Office de la Propriete Canadian CA 2356982 A1 2000/0/7/13

Intellectuell Intellectual P
du Canada Office o opery 2n 2 356 982
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 1999/11/29 (51) Cl.Int.%/Int.CI.° GOBF 15/173

(87) Date publication PCT/PCT Publication Date: 2000/0//13| (71) Demandeur/Applicant:

(85) Entree phase nationale/National Entry: 2001/06/28 3COM CORPORATION, US
o ST . (72) Inventeurs/Inventors:

(86) N° demande PCT/PCT Application No.: US 99/28199 LUSHER ELAINE. US

(87) N° publication PCT/PCT Publication No.: WO 00/41091 LUO. WENJUN, US:

(30) Priorité/Priority: 1998/12/31 (09/223.829) US NESSETT, DANNY M., US;
EICHERT, STUART, US

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : GESTION DYNAMIQUE D'UNE POLITIQUE, ET APPAREIL ET PROCEDES UTILISANT DES DISPOSITIFS

ACTIFS DE RESEAU
(54) Title: DYNAMIC POLICY MANAGEMENT APPARATUS AND METHOD USING ACTIVE NETWORK DEVICES

170 |
=i 130

AP En me

goooo [

Smart NIC

AP Engine

140

AP Engine

Switch Repeater

A En_gine Router
d 000 110

coooa [

Smart NIC

AP Engine p oz
------------------ ' | /\ s . s e
180 Hub /Tmterface Fax

]

Management Station

(57) Abrége/Abstract:

A system for providing policy management in a network (110) that includes nodes (100, 120, 130, 140, 150, 160, 170, 180, 190)
operating In multiple protocol layers and having enforcement functions. Multiple network devices, such as routers (160), hubs
(190), remote access equipment (150), switches (120), repeaters (140), bridges (170), and network cards (130, 180), and end
system processes having security functions are configured to contribute to implementation of policy enforcement in the network
(110). By distributing policy enforcement functionality to a variety of network devices and end systems, a pervasive policy
management system I1s implemented. The policy management system Iincludes a policy implementation component that
accepts policy, I.e. instructions or rules, that define how the network device should behave when confronted with a particular
situation. The management system further includes a management station (100), with a user interface (101) operating pursuant
to a first process capable of providing an object to the network, the object including variables and one of a method or instructions
to locate a method, executable on the network to set up a second process to enforce a portion of the policy.

e

T N §.
.l.!.\‘\-c.c..--.
. T

3 '_{,-.T'l'.
o~

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191




CA 02356982 2001-06-28

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 6 :

(11) International Publication Number: WO 00/41091
GO6F 15/173
(43) International Publication Date: 13 July 2000 (13.07.00)
(21) International Application Number: PCT/US99/28199 | (81) Designated States: CA, GB, JP, European patent (AT, BE, CH,
CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL,
(22) International Filing Date: 29 November 1999 (29.11.99) PT, SE).
(30) Priority Data: Published
09/223,829 31 December 1998 (31.1298) US With international search report.

(71) Applicant: 3COM CORPORATION [US/US]; 5400 Bayfront
Plaza, Santa Clara, CA 95052-8145 (US).

(72) Inventors: EICHERT, Stuart; 119 Tower Road, Middlebury,
CT 06762-3138 (US). NESSETT, Danny, M.; 34810
Wabash River Place, Fremont, CA 94555 (US). LUO,
Wenjun; 40664 Witherspoon Terrace, Fremont, CA 94538
(US). LUSHER, Elaine; 456 Montori Court, Pleasanton,
CA 94566 (US).

(74) Agent: RICHARDSON, Kent, R.; Wilson Sonsini Goodrich &

Rosati, 650 Page Mill Road, Palo Alto, CA 94304-1050 S | S | | |
(US).

(57) Abstract

A system for providing policy management in a network (110) that includes nodes (100, 120, 130, 140, 150, 160, 170, 180, 190)
operating in multiple protocol layers and having enforcement functions. Multiple network devices, such as routers (160), hubs ( 190),
remote access equipment (150), switches (120), repeaters (140), bridges (170), and network cards (130, 180), and end system processes
having security functions are configured to contribute to implementation of policy enforcement in the network (110). By distributing policy
enforcement functionality to a variety of network devices and end systems, a pervasive policy management system is implemented. The
policy management system includes a policy implementation component that accepts policy, i.e. instructions or rules, that define how the
network device should behave when confronted with a particular situation. The management system further includes a management station
(100), with a user interface (101) operating pursuant to a first process capable of providing an object to the network, the object including

vanables and one of a method or instructions to locate a method, executable on the network to set up a second process to enforce a portion
of the policy.




10

15

20

235

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

DYNAMIC POLICY MANAGEMENT APPARATUS AND METHOD
| USING ACTIVE NETWORK DEVICES

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to establishing and enforcing system policy on a network:

and more specifically to systems employing dynamic policy management using active

networking devices to establish and enforce system policy.

Discussion of the Related Art

The Internet has grown significantly over the past several decades, yet there are signs
that applications would benefit from a richer set of Internet services. For example, the
expected growth in voice over IP (VoIP) traffic on the Internet will change its overall traffic
characteristics. While up to now real-time delivery requirements for IP traffic have been rare,
VolIP packets must be delivered within fairly strict time constraints. Since the volume of
VolIP traffic 1s likely to grow into a high percentage of Internet traffic, the services required
by the Internet will change. As other real-time traffic, such as that supporting video, becomes
prominent, the effect on Internet services will be even more dramatic.

The growth of the Internet and the use of IP based technology has also created a
corresponding growth in the number of systems administrators must manage. This scaling
problem 1s being addressed by the use of policy based management systems, whereby
administrators specify what should happen and leave it to the policy management system to
determine procedures to implement the policy.

