
(12) United States Patent
Hornok, Jr. et al.

US0070930 13B1

(10) Patent No.: US 7,093,013 B1
(45) Date of Patent: Aug. 15, 2006

(54) HIGH AVAILABILITY SYSTEM FOR
NETWORKELEMENTS

(75) Inventors: Michael Ronald Hornok, Jr., Sachse,
TX (US); Bradley Allen Brown,
Richardson, TX (US); Steve M.
Bullock, Wylie, TX (US)

(73) Assignee: Alcatel, Paris (FR)
*) Notice: Subject to any disclaimer, the term of this y

patent is extended or adjusted under 35
U.S.C. 154(b) by 773 days.

(21) Appl. No.: 10/174,776
(22) Filed: Jun. 19, 2002
(51) Int. Cl.

G06F 5/73 (2006.01)
(52) U.S. Cl. 709/224; 370/240.1: 714/47
(58) Field of Classification Search 709/224,

709/202, 223: 714/47, 4, 25; 370/241.1
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,852,724. A * 12/1998 Glenn et al. 709,239
5,872,931 A * 2/1999 Chivaluri 709,223
5,944,782 A * 8/1999 Noble et al. TO9,202
6,012,152 A * 1/2000 Douik et al. 71.4/26
6,014.686 A * 1/2000 Elinozahy et al. TO9,202
6,460,070 B1 * 10/2002 Turek et al. TO9,202
6,487.216 B1 * 1 1/2002 Thompson et al. 370/466
6,838,986 B1* 1/2005 Shteyn 340,531

2003/0005152 A1 1/2003 Diwan et al. 709,239
2003/0061340 A1 3f2003 Sun et al. TO9,224
2003/0158933 A1* 8, 2003 Smith TO9,224
2004/0030778 A1* 2/2004 Kronenberg TO9,224

OTHER PUBLICATIONS

“VERITAS Cluster Server v2.0: Technical Overview.” Sep.
2001. VERITAS Software Corporation: USA.

F08 -700

Config, files
Heartbeat,

Config - failoverdependencies, intervals, Cinds,
attributes Y a 70 Status CA)

InService/OutService(reshame)
initionitors sprocess.>

AD

14
<<process/thread/iteratives>

Resource Agent

restate

800
Cailed based on configuration and state inachine

1 2280? M ago? 802
<<thread>> <<thread>> <<thread>>
MonitoroP frServiceOP OutServiceOP

&fictions (3function>
ionitor inService

Resources
CCNCCNAlarms, NIC, IP
Disk, EthernetSw, Memory,
ACM, CA

ACTIVE

“VERITAS Cluster Server.” Aug. 2001. VERITAS Software
Corporation: USA.
“High Availability Clustering in a Microsoft Windows Envi
ronment.” Dec. 2000. VERITAS Software Corporation:
USA.
Telcordia Technologies: Synchronous Optical Network
(SONET) Transport Systems: Common Generic Criteria;
GR-253-CORE; Sep. 2000; Issue 3, Sections 6 and 8.
Leroux; QNX Software Systems, Ltd.; Whitepaper; Think
Outside the Box: A High-Availability Primer; 2001: pp. 1-8.

* cited by examiner
Primary Examiner Abdullahi Salad
(74) Attorney, Agent, or Firm Jessica W. Smith; V.
Lawrence Sewell

(57) ABSTRACT

A method, computer program product, and data processing
system for establishing high-availability of network
resources through automatic failover, while cooperating
with existing telecommunications equipment management
and other systems is disclosed. Events are filtered through a
series of Software modules, each having a particular role to
play with respect to the event. External systems may register
with a “Notification Dispatcher module, included within
the series of modules, to receive notifications when particu
lar events occur. In this way, conflicts between the high
availability system and other systems are avoided through
well-defined sharing of information and delegation of
responsibilities. Other modules may include “Resource
Agents' and a “Resource Agent Adapter for performing
monitoring and control functions with respect to individual
resources through a unified interface, a “Node Failover
Manager for actually performing an automatic failover, and
a “Failover Rules Engine' for intelligently deciding when a
given resource should experience a failover.

