Österreichische Patentanmeldung

(21) Anmeldenummer:

A 1735/2001

(51) Int. Cl.⁸: **A01N 43/00** (2006.01),

(22) Anmeldetag:

(12)

21.12.1998

A01N 43/04 (2006.01)

(43) Veröffentlicht am:

15.08.2006

(62) Ausscheidung aus A 9157/98

(30) Priorität:

23.12.1997 CH 2961/97 beansprucht.

(73) Patentanmelder:

SYNGENTA PARTICIPATIONS AG CH-4058 BASEL (CH)

(54) VERFAHREN ZUR BEKÄMPFUNG VON MOLLUSKEN

(57) Die Erfindung betrifft ein Verfahren zur Bekämpfung von Holzschädlingen sowie von Mollusken und ist dadurch gekennzeichnet, dass eine pesitzid wirksame Menge eines Schädlingsbekämpfungsmittels, welches als pestizid wirksame Verbindung mindestens ein Macrolid, in freier Form oder in agrochemisch verwendbarer Salzform, als Wirkstoff und mindestens einen Hilfsstoff enthält, auf die Schädlinge oder ihren Lebensraum appliziert wird.

Zusammenfassung:

Die Erfindung betrifft ein Verfahren zur Bekämpfung von Holzschädlingen sowie von Mollusken und ist dadurch gekennzeichnet, daß eine pesitzid wirksame Menge eines Schädlingsbekämpfungsmittels, welches als pestizid wirksame Verbindung mindestens ein Macrolid, in freier Form oder in agrochemisch verwendbarer Salzform, als Wirkstoff und mindestens einen Hilfsstoff enthält, auf die Schädlinge oder ihren Lebensraum appliziert wird.

Wien, am 5. November 2001

1

Verwendung von Macroliden bei der Schädlingsbekämpfung

Die vorliegende Erfindung betrifft ein Verfahren zur Bekämpfung von Schädlingen mit Macrolidverbindungen, insbesondere

- (A) ein neues Verfahren zur Bekämpfung von Schädlingen in und auf transgenen Nutzpflanzenkulturen mit einer Macrolidverbindung;
- (B) ein Verfahren zum Schutz von pflanzlichem Vermehrungsgut und später zuwachsenden Pflanzenteilen vor Schädlingsbefall mit einer solchen Macrolidverbindung; und
- (C) ein Verfahren zur Bekämpfung von Holzschädlingen sowie von Mollusken, mit einer Macrolidverbindung.

In der Literatur werden gewisse Verfahren zur Schädlingsbekämpfung vorgeschlagen. Diese Verfahren vermögen auf dem Gebiet der Schädlingsbekämpfung jedoch nicht vollkommen zu befriedigen, weshalb das Bedürfnis besteht, weitere Schädlingsbekämpfungsmittel, insbesondere gegen Insekten und Vertreter der Ordnung Acarina, beziehungsweise zum Schutz von Pflanzen, besonders von Kulturpflanzen, zur Verfügung zu stellen. Diese Aufgabe wird erfindungsgemäss durch die Bereitstellung des vorliegenden Verfahrens gelöst.

(A) Ein erster Aspekt der vorliegenden Erfindung betrifft daher ein Verfahren zur Bekämpfung von Schädlingen in Kulturen von transgenen Nutzpflanzen, wie beispielsweise in Kulturen von Mais, Getreide, Soja, Tomaten, Baumwolle, Kartoffeln, Reis und Senf, dadurch gekennzeichnet, dass ein pestizides Mittel, welches eine Macrolidverbindung, besonders Abamectin, in freier Form oder in agrochemisch verwendbarer Salzform, sowie mindestens einen Hilfsstoff enthält, auf die Schädlinge oder ihren Lebensraum, besonders auf die Kulturpflanze selbst, appliziert wird; die Verwendung des entsprechenden Mittels und damit behandeltes Vermehrungsgut transgener Pflanzen.

Es hat sich nun überraschenderweise gezeigt, dass die Verwendung einer Macrolidverbindung zur Bekämpfung von Schädlingen auf transgenen Nutzpflanzen, die ein oder mehrere Gene enthalten, welche einen pestiziden, insbesondere insektiziden, acariziden, nematiziden

oder fungiziden Wirkstoff exprimieren oder welche gegen Herbizide tolerant sind, eine synergistische Wirkung zeigt. Es ist in hohem Maße überraschend, daß die Verwendung einer Macrolidverbindung in Kombination mit einer transgenen Pflanze die prinzipiell zu erwartende additive Wirkung auf die zu bekämpfenden Schädlinge übersteigt und so die Wirkungsgrenzen der Macrolidverbindung und des von der transgenen Pflanze exprimierten Wirkprinzips insbesondere in zweierlei Hinsicht erweitert:

Insbesondere wurde überraschenderweise gefunden, dass die pestizide Aktivität einer Macrolidverbindung in Kombination mit der von der transgenen Nutzpflanze exprimierten Wirkung, verglichen mit den pestiziden Aktivitäten der Macrolidverbindung allein und der transgenen Nutzpflanze allein, nicht nur additiv ist - wie es im wesentlichen erwartet werden kann - sondern dass ein synergistischer Effekt vorliegt. Der Begriff "synergistisch" ist in diesem Zusammenhang jedoch keineswegs nur auf die pestizide Aktivität beschränkt, sondern der Ausdruck bezieht sich ebenfalls auf andere vorteilhafte Eigenschaften des erfindungsgemässen Verfahrens gegenüber der Macrolidverbindung allein und der transgenen Nutzpflanze allein. Als Beispiele solcher vorteilhafter Eigenschaften seien erwähnt: Eine Verbreiterung des pestiziden Wirkungsspektrums auf weitere Schädlinge, beispielsweise auf resistente Stämme; eine Reduktion der Aufwandmenge der Macrolidverbindung oder eine ausreichende Bekämpfung der Schädlinge mit Hilfe der erfindungsgemässen Mittel sogar bei einer Aufwandmenge, bei der die Macrolidverbindung allein und die transgene Nutzpflanze allein vollständig unwirksam sind; erhöhte Kulturpflanzensicherheit, verbesserte Ertragsqualität, wie höherer Nährstoff- oder Ölgehalt, bessere Faserqualität, längere Lebensdauer, verminderter Anteil an toxischen Stoffen, wie Mykotoxine, verminderter Anteil an Rückständen oder ungünstigen Bestandteilen beliebiger Art oder bessere Verdaulichkeit; bessere Toleranz gegen ungünstige Temperaturen, Zug oder Salzgehalt im Wasser; erhöhte Assimilierungsraten, wie Nährstoffaufnahme, Wasseraufnahme und Photosynthese; günstige Kultureigenschaften, wie geänderte Blattflächen, vermindertes vegetatives Wachstum, erhöhter Ertrag, günstige Saatform/Saatdicken- oder Keimeigenschaften, geänderte Besiedelung durch Saprophyten oder Epiphyten, Verminderung des Alterns, verbesserte Phytoalexinproduktion, verbessert im beschleunigten Reifen, Zunahme an Blütenansatz, verminderter Samenkapselfall- und Verstreuen, bessere Anziehung von Nützlingen und Räubern, erhöhte Bestäubung, verminderte Anziehung von Vögeln; oder andere dem Fachmann geläufige Vorteile.

Die gemäß Teil (A), (B) und (C) der Erfindung verwendeten Macrolidverbindungen sind dem Fachmann bekannt. Es handelt sich dabei um die Stoffklassen, welche als Milbemycine und Avermectine, beispielsweise aus US-P-4 310 519, US-P-5 077 298, DE-OS-27 17 040 oder US-P-4 427 663 bekannt sind. Diese Macrolide werden ebenfalls in der erfindungsgemäßen Bedeutung der Derivate von diesen Substanzen verstanden, d.h. beispielsweise Milbemycinoxim, Moxidectin, Ivermectin, Abamectin, Emamectin und Doramectin, und auch Spinosyne der Formel

$$R_{8}$$
 R_{1}
 R_{1}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{3}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{3}
 R_{4}
 R_{3}
 R_{4}
 R_{3}
 R_{4}
 R_{5}
 R_{1}

worin R₁, R₂, R₃, R₄, R₅ und R₈ unabhängig voneinander Wasserstoff oder eine gegebenenfalls substituierte Alkyl-, Alkenyl-, Alkinyl-, Cycloalkyl-, Aryl- oder Heterocyclyl-Gruppe darstellen und die Teilstrukturen A und B unabhängig voneinander bedeuten, dass die beiden Kohlenstoffatome, an welche jede dieser Teilstrukturen gebunden ist, durch eine Einfachbindung, durch eine Doppelbindung oder durch eine Einfachbindung und eine Epoxy-Brücke verbunden sind, in freier Form oder gegebenenfalls in agrochemisch verwendbarer Salzform.

Innerhalb des Rahmens der Erfindung (A) ist Abamectin bevorzugt. Abamectin ist eine Mischung von Avermectin B_{1a} und Avermectin B_{1b} und ist z.B. in The Pesticide Manual, 10. Ausg. (1994), The British Crop Protection Council, London, Seite 3; beschrieben.

Innerhalb des Rahmens der Erfindung (A) ist auch Emamectin bevorzugt, wobei Emamectin 4"-Desoxy-4"-epi-N-methylaminoavermectin B_{1b}/B_{1a} ist und aus US-P-4 874 749 bekannt ist und als MK-244 in Journal of Organic Chemistry, Bd. 59 (1994), Seiten 7704-7708, beschrieben wird. Agrochemisch besonders brauchbare Salze von Emamectin sind in US-P-5 288 710 beschrieben.