The system administrators' task of administering policy is even further complicated by
legacy systems. As networks evolve, older equipment, i.e., legacy systems, remain that may
not be able to participate in a particular management policy. Alternately, legacy systems may
be able to participate, but the methods required to execute the policy are different, thereby
complicating the implementation of the policy. Because of the variety of devices and legacy

systems, the complexity of implementing a management policy makes it difficult to establish




CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

the policy across all layers and device types of the network, and particularly difficult to
maintain such a policy management system even if it could be successfully implemented.
Typically in the prior art a central management station that dispatches instructions to
the network devices as needed controls the policy management. The instructions may be
5  very basic, such as telling the device to shut down, or very complex requiring the device.
Often the instructions are in response to repetitive processes that are executed periodically,
1.e., daily or weekly, or on the occurrence of some event. If system congestion is high or the

management system is inoperative, the appropriate action may not be taken, thereby creating
system performance degradation; and in the worse case scenario this could lead to system
10 failure.
Accordingly, it is desirable to implement a policy management system which allows
for system policy to be executed and maintained at the network device level across layers of

network systems and protocols.

15 SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to a dynamic policy management
apparatus and method using active network devices that provide for policy enforcement.
The present invention provides a system for providing policy management in a
20 network that includes passive nodes and active nodes operating in multiple protdcol layers
and having enforcement functions. A variety of network devices, i.e., nodes or active nodes,
such as routers, remote access equipment, switches, repeaters, network cards, and end system
processes having security functions, are configured to contribute to the implementation of
policy enforcement in the network. By distributing policy enforcement functionality to a
25  varety of network devices and end systems, a pervasive policy management system 1s
implemented. The policy management system includes a policy implementation component
that accepts policy, i.e., instructions or rules that define how the network device should
behave when confronted with a particular situation. The policy enforcement is performed by
network devices having tools and resources to execute the active packets distributed
30  throughout the network to enforce the defined policy. The policy being implemented can be
implemented across multiple protocol layers and must be coordinated by the policy

management system such that particular devices enforce that part of the policy pertinent to
their part of the network.




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

For example, a router in the network enforces that part of the policy that is pertinent
to those systems and network devices whose traffic might traverse the router. A switch
enforces that part of the policy that is pertinent to those systems and network devices whose
traffic traverses the switch. A repeater enforces that part of the policy that is pertinent to
those systems and network devices whose traffic traverses the repeater. A network interface
card with processing resources (smart NIC) enforces that part of the policy that is pertinent to
the system or device to which it is connected. In addition, other parts of the network are
included in the policy management hierarchy, such as end system operating systems and
applications, remote access equipment, network management systems for controlling network
traffic and monitoring network traffic, and other auxiliary systems such as name services and
file services are included in the collection of network devices that are called upon to enforce a
portion of the policy being implemented by the present invention.

To implement the system policy a network manager uses a management station to
specify policy for a network. The management station employs a policy definition system
(PDS) supporting a policy definition language (PDL) to create a programming language
active packet, which represents at least one rule of the policy, which is then encapsulated in
preparation for transmission to the active network devices. The active packet includes, but is
not limited to, an object-oriented programming language, Such as C++, CAML, JAVA, and
Python, having objects and scripting programming language, such as Practical Extraction and
Report Language (PERL), Tool Command Language (TCL), or employing shells, e.g. Unix
supports Bourne shell, Korn shell, and C-shell code. The active packet is stored in an active
packet file on a memory device and the file is optionally signed with a digital signature. The
active packet file is either deposited in a network directory, or other distributed database, or
sent thrbugh the network to the enforcement device and stored in its memory. The
enforcement device is signaled when a new policy, represented by the active packet file, for it
is available. The signal may contain the active packet or it may inform the device to find the
active packet in a network directo'ry or distributed database.

After the enforcement device obtains the active packet file, it is optionally verified via
the signature to determine the privileges the active packet should be granted. The active
packet file 1s then extracted from the memory location and the active packet is prepared for
execution. The enforcement device checks to see if it has the implementing code (at least one

variable, method, and/or data) for the active packet loaded in its memory. If not, the




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

enforcement device obtains the code from a distributed database or directory, or another
enforcement device, or similar memory device.

The policy definition language comprises a mobile programming language which in
turn includes, but is not limited to, object-oriented and scripting programming languages. If
the mobile programming language is an object-oriented language then the active packet
comprises an active object, i.e. code plus data, normally referred to just as an object. For
each object a thread of execution is established, and the object is executed. The object then
uses the services available to it on the enforcement device to enforce the policy or a portion
of the policy. If the mobile programming language is a scripting programming language then
the active packets comprises active code, normally referred to just as code. The code along
with an interpreter for interpreting the code is transferred to the enforcement device. The
code then uses the services available to it on the enforcement device to enforce the policy or a
portion of the policy. Several enforcement devices may be utilized to execute a certain
policy. Therefore, a particular enforcement device may only enforce a portion of the policy.

The reader should note that the remainder of the disclosure will primarily focus on
active packets comprising objects. Those of ordinary skill in the art will appreciate that
substantially the same processes and procedures applicable to active objects are applicable to
active code. Throughout the disclosure any reference made to an object, unless otherwise
stated, refers to an object-oriented object and any reference made to code, unless otherwise
stated, refers to a code associated with a scripting programming language.

The management station software provides the system administrator with resources to
input a list of rules describing the policy to be enforced on a network. The management
station PDS is a software product that creates one or more programming language active
packets as previously explained, which represent the rules. The objects, once created, arein a
ready-to-run state and are invoked by a thread of execution to implement the processes that
they represent. The invocation of the object establishes a thread that can execute
independently of other processes running on the various network devices. A process can
have several threads running concurrently, each performing different jobs such as waiting for
events to occur or performing some other time consuming task. When a thread has finished
its job, the thread is suspended or destroyed and the resources utilized are returned to the
system.