12 Claims, 10 Drawing Sheets

71 702
Configfiles

Config - failoverdependencies, intervals,
attribites O6

<<process.>initionitor
NAD

-801

(A) -

<<process/threaditeratives>
Resource Agent

Called based on configuration and state machine 1 /2-80. A ggs 83
<<threads- Sathread>> <<thread>>

inServiceOPE OutServiceOP MonitorP

&functions.<<function>>
Service OutService

805 24

afuriction
Monitor is:

Resources
CCNCCNAlarms, NC, iP
Disk, EthernetSwiemory,
ACM, CM

SANDBY

U.S. Patent Aug. 15, 2006 Sheet 1 of 10 US 7,093,013 B1

FIG 3

U.S. Patent Aug. 15, 2006 Sheet 2 of 10 US 7,093,013 B1

? 200

204 2O2

U. U 2O6

208 M 210 emory/
Controller I/O Bridge
Cache

209 212 214

216 LOCal PC BuS (iii. - PC Bus-)
21 220

230 8
NetWOrk

Graphics Adapter
Adapter

(El PC Bus) Bridge
226

Hard 222
Disk

(El PCI Bus,) 232 Bridge
224 228

FIG 2

013 B1 U.S. Patent

oor-º

U.S. Patent

US 7,093,013 B1 Sheet 5 of 10 Aug. 15, 2006 U.S. Patent

@

US 7.093,013 B1

309

oor-º

U.S. Patent

U.S. Patent

(S)

S

(@) (?)

093,013 B1

sal? ?uu00 ||

U.S. Patent

gizº

U.S. Patent Aug. 15, 2006 Sheet 9 of 10 US 7.093,013 B1

Config, files
Heartbeat,

Config - failover dependencies, intervals, Cmds,
attributes /04 Status CA)

InService/OutService(res/Wame)
Init/Monitors <DOCeSS >> NAD res/Name

resWame, fault

gases Config <<nOtification >>
Cnds Card Presence

714

<<proceSS/thread/iterative >> <<notification>>
Resource Agent Resfault

8 N800 80
Called based on configuration and State machine

1 ck ck

<<thread>> <<thread>> <<thread>>
MonitorOP InServiceOP OutServiceOP

<< function >> << function <<function >>
Monitor InService OutService

>

804

D

722

Resources
CCNC CN Alarms, NIC, IP
Disk, EthernetSW, Memory, <<SubSystem.>>
ACM, ICM TEM

720

ACTIVE

FIG BA

U.S. Patent Aug. 15, 2006 Sheet 10 of 10 US 7.093,013 B1

Config, files
Config - failover dependencies, in tervals,
attributes 706

<< Pris- init/Monitor Processes
716

Config
Cnds

<<proceSS/thread/iterative >> 801
Resource Agent

Called based on Configuration and State machine

<<thread>> <<thread>> <<thread>>
MonitorOP InServiceOP OutServiceOP

<<function >><<function >><<function >>
Monitor InService OutService

805
724

ReSources
CCNC CN Alarms, NIC, IP
Disk, EthernetSW. Memory,
ACM, ICM

STANDBY

FIG. 8B

US 7,093,013 B1
1.

HIGH AVAILABILITY SYSTEM FOR
NETWORKELEMENTS

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to providing high
availability of resources within a managed network. More
specifically, the present invention is directed toward provid
ing a high availability mechanism that is capable of oper
ating in cooperation with telecommunications equipment
management Software running on an Operations, Adminis
tration, Maintenance, and Procedures (OAM&P) processor
complex.

2. Description of Related Art
The management of a computer network is not a simple

task. Today's networks are complex beasts. As organizations
move more and more toward high-connectivity, large net
works containing a wide variety of hardware and Software
systems connected in bewildering topologies have begun to
emerge. As networks become more complex, their upkeep
becomes increasingly difficult. In the telecommunications
domain Operations, Administration, Maintenance and Pro
cedures (OAM&P) systems are software and hardware sys
tems designed to assist network Support personnel in the
management of Such network elements.
An OAM&P system will typically include what is known

as a telecommunications equipment management (TEM)
subsystem. An TEM subsystem monitors the state of net
work equipment and handles equipment provisioning for
field replaceable units (FRUs). Field replaceable units are
units of equipment that can be replaced in the event of a
failure.

While TEM assists human support personnel in handling
equipment failures, in mission-critical applications, such as
telephone communications, waiting for a Support person to
take care of a problem may be unacceptable. High-avail
ability (HA) systems address this need by providing
“failover of failed resources. "Failover” means automati
cally Switching from the failed resource to a backup or
redundant resource. A “resource,” in this context, may be a
hardware component or software component—essentially
anything that is capable of failing.
CLUSTER SERVERTM, produced by Veritas Software

Corporation of Mountain View, Calif., is one example of an
HA system that is commercially available. CLUSTER
SERVERTM monitors groups of resources controlled by
“clusters' of computer systems. In the event of a failure in
a resource, CLUSTER SERVERTM can deactivate the
resource and replace it with another “backup' resource (i.e.,
it performs a failover of the resource). CLUSTER
SERVERTM is capable of monitoring a number of disparate
resources concurrently and is sensitive to dependencies
between resources. If necessary, CLUSTER SERVERTM can
deactivate multiple resources in the correct order, when
dependencies between the resources require it.
CLUSTER SERVERTM and HA systems, in general, may

overlap in their responsibilities with TEM systems. Because
both HA systems and TEM systems monitor the status of
network resources and take action in response to the status
of those resources, conflicts may arise between an HA
system and TEM system operating on the same network. For
example, when a resource is being removed from service
using the TEM system and unbeknownst to the HA system,
the HA system may attempt an unwanted failover.

