embodiment, each of the foregoing pairings is
randomly distributed to one of the depositories D1 through
D4. For example, during a first data splitting process 800, the
pairing AC may be sent to depository D2, through, for
example, a random selection of D2’s IP address. Then, during
a second data splitting process 800, the pairing AC may be
sent to depository D4, through, for example, a random selec-
tion of D4’s IP address. In addition, the pairings may all be
stored on one depository, and may be stored in separate loca-
tions on said depository.

Based on the foregoing, the data splitting process 800
advantageously places portions of the sensitive data in each of
the four data storage facilities D1 through D4, such that no
single data storage facility D1 through D4 includes sufficient
encrypted data to recreate the original sensitive data S. As
mentioned in the foregoing, such randomization of the data
into individually unusable encrypted portions increases secu-
rity and provides for maintained trust in the data even if one of
the data storage facilities, D1 through D4, is compromised.

Although the data splitting process 800 is disclosed with
reference to its preferred embodiment, the invention is not
intended to be limited thereby. Rather a skilled artisan will
recognize from the disclosure herein, a wide number of alter-
natives for the data splitting process 800. For example, the
data splitting process may advantageously split the data into

20

25

30

35

40

45

50

55

60

65

18

two numbers, for example, random number A and number B
and, randomly distribute A and B through two data storage
facilities. Moreover, the data splitting process 800 may
advantageously split the data among a wide number of data
storage facilities through generation of additional random
numbers. The data may be split into any desired, selected,
predetermined, or randomly assigned size unit, including but
not limited to, a bit, bits, bytes, kilobytes, megabytes or larger,
or any combination or sequence of sizes. In addition, varying
the sizes of the data units resulting from the splitting process
may render the data more difficult to restore to a useable form,
thereby increasing security of sensitive data. It is readily
apparent to those of ordinary skill in the art that the split data
unit sizes may be a wide variety of data unit sizes or patterns
of sizes or combinations of sizes. For example, the data unit
sizes may be selected or predetermined to be all of the same
size, a fixed set of different sizes, a combination of sizes, or
randomly generates sizes. Similarly, the data units may be
distributed into one or more shares according to a fixed or
predetermined data unit size, a pattern or combination of data
unit sizes, or a randomly generated data unit size or sizes per
share.

As mentioned in the foregoing, in order to recreate the
sensitive data S, the data portions need to be derandomized
and reorganized. This process may advantageously occur in
the data assembling modules, 525 and 620, of the authenti-
cation engine 215 and the cryptographic engine 220, respec-
tively. The data assembling module, for example, data assem-
bly module 525, receives data portions from the data storage
facilities D1 through D4, and reassembles the data into use-
able form. For example, according to one embodiment where
the data splitting module 520 employed the data splitting
process 800 of FIG. 8, the data assembling module 525 uses
data portions from at least two of the data storage facilities D1
through D4 to recreate the sensitive data S. For example, the
pairings of AC, AD, BC, and BD, were distributed such that
any two provide one of A and B, or, C and D. Noting that S=A
XOR B or S=C XOR D indicates that when the data assem-
bling module receives one of A and B, or, C and D, the data
assembling module 525 can advantageously reassemble the
sensitive data S. Thus, the data assembling module 525 may
assemble the sensitive data S, when, for example, it receives
data portions from at least the first two of the data storage
facilities D1 through D4 to respond to an assemble request by
the trust engine 110.

Based on the above data splitting and assembling pro-
cesses, the sensitive data S exists in usable format only in a
limited area of the trust engine 110. For example, when the
sensitive data S includes enrollment authentication data,
usable, nonrandomized enrollment authentication data is
available only in the authentication engine 215. Likewise,
when the sensitive data S includes private cryptographic key
data, usable, nonrandomized private cryptographic key data
is available only in the cryptographic engine 220.

Although the data splitting and assembling processes are
disclosed with reference to their preferred embodiments, the
invention is not intended to be limited thereby. Rather, a
skilled artisan will recognize from the disclosure herein, a
wide number of alternatives for splitting and reassembling the
sensitive data S. For example, public-key encryption may be
used to further secure the data at the data storage facilities D1
through D4. In addition, it is readily apparent to those of
ordinary skill in the art that the data splitting module
described herein is also a separate and distinct embodiment of
the present invention that may be incorporated into, combined
with or otherwise made part of any pre-existing computer
systems, software suites, database, or combinations thereof,

US 8,745,372 B2

19

or other embodiments of the present invention, such as the
trust engine, authentication engine, and transaction engine
disclosed and described herein.

FIG. 9A illustrates a data flow of an enrollment process 900
according to aspects of an embodiment of the invention. As
shown in FIG. 9A, the enrollment process 900 begins at step
905 when a user desires to enroll with the trust engine 110 of
the cryptographic system 100. According to this embodiment,
the user system 105 advantageously includes a client-side
applet, such as a Java-based, that queries the user to enter
enrollment data, such as demographic data and enrollment
authentication data. According to one embodiment, the
enrollment authentication data includes user ID, password(s),
biometric(s), or the like. According to one embodiment, dur-
ing the querying process, the client-side applet preferably
communicates with the trust engine 110 to ensure that a
chosen user ID is unique. When the user 1D is nonunique, the
trust engine 110 may advantageously suggest a unique user
ID. The client-side applet gathers the enrollment data and
transmits the enrollment data, for example, through and XML
document, to the trust engine 110, and in particular, to the
transaction engine 205. According to one embodiment, the
transmission is encoded with the public key of the authenti-
cation engine 215.

According to one embodiment, the user performs a single
enrollment during step 905 of the enrollment process 900. For
example, the user enrolls himself or herself as a particular
person, such as Joe User. When Joe User desires to enroll as
Joe User, CEO of Mega Corp., then according to this embodi-
ment, Joe User enrolls a second time, receives a second
unique user ID and the trust engine 110 does not associate the
two identities. According to another embodiment of the
invention, the enrollment process 900 provides for multiple
user identities for a single user ID. Thus, in the above
example, the trust engine 110 will advantageously associate
the two identities of Joe User. As will be understood by a
skilled artisan from the disclosure herein, a user may have
many identities, for example, Joe User the head of household,
Joe User the member of the Charitable Foundations, and the
like. Even though the user may have multiple identities,
according to this embodiment, the trust engine 110 preferably
stores only one set of enrollment data. Moreover, users may
advantageously add, edit/update, or delete identities as they
are needed.

Although the enrollment process 900 is disclosed with
reference to its preferred embodiment, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize from the disclosure herein, a wide number of alter-
natives for gathering of enrollment data, and in particular,
enrollment authentication data. For example, the applet may
be common object model (COM) based applet or the like.

On the other hand, the enrollment process may include
graded enrollment. For example, at a lowest level of enroll-
ment, the user may enroll over the communication link 125
without producing documentation as to his or her identity.
According to anincreased level of enrollment, the user enrolls
using a trusted third party, such as a digital notary. For
example, and the user may appear in person to the trusted
third party, produce credentials such as a birth certificate,
driver’s license, military ID, or the like, and the trusted third
party may advantageously include, for example, their digital
signature in enrollment submission. The trusted third party
may include an actual notary, a government agency, such as
the Post Office or Department of Motor Vehicles, a human
resources person in a large company enrolling an employee,
or the like. A skilled artisan will understand from the disclo-

20

25

30

35

40

45

50

55

60

65

20

sure herein that a wide number of varying levels of enrollment
may occur during the enrollment process 900.

After receiving the enrollment authentication data, at step
915, the transaction engine 205, using conventional FULL
SSL technology forwards the enrollment authentication data
to the authentication engine 215. In step 920, the authentica-
tion engine 215 decrypts the enrollment authentication data
using the private key of the authentication engine 215. In
addition, the authentication engine 215 employs the data
splitting module to mathematically operate on the enrollment
authentication data so as to split the data into at least two
independently undecipherable, randomized, numbers. As
mentioned in the foregoing, at least two numbers may com-
prise a statistically random number and a binary XORed
number. In step 925, the authentication engine 215 forwards
each portion of the randomized numbers to one of the data
storage facilities D1 through D4. As mentioned in the fore-
going, the authentication engine 215 may also advanta-
geously randomize which portions are transferred to which
depositories.

Often during the enrollment process 900, the user will also
desire to have a digital certificate issued such that he or she
may receive encrypted documents from others outside the
cryptographic system 100. As mentioned in the foregoing, the
certificate authority 115 generally issues digital certificates
according to one or more of several conventional standards.
Generally, the digital certificate includes a public key of the
user or system, which is known to everyone.

Whether the user requests a digital certificate at enroll-
ment, or at another time, the request is transferred through the
trust engine 110 to the authentication engine 215. According
to one embodiment, the request includes an XML document
having, for example, the proper name of the user. According
to step 935, the authentication engine 215 transfers the
request to the cryptographic engine 220 instructing the cryp-
tographic engine 220 to generate a cryptographic key or key
pair.

Upon request, at step 935, the cryptographic engine 220
generates at least one cryptographic key. According to one
embodiment, the cryptographic handling module 625 gener-
ates a key pair, where one key is used as a private key, and one
is used as a public key. The cryptographic engine 220 stores
the private key and, according to one embodiment, a copy of
the public key. In step 945, the cryptographic engine 220
transmits a request for a digital certificate to the transaction
engine 205. According to one embodiment, the request
advantageously includes a standardized request, such as
PKCS10, embedded in, for example, an XML document. The
request for a digital certificate may advantageously corre-
spond to one or more certificate authorities and the one or
more standard formats the certificate authorities require.

In step 950 the transaction engine 205 forwards this request
to the certificate authority 115, who, in step 955, returns a
digital certificate. The return digital certificate may advanta-
geously be in a standardized format, such as PKCS7, orin a
proprietary format of one or more of the certificate authorities
115. In step 960, the digital certificate is received by the
transaction engine 205, and a copy is forwarded to the user
and a copy is stored with the trust engine 110. The trust engine
110 stores a copy of the certificate such that the trust engine
110 will not need to rely on the availability of the certificate
authority 115. For example, when the user desires to send a
digital certificate, or a third party requests the user’s digital
certificate, the request for the digital certificate is typically
sent to the certificate authority 115. However, if the certificate

US 8,745,372 B2

21

authority 115 is conducting maintenance or has been victim
of'a failure or security compromise, the digital certificate may
not be available.

At any time after issuing the cryptographic keys, the cryp-
tographic engine 220 may advantageously employ the data
splitting process 800 described above such that the crypto-
graphic keys are split into independently undecipherable ran-
domized numbers. Similar to the authentication data, at step
965 the cryptographic engine 220 transfers the randomized
numbers to the data storage facilities D1 through D4.

A skilled artisan will recognize from the disclosure herein
that the user may request a digital certificate anytime after
enrollment. Moreover, the communications between systems
may advantageously include FULL SSL or public-key
encryption technologies. Moreover, the enrollment process
may issue multiple digital certificates from multiple certifi-
cate authorities, including one or more proprietary certificate
authorities internal or external to the trust engine 110.

As disclosed in steps 935 through 960, one embodiment of
the invention includes the request for a certificate that is
eventually stored on the trust engine 110. Because, according
to one embodiment, the cryptographic handling module 625
issues the keys used by the trust engine 110, each certificate
corresponds to a private key. Therefore, the trust engine 110
may advantageously provide for interoperability through
monitoring the certificates owned by, or associated with, a
user. For example, when the cryptographic engine 220
receives a request for a cryptographic function, the crypto-
graphic handling module 625 may investigate the certificates
owned by the requesting user to determine whether the user
owns a private key matching the attributes of the request.
When such a certificate exists, the cryptographic handling
module 625 may use the certificate or the public or private
keys associated therewith, to perform the requested function.
When such a certificate does not exist, the cryptographic
handling module 625 may advantageously and transparently
perform a number of actions to attempt to remedy the lack of
an appropriate key. For example, FIG. 9B illustrates a flow-
chart of an interoperability process 970, which according to
aspects of an embodiment of the invention, discloses the
foregoing steps to ensure the cryptographic handling module
625 performs cryptographic functions using appropriate
keys.

As shown in FIG. 9B, the interoperability process 970
begins with step 972 where the cryptographic handling mod-
ule 925 determines the type of certificate desired. According
to one embodiment of the invention, the type of certificate
may advantageously be specified in the request for crypto-
graphic functions, or other data provided by the requestor.
According to another embodiment, the certificate type may be
ascertained by the data format of the request. For example, the
cryptographic handling module 925 may advantageously rec-
ognize the request corresponds to a particular type.

According to one embodiment, the certificate type may
include one or more algorithm standards, for example, RSA,
ELGAMAL, or the like. In addition, the certificate type may
include one or more key types, such as symmetric keys, public
keys, strong encryption keys such as 256 bit keys, less secure
keys, or the like. Moreover, the certificate type may include
upgrades or replacements of one or more of the foregoing
algorithm standards or keys, one or more message or data
formats, one or more data encapsulation or encoding
schemes, such as Base 32 or Base 64. The certificate type may
also include compatibility with one or more third-party cryp-
tographic applications or interfaces, one or more communi-
cation protocols, or one or more certificate standards or pro-
tocols. A skilled artisan will recognize from the disclosure

20

25

30

35

40

45

50

55

60

65

22

herein that other differences may exist in certificate types, and
translations to and from those differences may be imple-
mented as disclosed herein.

Once the cryptographic handling module 625 determines
the certificate type, the interoperability process 970 proceeds
to step 974, and determines whether the user owns a certifi-
cate matching the type determined in step 974. When the user
owns a matching certificate, for example, the trust engine 110
has access to the matching certificate through, for example,
prior storage thereof, the cryptographic handling module 825
knows that a matching private key is also stored within the
trust engine 110. For example, the matching private key may
be stored within the depository 210 or depository system 700.
The cryptographic handling module 625 may advantageously
request the matching private key be assembled from, for
example, the depository 210, and then in step 976, use the
matching private key to perform cryptographic actions or
functions. For example, as mentioned in the foregoing, the
cryptographic handling module 625 may advantageously per-
form hashing, hash comparisons, data encryption or decryp-
tion, digital signature verification or creation, or the like.

When the user does not own a matching certificate, the
interoperability process 970 proceeds to step 978 where the
cryptographic handling module 625 determines whether the
users owns a cross-certified certificate. According to one
embodiment, cross-certification between certificate authori-
ties occurs when a first certificate authority determines to
trust certificates from a second certificate authority. In other
words, the first certificate authority determines that certifi-
cates from the second certificate authority meets certain qual-
ity standards, and therefore, may be “certified” as equivalent
to the first certificate authority’s own certificates. Cross-cer-
tification becomes more complex when the certificate
authorities issue, for example, certificates having levels of
trust. For example, the first certificate authority may provide
three levels of trust for a particular certificate, usually based
on the degree of reliability in the enrollment process, while
the second certificate authority may provide seven levels of
trust. Cross-certification may advantageously track which
levels and which certificates from the second certificate
authority may be substituted for which levels and which cer-
tificates from the first. When the foregoing cross-certification
is done officially and publicly between two certification
authorities, the mapping of certificates and levels to one
another is often called “chaining.”

According to another embodiment of the invention, the
cryptographic handling module 625 may advantageously
develop cross-certifications outside those agreed upon by the
certificate authorities. For example, the cryptographic han-
dling module 625 may access a first certificate authority’s
certificate practice statement (CPS), or other published policy
statement, and using, for example, the authentication tokens
required by particular trust levels, match the first certificate
authority’s certificates to those of another certificate author-
ity.

When, in step 978, the cryptographic handling module 625
determines that the users owns a cross-certified certificate, the
interoperability process 970 proceeds to step 976, and per-
forms the cryptographic action or function using the cross-
certified public key, private key, or both. Alternatively, when
the cryptographic handling module 625 determines that the
users does not own a cross-certified certificate, the interoper-
ability process 970 proceeds to step 980, where the crypto-
graphic handling module 625 selects a certificate authority
that issues the requested certificate type, or a certificate cross-
certified thereto. In step 982, the cryptographic handling
module 625 determines whether the user enrollment authen-

US 8,745,372 B2

23

tication data, discussed in the foregoing, meets the authenti-
cation requirements of the chosen certificate authority. For
example, if the user enrolled over a network by, for example,
answering demographic and other questions, the authentica-
tion data provided may establish a lower level of trust than a
user providing biometric data and appearing before a third-
party, such as, for example, a notary. According to one
embodiment, the foregoing authentication requirements may
advantageously be provided in the chosen authentication
authority’s CPS.

When the user has provided the trust engine 110 with
enrollment authentication data meeting the requirements of
chosen certificate authority, the interoperability process 970
proceeds to step 984, where the cryptographic handling mod-
ule 825 acquires the certificate from the chosen certificate
authority. According to one embodiment, the cryptographic
handling module 625 acquires the certificate by following
steps 945 through 960 of the enrollment process 900. For
example, the cryptographic handling module 625 may advan-
tageously employ one or more public keys from one or more
of'the key pairs already available to the cryptographic engine
220, to request the certificate from the certificate authority.
According to another embodiment, the cryptographic han-
dling module 625 may advantageously generate one or more
new key pairs, and use the public keys corresponding thereto,
to request the certificate from the certificate authority.

According to another embodiment, the trust engine 110
may advantageously include one or more certificate issuing
modules capable of issuing one or more certificate types.
According to this embodiment, the certificate issuing module
may provide the foregoing certificate. When the crypto-
graphic handling module 625 acquires the certificate, the
interoperability process 970 proceeds to step 976, and per-
forms the cryptographic action or function using the public
key, private key, or both corresponding to the acquired cer-
tificate.

When the user, in step 982, has not provided the trust
engine 110 with enrollment authentication data meeting the
requirements of chosen certificate authority, the crypto-
graphic handling module 625 determines, in step 986 whether
there are other certificate authorities that have different
authentication requirements. For example, the cryptographic
handling module 625 may look for certificate authorities hav-
ing lower authentication requirements, but still issue the cho-
sen certificates, or cross-certifications thereof.

When the foregoing certificate authority having lower
requirements exists, the interoperability process 970 pro-
ceeds to step 980 and chooses that certificate authority. Alter-
natively, when no such certificate authority exists, in step 988,
the trust engine 110 may request additional authentication
tokens from the user. For example, the trust engine 110 may
request new enrollment authentication data comprising, for
example, biometric data. Also, the trust engine 110 may
request the user appear before a trusted third party and pro-
vide appropriate authenticating credentials, such as, for
example, appearing before a notary with a drivers license,
social security card, bank card, birth certificate, military ID,
or the like. When the trust engine 110 receives updated
authentication data, the interoperability process 970 proceeds
to step 984 and acquires the foregoing chosen certificate.

Through the foregoing interoperability process 970, the
cryptographic handling module 625 advantageously provides
seamless, transparent, translations and conversions between
differing cryptographic systems. A skilled artisan will recog-
nize from the disclosure herein, a wide number of advantages
and implementations of the foregoing interoperable system.
For example, the foregoing step 986 of the interoperability

20

25

30

35

40

45

50

55

60

65

24

process 970 may advantageously include aspects of trust
arbitrage, discussed in further detail below, where the certifi-
cate authority may under special circumstances accept lower
levels of cross-certification. In addition, the interoperability
process 970 may include ensuring interoperability between
and employment of standard certificate revocations, such as
employing certificate revocation lists (CRL), online certifi-
cate status protocols (OCSP), or the like.

FIG. 10 illustrates a data flow of an authentication process
1000 according to aspects of an embodiment of the invention.
According to one embodiment, the authentication process
1000 includes gathering current authentication data from a
user and comparing that to the enrollment authentication data
of the user. For example, the authentication process 1000
begins at step 1005 where a user desires to perform a trans-
action with, for example, a vendor. Such transactions may
include, for example, selecting a purchase option, requesting
access to arestricted area or device of the vendor system 120,
or the like. At step 1010, a vendor provides the user with a
transaction ID and an authentication request. The transaction
ID may advantageously include a 192 bit quantity having a 32
bit timestamp concatenated with a 128 bit random quantity, or
a “nonce,” concatenated with a 32 bit vendor specific con-
stant. Such a transaction ID uniquely identifies the transaction
such that copycat transactions can be refused by the trust
engine 110.

The authentication request may advantageously include
what level of authentication is needed for a particular trans-
action. For example, the vendor may specify a particular level
of confidence that is required for the transaction at issue. If
authentication cannot be made to this level of confidence, as
will be discussed below, the transaction will not occur with-
out either further authentication by the user to raise the level
of confidence, or a change in the terms of the authentication
between the vendor and the server. These issues are discussed
more completely below.

According to one embodiment, the transaction ID and the
authentication request may be advantageously generated by a
vendor-side applet or other software program. In addition, the
transmission of the transaction ID and authentication data
may include one or more XML documents encrypted using
conventional SSL technology, such as, for example, %2 SSL,
or, in other words vendor-side authenticated SSL.

After the user system 105 receives the transaction ID and
authentication request, the user system 105 gathers the cur-
rent authentication data, potentially including current bio-
metric information, from the user. The user system 105, at
step 1015, encrypts at least the current authentication data
“B” and the transaction ID, with the public key of the authen-
tication engine 215, and transfers that data to the trust engine
110. The transmission preferably comprises XML documents
encrypted with at least conventional %2 SSL technology. In
step 1020, the transaction engine 205 receives the transmis-
sion, preferably recognizes the data format or request in the
URL or URI, and forwards the transmission to the authenti-
cation engine 215.

During steps 1015 and 1020, the vendor system 120, at step
1025, forwards the transaction ID and the authentication
request to the trust engine 110, using the preferred FULL SSL
technology. This communication may also include a vendor
1D, although vendor identification may also be communi-
cated through a non-random portion of the transaction ID. At
steps 1030 and 1035, the transaction engine 205 receives the
communication, creates a record in the audit trail, and gener-
ates a request for the user’s enrollment authentication data to
be assembled from the data storage facilities D1 through D4.
At step 1040, the depository system 700 transfers the portions

US 8,745,372 B2

25

of the enrollment authentication data corresponding to the
user to the authentication engine 215. At step 1045, the
authentication engine 215 decrypts the transmission using its
private key and compares the enrollment authentication data
to the current authentication data provided by the user.

The comparison of step 1045 may advantageously apply
heuristical context sensitive authentication, as referred to in
the forgoing, and discussed in further detail below. For
example, if the biometric information received does not
match perfectly, a lower confidence match results. In particu-
lar embodiments, the level of confidence of the authentication
is balanced against the nature of the transaction and the
desires of both the user and the vendor. Again, this is dis-
cussed in greater detail below.

At step 1050, the authentication engine 215 fills in the
authentication request with the result of the comparison of
step 1045. According to one embodiment of the invention, the
authentication request is filled with a YES/NO or TRUE/
FALSE result of the authentication process 1000. In step 1055
the filled-in authentication request is returned to the vendor
for the vendor to act upon, for example, allowing the user to
complete the transaction that initiated the authentication
request. According to one embodiment, a confirmation mes-
sage is passed to the user.

Based on the foregoing, the authentication process 1000
advantageously keeps sensitive data secure and produces
results configured to maintain the integrity of the sensitive
data. For example, the sensitive data is assembled only inside
the authentication engine 215. For example, the enrollment
authentication data is undecipherable until it is assembled in
the authentication engine 215 by the data assembling module,
and the current authentication data is undecipherable until it
is unwrapped by the conventional SSL technology and the
private key of the authentication engine 215. Moreover, the
authentication result transmitted to the vendor does not
include the sensitive data, and the user may not even know
whether he or she produced valid authentication data.

Although the authentication process 1000 is disclosed with
reference to its preferred and alternative embodiments, the
invention is not intended to be limited thereby. Rather, a
skilled artisan will recognize from the disclosure herein, a
wide number of alternatives for the authentication process
1000. For example, the vendor may advantageously be
replaced by almost any requesting application, even those
residing with the user system 105. For example, a client
application, such as Microsoft Word, may use an application
program interface (API) or a cryptographic API (CAPI) to
request authentication before unlocking a document. Alter-
natively, a mail server, a network, a cellular phone, a personal
or mobile computing device, a workstation, or the like, may
all make authentication requests that can be filled by the
authentication process 1000. In fact, after providing the fore-
going trusted authentication process 1000, the requesting
application or device may provide access to or use of a wide
number of electronic or computer devices or systems.

Moreover, the authentication process 1000 may employ a
wide number of alternative procedures in the event of authen-
tication failure. For example, authentication failure may
maintain the same transaction ID and request that the user
reenter his or her current authentication data. As mentioned in
the foregoing, use of the same transaction ID allows the
comparator of the authentication engine 215 to monitor and
limit the number of authentication attempts for a particular
transaction, thereby creating a more secure cryptographic
system 100.

In addition, the authentication process 1000 may be advan-
tageously be employed to develop elegant single sign-on

20

25

30

35

40

45

50

55

60

65

26

solutions, such as, unlocking a sensitive data vault. For
example, successful or positive authentication may provide
the authenticated user the ability to automatically access any
number of passwords for an almost limitless number of sys-
tems and applications. For example, authentication of a user
may provide the user access to password, login, financial
credentials, or the like, associated with multiple online ven-
dors, a local area network, various personal computing
devices, Internet service providers, auction providers, invest-
ment brokerages, or the like. By employing a sensitive data
vault, users may choose truly large and random passwords
because they no longer need to remember them through asso-
ciation. Rather, the authentication process 1000 provides
access thereto. For example, a user may choose a random
alphanumeric string that is twenty plus digits in length rather
than something associated with a memorable data, name, etc.

According to one embodiment, a sensitive data vault asso-
ciated with a given user may advantageously be stored in the
data storage facilities of the depository 210, or split and stored
in the depository system 700. According to this embodiment,
after positive user authentication, the trust engine 110 serves
the requested sensitive data, such as, for example, to the
appropriate password to the requesting application. Accord-
ing to another embodiment, the trust engine 110 may include
a separate system for storing the sensitive data vault. For
example, the trust engine 110 may include a stand-alone
software engine implementing the data vault functionality
and figuratively residing “behind” the foregoing front-end
security system of the trust engine 110. According to this
embodiment, the software engine serves the requested sensi-
tive data after the software engine receives a signal indicating
positive user authentication from the trust engine 110.

In yet another embodiment, the data vault may be imple-
mented by a third-party system. Similar to the software
engine embodiment, the third-party system may advanta-
geously serve the requested sensitive data after the third-party
system receives a signal indicating positive user authentica-
tion from the trust engine 110. According to yet another
embodiment, the data vault may be implemented on the user
system 105. A user-side software engine may advantageously
serve the foregoing data after receiving a signal indicating
positive user authentication from the trust engine 110.

Although the foregoing data vaults are disclosed with ref-
erence to alternative embodiments, a skilled artisan will rec-
ognize from the disclosure herein, a wide number of addi-
tional implementations thereof. For example, a particular
data vault may include aspects from some or all of the fore-
going embodiments. In addition, any of the foregoing data
vaults may employ one or more authentication requests at
varying times. For example, any of the data vaults may
require authentication every one or more transactions, peri-
odically, every one or more sessions, every access to one or
more Webpages or Websites, at one or more other specified
intervals, or the like.

FIG. 11 illustrates a data flow of a signing process 1100
according to aspects of an embodiment of the invention. As
shown in FIG. 11, the signing process 1100 includes steps
similar to those of the authentication process 1000 described
in the foregoing with reference to FI1G. 10. According to one
embodiment of the invention, the signing process 1100 first
authenticates the user and then performs one or more of
several digital signing functions as will be discussed in fur-
ther detail below. According to another embodiment, the sign-
ing process 1100 may advantageously store data related
thereto, such as hashes of messages or documents, or the like.
This data may advantageously be used in an audit or any other

US 8,745,372 B2

27

event, such as for example, when a participating party
attempts to repudiate a transaction.

As shown in FIG. 11, during the authentication steps, the
user and vendor may advantageously agree on a message,
such as, for example, a contract. During signing, the signing
process 1100 advantageously ensures that the contract signed
by the user is identical to the contract supplied by the vendor.
Therefore, according to one embodiment, during authentica-
tion, the vendor and the user include a hash of their respective
copies of the message or contract, in the data transmitted to
the authentication engine 215. By employing only a hash of a
message or contract, the trust engine 110 may advantageously
store a significantly reduced amount of data, providing for a
more efficient and cost effective cryptographic system. In
addition, the stored hash may be advantageously compared to
a hash of a document in question to determine whether the
document in question matches one signed by any of the par-
ties. The ability to determine whether the document is iden-
tical to one relating to a transaction provides for additional
evidence that can be used against a claim for repudiation by a
party to a transaction.

In step 1103, the authentication engine 215 assembles the
enrollment authentication data and compares it to the current
authentication data provided by the user. When the compara-
tor of the authentication engine 215 indicates that the enroll-
ment authentication data matches the current authentication
data, the comparator of the authentication engine 215 also
compares the hash of the message supplied by the vendor to
the hash of the message supplied by the user. Thus, the
authentication engine 215 advantageously ensures that the
message agreed to by the user is identical to that agreed to by
the vendor.

In step 1105, the authentication engine 215 transmits a
digital signature request to the cryptographic engine 220.
According to one embodiment of the invention, the request
includes a hash of the message or contract. However, a skilled
artisan will recognize from the disclosure herein that the
cryptographic engine 220 may encrypt virtually any type of
data, including, but not limited to, video, audio, biometrics,
images or text to form the desired digital signature. Returning
to step 1105, the digital signature request preferably com-
prises an XML document communicated through conven-
tional SSL technologies.

In step 1110, the authentication engine 215 transmits a
request to each of the data storage facilities D1 through D4,
such that each of the data storage facilities D1 through D4
transmit their respective portion of the cryptographic key or
keys corresponding to a signing party. According to another
embodiment, the cryptographic engine 220 employs some or
all of the steps of the interoperability process 970 discussed in
the foregoing, such that the cryptographic engine 220 first
determines the appropriate key or keys to request from the
depository 210 or the depository system 700 for the signing
party, and takes actions to provide appropriate matching keys.
According to still another embodiment, the authentication
engine 215 or the cryptographic engine 220 may advanta-
geously request one or more of the keys associated with the
signing party and stored in the depository 210 or depository
system 700.

According to one embodiment, the signing party includes
one or both the user and the vendor. In such case, the authen-
tication engine 215 advantageously requests the crypto-
graphic keys corresponding to the user and/or the vendor.
According to another embodiment, the signing party includes
the trust engine 110. In this embodiment, the trust engine 110
is certifying that the authentication process 1000 properly
authenticated the user, vendor, or both. Therefore, the authen-

20

25

30

35

40

45

50

55

60

65

28

tication engine 215 requests the cryptographic key of the trust
engine 110, such as, for example, the key belonging to the
cryptographic engine 220, to perform the digital signature.
According to another embodiment, the trust engine 110 per-
forms a digital notary-like function. In this embodiment, the
signing party includes the user, vendor, or both, along with the
trust engine 110. Thus, the trust engine 110 provides the
digital signature of the user and/or vendor, and then indicates
with its own digital signature that the user and/or vendor were
properly authenticated. In this embodiment, the authentica-
tion engine 215 may advantageously request assembly of the
cryptographic keys corresponding to the user, the vendor, or
both. According to another embodiment, the authentication
engine 215 may advantageously request assembly of the
cryptographic keys corresponding to the trust engine 110.

According to another embodiment, the trust engine 110
performs power of attorney-like functions. For example, the
trust engine 110 may digitally sign the message on behalf of
a third party. In such case, the authentication engine 215
requests the cryptographic keys associated with the third
party. According to this embodiment, the signing process
1100 may advantageously include authentication of the third
party, before allowing power of attorney-like functions. In
addition, the authentication process 1000 may include a
check for third party constraints, such as, for example, busi-
ness logic or the like dictating when and in what circum-
stances a particular third-party’s signature may be used.

Based on the foregoing, in step 1110, the authentication
engine requested the cryptographic keys from the data storage
facilities D1 through D4 corresponding to the signing party.
In step 1115, the data storage facilities D1 through D4 trans-
mit their respective portions of the cryptographic key corre-
sponding to the signing party to the cryptographic engine 220.
According to one embodiment, the foregoing transmissions
include SSL technologies. According to another embodi-
ment, the foregoing transmissions may advantageously be
super-encrypted with the public key of the cryptographic
engine 220.

In step 1120, the cryptographic engine 220 assembles the
foregoing cryptographic keys of the signing party and
encrypts the message therewith, thereby forming the digital
signature(s). In step 1125 of the signing process 1100, the
cryptographic engine 220 transmits the digital signature(s) to
the authentication engine 215. In step 1130, the authentica-
tion engine 215 transmits the filled-in authentication request
along with a copy of the hashed message and the digital
signature(s) to the transaction engine 205. In step 1135, the
transaction engine 205 transmits a receipt comprising the
transaction 1D, an indication of whether the authentication
was successful, and the digital signature(s), to the vendor.
According to one embodiment, the foregoing transmission
may advantageously include the digital signature of the trust
engine 110. For example, the trust engine 110 may encrypt
the hash of the receipt with its private key, thereby forming a
digital signature to be attached to the transmission to the
vendor.

According to one embodiment, the transaction engine 205
also transmits a confirmation message to the user. Although
the signing process 1100 is disclosed with reference to its
preferred and alternative embodiments, the invention is not
intended to be limited thereby. Rather, a skilled artisan will
recognize from the disclosure herein, a wide number of alter-
natives for the signing process 1100. For example, the vendor
may be replaced with a user application, such as an email
application. For example, the user may wish to digitally sign
a particular email with his or her digital signature. In such an
embodiment, the transmission throughout the signing process

US 8,745,372 B2

29

1100 may advantageously include only one copy of a hash of
the message. Moreover, a skilled artisan will recognize from
the disclosure herein that a wide number of client applications
may request digital signatures. For example, the client appli-
cations may comprise word processors, spreadsheets, emails,
voicemail, access to restricted system areas, or the like.