After the creation of one or more objects, the management station software will

encode the objects into a transportable format. Upon the completion of the encoding, the data

4




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

identifying the code that the objects need in order to be executed is associated with the
encoded transportable objects. After storing the objects to an object file, the management
station software will optionally sign the file. The purpose of signing the file is to allow the
enforcement device to decide which rights and privileges to grant the objects when they are
executed on the enforcement device.

The optionally signed file can either be deposited in a on a storage device, which
includes but is not limited to a directory server or distributed database, or sent to the
enforcement device via the network. If the file has been deposited in a directory server or
distributed database, the management station will either provide the enforcement device with
the address to the storage location or the device will know to retrieve the file at a specified
location. The notification that an object file is available for the enforcement device can occur
1n many ways inciuding, but not limited to, the changing of a state or variable that the
enforcement device monitors.

If the enforcement device receives a signal indicating that a new policy, represented
by the object file, is available for it on a directory server or distributed database, it will
retrieve the obj ect file. Upon retrieval or receipt of the object file, the enforcement device
will extract the object file contents.

The enforcement device will optionally verify the signature of the object file, as
previously stated, to determine which of its base services that it will allocate to the objects in
the signed file to utilize in the implementation of its proscribed functions. The enforcement
device will then examine the data within the file which specifies the code required by the
objects. Ifit does not have the code stored in its memory, it will extract the code or a
reference to the code from the file. If the code is in the enforcement device's memory it is

then loaded into its program memory and executed. Otherwise, the device uses the reference

to retrieve the code from a directory server or distributed database.

The present invention provides distinct advantages over the prior art, in that
traditionally, policy is represented as flat data, requiring an enforcement device to understand
its syntax. If this syntax changes, either to add new kinds of policy terms or to restructure the
representation, all enforcement devices must be reprogrammed to parse the new syntax.

With the present invention, the contract between the network device and network
management system involves only the methods that a policy object exports. Thus, new

methods can be added to an object class that control new aspects of policy without affecting




10

15

20

235

30

CA 02356982 2001-06-28

WO 00/41091 | PCT/US99/28199

legacy enforcement devices. Also, the internal representation of policy may change without
atfecting either the network management station or the enforcement device.

The present invention further supports a process called co-location, which enables the
objects to be distributed with their code, or references to their code that implements the
policy, throughout the network. Co-location enables new policy implementations to be
distributed to devices without changing the underlying base implementations of the devices.
For instance, legacy systems would have to be re-booted in order for new policy
implementations to be enabled. Co-location permits the legacy systems to continue their base
functions undisturbed while a new policy is implementation is distributed to the enforcement
devices. . '

Another advantage of the present invention is the separation of policy rule
enforcement, which is accomplished by creating an independent thread for each object
representing a particular rule. Network administrators can independently stop or start the
enforcement of each rule in the policy specification without affecting the enforcement of
other polices in the specification. |

Additional features and advantages of the invention will be set forth in the detailed
description which follows, and in part will be apparent from the description, or may be
learned by practice of the invention. The aspects and other advantages of the invention will
be realized and attained by the structure particularly pointed out in the written description and
claims hereof as well as the appended drawings.

To achieve these and other advantages and in accordance with the purpose of the
present invention, as embodied and broadly described, the present invention can be
characterized according to one aspect as a system providing dynamic policy management in a
network, including a management station coupled to said network, the management station
including resources to store data defining policy rules for a device in the network. Resources
in the management station are included for producing an active packet including at least a
variable and a method, in response to the data defining the policy rule, the active packet
having a format. Resources in the management station are included for sending the active
packet to the network device adapted to read and execute the active packet accordin g to the
format.

Another aspect of the present invention can be characterized as a system for dynamic

policy management in a network, including a network device coupled to said network, the

network device including resources to receive an active packet representing a policy rule

R ————




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 | PCT/US99/28199

from a second device in the network, the active packet having a format; resources in the

network device for decoding the active packet according to the format, the active packet
including a variable and a method; and resources in the network device for executing the
active packet.

A further aspect of the present invention can be characterized as a system for dynamic
policy management in a network including a management station and a network device
coupled to said network, wherein the management station includes:

1) resources to store data defining a policy rule for a device coupled to the network:

2) resources in the management statiqn for producing an active packet including a
variable and a method in response to the data defining the policy rule, the active packet
having a format; and

3) resources in the management station for sendmg the active packet to the network
device, wherein the network device includes resources to receive, decode, and execute the
active packet according to the format.

A still further aspect of the present invention can be characterized as a system
providing dynamic policy management by a method, the system, including an interface
adapted to receive instructions characterizing policy regarding control of a network; and an
active node connected to the interface which provides a packet to the network, the packet
including one of a variable and a method and a reference to the variable and the method,
executable on the network to set up a process to enforce at least a portion of the policy.

Another aspect of the present invention can be characterized as a system for dynamic
policy management in a network, including a network node adapted to receive a packet,
created by a first process, representing policy for control of a network; and resources in the
network node capable of executing a packet including one of a variable and a method and
instructions to locate the variable and the method, executable on the network node to enforce
a portion of the policy.

An additional aspect of the present invention can be characterized as a system for
dynamic policy management in a network, including an active node and a network node
coupled to said network, wherein the active node includes:

A) resources to store data defining a policy rule for a device coupled to the network:

B) resources in the active node for producing a packet including a variable and a

method in response to the data defining the policy rule; and

C) resources in the active node for sending a packet file containing one of the packet

7




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

and a reference to the packet to the network node, wherein the network node includes
resources to receive, decode, and execute the packet.
It 1s to be understood that both the foregoing general description and the following

detailed description are exemplary and explanatory and are intended to provide further

explanation of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding
of the invention and are incorporated in and constitute a part of this specification, illustrate
embodiments of the invention and together with the description serve to explain the
principles of the invention. In the drawings:

Fig. 1 is schematic diagram illustrating the interconnections of the management
station, the network and the enforcement devices of the present invention:

Fig. 2 depicts a general-purpose computer and its resources of the present invention;

Fig. 3 1s a flow diagram illustrating the process steps performed by the software
product for creating and storing the objects of the present invention;

Fig. 4 illustrates a stored file of objects and their references to the methods and data

necessary to execute the object of the present invention;

Fig. 5 illustrates a hierarchy of systems executing multiple software products of the

present invention; and

Fig. 6 1s a flow diagram illustrating the process steps of the software product for

deserializing and executing objects of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the preferred embodiments of the present
invention, examples of which are illustrated in the accompanying drawings.