10

15

25

30

35

40

45

50

55

60

65

2
A need exists, therefore, for a system that can provide

configurable HA features, while cooperating with existing
TEM systems to avoid conflicts.

SUMMARY OF THE INVENTION

The present invention provides a method, computer pro
gram product, and data processing system for establishing
high-availability of network resources through automatic
failover, while cooperating with existing telecommunica
tions equipment management and other systems running on
an Operations, Administration, Maintenance, and Proce
dures (OAM&P) processor complex. Telecommunications
equipment management and OAM&P systems are described
in “SONET Transport Systems: Common Generic Criteria’,
Telecordia Technologies, GR-253-CORE, Issue 3, Septem
ber 2000, Section 6: SONET Network Element Operation
Criteria, Section 8: SONET Operations Communications.
Events, such as a “heartbeat failure.” are filtered through a
series of Software modules, each having a particular role to
play with respect to the event. External systems, such as a
telecommunication equipment management system, may
register with a “Notification Dispatcher module, included
within the series of modules, to receive notifications when
particular events occur. In this way, conflicts between the
high-availability system and other systems are avoided
through well-defined sharing of information and delegation
of responsibilities.

Other modules may include “Resource Agents” and a
“Resource Agent Adapter” for performing monitoring and
control functions with respect to individual resources
through a unified interface, a “Node Failover Manager for
actually performing an automatic failover, and a “Failover
Rules Engine' for intelligently deciding when a given
resource should experience a failover.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec
tives and advantages thereof, will best be understood by
reference to the following detailed description of an illus
trative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 is a diagram of a networked data processing system
in which the present invention may be implemented;

FIG. 2 is a block diagram of a server system within the
networked data processing system of FIG. 1;

FIG. 3 is a diagram providing an overall view of an active
node and a standby node in accordance with the preferred
embodiment of the present invention;

FIG. 4 is a diagram depicting a minimal architectural
configuration of a node availability daemon in accordance
with a preferred embodiment of the present invention;

FIGS. 5A and 5B constitute a diagram depicting a more
expansive configuration of a node availability daemon in
accordance with a preferred embodiment of the present
invention;

FIGS. 6A and 6B constitute a diagram depicting a con
figuration of a node availability daemon including a failover
rules engine in accordance with a preferred embodiment of
the present invention;

FIG. 7 is a diagram depicting the operation of a minimal
configuration node availability daemon in conjunction with

US 7,093,013 B1
3

a telecommunications equipment management Subsystem in
accordance with a preferred embodiment of the present
invention; and

FIGS. 8A and 8B constitute a diagram depicting the
operation of a more expansively configured node availability
daemon in conjunction with a telecommunications equip
ment management Subsystem in accordance with a preferred
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

With reference now to the figures, FIG. 1 depicts a
pictorial representation of a network of data processing
systems in which the present invention may be imple
mented. Network data processing system 100 is a network of
computers in which the present invention may be imple
mented. Network data processing system 100 contains a
network 102, which is the medium used to provide commu
nications links between various devices and computers
connected together within network data processing system
100. Network 102 may include connections, such as wire,
wireless communication links, or fiber optic cables.

In the depicted example, server 104 is connected to
network 102 along with storage unit 106. In addition, clients
108, 110, and 112 are connected to network 102. These
clients 108, 110, and 112 may be, for example, personal
computers or network computers. In the depicted example,
server 104 provides data, Such as boot files, operating
system images, and applications to clients 108-112. Clients
108, 110, and 112 are clients to server 104. Network data
processing system 100 may include additional servers, cli
ents, and other devices not shown. In the depicted example,
network data processing system 100 is the Internet with
network 102 representing a worldwide collection of net
works and gateways that use the TCP/IP suite of protocols
to communicate with one another. At the heart of the Internet
is a backbone of high-speed data communication lines
between major nodes or host computers, consisting of thou
sands of commercial, government, educational and other
computer systems that route data and messages. Of course,
network data processing system 100 also may be imple
mented as a number of different types of networks, such as
for example, an intranet, a local area network (LAN), or a
wide area network (WAN). FIG. 1 is intended as an example,
and not as an architectural limitation for the present inven
tion.