In addition, a skilled artisan will recognize from the dis-
closure herein that steps 1105 through 1120 of the signing
process 1100 may advantageously employ some or all of the
steps of the interoperability process 970 of FIG. 9B, thereby
providing interoperability between differing cryptographic
systems that may, for example, need to process the digital
signature under differing signature types.

FIG. 12 illustrates a data flow of an encryption/decryption
process 1200 according to aspects of an embodiment of the
invention. As shown in FIG. 12, the decryption process 1200
begins by authenticating the user using the authentication
process 1000. According to one embodiment, the authentica-
tion process 1000 includes in the authentication request, a
synchronous session key. For example, in conventional PKI
technologies, it is understood by skilled artisans that encrypt-
ing or decrypting data using public and private keys is math-
ematically intensive and may require significant system
resources. However, in symmetric key cryptographic sys-
tems, or systems where the sender and receiver of a message
share a single common key that is used to encrypt and decrypt
amessage, the mathematical operations are significantly sim-
pler and faster. Thus, in the conventional PKI technologies,
the sender of a message will generate synchronous session
key, and encrypt the message using the simpler, faster sym-
metric key system. Then, the sender will encrypt the session
key with the public key of the receiver. The encrypted session
key will be attached to the synchronously encrypted message
and both data are sent to the receiver. The receiver uses his or
her private key to decrypt the session key, and then uses the
session key to decrypt the message. Based on the foregoing,
the simpler and faster symmetric key system is used for the
majority of the encryption/decryption processing. Thus, in
the decryption process 1200, the decryption advantageously
assumes that a synchronous key has been encrypted with the
public key of the user. Thus, as mentioned in the foregoing,
the encrypted session key is included in the authentication
request.

Returning to the decryption process 1200, after the user has
been authenticated in step 1205, the authentication engine
215 forwards the encrypted session key to the cryptographic
engine 220. In step 1210, the authentication engine 215 for-
wards a request to each of the data storage facilities, D1
through D4, requesting the cryptographic key data of the user.
In step 1215, each data storage facility, D1 through D4, trans-
mits their respective portion of the cryptographic key to the
cryptographic engine 220. According to one embodiment, the
foregoing transmission is encrypted with the public key of the
cryptographic engine 220.

In step 1220 of the decryption process 1200, the crypto-
graphic engine 220 assembles the cryptographic key and
decrypts the session key therewith. In step 1225, the crypto-
graphic engine forwards the session key to the authentication
engine 215. In step 1227, the authentication engine 215 fills in
the authentication request including the decrypted session
key, and transmits the filled-in authentication request to the
transaction engine 205. In step 1230, the transaction engine
205 forwards the authentication request along with the ses-
sion key to the requesting application or vendor. Then,
according to one embodiment, the requesting application or
vendor uses the session key to decrypt the encrypted message.

20

25

30

35

40

45

50

55

60

65

30

Although the decryption process 1200 is disclosed with
reference to its preferred and alternative embodiments, a
skilled artisan will recognize from the disclosure herein, a
wide number of alternatives for the decryption process 1200.
For example, the decryption process 1200 may forego syn-
chronous key encryption and rely on full public-key technol-
ogy. In such an embodiment, the requesting application may
transmit the entire message to the cryptographic engine 220,
or, may employ some type of compression or reversible hash
in order to transmit the message to the cryptographic engine
220. A skilled artisan will also recognize from the disclosure
herein that the foregoing communications may advanta-
geously include XML documents wrapped in SSL technol-
ogy.

The encryption/decryption process 1200 also provides for
encryption of documents or other data. Thus, in step 1235, a
requesting application or vendor may advantageously trans-
mit to the transaction engine 205 of the trust engine 110, a
request for the public key of the user. The requesting appli-
cation or vendor makes this request because the requesting
application or vendor uses the public key of the user, for
example, to encrypt the session key that will be used to
encrypt the document or message. As mentioned in the enroll-
ment process 900, the transaction engine 205 stores a copy of
the digital certificate of the user, for example, in the mass
storage 225. Thus, in step 1240 of the encryption process
1200, the transaction engine 205 requests the digital certifi-
cate of the user from the mass storage 225. In step 1245, the
mass storage 225 transmits the digital certificate correspond-
ing to the user, to the transaction engine 205. In step 1250, the
transaction engine 205 transmits the digital certificate to the
requesting application or vendor. According to one embodi-
ment, the encryption portion of the encryption process 1200
does not include the authentication of a user. This is because
the requesting vendor needs only the public key of the user,
and is not requesting any sensitive data.

A skilled artisan will recognize from the disclosure herein
that if a particular user does not have a digital certificate, the
trust engine 110 may employ some or all of the enrollment
process 900 in order to generate a digital certificate for that
particular user. Then, the trust engine 110 may initiate the
encryption/decryption process 1200 and thereby provide the
appropriate digital certificate. In addition, a skilled artisan
will recognize from the disclosure herein that steps 1220 and
1235 through 1250 of the encryption/decryption process
1200 may advantageously employ some or all of the steps of
the interoperability process of FIG. 9B, thereby providing
interoperability between differing cryptographic systems that
may, for example, need to process the encryption.

FIG. 13 illustrates a simplified block diagram of a trust
engine system 1300 according to aspects of yet another
embodiment of the invention. As shown in FIG. 13, the trust
engine system 1300 comprises a plurality of distinct trust
engines 1305, 1310, 1315, and 1320, respectively. To facili-
tate a more complete understanding of the invention, FIG. 13
illustrates each trust engine, 1305, 1310, 1315, and 1320 as
having a transaction engine, a depository, and an authentica-
tion engine. However, a skilled artisan will recognize that
each transaction engine may advantageously comprise some,
a combination, or all of the elements and communication
channels disclosed with reference to FIGS. 1-8. For example,
one embodiment may advantageously include trust engines
having one or more transaction engines, depositories, and
cryptographic servers or any combinations thereof.

According to one embodiment of the invention, each of the
trust engines 1305, 1310, 1315 and 1320 are geographically
separated, such that, for example, the trust engine 1305 may

US 8,745,372 B2

31

reside in a first location, the trust engine 1310 may reside in a
second location, the trust engine 1315 may reside in a third
location, and the trust engine 1320 may reside in a fourth
location. The foregoing geographic separation advanta-
geously decreases system response time while increasing the
security of the overall trust engine system 1300.

For example, when a user logs onto the cryptographic
system 100, the user may be nearest the first location and may
desire to be authenticated. As described with reference to
FIG. 10, to be authenticated, the user provides current authen-
tication data, such as a biometric or the like, and the current
authentication data is compared to that user’s enrollment
authentication data. Therefore, according to one example, the
user advantageously provides current authentication data to
the geographically nearest trust engine 1305. The transaction
engine 1321 of the trust engine 1305 then forwards the current
authentication data to the authentication engine 1322 also
residing at the first location. According to another embodi-
ment, the transaction engine 1321 forwards the current
authentication data to one or more of the authentication
engines of the trust engines 1310, 1315, or 1320.

The transaction engine 1321 also requests the assembly of
the enrollment authentication data from the depositories of,
for example, each of the trust engines, 1305 through 1320.
According to this embodiment, each depository provides its
portion of the enrollment authentication data to the authenti-
cation engine 1322 of the trust engine 1305. The authentica-
tion engine 1322 then employs the encrypted data portions
from, for example, the first two depositories to respond, and
assembles the enrollment authentication data into deciphered
form. The authentication engine 1322 compares the enroll-
ment authentication data with the current authentication data
and returns an authentication result to the transaction engine
1321 of the trust engine 1305.

Based on the above, the trust engine system 1300 employs
the nearest one of a plurality of geographically separated trust
engines, 1305 through 1320, to perform the authentication
process. According to one embodiment of the invention, the
routing of information to the nearest transaction engine may
advantageously be performed at client-side applets executing
on one or more of the user system 105, vendor system 120, or
certificate authority 115. According to an alternative embodi-
ment, a more sophisticated decision process may be
employed to select from the trust engines 1305 through 1320.
For example, the decision may be based on the availability,
operability, speed of connections, load, performance, geo-
graphic proximity, or a combination thereof, of a given trust
engine.

In this way, the trust engine system 1300 lowers its
response time while maintaining the security advantages
associated with geographically remote data storage facilities,
such as those discussed with reference to FIG. 7 where each
data storage facility stores randomized portions of sensitive
data. For example, a security compromise at, for example, the
depository 1325 of the trust engine 1315 does not necessarily
compromise the sensitive data of the trust engine system
1300. This is because the depository 1325 contains only non-
decipherable randomized data that, without more, is entirely
useless.

According to another embodiment, the trust engine system
1300 may advantageously include multiple cryptographic
engines arranged similar to the authentication engines. The
cryptographic engines may advantageously perform crypto-
graphic functions such as those disclosed with reference to
FIGS. 1-8. According to yet another embodiment, the trust
engine system 1300 may advantageously replace the multiple
authentication engines with multiple cryptographic engines,

20

25

30

35

40

45

50

55

60

65

32

thereby performing cryptographic functions such as those
disclosed with reference to FIGS. 1-8. According to yet
another embodiment of the invention, the trust engine system
1300 may replace each multiple authentication engine with
an engine having some or all of the functionality of the
authentication engines, cryptographic engines, or both, as
disclosed in the foregoing.

Although the trust engine system 1300 is disclosed with
reference to its preferred and alternative embodiments, a
skilled artisan will recognize that the trust engine system
1300 may comprise portions of trust engines 1305 through
1320. For example, the trust engine system 1300 may include
one or more transaction engines, one or more depositories,
one or more authentication engines, or one or more crypto-
graphic engines or combinations thereof.

FIG. 14 illustrates a simplified block diagram of a trust
engine System 1400 according to aspects of yet another
embodiment of the invention. As shown in FIG. 14, the trust
engine system 1400 includes multiple trust engines 1405,
1410, 1415 and 1420. According to one embodiment, each of
the trust engines 1405, 1410, 1415 and 1420, comprise some
or all of the elements of trust engine 110 disclosed with
reference to FIGS. 1-8. According to this embodiment, when
the client side applets of the user system 105, the vendor
system 120, or the certificate authority 115, communicate
with the trust engine system 1400, those communications are
sent to the [P address of each of the trust engines 1405 through
1420. Further, each transaction engine of each of the trust
engines, 1405, 1410, 1415, and 1420, behaves similar to the
transaction engine 1321 of the trust engine 1305 disclosed
with reference to FIG. 13. For example, during an authenti-
cation process, each transaction engine of each of the trust
engines 1405, 1410, 1415, and 1420 transmits the current
authentication data to their respective authentication engines
and transmits a request to assemble the randomized data
stored in each of the depositories of each of the trust engines
1405 through 1420. FIG. 14 does not illustrate all of these
communications; as such illustration would become overly
complex. Continuing with the authentication process, each of
the depositories then communicates its portion of the ran-
domized data to each of the authentication engines of the each
of the trust engines 1405 through 1420. Each of the authen-
tication engines of the each of the trust engines employs its
comparator to determine whether the current authentication
data matches the enrollment authentication data provided by
the depositories of each of the trust engines 1405 through
1420. According to this embodiment, the result of the com-
parison by each of the authentication engines is then trans-
mitted to a redundancy module of the other three trust
engines. For example, the result of the authentication engine
from the trust engine 1405 is transmitted to the redundancy
modules of the trust engines 1410, 1415, and 1420. Thus, the
redundancy module of the trust engine 1405 likewise receives
the result of the authentication engines from the trust engines
1410, 1415, and 1420.

FIG. 15 illustrates a block diagram of the redundancy mod-
ule of FIG. 14. The redundancy module comprises a com-
parator configured to receive the authentication result from
three authentication engines and transmit that result to the
transaction engine of the fourth trust engine. The comparator
compares the authentication result form the three authentica-
tion engines, and if two of the results agree, the comparator
concludes that the authentication result should match that of
the two agreeing authentication engines. This result is then
transmitted back to the transaction engine corresponding to
the trust engine not associated with the three authentication
engines.

US 8,745,372 B2

33

Based on the foregoing, the redundancy module deter-
mines an authentication result from data received from
authentication engines that are preferably geographically
remote from the trust engine of that the redundancy module.
By providing such redundancy functionality, the trust engine
system 1400 ensures that a compromise of the authentication
engine of one of the trust engines 1405 through 1420, is
insufficient to compromise the authentication result of the
redundancy module of that particular trust engine. A skilled
artisan will recognize that redundancy module functionality
of the trust engine system 1400 may also be applied to the
cryptographic engine of each of the trust engines 1405
through 1420. However, such cryptographic engine commu-
nication was not shown in FIG. 14 to avoid complexity. More-
over, a skilled artisan will recognize a wide number of alter-
native authentication result conflict resolution algorithms for
the comparator of FIG. 15 are suitable for use in the present
invention.

According to yet another embodiment of the invention, the
trust engine system 1400 may advantageously employ the
redundancy module during cryptographic comparison steps.
For example, some or all of the foregoing redundancy module
disclosure with reference to FIGS. 14 and 15 may advanta-
geously be implemented during a hash comparison of docu-
ments provided by one or more parties during a particular
transaction.

Although the foregoing invention has been described in
terms of certain preferred and alternative embodiments, other
embodiments will be apparent to those of ordinary skill in the
art from the disclosure herein. For example, the trust engine
110 may issue short-term certificates, where the private cryp-
tographic key is released to the user for a predetermined
period of time. For example, current certificate standards
include a validity field that can be set to expire after a prede-
termined amount of time. Thus, the trust engine 110 may
release a private key to a user where the private key would be
valid for, for example, 24 hours. According to such an
embodiment, the trust engine 110 may advantageously issue
anew cryptographic key pair to be associated with a particular
user and then release the private key of the new cryptographic
key pair. Then, once the private cryptographic key is released,
the trust engine 110 immediately expires any internal valid
use of such private key, as it is no longer securable by the trust
engine 110.

In addition, a skilled artisan will recognize that the cryp-
tographic system 100 or the trust engine 110 may include the
ability to recognize any type of devices, such as, but not
limited to, a laptop, a cell phone, a network, a biometric
device or the like. According to one embodiment, such rec-
ognition may come from data supplied in the request for a
particular service, such as, a request for authentication lead-
ing to access or use, a request for cryptographic functionality,
or the like. According to one embodiment, the foregoing
request may include a unique device identifier, such as, for
example, a processor 1D. Alternatively, the request may
include data in a particular recognizable data format. For
example, mobile and satellite phones often do not include the
processing power for full X509.v3 heavy encryption certifi-
cates, and therefore do not request them. According to this
embodiment, the trust engine 110 may recognize the type of
data format presented, and respond only in kind.

In an additional aspect of the system described above,
context sensitive authentication can be provided using vari-
ous techniques as will be described below. Context sensitive
authentication, for example as shown in FIG. 16, provides the
possibility of evaluating not only the actual data which is sent
by the user when attempting to authenticate himself, but also

20

25

30

35

40

45

50

55

60

65

34

the circumstances surrounding the generation and delivery of
that data. Such techniques may also support transaction spe-
cific trust arbitrage between the user and trust engine 110 or
between the vendor and trust engine 110, as will be described
below.

As discussed above, authentication is the process of prov-
ing that a user is who he says he is. Generally, authentication
requires demonstrating some fact to an authentication author-
ity. The trust engine 110 of the present invention represents
the authority to which a user must authenticate himself. The
user must demonstrate to the trust engine 110 that he is who
he says he is by either: knowing something that only the user
should know (knowledge-based authentication), having
something that only the user should have (token-based
authentication), or by being something that only the user
should be (biometric-based authentication).

Examples of knowledge-based authentication include
without limitation a password, PIN number, or lock combi-
nation. Examples of token-based authentication include with-
out limitation a house key, a physical credit card, a driver’s
license, or a particular phone number. Examples of biometric-
based authentication include without limitation a fingerprint,
handwriting analysis, facial scan, hand scan, ear scan, iris
scan, vascular pattern, DNA, a voice analysis, or a retinal
scan.

Each type of authentication has particular advantages and
disadvantages, and each provides a different level of security.
For example, it is generally harder to create a false fingerprint
that matches someone else’s than it is to overhear someone’s
password and repeat it. Each type of authentication also
requires a different type of data to be known to the authenti-
cating authority in order to verify someone using that form of
authentication.

As used herein, “authentication” will refer broadly to the
overall process of verifying someone’s identity to be who he
says he is. An “authentication technique” will refer to a par-
ticular type of authentication based upon a particular piece of
knowledge, physical token, or biometric reading. “Authenti-
cation data” refers to information which is sent to or other-
wise demonstrated to an authentication authority in order to
establish identity. “Enrollment data” will refer to the data
which is initially submitted to an authentication authority in
order to establish a baseline for comparison with authentica-
tion data. An “authentication instance” will refer to the data
associated with an attempt to authenticate by an authentica-
tion technique.

The internal protocols and communications involved in the
process of authenticating a user is described with reference to
FIG. 10 above. The part of this process within which the
context sensitive authentication takes place occurs within the
comparison step shown as step 1045 of FIG. 10. This step
takes place within the authentication engine 215 and involves
assembling the enrollment data 410 retrieved from the
depository 210 and comparing the authentication data pro-
vided by the user to it. One particular embodiment of this
process is shown in FIG. 16 and described below.

The current authentication data provided by the user and
the enrollment data retrieved from the depository 210 are
received by the authentication engine 215 in step 1600 of F1G.
16. Both of these sets of data may contain data which is
related to separate techniques of authentication. The authen-
tication engine 215 separates the authentication data associ-
ated with each individual authentication instance in step
1605. This is necessary so that the authentication data is
compared with the appropriate subset of the enrollment data

US 8,745,372 B2

35

for the user (e.g. fingerprint authentication data should be
compared with fingerprint enrollment data, rather than pass-
word enrollment data).

Generally, authenticating a user involves one or more indi-
vidual authentication instances, depending on which authen-
tication techniques are available to the user. These methods
are limited by the enrollment data which were provided by the
user during his enrollment process (if the user did not provide
a retinal scan when enrolling, he will not be able to authenti-
cate himself using a retinal scan), as well as the means which
may be currently available to the user (e.g. if the user does not
have a fingerprint reader at his current location, fingerprint
authentication will not be practical). In some cases, a single
authentication instance may be sufficient to authenticate a
user; however, in certain circumstances a combination of
multiple authentication instances may be used in order to
more confidently authenticate a user for a particular transac-
tion.

Each authentication instance consists of data related to a
particular authentication technique (e.g. fingerprint, pass-
word, smart card, etc.) and the circumstances which surround
the capture and delivery of the data for that particular tech-
nique. For example, a particular instance of attempting to
authenticate via password will generate not only the data
related to the password itself, but also circumstantial data,
known as “metadata”, related to that password attempt. This
circumstantial data includes information such as: the time at
which the particular authentication instance took place, the
network address from which the authentication information
was delivered, as well as any other information as is known to
those of skill in the art which may be determined about the
origin of the authentication data (the type of connection, the
processor serial number, etc.).

In many cases, only a small amount of circumstantial meta-
data will be available. For example, if the user is located on a
network which uses proxies or network address translation or
another technique which masks the address of the originating
computer, only the address of the proxy or router may be
determined. Similarly, in many cases information such as the
processor serial number will not be available because of
either limitations of the hardware or operating system being
used, disabling of such features by the operator of the system,
or other limitations of the connection between the user’s
system and the trust engine 110.

As shown in FIG. 16, once the individual authentication
instances represented within the authentication data are
extracted and separated in step 1605, the authentication
engine 215 evaluates each instance for its reliability in indi-
cating that the user is who he claims to be. The reliability for
a single authentication instance will generally be determined
based on several factors. These may be grouped as factors
relating to the reliability associated with the authentication
technique, which are evaluated in step 1610, and factors relat-
ing to the reliability of the particular authentication data pro-
vided, which are evaluated in step 1815. The first group
includes without limitation the inherent reliability of the
authentication technique being used, and the reliability of the
enrollment data being used with that method. The second
group includes without limitation the degree of match
between the enrollment data and the data provided with the
authentication instance, and the metadata associated with that
authentication instance. Each of these factors may vary inde-
pendently of the others.

The inherent reliability of an authentication technique is
based on how hard it is for an imposter to provide someone
else’s correct data, as well as the overall error rates for the
authentication technique. For passwords and knowledge

20

25

30

35

40

45

50

55

60

65

36

based authentication methods, this reliability is often fairly
low because there is nothing that prevents someone from
revealing their password to another person and for that second
personto use that password. Even amore complex knowledge
based system may have only moderate reliability since
knowledge may be transferred from person to person fairly
easily. Token based authentication, such as having a proper
smart card or using a particular terminal to perform the
authentication, is similarly of low reliability used by itself,
since there is no guarantee that the right person is in posses-
sion of the proper token.

However, biometric techniques are more inherently reli-
able because it is generally difficult to provide someone else
with the ability to use your fingerprints in a convenient man-
ner, even intentionally. Because subverting biometric authen-
tication techniques is more difficult, the inherent reliability of
biometric methods is generally higher than that of purely
knowledge or token based authentication techniques. How-
ever, even biometric techniques may have some occasions in
which a false acceptance or false rejection is generated. These
occurrences may be reflected by differing reliabilities for
different implementations of the same biometric technique.
For example, a fingerprint matching system provided by one
company may provide a higher reliability than one provided
by a different company because one uses higher quality optics
or a better scanning resolution or some other improvement
which reduces the occurrence of false acceptances or false
rejections.

Note that this reliability may be expressed in different
manners. The reliability is desirably expressed in some metric
which can be used by the heuristics 530 and algorithms of the
authentication engine 215 to calculate the confidence level of
each authentication. One preferred mode of expressing these
reliabilities is as a percentage or fraction. For instance, fin-
gerprints might be assigned an inherent reliability of 97%,
while passwords might only be assigned an inherent reliabil-
ity ot 50%. Those of skill in the art will recognize that these
particular values are merely exemplary and may vary between
specific implementations.

The second factor for which reliability must be assessed is
the reliability of the enrollment. This is part of the “graded
enrollment” process referred to above. This reliability factor
reflects the reliability of the identification provided during the
initial enrollment process. For instance, if the individual ini-
tially enrolls in a manner where they physically produce
evidence of their identity to a notary or other public official,
and enrollment data is recorded at that time and notarized, the
data will be more reliable than data which is provided over a
network during enrollment and only vouched for by a digital
signature or other information which is not truly tied to the
individual.

Other enrollment techniques with varying levels of reli-
ability include without limitation: enrollment at a physical
office of the trust engine 110 operator; enrollment at a user’s
place of employment; enrollment at a post office or passport
office; enrollment through an affiliated or trusted party to the
trust engine 110 operator; anonymous or pseudonymous
enrollment in which the enrolled identity is not yet identified
with a particular real individual, as well as such other means
as are known in the art.

These factors reflect the trust between the trust engine 110
and the source of identification provided during the enroll-
ment process. For instance, if enrollment is performed in
association with an employer during the initial process of
providing evidence of identity, this information may be con-
sidered extremely reliable for purposes within the company,
but may be trusted to a lesser degree by a government agency,

US 8,745,372 B2

37

or by a competitor. Therefore, trust engines operated by each
of these other organizations may assign different levels of
reliability to this enrollment.

Similarly, additional data which is submitted across a net-
work, but which is authenticated by other trusted data pro-
vided during a previous enrollment with the same trust engine
110 may be considered as reliable as the original enrollment
data was, even though the latter data were submitted across an
open network. In such circumstances, a subsequent notariza-
tion will effectively increase the level of reliability associated
with the original enrollment data. In this way for example, an
anonymous or pseudonymous enrollment may then be raised
to a full enrollment by demonstrating to some enrollment
official the identity of the individual matching the enrolled
data.

The reliability factors discussed above are generally values
which may be determined in advance of any particular
authentication instance. This is because they are based upon
the enrollment and the technique, rather than the actual
authentication. In one embodiment, the step of generating
reliability based upon these factors involves looking up pre-
viously determined values for this particular authentication
technique and the enrollment data of the user. In a further
aspect of an advantageous embodiment of the present inven-
tion, such reliabilities may be included with the enrollment
data itself. In this way, these factors are automatically deliv-
ered to the authentication engine 215 along with the enroll-
ment data sent from the depository 210.

While these factors may generally be determined in
advance of any individual authentication instance, they still
have an effect on each authentication instance which uses that
particular technique of authentication for that user. Further-
more, although the values may change over time (e.g. if the
user re-enrolls in a more reliable fashion), they are not depen-
dent on the authentication data itself. By contrast, the reli-
ability factors associated with a single specific instance’s data
may vary on each occasion. These factors, as discussed below,
must be evaluated for each new authentication in order to
generate reliability scores in step 1815.

The reliability of the authentication data reflects the match
between the data provided by the user in a particular authen-
tication instance and the data provided during the authentica-
tion enrollment. This is the fundamental question of whether
the authentication data matches the enrollment data for the
individual the user is claiming to be. Normally, when the data
do not match, the user is considered to not be successfully
authenticated, and the authentication fails. The manner in
which this is evaluated may change depending on the authen-
tication technique used. The comparison of such data is per-
formed by the comparator 515 function of the authentication
engine 215 as shown in FIG. 5.

For instance, matches of passwords are generally evaluated
in a binary fashion. In other words, a password is either a
perfect match, or a failed match. It is usually not desirable to
accept as even a partial match a password which is close to the
correct password if it is not exactly correct. Therefore, when
evaluating a password authentication, the reliability of the
authentication returned by the comparator 515 is typically
either 100% (correct) or 0% (wrong), with no possibility of
intermediate values.

Similar rules to those for passwords are generally applied
to token based authentication methods, such as smart cards.
This is because having a smart card which has a similar
identifier or which is similar to the correct one, is still just as
wrong as having any other incorrect token. Therefore tokens
tend also to be binary authenticators: a user either has the right
token, or he doesn’t.

20

25

30

35

40

45

50

55

60

65

38

However, certain types of authentication data, such as
questionnaires and biometrics, are generally not binary
authenticators. For example, a fingerprint may match a refer-
ence fingerprint to varying degrees. To some extent, this may
be due to variations in the quality of the data captured either
during the initial enrollment or in subsequent authentications.
(A fingerprint may be smudged or a person may have a still
healing scar or burn on a particular finger.) In other instances
the data may match less than perfectly because the informa-
tion itself is somewhat variable and based upon pattern
matching. (A voice analysis may seem close but not quite
right because of background noise, or the acoustics of the
environment in which the voice is recorded, or because the
person has a cold.) Finally, in situations where large amounts
of data are being compared, it may simply be the case that
much of the data matches well, but some doesn’t. (A ten-
question questionnaire may have resulted in eight correct
answers to personal questions, but two incorrect answers.)
For any of these reasons, the match between the enrollment
data and the data for a particular authentication instance may
be desirably assigned a partial match value by the comparator
515. In this way, the fingerprint might be said to be a 85%
match, the voice print a 65% match, and the questionnaire an
80% match, for example.

This measure (degree of match) produced by the compara-
tor 515 is the factor representing the basic issue of whether an
authentication is correct or not. However, as discussed above,
this is only one of the factors which may be used in determin-
ing the reliability of a given authentication instance. Note also
that even though a match to some partial degree may be
determined, that ultimately, it may be desirable to provide a
binary result based upon a partial match. In an alternate mode
of operation, it is also possible to treat partial matches as
binary, i.e. either perfect (100%) or failed (0%) matches,
based upon whether or not the degree of match passes a
particular threshold level of match. Such a process may be
used to provide a simple pass/fail level of matching for sys-
tems which would otherwise produce partial matches.

Another factor to be considered in evaluating the reliability
of'a given authentication instance concerns the circumstances
under which the authentication data for this particular
instance are provided. As discussed above, the circumstances
refer to the metadata associated with a particular authentica-
tion instance. This may include without limitation such infor-
mation as: the network address of the authenticator, to the
extent that it can be determined; the time of the authentica-
tion; the mode of transmission of the authentication data
(phone line, cellular, network, etc.); and the serial number of
the system of the authenticator.

These factors can be used to produce a profile of the type of
authentication that is normally requested by the user. Then,
this information can be used to assess reliability in at least two
manners. One manner is to consider whether the user is
requesting authentication in a manner which is consistent
with the normal profile of authentication by this user. If the
user normally makes authentication requests from one net-
work address during business days (when she is at work) and
from a different network address during evenings or week-
ends (when she is at home), an authentication which occurs
from the home address during the business day is less reliable
because it is outside the normal authentication profile. Simi-
larly, if the user normally authenticates using a fingerprint
biometric and in the evenings, an authentication which origi-
nates during the day using only a password is less reliable.

An additional way in which the circumstantial metadata
can be used to evaluate the reliability of an instance of authen-
tication is to determine how much corroboration the circum-

US 8,745,372 B2

39

stance provides that the authenticator is the individual he
claims to be. For instance, if the authentication comes from a
system with a serial number known to be associated with the
user, this is a good circumstantial indicator that the user is
who they claim to be. Conversely, if the authentication is
coming from a network address which is known to be in Los
Angeles when the user is known to reside in London, this is an
indication that this authentication is less reliable based on its
circumstances.

It is also possible that a cookie or other electronic data may
be placed upon the system being used by a user when they
interact with a vendor system or with the trust engine 110.
This data is written to the storage of the system of the user and
may contain an identification which may be read by a Web
browser or other software on the user system. If this data is
allowed to reside on the user system between sessions (a
“persistent cookie™), it may be sent with the authentication
data as further evidence of the past use of this system during
authentication of a particular user. In effect, the metadata of a
given instance, particularly a persistent cookie, may form a
sort of token based authenticator itself.

Once the appropriate reliability factors based on the tech-
nique and data of the authentication instance are generated as
described above in steps 1610 and 1615 respectively, they are
used to produce an overall reliability for the authentication
instance provided in step 1620. One means of doing this is
simply to express each reliability as a percentage and then to
multiply them together.

For example, suppose the authentication data is being sent
in from a network address known to be the user’s home
computer completely in accordance with the user’s past
authentication profile (100%), and the technique being used is
fingerprint identification (97%), and the initial finger print
data was roistered through the user’s employer with the trust
engine 110 (90%), and the match between the authentication
data and the original fingerprint template in the enrollment
data is very good (99%). The overall reliability of this authen-
tication instance could then be calculated as the product of
these reliabilities: 100%%97%%90%%99%-86.4% reliability.

This calculated reliability represents the reliability of one
single instance of authentication. The overall reliability of a
single authentication instance may also be calculated using
techniques which treat the different reliability factors differ-
ently, for example by using formulas where different weights
are assigned to each reliability factor. Furthermore, those of
skill in the art will recognize that the actual values used may
represent values other than percentages and may use non-
arithmetic systems. One embodiment may include a module
used by an authentication requestor to set the weights for each
factor and the algorithms used in establishing the overall
reliability of the authentication instance.

The authentication engine 215 may use the above tech-
niques and variations thereof to determine the reliability of'a
single authentication instance, indicated as step 1620. How-
ever, it may be useful in many authentication situations for
multiple authentication instances to be provided at the same
time. For example, while attempting to authenticate himself
using the system of the present invention, a user may provide
a user identification, fingerprint authentication data, a smart
card, and a password. In such a case, three independent
authentication instances are being provided to the trust engine
110 for evaluation. Proceeding to step 1625, if the authenti-
cation engine 215 determines that the data provided by the
user includes more than one authentication instance, then
each instance in turn will be selected as shown in step 1630
and evaluated as described above in steps 1610, 1615 and
1620.

20

25

30

35

40

45

50

55

60

65

40

Note that many ofthe reliability factors discussed may vary
from one of these instances to another. For instance, the
inherent reliability of these techniques is likely to be different,
as well as the degree of match provided between the authen-
tication data and the enrollment data. Furthermore, the user
may have provided enrollment data at different times and
under different circumstances for each of these techniques,
providing different enrollment reliabilities for each of these
instances as well. Finally, even though the circumstances
under which the data for each of these instances is being
submitted is the same, the use of such techniques may each fit
the profile of the user differently, and so may be assigned
different circumstantial reliabilities. (For example, the user
may normally use their password and fingerprint, but not their
smart card.)

As aresult, the final reliability for each of these authenti-
cation instances may be different from One another. How-
ever, by using multiple instances together, the overall confi-
dence level for the authentication will tend to increase.

Once the authentication engine has performed steps 1610
through 1620 for all of the authentication instances provided
in the authentication data, the reliability of each instance is
used in step 1635 to evaluate the overall authentication con-
fidence level. This process of combining the individual
authentication instance reliabilities into the authentication
confidence level may be modeled by various methods relating
the individual reliabilities produced, and may also address the
particular interaction between some of these authentication
techniques. (For example, multiple knowledge-based sys-
tems such as passwords may produce less confidence than a
single password and even a fairly weak biometric, such as a
basic voice analysis.)

One means in which the authentication engine 215 may
combine the reliabilities of multiple concurrent authentica-
tion instances to generate a final confidence level is to multi-
ply the unreliability of each instance to arrive at a total unre-
liability. The unreliability is generally the complementary
percentage of the reliability. For example, a technique which
is 84% reliable is 16% unreliable. The three authentication
instances described above (fingerprint, smart card, password)
which produce reliabilities of 86%, 75%, and 72% would
have corresponding unreliabilities of (100-86) %, (100-75)
% and (100-72) %, or 14%, 25%, and 28%, respectively. By
multiplying these unreliabilities, we get a cumulative unreli-
ability of 14%*25%%*28%-0.98% unreliability, which corre-
sponds to a reliability of 99.02%.

In an additional mode of operation, additional factors and
heuristics 530 may be applied within the authentication
engine 215 to account for the interdependence of various
authentication techniques. For example, if someone has
unauthorized access to a particular home computer, they
probably have access to the phone line at that address as well.
Therefore, authenticating based on an originating phone
number as well as upon the serial number of the authenticat-
ing system does not add much to the overall confidence in the
authentication. However, knowledge based authentication is
largely independent of token based authentication (i.e. if
someone steals your cellular phone or keys, they are no more
likely to know your PIN or password than if they hadn’t).