Fig. 1 illustrates a schematic diagram of a general network and its connected network
devices. The management station 100 comprising an interface 101 is connected to network
110. Network 110 can be a WAN, LAN, INTERNET, or similar type network wherein

devices are inter-connected and control, i.e., policy, is desired. The intermediate network

devices, such as switch 120, smart NIC, 130 and 180, repeater 140, router 160, bridge 170

8




10

15

20

235

30

CA 02356982 2001-06-28

WO 00/41091 ‘ PCT/US99/28199

and hub 190 are connected to network 110. Peripheral devices such as fax 150, include but
are not limited to, printérs and modems are connected to any one of the intermediate devices.
The intermediate network devices are coupled to an active packet (AP) exécution engine, as
depicted in Fig. 1, which provides resources for executing an active packet created by the
management station 100 pursuant to the policy definition language (PDL) and transferred to a
network intermediate or end device.

Fig. 2 illustrates the resources of management station 100 and Fig. 3 depicts a flow
diagram of the process steps executed by the PDS software product utilized by the
management station 100 of the present invention.

The system administrator inputs instructions representing policy through a interface
101, which includes but is not limited to a graphical user interface GUI, of management
station 100. As shown in Fig. 2, the management station 100 comprises a general purpose
computer operating pursuant to a first software product providing a user interface‘ for

Inputting instructions representing system policy. The general-purpose computer includes,

but is not limited to, an IBM, IBM-clone, UNIX workstation, Macintosh, Sun Microsystems,
or similar computer capable of executing an policy definition system. The management
station 100 operates pursuant to an operating system including, but not limited to, Windows
or Windows NT, UNIX, OS/2, Mac OS 8.0 or similar operating system.

The management station 100 includes a processor 210, memory 220 running a
general-purpose operating system, and an engine operating pursuant to PDS software 230
such as JAVA Virtual Machine operating pursuant to JAVA. The management station 100
further includes a graphical GUI engine 240 and a smart NIC 250 which provides access to
the network 110. The system administrator proceeds to input the instructions representing
policy in the form of rules. The rules can be generated at the time of the input and saved for
future reference or they may have been previously generated to handle specific policy
situations and stored in the memory 220 or some other memory device connected to network

110 for later access. In one embodiment basic rules are pre-determined and selected from a
table and populated with at least one variable and a method using the GUI 240 and stored in
memory 220.

For example, the system administrator may decide that the system traffic is very
heavy on Mondays and Fridays causing system congestion, resulting in a degradation of
system performance. The administrator can implement a policy whereby Internet access may

be limited or totally eliminated during working hours on Mondays and Fridays. The policy

9

L P




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

will be created and dispatched to the appropriate network devices to effectuate this policy. In
Fig. 1 this may be the smart NIC/AP engine combination 130, Router/AP engine combination
160, or Switch/AP engine combination 120 working alone or in combination to effectuate the
policy for disabling Internet access on the dates and times in question. The reader should

note that from this point on in the disclosure that a reference to switch 120, smart NIC 130,

repeater 140, router 160, bridge 170, and hub 190, of Fig. 1, also includes the AP engine that

the aforementioned devices are in communication with.

The rules contain a variety of information necessary to effectuate the current policy or
policies dictated by the system administrator. For instance, the rules may contain information
which includes, but is not limited to, network and transport layer source addresses, network
and transport layer destination addresses, protocol(s), time of action, conditionals, e.g. if time
of day is between 8:00 a.m. and 5:00 p.m. disable Internet access, and other variables related
to the execution of the policy by the network devices.

The process steps, performed by the software product running on management station
100, for the transformation of the rules to active packets will be described with reference to
the flow diagram of Fig. 3 and process steps 310 through 380 illustrated therein. The AP
engines depicted in Fig. 1 are devices capable of executing active packets, operating
independently of the legacy systems supporting the network devices, and are configured as
shown 1n Fig. 5. A discussion of the AP engine and its interrelationship with the base
operating system will now ensue before continuing with the detailed description of the
present invention. '

In Fig. 5 the legacy systems 510 perform base services 520, which include, but are not
limited to, recognizing input from the keyboard, sending output to the display screen, keeping
track of files and directories on the memory devices, and controlling peripheral devices. The
legacy systems can also perform policy enforcement, but require the system to be rebooted to
purge the system of any currently executing policy. The AP engine is a self-contained
operating environment that behaves as if it is a separate computer, i.e., similar in many
respects to a virtual machine (VM). An example of a special type of AP engine is the JAVA
Virtual Machine (JVM), which executes active packets. Since JAVA is an object-oriented
language, the active packets executed by the JVM are JAVA objects. JAVA objects and
JAVA applets are executed by the JVM on a level above the host operating system, i.e.,
legacy system.

10




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

The AP engine design has two main advantages: 1) System independence, wherein an
application, 1.e., active packet, will run the same regardless of the hardware and software
underlying the system, hence, an active packet formatted to execute on the AP engine can
also be executable by a VM or a JVM: and 2) Security, since the AP engine has limited or no
contact with the operating system, there is little possibility of an active packet damaging files
or applications running on the legacy systems 510; this approach allows for the dynamic
transfer and execution of active packets, i.e., objects or codes, without having to reboot the
AP engine or legacy system, thereby interrupting the base services 520 being provided by the
legacy systems 510.

As shown in Fig. 1 and the flow diagram of Fig. 3, the rules are inputted into

management station 100 pursuant to step 310. After entering the rules, the rules are

network device that will enforce the policy. Objects are higher level representations of the
policy to be enforced by the enforcement devices 120, 130, 140, 160, 170, or 190 distributed
throughout the network. In a preferred embodiment the created objects are active objects.