Referring to FIG. 2, a block diagram of an exemplary data
processing system that may be used as a hardware platform
for a preferred embodiment of the present invention. The
data processing system in FIG.2 may be used as server 104
in FIG. 1, for example. Data processing system 200 may be
a symmetric multiprocessor (SMP) system including a plu
rality of processors 202 and 204 connected to system bus
206. Alternatively, other multiprocessor arrangements or a
single processor system may be employed. Also connected
to system bus 206 is memory controller/cache 208, which
provides an interface to local memory 209. I/O bus bridge
210 is connected to system bus 206 and provides an interface
to I/O bus 212. Memory controller/cache 208 and I/O bus
bridge 210 may be integrated as depicted.

Peripheral component interconnect (PCI) bus bridge 214
connected to I/O bus 212 provides an interface to PCI local
bus 216. A number of modems may be connected to PCI
local bus 216. Typical PCI bus implementations will support
four PCI expansion slots or add-in connectors. Communi
cations links to clients 108–112 in FIG. 1 may be provided

10

15

25

30

35

40

45

50

55

60

65

4
through modem 218 and network adapter 220 connected to
PCI local bus 216 through add-in boards.

Additional PCI bus bridges 222 and 224 provide inter
faces for additional PCI local buses 226 and 228, from
which additional modems or network adapters may be
Supported. In this manner, data processing system 200
allows connections to multiple network computers. A
memory-mapped graphics adapter 230 and hard disk 232
may also be connected to I/O bus 212 as depicted, either
directly or indirectly.

Those of ordinary skill in the art will appreciate that the
hardware depicted in FIG. 2 may vary. For example, other
peripheral devices, such as optical disk drives and the like,
also may be used in addition to or in place of the hardware
depicted. The depicted example is not meant to imply
architectural limitations with respect to the present inven
tion.
The data processing system depicted in FIG.2 may be, for

example, an IBM e-Server pSeries system, a product of
International Business Machines Corporation in Armonk,
N.Y., running the Advanced Interactive Executive (AIX)
operating system or LINUX operating system. As another
example, FIG. 2 may be an embedded computer system
executing a real-time operating system, such as VxWorks.
VxWorks is produced by Wind River Systems, Inc. of
Alameda, Calif. As yet another example, FIG. 2 may be a
network element, such as the 1680 OGX Optical Gateway
Cross Connect, produced by Alcatel, S.A. of Paris, France.
The present invention is directed toward a method, com

puter program product, and data processing system for
providing high availability in a networked data processing
system. Specifically, the present invention is directed toward
an extensible architecture for providing high availability
features in a cooperative manner with respect to telecom
munications equipment management (TEM) or other admin
istrative systems. High availability is generally achieved by
providing standby resources to take the place of active
resources in the event of a failure. One of ordinary skill in
the art will recognize that the term “resource' encompasses
a wide variety of things. For example, hardware resources
include data processing systems, such as servers, routers or
networks, and their components, including peripheral com
ponents. Software resources include Software processes
executing on data processing systems, databases, or other
repositories of data, and the like. Essentially, a resource is
anything that has a possibility of failure. The present inven
tion is directed toward insuring high availability of
resources, even when management of those resources is
shared with other software.

FIG. 3 is a diagram providing an overall view of an active
node and a standby node in accordance with the preferred
embodiment of the present invention. Active node 300 and
standby node 302 are data processing systems connected to
a network 304. One of ordinary skill in the art will recognize
that active node 300 and standby node 302 could be of any
one of a number of types of data processing system, includ
ing servers, clients, routers, mainframes, distributed com
puting systems, and the like. One of ordinary skill in the art
will also recognize that active node 300 and standby node
302 need not be connected in a network, but may commu
nicate in other ways, such as through a direct connection
between the nodes.

Active node 300 has a network availability daemon 301,
which monitors resources and provides for failover in the
event that a resource fails. A daemon is a software process
that operates in the background, waiting for particular con

US 7,093,013 B1
5

ditions to occur. Standby node 302 also has a node avail
ability daemon 303, which monitors resources associated
with standby node 302.

Active node 300 and standby node 302 also monitor each
other. Active node 300 and standby node 302 send each
other heartbeat messages 306, which tell the other node that
the node that sent the heartbeat message is operational. Node
availability daemon 301 on active node 300 monitors heart
beat messages that come from standby node 302, and
likewise, node availability daemon 303 monitors heartbeat
messages that come from active node 300. If node avail
ability daemon 303 stops receiving heartbeat messages from
active node 300, standby node 302 will attempt a failover of
active node 300. That is, standby node 302 will stand in for
the failed active node 300. Likewise, if node availability
daemon 301 stops receiving heartbeat messages from
standby node 302, active node 300 will take appropriate
action to see that standby node 302 is placed back in
working order. This may involve notifying human admin
istrative personnel to take corrective action, possibly
through a telecommunications equipment management sys
tem, as will be seen in Subsequent figures.