Furthermore, different vendors or other authentication
requestors may wish to weigh different aspects of the authen-
tication differently. This may include the use of separate
weighing factors or algorithms used in calculating the reli-
ability of individual instances as well as the use of different
means to evaluate authentication events with multiple
instances.

US 8,745,372 B2

41

For instance, vendors for certain types of transactions, for
instance corporate email systems, may desire to authenticate
primarily based upon heuristics and other circumstantial data
by default. Therefore, they may apply high weights to factors
related to the metadata and other profile related information
associated with the circumstances surrounding authentica-
tion events. This arrangement could be used to ease the bur-
den on users during normal operating hours, by not requiring
more from the user than that he be logged on to the correct
machine during business hours. However, another vendor
may weigh authentications coming from a particular tech-
nique most heavily, for instance fingerprint matching,
because of a policy decision that such a technique is most
suited to authentication for the particular vendor’s purposes.

Such varying weights may be defined by the authentication
requestor in generating the authentication request and sent to
the trust engine 110 with the authentication request in one
mode of operation. Such options could also be set as prefer-
ences during an initial enrollment process for the authentica-
tion requestor and stored within the authentication engine in
another mode of operation.

Once the authentication engine 215 produces an authenti-
cation confidence level for the authentication data provided,
this confidence level is used to complete the authentication
request in step 1640, and this information is forwarded from
the authentication engine 215 to the transaction engine 205
for inclusion in a message to the authentication requestor.

The process described above is merely exemplary, and
those of skill in the art will recognize that the steps need not
be performed in the order shown or that only certain of the
steps are desired to be performed, or that a variety of combi-
nations of steps may be desired. Furthermore, certain steps,
such as the evaluation of the reliability of each authentication
instance provided, may be carried out in parallel with one
another if circumstances permit.

In a further aspect of this invention, a method is provided to
accommodate conditions when the authentication confidence
level produced by the process described above fails to meet
the required trust level of the vendor or other party requiring
the authentication. In circumstances such as these where a
gap exists between the level of confidence provided and the
level of trust desired, the operator of the trust engine 110 is in
a position to provide opportunities for one or both parties to
provide alternate data or requirements in order to close this
trust gap. This process will be referred to as “trust arbitrage”
herein.

Trust arbitrage may take place within a framework of cryp-
tographic authentication as described above with reference to
FIGS. 10 and 11. As shown therein, a vendor or other party
will request authentication of a particular user in association
with a particular transaction. In one circumstance, the vendor
simply requests an authentication, either positive or negative,
and after receiving appropriate data from the user, the trust
engine 110 will provide such a binary authentication. In cir-
cumstances such as these, the degree of confidence required
in order to secure a positive authentication is determined
based upon preferences set within the trust engine 110.

However, it is also possible that the vendor may request a
particular level of trust in order to complete a particular trans-
action. This required level may be included with the authen-
tication request (e.g. authenticate this user to 98% confi-
dence) or may be determined by the trust engine 110 based on
other factors associated with the transaction (i.e. authenticate
this user as appropriate for this transaction). One such factor
might be the economic value of the transaction. For transac-
tions which have greater economic value, a higher degree of
trust may be required. Similarly, for transactions with high

20

25

30

35

40

45

50

55

60

65

42

degrees of risk a high degree of trust may be required. Con-
versely, for transactions which are either of low risk or of low
value, lower trust levels may be required by the vendor or
other authentication requestor.

The process of trust arbitrage occurs between the steps of
the trust engine 110 receiving the authentication data in step
1050 of FIG. 10 and the return of an authentication result to
the vendor in step 1055 of FIG. 10. Between these steps, the
process which leads to the evaluation of trust levels and the
potential trust arbitrage occurs as shown in FIG. 17. In cir-
cumstances where simple binary authentication is performed,
the process shown in FIG. 17 reduces to having the transac-
tion engine 205 directly compare the authentication data pro-
vided with the enrollment data for the identified user as dis-
cussed above with reference to FIG. 10, flagging any
difference as a negative authentication.

As shown in FIG. 17, the first step after receiving the data
in step 1050 is for the transaction engine 205 to determine the
trust level which is required for a positive authentication for
this particular transaction in step 1710. This step may be
performed by one of several different methods. The required
trust level may be specified to the trust engine 110 by the
authentication requestor at the time when the authentication
request is made. The authentication requestor may also set a
preference in advance which is stored within the depository
210 or other storage which is accessible by the transaction
engine 205. This preference may then be read and used each
time an authentication request is made by this authentication
requestor. The preference may also be associated with a par-
ticular user as a security measure such that a particular level
of trust is always required in order to authenticate that user,
the user preference being stored in the depository 210 or other
storage media accessible by the transaction engine 205. The
required level may also be derived by the transaction engine
205 or authentication engine 215 based upon information
provided in the authentication request, such as the value and
risk level of the transaction to be authenticated.

In one mode of operation, a policy management module or
other software which is used when generating the authenti-
cation request is used to specify the required degree of trust
for the authentication of the transaction. This may be used to
provide a series of rules to follow when assigning the required
level of trust based upon the policies which are specified
within the policy management module. One advantageous
mode of operation is for such a module to be incorporated
with the web server of a vendor in order to appropriately
determine required level of trust for transactions initiated
with the vendor’s web server. In this way, transaction requests
from users may be assigned a required trust level in accor-
dance with the policies of the vendor and such information
may be forwarded to the trust engine 110 along with the
authentication request.

This required trust level correlates with the degree of cer-
tainty that the vendor wants to have that the individual authen-
ticating is in fact who he identifies himself as. For example, if
the transaction is one where the vendor wants a fair degree of
certainty because goods are changing hands, the vendor may
require a trust level of 85%. For situation where the vendor is
merely authenticating the user to allow him to view members
only content or exercise privileges on a chat room, the down-
side risk may be small enough that the vendor requires only a
60% trust level. However, to enter into a production contract
with a value of tens of thousands of dollars, the vendor may
require a trust level of 99% or more.

This required trust level represents a metric to which the
user must authenticate himself in order to complete the trans-
action. If the required trust level is 85% for example, the user

US 8,745,372 B2

43

must provide authentication to the trust engine 110 sufficient
for the trust engine 110 to say with 85% confidence that the
user is who they say they are. It is the balance between this
required trust level and the authentication confidence level
which produces either a positive authentication (to the satis-
faction of the vendor) or a possibility of trust arbitrage.

As shown in FIG. 17, after the transaction engine 205
receives the required trust level, it compares in step 1720 the
required trust level to the authentication confidence level
which the authentication engine 215 calculated for the current
authentication (as discussed with reference to FIG. 16). If the
authentication confidence level is higher than the required
trust level for the transaction in step 1730, then the process
moves to step 1740 where a positive authentication for this
transaction is produced by the transaction engine 205. A
message to this effect will then be inserted into the authenti-
cation results and returned to the vendor by the transaction
engine 205 as shown in step 1055 (see FIG. 10).

However, if the authentication confidence level does not
fulfill the required trust level in step 1730, then a confidence
gap exists for the current authentication, and trust arbitrage is
conducted in step 1750. Trust arbitrage is described more
completely with reference to FIG. 18 below. This process as
described below takes place within the transaction engine 205
of the trust engine 110. Because no authentication or other
cryptographic operations are needed to execute trust arbitrage
(other than those required for the SSL. communication
between the transaction engine 205 and other components),
the process may be performed outside the authentication
engine 215. However, as will be discussed below, any reevalu-
ation of authentication data or other cryptographic or authen-
tication events will require the transaction engine 205 to
resubmit the appropriate data to the authentication engine
215. Those of skill in the art will recognize that the trust
arbitrage process could alternately be structured to take place
partially or entirely within the authentication engine 215
itself.

As mentioned above, trust arbitrage is a process where the
trust engine 110 mediates a negotiation between the vendor
and user in an attempt to secure a positive authentication
where appropriate. As shown in step 1805, the transaction
engine 205 first determines whether or not the current situa-
tion is appropriate for trust arbitrage. This may be determined
based upon the circumstances of the authentication, e.g.
whether this authentication has already been through multiple
cycles of arbitrage, as well as upon the preferences of either
the vendor or user, as will be discussed further below.

In such circumstances where arbitrage is not possible, the
process proceeds to step 1810 where the transaction engine
205 generates a negative authentication and then inserts it into
the authentication results which are sent to the vendor in step
1055 (see FIG. 10). One limit which may be advantageously
used to prevent authentications from pending indefinitely is to
set a time-out period from the initial authentication request. In
this way, any transaction which is not positively authenticated
within the time limit is denied further arbitrage and negatively
authenticated. Those of skill in the art will recognize that such
a time limit may vary depending upon the circumstances of
the transaction and the desires of the user and vendor. Limi-
tations may also be placed upon the number of attempts that
may be made at providing a successful authentication. Such
limitations may be handled by an attempt limiter 535 as
shown in FIG. 5.

If arbitrage is not prohibited in step 1805, the transaction
engine 205 will then engage in negotiation with one or both of
the transacting parties. The transaction engine 205 may send
a message to the user requesting some form of additional

20

25

30

35

40

45

50

55

60

65

44

authentication in order to boost the authentication confidence
level produced as shown in step 1820. In the simplest form,
this may simply indicates that authentication was insufficient.
A request to produce one or more additional authentication
instances to improve the overall confidence level of the
authentication may also be sent.

If the user provides some additional authentication
instances in step 1825, then the transaction engine 205 adds
these authentication instances to the authentication data for
the transaction and forwards it to the authentication engine
215 as shown in step 1015 (see FIG. 10), and the authentica-
tion is reevaluated based upon both the pre-existing authen-
tication instances for this transaction and the newly provided
authentication instances.

An additional type of authentication may be a request from
the trust engine 110 to make some form of person-to-person
contact between the trust engine 110 operator (or a trusted
associate) and the user, for example, by phone call. This
phone call or other non-computer authentication can be used
to provide personal contact with the individual and also to
conduct some form of questionnaire based authentication.
This also may give the opportunity to verify an originating
telephone number and potentially a voice analysis of the user
when he calls in. Even if no additional authentication data can
be provided, the additional context associated with the user’s
phone number may improve the reliability of the authentica-
tion context. Any revised data or circumstances based upon
this phone call are fed into the trust engine 110 for use in
consideration of the authentication request.

Additionally, in step 1820 the trust engine 110 may provide
an opportunity for the user to purchase insurance, effectively
buying a more confident authentication. The operator of the
trust engine 110 may, at times, only want to make such an
option available if the confidence level of the authentication is
above a certain threshold to begin with. In effect, this user side
insurance is a way for the trust engine 110 to vouch for the
user when the authentication meets the normal required trust
level of the trust engine 110 for authentication, but does not
meet the required trust level of the vendor for this transaction.
In this way, the user may still successfully authenticate to a
very high level as may be required by the vendor, even though
he only has authentication instances which produce confi-
dence sufficient for the trust engine 110.

This function of the trust engine 110 allows the trust engine
110 to vouch for someone who is authenticated to the satis-
faction of the trust engine 110, but not of the vendor. This is
analogous to the function performed by a notary in adding his
signature to a document in order to indicate to someone
reading the document at a later time that the person whose
signature appears on the document is in fact the person who
signed it. The signature of the notary testifies to the act of
signing by the user. In the same way, the trust engine is
providing an indication that the person transacting is who
they say they are.

However, because the trust engine 110 is artificially boost-
ing the level of confidence provided by the user, there is a
greater risk to the trust engine 110 operator, since the user is
not actually meeting the required trust level of the vendor. The
cost of the insurance is designed to offset the risk of a false
positive authentication to the trust engine 110 (who may be
effectively notarizing the authentications of the user). The
user pays the trust engine 110 operator to take the risk of
authenticating to a higher level of confidence than has actu-
ally been provided.

Because such an insurance system allows someone to
effectively buy a higher confidence rating from the trust
engine 110, both vendors and users may wish to prevent the

US 8,745,372 B2

45

use of user side insurance in certain transactions. Vendors
may wish to limit positive authentications to circumstances
where they know that actual authentication data supports the
degree of confidence which they require and so may indicate
to the trust engine 110 that user side insurance is not to be
allowed. Similarly, to protect his online identity, a user may
wish to prevent the use of user side insurance on his account,
or may wish to limit its use to situations where the authenti-
cation confidence level without the insurance is higher than a
certain limit. This may be used as a security measure to
prevent someone from overhearing a password or stealing a
smart card and using them to falsely authenticate to a low
level of confidence, and then purchasing insurance to produce
a very high level of (false) confidence. These factors may be
evaluated in determining whether user side insurance is
allowed.

If user purchases insurance in step 1840, then the authen-
tication confidence level is adjusted based upon the insurance
purchased in step 1845, and the authentication confidence
level and required trust level are again compared in step 1730
(see FIG. 17). The process continues from there, and may lead
to either a positive authentication in step 1740 (see FIG. 17),
or back into the trust arbitrage process in step 1750 for either
further arbitrage (if allowed) or a negative authentication in
step 1810 if further arbitrage is prohibited.

In addition to sending a message to the user in step 1820,
the transaction engine 205 may also send a message to the
vendor in step 1830 which indicates that a pending authenti-
cation is currently below the required trust level. The message
may also offer various options on how to proceed to the
vendor. One of these Options is to simply inform the vendor
of what the current authentication confidence level is and ask
if the vendor wishes to maintain their current unfulfilled
required trust level. This may be beneficial because in some
cases, the vendor may have independent means for authenti-
cating the transaction or may have been using a default set of
requirements which generally result in a higher required level
being initially specified than is actually needed for the par-
ticular transaction at hand.

For instance, it may be standard practice that all incoming
purchase order transactions with the vendor are expected to
meet a 98% trust level. However, if an order was recently
discussed by phone between the vendor and a long-standing
customer, and immediately thereafter the transaction is
authenticated, but only to a 93% confidence level, the vendor
may wish to simply lower the acceptance threshold for this
transaction, because the phone call effectively provides addi-
tional authentication to the vendor. In certain circumstances,
the vendor may be willing to lower their required trust level,
but not all the way to the level of the current authentication
confidence. For instance, the vendor in the above example
might consider that the phone call prior to the order might
merit a 4% reduction in the degree of trust needed; however,
this is still greater than the 93% confidence produced by the
user.

If the vendor does adjust their required trust level in step
1835, then the authentication confidence level produced by
the authentication and the required trust level are compared in
step 1730 (see FIG. 17). If the confidence level now exceeds
the required trust level, a positive authentication may be gen-
erated in the transaction engine 205 in step 1740 (see FIG.
17). If not, further arbitrage may be attempted as discussed
above if it is permitted.

In addition to requesting an adjustment to the required trust
level, the transaction engine 205 may also offer vendor side
insurance to the vendor requesting the authentication. This
insurance serves a similar purpose to that described above for

20

25

30

35

40

45

50

55

60

65

46

the user side insurance. Here, however, rather than the cost
corresponding to the risk being taken by the trust engine 110
in authenticating above the actual authentication confidence
level produced, the cost of the insurance corresponds to the
risk being taken by the vendor in accepting a lower trust level
in the authentication.

Instead of just lowering their actual required trust level, the
vendor has the option of purchasing insurance to protect itself
from the additional risk associated with a lower level of trust
in the authentication of the user. As described above, it may be
advantageous for the vendor to only consider purchasing such
insurance to cover the trust gap in conditions where the exist-
ing authentication is already above a certain threshold.

The availability of such vendor side insurance allows the
vendor the option to either: lower his trust requirement
directly at no additional cost to himself, bearing the risk of a
false authentication himself (based on the lower trust level
required); or, buying insurance for the trust gap between the
authentication confidence level and his requirement, with the
trust engine 110 operator bearing the risk of the lower confi-
dence level which has been provided. By purchasing the
insurance, the vendor effectively keeps his high trust level
requirement; because the risk of a false authentication is
shifted to the trust engine 110 operator.

Ifthe vendor purchases insurance in step 1840, the authen-
tication confidence level and required trust levels are com-
pared in step 1730 (see FIG. 17), and the process continues as
described above.

Note that it is also possible that both the user and the vendor
respond to messages from the trust engine 110. Those of skill
in the art will recognize that there are multiple ways in which
such situations can be handled. One advantageous mode of
handling the possibility of multiple responses is simply to
treat the responses in a first-come, first-served manner. For
example, if the vendor responds with a lowered required trust
level and immediately thereafter the user also purchases
insurance to raise his authentication level, the authentication
is first reevaluated based upon the lowered trust requirement
from the vendor. If the authentication is now positive, the
user’s insurance purchase is ignored. In another advanta-
geous mode of operation, the user might only be charged for
the level of insurance required to meet the new, lowered trust
requirement of the vendor (if a trust gap remained even with
the lowered vendor trust requirement).

If no response from either party is received during the trust
arbitrage process at step 1850 within the time limit set for the
authentication, the arbitrage is reevaluated in step 1805. This
effectively begins the arbitrage process again. Ifthe time limit
was final or other circumstances prevent further arbitrage in
step 1805, a negative authentication is generated by the trans-
action engine 205 in step 1810 and returned to the vendor in
step 1055 (see FIG. 10). If not, new messages may be sent to
the user and vendor, and the process may be repeated as
desired.

Note that for certain types of transactions, for instance,
digitally signing documents which are not part of a transac-
tion, there may not necessarily be a vendor or other third
party; therefore the transaction is primarily between the user
and the trust engine 110. In circumstances such as these, the
trust engine 110 will have its own required trust level which
must be satisfied in order to generate a positive authentica-
tion. However, in such circumstances, it will often not be
desirable for the trust engine 110 to offer insurance to the user
in order for him to raise the confidence of his own signature.

The process described above and shown in FIGS. 16-18
may be carried out using various communications modes as
described above with reference to the trust engine 110. For

US 8,745,372 B2

47

instance, the messages may be web-based and sent using SSL.
connections between the trust engine 110 and applets down-
loaded in real time to browsers running on the user or vendor
systems. In an alternate mode of operation, certain dedicated
applications may be in use by the user and vendor which
facilitate such arbitrage and insurance transactions. In
another alternate mode of operation, secure email operations
may be used to mediate the arbitrage described above,
thereby allowing deferred evaluations and batch processing
of authentications. Those of skill in the art will recognize that
different communications modes may be used as are appro-
priate for the circumstances and authentication requirements
of the vendor.

The following description with reference to FIG. 19
describes a sample transaction which integrates the various
aspects of the present invention as described above. This
example illustrates the overall process between a user and a
vendor as mediates by the trust engine 110. Although the
various steps and components as described in detail above
may be used to carry out the following transaction, the pro-
cess illustrated focuses on the interaction between the trust
engine 110, user and vendor.

The transaction begins when the user, while viewing web
pages online, fills out an order form on the web site of the
vendor in step 1900. The user wishes to submit this order form
to the vendor, signed with his digital signature. In order to do
this, the user submits the order form with his request for a
signature to the trust engine 110 in step 1905. The user will
also provide authentication data which will be used as
described above to authenticate his identity.

In step 1910 the authentication data is compared to the
enrollment data by the trust engine 110 as discussed above,
and if a positive authentication is produced, the hash of the
order form, signed with the private key of the user, is for-
warded to the vendor along with the order form itself.

The vendor receives the signed form in step 1915, and then
the vendor will generate an invoice or other contract related to
the purchase to be made in step 1920. This contract is sent
back to the user with a request for a signature in step 1925.
The vendor also sends an authentication request for this con-
tract transaction to the trust engine 110 in step 1930 including
a hash of the contract which will be signed by both parties. To
allow the contract to be digitally signed by both parties, the
vendor also includes authentication data for itself so that the
vendor’s signature upon the contract can later be verified if
necessary.

As discussed above, the trust engine 110 then verifies the
authentication data provided by the vendor to confirm the
vendor’s identity, and if the data produces a positive authen-
tication in step 1935, continues with step 1955 when the data
is received from the user. If the vendor’s authentication data
does not match the enrollment data of the vendor to the
desired degree, a message is returned to the vendor requesting
further authentication. Trust arbitrage may be performed here
if necessary, as described above, in order for the vendor to
successfully authenticate itself to the trust engine 110.

When the user receives the contract in step 1940, he
reviews it, generates authentication data to sign it if it is
acceptable in step 1945, and then sends a hash of the contract
and his authentication data to the trust engine 110 in step
1950. The trust engine 110 verifies the authentication data in
step 1955 and if the authentication is good, proceeds to pro-
cess the contract as described below. As discussed above with
reference to FIGS. 17 and 18, trust arbitrage may be per-
formed as appropriate to close any trust gap which exists
between the authentication confidence level and the required
authentication level for the transaction.

20

25

30

35

40

45

50

55

60

65

48

The trust engine 110 signs the hash of the contract with the
user’s private key, and sends this signed hash to the vendor in
step 1960, signing the complete message on its own behalf,
i.e., including a hash of the complete message (including the
user’s signature) encrypted with the private key 510 of the
trust engine 110. This message is received by the vendor in
step 1965. The message represents a signed contract (hash of
contract encrypted using user’s private key) and a receipt
from the trust engine 110 (the hash of the message including
the signed contract, encrypted using the trust engine 110’s
private key).

The trust engine 110 similarly prepares a hash of the con-
tract with the vendor’s private key in step 1970, and forwards
this to the user, signed by the trust engine 110. In this way, the
user also receives a copy of the contract, signed by the vendor,
as well as a receipt, signed by the trust engine 110, for deliv-
ery of the signed contract in step 1975.

In addition to the foregoing, an additional aspect of the
invention provides a cryptographic Service Provider Module
(SPM) which may be available to a client side application as
a means to access functions provided by the trust engine 110
described above. One advantageous way to provide such a
service is for the cryptographic SPM is to mediate commu-
nications between a third party Application Programming
Interface (API) and a trust engine 110 which is accessible via
a network or other remote connection. A sample crypto-
graphic SPM is described below with reference to FIG. 20.

For example, on a typical system, a number of API’s are
available to programmers. Each API provides a set of function
calls which may be made by an application 2000 running
upon the system. Examples of API’s which provide program-
ming interfaces suitable for cryptographic functions, authen-
tication functions, and other security function include the
Cryptographic API (CAPI) 2010 provided by Microsoft with
its Windows operating systems, and the Common Data Secu-
rity Architecture (CDSA), sponsored by IBM, Intel and other
members of the Open Group. CAPI will be used as an exem-
plary security API in the discussion that follows. However,
the cryptographic SPM described could be used with CDSA
or other security API’s as are known in the art.

This APIis used by auser system 105 or vendor system 120
when a call is made for a cryptographic function. Included
among these functions may be requests associated with per-
forming various cryptographic operations, such as encrypting
a document with a particular key, signing a document,
requesting a digital certificate, verifying a signature upon a
signed document, and such other cryptographic functions as
are described herein or known to those of skill in the art.

Such cryptographic functions are normally performed
locally to the system upon which CAPI 2010 is located. This
is because generally the functions called require the use of
either resources of the local user system 105, such as a fin-
gerprint reader, or software functions which are programmed
using libraries which are executed on the local machine.
Access to these local resources is normally provided by one or
more Service Provider Modules (SPM’s) 2015, 2020 as
referred to above which provide resources with which the
cryptographic functions are carried out. Such SPM’s may
include software libraries 2015 to perform encrypting or
decrypting operations, or drivers and applications 2020
which are capable of accessing specialized hardware 2025,
such as biometric scanning devices. In much the way that
CAPI 2010 provides functions which may be used by an
application 2000 of the system 105, the SPM’s 2015, 2020
provide CAPI with access to the lower level functions and
resources associated with the available services upon the
system.

US 8,745,372 B2

49

In accordance with the invention, it is possible to provide a
cryptographic SPM 2030 which is capable of accessing the
cryptographic functions provided by the trust engine 110 and
making these functions available to an application 2000
through CAPI2010. Unlike embodiments where CAP12010
is only able to access resources which are locally available
through SPM’s 2015, 2020, a cryptographic SPM 2030 as
described herein would be able to submit requests for cryp-
tographic operations to a remotely-located, network-acces-
sible trust engine 110 in order to perform the operations
desired.

For instance, if an application 2000 has a need for a cryp-
tographic operation, such as signing a document, the appli-
cation 2000 makes a function call to the appropriate CAPI
2010 function. CAPI 2010 in turn will execute this function,
making use of the resources which are made available to it by
the SPM’s 2015, 2020 and the cryptographic SPM 2030. In
the case of a digital signature function, the cryptographic
SPM 2030 will generate an appropriate request which will be
sent to the trust engine 110 across the communication link
125.

The operations which occur between the cryptographic
SPM 2030 and the trust engine 110 are the same operations
that would be possible between any other system and the trust
engine 110. However, these functions are effectively made
available to a user system 105 through CAPI 2010 such that
they appear to be locally available upon the user system 105
itself. However, unlike ordinary SPM’s 2015, 2020, the func-
tions are being carried out on the remote trust engine 110 and
the results relayed to the cryptographic SPM 2030 in response
to appropriate requests across the communication link 125.

This cryptographic SPM 2030 makes a number of opera-
tions available to the user system 105 or a vendor system 120
which might not otherwise be available. These functions
include without limitation: encryption and decryption of
documents; issuance of digital certificates; digital signing of
documents; verification of digital signatures; and such other
operations as will be apparent to those of skill in the art.

In a separate embodiment, the present invention comprises
a complete system for performing the data securing methods
of'the present invention on any data set. The computer system
of this embodiment comprises a data splitting module that
comprises the functionality shown in FIG. 8 and described
herein. In one embodiment of the present invention, the data
splitting module, sometimes referred to herein as a secure
data parser, comprises a parser program or software suite
which comprises data splitting, encryption and decryption,
reconstitution or reassembly functionality. This embodiment
may further comprise a data storage facility or multiple data
storage facilities, as well. The data splitting module, or secure
data parser, comprises a cross-platform software module
suite which integrates within an electronic infrastructure, or
as an add-on to any application which requires the ultimate
security of its data elements. This parsing process operates on
any type of data set, and on any and all file types, or in a
database on any row, column or cell of data in that database.

The parsing process of the present invention may, in one
embodiment, be designed in a modular tiered fashion, and any
encryption process is suitable for use in the process of the
present invention. The modular tiers of the parsing and split-
ting process of the present invention may include, but are not
limited to, 1) cryptographic split, dispersed and securely
stored in multiple locations; 2) encrypt, cryptographically
split, dispersed and securely stored in multiple locations; 3)
encrypt, cryptographically split, encrypt each share, then dis-
persed and securely stored in multiple locations; and 4)
encrypt, cryptographically split, encrypt each share with a

20

25

30

35

40

45

50

55

60

65

50

different type of encryption than was used in the first step,
then dispersed and securely stored in multiple locations.

The process comprises, in one embodiment, splitting of the
data according to the contents of a generated random number,
or key and performing the same cryptographic splitting of the
key used in the encryption of splitting of the data to be secured
into two or more portions, or shares, of parsed and split data,
and in one embodiment, preferably into four or more portions
of parsed and split data, encrypting all of the portions, then
scattering and storing these portions back into the database, or
relocating them to any named device, fixed or removable,
depending on the requestor’s need for privacy and security.
Alternatively, in another embodiment, encryption may occur
prior to the splitting of the data set by the splitting module or
secure data parser. The original data processed as described in
this embodiment is encrypted and obfuscated and is secured.
The dispersion of the encrypted elements, if desired, can be
virtually anywhere, including, but not limited to, a single
server or data storage device, or among separate data storage
facilities or devices. Encryption key management in one
embodiment may be included within the software suite, or in
another embodiment may be integrated into an existing infra-
structure or any other desired location.

A cryptographic split (cryptosplit) partitions the data into
N number of shares. The partitioning can be on any size unit
of data, including an individual bit, bits, bytes, kilobytes,
megabytes, or larger units, as well as any pattern or combi-
nation of data unit sizes whether predetermined or randomly
generated. The units can also be of different sized, based on
either a random or predetermined set of values. This means
the data can be viewed as a sequence of these units. In this
manner the size of the data units themselves may render the
data more secure, for example by using one or more prede-
termined or randomly generated pattern, sequence or combi-
nation of data unit sizes. The units are then distributed (either
randomly or by a predetermined set of values) into the N
shares. This distribution could also involve a shuftling of the
order of the units in the shares. It is readily apparent to those
of'ordinary skill in the art that the distribution of the data units
into the shares may be performed according to a wide variety
of possible selections, including but not limited to size-fixed,
predetermined sizes, or one or more combination, pattern or
sequence of data unit sizes that are predetermined or ran-
domly generated.

In some embodiments of this cryptosplit split process, the
data may be any suitable number of bytes in size, such as one,
two, three, five, twenty, fifty, one hundred, more than one
hundred, or N bytes in size. One particular example of this
cryptographic split process, or cryptosplit, would be to con-
sider the data to be 23 bytes in size, with the data unit size
chosen to be one byte, and with the number of shares selected
to be 4. Each byte would be distributed into one of the 4
shares. Assuming a random distribution, a key would be
obtained to create a sequence of 23 random numbers (rl, r2,
r3 through r23), each with a value between 1 and 4 corre-
sponding to the four shares. Each of the units of data (in this
example 23 individual bytes of data) is associated with one of
the 23 random numbers corresponding to one of the four
shares. The distribution of the bytes of data into the four
shares would occur by placing the first byte of the data into
share number r1, byte two into share r2, byte three into share
13, through the 23" byte of data into share r23. It is readily
apparent to those of ordinary skill in the art that a wide variety
of other possible steps or combination or sequence of steps,
including the size of the data units, may be used in the
cryptosplit process of the present invention, and the above
example is a non-limiting description of one process for

US 8,745,372 B2

51

cryptosplitting data. To recreate the original data, the reverse
operation would be performed.

In another embodiment of the cryptosplit process of the
present invention, an option for the cryptosplitting process is
to provide sufficient redundancy in the shares such that only
a subset of the shares are needed to reassemble or restore the
data to its original or useable form. As a non-limiting
example, the cryptosplit may be done as a “3 of 4 cryptosplit
such that only three of the four shares are necessary to reas-
semble or restore the data to its original or useable form. This
is also referred to as a “M of N cryptosplit” wherein N is the
total number of shares, and M is at least one less than N. Itis
readily apparent to those of ordinary skill in the art that there
are many possibilities for creating this redundancy in the
cryptosplitting process of the present invention.

In one embodiment of the cryptosplitting process of the
present invention, each unit of data is stored in two shares, the
primary share and the backup share. Using the “3 of 4~
cryptosplitting process described above, any one share can be
missing, and this is sufficient to reassemble or restore the
original data with no missing data units since only three of the
total four shares are required. As described herein, a random
number is generated that corresponds to one of the shares. The
random number is associated with a data unit, and stored in
the corresponding share, based on a key. One key is used, in
this embodiment, to generate the primary and backup share
random number. As described herein for the cryptosplitting
process of the present invention, a set of random numbers
(also referred to as primary share numbers) from 0 to 3 are
generated equal to the number of data units. Then another set
of random numbers is generated (also referred to as backup
share numbers) from 1 to 3 equal to the number of data units.
Each unit of data is then associated with a primary share
number and a backup share number. Alternatively, a set of
random numbers may be generated that is fewer than the
number of data units, and repeating the random number set,
but this may reduce the security of the sensitive data. The
primary share number is used to determine into which share
the data unit is stored. The backup share number is combined
with the primary share number to create a third share number
between 0 and 3, and this number is used to determine into
which share the data unit is stored. In this example, the equa-
tion to determine the third share number is:

(primary share number+backup share number)MOD
4=third share number.

In the embodiment described above where the primary
share number is between 0 and 3, and the backup share
number is between 1 and 3 ensures that the third share number
is different from the primary share number. This results in the
data unit being stored in two different shares. It is readily
apparent to those of ordinary skill in the art that there are
many ways of performing redundant cryptosplitting and non-
redundant cryptosplitting in addition to the embodiments dis-
closed herein. For example, the data units in each share could
be shuffled utilizing a different algorithm. This data unit
shuftling may be performed as the original data is split into the
data units, or after the data units are placed into the shares, or
after the share is full, for example.

The various cryptosplitting processes and data shuffling
processes described herein, and all other embodiments of the
cryptosplitting and data shuffling methods of the present
invention may be performed on data units of any size, includ-
ing but not limited to, as small as an individual bit, bits, bytes,
kilobytes, megabytes or larger.

An example of one embodiment of source code that would
perform the cryptosplitting process described herein is:

10

20

25

30

35

40

45

50

55

60

65

52

DATA [1:24] - array of bytes with the data to be split
SHARES[0:3; 1:24] - 2-dimensionalarray with each row representing
one of the shares
RANDOM]J1:24] - array random numbers in the range of 0..3
S1=1;
S2=1;
S3=1;
S4=1;
ForJ=1to 24 do
Begin
IF RANDOM[J[==0 then
Begin
SHARES[1,S1] = DATA [J];
S1=81+1;
End
ELSE IF RANDOM]JJ[==1 then
Begin
SHARES[2,52] = DATA [J];
S2=82+1;
END
ELSE IF RANDOM]JJ[==2 then
Begin
Shares[3,S3] = data [J];
S3=83+1;
End
Else begin
Shares[4,54] = data [J];
S4=84+1;
End;
END;

An example of one embodiment of source code that would
perform the cryptosplitting RAID process described herein
is:

Generate two sets of numbers, PrimaryShare is 0 to 3,
BackupShare is 1 to 3. Then put each data unit into share
[primaryshare[1]] and share[(primaryshare[1]+backupshare
[1]) mod 4, with the same process as in cryptosplitting
described above. This method will be scalable to any size N,
where only N-1 shares are necessary to restore the data.