The rules are then transformed into objects by instantiation of classes in the
management station 100 pursuant to the step 320. At step 330 the object is encoded. In a
preferred embodiment the encoding is encapsulation. Encapsulation is a process whereby the
objects representing one or more rules representing a policy is encoded making the object
transportable. The encoding process removes the environment specific parameters from the
object, thereby making it mobile. In a most preferred embodiment, the JAVA method of
serializing the object is the encoding method employed. Programming languages which
support the creation of objects, include, but are not limited to, JAVA, C++, CAML, Python,
and Smalltalk.

At step 340 the software optionally signs the object file. The purpose of the signature
1s to provide the enforcement devices with information to allocate rights and privileges to the
objects contained within the object file when the object or objects are executed on the
enforcement device, i.e., one of the network devices 120, 130, 140, 160, 170, or 190 of Fig. 1.
In a preferred embodiment the signature comprises a digital signature.

At step 350 the software stores the file on a memory device containing the objects
along with their references to variables and methods necessary to execute the objects. A

typical object file is depicted in Fig. 4, wherein the encoded object and references to the

11




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

encoded object are stored to a file or archived. The object file and its variables and any
required methods for execution can be stored on a common memory device or on a directory
server or distributed database. The object file and its variables can also be stored on
management station 100, the network 110, or one of the policy enforcement devices as long
references are provided so that the policy enforcement devices can access the appropriate
memory device address to retrieve the necessary data for execution.

At step 360, the management station 100 signals the policy enforcement device that
new policy, in the form of an object file, is available. Management station 100 either
forwards the object file containing the requixjed variables and methods or references to the
variables and methods to execute the object and enforce the policy to the network 110 or to
some other memory device, i.e. directory server, distributed database, etc., pursuant to step
370. It should be noted that since the network 110 generally operates on several levels each
requiring different protocols that the variables and methods must be formatted, with the
appropriate data structures and protocol, at ménagement station 100 by the PDS software.
The formatting is necessary to accommodate the myriad parameters necessary for a
successful transmission and execution of the object and hence the enforcement of the specific

portion of the policy assigned to that network device.

The technique of using objects to represent and enforce policy permits the dynamic
modification of policy without having to reboot the enforcement device to purge it of a
previous policy. Multiple policy rules are capable of being supported concurrently on each
network device equipped with an AP engine. In the event that inconsistent policy rules are

scheduled to be executed on the same enforcement device, several alternatives are available.
A first or last in time approach can be taken wherein either the first policy rule or last policy
rule provided to the enforcement device will take priority.

If the first in time approach is taken, the object representing the new policy rule may
be loaded into memory, but the system resources will not be allocated to it until the first
process is concluded. In the latter approach the first process may be terminated and its
variables and states along with the attendant resources allocated to its execution are returned

to their initial states before the execution of the new policy rule. Other approaches, as

determined by the system administrator, can be implemented to overcome conflicts between

objects and will be apparent to persons of ordinary skill in the art, and therefore will not be
discussed at this time.

12




10

15

20

235

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

An example of the above process will now be given. The system administrator at
management station 100 inputs a rule to discontinue traffic between hub 190 and the users
attached to that node. The rule in question is selected from a table accessed by a GUI 101
being executed on management station 100. ‘The rule is then converted into an object,
encoded with the proper format, i.e., data structures and protocol for the network device or
devices that it 1s intended to be executed on, then saved into an object file, which is digitally
signed. The object file along with any implementing code or data is sent to the network 110
to be stored. In this example the object file and its attendant code, here code refers to the
methods and data necessary to execute the object in the file, will most likely be sent to hub
190, or router 160, or stored at the management station 100 in the memory 220. It should be
noted that storing the object at management station 100 is not the preferred storage location.
This 1s because if management station 100 is busy because of system congestion or loses its

connection to the network 110 then the code and/or object necessary to effectuate the policy
by the network devices 160 or 190 will not be accessible.

Either hub 190 or router 160 can enforce the policy established by the system
administrator. Router 160 could perform a primary or secondary function or it could
complement hub 190 by enforcing a portion of the policy. Conversely, the object could be
designated as private code signed such that only hub 190 or router 160 is permitted to access
and execute the object file. The network devices have resources, i.e., logic, to receive and
read the object provided by the management station 100 thereby determining access and
execution rights and privileges. The following discussion will be premised on hub 190 being
the only network device involved in this particular policy enforcement. -

Fig. 6 depicts a flow diagram of the process steps performed and an execution
environment set up by the software running on the AP engine at hub 190. At step 610, the
AP engine is signaled that a new object or objects are ready for its use and execution.
Pursuant to step 620 hub 190 accepts the object file or instruction to retrieve the object file
and any code necessary to execute the object in the file. The object file signature is
optionally verified, pursuant to step 630, and an execution environment 640 is established to
execute the object.

The establishment of the execution environment step 640 is to provide base services
to the object for its use in its execution. This will include, but is not limited to, setting and
clearing filters, setting and clearing timers, reading and writing states within the network

device related to congestion, priority-based forwarding, and similar operations. The AP

13




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

engine 1s capable of executing multiple objects concurrently on hub 190. Pursuant to step
650 hub 190 will then decode the object, 1.e., examine the data within the object which
specifies the variables and methods required for that object, and access its memory for the
variables and methods necessary to execute the object. If the variables and methods required
by the object are not available in its memory, it will then retrieve and extract the variables
and methods from the appropriate memory device, i.e., directory server or distributed
database, using the references provided within the object by management station 100. As
previously noted, the object may be designated as a private code and only accessed and
executed by a particular network device. |

After having retrieved the necessary methods and data to execute the object the object '
will be executed pursuant to step 660. In a preferred embodiment the decoding process 1s a
method of unwrapping the encapsulated object. In a most preferred embodiment the
decoding process is the JAVA method of de-serializing the object. The thread of execution
associated with each object will then be executed invoking the method that the object
implements, thereby providing hub 190 with the resources and functionality necessary to
enforce the policy and block all traffic beyond its node.