In addition to monitoring heartbeat messages 306, node
availability daemons 301 and 303 also manage other
resources associated with active node 300 and standby node
302. These resources may include hardware resources, such
as hardware resources 308 which are associated with active
node 300. These resources may also include software
resources, such as software resources 310, associated with
active node 300. For example, node availability daemon
301, in the event that one of hardware resources 308 fails,
may failover the failed resource with other hardware
resource from hardware resources 308 or from hardware
resources 312 on standby node 302.
Two objectives accomplished by the present invention are

to provide an extensible architecture for providing high
availability services in a networked data processing system
and providing a high availability system that operates in a
cooperative manner with respect to telecommunications
equipment management or other similar administrative sys
tems. FIGS. 4-6 depict an extensible architecture for pro
viding high availability for different resources and comput
ing platforms in accordance with the preferred embodiment
of the present invention. FIGS. 7-8 depict how such an
architecture can interact with telecommunications equip
ment management systems in accordance with the preferred
embodiment of the present invention.

FIG. 4 is a diagram depicting the architecture of a node
availability daemon 400 in accordance with the preferred
embodiment of the present invention. Node availability
daemon 400 is made up of a number of software modules.
A module is an aggregation of program code that can be
considered a single unit. A Software module will generally
have a single function or purpose that enables the program
code making up the module to be considered as a single unit.
Modules may include, but are not limited to, functions,
objects in an object oriented programming language, code
libraries, and the like. Breaking a software system into
modules allows the system to be scaled appropriately to fit
the application at hand. As will be seen in Subsequent
figures, the architecture of node availability daemon 400
allows various modules to be added or removed from the
basic architecture according to need. FIG. 4 represents a
minimal configuration of a preferred embodiment of the
present invention.

Service configurator 402 is a software module that con
figures the capabilities of node availability daemon 400.

5

10

15

25

30

35

40

45

50

55

60

65

6
Service configurator 402 may, for example, read configura
tion files from a disk or other storage medium and apply
configuration options defined in the configuration files to
configure the operation of node availability daemon 400. In
a preferred embodiment, service configurator 402 may
dynamically link additional software module into node
availability daemon 400 to match the capabilities of node
availability daemon 400 desired by a user or administrator.
AS FIG. 4 represents a minimal configuration of node
availability daemon 400, however, node failover manager
406, which represents the heart of node availability daemon
400, is shown statically linked (404) into node availability
daemon 400.
Node failover manager 406 is a software module, based

on the Component Configurator architecture pattern, that
handles heartbeat detection and failover of resources. Node
failover manager 406 includes a heartbeat module 408,
which monitors the reception of heartbeat messages from
another node. Similarly, a process initialization and monitor
module 410 monitors for failure of software processes
(software resources). Node failover manager 406 includes
an interface 412 for servicing events or commands. An
example of an event would be a heartbeat failure. Heartbeat
module 408 and process initialization and monitor module
410, when they detect events, execute additional code in
node failover manager 406 for servicing the event (e.g.
performing a failover of a failed resource) through interface
412.

Interface 412 may also be used for processing commands
that come from external sources, in particular, a telecom
munications equipment management system. Command
handler 414 is a software module that receives commands or
requests from external processes, such a telecommunica
tions equipment management system. Command handler
414 forwards the commands or requests to appropriate
modules within node availability daemon 400 for process
ing. For example, command handler 414 can forward a
command from an telecommunications equipment manage
ment system to node failover manager 406 through interface
412, which provides an interface for servicing commands.
FIGS.5A and 5B constitute a diagram of node availability

daemon 400, having been expanded to include more soft
ware modules in accordance with the preferred embodiment
of the present invention. The view of node availability
daemon 400 provided in FIGS.5A-5B shows that additional
software modules 502, 514, and 520 have been dynamically
linked (500, 515, and 522) into node availability daemon
400 to provide additional functionality. One of ordinary skill
in the art will recognize that although FIGS. 5A-5B depict
additional software modules 502, 514, and 520 as having
been dynamically linked, in an actual embodiment, these
Software modules may be loaded as additional processes or
threads, or statically linked into node availability daemon
400. instead. In particular, the added software modules
provide functionality in two areas. Resource agent 502 and
resource agent adapter 514 provide an interface or driver
through which hardware resources may be monitored or
controlled. Notification dispatcher 520 serves to notify addi
tional software systems, such as a telecommunications
equipment management system, of events that may occur in
monitored hardware or software resources.