Theretrieval, recombining, reassembly or reconstituting of
the encrypted data elements may utilize any number of
authentication techniques, including, but not limited to, bio-
metrics, such as fingerprint recognition, facial scan, hand
scan, iris scan, retinal scan, ear scan, vascular pattern recog-
nition or DNA analysis. The data splitting and/or parser mod-
ules of the present invention may be integrated into a wide
variety of infrastructure products or applications as desired.

Traditional encryption technologies known in the art rely
on one or more key used to encrypt the data and render it
unusable without the key. The data, however, remains whole
and intact and subject to attack. The secure data parser of the
present invention, in one embodiment, addresses this problem
by performing a cryptographic parsing and splitting of the
encrypted file into two or more portions or shares, and in
another embodiment, preferably four or more shares, adding
another layer of encryption to each share of the data, then
storing the shares in different physical and/or logical loca-
tions. When one or more data shares are physically removed
from the system, either by using a removable device, such as
a data storage device, or by placing the share under another
party’s control, any possibility of compromise of secured data
is effectively removed.

An example of one embodiment of the secure data parser of
the present invention and an example of how it may be utilized
is shown in FIG. 21 and described below. However, it is
readily apparent to those of ordinary skill in the art that the
secure data parser of the present invention may be utilized in
awide variety of ways in addition to the non-limiting example
below. As a deployment option, and in one embodiment, the

US 8,745,372 B2

53

secure data parser may be implemented with external session
key management or secure internal storage of session keys.
Upon implementation, a Parser Master Key will be generated
which will be used for securing the application and for
encryption purposes. It should be also noted that the incorpo-
ration of the Parser Master key in the resulting secured data
allows for a flexibility of sharing of secured data by individu-
als within a workgroup, enterprise or extended audience.

As shown in FIG. 21, this embodiment of the present
invention shows the steps of the process performed by the
secure data parser on data to store the session master key with
the parsed data:

1. Generating a session master key and encrypt the data
using RS1 stream cipher.

2. Separating the resulting encrypted data into four shares
or portions of parsed data according to the pattern of the
session master key.

3. In this embodiment of the method, the session master
key will be stored along with the secured data shares in a data
depository. Separating the session master key according to
the pattern of the Parser Master Key and append the key data
to the encrypted parsed data.

4. The resulting four shares of data will contain encrypted
portions of the original data and portions of the session master
key. Generate a stream cipher key for each of the four data
shares.

5. Encrypting each share, then store the encryption keys in
different locations from the encrypted data portions or shares:
Share 1 gets Key 4, Share 2 gets Key 1, Share 3 gets Key 2,
Share 4 gets Key 3.

To restore the original data format, the steps are reversed.

It is readily apparent to those of ordinary skill in the art that
certain steps of the methods described herein may be per-
formed in different order, or repeated multiple times, as
desired. It is also readily apparent to those skilled in the art
that the portions of the data may be handled differently from
one another. For example, multiple parsing steps may be
performed on only one portion of the parsed data. Each por-
tion of parsed data may be uniquely secured in any desirable
way provided only that the data may be reassembled, recon-
stituted, reformed, decrypted or restored to its original or
other usable form.

As shown in FIG. 22 and described herein, another
embodiment of the present invention comprises the steps of
the process performed by the secure data parser on data to
store the session master key data in one or more separate key
management table:

1. Generating a session master key and encrypt the data
using RS1 stream cipher.

2. Separating the resulting encrypted data into four shares
or portions of parsed data according to the pattern of the
session master key.

3. In this embodiment of the method of the present inven-
tion, the session master key will be stored in a separate key
management table in a data depository. Generating a unique
transaction ID for this transaction. Storing the transaction 1D
and session master key in a separate key management table.
Separating the transaction ID according to the pattern of the
Parser Master Key and append the data to the encrypted
parsed or separated data.

4. The resulting four shares of data will contain encrypted
portions of the original data and portions of the transaction
D.

5. Generating a stream cipher key for each of the four data
shares.

20

25

30

35

40

45

50

55

60

65

54

6. Encrypting each share, then store the encryption keys in
different locations from the encrypted data portions or shares:
Share 1 gets Key 4, Share 2 gets Key 1, Share 3 gets Key 2,
Share 4 gets Key 3.

To restore the original data format, the steps are reversed.

Itis readily apparent to those of ordinary skill in the art that
certain steps of the method described herein may be per-
formed in different order, or repeated multiple times, as
desired. It is also readily apparent to those skilled in the art
that the portions of the data may be handled differently from
one another. For example, multiple separating or parsing
steps may be performed on only one portion of the parsed
data. Each portion of parsed data may be uniquely secured in
any desirable way provided only that the data may be reas-
sembled, reconstituted, reformed, decrypted or restored to its
original or other usable form.

As shown in FIG. 23, this embodiment of the present
invention shows the steps of the process performed by the
secure data parser on data to store the session master key with
the parsed data:

1. Accessing the parser master key associated with the
authenticated user

2. Generating a unique Session Master key

3. Derive an Intermediary Key from an exclusive OR func-
tion of the Parser Master Key and Session Master key

4. Optional encryption of the data using an existing or new
encryption algorithm keyed with the Intermediary Key.

5. Separating the resulting optionally encrypted data into
four shares or portions of parsed data according to the pattern
of the Intermediary key.

6. In this embodiment of the method, the session master
key will be stored along with the secured data shares in a data
depository. Separating the session master key according to
the pattern of the Parser Master Key and append the key data
to the optionally encrypted parsed data shares.

7. The resulting multiple shares of data will contain option-
ally encrypted portions of the original data and portions of the
session master key.

8. Optionally generate an encryption key for each of the
four data shares.

9. Optionally encrypting each share with an existing or new
encryption algorithm, then store the encryption keys in dif-
ferent locations from the encrypted data portions or shares:
for example, Share 1 gets Key 4, Share 2 gets Key 1, Share 3
gets Key 2, Share 4 gets Key 3.

To restore the original data format, the steps are reversed.

Itis readily apparent to those of ordinary skill in the art that
certain steps of the methods described herein may be per-
formed in different order, or repeated multiple times, as
desired. It is also readily apparent to those skilled in the art
that the portions of the data may be handled differently from
one another. For example, multiple parsing steps may be
performed on only one portion of the parsed data. Each por-
tion of parsed data may be uniquely secured in any desirable
way provided only that the data may be reassembled, recon-
stituted, reformed, decrypted or restored to its original or
other usable form.

As shown in FIG. 24 and described herein, another
embodiment of the present invention comprises the steps of
the process performed by the secure data parser on data to
store the session master key data in one or more separate key
management table:

1. Accessing the Parser Master Key associated with the
authenticated user

2. Generating a unique Session Master Key

3. Derive an Intermediary Key from an exclusive OR func-
tion of the Parser Master Key and Session Master key

US 8,745,372 B2

55

4. Optionally encrypt the data using an existing or new
encryption algorithm keyed with the Intermediary Key.

5. Separating the resulting optionally encrypted data into
four shares or portions of parsed data according to the pattern
of the Intermediary Key.

6. In this embodiment of the method of the present inven-
tion, the session master key will be stored in a separate key
management table in a data depository. Generating a unique
transaction ID for this transaction. Storing the transaction 1D
and session master key in a separate key management table or
passing the Session Master Key and transaction ID back to the
calling program for external management. Separating the
transaction ID according to the pattern of the Parser Master
Key and append the data to the optionally encrypted parsed or
separated data.

7. The resulting four shares of data will contain optionally
encrypted portions of the original data and portions of the
transaction ID.

8. Optionally generate an encryption key for each of the
four data shares.

9. Optionally encrypting each share, then store the encryp-
tion keys in different locations from the encrypted data por-
tions or shares. For example: Share 1 gets Key 4, Share 2 gets
Key 1, Share 3 gets Key 2, Share 4 gets Key 3.

To restore the original data format, the steps are reversed.

It is readily apparent to those of ordinary skill in the art that
certain steps of the method described herein may be per-
formed in different order, or repeated multiple times, as
desired. It is also readily apparent to those skilled in the art
that the portions of the data may be handled differently from
one another. For example, multiple separating or parsing
steps may be performed on only one portion of the parsed
data. Each portion of parsed data may be uniquely secured in
any desirable way provided only that the data may be reas-
sembled, reconstituted, reformed, decrypted or restored to its
original or other usable form.

A wide variety of encryption methodologies are suitable
for use in the methods of the present invention, as is readily
apparent to those skilled in the art. The One Time Pad algo-
rithm, is often considered one of the most secure encryption
methods, and is suitable for use in the method of the present
invention. Using the One Time Pad algorithm requires that a
key be generated which is as long as the data to be secured.
The use of this method may be less desirable in certain cir-
cumstances such as those resulting in the generation and
management of very long keys because of the size of the data
set to be secured. In the One-Time Pad (OTP) algorithm, the
simple exclusive-or function, XOR, is used. For two binary
streams x and y of the same length, x XOR y means the
bitwise exclusive-or of x and y.

At the bit level is generated:
0XOR 0=0
0XOR 1=1
1XOR 0=1
1XOR 1=0

An example of this process is described herein for an
n-byte secret, s, (or data set) to be split. The process will
generate an n-byte random value, a, and then set:

b=aXOR s.

[Tt}

Note that one can derive “s” via the equation:

s=a XOR b.

The values a and b are referred to as shares or portions and
are placed in separate depositories. Once the secret s is split
into two or more shares, it is discarded in a secure manner.

20

25

30

35

40

45

50

55

60

65

56

The secure data parser of the present invention may utilize
this function, performing multiple XOR functions incorpo-
rating multiple distinct secret key values: K1, K2, K3, Kn,
KS5. At the beginning of the operation, the data to be secured
is passed through the first encryption operation, secure
data=data XOR secret key 5:

S=D XOR K5

In order to securely store the resulting encrypted data in,
for example, four shares, S1, S2, S3, Sn, the data is parsed and
split into “n” segments, or shares, according to the value of
KS5. This operation results in “n” pseudorandom shares of the
original encrypted data. Subsequent XOR functions may then
be performed on each share with the remaining secret key
values, for example: Secure data segment 1=encrypted data
share 1 XOR secret key 1:

SD1=S1 XOR K1
SD2=S2 XOR K2
SD3=S3 XOR K3
SDn=Sn XOR Kn.

In one embodiment, it may not be desired to have any one
depository contain enough information to decrypt the infor-
mation held there, so the key required to decrypt the share is
stored in a different data depository:

Depository 1: SD1, Kn
Depository 2: SD2, K1
Depository 3: SD3, K2
Depository n: SDn, K3.

Additionally, appended to each share may be the informa-
tion required to retrieve the original session encryption key,
KS5. Therefore, in the key management example described
herein, the original session master key is referenced by a
transaction ID split into “n” shares according to the contents
of'the installation dependant Parser Master Key (TID1, TID2,
TID3, TIDn):

Depository 1: SD1, Kn, TID1
Depository 2: SD2, K1, TID2
Depository 3: SD3, K2, TID3
Depository n: SDn, K3, TIDn.

In the incorporated session key example described herein,
the session master key is split into “n” shares according to the
contents of the installation dependant Parser Master Key
(SK1, SK2, SK3, SKn):

Depository 1: SD1, Kn, SK1
Depository 2: SD2, K1, SK2
Depository 3: SD3, K2, SK3
Depository n: SDn, K3, SKn.

Unless all four shares are retrieved, the data cannot be
reassembled according to this example. Even if all four shares
are captured, there is no possibility of reassembling or restor-
ing the original information without access to the session
master key and the Parser Master Key.

This example has described an embodiment of the method
of the present invention, and also describes, in another
embodiment, the algorithm used to place shares into deposi-
tories so that shares from all depositories can be combined to
form the secret authentication material. The computations
needed are very simple and fast. However, with the One Time
Pad (OTP) algorithm there may be circumstances that cause it
to be less desirable, such as a large data set to be secured,
because the key size is the same size as the data to be stored.
Therefore, there would be a need to store and transmit about
twice the amount of the original data which may be less
desirable under certain circumstances.

Stream Cipher RS1

The stream cipher RS1 splitting technique is very similar to

the OTP splitting technique described herein. Instead of an

US 8,745,372 B2

57

n-byte random value, ann'=min(n, 16)—byte random value is
generated and used to key the RS1 Stream Cipher algorithm.
The advantage of the RS1 Stream Cipher algorithm is that a
pseudorandom key is generated from a much smaller seed
number. The speed of execution of the RS1 Stream Cipher
encryption is also rated at approximately 10 times the speed
of the well known in the art Triple DES encryption without
compromising security. The RS1 Stream Cipher algorithm is
well known in the art, and may be used to generate the keys
used in the XOR function. The RS1 Stream Cipher algorithm
is interoperable with other commercially available stream
cipher algorithms, such as the RC4™ stream cipher algorithm
of RSA Security, Inc and is suitable for use in the methods of
the present invention.

Using the key notation above, K1 thru K5 are now an n'
byte random values and we set:

SD1=S1 XOR E(K1)

SD2=S2 XOR E(K2)

SD3=S83 XOR E(K3)

SDn=Sn XOR E(Kn)

where E(K1) thru E(Kn) are the first n' bytes of output from
the RS1 Stream Cipher algorithm keyed by K1 thru Kn. The
shares are now placed into data depositories as described
herein.

In this stream cipher RS1 algorithm, the required compu-
tations needed are nearly as simple and fast as the OTP algo-
rithm. The benefit in this example using the RS1 Stream
Cipher is that the system needs to store and transmit on
average only about 16 bytes more than the size of the original
data to be secured per share. When the size of the original data
is more than 16 bytes, this RS1 algorithm is more efficient
than the OTP algorithm because it is simply shorter. It is
readily apparent to those of ordinary skill in the art that a wide
variety of encryption methods or algorithms are suitable for
use in the present invention, including, but not limited to RS1,
OTP, RC4™, Triple DES and AES.

There are major advantages provided by the data security
methods and computer systems of the present invention over
traditional encryption methods. One advantage is the security
gained from moving shares of the data to different locations
on one or more data depositories or storage devices, that may
be in different logical, physical or geographical locations.
When the shares of data are split physically and under the
control of different personnel, for example, the possibility of
compromising the data is greatly reduced.

Another advantage provided by the methods and system of
the present invention is the combination of the steps of the
method of the present invention for securing data to provide a
comprehensive process of maintaining security of sensitive
data. The data is encrypted with a secure key and split into one
or more shares, and in one embodiment, four shares, accord-
ing to the secure key. The secure key is stored safely with a
reference pointer which is secured into four shares according
to a secure key. The data shares are then encrypted individu-
ally and the keys are stored safely with different encrypted
shares. When combined, the entire process for securing data
according to the methods disclosed herein becomes a com-
prehensive package for data security.

The data secured according to the methods of the present
invention is readily retrievable and restored, reconstituted,
reassembled, decrypted, or otherwise returned into its origi-
nal or other suitable form for use. In order to restore the
original data, the following items may be utilized:

1. All shares or portions of the data set.

2. Knowledge of and ability to reproduce the process flow
of the method used to secure the data.

3. Access to the session master key.

20

25

30

35

40

45

50

55

60

65

58

4. Access to the Parser Master Key.

Therefore, it may be desirable to plan a secure installation
wherein at least one of the above elements may be physically
separated from the remaining components of the system (un-
der the control of a different system administrator for
example).

Protection against a rogue application invoking the data
securing methods application may be enforced by use of the
Parser Master Key. A mutual authentication handshake
between the secure data parser and the application may be
required in this embodiment of the present invention prior to
any action taken.

The security of the system dictates that there be no “back-
door” method for recreation of the original data. For instal-
lations where data recovery issues may arise, the secure data
parser can be enhanced to provide a minor of the four shares
and session master key depository. Hardware options such as
RAID (redundant array of inexpensive disks, used to spread
information over several disks) and software options such as
replication can assist as well in the data recovery planning.
Key Management

In one embodiment of the present invention, the data secur-
ing method uses three sets of keys for an encryption opera-
tion. Each set of keys may have individual key storage,
retrieval, security and recovery options, based on the instal-
lation. The keys that may be used, include, but are not limited
to:

The Parser Master Key

This key is an individual key associated with the installa-
tion of the secure data parser. It is installed on the server on
which the secure data parser has been deployed. There are a
variety of options suitable for securing this key including, but
not limited to, a smart card, separate hardware key store,
standard key stores, custom key stores or within a secured
database table, for example.

The Session Master Key

A Session Master Key may be generated each time data is
secured. The Session Master Key is used to encrypt the data
prior to the parsing and splitting operations. It may also be
incorporated (if the Session Master Key is not integrated into
the parsed data) as a means of parsing the encrypted data. The
Session Master Key may be secured in a variety of manners,
including, but not limited to, a standard key store, custom key
store, separate database table, or secured within the encrypted
shares, for example.

The Share Encryption Keys

For each share or portions of a data set that is created, an
individual Share Encryption Key may be generated to further
encrypt the shares. The Share Encryption Keys may be stored
in different shares than the share that was encrypted.

Itis readily apparent to those of ordinary skill in the art that
the data securing methods and computer system of the present
invention are widely applicable to any type of data in any
setting or environment. In addition to commercial applica-
tions conducted over the Internet or between customers and
vendors, the data securing methods and computer systems of
the present invention are highly applicable to non-commer-
cial or private settings or environments. Any data set that is
desired to be kept secure from any unauthorized user may be
secured using the methods and systems described herein. For
example, access to a particular database within a company or
organization may be advantageously restricted to only
selected users by employing the methods and systems of the
present invention for securing data. Another example is the
generation, modification or access to documents wherein it is
desired to restrict access or prevent unauthorized or acciden-
tal access or disclosure outside a group of selected individu-

US 8,745,372 B2

59

als, computers or workstations. These and other examples of
the ways in which the methods and systems of data securing
of'the present invention are applicable to any non-commercial
or commercial environment or setting for any setting, includ-
ing, but not limited to any organization, government agency
or corporation.

In another embodiment of the present invention, the data
securing method uses three sets of keys for an encryption
operation. Each set of keys may have individual key storage,
retrieval, security and recovery options, based on the instal-
lation. The keys that may be used, include, but are not limited
to:

1. The Parser Master Key

This key is an individual key associated with the installa-
tion of the secure data parser. It is installed on the server on
which the secure data parser has been deployed. There are a
variety of options suitable for securing this key including, but
not limited to, a smart card, separate hardware key store,
standard key stores, custom key stores or within a secured
database table, for example.

2. The Session Master Key

A Session Master Key may be generated each time data is
secured. The Session Master Key is used in conjunction with
the Parser Master key to derive the Intermediary Key. The
Session Master Key may be secured in a variety of manners,
including, but not limited to, a standard key store, custom key
store, separate database table, or secured within the encrypted
shares, for example.

3. The Intermediary Key

An Intermediary Key may be generated each time data is
secured. The Intermediary Key is used to encrypt the data
prior to the parsing and splitting operation. It may also be
incorporated as a means of parsing the encrypted data.

4. The Share Encryption Keys

For each share or portions of a data set that is created, an
individual Share Encryption Key may be generated to further
encrypt the shares. The Share Encryption Keys may be stored
in different shares than the share that was encrypted.

It is readily apparent to those of ordinary skill in the art that
the data securing methods and computer system of the present
invention are widely applicable to any type of data in any
setting or environment. In addition to commercial applica-
tions conducted over the Internet or between customers and
vendors, the data securing methods and computer systems of
the present invention are highly applicable to non-commer-
cial or private settings or environments. Any data set that is
desired to be kept secure from any unauthorized user may be
secured using the methods and systems described herein. For
example, access to a particular database within a company or
organization may be advantageously restricted to only
selected users by employing the methods and systems of the
present invention for securing data. Another example is the
generation, modification or access to documents wherein it is
desired to restrict access or prevent unauthorized or acciden-
tal access or disclosure outside a group of selected individu-
als, computers or workstations. These and other examples of
the ways in which the methods and systems of data securing
of'the present invention are applicable to any non-commercial
or commercial environment or setting for any setting, includ-
ing, but not limited to any organization, government agency
or corporation.

Workgroup, Project, Individual PC/Laptop or Cross Platform
Data Security

The data securing methods and computer systems of the
present invention are also useful in securing data by work-
group, project, individual PC/Laptop and any other platform
that is in use in, for example, businesses, offices, government

20

25

30

35

40

45

50

55

60

65

60

agencies, or any setting in which sensitive data is created,
handled or stored. The present invention provides methods
and computer systems to secure data that is known to be
sought after by organizations, such as the U.S. Government,
for implementation across the entire government organiza-
tion or between governments at a state or federal level.

The data securing methods and computer systems of the
present invention provide the ability to not only parse and
split flat files but also data fields, sets and or table of any type.
Additionally, all forms of data are capable of being secured
under this process, including, but not limited to, text, video,
images, biometrics and voice data. Scalability, speed and data
throughput of the methods of securing data of the present
invention are only limited to the hardware the user has at their
disposal.

In one embodiment of the present invention, the data secur-
ing methods are utilized as described below in a workgroup
environment. In one embodiment, as shown in FIG. 23 and
described below, the Workgroup Scale data securing method
of the present invention uses the private key management
functionality of the TrustEngine to store the user/group rela-
tionships and the associated private keys (Parser Group Mas-
ter Keys) necessary for a group of users to share secure data.
The method of the present invention has the capability to
secure data for an enterprise, workgroup, or individual user,
depending on how the Parser Master Key was deployed.

In one embodiment, additional key management and user/
group management programs may be provided, enabling
wide scale workgroup implementation with a single point of
administration and key management. Key generation, man-
agement and revocation are handled by the single mainte-
nance program, which all become especially important as the
number of users increase. In another embodiment, key man-
agement may also be set up across one or several different
system administrators, which may not allow any one person
or group to control data as needed. This allows for the man-
agement of secured data to be obtained by roles, responsibili-
ties, membership, rights, etc., as defined by an organization,
and the access to secured data can be limited to just those who
are permitted or required to have access only to the portion
they are working on, while others, such as managers or execu-
tives, may have access to all of the secured data. This embodi-
ment allows for the sharing of secured data among different
groups within a company or organization while at the same
time only allowing certain selected individuals, such as those
with the authorized and predetermined roles and responsibili-
ties, to observe the data as a whole. In addition, this embodi-
ment of the methods and systems of the present invention also
allows for the sharing of data among, for example, separate
companies, or separate departments or divisions of compa-
nies, or any separate organization departments, groups, agen-
cies, or offices, or the like, of any government or organization
or any kind, where some sharing is required, but not any one
party may be permitted to have access to all the data. Particu-
larly apparent examples of the need and utility for such a
method and system of the present invention are to allow
sharing, but maintain security, in between government areas,
agencies and offices, and between different divisions, depart-
ments or offices of a large company, or any other organization,
for example.

An example of the applicability of the methods of the
present invention on a smaller scale is as follows. A Parser
Master key is used as a serialization or branding of the secure
data parser to an organization. As the scale of use ofthe Parser
Master key is reduced from the whole enterprise to a smaller
workgroup, the data securing methods described herein are
used to share files within groups of users.

US 8,745,372 B2

61

In the example shown in FIG. 25 and described below,
there are six users defined along with their title or role within
the organization. The side bar represents five possible groups
that the users can belong to according to their role. The arrow
represents membership by the user in one or more of the
groups.

When configuring the secure data parser for use in this
example, the system administrator accesses the user and
group information from the operating system by a mainte-
nance program. This maintenance program generates and
assigns Parser Group Master Keys to users based on their
membership in groups.

In this example, there are three members in the Senior Staff
group. For this group, the actions would be:

1. Access Parser Group Master Key for the Senior Staff
group (generate a key if not available);

2. Generate a digital certificate associating CEO with the
Senior Staff group;

3. Generate a digital certificate associating CFO with the
Senior Staff group;

4. Generate a digital certificate associating Vice President,
Marketing with the Senior Staff group.

The same set of actions would be done for each group, and
each member within each group. When the maintenance pro-
gram is complete, the Parser Group Master Key becomes a
shared credential for each member of the group. Revocation
of the assigned digital certificate may be done automatically
when a user is removed from a group through the mainte-
nance program without affecting the remaining members of
the group.

Once the shared credentials have been defined, the parsing
and splitting process remains the same. When a file, docu-
ment or data element is to be secured, the user is prompted for
the target group to be used when securing the data. The
resulting secured data is only accessible by other members of
the target group. This functionality of the methods and sys-
tems of the present invention may be used with any other
computer system or software platform, any may be, for
example, integrated into existing application programs or
used standalone for file security.

It is readily apparent to those of ordinary skill in the art that
any one or combination of encryption algorithms are suitable
for use in the methods and systems of the present invention.
For example, the encryption steps may, in one embodiment,
be repeated to produce a multi-layered encryption scheme. In
addition, a different encryption algorithm, or combination of
encryption algorithms, may be used in repeat encryption steps
such that different encryption algorithms are applied to the
different layers of the multi-layered encryption scheme. As
such, the encryption scheme itself may become a component
of'the methods of the present invention for securing sensitive
data from unauthorized use or access.

The secure data parser may include as an internal compo-
nent, as an external component, or as both an error-checking
component. For example, in one suitable approach, as por-
tions of data are created using the secure data parser in accor-
dance with the present invention, to assure the integrity of the
data within a portion, a hash value is taken at preset intervals
within the portion and is appended to the end of the interval.
The hash value is a predictable and reproducible numeric
representation of the data. If any bit within the data changes,
the hash value would be different. A scanning module (either
as a stand-alone component external to the secure data parser
or as an internal component) may then scan the portions of
data generated by the secure data parser. Each portion of data
(or alternatively, less than all portions of data according to
some interval or by a random or pseudo-random sampling) is

20

25

30

35

40

45

50

55

60

65

62

compared to the appended hash value or values and an action
may be taken. This action may include a report of values that
match and do not match, an alert for values that do not match,
or invoking of some external or internal program to trigger a
recovery of the data. For example, recovery of the data could
be performed by invoking a recovery module based on the
concept that fewer than all portions may be needed to gener-
ate original data in accordance with the present invention.

Any other suitable integrity checking may be implemented
using any suitable integrity information appended anywhere
in all or a subset of data portions. Integrity information may
include any suitable information that can be used to determine
the integrity of data portions. Examples of integrity informa-
tion may include hash values computed based on any suitable
parameter (e.g., based on respective data portions), digital
signature information, message authentication code (MAC)
information, any other suitable information, or any combina-
tion thereof.

The secure data parser of the present invention may be used
in any suitable application. Namely, the secure data parser
described herein has a variety of applications in different
areas of computing and technology. Several such areas are
discussed below. It will be understood that these are merely
illustrative in nature and that any other suitable applications
may make use of the secure data parser. It will further be
understood that the examples described are merely illustra-
tive embodiments that may be modified in any suitable way in
order to satisty any suitable desires. For example, parsing and
splitting may be based on any suitable units, such as by bits,
by bytes, by kilobytes, by megabytes, by any combination
thereof, or by any other suitable unit.

The secure data parser of the present invention may be used
to implement secure physical tokens, whereby data stored in
aphysical token may be required in order to access additional
data stored in another storage area. In one suitable approach,
aphysical token, such as a compact USB flash drive, a floppy
disk, an optical disk, a smart card, or any other suitable
physical token, may be used to store one of at least two
portions of parsed data in accordance with the present inven-
tion. In order to access the original data, the USB flash drive
would need to be accessed. Thus, a personal computer hold-
ing one portion of parsed data would need to have the USB
flash drive, having the other portion of parsed data, attached
before the original data can be accessed. FIG. 26 illustrates
this application. Storage area 2500 includes a portion of
parsed data 2502. Physical token 2504, having a portion of
parsed data 2506 would need to be coupled to storage area
2500 using any suitable communications interface 2508 (e.g.,
USB, serial, parallel, Bluetooth, IR, IEEE 1394, Ethernet, or
any other suitable communications interface) in order to
access the original data. This is useful in a situation where, for
example, sensitive data on a computer is left alone and subject
to unauthorized access attempts. By removing the physical
token (e.g., the USB flash drive), the sensitive data is inac-
cessible. It will be understood that any other suitable
approach for using physical tokens may be used.

The secure data parser of the present invention may be used
to implement a secure authentication system whereby user
enrollment data (e.g., passwords, private encryption keys,
fingerprint templates, biometric data or any other suitable
user enrollment data) is parsed and split using the secure data
parser. The user enrollment data may be parsed and split
whereby one or more portions are stored on a smart card, a
government Common Access Card, any suitable physical
storage device (e.g., magnetic or optical disk, USB key drive,
etc.), or any other suitable device. One or more other portions
of'the parsed user enrollment data may be stored in the system

US 8,745,372 B2

63

performing the authentication. This provides an added level
of security to the authentication process (e.g., in addition to
the biometric authentication information obtained from the
biometric source, the user enrollment data must also be
obtained via the appropriate parsed and split data portion).

The secure data parser of the present invention may be
integrated into any suitable existing system in order to pro-
vide the use of its functionality in each system’s respective
environment. FIG. 27 shows a block diagram of an illustrative
system 2600, which may include software, hardware, or both
for implementing any suitable application. System 2600 may
be an existing system in which secure data parser 2602 may
be retrofitted as an integrated component. Alternatively,
secure data parser 2602 may be integrated into any suitable
system 2600 from, for example, its earliest design stage.
Secure data parser 2600 may be integrated at any suitable
level of system 2600. For example, secure data parser 2602
may be integrated into system 2600 at a sufficiently back-end
level such that the presence of secure data parser 2602 may be
substantially transparent to an end user of system 2600.
Secure data parser 2602 may be used for parsing and splitting
data among one or more storage devices 2604 in accordance
with the present invention. Some illustrative examples of
systems having the secure data parser integrated therein are
discussed below.

The secure data parser of the present invention may be
integrated into an operating system kernel (e.g., Linux, Unix,
or any other suitable commercial or proprietary operating
system). This integration may be used to protect data at the
device level whereby, for example, data that would ordinarily
be stored in one or more devices is separated into a certain
number of portions by the secure data parser integrated into
the operating system and stored among the one or more
devices. When original data is attempted to be accessed, the
appropriate software, also integrated into the operating sys-
tem, may recombine the parsed data portions into the original
data in a way that may be transparent to the end user.

The secure data parser of the present invention may be
integrated into a volume manager or any other suitable com-
ponent of a storage system to protect local and networked data
storage across any or all supported platforms. For example,
with the secure data parser integrated, a storage system may
make use of the redundancy offered by the secure data parser
(i.e., which is used to implement the feature of needing fewer
than all separated portions of data in order to reconstruct the
original data) to protect against data loss. The secure data
parser also allows all data written to storage devices, whether
using redundancy or not, to be in the form of multiple portions
that are generated according to the parsing of the present
invention. When original data is attempted to be accessed, the
appropriate software, also integrated into the volume man-
ager or other suitable component of the storage system, may
recombine the parsed data portions into the original data in a
way that may be transparent to the end user.

In one suitable approach, the secure data parser of the
present invention may be integrated into a RAID controller
(as either hardware or software). This allows for the secure
storage of data to multiple drives while maintaining fault
tolerance in case of drive failure.

The secure data parser of the present invention may be
integrated into a database in order to, for example, protect
sensitive table information. For example, in one suitable
approach, data associated with particular cells of a database
table (e.g., individual cells, one or more particular columns,
one or more particular rows, any combination thereof, or an
entire database table) may be parsed and separated according
to the present invention (e.g., where the different portions are

20

25

30

35

40

45

50

55

60

65

64

stored on one or more storage devices at one or more locations
or on a single storage device). Access to recombine the por-
tions in order to view the original data may be granted by
traditional authentication methods (e.g., username and pass-
word query).

The secure data parser of the present invention may be
integrated in any suitable system that involves data in motion
(i.e., transfer of data from one location to another). Such
systems include, for example, email, streaming data broad-
casts, and wireless (e.g., WiFi) communications. With respect
to email, in one suitable approach, the secure data parser may
be used to parse outgoing messages (i.e., containing text,
binary data, or both (e.g., files attached to an email message))
and sending the different portions of the parsed data along
different paths thus creating multiple streams of data. If any
one of these streams of data is compromised, the original
message remains secure because the system may require that
more than one of the portions be combined, in accordance
with the present invention, in order to generate the original
data. In another suitable approach, the different portions of
data may be communicated along one path sequentially so
that if one portion is obtained, it may not be sufficient to
generate the original data. The different portions arrive at the
intended recipient’s location and may be combined to gener-
ate the original data in accordance with the present invention.

FIGS. 28 and 29 are illustrative block diagrams of such
email systems. FIG. 28 shows a sender system 2700, which
may include any suitable hardware, such as a computer ter-
minal, personal computer, handheld device (e.g., PDA,
Blackberry), cellular telephone, computer network, any other
suitable hardware, or any combination thereof. Sender sys-
tem 2700 is used to generate and/or store a message 2704,
which may be, for example, an email message, a binary data
file (e.g., graphics, voice, video, etc.), or both. Message 2704
is parsed and split by secure data parser 2702 in accordance
with the present invention. The resultant data portions may be
communicated across one or more separate communications
paths 2706 over network 2708 (e.g., the Internet, an intranet,
a LAN, WiFi, Bluetooth, any other suitable hard-wired or
wireless communications means, or any combination
thereof) to recipient system 2710. The data portions may be
communicated parallel in time or alternatively, according to
any suitable time delay between the communication of the
different data portions. Recipient system 2710 may be any
suitable hardware as described above with respect to sender
system 2700. The separate data portions carried along com-
munications paths 2706 are recombined at recipient system
2710 to generate the original message or data in accordance
with the present invention.