The policy represented by the object at hub 190 may be of a limited duration or
perpetual until either it is replaced or canceled by a subsequent object. Since the objects are
capable of executing dynamically, without the need to power down the network device as in
the conventional case, the implementation and modification of an object can be performed
without regard to the functioning of the legacy system 510. .

In general a currently running object that is scheduled to be terminated by a
subsequent object will not terminate until the subsequent object is executed by its thread of
execution. When a thread completes execution, the environment reclaims any resources it
has allocated to it (in some systems this may be automatic, for example by system-wide
garbage collection), and then determines what to do with the implementing code. It may
decide to retain it in its code file library, or it may discard it.

If the network administrator wishes to stop the execution of the thread associated with
an object, he uses the management station 100 to signal the network device to terminate the
object's thread. Reasons for such termination include, but are not limited to, the network '
policy has changed or the administrator wishes to correct a mistake made in a previous policy
specification. The enforcement device can also terminate the execution of an object's thread.

This may be necessary, but is not limited to, an over consumption of resources, or when the

14




CA 02356982 2001-06-28

WO 00/41091 , PCT/US99/28199

signer of the object is no longer trusted to execute code on the device, or the period over
which the policy was bei'ng enforced has expired, or the triggering condition no longer exists
on the system.

In an embodiment of the present invention the object is executed on a JAVA Virtual

5  Machine (JVM) or similar device capable of running a mobile language such as, but not
limited to, CAML, JAVA, Python, Smalltalk.

In an alternative embodiment, active networking can be performed using a script
programming language (SPL) such as, but not limited to, Practical Extraction and Report
Language (PERL), Tool Command Language (TCL), or shell type programming language.

10 The above-described embodiments of the present invention can be employed in any
type of system wherein an AP engine, VM, or similar device has been established with the
device and provides resources to enforce policy at the network device using the above-
described active networking principles. Active networking includes, but is not limited to,
sending active packets, i.e., objects or code, to a network device or a network intermediate

15  device by the network management station in order to tailor network device behavior
according to some system administration objective. Active networking also permits
applications to send active packets to network devices, which lie between them and the
destination of their traffic.

As demonstrated, active nodes can provide a larger variety of functionality with the

20  same amount of dynamic memory wherein a passive network device must contain all of . the
code implementing its full feature set. Once a passive device is deployed, its feature set may
only be modified by loading a new version of the software. Conversely, an active node need
only have the code resident that is necessary to support the features currently 1n use and is
capable of dynamic change without rebooting the device.

25 In addition to the active packet services described above, the AP engine provides the
following general services. It provides a multiplexing substrate for executing threads. This

~ allows the code from multiple active objects to execute concurrently without adversely
affecting the executions associated with other active objects. It provides a security subsystem
for controlling access to active node resources. These resources may be native to the node,

30  such as clocks, buffer memory, or network interfaces or they may be logical resources created

by shared libraries or representing exported entry points of executing active code.




10

15

20

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

networking device, which generally uses a proprietary or commercially supported real-time
operating system (RTOS). The term software-based active node is used to describe the
former and the term hybrid active node to describe the latter. In both cases only a part of the
device is dedicated to active networking.

Traditionally, network devices do not support the notion of multi-user computations,
even if they are based on multiprogramming operating systems, such as UNIX. While there
may be administrative access control, which assi gns different privileges to different users,
generally these do not translate into processes running in separate address spaces. Rather, the
privileges are normally assigned to the terminal connection or console port, which the
administrator uses.

Active networking introduces new requirements that lead to more sophisticated access
control mechanisms. For example, active code in execution may wish to communicate with
other executing active code. The two threads may represent computations carried out on
behalf of two different principals. This active networking provides for more dynamic system
administration and enforcement, heretofore not provided nor contemplated by conventional
means.

The foregoing description of a preferred embodiment of the invention has been
presented for purposes of illustration and description. It is not intended to be exhaustive or to
limit the invention to the precise forms disclosed. Obviously, many modifications and

variations will be apparent to practitioners skilled in this art. It is intended that the following

claims and their equivalents define the scope of the invention.

16




CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

WHAT IS CLAIMED IS:

1. A system for dynamic policy management in a network, comprising:
a management station coupled to said network, the management station including
5  resources to store data defining policy rules for a device in the network;
resources in the management station for producing an active packet including at least
a variable and a method in response to the data defining the policy rule, the active packet
having a format; and
resources in the management station for sending the active packet to the network

10 device adapted to read and execute the active packet according to the format.

2.  The system according to claim 1, wherein the format comprises a data
structure established according to a mobile programming language executable at the network
device.

15

3. The system according to claim 2, wherein the data structure comprises an

object.

4. The system according to claim 3, wherein the object comprises a JAVA
20  object.

S. The system according to claim 4, wherein encoding is performed on the JAVA
object.
25 6. The system according to claim 5, wherein the encoding comprises
serialization.
7. The system according to claim 2, wherein the resources for sending include

logic to transmit one of the variable and the method and a reference to the variable and the

30 method to the network device.

8. The system according to claim 2, wherein the format of the mobile

programming language supports co-location.

17




10

15

20

25

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

9. The system according to claim 2, wherein the format of the mobile

programming language éupports enforcement by multiple network devices.

10.  The system according to claim 2, wherein the network device is an

intermediate network device.
11.  The system according to claim 1, wherein the active packet comprises an

object specified according to a mobile programming language, and the resources for sending

include logic to encode the object.

12.  The system according to claim 11, wherein the mobile programming language

comprises a scripting programming language.

13.  The system according to claim 12, wherein the scripting programming

language comprises one of PERL, TCL, and a shell type programming language.