Turning now to the interface or driver functionality pro
vided by resource agent 502 and resource agent adapter 514,
resource agent 502 provides an interface to a specific type of
resource. Resource agent 502 will include both resource
dependent and resource-independent code. A resource-inde
pendent state machine 504 or other suitable control system

US 7,093,013 B1
7

serves to control resource-dependent code for monitoring
and controlling the resource corresponding to resource agent
502. Specifically, state machine 504 executes the resource
dependent code through a resource-independent interface
506, which provides function or method prototypes for
resource-dependent operations. For example, taking a
resource out of service is a resource-independent concept,
but a resource-dependent operation, as the specifics of
taking a resource out of service will vary depending on the
resource. State machine 504 can take a resource out of
service by calling the resource-dependent code for doing so
by issuing a resource-independent function call through
interface 506. State machine 504, through interface 506, can
also respond to failures in resources by detecting the failure
and taking appropriate action, such as taking the failed
resource out of service. In a preferred embodiment, multiple
instances of resource agents will be present.

Resource agent adapter 514 manages the set of resource
agents present within node availability daemon 400. When
resource agent 502, for example, detects an event such as an
error, an event forwarder module 508 in resource agent 502
will forward the event (510) to resource agent adapter 514,
which receives the forwarded event using event receiver
module 512. Resource agent adapter 514 acts as an interface
between the set of resource agents and node availability
daemon 400 as a whole. Thus, events that are received from
resource agents are again forwarded to a Subsequent module
for Subsequent processing.

In FIG. 5, node failover manager 406 is the software
module to which resource agent adapter 514 forwards events
that it receives. As was stated before, resource agent adapter
514 manages the set of resource agents. Resource agent
adapter 514 does so through the use of resource agent
repository module 515 which keeps track of the various
resource agents under the control of resource agent adapter
514. Thus, resource agent adapter 514 and the resource agent
it manages made up an extensible interface for monitoring
and controlling hardware or Software resources.

Events received by resource agent adapter 514 are for
warded (516) to node failover manager 406 for further
processing. Node failover manager 406 receives the events
through interface 412. If the event is one that can immedi
ately be seen to be one necessitating a failover of an active
node or the software process, node failover manager 406
will perform that failover. Node failover manager 406 then
forwards the event and optionally an indication that a
failover has taken place (518) to notification dispatcher 520.

Notification dispatcher 520 is a software module that
handles forwarding notifications of events to external pro
cesses, such as a telecommunications equipment manage
ment system. Events are received from node failover man
ager 406 through interface 519. Two methods of forwarding
notifications by notification dispatcher 520 are shown in
FIG. 5. A notification publisher module 524 forwards events
to external processes that subscribe with notification pub
lisher module 524. For example, a telecommunications
system may subscribe with notification publisher module
524 to receive events corresponding to particular resources
that are managed by the telecommunications equipment
management system. Such Subscriptions and notifications
can be performed through any appropriate form of interpro
cess communication, including but not limited to, Sockets,
datagrams, semaphores, and the like.

Transport stream module 526 provides an alternative
means of forwarding events. Transport stream module 526
opens a continuous channel for interprocess communica
tions, through a pipe or socket connection, for example.

5

10

15

25

30

35

40

45

50

55

60

65

8
Events that are received by notification dispatcher 520 are
immediately forwarded by a transport stream module 526 to
the open channel for interprocess communication to an
external process. The four filters essentially form an event
pipeline, with each of modules 502, 514, 406, and 520
forming a stage in the pipeline.

Again, command handler 414 may forward commands for
an external process to node availability daemon 400 to
control resources that are supervised by node availability
daemon 400. When these resources are resources that are
handled by resource agents, command handler 414 will
forward commands to resource agent adapter 514. Resource
agent adapter 514 contains a command forwarded module
530, which communicates with resource agents. Each
resource agent, for instance resource agent 502, has an
associated command receiver module 532, which receives
commands from command forwarder 530. Command
receiver 532 then executes the commands by executing
resource-dependent code for carrying out the commands
through interface 506.
The combination of notification dispatcher 520 and com

mand handler 414 makes it possible for node availability
daemon 400 to operate in conjunction with external pro
cesses such as a telecommunications equipment manage
ment system. The addition of resource agents allows node
availability daemon 400 to be expanded to accommodate
various types of resources. Thus, the expandable and con
figurable architecture provided in this preferred embodiment
of the present invention allows the capabilities of the high
availability service it provides to be adjusted to fit current
needs. As this point, it should be noted that node availability
daemon 400 may be configured so as to include a subset of
the software modules depicted in FIG. 5. For instance, FIG.
4 depicted a configuration of node availability daemon 400
having only node failover manager 406. Other configura
tions are also possible, for instance, node availability dae
mon 400 may be operated without resource agents or a
resource agent adapter, but with a notification dispatcher.
Alternatively, node availability daemon 400 may be oper
ated without notification dispatcher 520 but with resource
agent adapter 514 and associated resource agents. Also,
additional software modules may be placed within the event
pipeline.