FIG. 29 shows a sender system 2800, which may include
any suitable hardware, such as a computer terminal, personal
computer, handheld device (e.g., PDA), cellular telephone,
computer network, any other suitable hardware, or any com-
bination thereof. Sender system 2800 is used to generate
and/or store a message 2804, which may be, for example, an
email message, a binary data file (e.g., graphics, voice, video,
etc.), or both. Message 2804 is parsed and split by secure data
parser 2802 in accordance with the present invention. The
resultant data portions may be communicated across a single
communications paths 2806 over network 2808 (e.g., the
Internet, an intranet, a LAN, WiFi, Bluetooth, any other suit-
able communications means, or any combination thereof) to
recipient system 2810. The data portions may be communi-
cated serially across communications path 2806 with respect
to one another. Recipient system 2810 may be any suitable
hardware as described above with respect to sender system
2800. The separate data portions carried along communica-

US 8,745,372 B2

65

tions path 2806 are recombined at recipient system 2810 to
generate the original message or data in accordance with the
present invention.

It will be understood that the arrangement of FIGS. 28 and
29 are merely illustrative. Any other suitable arrangement
may be used. For example, in another suitable approach, the
features of the systems of FIGS. 28 and 29 may be combined
whereby the multi-path approach of FIG. 28 is used and in
which one or more of communications paths 2706 are used to
carry more than one portion of data as communications path
2806 does in the context of FIG. 29.

The secure data parser may be integrated at any suitable
level of a data-in motion system. For example, in the context
of'an email system, the secure data parser may be integrated
at the user-interface level (e.g., into Microsofi® Outlook), in
which case the user may have control over the use of the
secure data parser features when using email. Alternatively,
the secure data parser may be implemented in a back-end
component such as at the exchange server, in which case
messages may be automatically parsed, split, and communi-
cated along different paths in accordance with the present
invention without any user intervention.

Similarly, in the case of streaming broadcasts of data (e.g.,
audio, video), the outgoing data may be parsed and separated
into multiple streams each containing a portion of the parsed
data. The multiple streams may be transmitted along one or
more paths and recombined at the recipient’s location in
accordance with the present invention. One of the benefits of
this approach is that it avoids the relatively large overhead
associated with traditional encryption of data followed by
transmission of the encrypted data over a single communica-
tions channel. The secure data parser of the present invention
allows data in motion to be sent in multiple parallel streams,
increasing speed and efficiency.

It will be understand that the secure data parser may be
integrated for protection of and fault tolerance of any type of
data in motion through any transport medium, including, for
example, wired, wireless, or physical. For example, voice
over Internet protocol (VoIP) applications may make use of
the secure data parser of the present invention. Wireless or
wired data transport from or to any suitable personal digital
assistant (PDA) devices such as Blackberries and Smart-
Phones may be secured using the secure data parser of the
present invention. Communications using wireless 802.11
protocols for peer to peer and hub based wireless networks,
satellite communications, point to point wireless communi-
cations, Internet client/server communications, or any other
suitable communications may involve the data in motion
capabilities of the secure data parser in accordance with the
present invention. Data communication between computer
peripheral device (e.g., printer, scanner, monitor, keyboard,
network router, biometric authentication device (e.g., finger-
print scanner), or any other suitable peripheral device)
between a computer and a computer peripheral device,
between a computer peripheral device and any other suitable
device, or any combination thereof may make use of the data
in motion features of the present invention.

The data in motion features of the present invention may
also apply to physical transportation of secure shares using
for example, separate routes, vehicles, methods, any other
suitable physical transportation, or any combination thereof.
For example, physical transportation of data may take place
on digital/magnetic tapes, floppy disks, optical disks, physi-
cal tokens, USB drives, removable hard drives, consumer
electronic devices with flash memory (e.g., Apple IPODs or
other MP3 players), flash memory, any other suitable medium
used for transporting data, or any combination thereof.

20

25

30

35

40

45

50

55

60

65

66

The secure data parser of the present invention may provide
security with the ability for disaster recovery. According to
the present invention, fewer than all portions of the separated
data generated by the secure data parser may be necessary in
order to retrieve the original data. That is, out of m portions
stored, n may be the minimum number of these m portions
necessary to retrieve the original data, where n<=m. For
example, if each of four portions is stored in a different
physical location relative to the other three portions, then, if
n=2 in this example, two of the locations may be compro-
mised whereby data is destroyed or inaccessible, and the
original data may still be retrieved from the portions in the
other two locations. Any suitable value for n or m may be
used.

In addition, the n of m feature of the present invention may
be used to create a “two man rule” whereby in order to avoid
entrusting a single individual or any other entity with full
access to what may be sensitive data, two or more distinct
entities, each with a portion of the separated data parsed by
the secure data parser of the present invention may need to
agree to put their portions together in order to retrieve the
original data.

The secure data parser of the present invention may be used
to provide a group of entities with a group-wide key that
allows the group members to access particular information
authorized to be accessed by that particular group. The group
key may be one of the data portions generated by the secure
data parser in accordance with the present invention that may
be required to be combined with another portion centrally
stored, for example in order to retrieve the information
sought. This feature allows for, for example, secure collabo-
ration among a group. It may be applied in for example,
dedicated networks, virtual private networks, intranets, or any
other suitable network.

Specific applications of this use of the secure data parser
include, for example, coalition information sharing in which,
for example, multi-national friendly government forces are
given the capability to communicate operational and other-
wise sensitive data on a security level authorized to each
respective country over a single network or a dual network
(i.e., as compared to the many networks involving relatively
substantial manual processes currently used). This capability
is also applicable for companies or other organizations in
which information needed to be known by one or more spe-
cific individuals (within the organization or without) may be
communicated over a single network without the need to
worry about unauthorized individuals viewing the informa-
tion.

Another specific application includes a multi-level security
hierarchy for government systems. That is, the secure data
parser of the present invention may provide for the ability to
operate a government system at different levels of classified
information (e.g., unclassified, classified, secret, top secret)
using a single network. If desired, more networks may be
used (e.g., a separate network for top secret), but the present
invention allows for substantially fewer than current arrange-
ment in which a separate network is used for each level of
classification.

It will be understood that any combination of the above
described applications of the secure data parser of the present
invention may be used. For example, the group key applica-
tion can be used together with the data in motion security
application (i.e., whereby data that is communicated over a
network can only be accessed by a member of the respective
group and where, while the data is in motion, it is split among
multiple paths (or sent in sequential portions) in accordance
with the present invention).

US 8,745,372 B2

67

The secure data parser of the present invention may be
integrated into any middleware application to enable appli-
cations to securely store data to different database products or
to different devices without modification to either the appli-
cations or the database. Middleware is a general term for any
product that allows two separate and already existing pro-
grams to communicate. For example, in one suitable
approach, middleware having the secure data parser inte-
grated, may be used to allow programs written for a particular
database to communicate with other databases without cus-
tom coding.

The secure data parser of the present invention may be
implemented having any combination of any suitable capa-
bilities, such as those discussed herein. In some embodiments
of the present invention, for example, the secure data parser
may be implemented having only certain capabilities whereas
other capabilities may be obtained through the use of external
software, hardware, or both interfaced either directly or indi-
rectly with the secure data parser.

FIG. 30, for example, shows an illustrative implementation
of the secure data parser as secure data parser 3000. Secure
data parser 3000 may be implemented with very few built-in
capabilities. As illustrated, secure data parser 3000 may
include built-in capabilities for parsing and splitting data into
portions (also referred to herein as shares) of data using
module 3002 in accordance with the present invention.
Secure data parser 3000 may also include built in capabilities
for performing redundancy in order to be able to implement,
for example, the m of n feature described above (i.e., recre-
ating the original data using fewer than all shares of parsed
and split data) using module 3004. Secure data parser 3000
may also include share distribution capabilities using module
3006 for placing the shares of data into buffers from which
they are sent for communication to a remote location, for
storage, etc. in accordance with the present invention. It will
be understood that any other suitable capabilities may be built
into secure data parser 3000.

Assembled data buffer 3008 may be any suitable memory
used to store the original data (although not necessarily in its
original form) that will be parsed and split by secure data
parser 3000. In a splitting operation, assembled data buffer
3008 provides input to secure data parser 3008. In a restore
operation, assembled data buffer 3008 may be used to store
the output of secure data parser 3000.

Split shares buffers 3010 may be one or more memory
modules that may be used to store the multiple shares of data
that resulted from the parsing and splitting of original data. In
a splitting operation, split shares buffers 3010 hold the output
of the secure data parser. In a restore operation, split shares
buffers hold the input to secure data parser 3000.

It will be understood that any other suitable arrangement of
capabilities may be built-in for secure data parser 3000. Any
additional features may be built-in and any of the features
illustrated may be removed, made more robust, made less
robust, or may otherwise be modified in any suitable way.
Buffers 3008 and 3010 are likewise merely illustrative and
may be modified, removed, or added to in any suitable way.

Any suitable modules implemented in software, hardware
or both may be called by or may call to secure data parser
3000. If desired, even capabilities that are built into secure
data parser 3000 may be replaced by one or more external
modules. As illustrated, some external modules include ran-
dom number generator 3012, cipher feedback key generator
3014, hash algorithm 3016, any one or more types of encryp-
tion 3018, and key management 3020. It will be understood

20

25

30

35

40

45

50

55

60

65

68

that these are merely illustrative external modules. Any other
suitable modules may be used in addition to or in place of
those illustrated.

Cipher feedback key generator 3014 may, externally to
secure data parser 3000, generate for each secure data parser
operation, a unique key, or random number (using, for
example, random number generator 3012), to be used as a
seed value for an operation that extends an original session
key size (e.g., a value of 128, 256, 512, or 1024 bits) into a
value equal to the length of the data to be parsed and split. Any
suitable algorithm may be used for the cipher feedback key
generation, including, for example, the AES cipher feedback
key generation algorithm.

In order to facilitate integration of secure data parser 3000
and its external modules (i.e., secure data parser layer 3026)
into an application layer 3024 (e.g., email application, data-
base application, etc.), a wrapping layer that may make use of,
for example, API function calls may be used. Any other
suitable arrangement for facilitating integration of secure
data parser layer 3026 into application layer 3024 may be
used.

FIG. 31 illustratively shows how the arrangement of FIG.
30 may be used when a write (e.g., to a storage device), insert
(e.g., in a database field), or transmit (e.g., across a network)
command is issued in application layer 3024. At step 3100
data to be secured is identified and a call is made to the secure
data parser. The call is passed through wrapper layer 3022
where at step 3102, wrapper layer 3022 streams the input data
identified at step 3100 into assembled data buffer 3008. Also
at step 3102, any suitable share information, filenames, any
other suitable information, or any combination thereof may
be stored (e.g., as information 3106 at wrapper layer 3022).
Secure data processor 3000 then parses and splits the data it
takes as input from assembled data bufter 3008 in accordance
with the present invention. It outputs the data shares into split
shares buffers 3010. Atstep 3104, wrapper layer 3022 obtains
from stored information 3106 any suitable share information
(i.e., stored by wrapper 3022 at step 3102) and share
location(s) (e.g., from one or more configuration files). Wrap-
per layer 3022 then writes the output shares (obtained from
split shares buffers 3010) appropriately (e.g., writtento one or
more storage devices, communicated onto a network, etc.).

FIG. 32 illustratively shows how the arrangement of FIG.
30 may be used when a read (e.g., from a storage device),
select (e.g., from a database field), or receive (e.g., from a
network) occurs. At step 3200, data to be restored is identified
and a call to secure data parser 3000 is made from application
layer 3024. At step 3202, from wrapper layer 3022, any suit-
able share information is obtained and share location is deter-
mined. Wrapper layer 3022 loads the portions of data identi-
fied at step 3200 into split shares buffers 3010. Secure data
parser 3000 then processes these shares in accordance with
the present invention (e.g., if only three of four shares are
available, then the redundancy capabilities of secure data
parser 3000 may be used to restore the original data using
only the three shares). The restored data is then stored in
assembled data buffer 3008. At step 3204, application layer
3022 converts the data stored in assembled data bufter 3008
into its original data format (if necessary) and provides the
original data in its original format to application layer 3024.

It will be understood that the parsing and splitting of origi-
nal data illustrated in FIG. 31 and the restoring of portions of
data into original data illustrated in FIG. 32 is merely illus-
trative. Any other suitable processes, components, or both
may be used in addition to or in place of those illustrated.

FIG. 33 is a block diagram of an illustrative process flow
for parsing and splitting original data into two or more por-

US 8,745,372 B2

69

tions of data in accordance with one embodiment of the
present invention. As illustrated, the original data desired to
be parsed and split is plain text 3306 (i.e., the word “SUM-
MIT” is used as an example). It will be understood that any
other type of data may be parsed and split in accordance with
the present invention. A session key 3300 is generated. If the
length of session key 3300 is not compatible with the length
of original data 3306, then cipher feedback session key 3304
may be generated.

In one suitable approach, original data 3306 may be
encrypted prior to parsing, splitting, or both. For example, as
FIG. 33 illustrates, original data 3306 may be XORed with
any suitable value (e.g., with cipher feedback session key
3304, or with any other suitable value). It will be understood
that any other suitable encryption technique may be used in
place of or in addition to the XOR technique illustrate. It will
further be understood that although FIG. 33 is illustrated in
terms of byte by byte operations, the operation may take place
at the bit level or at any other suitable level. It will further be
understood that, if desired, there need not be any encryption
whatsoever of original data 3306.

The resultant encrypted data (or original data if no encryp-
tion took place) is then hashed to determine how to split the
encrypted (or original) data among the output buckets (e.g., of
which there are four in the illustrated example). In the illus-
trated example, the hashing takes place by bytes and is a
function of cipher feedback session key 3304. It will be
understood that this is merely illustrative. The hashing may be
performed at the bit level, if desired. The hashing may be a
function of any other suitable value besides cipher feedback
session key 3304. In another suitable approach, hashing need
not be used. Rather, any other suitable technique for splitting
data may be employed.

FIG. 34 is a block diagram of an illustrative process flow
for restoring original data 3306 from two or more parsed and
split portions of original data 3306 in accordance with one
embodiment of the present invention. The process involves
hashing the portions in reverse (i.e., to the process of F1G. 33)
as a function of cipher feedback session key 3304 to restore
the encrypted original data (or original data if there was no
encryption prior to the parsing and splitting). The encryption
key may then be used to restore the original data (i.e., in the
illustrated example, cipher feedback session key 3304 is used
to decrypt the XOR encryption by XORing it with the
encrypted data). This the restores original data 3306.

FIG. 35 shows how bit-splitting may be implemented in the
example of FIGS. 33 and 34. A hash may be used (e.g., as a
function of the cipher feedback session key, as a function of
any other suitable value) to determine a bit value at which to
split each byte of data. It will be understood that this is merely
one illustrative way in which to implement splitting at the bit
level. Any other suitable technique may be used.

It will be understood that any reference to hash function-
ality made herein may be made with respect to any suitable
hash algorithm. These include for example, MDS5 and SHA-1.
Different hash algorithms may be used at different times and
by different components of the present invention.

After a split point has been determined in accordance with
the above illustrative procedure or through any other proce-
dure or algorithm, a determination may be made with regard
to which data portions to append each of the left and right
segments. Any suitable algorithm may be used for making
this determination. For example, in one suitable approach, a
table of all possible distributions (e.g., in the form of pairings
of destinations for the left segment and for the right segment)
may be created, whereby a destination share value for each of
the left and right segment may be determined by using any

20

25

30

35

40

45

50

55

60

65

70

suitable hash function on corresponding data in the session
key, cipher feedback session key, or any other suitable ran-
dom or pseudo-random value, which may be generated and
extended to the size of the original data. For example, a hash
function of a corresponding byte in the random or pseudo-
random value may be made. The output of the hash function
is used to determine which pairing of destinations (i.e., one
for the left segment and one for the right segment) to select
from the table of all the destination combinations. Based on
this result, each segment of the split data unit is appended to
the respective two shares indicated by the table value selected
as a result of the hash function.

Redundancy information may be appended to the data
portions in accordance with the present invention to allow for
the restoration of the original data using fewer than all the
data portions. For example, if two out of four portions are
desired to be sufficient for restoration of data, then additional
data from the shares may be accordingly appended to each
share in, for example, a round-robin manner (e.g., where the
size of the original data is 4 MB, then share 1 gets its own
shares as well as those of shares 2 and 3; share 2 gets its own
share as well as those of shares 3 and 4; share 3 gets its own
share as well as those of shares 4 and 1; and share 4 gets its
own shares as well as those of shares 1 and 2). Any such
suitable redundancy may be used in accordance with the
present invention.

It will be understood that any other suitable parsing and
splitting approach may be used to generate portions of data
from an original data set in accordance with the present inven-
tion. For example, parsing and splitting may be randomly or
pseudo-randomly processed on a bit by bit basis. A random or
pseudo-random value may be used (e.g., session key, cipher
feedback session key, etc.) whereby for each bitin the original
data, the result of a hash function on corresponding data in the
random or pseudo-random value may indicate to which share
to append the respective bit. In one suitable approach the
random or pseudo-random value may be generated as, or
extended to, 8 times the size of the original data so that the
hash function may be performed on a corresponding byte of
the random or pseudo-random value with respect to each bit
of the original data. Any other suitable algorithm for parsing
and splitting data on a bit by bit level may be used in accor-
dance with the present invention. It will further be appreciated
that redundancy data may be appended to the data shares such
as, for example, in the manner described immediately above
in accordance with the present invention.

In one suitable approach, parsing and splitting need not be
random or pseudo-random. Rather, any suitable deterministic
algorithm for parsing and splitting data may be used. For
example, breaking up the original data into sequential shares
may be employed as a parsing and splitting algorithm.
Another example is to parse and split the original data bit by
bit, appending each respective bit to the data shares sequen-
tially in a round-robin manner. It will further be appreciated
that redundancy data may be appended to the data shares such
as, for example, in the manner described above in accordance
with the present invention.

In one embodiment of the present invention, after the
secure data parser generates a number of portions of original
data, in order to restore the original data, certain one or more
of the generated portions may be mandatory. For example, if
one of the portions is used as an authentication share (e.g.,
saved on a physical token device), and if the fault tolerance
feature of the secure data parser is being used (i.e., where
fewer than all portions are necessary to restore the original
data), then even though the secure data parser may have
access to a sufficient number of portions of the original data in

US 8,745,372 B2

71

order to restore the original data, it may require the authenti-
cation share stored on the physical token device before it
restores the original data. It will be understood that any num-
ber and types of particular shares may be required based on,
for example, application, type of data, user, any other suitable
factors, or any combination thereof.

In one suitable approach, the secure data parser or some
external component to the secure data parser may encrypt one
or more portions of the original data. The encrypted portions
may be required to be provided and decrypted in order to
restore the original data. The different encrypted portions
may be encrypted with different encryption keys. For
example, this feature may be used to implement a more secure
“two man rule” whereby a first user would need to have a
particular share encrypted using a first encryption and a sec-
ond user would need to have a particular share encrypted
using a second encryption key. In order to access the original
data, both users would need to have their respective encryp-
tion keys and provide their respective portions of the original
data. In one suitable approach, a public key may be used to
encrypt one or more data portions that may be a mandatory
share required to restore the original data. A private key may
then be used to decrypt the share in order to be used to restore
to the original data.

Any such suitable paradigm may be used that makes use of
mandatory shares where fewer than all shares are needed to
restore original data.

In one suitable embodiment of the present invention, dis-
tribution of data into a finite number of shares of data may be
processed randomly or pseudo-randomly such that from a
statistical perspective, the probability that any particular
share of data receives a particular unit of data is equal to the
probability that any one of the remaining shares will receive
the unit of data. As a result, each share of data will have an
approximately equal amount of data bits.

According to another embodiment of the present invention,
each of the finite number of shares of data need not have an
equal probability of receiving units of data from the parsing
and splitting of the original data. Rather certain one or more
shares may have a higher or lower probability than the
remaining shares. As a result, certain shares may be larger or
smaller in terms of bit size relative to other shares. For
example, in a two-share scenario, one share may have a 1%
probability of receiving a unit of data whereas the second
share has a 99% probability. It should follow, therefore that
once the data units have been distributed by the secure data
parser among the two share, the first share should have
approximately 1% of'the data and the second share 99%. Any
suitable probabilities may be used in accordance with the
present invention.

It will be understood that the secure data parser may be
programmed to distribute data to shares according to an exact
(or near exact) percentage as well. For example, the secure
data parser may be programmed to distribute 80% of data to
a first share and the remaining 20% of data to a second share.

According to another embodiment of the present invention,
the secure data parser may generate data shares, one or more
of which have predefined sizes. For example, the secure data
parser may split original data into data portions where one of
the portions is exactly 256 bits. In one suitable approach, if it
is not possible to generate a data portion having the requisite
size, then the secure data parser may pad the portion to make
it the correct size. Any suitable size may be used.

In one suitable approach, the size of a data portion may be
the size of an encryption key, a splitting key, any other suit-
able key, or any other suitable data element.

20

25

30

35

40

45

50

55

60

65

72

As previously discussed, the secure data parser may use
keys in the parsing and splitting of data. For purposes of
clarity and brevity, these keys shall be referred to herein as
“splitting keys.” For example, the Session Master Key, pre-
viously introduced, is one type of splitting key. Also, as pre-
viously discussed, splitting keys may be secured within
shares of data generated by the secure data parser. Any suit-
able algorithms for securing splitting keys may be used to
secure them among the shares of data. For example, the
Shamir algorithm may be used to secure the splitting keys
whereby information that may be used to reconstruct a split-
ting key is generated and appended to the shares of data. Any
other such suitable algorithm may be used in accordance with
the present invention.

Similarly, any suitable encryption keys may be secured
within one or more shares of data according to any suitable
algorithm such as the Shamir algoritm. For example,
encryption keys used to encrypt a data set prior to parsing and
splitting, encryption keys used to encrypt a data portions after
parsing and splitting, or both may be secured using, for
example, the Shamir algorithm or any other suitable algo-
rithm.

According to one embodiment of the present invention, an
All or Nothing Transform (AoNT), such as a Full Package
Transform, may be used to further secure data by transform-
ing splitting keys, encryption keys, any other suitable data
elements, or any combination thereof. For example, an
encryption key used to encrypt a data set prior to parsing and
splitting in accordance with the present invention may be
transformed by an AoNT algorithm. The transformed encryp-
tion key may then be distributed among the data shares
according to, for example, the Shamir algorithm or any other
suitable algorithm. In order to reconstruct the encryption key,
the encrypted data set must be restored (e.g., not necessarily
using all the data shares if redundancy was used in accordance
with the present invention) in order to access the necessary
information regarding the transformation in accordance with
AoNTs as is well known by one skilled in the art. When the
original encryption key is retrieved, it may be used to decrypt
the encrypted data set to retrieve the original data set. It will
be understood that the fault tolerance features of the present
invention may be used in conjunction with the AoNT feature.
Namely, redundancy data may be included in the data por-
tions such that fewer than all data portions are necessary to
restore the encrypted data set.

It will be understood that the AoNT may be applied to
encryption keys used to encrypt the data portions following
parsing and splitting either in place of or in addition to the
encryption and AoNT of the respective encryption key corre-
sponding to the data set prior to parsing and splitting. Like-
wise, AoNT may be applied to splitting keys.

In one embodiment of the present invention, encryption
keys, splitting keys, or both as used in accordance with the
present invention may be further encrypted using, for
example, a workgroup key in order to provide an extra level of
security to a secured data set.

In one embodiment of the present invention, an audit mod-
ule may be provided that tracks whenever the secure data
parser is invoked to split data.

FIG. 36 illustrates possible options 3600 for using the
components of the secure data parser in accordance with the
invention. Each combination of options is outlined below and
labeled with the appropriate step numbers from FIG. 36. The
secure data parser may be modular in nature, allowing for any
known algorithm to be used within each of the function
blocks shown in FIG. 36. For example, other key splitting
(e.g., secret sharing) algorithms such as Blakely may be used

US 8,745,372 B2

73

in place of Shamir, or the AES encryption could be replaced
by other known encryption algorithms such as Triple DES.
Thelabels shown in the example of FIG. 36 merely depict one
possible combination of algorithms for use in one embodi-
ment of the invention. It should be understood that any suit-
able algorithm or combination of algorithms may be used in
place of the labeled algorithms.

1) 3610, 3612, 3614, 3615, 3616, 3617, 3618, 3619

Using previously encrypted data at step 3610, the data may
be eventually split into a predefined number of shares. If the
split algorithm requires a key, a split encryption key may be
generated at step 3612 using a cryptographically secure
pseudo-random number generator. The split encryption key
may optionally be transformed using an All or Nothing Trans-
form (AoNT) into a transform split key at step 3614 before
being key split to the predefined number of shares with fault
tolerance at step 3615. The data may then be split into the
predefined number of shares at step 3616. A fault tolerant
scheme may be used at step 3617 to allow for regeneration of
the data from less than the total number of shares. Once the
shares are created, authentication/integrity information may
be embedded into the shares at step 3618. Each share may be
optionally post-encrypted at step 3619.

2) 3111, 3612, 3614, 3615, 3616, 3617, 3618, 3619

In some embodiments, the input data may be encrypted
using an encryption key provided by a user or an external
system. The external key is provided at step 3611. For
example, the key may be provided from an external key store.
If the split algorithm requires a key, the split encryption key
may be generated using a cryptographically secure pseudo-
random number generator at step 3612. The split key may
optionally be transformed using an All or Nothing Transform
(AoNT) into a transform split encryption key at step 3614
before being key split to the predefined number of shares with
fault tolerance at step 3615. The data is then split to a pre-
defined number of shares at step 3616. A faulttolerant scheme
may be used at step 3617 to allow for regeneration of the data
from less than the total number of shares. Once the shares are
created, authentication/integrity information may be embed-
ded into the shares at step 3618. Each share may be optionally
post-encrypted at step 3619.

3)3612,3613,3614, 3615,3612,3614, 3615, 3616, 3617,
3618, 3619

Insome embodiments, an encryption key may be generated
using a cryptographically secure pseudo-random number
generator at step 3612 to transform the data. Encryption of the
data using the generated encryption key may occur at step
3613. The encryption key may optionally be transformed
using an All or Nothing Transform (AoNT) into a transform
encryption key at step 3614. The transform encryption key
and/or generated encryption key may then be split into the
predefined number of shares with fault tolerance at step 3615.
If the split algorithm requires a key, generation of the split
encryption key using a cryptographically secure pseudo-ran-
dom number generator may occur at step 3612. The split key
may optionally be transformed using an All or Nothing Trans-
form (AoNT) into a transform split encryption key at step
3614 before being key split to the predefined number of
shares with fault tolerance at step 3615. The data may then be
split into a predefined number of shares at step 3616. A fault
tolerant scheme may be used at step 3617 to allow for regen-
eration of the data from less than the total number of shares.
Once the shares are created, authentication/integrity informa-
tion will be embedded into the shares at step 3618. Each share
may then be optionally post-encrypted at step 3619.

20

25

30

35

40

45

50

55

60

65

74

4)3612,3614, 3615, 3616, 3617, 3618, 3619

In some embodiments, the data may be split into a pre-
defined number of shares. Ifthe split algorithm requires a key,
generation of the split encryption key using a cryptographi-
cally secure pseudo-random number generator may occur at
step 3612. The split key may optionally be transformed using
an All or Nothing Transform (AoNT) into a transformed split
key at step 3614 before being key split into the predefined
number of shares with fault tolerance at step 3615. The data
may then be split at step 3616. A fault tolerant scheme may be
used at step 3617 to allow for regeneration of the data from
less than the total number of shares. Once the shares are
created, authentication/integrity information may be embed-
ded into the shares at step 3618. Each share may be optionally
post-encrypted at step 3619.

Although the above four combinations of options are pref-
erably used in some embodiments of the invention, any other
suitable combinations of features, steps, or options may be
used with the secure data parser in other embodiments.

The secure data parser may offer flexible data protection by
facilitating physical separation. Data may be first encrypted,
then split into shares with “m of n” fault tolerance. This
allows for regeneration of the original information when less
than the total number of shares is available. For example,
some shares may be lost or corrupted in transmission. The lost
or corrupted shares may be recreated from fault tolerance or
integrity information appended to the shares, as discussed in
more detail below.

In order to create the shares, a number of keys are option-
ally utilized by the secure data parser. These keys may include
one or more of the following:

Pre-encryption key: When pre-encryption of the shares is
selected, an external key may be passed to the secure data
parser. This key may be generated and stored externally in a
key store (or other location) and may be used to optionally
encrypt data prior to data splitting.

Split encryption key: This key may be generated internally
and used by the secure data parser to encrypt the data prior to
splitting. This key may then be stored securely within the
shares using a key split algorithm.

Split session key: This key is not used with an encryption
algorithm; rather, it may be used to key the data partitioning
algorithms when random splitting is selected. When a random
split is used, a split session key may be generated internally
and used by the secure data parser to partition the data into
shares. This key may be stored securely within the shares
using a key splitting algorithm.

Post encryption key: When post encryption of the shares is
selected, an external key may be passed to the secure data
parser and used to post encrypt the individual shares. This key
may be generated and stored externally in a key store or other
suitable location.

In some embodiments, when data is secured using the
secure data parser in this way, the information may only be
reassembled provided that all of the required shares and exter-
nal encryption keys are present.

FIG. 37 shows illustrative overview process 3700 for using
the secure data parser of the present invention in some
embodiments. As described above, two well-suited functions
for secure data parser 3706 may include encryption 3702 and
backup 3704. As such, secure data parser 3706 may be inte-
grated with a RAID or backup system or a hardware or soft-
ware encryption engine in some embodiments.

The primary key processes associated with secure data
parser 3706 may include one or more of pre-encryption pro-
cess 3708, encrypt/transform process 3710, key secure pro-
cess 3712, parse/distribute process 3714, fault tolerance pro-

US 8,745,372 B2

75

cess 3716, share authentication process 3716, and post-
encryption process 3720. These processes may be executed in
several suitable orders or combinations, as detailed in FIG.
36. The combination and order of processes used may depend
on the particular application or use, the level of security
desired, whether optional pre-encryption, post-encryption, or
both, are desired, the redundancy desired, the capabilities or
performance of an underlying or integrated system, or any
other suitable factor or combination of factors.

The output of illustrative process 3700 may be two or more
shares 3722. As described above, data may be distributed to
each ofthese shares randomly (or pseudo-randomly) in some
embodiments. In other embodiments, a deterministic algo-
rithm (or some suitable combination of random, pseudo-
random, and deterministic algorithms) may be used.

In addition to the individual protection of information
assets, there is sometimes a requirement to share information
among different groups of users or communities of interest. It
may then be necessary to either control access to the indi-
vidual shares within that group of users or to share credentials
among those users that would only allow members of the
group to reassemble the shares. To this end, a workgroup key
may be deployed to group members in some embodiments of
the invention. The workgroup key should be protected and
kept confidential, as compromise of the workgroup key may
potentially allow those outside the group to access informa-
tion. Some systems and methods for workgroup key deploy-
ment and protection are discussed below.

The workgroup key concept allows for enhanced protec-
tion of information assets by encrypting key information
stored within the shares. Once this operation is performed,
even if all required shares and external keys are discovered, an
attacker has no hope of recreating the information without
access to the workgroup key.

FIG. 38 shows illustrative block diagram 3800 for storing
key and data components within the shares. In the example of
diagram 3800, the optional pre-encrypt and post-encrypt
steps are omitted, although these steps may be included in
other embodiments.

The simplified process to split the data includes encrypting
the data using encryption key 3804 at encryption stage 3802.
Portions of encryption key 3804 may then be split and stored
within shares 3810 in accordance with the present invention.
Portions of split encryption key 3806 may also be stored
within shares 3810. Using the split encryption key, data 3808
is then split and stored in shares 3810.

In order to restore the data, split encryption key 3806 may
be retrieved and restored in accordance with the present
invention. The split operation may then be reversed to restore
the ciphertext. Encryption key 3804 may also be retrieved and
restored, and the ciphertext may then be decrypted using the
encryption key.

When a workgroup key is utilized, the above process may
be changed slightly to protect the encryption key with the
workgroup key. The encryption key may then be encrypted
with the workgroup key prior to being stored within the
shares. The modified steps are shown in illustrative block
diagram 3900 of FIG. 39.

The simplified process to split the data using a workgroup
key includes first encrypting the data using the encryption key
atstage 3902. The encryption key may then be encrypted with
the workgroup key at stage 3904. The encryption key
encrypted with the workgroup key may then be split into
portions and stored with shares 3912. Split key 3908 may also
be split and stored in shares 3912. Finally, portions of data
3910 are split and stored in shares 3912 using split key 3908.

20

25

30

35

40

45

50

55

60

65

76

In order to restore the data, the split key may be retrieved
and restored in accordance with the present invention. The
split operation may then be reversed to restore the ciphertext
in accordance with the present invention. The encryption key
(which was encrypted with the workgroup key) may be
retrieved and restored. The encryption key may then be
decrypted using the workgroup key. Finally, the ciphertext
may be decrypted using the encryption key.

There are several secure methods for deploying and pro-
tecting workgroup keys. The selection of which method to use
for a particular application depends on a number of factors.
These factors may include security level required, cost, con-
venience, and the number of users in the workgroup. Some
commonly used techniques used in some embodiments are
provided below:

Hardware-Based Key Storage

Hardware-based solutions generally provide the strongest
guarantees for the security of encryption/decryption keys in
an encryption system. Examples of hardware-based storage
solutions include tamper-resistant key token devices which
store keys in a portable device (e.g., smartcard/dongle), or
non-portable key storage peripherals. These devices are
designed to prevent easy duplication of key material by unau-
thorized parties. Keys may be generated by a trusted authority
and distributed to users, or generated within the hardware.
Additionally, many key storage systems provide for multi-
factor authentication, where use of the keys requires access
both a physical object (token) and a passphrase or biometric.

Software-Based Key Storage

While dedicated hardware-based storage may be desirable
for high-security deployments or applications, other deploy-
ments may elect to store keys directly on local hardware (e.g.,
disks, RAM or non-volatile RAM stores such as USB drives).
This provides a lower level of protection against insider
attacks, or in instances where an attacker is able to directly
access the encryption machine.