14.  The system according to claim 12, wherein the format of the scripting

programming language supports co-location.

15.  The system according to claim 12, wherein the format of the scripting

programming language supports enforcement by multiple network devices.

16.  The system according to claim 2, wherein the mobile programming language

comprises an object.

17.  The system according to claim 16, wherein the object comprises a JAVA

object.

18

rr— Ak 14 ke A T P P8 e el b b OALMS




10

15

20

23

30

CA 02356982 2001-06-28

WO 00/41091 , PCT/US99/28199

18.  The system accOrding to claim 17, wherein encoding is performed on the

JAV A object.

19. A system for dynamic policy management in a network, comprising;:

a network device coupled to said network, the network device including resources
receive an active packet representing a policy rule from a second device in the network, the
active packet having a format;

resources in the network device for decoding the active packet according to the
format, the active packet including a variable and a method; and

resources in the network device for executing the active packet.

20.  The system according to claim 19, wherein the format comprises a data

structure established according to a mobile programming language.

21.  The system according to claim 20, wherein the data structure comprises an

object.

22.  The system according to claim 21, wherein the object comprises a JAVA
object.

23.  The system according to claim 20, wherein the mobile programming language
comprises JAVA.

24.  The system according to claim 19, wherein the resources for receiving include

logic to receive one of the variable and the method and a reference to the variable and the

method from the second network device.

25.  The system according to claim 19, wherein the format of the active packet

supports co-location.

26.  The system according to claim 19, wherein the format of the active packet

representing policy supports enforcement by multiple network devices.

19




10

15

20

25

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

27. The system according to claim 19, wherein the network device comprises a

network intermediate device.

28.  The system according to claim 27, wherein the network intermediate device

comprises a router.

29.  The system according to claim 27, wherein the network intermediate device

comprises a hub.

30. The system according to claim 27, wherein the network intermediate device

comprises a switch.

31.  The system according to claim 27, wherein the network intermediate device

comprises an adapter.

32. The system according to claim 27, wherein the network intermediate device

comprises a NIC including the resources for executing the active packet.

33.  The system according to claim 27, wherein the network intermediate device

comprises a bridge.

34.  The system according to claim 27, wherein the network intermediate device

comprises a repeater.

35.  The system according to claim 20, wherein the mobile programming language

comprises a scripting programming language.

20




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 | PCT/US99/28199

36. The system according to claim 35, wherein the scripting programming

language comprises one of PERL, TCL, and a shell type programming language.

37.  The system according to claim 35, wherein the scripting programming

language supports co-location.

38.  The system according to claim 35, wherein the format of the active packet

representing policy supports enforcement by multiple network devices.

39. A system for dynamic policy management in a network, comprising:

a management station and a network device coupled to said network, wherein the
management station includes: .

resources to store data defining a policy rule for a device coupled to the network;

resources in the management station for producing an active packet including a
variable and a method in response to the data defining the policy rule, the active packet
having a format; and '

resources in the management station for sending the active packet to the network

device, wherein the network device includes resources to receive, decode, and execute the

active packet according to the format.

40. The system according to claim 39, wherein the format comprises a data

structure established according to a mobile programming language executable at the network

device.

41. The system according to claim 40, wherein the data structure comprises an

object.

42.  The system according to claim 41, wherein the object comprises a JAVA

object and the resources for sending include logic to encode the object.

43.  The system according to claim 42, wherein the resources for sending include

logic to transmit the variable and one of the method and a reference to the method to the

21




10

15

20

25

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

network device.

44,  The system according to claim 43, wherein the method of encoding the object

comprises serialization.

45.  The system according to claim 44, wherein the mobile programming language
comprises JAVA.
46.  The system according to claim 45, wherein the resources for receiving include

logic to receive the variable and one of the method and reference to the method from the

management station.

47. The system according to claim 40, wherein the mobile programming language

comprises a scripting programming language.

48. The system according to claim 47, wherein the scripting programming

language is one of PERL, TCL, and a shell-type programming language.

49.  The system according to claim 47, wherein the scripting programming

language supports co-location.

50.  The system according to claim 47, wherein the scripting programming

language supports enforcement by multiple network devices.

51.  The system according to claim 47, wherein the network device comprises an

intermediate network device.

22




20

CA 02356982 2001-06-28

WO 00/41091 | PCT/US99/28199

52. A system .providing dynamic policy management by a method, the system
comprising:

an interface adapted to receive instructions charac;terizing polidy regarding control of
a network; and

an active node connected to the interface which provides a packet to the network, the
packet including one of a variable and a method and a reference to the variable and the
method, executable on the network to set up a process to enforce at least a portion of the

policy.

53.  The system providing dynamic policy management according to claim 52,

wherein the instructions characterizing policy comprise one or more rules defining policy.

54. The system providing dynamic policy management according to claim 53,

wherein the active node includes logic to translate the one or more rules into the packet.

55.  The system providing dynamic policy management according to claim 52,

wherein the packet comprises a data structure created according to a policy definition

language.

56. The system providing dynamic policy management according to claim 55,

wherein the policy definition language comprises a mobile programming language.
57.  The system providing dynamic policy management according to claim 56,
wherein the mobile programming language comprises an object oriented programming

language.

58.  The system providing dynamic policy management according to claim 57,

wherein the object-oriented programming language comprises JAVA.

23




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 | PCT/US99/28199

59. The systein providing dynamic policy management according to claim 56,

wherein mobile programming language comprises a scripting programming language.

60. The system providing dynamic policy management according to claim 59,

wherein scripting programming language comprises one of PERL, TCL, and a shell-type
programming language.

61.  The system providing dynamic policy management according to claim 52,
wherein the active node comprises resources to signal a node on the network that a new
policy is available, and wherein the node retrieves a packet file containing one of the packet

and a reference to the packet, and operates pursuant to a second process.

62. The system providing dynamic policy management according to claim 61,
wherein a management station includes logic to combine plurality of packets within the

packet file wherein the data in the packet file indicates privileges that the packet is granted.