FIG. 6 is a diagram of node availability daemon 400 in
which an additional software module has been inserted in
the event pipeline. In FIG. 6, a failover rules engine 602 has
been interposed between resource agent adapter 514 and
node failover manager 406 in the event pipeline. Failover
rules engine 602 provides an extra degree of intelligence in
making the decision to failover a resource. Failover rules
engine 602 receives an event (600) from resource agent
adapter 514 through interface 604. Failover rules engine 602
includes a rule interpreter module 606, which makes use of
rules stored in rule repository module 608 and resource
dependencies stored in resource dependency tree module
610 to determine whether the received event warrants a
failover of a resource. Rules stored in rule repository 608
may make use of additional information to determine
whether a received event warrants a failover. For example,
at certain times, for instance, periods of relative inactivity, it
may not be necessary for a particular resource to have a high
availability. A rule may be written, perhaps in a configura
tion file, and loaded into the rule repository implemented by
rule repository module 608. Also, some resources may be
dependent upon other resources in order to operate. For
example, a peripheral device may require an interface card
in order to be operated. Resource dependency tree module

US 7,093,013 B1
9

610 may store information regarding which resources
depend on other resources. Such information may be stored
in a dependency graph, for instance. Dependency graphs are
well known data structures in the computer programming
art.

Once failover rules engine 602 has determined from a
received event and any other data or rules that may be
applicable, that a failover of a resource is necessitated, an
indication of this fact may be transmitted (612) to node
failover manager 406 along with an identification of the
event itself. Node failover manager 406 can then take action
to perform the failover. Then, node failover manager 406 can
send along an indication of the event and/or the failover to
notification dispatcher 520 to allow external processes such
as a telecommunications equipment management system to
address the event.

FIG. 7 is a diagram depicting the operation of a minimal
configuration of a node availability daemon with a telecom
munications equipment management Subsystem of an
OAM&P system in accordance with the preferred embodi
ment of the present invention. An active node 700 and a
standby node 702 are depicted. Active node 700 has a node
availability daemon 704, and standby node 702 has a node
availability daemon 706. Each of node availability daemons
704 and 706 are configured using configuration files 708 and
710 respectively. Here, node availability daemon 704 and
706 are configured to use a node failover manager and
notification dispatcher. Node availability daemon 704 and
node availability daemon 706 send heartbeat messages (712)
between each other, as well as commands or status updates,
as may be appropriate. For example, when node availability
daemon 704 and 706 are first set up on active node 700 and
standby node 702, commands and status updates will be
transmitted between the two node availability daemons
during this initial setup process. In addition to sending and
receiving heartbeat messages, node availability daemons
704 and 706 also monitor software processes 714 and 716,
respectively, for events with respect to those processes.

If an event or failure occurs, for instance, a heartbeat
failure detected by active node 700, a notification, such as
heartbeat failure notification 718, will be generated by node
availability daemon 704. This notification will be sent to
telecommunications equipment management Subsystem
720, which resides on active node 700 and which manages
resources 722 and 724 residing on both active node 700 and
standby node 702. Standby node 702's node availability
daemon 706, which will also detect the heartbeat failure, can
then take over node 700s role as the active node, initiating
active services, such as additional processes or tasks.

FIG. 8 is a diagram depicting the operation of a more
expansive configuration of node availability daemons in
conjunction with a telecommunications equipment manage
ment system in accordance with the preferred embodiment
of the present invention. In FIG. 8, active node 700 and
standby node 702 are depicted again. Node availability
daemon 704 and node availability daemon 706, however, are
configured to include a resource agent adapter and to interact
with resource agents, such as resource agent 800 and
resource agent 801. Thus, node availability daemon 704 and
706 are configured in a manner that resembles the configu
ration shown in FIG. 5. Here, telecommunications equip
ment management Subsystem 720 takes a less active role,
because node availability daemons 704 and 706 have been
configured to include additional functionality. Resource
agent 800 and resource agent 801, in this preferred embodi
ment, includes threads 802 and 803, respectively, for han
dling operations with respect to monitored resources 722

10

15

25

30

35

40

45

50

55

60

65

10
and 724. For example, resource agent 800 uses monitored
thread 802, which contains a resource dependent monitor
function 804 to monitor a particular resource in resources
722. One of ordinary skill in the art will recognize that
multiple resource agents with multiple threads having mul
tiple resource dependent functions will serve to monitor and
control the various resources in resources 722 and 724. In
addition, node availability daemon 704 is capable of detect
ing and reporting a wider variety of events. For example,
when a fault is detected in one of resources 722, node
availability daemon 704 can issue a notification 808 to
telecommunications equipment management Subsystem 720
that the resource has failed. Likewise, when a new compo
nent is added to a system, such as an interface card, the
notification of the presence of the new resource 810 can be
issued to telecommunications equipment management Sub
system 720 as well.