To secure keys on disk, software-based key management
often protects keys by storing them in encrypted form under a
key derived from a combination of other authentication met-
rics, including: passwords and passphrases, presence of other
keys (e.g., from a hardware-based solution), biometrics, or
any suitable combination of the foregoing. The level of secu-
rity provided by such techniques may range from the rela-
tively weak key protection mechanisms provided by some
operating systems (e.g., MS Windows and Linux), to more
robust solutions implemented using multi-factor authentica-
tion.

The secure data parser of the present invention may be
advantageously used in a number of applications and tech-
nologies. For example, email system, RAID systems, video
broadcasting systems, database systems, tape backup sys-
tems, or any other suitable system may have the secure data
parser integrated at any suitable level. As previously dis-
cussed, it will be understand that the secure data parser may
also be integrated for protection and fault tolerance of any
type of data in motion through any transport medium, includ-
ing, for example, wired, wireless, or physical transport medi-
ums. As one example, voice over Internet protocol (VoIP)
applications may make use of the secure data parser of the
present invention to solve problems relating to echoes and
delays that are commonly found in VoIP. The need for net-
work retry on dropped packets may be eliminated by using
fault tolerance, which guarantees packet delivery even with
the loss of a predetermined number of shares. Packets of data
(e.g., network packets) may also be efficiently split and
restored “on-the-fly” with minimal delay and buffering,
resulting in a comprehensive solution for various types of data

US 8,745,372 B2

77

in motion. The secure data parser may act on network data
packets, network voice packets, file system data blocks, or
any other suitable unit of information. In addition to being
integrated with a VoIP application, the secure data parser may
be integrated with a file-sharing application (e.g., a peer-to-
peer file-sharing application), a video broadcasting applica-
tion, an electronic voting or polling application (which may
implement an electronic voting protocol and blind signatures,
such as the Sensus protocol), an email application, or any
other network application that may require or desire secure
communication.

In some embodiments, support for network data in motion
may be provided by the secure data parser of the present
invention in two distinct phases—a header generation phase
and a data partitioning phase. Simplified header generation
process 4000 and simplified data partitioning process 4010
are shown in FIGS. 40A and 40B, respectively. One or both of
these processes may be performed on network packets, file
system blocks, or any other suitable information.

In some embodiments, header generation process 4000
may be performed one time at the initiation of a network
packet stream. At step 4002, a random (or pseudo-random)
split encryption key, K, may be generated. The split encryp-
tion key, K, may then be optionally encrypted (e.g., using the
workgroup key described above) at AES key wrap step 4004.
Although an AES key wrap may be used in some embodi-
ments, any suitable key encryption or key wrap algorithm
may be used in other embodiments. AES key wrap step 4004
may operate on the entire split encryption key, K, or the split
encryption key may be parsed into several blocks (e.g., 64-bit
blocks). AES key wrap step 4004 may then operate on blocks
of the split encryption key, if desired.

Atstep 4006, a secret sharing algorithm (e.g., Shamir) may
be used to split the split encryption key, K, into key shares.
Each key share may then be embedded into one of the output
shares (e.g., in the share headers). Finally, a share integrity
block and (optionally) a post-authentication tag (e.g., MAC)
may be appended to the header block of each share. Each
header block may be designed to fit within a single data
packet.

After header generation is complete (e.g., using simplified
header generation process 4000), the secure data parser may
enter the data partitioning phase using simplified data split-
ting process 4010. Each incoming data packet or data block in
the stream is encrypted using the split encryption key, K, at
step 4012. At step 4014, share integrity information (e.g., a
hash H) may be computed on the resulting ciphertext from
step 4012. For example, a SHA-256 hash may be computed.
At step 4106, the data packet or data block may then be
partitioned into two or more data shares using one of the data
splitting algorithms described above in accordance with the
present invention. In some embodiments, the data packet or
data block may be split so that each data share contains a
substantially random distribution of the encrypted data
packet or data block. The integrity information (e.g., hash H)
may then be appended to each data share. An optional post-
authentication tag (e.g., MAC) may also be computed and
appended to each data share in some embodiments.

Each data share may include metadata, which may be
necessary to permit correct reconstruction of the data blocks
ordata packets. This information may be included in the share
header. The metadata may include such information as cryp-
tographic key shares, key identities, share nonces, signatures/
MAC values, and integrity blocks. In order to maximize band-
width efficiency, the metadata may be stored in a compact
binary format.

20

25

30

35

40

45

50

55

60

65

78

For example, in some embodiments, the share header
includes a cleartext header chunk, which is not encrypted and
may include such elements as the Shamir key share, per-
session nonce, per-share nonce, key identifiers (e.g., a work-
group key identifier and a post-authentication key identifier).
The share header may also include an encrypted header
chunk, which is encrypted with the split encryption key. An
integrity header chunk, which may include integrity checks
for any number of the previous blocks (e.g., the previous two
blocks) may also be included in the header. Any other suitable
values or information may also be included in the share
header.

As shown in illustrative share format 4100 of FIG. 41,
header block 4102 may be associated with two or more output
blocks 4104. Each header block, such as header block 4102,
may be designed to fit within a single network data packet. In
some embodiments, after header block 4102 is transmitted
from a first location to a second location, the output blocks
may then be transmitted. Alternatively, header block 4102
and output blocks 4104 may be transmitted at the same time
in parallel. The transmission may occur over one or more
similar or dissimilar communications paths.

Each output block may include data portion 4106 and
integrity/authenticity portion 4108. As described above, each
data share may be secured using a share integrity portion
including share integrity information (e.g., a SHA-256 hash)
of'the encrypted, pre-partitioned data. To verity the integrity
of the outputs blocks at recovery time, the secure data parser
may compare the share integrity blocks of each share and then
invert the split algorithm. The hash of the recovered data may
then be verified against the share hash.

As previously mentioned, in some embodiments of the
present invention, the secure date parser may be used in
conjunction with a tape backup system. For example, an
individual tape may be used as a node (i.e., portion/share) in
accordance with the present invention. Any other suitable
arrangement may be used. For example, a tape library or
subsystem, which is made up of two or more tapes, may be
treated as a single node.

Redundancy may also be used with the tapes in accordance
with the present invention. For example, if a data set is appor-
tioned among four tapes (i.e., portions/shares), then two of the
four tapes may be necessary in order to restore the original
data. It will be understood that any suitable number of nodes
(i.e., less than the total number of nodes) may be required to
restore the original data in accordance with the redundancy
features of the present invention. This substantially increases
the probability for restoration when one or more tapes expire.

Each tape may also be digitally protected with a SHA-256,
HMAC hash value, any other suitable value, or any combina-
tion thereof to insure against tampering. Should any data on
the tape or the hash value change, that tape would not be a
candidate for restoration and any minimum required number
of tapes of the remaining tapes would be used to restore the
data.

In conventional tape backup systems, when a user calls for
data to be written to or read from a tape, the tape management
system (TMS) presents a number that corresponds to a physi-
cal tape mount. This tape mount points to a physical drive
where the data will be mounted. The tape is loaded either by
a human tape operator or by a tape robot in a tape silo.

Under the present invention, the physical tape mount may
be considered a logical mount point that points to a number of
physical tapes. This not only increases the data capacity but
also improves the performance because of the parallelism.

For increased performance the tape nodes may be or may
include a RAID array of disks used for storing tape images.

US 8,745,372 B2

79

This allows for high-speed restoration because the data may
always be available in the protected RAID.

In any of the foregoing embodiments, the data to be secured
may be distributed into a plurality of shares using determin-
istic, probabilistic, or both deterministic and probabilistic
data distribution techniques. In order to prevent an attacker
from beginning a crypto attack on any cipher block, the bits
from cipher blocks may be deterministically distributed to the
shares. For example, the distribution may be performed using
the BitSegment routine, or the BlockSegment routine may be
modified to allow for distribution of portions of blocks to
multiple shares. This strategy may defend against an attacker
who has accumulated less than “M” shares.

In some embodiments, a keyed secret sharing routine may
be employed using keyed information dispersal (e.g., through
the use of a keyed information dispersal algorithm or “IDA”).
The key for the keyed IDA may also be protected by one or
more external workgroup keys, one or more shared keys, or
any combination of workgroup keys and shared keys. In this
way, a multi-factor secret sharing scheme may be employed.
To reconstruct the data, at least “M” shares plus the work-
group key(s) (and/or shared key(s)) may be required in some
embodiments. The IDA (or the key for the IDA) may also be
driven into the encryption process. For example, the trans-
form may be driven into the clear text (e.g., during the pre-
processing layer before encrypting) and may further protect
the clear text before it is encrypted.

For example, in some embodiments, keyed information
dispersal is used to distribute unique portions of data from a
data set into two or more shares. The keyed information
dispersal may use a session key to first encrypt the data set, to
distribute unique portions of encrypted data from the data set
into two or more encrypted data set shares, or both encrypt the
data set and distribute unique portions of encrypted data from
the data set into the two or more encrypted data set shares. For
example, to distribute unique portions of the data set or
encrypted data set, secret sharing (or the methods described
above, such as BitSegment or BlockSegment) may be used.
The session key may then optionally be transformed (for
example, using a full package transform or AoNT) and shared
using, for example, secret sharing (or the keyed information
dispersal and session key).

In some embodiments, the session key may be encrypted
using a shared key (e.g., a workgroup key) before unique
portions of the key are distributed or shared into two or more
session key shares. Two or more user shares may then be
formed by combining at least one encrypted data set share and
atleast one session key share. In forming a user share, in some
embodiments, the at least one session key share may be inter-
leaved into an encrypted data set share. In other embodi-
ments, the at least one session key share may be inserted into
an encrypted data set share at a location based at least in part
on the shared workgroup key. For example, keyed informa-
tion dispersal may be used to distribute each session key share
into a unique encrypted data set share to form a user share.
Interleaving or inserting a session key share into an encrypted
data set share at a location based at least in part on the shared
workgroup may provide increased security in the face of
cryptographic attacks. In other embodiments, one or more
session key shares may be appended to the beginning or end
of an encrypted data set share to form a user share. The
collection of user shares may then be stored separately on at
least one data depository. The data depository or depositories
may be located in the same physical location (for example, on
the same magnetic or tape storage device) or geographically
separated (for example, on physically separated servers in
different geographic locations). To reconstruct the original

20

25

30

35

40

45

50

55

60

65

80

data set, an authorized set of user shares and the shared
workgroup key may be required.

Keyed information dispersal may be secure even in the face
of key-retrieval oracles. For example, take a blockcipher E
and a key-retrieval oracle for E that takes a list (X,,Y,), ...,
(X, Y,) of input/output pairs to the blockcipher, and returns
akey K thatis consistent with the input/output examples (e.g.,
Y ,=E(X,) for all i). The oracle may return the distinguished
value L if there is no consistent key. This oracle may model a
cryptanalytic attack that may recover a key from a list of
input/output examples.

Standard blockcipher-based schemes may fail in the pres-
ence of a key-retrieval oracle. For example, CBC encryption
or the CBC MAC may become completely insecure in the
presence of a key-retrieval oracle.

If %% is an IDA scheme and IT¥° is an encryption scheme
given by a mode of operation of some blockcipher E, then
(ITP4, T15°) provides security in the face of a key-retrieval
attack if the two schemes, when combined with an arbitrary
perfect secret-sharing scheme (PSS) as per HK1 or HK2,
achieve the robust computational secret sharing (RCSS) goal,
but in the model in which the adversary has a key-retrieval
oracle.

If there exists an IDA scheme and an encryption
scheme IT#"° such that the pair of schemes provides security
in the face of key-retrieval attacks, then one way to achieve
this pair may be to have a “clever” IDA and a “dumb” encryp-
tion scheme. Another way to achieve this pair of schemes may
be to have a “dumb” IDA and a “clever” encryption scheme.

To illustrate the use of a clever IDA and a dumb encryption
scheme, in some embodiments, the encryption scheme may
be CBC and the IDA may have a “weak privacy” property.
The weak privacy property means, for example, that if the
input to the IDA is arandom sequence of blocks M=M, ... M,
and the adversary obtains shares from a non-authorized col-
lection, then there is some block index i such that it is infea-
sible for the adversary to compute M,. Such a weakly-private
IDA may be built by first applying to Man information-theo-
retic AoNT, such as Stinson’s AoNT, and then applying a
simple IDA such as BlockSegment, or a bit-efficient IDA like
Rabin’s scheme (e.g., Reed-Solomon encoding).

To illustrate the use of a dumb IDA and a clever encryption
scheme, in some embodiments, one may use a CBC mode
with double encryption instead of single encryption. Now any
IDA may be used, even replication. Having the key-retrieval
oracle for the blockcipher would be useless to an adversary, as
the adversary will be denied any singly-enciphered input/
output example.

While a clever IDA has value, it may also be inessential in
some contexts, in the sense that the “smarts” needed to pro-
vide security in the face of a key-retrieval attack could have
been “pushed” elsewhere. For example, in some embodi-
ments, no matter how smart the IDA, and for whatever goal is
trying to be achieved with the IDA in the context of HK1/
HK2, the smarts may be pushed out of the IDA and into the
encryption scheme, being left with a fixed and dumb IDA.

Based on the above, in some embodiments, a “universally
sound” clever IDA IT"”* may be used. For example, an IDA is
provided such that, for all encryption schemes IT7°, the pair
(IT™P4, TI¥") universally provides security in the face of
key-retrieval attacks.

In some embodiments, an encryption scheme is provided
that is RCSS secure in the face of a key-retrieval oracle. The
scheme may be integrated with HK1/HK2, with any IDA, to
achieve security in the face of key-retrieval. Using the new

HIDA

US 8,745,372 B2

81

scheme may be particularly useful, for example, for making
symmetric encryption schemes more secure against key-re-
trieval attacks.

As mentioned above, classical secret-sharing notions are
typically unkeyed. Thus, a secret is broken into shares, or
reconstructed from them, in a way that requires neither the
dealer nor the party reconstructing the secret to hold any kind
of symmetric or asymmetric key. The secure data parser
described herein, however, is optionally keyed. The dealer
may provide a symmetric key that, if used for data sharing,
may be required for data recovery. The secure data parser may
use the symmetric key to disperse or distribute unique por-
tions of the message to be secured into two or more shares.

The shared key may enable multi-factor or two-factor
secret-sharing (2FSS). The adversary may then be required to
navigate through two fundamentally different types of secu-
rity in order to break the security mechanism. For example, to
violate the secret-sharing goals, the adversary (1) may need to
obtain the shares of an authorized set of players, and (2) may
need to obtain a secret key that it should not be able to obtain
(or break the cryptographic mechanism that is keyed by that
key).

In some embodiments, a new set of additional require-
ments is added to the RCSS goal. The additional requirements
may include the “second factor”—key possession. These
additional requirements may be added without diminishing
the original set of requirements. One set of requirements may
relate to the adversary’s inability to break the scheme if it
knows the secret key but does not obtain enough shares (e.g.,
the classical or first factor requirements) while the other set of
requirements may relate to the adversary’s inability to break
the scheme if it does have the secret key but manages to get
hold of all of the shares (e.g., the new or second-factor
requirements).

In some embodiments, there may be two second-factor
requirements: a privacy requirement and an authenticity
requirement. In the privacy requirement, a game may be
involved where a secret key K and a bit b are selected by the
environment. The adversary now supplies a pair of equal-
length messages in the domain of the secret-sharing scheme,
M,"and M, *. The environment computes the shares of M, ” to
get a vector of shares, S, =(S, [1], . .., S, [n]), and it gives the
shares S, (all of them) to the adversary. The adversary may
now choose another pair of messages (M,°, M,') and every-
thing proceeds as before, using the same key K and hidden bit
b. The adversary’s job is to output the bit b' that it believes to
be b. The adversary privacy advantage is one less than twice
the probability that b=b'. This games captures the notion that,
even learning all the shares, the adversary still cannot learn
anything about the shared secret if it lacks the secret key.

In the authenticity requirement, a game may be involved
where the environment chooses a secret key K and uses this in
the subsequent calls to Share and Recover. Share and Recover
may have their syntax modified, in some embodiments, to
reflect the presence of this key. Then the adversary makes
Share requests for whatever messages M, .. ., M it chooses
in the domain of the secret-sharing scheme. In response to
each Share request it gets the corresponding n-vector of
shares, S,, . . ., S,. The adversary’s aim is to forge a new
plaintext; it wins if it outputs a vector of shares S' such that,
when fed to the Recover algorithm, results in something not in
{M,, ..., M,}. This is an “integrity of plaintext™ notion.

There are two approaches to achieve multi-factor secret-
sharing. The first is a generic approach—generic in the sense
of using an underlying (R)CSS scheme in a black-box way.
An authenticated-encryption scheme is used to encrypt the
message that is to be CSS-shared, and then the resulting

20

25

30

35

40

45

50

55

60

65

82

ciphertext may be shared out, for example, using a secret
sharing algorithm, such as Blakely or Shamir.

A potentially more efficient approach is to allow the shared
key to be the workgroup key. Namely, (1) the randomly gen-
erated session key of the (R)CSS scheme may be encrypted
using the shared key, and (2) the encryption scheme applied to
the message (e.g., the file) may be replaced by an authenti-
cated-encryption scheme. This approach may entail only a
minimal degradation in performance.

Although some applications of the secure data parser are
described above, it should be clearly understood that the
present invention may be integrated with any network appli-
cation in order to increase security, fault-tolerance, anonym-
ity, or any suitable combination of the foregoing.

In some embodiments of the present invention, the secure
data parser may be implemented in a secure proxy service to
secure data in motion. As described above, the secure data
parser is a cryptographic library that provides traditional
encryption/authentication services for applications, as well as
an additional security property achieved by separating pro-
tected data (either physically, temporally, or by some other
form of trust). The secure data parser is designed for applica-
tions where the threat of an adversary compromising the
system is real, either by obtaining cryptographic keys, physi-
cal access to a transmission medium, or obtaining any knowl-
edge that would ordinarily defeat the security. The secure
proxy service provides an additional layer of security to pro-
tect from these same threats, and is preferably flexible such
that it can be implemented on a wide range of systems—(e.g.,
enterprise servers, personal computers, any other suitable
system, or any combination thereof) The secure proxy service
is described with respect to FIGS. 42-50 below.

The secure proxy service is used to secure data in motion
between two devices. In particular, the secure proxy service
runs on a first device and provides secure data parser-enabled
communications for applications over a network. These
devices may be any suitable pair of devices included in cryp-
tographic system 100 (FIG. 1). For example the secure proxy
service may be established between user system 105 and
vendor system 120, such as a personal computer and a web
server. In another example, the secure proxy service may be
established between separate user systems 105, such as a
personal computer and a NAS, a personal computer and a
home router, a NAS and a home router, or any suitable com-
bination of user systems 105. The communication between
devices using the secure proxy service resembles that of a
client connecting to a web or e-mail server.

In some embodiments, a client, such user system 105, and
a server, such as vendor system 120, may establish secure
communications using the secure proxy service. In establish-
ing the secure proxy service, the user system 105 and the
vendor system 120 may be retrofit to a suitable configuration
for the secure proxy service. In such embodiments, when the
client connects to the server, the connection is established
between the two secure proxy services. On the server, the
secure proxy service is configured to forward data it receives
to a server application. The server application may then
handle the request and respond through the locally imple-
mented secure proxy service.

In some embodiments, the secure proxy service protects
the confidentiality, integrity, and authenticity of the data
transmitted over a network based on distributed trust among
any number of certificate authorities, such as certificate
authorities 115 (FIG. 1). In such embodiments, the confiden-
tiality, integrity, and authenticity of the data may be protected
so long as a quorum of certificate authorities is trusted. If the
trust of the certificate authority is compromised, mutual

US 8,745,372 B2

83

authentication cannot be assured, and the confidentiality,
integrity, and authenticity of exchanged messages breaks
down. The secure proxy service is a secure data parser
enabled solution that allows the trust placed in a single cer-
tificate authority to be distributed over any number of certifi-
cate authorities (e.g., two, three, five, ten, twenty, fifty, one
hundred, or more than one hundred certificate authorities).
This distributed trust allows the exchange of messages over
the secure proxy service to remain secure if there is a single
point of failure among the set of certificate authorities.

In some embodiments, the secure proxy service is imple-
mented using an adaptation of SSL and/or full TLS protocols.
These protocols may be suitable for adaptation as part of the
secure proxy service because they rely at least in part on the
trust of a certificate authority for mutually authenticating both
parties in a communication.

An overview of the use of certificate authorities in full TLS
is now described. For a full TLS-enabled connection to be
established between two devices, the two devices agree on the
cryptographic suite of algorithms to use, and exchange and
mutually authenticate one another’s public keys. The public
keys of each device are authenticated through validation of a
certificate authority’s signature of the public key. Trust that
the two devices are genuinely communicating with one
another is established by the fact that both of them trust the
certificate authority, whose signature of the devices’ certifi-
cates could not be forged without the compromise of that
authority.

The certificate authority creates for itself a public and
private key pair, (Pub,,, Pri,). In addition, the certificate
authority creates a self signed certificate for the public key:

Certtcs=Pubc.4,Sigp,..ca(PUbcy) (6]

Both devices receive the certificate authority’s certificate
Cert, according to equation (1), a private key (Prip,,,
Prij,,,), and a certificate signed by the certificate authority:
@

Cettp,, =Pubp,,1,8igp,;. c4(Pubp,,1)

3

When a communication begins, the devices exchange their
respective certificates in equations (2) and (3), and verify the
authenticity of these certificates using the public key of the
certificate authority. For example, the first device may per-
form the verification by running a verification function Verify
(Certp,,,, Pub,,), and the second device may perform the
verification by running a verification function Verify
(Certp,,,, Pub). If both devices are satisfied with the cer-
tificate authority’s signature of the exchanged public keys,
the first device sends the second device symmetric encryption
key material using the second device’s public key. The first
device proves knowledge of the private key corresponding to
their certificate by performing a digital signature challenge.
Once the first device proves knowledge of the private key
corresponding to their certificate, the first device and the
second device may exchange messages securely.

If either the first device or the second device has been
compromised, their respective private keys may be compro-
mised as well and from then on the compromised device
could be impersonated. If the certificate authority is compro-
mised, valid certificates may be generated for which the cer-
tificate authority knows the corresponding private key, and
either of the devices could be impersonated. However, absent
compromise of the devices or the certificate authority, the
devices can be mutually assured that they are talking to the
correct entity.

Certpen=Pubpe,2.81gp: c4(PUbpeyo)

20

25

30

35

40

45

50

55

60

65

84

In some embodiments, not all trust is delegated to a single
certificate authority. It may be impractical to constantly cre-
ate, distribute, and validate certificates by a single certificate
authority. Instead, a chain of trust may be established in the
form of a certificate authority hierarchy 4200, as illustrated by
FIG. 42. Certificate authority hierarchy 4200 may establish a
chain of trust in the form of a tree. At the top of the tree is root
certificate authority 4210 who delegates authority to all
descendants (e.g., children and grandchildren) of the root
certificates 4210. The trust at each level of certificate author-
ity hierarchy 4200 is assured by the trust of the root certificate
authority 4210.

In certificate authority hierarchy 4200, root certificate
authority 4210 may sign certificates for children certificate
authorities 4220. Although only one root certificate authority
CA-0isshown in FIG. 42, it may be understood that in certain
embodiments the certificate authority hierarchy may include
any number ofroot certificate authorities. Children certificate
authorities 4220 may sign certificates for grandchildren cer-
tificate authorities 4230. For example, as illustrated in FIG.
42, root certificate authority CA-0 signs certificates for its
children CA-1 and CA-2, who in turn sign certificates for
their children CA-1.1, CA-1.2, CA-2.1, and CA-22.
Although only three levels of certificate authorities are illus-
trated in FIG. 42, it will be understood that in certain embodi-
ments there may be greater or fewer levels of certificate
authorities. To ensure nonrepudiation of signatures, all enti-
ties may generate their own certificates.

In a cryptographic system, a first device may have received
its certificate from one of the children certificate authorities
4220, and a second device in communication with the first
device may receive its certificate from one of the grandchil-
dren certificate authorities 4230. Validation of the certificates
for each device may be performed by obtaining the certificate
of the issuing certificate authority (e.g., CA-1 or CA-2 for a
first device, and CA-1.1, CA-1.2, CA-2.1, or CA-2.2 for a
second device) and verifying the signature of the first device
or second device’s certificate (e.g., verifying the certificates
shown in equations (2) or (3)). If the trust of the issuing
certificate authority cannot be established, the device per-
forming verification can obtain the certificate of the parent of
the issuing certificate authority in question and perform a
similar verification to ensure that the certificate authority is
valid. This process may continue by both devices until reach-
ing root certificate authority 4210, which is trusted by both
devices. In some embodiments, each device that is in com-
munication may be associated with more than one root cer-
tificate authorities 4210. In such embodiments, it is possible
for devices with valid certificates from any of these certificate
authorities to communicate.

From the above description of the use of certificate authori-
ties with TLS, it is understood that security ultimately lays in
the trust of a single root certificate authority, or to a lesser
extent, one of the descendant certificate authorities within the
hierarchy of certificate authorities that the devices in commu-
nication are comfortable trusting. In some embodiments, if
any certificate authority in the hierarchy is compromised, all
descendants of the compromised certificate authority are also
compromised. Ifthis compromised node is the root, then each
of'the certificate authorities in the hierarchy may be compro-
mised.

In some embodiments, the secure proxy service may use
the secure data parser with TLS to distribute the trust placed
in a single certificate authority with the trust of a quorum of
certificate authorities. This quorum may be a quorum of root
certificate authorities 4210, or a quorum of minor certificate
authorities within the tree of a single root certificate authority.

US 8,745,372 B2

85

For example, this quorum may be two out of the three certifi-
cate authorities in the set consisting of CA-1, CA-1.1 and
CA-1.2, which are minor certificate authorities within the tree
of root certificate authority CA-0.

In some embodiments, certificate authority hierarchy 4200
may be traversed by any suitable graph algorithm. This tra-
versal may be performed in order to obtain a list of certificate
authorities or a list of certificates associated with certificate
authorities that unique, or have different public and private
key pairs. In some embodiments, the traversal of certificate
authority hierarchy 4200 may result in certificate authorities
or certificates of certificate authorities that are root certificate
authorities. In some embodiments, the traversal of certificate
authority hierarchy 4200 may result in certificate authorities
or certificates of certificate authorities that are minor certifi-
cate authorities within the tree of one or more root certificate
authorities.

FIGS. 44 through 50 detail two approaches to implement-
ing the secure proxy service. Both approaches are equally
secure. In some embodiments, the secure data parser may be
integrated with full TLS. In addition, in each approach trust is
distributed among a set of certificate authorities (e.g., the
quorum of certificate authorities discussed with respect to
certificate authority hierarchy 4200 in FIG. 42). In some
embodiments, the secure proxy service may be implemented
by integrating the secure data parser with SSL, with SSL. and
TLS, or implementing the secure data parser without the use
of SSL and/or TLS. In some embodiments, the secure proxy
service may be implemented in conjunction with any one or
more types of encryption 3018 that may provide secure
encryption of data at the secure data parser layer 3026 of FIG.
30. In addition, in some embodiments the secure proxy ser-
vice may be implemented in conjunction with any suitable
protocol that makes use of certificate authorities to ensure the
confidentiality, integrity, and authenticity of exchanged mes-
sages.

In the embodiments described with respect to FIGS. 44
through 46, the secure data parser may be used to distribute
trust in any number of certificate authorities during initial
negotiation (e.g., the key establishment phase) of a connec-
tion between devices. This offers the assurance that if some
(but fewer than a quorum) of the certificate authorities have
been compromised, the connection may still be established,
and messages may be exchanged without disrupting the con-
fidentiality, integrity, and authenticity of the communication.
In the embodiments described with respect to FIGS. 47
through 50, the data is pre-processed using the secure data
parser and then dispersed into shares. A set of secure com-
munication tunnels may be established within a communica-
tion channel using certificates issued by unique certificate
authorities, these certificate authorities may be used to
encrypt data for each of the tunnels, and the individual shares
of'data may be transmitted on each of the tunnels. Thus, in the
second approach trust may be distributed among a set of
certificate authorities in the structure of the communication
channel itself.

In order to illustrate how the secure data parser is integrated
with TLS in some embodiments of the secure proxy service,
an overview of the key establishment phase of full TLS is
described with respect to FIG. 43. FIG. 43 shows a simplified
and illustrative process flow 4300 for the key establishment
phase of TLS for communication between two devices: first
device 4310 and second device 4320. First device 4310 and
second device 4320 may be any combination of user system
105 and/or vendor system 120 communicating over a com-
munication link, for example, communication link 125 as
shown in FIG. 1. This key establishment phase may include a

20

25

30

35

40

45

50

55

60

65

86

handshake and mutual authentication. At step 4312, first
device 4310 generates a random number R, and sends the
random number along with its certificate Cert,,,, (as calcu-
lated, for example, in equation (2)) to second device 4320.

At step 4322, second device 4320 generates its own ran-
dom number R, ,, and sends the random number along with
its certificate Cert,,, , (as calculated in equation (3)). At step
4314, the client generates secret information Sp,.,.,, encrypts
itunder the second device’s public key using any suitable type
of'encryption, and sends it to the second device. At step 4324,
second device 4320 decrypts the secret information S, and
computes a shared encryption key K based on a pseudo ran-
dom function G and the random and secret values that have
been exchanged (i.e., Ry, 1, Rp,,», and S,,,;). Similarly, at
step 4316 second device 4310 computes a shared encryption
key K based on a pseudo random function G and the random
and secret values that have been exchanged (i.e., Rp,, 1,
Ry, and Sy,). At step 4330, first device 4310 and second
device 4320 exchange messages encrypted with their inde-
pendently calculated shared encryption keys. If the computed
shared encryption keys match, first device 4310 and second
device 4320 may exchange messages that are ensured to be
confidential and authentic. As will be discussed with respect
to FIGS. 44 through 46, in some embodiments, the secure
data parser service may modify and/or add to the steps of
process flow 4300 in order to integrate the secure data parser
with TLS.

FIG. 44 shows a simplified and illustrative process flow
4400 for a secure proxy service, that may be used in any
suitable combination, with any suitable additions, deletions,
or modifications in accordance with one embodiment of the
present invention. In process flow 4400, trust is distributed in
a set of certificate authorities during initial negotiation of a
connection between devices. In some embodiments, process
flow 4400 may be executed as part of the key establishment
phase of a secure exchange of information between two
devices. This key establishment phase may be part of one or
more of the processes associated with secure data parser 3706
as illustrated in FIG. 37, or may be a standalone process. For
example, steps 4410, 4420, 4430, 4440, 4450, and 4460 may
be part of one or more of pre-encryption process 3708,
encrypt/transform process 3710, key secure process 3712, or
parse/distribute process 3714 associated with secure data
parser 3706 as illustrated in FIG. 37, or may be a standalone
process.

Process flow 4400 begins at step 4410. At step 4410, a first
device that would like to securely exchange information with
device second device may generate secret information. This
secret information may be any amount of suitable random
numbers (e.g., one, two, five, twenty, one-hundred, or more
than one-hundred random numbers) generated by a random
number generator. For example, the secret information may
be a random number generated by the random number gen-
erator 3012 of secure data parser 3026 as shown in FIG. 30.
Process flow 4400 proceeds to step 4420.

At step 4420, the first device may disperse the secret infor-
mation generated at step 4410 into shares. In some embodi-
ments, the secret information may be dispersed into shares
using a cryptosplitting process, such as an “M of N
cryptosplit”. This “M of N cryptosplit” may be achieved
using the secure data parser of the present invention. For
example, the cryptosplit may be achieved using any of the
data splitting techniques discussed with respect to FIG. 21
through FIG. 24. In such embodiments, the dispersed shares
may be restorable from at least a subset of the shares by
recombining at least a quorum of the shares. In addition, in
some embodiments, the split of secret information may occur

US 8,745,372 B2

87

substantially through any number of uses of the secure data
parser outlined with respect to FIG. 33, FIG. 35, and FIG. 36.
For example, the secure data parser may receive unencrypted
secret information at step 3610. If the secret information is
going to be split with an algorithm that requires a key, a split
encryption key is generated at step 3612. The secret informa-
tion may be split into shares at step 3616 (e.g., according to
any of the techniques described with respect to FIG. 33, FIG.
35, and FIG. 36). A fault tolerant scheme may be used at step
3617 to encrypt the split encryptions key and allow for regen-
eration of the secret information from less than the total
number of shares. In addition, at step 3617 information may
be added to the shares of secret information that is used to
reconstruct the shares. In some embodiments, this informa-
tion may be embedded into share headers. Further, once the
shares are created, authentication/integrity information may
be embedded into the headers of the shares of secret informa-
tion at step 3618. Each share may be post-encrypted using
public keys of different certificate authorities as will be
described with respect to step 4430.

In addition, in some embodiments, the dispersing of the
secret information into shares may occur, for example,
according to the simplified header generation process 4000 as
shown in FIG. 40A. For example, at step 4002, the secret
information may be generated. The secret information may
then be optionally encrypted (e.g., using the workgroup key
described with respect to FIG. 39) at step 4004. At step 4006,
a “M of N cryptosplit” may be used to split the secret infor-
mation into shares of secret information. Information associ-
ated with the split of secret information may then be embed-
ded into a share header. Finally, a share integrity block and a
post-authentication tag (e.g., MAC) may be appended to the
header block of each share. Each header block may be
designed to fit within a single data packet.