63. The system providing dynamic policy management according to claim 62,
wherein the packet file data comprises a digital signature.
64. The system providing dynamic policy management according to claim 63,

including resources to store the packet on the active node.

65. The system providing dynamic policy management according to claim 64,

wherein the packet is stored on a memory device on the network.

66. The system providing dynamic policy management according to claim 52,

wherein the packet supports co-location.

67. The system providing dynamic policy management according to claim 52,

wherein the packet supports enforcement by multiple network devices.

68. The system providing dynamic policy management according to claim 52,

wherein the network device comprises an intermediate network device.

24




10

15

20

25

30

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

69. The systein providing dynamic policy management according to claim 67,

wherein the network device comprises a node.

70.  The system providing dynamic policy management according to claim 52,

wherein the network node comprises a second active node.

71. A system providing dynamic policy management by a method, the system
comprising:
an network node adapted to receive a packet, created by a first process, representing

policy for control of a network; and

resources in the network node capable of executing a packet including one of a
variable and a method and instructions to locate the variable and the method, executable on

the network node to enforce a portion of the policy.

72.  The system providing dynamic policy management according to claim 71,

wherein the packet comprises a data structure created according to a policy definition

language.

73.  The system providing dynamic policy management according to claim 72,

wherein the policy definition language comprises a mobile programming language.

74.  The system providing dynamic policy management according to claim 73,

wherein the mobile programming language comprises JAVA.

75.  The system providing dynamic policy management according to claim 73,

wherein mobile programming language comprises a scripting programming language.

76.  The system according to claim 75, wherein the scripting programming
language is one of PERL, TCL, and a shell-type programming language.

77.  The system providing dynamic policy managing according to claim 71,
wherein the network node includes resources to signal a node on the network that a new

policy is available, and wherein the node retrieves a packet file containing one of the packet

25

}
1
§
y
i




10

15

20

25

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

and a reference to the packet and operates pursuant to a second process.

78.  The system providing dynamic policy management according to claim 71,

wherein the packet supports co-location.

79.  The system providing dynamic policy management according to claim 71,

wherein the active packet supports enforcement by multiple network devices.

80. A system for dynamic policy management in a network, comprising:

an active node and a network node coupled to said network, wherein the active node
includes:

resources to store data defining a policy rule for a device coupled to the network;

resources in the active node for producing a packet including a variable and a method
in response to the data defining the policy rule; and

resources in the active node for sending a packet file containing one of the packet and
a reference to the packet to the network node, wherein the network node includes resources to

receive, decode, and execute the packet.

81.  The system according to claim 80, wherein the packet comprises an object

specified according to an policy definition language, and the resources for sending include

logic to encode the packet.

82.  The system according to claim 81, wherein the resources for sending include

logic to transmit one of the variable and the method and the reference to the variable and the

method to the network node.

26




10

15

20

CA 02356982 2001-06-28

WO 00/41091 PCT/US99/28199

83.  The systém according to claim 81, wherein the policy definition language

comprises a mobile programming language.

84. The system according to claim 83, wherein the mobile programming language

comprises JAVA and the packet comprises a JAVA object.

85.  The system according to claim 84, wherein a method of encoding the JAVA

object comprises serialization.

86.  The system according to claim 83, wherein the mobile programming language

comprises a scripting programming language.

87.  The system according to claim 86, wherein the scripting programming
language is one of PERL, TCL, and a shell-type programming language.

88.  The system according to claim 80, wherein the resources for receiving include

logic to receive one of the packet and a reference to the packet from the active node.

89. - The System according to claim 81, wherein the policy definition language

supports co-location.

90. The system according to claim 81, wherein the policy definition language
supports enforcement by multiple network nodes.

27




[ DId

uoijels juswabeuep

aniH 061
Xed 001 90Elslu| 10l
B |
auibu3g 4v oy
OIN Hews -
)
S 2 . oLl
. l1ojeaday YOolIMg 19)N0Y EPT,
: o884 . - _ ERRRR] | R - i ..
M_ auibug dv aulbug 4y E m 081 M
0zl 091 7

o/ suibuz dv |

Rt
N
"
- -
ey




CA 02356982 2001-06-28

215

0S¢

1] 24 sulbu3 INO uonels
juswabeuepy “

0EZ ubuady | T
001 ”

4

)

»

3

-..

10SS920.d




CA 02356982 2001-06-28

3/5

Input Rules Describing Policy

Create Active Packet

Encode Active Packet

Sign Active Packet File

Save Active Packet File To Memory
Device

Signal Network Device(s) that an
Active Packet is Available for
Execution

Transfer Active Packet or Instructions
to Retrieve Active Packet to Network
Device

310

320

330

340

350

360

370




CA 02356982 2001-06-28

RORR 5128 58

had
cB 2000
Encoded Active Packet #
1
Encoded Active Packet #
2
Encoded Active Packet #
N
Reference to Executable/
Data for Active Packet # 1
Reference to Executable/
Data for Active Packet # 2

Reference to Executable/
Data for Active Packet # N

ARCHIVE / FILE

FI1G. 4

ACTIVE PACKETS 540
AP ENGINE 930

BASE SERVICES 520

LEGACY SYSTEMS 510

SYSTEM HIERARCHY

FI1G. S




CA 02356982 2001-06-28

S/5

Recieve Signal that Active Packet is 610
Available
. . . 620
Accept/Retrieve Active Packet File
Verify Signature 630
Setup Execution Environment 640
Decode Active Packet File 650

Execute Active Packet 660
Terminate Active Packet 670




[ AP Engine ~170

HEE3S o oen]

CE PN wmew o dhw w -

Bridge

160
80~ 1] AP Engine
AP Engine Router
L] 110
Qoooo |:|
HETGITICID .
Smart NIC

120

i
101 l Interface

100

]

Management Station

f’\m

Smart NIC

.

—

Repeater

140




	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - abstract drawing