It is important to note that while the present invention has
been described in the context of a fully functioning data
processing system, those of ordinary skill in the art will
appreciate that the processes of the present invention are
capable of being distributed in the form of a computer
readable medium of instructions or other functional descrip
tive material and in a variety of other forms and that the
present invention is equally applicable regardless of the
particular type of signal bearing media actually used to carry
out the distribution. Examples of computer readable media
include recordable-type media, Such as a floppy disk, a hard
disk drive, a RAM, CD-ROMs, DVD-ROMs, and transmis
Sion-type media, Such as digital and analog communications
links, wired or wireless communications links using trans
mission forms, such as, for example, radio frequency and
light wave transmissions. The computer readable media may
take the form of coded formats that are decoded for actual
use in a particular data processing system. Functional
descriptive material is information that imparts functionality
to a machine. Functional descriptive material includes, but is
not limited to, computer programs, instructions, rules, facts,
definitions of computable functions, objects, and data struc
tures.

The description of the present invention has been pre
sented for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi
ment was chosen and described in order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica
tions as are Suited to the particular use contemplated.
We claim:
1. A data processing system for establishing high avail

ability of a telecommunications network resource through
automatic failover while cooperating with an Operations,
Administration, Maintenance, and Procedures (OAM&P)
telecommunications equipment management (TEM) system,
comprising:

a plurality of software modules which can be enabled to
be executed in a currently executing process, said
Software modules including
a node failover manager for servicing, when enabled,

an event selected from events including a resource
failure event and a request from the TEM system,
wherein said servicing can include performing a
failover of a monitored resource,

a resource agent, including resource-dependent code,
for monitoring, when enabled, a resource and for

US 7,093,013 B1
11 12

warding an event, based on said monitoring, toward 4. The data processing system of claim 3, wherein the
the node failover manager, resource agent is one of a process, a thread, and an object.

a notification dispatcher for receiving, when enabled,
notification of an event from the node failover man
ager and notifying a TEM system which has sub- 5
scribed to receive such notifications;

5. The data processing system of claim 1, wherein the
resource agent performs an identification of an event from
the monitored resource, including:

at least one processor configured to executing said resource-dependent code that is specific to
receive configuration information identifying at least one a type of the monitored resource to identify the event;

of the software modules to be executed in the currently and
executing process and 10 returning the identification of the event through an inter

face that is generic with respect to all types of moni
tored resources.

enable the at least one software module to be executed in
the currently executing process;

providing for one or more of said software modules to be
enabled to implement a delegation of responsibilities 6. The data processing system of claim 1, wherein the
between the TEM system and said data processing 15 event serviced by the node failover manager is a hardware
system for establishing high availability, and to provide failure.
for communications of requests and events between the
TEM system and the data processing system.

2. The data processing system of claim 1, wherein said
7. The data processing system of claim 1, wherein the

event serviced by the node failover manager is a software
plurality of software modules includes a failover rules 20 failure.
engine receiving an event from a monitored resource, 8. The data processing system of claim 1, wherein the
wherein said failover rules engine and failover manager are event serviced by the node failover manager is a data
enabled, and wherein executing the failover rules engine communication failure.
includes:

determining, based on the received event and a set of 25
failover rules, whether the failover manager should

9. The data processing system of claim 8, wherein the data
communication failure is within a network.

perform the failover of the monitored resource; and 10. The data processing system of claim 1, wherein the
including an indication to the failover manager as to monitored resource includes hardware equipment.

whether the failover of the monitored resource should 11. The data processing system of claim 1, wherein the
be performed. monitored resource includes a software process.

3. The data processing system of claim 1, wherein said
plurality of software modules includes a resource agent
adapter, wherein a resource agent adapter and a resource
agent are enabled, and wherein executing the resource agent
adapter includes:

receiving an event from a resource agent, wherein the the currently executing process.
resource agent is one of a set containing at least one
resource agent. k

12. The data processing system of claim 1, wherein
enabling the at least one software module to be executed in
the currently executing process includes dynamically link

is ing at least a portion of the at least one software module in