In some embodiments, the shares of secret information
generated at step 4420 may be generated using a multi-factor
secret sharing scheme. This multi-factor secret sharing
scheme may be, for example, the keyed Information Dis-
persal Algorithm discussed after FIG. 41. For example, the
shares of secret information may be distributed with the data
to be secured into a plurality of shares using deterministic,
probabilistic, or both deterministic and probabilistic data dis-
tribution techniques. Once the secret information has been
dispersed into shares, process flow 4400 may proceed to step
4430

At step 4430, the shares resulting from the split of secret
information computed in step 4420 are encrypted by the first
device based on public keys of unique certificate authorities.
For example, if there were three shares of secret information,
the first share may be encrypted under the public key of a first
certificate authority, the second share may be encrypted under
the public key of a second certificate authority, and the third
share may be encrypted under the public key of a third cer-
tificate authority. Each certificate authority may be unique in
that the certificates issued by each have different public and
private key pairs. In some embodiments, the unique certifi-
cate authorities may be root certificate authorities. In other
embodiments, the unique certificate authorities may be minor
certificate authorities within the tree of a single root certifi-
cate authority, as discussed with respect to certificate author-
ity hierarchy 4200 in FIG. 42.

As discussed above with respect to step 4420, in some
embodiments information related to the dispersal of secret
information may be embedded into share headers. For
example, if the secret information is split at step 4420 into

20

25

30

35

40

45

50

55

60

65

88

four shares, four headers may be generated that each includes
information associated with the dispersed shares of secret
information.

In some embodiments, the shares may be protected by one
or more external workgroup keys, one or more shared keys, or
any combination of workgroup keys and shared keys. Once
the shares of secret information are encrypted, the first device
may send the encrypted shares to the second device. Process
flow 4400 then proceeds to step 4440.

At step 4440, the second device may attempt to recover the
encrypted secret information. This recovery process may be
dependent on how the shares of secret information were dis-
persed at step 4420 and encrypted at step 4430. For example,
the secret information may have been dispersed into shares
using an “M of N cryptosplit” and encrypted using a work-
group key at step 4420, and then those shares may be
encrypted based on public keys of different certificate
authorities at step 4430. The recovery process may decrypt
the shares first using the public keys of the different certificate
authorities, then decrypt the shares based on the workgroup
key, and then use a restore function of the secure data parser
to reconstruct the dispersed shares of secret information into
the original secret information based on the “M of N
cryptosplit™.

If the recovery process is successful, the computed secret
information may match the original secret information. This
match may be mutually confirmed between the devices by
each device independently computing a shared encryption
key. For example, a first device may compute a shared encryp-
tion key based on the original secret information, while the
second device computes a shared encryption key based on the
recovered or restored secret information. In some embodi-
ments, if the second device recovers the original secret infor-
mation and subsequently computes a valid shared encryption
key, process flow 4400 proceeds to step 4450, and messages
are exchanged. In some embodiments, these messages may
be securely exchanged based on the shared encryption keys
computed by the first device and the second device. In some
embodiments, if the second device does not recover the origi-
nal secret information, process flow 4400 proceeds to step
4460, and messages are not exchanged. For example, mes-
sages may not be able to be exchanged because the shared
encryption key of the first device does not match that of the
second device.

FIG. 45 shows a simplified and illustrative process flow
4500 for establishing a secure proxy service between two
devices, that may be used in any suitable combination, with
any suitable additions, deletions, or modifications in accor-
dance with one embodiment of the present invention. In pro-
cess flow 4500, trust is distributed in a set of certificate
authorities during initial negotiation of a connection between
devices. In some embodiments, process flow 4500 may be
executed as part of the key establishment phase of a secure
exchange of information between two devices. This key
establishment phase, including each of the steps in process
flow 4500, may be part of one or more of the processes
associated with the secure data parser, for example, similar to
how the steps of process flow 4400 are associated with the
secure data parser.

Process flow 4500 begins at step 4510. At step 4510, the
devices exchange random numbers and certificates associ-
ated with public keys, each public key issued by a unique
security authority. In some embodiments, these devices may
be, for example, first device 4310 and second device 4320 as
described with respect to process flow 4300 in FIG. 43. The
exchanged random numbers may be generated by each device
using the random number generator 3012 of secure data

US 8,745,372 B2

89

parser 3026 as shown in FIG. 30. The exchanged certificates
may be generated from the traversal of certificate authority
hierarchy 4200 as shown in FIG. 42. For example, any suit-
able graph algorithm may traverse the certificate hierarchy
4200 to compute a list of the certificates of the root certificate
authorities, or a list of the certificates of the minor certificate
authorities within the tree of a single root certificate authority
within certificate hierarchy 4200. In some embodiments, the
exchanged certificates may be determined based on encryp-
tion parameters agreed upon by the first and second device.
These parameters may be associated with the implementation
of'dispersal of the shares of secret information agreed upon by
the first and second device. For example, if the dispersal
techniques used at step 4520 disperses secret information into
five shares, the exchanged certificates may include five cer-
tificates of unique certificate authorities from the first device,
and five certificates of unique certificate authorities from the
second device.

In some embodiments, a unique public key may be
obtained for each unique certificate of the first device or the
second device. In some embodiments, the encryption param-
eters may be set by the user of the secure proxy service, such
as the user of a personal computer who wants to connect with
the server of a financial institution using the secure proxy
service. In some embodiments, the encryption parameters
may be set by an administrator of the secure proxy service,
such the administrator of the servers of a financial institution
who want to offer secure proxy service enabled connections
to their customers. In addition, in some embodiments, the
exchanged lists of certificates may be based on an enrollment
process 900 conducted with the user of one of the devices as
described with respect to FIG. 9. Process flow 4500 then
proceeds to step 4515.

At step 4515, the first device generates secret information.
This secret information may be generated, for example,
according to step 4410 described with respect to process flow
4400 of FIG. 44. Process flow 4500 then proceeds to step
4520. At step 4520, the first device disperses the secret infor-
mation generated at step 4515 into shares using any suitable
dispersal techniques. For example, the first device may per-
form an “M of N cryptosplit” of the secret information using
the secure data parser of the present invention according to,
for example, step 4420 described with respect to process flow
4400 of F1G. 44. In some embodiments, the shares of secret
information resulting from the dispersal techniques may be
restorable from at least a subset of the shares by recombining
at least a quorum of the shares. In addition, in some embodi-
ments, a keyed secret sharing routine may be applied to the
shares of secret information using a keyed IDA. The key for
the keyed IDA may be protected by one or more external
workgroup keys, one or more shared keys, or any combina-
tion of shared and workgroup keys. Process flow 4500 then
proceeds to step 4525

At step 4525, the first device encrypts each share of secret
information based on a public key issued by a different cer-
tificate authority. The public keys may be public keys
obtained from the certificates sent to the second device from
the first device at step 4510. In some embodiments, step 4525
may be included as part of step 4520. For example, the keyed
secret sharing routine described with respect to step 4520
may be applied to the shares of secret information, where the
keys for the keyed IDA are the public keys associated with the
list of certificates sent to the second device from the first
device. In another example, the public keys associated with
the list of certificates may be used as split keys to encrypt the
shares of secret information as described with respect to

20

25

30

35

40

45

50

55

60

65

90

options 3600 of FIG. 36. Process 4500 then proceeds to step
4530, or may optionally proceed to step 4527.

At optional step 4527, the first device may perform a key-
wrap on the keys applied to the shares of secret information at
step 4525. In some embodiments, the key wrap may be any
suitable key encryption or key wrap algorithm. The key wrap
may operate on the entire shares of dispersed secret informa-
tion produced at step 4520. Alternatively, the dispersed shares
may be additionally dispersed into several blocks, and the key
wrap may operate on these blocks. Process flow 4500 then
proceeds to step 4530.

At step 4530, the first device transmits the encrypted shares
of secret information to the second device. This transmission
may occur over any suitable communication channel, such as
that described with respect to communication link 105 in FI1G.
1. The first device in process flow 4500 then proceeds to step
4545, while the second device proceeds to step 4535.

At step 4535, the second device may attempt to decrypt the
encrypted shares received from the first device. This decryp-
tion process may be based on how the shares of secret infor-
mation were encrypted at step 4520 and step 4525. For
example, at step 4520, shares of secret information may have
been produced from dispersal techniques that produce shares
of secret information that may be restorable from at least a
subset of the shares by recombining at least a quorum of the
shares. At step 4525, each dispersed share may have been
encrypted using the public keys obtained by different certifi-
cate authorities corresponding to the second device’s certifi-
cates. At step 4527, the shares may have been additionally
encrypted using a keywrap based on a workgroup key. Based
on this encryption, at step 4535 the second device may first
decrypt the encrypted shares of secret information based on
the public keys issued by unique certificate authorities, then
decrypt the shares of secret information based on the work-
group key of the keywrap applied at step 4527. It will be
understood that beyond this particular example, any suitable
number and type of decryption steps may be performed at step
4535. Process flow 4500 then proceeds to step 4540.

At step 4540, the second device may attempt to restore the
original secret information based on the decrypted shares
computed at step 4535. This restore process may be based on
how the secret information generated at step 4515 was dis-
persed at step 4520. For example, at step 4520, shares of
secret information may have been produced using dispersing
functions of the secure data parser according to any of the
techniques described with respect to FIG. 33, FIG. 35, and
FIG. 36. Based on this dispersing, at step 4540 the second
device may restore the original secret information from the
split using restore functions of the secure data parser accord-
ing to any of the techniques described with respect to FIG. 34.
Process flow 4500 then proceeds to step 4545.

At step 4545, the first and second devices may indepen-
dently compute a shared encryption key based on the
exchanged random numbers, and computed or original secret
information. For example, the first device may perform sev-
eral digital signatures, one for each of its certificates in its list
of certificates, using its own random number, the second
device’s random number, and the secret information gener-
ated at step 4515. These digital signatures may then be used as
input to a key generation function that computes the shared
encryption key for the first device. The second device may
perform similar digital signatures to compute its own shared
encryption key, but use the decrypted secret information
instead of the original secret information. Process 4500 then
proceeds to step 4550.

In some embodiments, at step 4550, the first device and
second device determine whether they agree on the shared

US 8,745,372 B2

91

encryption keys independently computed at step 4545. In
some embodiments, this agreement may be determined by the
first and second device exchanging messages encoded with
the shared encryption key. For example, the first device may
send the second device a message encrypted with the shared
encryption key. If the second device is able to decrypt the
encrypted message and respond, for example, with an appro-
priate acknowledgment, the first device may determine that it
may securely exchange messages with the second device.
Otherwise, the first device may determine that it may not
securely exchange messages with the second device, and no
further messages are exchanged. It will be understood that a
similar determination may occur at the second device. In
some embodiments, the first and second devices may deter-
mine that their independently computed shared encryption
keys match by exchanging the encryption keys without any
message. If the first and second devices do not agree on the
shared encryption key, process 4500 proceeds to step 4555. If
the first and second devices agree on the shared encryption
key, process 4500 proceeds to step 4560. At step 4555, the
first and second devices do not exchange messages. At step
4560, the first and second devices exchange messages. After
each of steps 4555 and 4560, process flow 4500 may end.

FIG. 46 shows a simplified and illustrative process flow
4600 for establishing a secure proxy service between client
4610 and server 4620, that may be used in any suitable com-
bination, with any suitable additions, deletions, or modifica-
tions in accordance with one embodiment of the present
invention. In process flow 4600, trust is distributed in a set of
certificate authorities during initial negotiation of a connec-
tion between client 4610 and server 4620. In some embodi-
ments, process flow 4600 may be executed as part of the key
establishment phase of a secure exchange between client
4610 and server 4620. This key establishment phase, includ-
ing any of the steps in process flow 4600, may be part of one
or more of the processes associated with the secure data
parser according to, for example, how the steps of process
flow 4400 are associated with the secure data parser. In addi-
tion, process flow 4600 may be an example of process flow
4500 as discussed with respect to FIG. 45.

Process flow 4600 begins at step 4612. At step 4612, client
4610 sends server 4620 a generated random number Rc and a
list of its certificates Cert-CAl ., Cert-CA2 ., and Cert-CA3 ..
Client 4610 and server 4620 may be any suitable client and
server devices as described with respect to user system 105
and vendor system 120 of FIG. 1, respectively. R may be
generated by client 4610, according to, for example, how the
random number generated by the first device at step 4510 of
process flow 4500 in FIG. 45. Each of these certificates may
be associated with a public key issued by a different security
authority, similar to the lists of certificates discussed with
respect to step 4510 of process tlow 4500 in FIG. 45. Process
flow 4600 then proceeds to step 4622.

At step 4622, server 4620 sends client 4610 its own gen-
erated random number R and a list of its certificates Cert-
CAly, Cert-CA2, and Cert-CA3,. R, may be generated by
server 4620 according the random number generated by the
second device at step 4510 of process flow 4500 in FIG. 45.
Each of these certificates may be associated with a public key
issued by a unique security authority, similar to the public
keys of the unique certificate authorities discussed with
respect to step 4510 of process tlow 4500 in FIG. 45. Process
flow 4600 then proceeds to step 4614.

At step 4614, client 4610 generates secret information.
This secret information may be generated according to, for
example, step 4515 of process flow 4500 in FIG. 45. Also at
step 4614, client 4610 disperses the secret information S~ into

20

25

30

35

40

45

50

55

60

65

92

shares S1., S2, and S3 .. This dispersing may be performed
according to, for example, the dispersing of secret informa-
tion discussed with respect to step 4520 of process flow 4500
in FIG. 45. Also at step 4614, client 4610 encrypts the shares
of secret information using a different one of server’s public
keys. For example, if “Enc” represents the encryption func-
tion executed by the secure data parser, and Pub1 ;, Pub2, and
Pub3 ; represent the public keys corresponding to the server’s
certificates Cert-CAlj, Cert-CA2, and Cert-CA3g, respec-
tively, the client may encode S1. using Publ by executing
Enc(Publg, S1.), may encode S2 . using Pub2 by executing
Enc(Pub2,, S2.), and may encode S3. using Pub3g by
executing Enc(Pub3, S3.). The encryption function may be
chosen out of any combination of the methods of encryption
described with respect to steps 4525 and 4527 of process flow
4500 in FIG. 45. Once the secret information is generated,
dispersed, and encrypted, the encrypted shares are transmit-
ted to server 4620. Process flow 4600 then proceeds to steps
4616 and 4624.

At step 4624, the shares of secret information S1., S2.,
and S3 . may be decrypted and restored into the original secret
information by server 4620 using any suitable decryption and
restoring techniques described with respect to steps 4525 and
4540 of process tlow 4500 in FIG. 45. Server 4620 may then
use the restored secret information to generate a shared
encryption key K using a key generation function G. Key
generation function G may take random numbers R~ and R¢
as input along with the restored secret information. At step
4616, client 4610 may similarly generate its own shared
encryption key K using a key generation function G. How-
ever, the key generation function executed by client 4610 may
use the original secret information generated by client 4610
rather than the restored secret information generated by
server 4620. Process 4600 then proceeds to step 4630.

At step 4630, messages are exchanged between client 4610
and server 4620 using their respective shared encryption keys
K. In some embodiments, client 4610 and server 4620 may
determine whether their shared encryption keys match simi-
lar to the process described with respect to step 4550 of
process flow 4500 in FIG. 45. If it is determined that the
respective shared encryption keys of client 4610 and server
4620 do not match, messages may not be exchanged or may
cease to be exchanged between client 4610 and server 4620.
Otherwise, the exchange of messages may continue similar to
normal TLS or SSL communication after the key establish-
ment phase.

In some embodiments, a secure proxy service may be
resident on a client application running on client 4610. The
client application may maintain a list of secure proxy server
enabled servers, such as server 4620, based on the IP address
or URL and port number of the servers. In some embodi-
ments, the client application may be associated with an
address that is addressable by the servers. When a connection
is requested by the client for a secure proxy service enabled
server, the client application may establish a connection with
the specified server proxy service, utilizing the approaches
described in process flows 4400, 4500, and 4600. In addition,
a secure proxy service may be resident on a server application
running on service 4620. The server application may accept
connections from the client application, and forwards the data
it receives to the proper secure proxy configured port based on
port forwarding rules. These port forwarding rules may be
predetermined or mutually agreed upon by the client appli-
cation and the server application.

The key establishment phase described by process flows
4400, 4500, and 4600 offer the assurance that if some, but less
than a quorum, of the certificate authorities have been com-

US 8,745,372 B2

93

promised, the connection can still be securely established
between two devices. That is, even if compromised certificate
authorities have access to the information exchanged between
the devices they would not have enough information to dis-
rupt the confidentiality or integrity of the communication. For
example, if there were three shares of secret information each
encrypted with a public key of a different certificate authority
as shown in process flow 4600, one of the certificate authori-
ties could be compromised and the connection could be
securely established between two devices. This security is
ensured because even if the compromised certificate authority
had access to the messages being passed between two
devices, the attacker associated with the compromised cer-
tificate authority would not have knowledge of the public and
private key pair of the other two certificate authorities, and
thus would at most be able to recover one of the shares of
secret information. Further, because the shares of secret infor-
mation were dispersed such that they could be restored with at
least a subset of the shares by recombining at least a quorum
of'the shares, the attacker behind the compromised certificate
authority would not be able to construct the original secret
information using just one recovered share. Accordingly, the
attacker behind the compromised certificate authority would
not be able to recover the secret information, and would not be
able to compute the shared encryption key used to encrypt
messages between the first device and the second device.

Process flows 4400, 4500, and 4600 are described in vari-
ous embodiments as occurring between two devices that wish
to establish a secure means of communication between them.
However, in some embodiments process flow 4400 may occur
between more than two devices. For example, process flow
4400 may be used to establish a secure means of communi-
cation between a personal computer, and a set of web servers.
Each web server in the set may use a different set of unique
certificate authorities in the key establishment phase of com-
munication with the first device.

FIG. 47 and FIGS. 48A and 48B show simplified and
illustrative process flows 4700, 4800, and 4850 for establish-
ing a secure proxy service between devices, that may be used
in any suitable combination, with any suitable additions, dele-
tions, or modifications in accordance with one embodiment of
the present invention. In process flows 4700, 4800, and 4850,
trust is distributed among a set of certificate authorities in the
structure of the communication channel used to exchange
messages between the devices. In some embodiments, pro-
cess flow 4700 may be executed after the key establishment
phase of a secure exchange of information between devices,
but before the devices exchange messages. Process flows
4700, 4800, and 4850 may be part of one or more of the
processes associated with secure data parser 3706 as illus-
trated in FIG. 37, or may be a standalone process. For
example, steps 4710, 4720, 4730, 4740, 4750, and 4760 may
be part of the post-encryption process 3720 associated with
secure data parser 3706 as illustrated in FIG. 37, or may be a
standalone process.

Process flow 4700 begins at step 4710. At step 4710, a
communication channel is established between devices. This
communications channel may be established using any suit-
able trust engine 110 described with respectto FIG. 1 through
FIG. 14. In some embodiments, this communication channel
may be secured using any suitable encryption technology to
secure data in motion in any suitable communications. For
example, the communication channel may be established
using conventional SSI,, 2 SSL, FULL SLL, TLS, Full TLS,
RS1, OTP, RC4™, Triple DES, AES, IPSec, public key
encryption, symmetric key encryption, split key encryption,
multi-factor encryption, or any suitable combination of

20

25

30

35

40

45

50

55

60

65

94

encryption technologies. In some embodiments, this commu-
nication channel may not be secure. For example, the estab-
lished communication channel may carry data through clear
text. In some embodiments, these encryption technologies
may use keys issued from a certificate authority. This certifi-
cate authority may be referred to as an “outer level certificate
authority” because it may secure the first communication
channel independently of any certificate authorities used to
secure the secure communication tunnels described with
respect to step 4730 below.

In addition, the communication channel may carry data
associated with email, streaming data broadcasts, and WiFi
communications. In some embodiments, the established
communication channel may utilize any number of server or
client-side technologies, such as CGI scripts, ASPs, or any
suitable web server technologies. In some embodiments, the
communication channel may be established across several
physical transport mediums or physical paths. For example,
the communication channel may be established over one or
more of the Internet, an intranet, a LAN, WiFi, Bluetooth,
WiMax, or any suitable hard-wired or wireless communica-
tion means, or any combination thereof. Each physical trans-
port medium may have a different network topology between
the devices that exchange messages on the particular physical
medium. Process 4700 then proceeds to step 4720.

At step 4720, any number of secure communication tun-
nels are established within the first communication channel
based on distributed trust among a set of certificate authori-
ties. These certificate authorities may be referred to as “inner
level certificate authorities” because they may protect the
communications within the secure communication tunnels
independently of any outer level certificate authority. In some
embodiments, these communication tunnels may be estab-
lished using any suitable key establishment phase of any of
the encryption technologies described with respect to step
4710. In some embodiments, the secure communication tun-
nels are established using an encryption technology that is
different from that utilized by the first communication chan-
nel. For example, the communication channel may be estab-
lished using AES, while the secure communication tunnels
are established using full TLS. In this example, each of the
secure communication tunnels may be established using a key
establishment process similar to that described with respectto
process flow 4300 of FIG. 43. In some embodiments, the
secure communication tunnels are established using the same
encryption technology as the first communication channel.
For example, the communication channel and each of the
secure communication tunnels may be established using full
TLS.

In some embodiments, the secure communications tunnels
may be established using the same encryption technology, for
example, each communication channel may be established
using full TLS. In other embodiments, the secure communi-
cation tunnels may be established using different encryption
technologies, for example some of the encryption tunnels
may be established using full TLS, while other tunnels are
established using AES. In some embodiments, the secure
communication tunnels may be established across several
physical media or physical paths. For example, the secure
communication tunnels may be established over one or more
of the Internet, an intranet, a LAN, WiFi, Bluetooth, WiMax,
orany suitable hard-wired or wireless communication means,
or any combination thereof. Each physical transport medium
may have a different network topology between the devices
that exchange messages on the particular physical medium.

Regardless of which encryption technologies are used to
establish the secure communication tunnels, the tunnels are

US 8,745,372 B2

95

established at step 4720 based on distributed trust among
certificate authorities. In some embodiments, this distributed
trust may be achieved by establishing each secure communi-
cation tunnel based on a unique certificate authority. In some
embodiments, each secure communication tunnel may be
established using a certificate issued one of the unique cer-
tificate authorities. In such embodiments, symmetric encryp-
tion key material may be communicated during the establish-
ment of each channel using the certificate issued by the
unique certificate authority associated with that channel. In
such embodiments, the symmetric key encryption material
may be, for example, the symmetric encryption key material
discussed with respect to the use of certificate authorities in
full TLS above. Each certificate authority may be unique in
that the certificates issued by each have different public and
private key pairs. In some embodiments, the unique certifi-
cate authorities may be root certificate authorities. In other
embodiments, the unique certificate authorities may be minor
certificate authorities within the tree of a single root certifi-
cate authority, as discussed with respect to certificate author-
ity hierarchy 4200 in FIG. 42. The unique public and private
key pairs of the different certificate authorities may be used
during key establishment of each secure communication tun-
nel. For example, if the secure communication tunnels are
based on TLS, each of the tunnels may be established as
described with respect to process flow 4300 of FIG. 43 using
the certificate of one of the unique certificate authorities.
Process 4700 then proceeds to step 4730.

At step 4730, data packets are prepared for transmission
over the secure communication tunnels based on the set of
certificate authorities and multi-factored secret sharing. In
some embodiments, this preparation may include encrypting
the data packets using a key developed during the establish-
ment of a different one of the communication tunnels. In some
embodiments, this key may be a symmetric key generated
using symmetric encryption key material that was communi-
cated during the establishment of each channel using a cer-
tificate of a unique certificate authority associated with that
channel. In addition, this preparation may include dispersing
each data packet into shares based on multi-factored secret
sharing, and then encrypting the resulting shares using the
certificates of the unique certificate authorities used to estab-
lish the secure communication tunnels at step 4720. This
dispersing process may be achieved using any suitable data
splitting or cryptosplit as discussed with respect to data split-
ting module 520 or 610 of FIG. 5 and FIG. 6, and elaborated
with respect to FIG. 8 and FIGS. 20 through 24.

In addition, in some embodiments, the data packets may be
dispersed into shares substantially through any number of
uses of the secure data parser outlined with respect to FIG. 33,
FIG. 35,and FIG. 36. For example, the secure data parser may
receive unencrypted data packets. If the data packets are
going to be split with an algorithm that requires a key, a split
encryption key is generated. In some embodiments, the data
packets may be split into shares at step according to any of the
techniques described with respect to FIG. 33, FIG. 35, and
FIG. 36. In some embodiments, a fault tolerant scheme may
be used to encrypt the split encryptions key and allow for
regeneration of the data packets from less than the total num-
ber of shares. For example, the data packets may be dispersed
into shares using any suitable data dispersion techniques such
that the shares are restorable from at least a subset of the
shares by recombining at least a quorum of the shares. In
addition, information may be added to the shares of data
packets that are used to reconstruct the data packets. Further,
once the shares are created, authentication/integrity informa-
tion may be embedded into the shares of data packets. Each

20

25

30

35

40

45

50

55

60

65

96

share may be post-encrypted using public keys of unique
certificate authorities used to establish the secure communi-
cation tunnels at step 4720.

In addition, in some embodiments, the dispersing of the
data packets may occur in two phases—a header generation
phase and a data partitioning phase. The phases may be, for
example, the simplified header generation process 4000 as
shown in FIG. 40A and simplified data partitioning process
4010 as shown in FIG. 40B. One or both of these processes
may be performed on the data packets. In some embodiments,
the data packets may be pre-encrypted based on the encryp-
tion technology used to establish the first communication
channel. The pre-encrypted data packets may then be run
through processes 4000 and/or 4010 as described below.

As shown at step 4002 of FIG. 40A, split keys may be
generated. The unencrypted or pre-encrypted data packets
may then be optionally encrypted (e.g., using the workgroup
key described with respect to FIG. 39) at step 4004. At step
4006, a “M of N cryptosplit” may be used to split the data
packets into shares of secret information using the split key.
Each share of the data packet may then be embedded into a
share header. Finally, a share integrity block and a post-
authentication tag (e.g., MAC) may be appended to the header
block of each share. Each header block may be designed to fit
within a single encrypted data packet. Each header block may
be post-encrypted using a key developed during the establish-
ment of a different one of the communication tunnels at step
4720.

In some embodiments, after the headers including the
shares of secret information are generated, the secure data
parser may enter a data partitioning phase. This data parti-
tioning phase may be, for example, the simplified data split-
ting process 4010 as shown in FIG. 40B. For example, each
incoming unencrypted or pre-encrypted data packet may be
encrypted using one or more keys, such as a shared key or a
workgroup key, at step 4012. In some embodiments, the data
that is encrypted may include the headers that contain the
shares of data packets computed during simplified header
generation process 4000. At step 4014, share integrity infor-
mation (e.g., a hash H) may be computed on the resulting
ciphertext from step 4012. For example, a SHA-256 hash may
be computed on the data that is encrypted with one or more
keys at step 4012. At step 4106, the data packet may then be
partitioned into two or more data shares using one of the data
splitting algorithms described above in accordance with the
present invention. In some embodiments, the data packet or
data block may be split so that each data share contains a
substantially random distribution of the encrypted data
packet or data block. The integrity information (e.g., hash H)
may then be appended to each data share. An optional post-
authentication tag (e.g., MAC) may also be computed and
appended to each data share in some embodiments. In addi-
tion, each data share may include metadata as described with
respect to FIG. 40B. The metadata may include information
regarding the data packets and workgroup keys used to gen-
erate the shares of data packets. Each data packet share may
be post-encrypted using public keys of unique certificate
authorities used to establish the secure communication tun-
nels at step 4720.

In some embodiments, the shares of data packets may be
associated with shares of an encryption key or data split key
similar to how key and data components are stored within
shares as shown in illustrative block diagrams 3800 and 3900
in FIGS. 38 and 39. For example, shares of the data packets
may be stored similarly to how portions of encryption key
3804 are split and stored within shares 3810. When a work-
group key is utilized, the shares of data may be encrypted with

US 8,745,372 B2

97

the workgroup key prior to be stored within the shares as
shown in illustrative block diagram 3900.

Regardless of how the data packets are dispersed into
shares, each share may be post-encrypted using a key devel-
oped during the establishment of a different one of the com-
munication tunnels at step 4720. For example, in some
embodiments there may be three secure communication tun-
nels established at step 4720, each with a unique certificate
authority. Each share produced at step 4730 may then be
encrypted using the key developed during the establishment
of a different one of the communication tunnels. In some
embodiments, these keys may be the symmetric keys gener-
ated using symmetric encryption key material that was com-
municated during the establishment of each channel using the
three unique certificate authorities. Process 4700 then pro-
ceeds to step 4740.

At step 4740, the prepared data packets are transmitted to
their destination. This transmission may occur over any suit-
able communication channel, such as that described with
respect to communication link 105 in FIG. 1. In some
embodiments, the destination for the packets may be one or
more of secure data proxy enabled servers. A client applica-
tion running on a client device may maintain a list of secure
proxy server enabled servers based on the IP address or URL
and port number of the servers. In some embodiments, the
client application may be associated with an address that is
addressable by the servers. When a connection is requested by
the client for a secure proxy service enabled server, the client
application establishes a connection with the specified server
proxy service, utilizing the approaches described in steps
4710 and 4720. Once the prepared data is transmitted to its
destination, process 4700 then proceeds to step 4750.

At step 4750, the transmitted data packets are received. In
some embodiments, the transmitted data packets may be
received by a secure proxy service that is resident on a server
application running on a secure data proxy enabled server.
The server application may accept connections from the cli-
ent application, and forwards the data it receives to the proper
secure proxy configured port based on port forwarding rules.
These port forwarding rules may be predetermined or mutu-
ally agreed upon by the client application and the server
application. Process 4700 then proceeds to step 4760.

At step 4760, the data packets are restored based on the set
of certificate authorities and the multi-factored secret sharing.
In some embodiments, this restoration may be a mirrored
process of the preparation process used to parse and encrypt
the data packets at step 4730. For example, at step 4730, the
data packets may have been encrypted using keys associated
with the establishment of the secure communication tunnels
at step 4720. In addition, shares of unencrypted or pre-en-
crypted data packets may have been produced using dispers-
ing techniques of the secure data parser according to any of
the techniques described with respect to F1G. 33, FIG. 35, and
FIG. 36. In some embodiments, the shares of data packets
may be encrypted based on the encryption technology used to
establish the first communication channel.

Accordingly, the shares of data packets may first be
decrypted based on the keys associated with the establish-
ment of the secure communication tunnels at step 4720. The
decrypted shares may then be restored using restore functions
of the secure data parser according to any of the techniques
described with respect to FIG. 34. In some embodiments, the
restored shares may be decrypted based on the encryption
technology used to establish the first communication channel.
In some embodiments, the decrypted shares of data may be
embedded in share headers. In such embodiments, the shares
of data may be extracted from the decrypted share headers,

20

25

30

35

40

45

50

55

60

65

98

and restored using the restore functions of the secure data
parser. Process flow 4700 then ends. In some embodiments,
steps 4730, 4740, 4750, and 4760 may be repeated as neces-
sary for the transmission of data over the secure communica-
tion tunnels.

Describing embodiments of the secure proxy service with
respect to FIG. 48A, process flow 4800 may be executed on a
first device, such as on a client-side application running on a
personal computer that requests to communicate using the
secure proxy service with a second device, such as a web
server. Process flow 4800 in begins at step 4810. At step 4810,
a first secure communication channel may be established.
This secure communication channel may be established using
a key establishment process with the keys of any suitable
encryption technologies as described with respect to step
4710 in process flow 4700 of FIG. 47. In some embodiments,
these keys may be issued from a certificate authority referred
to as an “outer level certificate authority”. In addition, the
communication channel may carry data associated with any
suitable applications as discussed with respect to step 4710 in
process flow 4700 of FIG. 47. Also, the communication chan-
nel may be established across several physical transport
mediums as described with respect to step 4710 of process
flow 4700 of FIG. 47. Process 4800 then proceeds to step
4815.

At step 4815, any number of secure communication tun-
nels are established within the first communication channel
(e.g., one, two, three, five, ten, fifty, one hundred, or more than
one hundred secure communication tunnels). Each secure
communication channel may be established using a certifi-
cate obtained from a unique certificate authority and each
tunnel may be associated with the respective unique certifi-
cate authority. In some embodiments, symmetric encryption
key material may be communicated during the establishment
of each channel using the certificate issued by the unique
certificate authority associated with that channel. In such
embodiments, the symmetric key encryption material may
be, for example, the symmetric encryption key material dis-
cussed with respect to the use of certificate authorities in full
TLS above. Similar to process flow 4700 of FIG. 47, the
unique certificate authorities used to establish the secure
communication tunnels may be referred to as “inner level
certificate authorities”. Each of the secure communication
tunnels may be established using a key establishment process
with any suitable encryption technologies over one or more
physical transport media as described with respect to step
4720 of process flow 4700 of FIG. 47. Also similar to step
4720 of process flow 4700 of FIG. 47, each certificate author-
ity may be unique in that the certificates issued by each have
different public and private key pairs. In some embodiments,
each secure communication tunnel may be associated with a
respective unique certificate authority in that all data sent over
that tunnel is encrypted based on keys developed during the
establishment of the communication tunnels. In some
embodiments, this association may be tracked in any suitable
data structure by the secure data parser at a client application,
a server application, or both. Process 4800 then proceeds to
step 4820.

At step 4820, incoming data packets may be cryptographi-
cally split into any number of shares using multi-factored
secret sharing. In some embodiments, the incoming data
packets may be split into the same number of shares as the
number of secure communication tunnels established at step
4815. The cryptographic split of the incoming data packets
may be achieved according to, for example, any suitable

US 8,745,372 B2

99

dispersing techniques discussed with respect to step 4730 of
process flow 4700 of FIG. 47. Process 4800 then proceeds to
step 4825.

At step 4825, each of the shares is encrypted using a key
developed during the establishment of a different one of the
secure communication tunnels. In some embodiments, the
key may be a symmetric encryption key generated using
symmetric encryption key material that was communicated
during the establishment of each channel using a certificate of
a unique certificate authority associated with that channel. In
some embodiments, this symmetric encryption key material
may be, for example, the symmetric encryption key material
discussed with respect to the use of certificate authorities in
full TLS above. It may be understood, however, that the keys
developed during the establishment of the secure communi-
cation tunnels may be any suitable encryption key, secret
information, or any other information other than symmetric
encryption keys. For example, the keys developed during the
establishment of the secure communication tunnels may be
asymmetric encryption keys. In some embodiments, each of
the shares that are produced at step 4820 is preprocessed and
tagged with one or more bits that identify which of the keys
associated with the establishment of the communication tun-
nels should be used to encrypt each of the shares. Process
4800 then proceeds to step 4830.

Atstep 4830, each of the encrypted shares is transmitted on
the tunnel associated with the unique certificate authority
under which that tunnel was established. For example, if there
were three secure communication tunnels established each
based on a different one of three unique certificate authorities,
each incoming unencrypted or pre-encrypted data packet
would be cryptographically split into three shares using
multi-factored secret sharing and encrypted using a different
one of three keys developed during the establishment of the
three secure communication tunnels using a different one of
three unique certificate authorities. Accordingly, each one of
the three encrypted shares would be transmitted on the tunnel
associated with the unique certificate authority under which
that tunnel was established. In some embodiments, this trans-
mission may be based on the data structure that maintains the
associations between the certificate authorities and the tun-
nels.

In some embodiments, the association between a certifi-
cate authority and the secure communication tunnels may
remain constant throughout the duration of a data transmis-
sion. In other embodiments, the associations between the
certificate authorities and the secure communication tunnels
may be dynamic. In such embodiments, the associations may
be shuffled at any suitable point in time, such as after the
transmission of an entire data packet. For example, a first data
packet may be processed by process flow 4800 wherein the
data packet is cryptosplit into three shares at step 4820. The
first share of the first data packet may encrypted using a first
key developed during the establishment of a first secure com-
munication tunnel using a first certificate authority and trans-
mitted over the first communication tunnel. The second share
of' the first data packet may be encrypted using a second key
developed during the establishment of a second secure com-
munication tunnel using a second certificate authority and
transmitted over the second communication tunnel. Finally,
the third share of the first data packet may be encrypted using
a third key developed during the establishment of a third
secure communication tunnel using a third certificate author-
ity and transmitted over the third communication tunnel.

In some embodiments, after the three shares ofthe first data
packet are transferred, the associations between the certificate
authorities and the communication channels may be shuffled

20

25

30

35

40

45

50

55

60

65

100

such that the first share may be encrypted using the third key
and transmitted over the third tunnel, the second share may be
encrypted using the first key and transmitted over the first
tunnel, and the third certificate authority may be encrypted
using the second key and transmitted over the second tunnel.
In such embodiments, these associations may be stored at any
suitable depository that is accessible to the devices in com-
munication, such as depository 210 of FIG. 2.

Describing embodiments of the secure proxy service with
respect to FIG. 48B, process flow 4850 may be executed on a
client-side secure proxy server application running on a sec-
ond device, such as a web server, that is exchanging informa-
tion with a first device, such as a personal computer running
a client-side secure proxy service application. Process flow
4850 in begins at step 4835. At step 4835, encrypted shares of
data are each received on a respective communication tunnel.
The server application may accept connections from the cli-
ent application, and forward the data it receives to the proper
secure proxy configured port based on port forwarding rules.
These shares of data may be the same shares that were cryp-
tographically split, encrypted, and transmitted at steps 4820,
4825, and 4830, of process flow 4800 of FIG. 48A, respec-
tively. Process flow 4850 then proceeds to step 4840.

At step 4840, each of the shares are decrypted based on the
key associated with the establishment of the respective secure
communication tunnel that the share was received on. In some
embodiments, this process may be mirrored of that described
with respect to step 4825 of process flow 4800 of FIG. 48.
Process flow 4850 then proceeds to step 4845.

At step 4845, the decrypted data packet shares are restored
into the original data packets. In some embodiments, this
restoration may be a mirrored process of the dispersing tech-
niques used at step 4820 of process flow 4800 in FIG. 48. In
some embodiments, the restored shares may be decrypted
based on the data dispersion and/or encryption technologies
used to establish the first communication channel. Process
flow 4800 then ends. In some embodiments, the steps of
process flows 4800 and 4850 may be repeated as necessary
for the transmission of data over the secure communication
tunnels.

The communication protocols described with respect to
process flows 4700, 4800, and 4850 offer the assurance that if
certain outer or inner level certificate authorities have been
compromised, data will be securely exchanged between
devices. That is, even if compromised certificate authorities
have access to the information exchanged based on the keys
associated with that certificate authority, the attacker associ-
ated with the compromised certificate authority would not
have enough information to disrupt the confidentiality or
integrity of the communication. For example, if the outer
level certificate authority was compromised but the inner
level certificate authorities retained their integrity, the
attacker would be able to observe the streams of data within
each of the secure communication tunnels. However, the
attacker would have no knowledge of the encryption used
within each of the secure communication tunnels, including
knowledge of the certificate of each of the unique certificate
authorities used to secure data over each secure communica-
tion tunnel.

In another example, if one or more of the inner level cer-
tificate authorities was compromised but the outer level cer-
tificate authority remained intact, the attacker may be able to
recover cryptographically split portions of the data packets,
but may not be able to decrypt the cryptographically split
portions because it would have no knowledge of the encryp-
tion used by the outer level certificate authority. Further, if the
data packets sent through the secure communication tunnels

US 8,745,372 B2

101

are cryptographically split such that they are restorable from
at least a subset of the shares by recombining at least a
quorum of the shares, the user of the secure data parser may
have the additional protection that if some, but less than a
quorum, of the certificates associated with the secure com-
munication tunnels have been compromised, the attacker
would not be able to restore the cryptosplit data packets.

FIG. 48C is a simplified block diagram of a secure proxy
service 4870 that distributes trust among a set of certificate
authorities in the structure of communication channels, that
may be used in any suitable combination, with any suitable
additions, deletions, or modifications in accordance with one
embodiment of the present invention. Secure proxy service
4870 may reside on any suitable trust engine 110 or module
within trust engine 110 as described with respect to FIGS.
1-8. Secure proxy service is illustrated as including a first
communication channel 4880 and sub-channels (i.e., secure
communication tunnels) 4872, 4874, and 4876 that are estab-
lished using full TLS. However, it will be understood that
these communication channels may be established and used
with any suitable encryption technologies, or without encryp-
tion, as discussed with respect to steps 4710 and 4720 of
process flow 4700 in FIG. 47, or as discussed with respect to
steps 4810 and 4815 of process flow 4800 of FIG. 48A. In
addition, although secure proxy service 4870 is illustrated as
using three sub-channels, any suitable number of sub-chan-
nels may be used to securely transfer information over the
secure proxy service 4870.

Secure proxy service 4870 may include received data pack-
ets 4877. In some embodiments, data packets 4877 may be
unencrypted packets of data to be processed by secure proxy
service 4870. Data packets 4877 may be received from any
suitable source, such as depository 210 described with respect
to trust engine 210 of FIG. 2. In other embodiments, data
packets 4877 may be pre-encrypted according to the encryp-
tion technology used to establish communication channel
4880. For example, as shown in secure proxy service 4870,
communication channel 4880 is established using full TLS.
This full TLS communication channel may be established
according to process flow 4300 of FIG. 43.

Secure proxy service 4870 may also include cryptographic
packet split module 4878. In some embodiments, crypto-
graphic packet split module 4878 may include any circuitry
and/or instructions for executing and/or computing any of the
encryption and data dispersing techniques discussed with
respect to step 4730 of process flow 4700 of FIG. 47, or
discussed with respect to step 4820 and 4825 of process flow
4800 of FIG. 48A. In some embodiments, cryptographic
packet split module 4878 may reside on a client device or a
client-side application that requests to communicate with a
server. In other embodiments, cryptographic packet split
module 4878 may reside or run on any device that is suitable
to run secure data parser 3706 of illustrative overview process
3700 of FIG. 37.

Secure proxy service 4870 may also include communica-
tion channel 4880. Communication channel 4880 may be
established over one or more physical mediums using any
suitable encryption technologies, or no encryption, as
described with respect to the first communication channel at
step 4710 of process flow 4700 of FIG. 47, or as described
with respect to first secure communications channel at step
4810 of process flow 4800 of FIG. 48A. Sub-channels 4872,
4874, and 4876 may be established based on communication
channel 4880. These sub-channels may be established over
one or more physical mediums based on a certificate of a
unique certificate authority according to, for example, the
secure communication tunnels are described with respect to

20

25

30

35

40

45

50

55

60

65

102
step 4720 of process flow 4700 of FIG. 47, or are described
with respect to step 4815 of process flow 4800 of FIG. 48A. In
this manner, each sub-channel may be associated with a
unique certificate authority.

For example, as shown in secure proxy service 4870, TLS
sub-channel 4872 is associated with certificate authority
CAl, TLS sub-channel 4874 is associated with certificate
authority CA2, and TLS sub-channel 4876 is associated with
certificate authority CA3. In some embodiments, the associa-
tions between sub-channels and their respective certificate
authorities may remain constant. In other embodiments, the
associations between sub-channels and their respective cer-
tificate authorities may change as described with respect to
step 4830 of process flow 4800 of FIG. 48 A. Communication
channel 4880 and sub-channels 4872, 4873, and 4876 may be
established on any suitable communication link, such as com-
munication link 125 described with respect to cryptographic
system 100 of FIG. 1.

In some embodiments, cryptographic packet split module
4878 may transmit dispersed shares of data packets 4877 over
sub-channels 4872, 4874, and 4876. This transmission may
occur according to, for example, step 4740 of process flow
4700 of FIG. 47, or according to, for example, step 4830 of
process flow 4800 of FIG. 48A. In some embodiments, cryp-
tographic packet split module 4878 may transmit one of the
split shares over each of the sub-channels 4872, 4874, and
4876. In other embodiments, cryptographic packet split mod-
ule 4878 may transmit more than one split share over one or
more of the sub-channels 4872, 4874, and 4876. Such
embodiments may be useful when one of the sub-channels
4872, 4874, and 4876 is unusable due to a failure in the
physical medium supporting one of the sub-channels.

In some embodiments, sub-channels 4872, 4874, and 4876
may include data encryption modules 4871, 4873, and 4875,
respectively. Data encryption modules 4871, 4873, and 4875
may each be associated with a unique certificate authority
associated with one of the sub-channels. In some embodi-
ments, data encryption modules will apply data encryption to
each share of a data packet that passes over the sub-channel.
For example, as shown with respect to proxy service 4870,
encryption module 4871 is associated with certificate author-
ity CA1 that is associated with TLS sub-channel 4872, and
encrypts each share of a data packet that passes over sub-
channel 4872 using full TLS based on a key developed during
establishment of channel 4872. The establishment of channel
4872 may have used a certificate obtained from certificate
authority CAL Encryption module 4873 is associated with
certificate authority CA2 that is associated with TLS sub-
channel 4874, and encrypts each share of a data packet that
passes over sub-channel 4874 using full TLS based on a key
developed during establishment of channel 4874. This estab-
lishment of channel 4874 may have used a certificate obtained
from certificate authority CA2. Finally, encryption module
4875 is associated with certificate authority CA3 that is asso-
ciated with TLS sub-channel 4876, and encrypts each share of
a data packet that passes over sub-channel 4876 using full
TLS based on a key developed during establishment of chan-
nel 4876. This establishment of channel 4876 may have used
a certificate obtained from certificate authority CA3. In some
embodiments, encryption modules 4872 may reside or run on
any device that is suitable to run secure data parser 3706 of
illustrative process 3700 of FIG. 37.

Secure proxy service 4870 may also include packet restore
module 4879. Packet restore module may receive shares of
data packets from sub-channels 4872, 4874, and 4876 as
described with respect to step 4750 of process flow 4700 of
FIG. 47, or as described with respect to step 4835 of process

US 8,745,372 B2

103

flow 4850 of F1G. 48B. In some embodiments, packet restore
module 4879 may include any circuitry and/or instructions
for executing and/or computing any of the decryption tech-
niques or packet restoration techniques to produce restored
data packets 4882 as described with respect to step 4760 of
process flow 4700 of FIG. 47 or steps 4840 and 4845 as
described with respect to process flow 4850 of FIG. 48B. In
some embodiments, restore packet module 4879 may reside
on a server device or a service-side application that receives
requests from a client device or client-side application. In
other embodiments, packet restore module 4879 may reside
or run on any device that is suitable to run secure data parser
3700 of illustrative overview process 3700 of FIG. 37.

FIG. 49 is a process flow diagrams of illustrated steps and
features for a secure proxy service 4900 between client 4910
and server 4920 that distributes trust among a set of certificate
authorities in the structure of communication channels, that
may be used in any suitable combination, with any suitable
additions, deletions, or modifications in accordance with one
embodiment of the present invention. For example, trust may
be distributed in first certificate authority CA1, second cer-
tificate authority CA2, and third certificate authority CA3 as
part of key establishment phase 4570, as will be described
below. In some embodiments, secure proxy service 4900 may
be executed during and after the key establishment phase of a
secure exchange of information between client 4910 and
server 4920, but before the client 4910 and server 4920
exchange messages. Secure proxy service 4900 may be part
of one or more of the processes associated with the secure
data parser similar to how the steps of process flows 4700,
4800, and 4850 are associated with the secure data parser. In
addition, secure proxy service 4900 may be an example of
process tlows 4700, 4800, and 4850 of FIGS. 47, 48A, and
48B, or may be an example of the operation of secure proxy
service 4870.

Secure proxy service 4900 begins at step 4930. At step
4930, client 4910 establishes a first communication channel
(not shown) and secure communication tunnels as described
with respect to first communication channel and secure com-
munication tunnels at steps 4710 and 4720 of process flow
4700 of FIG. 47, and first secure communication channel and
secure communication tunnels at steps 4810 and 4820 of
process tlow 4800 of FIG. 48A. Secure proxy service 4900
then proceeds to step 4912.

At step 4912, client 4910 may generate secure data parser
headers H,, H,, and H;, and transmit them to server 4920.
Headers H,, H,, and H; may contain information related to
the data dispersion techniques agreed upon by client 4910 and
server 4920. For example, in some embodiments, client 4910
and server 4920 may agree upon the use of an “M of N
cryptosplit” of each exchanged message. Headers H,, H,, and
H; may be encrypted based on keys associated with the estab-
lishment of the secure communication tunnels at step 4930. In
some embodiments, this encryption and header generation
may be included as part of any of the encryption and data
dispersing techniques discussed with respect to step 4730 of
process tlow 4700 of FIG. 47, or discussed with respect to
step 4820 and 4825 of process flow 4800 of FIG. 48A. In
addition, in some embodiments, this header generation pro-
cess may be executed by cryptographic packet split module
4878 as described with respect to secure proxy service 4870
of FIG. 48C. Client 4910 may then transmit Headers H,, H,,
and Hj; to server 4920. This transmission may occur accord-
ing to, for example, step 4740 of process flow 4700 of FIG.
47, or according to, for example, step 4830 of process flow
4800 of FIG. 48A. In addition, a cryptographic packet split
module 4878 may transmit Headers H,, H,, and H; of data

20

25

30

35

40

45

50

55

60

65

104
packets 4877 over sub-channels 4872, 4874, and 4876 as
described with respect to secure proxy service 4870 in FIG.
48C. Secure proxy service 4900 then proceeds to step 4922.

At step 4922, server 4920 may receive Headers H,, H,, and
H; as described with respectto step 4750 of process flow 4700
of FIG. 47, or as described with respect to step 4835 of
process tlow 4850 of FIG. 48B. Client 4910 may then dis-
perse data Dinto shares D, D,, and D5. Shares D, D,, and D,
may be encrypted based on keys associated with the estab-
lishment of the secure communication tunnels at step 4930. In
some embodiments, this dispersing process may be included
as part of any of the encryption and data dispersing techniques
discussed with respect to step 4730 of process flow 4700 of
FIG. 47, or discussed with respect to step 4820 and 4825 of
process flow 4800 of FIG. 48A. Secure proxy service 4900
transmits the shares of encrypted and parsed data to client
4910. This transmission may occur according to, for example,
step 4740 of process flow 4700 of F1G. 47, or according to, for
example, step 4830 of process flow 4800 of FIG. 48A. Secure
proxy service 4900 may proceed to step 4914.

At step 4914, client 4910 may receive shares D,, D,, and
D; as described with respectto step 4750 of process flow 4700
of FIG. 47, or as described with respect to step 4835 of
process flow 4850 of FIG. 48B. In some embodiments, a
packet restore module may receive shares of data packets
from sub-channels as described with respect to packet restore
module 4879 of secure proxy service 4870 in FIG. 48C.
Client 4910 may then decrypt and restore shares D,, D,, and
D;. Shares may be decrypted and restored according to any
suitable decrypt and restore techniques as described with
respect to step 4760 of process flow 4700 of FI1G. 47 or steps
4840 and 4845 as described with respect to process flow 4850
of FIG. 48B. In some embodiments, shares D,, D,, and D,
may be decrypted and restored by a packet restore module
such as packet restore module 4879 of secure proxy service
4870 in FIG. 48C. Client 4910 may repeat any of steps 4912
and 4914, and server 4920 may repeat step 4922, as many
times as necessary to transmit data between client 4910 and
server 4920. Secure proxy service 4900 then ends.

FIG. 50 is a simplified block diagram of a secure proxy
service 5000 between client 5010 and server 5020 that dis-
tributes trust among a set of certificate authorities in the
structure of communication channels, that may be used in any
suitable combination, with any suitable additions, deletions,
or modifications in accordance with one embodiment of the
present invention. Secure proxy service 5000 may be, for
example, the secure proxy services discussed with respect to
process flow 4700, 4800, or 4850, as well as secure proxy
service 4870 or 4900 as described with respect to FIGS.
47-49. Secure proxy service 5000 may be implemented such
that each one of the secure communication tunnels 5030,
5040, and 5050 is associated with an outer level certificate
authority (not shown in FIG. 50) as described with respect to
step 4710 of process flow 4700 of FIG. 47 and step 4810 of
process flow 4800 of FIG. 48A. In addition, secure proxy
service 5000 may be implemented such that each one of
secure communication tunnels 5030, 5040, and 5050 is asso-
ciated with a different one of an inner level certificate author-
ity such as first certificate authority CAl, second certificate
authority CA2, and third certificate authority CA3, and each
one of the secure communication tunnels 5030, 5040, and
5050 are established over different physical transport medi-
ums. These different physical media may be any suitable
physical transport medium as described with respect to step
4710 of process flow 4700 of FIG. 4700 or with respect to step
4810 of process flow 4800 of FIG. 48A. For example, as
illustrated in FIG. 50, secure communication tunnels 5030,

US 8,745,372 B2

105

5040, and 5050 may be established over WiFi, Ethernet, and
cellular communication channels, respectively.

During normal operation of secure proxy service 5000,
client 5010 may send first data share 5012 over first secure
communication tunnel 5030, second data share 5014 over
second secure communication tunnel 5040, and third data
share 5016 over third secure communication tunnel 5050.
Data shares 5012, 5014, and 5016 may be data shares com-
puted by client 5010 using any suitable data dispersing and
encryption techniques discussed with respect to step 4730 of
process tlow 4700 of FIG. 47, or discussed with respect to
step 4820 and 4825 of process flow 4800 of FIG. 48A.
Although secure proxy service 5000 is illustrated as splitting
data into 3 data shares, it may be understood that secure proxy
service 5000 may disperse data into any suitable number of
shares and transmit them each over any suitable number of
secure communication tunnels.

In some embodiments, one of the physical media may
experience a network failure. This network failure may be due
to a structural malfunction of the physical media. For
example, as illustrated in secure proxy service 5000, the
cellular communication channel used to establish third secure
communication tunnel 5050 may experience a network fail-
ure due to damage to a cellular tower.

In some embodiments, secure proxy service 5000 may not
change the transmission of its data packets over secure com-
munication tunnels 5030, 5040, and 5050 in response to the
network failure (not illustrated in FIG. 50). In other words,
client 5010 may continue to send first data share 5012 over
first secure communication tunnel 5030, and second data
share 5014 over second secure communication tunnel 5040.
In some embodiments of secure proxy service 5000, the data
packets that include first data share 5012 and second data
share 5014 may continue to be exchanged without a loss of
data integrity. For example, if the data packets processed by
secure proxy service 5000 are split using a secret sharing
algorithm (e.g., the Shamir secret sharing algorithm) such
that only a quorum of data shares 5012, 5014, and 5016 are
needed to recover each transmitted data packet, then there
may be no loss of data integrity between the packets
exchanged between client 5010 and server 5020.

In some embodiments, secure proxy service 5000 may
change the transmission of its data packets over secure com-
munication tunnels. For example, first data share 5012 may
continue to be transmitted over the wifi-based secure com-
munication tunnel 5030, while second data share 5014 and
third data share 5014 may be transmitted over the Ethernet-
based secure communication tunnel 5040. In such embodi-
ments, one or more of the secure communication tunnels may
need to be split into one or more secure communication
tunnels using additional key establishment processes. This
split may be accomplished according to, for example, any of
the key establishment phases described with respect to step
4720 of process flow 4700 of FIG. 47 or step 4820 of process
flow 4800 of FIG. 48. After these additional key establish-
ment phases, the data shares of the data packets may resume
according to the new configuration of the secure proxy ser-
vice 5000.

In some embodiments, this new configuration of secure
proxy service 5000 may change how the split shares of data
are encrypted based on keys associated with the establish-
ment of the secure communication tunnels or split portions of
the secure communication tunnels. For example first data
share 5012 may be encrypted based on a key associated with
the establishment of wifi-based first secure communication
tunnel 5030, and then transmitted over that tunnel. Second
data share 5014 may be encrypted based on a key associated

20

25

30

35

40

45

50

55

60

65

106

with the establishment of'a first split portion 5042 of Ethernet-
based second secure communication tunnel 5040 and trans-
mitted over first split portion 5042, and third data share 5016
may be encrypted based on a key associated with the estab-
lishment of a second split portion 5044 of Ethernet-based
secure communication tunnel 5040 and transmitted over sec-
ond split portion 5044. In some embodiments, first secure
communication tunnel 5030 may be established using the
certificate obtained from certificate authority CAl, first split
portion 5042 of Ethernet-based second secure communica-
tion tunnel 5040 may be established using the certificate
obtained from certificate authority CA2, and second split
portion 5044 of Ethernet-based secure communication tunnel
5040 may be established using the certificate obtained from
certificate authority CA3. In some embodiments, secure
proxy service 5000 may execute these additional key estab-
lishment processes adaptively as the communication chan-
nels that the secure communication tunnels are established on
fail or are restored. In embodiments of secure proxy service
5000 as illustrated in FIG. 50, secure proxy service 5000 may
be referred to as “communication-medium redundant™.

In embodiments of secure proxy service 5000 as illustrated
in FIG. 50, data may be exchanged between client 5010 and
server 5020 without a loss of data confidentiality, integrity,
and authenticity. That is, even if compromised certificate
authorities have access to the information exchanged based
on that certificate authority, the attacker associated with that
certificate authority may not have enough information to dis-
rupt the confidentiality or integrity of the communication. For
example, if the outer level certificate authority of secure
proxy service 5000 was compromised but the integrity of the
inner-level certificate authorities were preserved, the attacker
may be able to observe the streams of data over the WiFi-
based communication channel and both portions of the Eth-
ernet-based communication channel, but may have no knowl-
edge of the encryption used to secure data over each secure
communication tunnel.

In another example, if one or more of the inner level cer-
tificate authorities was compromised but the outer level cer-
tificate authority remained intact, the attacker may be able to
recover some of the cryptographically split portions of the
data packets, but may not be able to decrypt the data packets
themselves because it may have no knowledge of the encryp-
tion used by the outer level certificate authority. Further, if the
data packets sent through the secure communication tunnels
are cryptographically split such that they are restorable from
at least a subset of the shares by recombining at least a
quorum of the shares, the user of the secure data parser may
have the additional protection that if some, but less than a
quorum, of the certificates associated with the secure com-
munication tunnels have been compromised, the attacker may
not be able to restore the cryptosplit data packets.

Additionally, other combinations, additions, substitutions
and modifications will be apparent to the skilled artisan in
view of the disclosure herein.

What is claimed is:

1. A method for securing data in motion comprising origi-
nal data packets, the method comprising:

establishing a secure communication channel;

establishing a plurality of secure communication tunnels

within the secure communication channel, wherein the
plurality of secure communication tunnels is established
using certificates issued by a plurality of unique certifi-
cate authorities;

dispersing each one of the original data packets into a

plurality of shares based on multi-factored secret shar-
ng;

US 8,745,372 B2

107

encrypting each of the plurality of shares using a key asso-
ciated with the establishment of a different one of the
secure communication tunnels; and

transmitting the plurality of encrypted shares over one or

more of the plurality of secure communication tunnels.

2. The method of claim 1, wherein transmitting the plural-
ity of encrypted shares comprises transmitting each
encrypted share on a secure communication tunnel estab-
lished using a key used to encrypt the respective encrypted
share.

3. The method of claim 1, further comprising:

receiving the plurality of encrypted shares, each on a

respective one of the plurality of secure communication
tunnels;

decrypting each of the plurality of encrypted shares based

on the key associated with the establishment of the
respective one of the plurality of secure communication
tunnels; and

restoring the set of original data packets based on the

multi-factored secret sharing.

4. The method of claim 1, further comprising generating a
certificate authority hierarchy, wherein the certificate author-
ity hierarchy comprises a set of root certificate authorities,
and wherein the plurality of unique certificate authorities
comprises the set of root certificate authorities.

5. The method of claim 1, further comprising generating a
certificate authority hierarchy, wherein the certificate author-
ity hierarchy comprises a set of minor certificate authorities,
and wherein the plurality of unique certificate authorities
comprises the set of minor certificate authorities.

6. The method of claim 1, wherein each of the plurality of
secure communication tunnels is established over a different
physical transport medium.

7. The method of claim 6, wherein at least one of the
physical transport mediums experiences a network failure,
the method further comprising restoring the original data
packets without a loss of data integrity.

8. The method of claim 7, wherein at least one of physical
transport mediums experiences a network failure, wherein a
portion of the plurality of shares is designated for transmis-
sion over the failed physical transport medium, and wherein
at least one of the physical transport mediums is operational,
the method further comprising:

establishing additional secure communication tunnels

within the at least one operational physical transport
medium; and

transmitting the portion of the plurality of shares desig-

nated for transmission over the at least one of the set of
failed physical transport mediums over the additional
secure communication tunnels.

9. The method of claim 1, wherein the associations
between the tunnels and the unique certificate authorities are
dynamic.

10. The method of claim 1, wherein dispersing each one of
the original data packets into a plurality of shares further
comprises splitting each one of the original data packets into
a plurality of shares based on an M of N cryptosplit.

11. The method of claim 10, wherein the plurality of shares
are restorable from at least a subset of the shares by recom-
bining at least a quorum of the shares.

12. The method of claim 1, wherein the plurality of secure
communication tunnels are established based on the Trans-
port Layer Security protocol.

13. The method of claim 1, further comprising:

generating a certificate authority hierarchy, wherein the

certificate authority hierarchy comprises a set of minor
certificate authorities; and

20

25

30

35

40

45

50

55

60

65

108

encrypting each one of the set of shares based on a certifi-
cate issued by a unique minor certificate authority of'the
certificate authority hierarchy.
14. The method of claim 1, wherein transmitting the plu-
rality of encrypted shares comprises transmitting two or more
of the plurality of shares over a same one of the plurality of
secure communication tunnels.
15. The method of claim 1, wherein transmitting the plu-
rality of encrypted shares comprises transmitting each of the
plurality of shares over one of the plurality of secure commu-
nication tunnels, wherein each share is transmitted over a
secure communication tunnel that is different than the tunnel
corresponding to the key used to encrypt the respective share.
16. The method of claim 1, wherein transmitting the plu-
rality of encrypted shares comprises transmitting each of the
plurality of encrypted shares over a different one of the plu-
rality of secure communication tunnels.
17. The method of claim 1, wherein transmitting the plu-
rality of encrypted shares comprises transmitting the plurality
of shares over the plurality of secure communication tunnels,
wherein at least two of the plurality of encrypted shares are
transmitted over the same tunnel.
18. The method of claim 1, wherein establishing a plurality
of secure communication tunnels within the secure commu-
nication channel, wherein the plurality of secure communi-
cation tunnels is established using certificates issued by a
plurality of unique certificate authorities comprises establish-
ing the plurality of secure communication tunnels using a
different one of the certificate authorities to establish each of
the secure communication tunnels.
19. The method of claim 1, wherein establishing a plurality
of secure communication tunnels within the secure commu-
nication channel, wherein the plurality of secure communi-
cation tunnels is established using certificates issued by a
plurality of unique certificate authorities comprises establish-
ing the plurality of secure communication tunnels using a
same one of the certificate to establish at least two, but less
than all, of the plurality of secure communication tunnels.
20. A system for securing data in motion comprising origi-
nal data packets, the system comprising a first device com-
prising processing circuitry configured to:
establish a secure communication channel,
establish a plurality of secure communication tunnels
within the secure communication channel, wherein the
plurality of secure communication tunnels is established
using certificates issued by a plurality of unique certifi-
cate authorities;
disperse each one of the original data packets into a plu-
rality of shares based on multi-factored secret sharing;

encrypt each of the plurality of shares using a key associ-
ated with the establishment of a different one of the
secure communication tunnels; and

transmit the plurality of encrypted shares over one or more

of the plurality of secure communication tunnels.

21. The system of claim 20, wherein the processing cir-
cuitry is configured to transmit the plurality of encrypted
shares by transmitting each encrypted share on a secure com-
munication tunnel established using a key used to encrypt the
respective share.

22. The system of claim 20, further comprising a second
device comprising processing circuitry further configured to:

receive the plurality of encrypted shares, each on a respec-

tive one of the plurality of secure communication tun-
nels;

US 8,745,372 B2

109

decrypt each of the plurality of encrypted shares based on
the key associated with the establishment of the respec-
tive one of the plurality of secure communication tun-
nels; and

restore the set of original data packets based on the multi-

factored secret sharing.

23. The system of claim 20, wherein the processing cir-
cuitry is further configured to generate a certificate authority
hierarchy, wherein the certificate authority hierarchy com-
prises a set of root certificate authorities, and wherein the
plurality of unique certificate authorities comprises the set of
root certificate authorities.

24. The system of claim 20, wherein the processing cir-
cuitry is further configured to generate a certificate authority
hierarchy, wherein the certificate authority hierarchy com-
prises a set of minor certificate authorities, and wherein the
plurality of unique certificate authorities comprises the set of
minor certificate authorities.

25. The system of claim 20, wherein each of the plurality of
secure communication tunnels is established over a different
physical transport medium.

26. The system of claim 25, wherein at least one of the
physical transport mediums experiences a network failure,
the method further comprising restoring the original data
packets without a loss of data integrity.

27. The system of claim 26, wherein at least one of physical
transport mediums experiences a network failure, wherein a
portion of the plurality of shares is designated for transmis-
sion over the failed physical transport medium, and wherein
at least one of the physical transport mediums is operational,
the processing circuitry further configured to:

establish additional secure communication tunnels within

the at least one operational physical transport medium;
and

transmit the portion of the plurality of shares designated for

transmission over the at least one of the set of failed
physical transport mediums over the additional secure
communication tunnels.

28. The system of claim 20, wherein the associations
between the tunnels and the unique certificate authorities are
dynamic.

29. The system of claim 20, wherein the processing cir-
cuitry is further configured to disperse each one of the original
data packets into a plurality of shares by splitting each one of
the original data packets into a plurality of shares based on an
M of N cryptosplit.

20

25

30

35

40

45

110

30. The system of claim 29, wherein the plurality of shares
are restorable from at least a subset of the shares by recom-
bining at least a quorum of the shares.

31. The system of claim 20, wherein the plurality of secure
communication tunnels are established based on the Trans-
port Layer Security protocol.

32. The system of claim 20, wherein the processing cir-
cuitry is further configured to transmit the plurality of
encrypted shares by transmitting the plurality of shares over
one of the plurality of secure communication tunnels.

33. The system of claim 20, wherein the processing cir-
cuitry is further configured to transmit the plurality of
encrypted shares by transmitting each of the plurality of
shares over one of the plurality of secure communication
tunnels, wherein each share is transmitted over a secure com-
munication tunnel that is different than the tunnel corre-
sponding to the key used to encrypt the respective share.

34. The system of claim 20, wherein the processing cir-
cuitry is further configured to transmit the plurality of
encrypted shares by transmitting each of the plurality of
shares over a different one of the plurality of secure commu-
nication tunnels.

35. The system of claim 20, wherein the processing cir-
cuitry is further configured to transmit the plurality of
encrypted shares by transmitting the plurality of shares over
the plurality of secure communication tunnels, wherein at
least two of the plurality of encrypted shares are transmitted
over the same tunnel.

36. The system of claim 20, wherein the processing cir-
cuitry is further configured to establish a plurality of secure
communication tunnels within the secure communication
channel, wherein the plurality of secure communication tun-
nels is established using certificates issued by a plurality of
unique certificate authorities by establishing the plurality of
secure communication tunnels using a different one of the
certificate authorities to establish each of the secure commu-
nication tunnels.

37. The system of claim 20, wherein the processing cir-
cuitry is further configured to establish a plurality of secure
communication tunnels within the secure communication
channel, wherein the plurality of secure communication tun-
nels is established using certificates issued by a plurality of
unique certificate authorities by establishing the plurality of
secure communication tunnels using a same one of the cer-
tificate to establish at least two, but less than all, of the
plurality of secure communication tunnels.

#* #* #* #* #*