Innerhalb des Rahmens der Erfindung (A) ist auch die Gruppe von Verbindungen, bestehend aus den Spinosynen und deren Derivaten; die Gruppe von Verbindungen, bestehend aus

den natürlich vorkommenden Spinosynen; oder die Gruppe von Verbindungen, bestehend aus den Derivaten der natürlich vorkommenden Spinosyne; bevorzugt. Vorzugsweise kann der Wirkstoff im Rahmen des Gegenstands der Erfindung (A), Spinosyn A; Spinosyn D; oder ein aus Spinosyn A und Spinosyn D zusammengesetztes Gemisch umfassen; besonders bevorzugt ist Spinosad. Spinosad ist aus dem "The Pesticide Manual", 11. Ausg. (1997), The British Crop Protection Council, London, Großbritannien, Seiten 1272-1273, bekannt.

Bei den agrochemisch verträglichen Salzen der Macrolidverbindungen handelt es sich beispielsweise um Säureadditionssalze anorganischer und organischer Säuren, insbesondere von Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Salpetersäure, Perchlorsäure, Phosphorsäure, Ameisensäure, Essigsäure, Trifluoressigsäure, Oxalsäure, Malonsäure, Toluolsulfonsäure oder Benzoesäure. Bevorzugt ist im Rahmen der vorliegenden Erfindung ein an sich bekanntes Mittel, welches als Wirkstoff eine Macrolidverbindung, besonders Abamectin oder Spinosad in freier Form und Emamectin als das Benzoatsalz enthält.

Bei den gemäss der Erfindung (A) verwendeten transgenen Pflanzen handelt es sich um Pflanzen bzw. deren Vermehrungsgut, welche unter Einsatz von rekombinanten DNA-Techniken so transformiert sind, dass sie selektiv wirkende Toxine zu synthetisieren vermögen, wie sie beispielsweise aus toxinproduzierenden Tieren, besonders des Stammes Arthropoda, bekannt sind; aus Stämmen von Bacillus thuringiensis gewonnen werden können; oder aus anderen Pflanzen bekannt sind, wie etwa Lectine, oder in der Alternative in der Lage sind, eine herbizide oder fungizide Resistenz zu exprimieren. Beispiele solcher Toxine bzw. transgener Pflanzen, welche solche Toxine zu synthetisieren vermögen, sind beispielsweise aus EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529 sowie EP-A-451 878 bekannt und sind durch diesen Hinweis Bestandteil der vorliegenden Anmeldung.

Die Verfahren zur Herstellung solcher transgener Pflanzen sind dem Fachmann weitgehend bekannt und beispielsweise in den vorstehend genannten Publikationen beschrieben.

Zu den Toxinen, welche von solchen transgenen Pflanzen exprimiert werden können, gehören z.B. Toxine, wie Proteine, welche insektizide Eigenschaften haben und von transgenen Pflanzen exprimiert werden, beispielsweise Proteine aus Bacillus cereus oder Bacillus popliae; oder Bacillus thuringiensis-Endotoxine (B.t.), wie etwa CrylA(a), CrylA(b), CrylA(c), CrylIA, CrylIIA, CrylIIB2 oder CytA, VIP1, VIP2, VIP3; oder insektizide Proteine von Bakterien kolonisierender Nematoden, wie Photorhabdus spp. oder Xenorhabdus spp., wie

Photorhabdus luminescens, Xenorhabdus nematophilus etc.; Proteinaseinhibitoren, wie Trypsininhibitoren, Serin-Proteaseinhibitoren, Patatin, Cystatin, Papaininhibitoren; Ribosomen inaktivierende Proteine (RIP), wie Ricin, Mais RIP, Abrin, Luffin, Saporin oder Bryodin; Pflanzen Lectine, wie Erbsen-Lectine, Gersten-Lectine oder Schneeglöckchen-Lectine; oder Agglutinine; von Tieren produzierte Toxine, wie Skorpion-Toxine, Spinnengifte, Wespengifte und andere insektenspezifische Neurotoxine; Steroid-Metabolismus-Enzyme, wie 3-Hydroxysteroidoxidase, Ecdysteroid-UDP-glycosyl-Transferase, Cholesterinoxidasen, Ecdysoninhibitoren, HMG-COA-Reduktase, Ionenkanalblocker, wie Natrium und Calcium, Juvenilhormonesterase, Diuretische-Hormon-Rezeptoren, Stilbensynthase, Bibenzylsynthase, Chitinasen und Glucanasen.

Beispielsweise sind folgende transgene Pflanzen, welche ein oder mehrere Gene enthalten, die für eine insektizide Resistenz codieren und ein oder mehrere Toxine exprimieren, bekannt: KnockOut® (Mais), YieldGard® (Mais); NuCOTN 33B® (Baumwolle), Bollgard® (Baumwolle), NewLeaf® (Kartoffeln), NatureGard® und Protecta®.

Die nachstehende Tabelle umfaßt weitere Beispiele von Zielen und Prinzipien und Kulturphänotypen von transgenen Kuturpflanzen, die Toleranz gegen Schädlinge, hauptsächlich gegen Insekten, Milben, Nematoden, Viren, Bakterien und Krankheiten zeigen oder gegen spezielle Herbizide oder Herbizidklassen tolerant sind.

Tabelle A1: Kultur: Mais

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria- zolopyrimidine, Pyrimidyloxybenzoate, Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-clohexandione
Hydroxyphenylpyruvatdioxygenase (HPPD)	Isoxazole, wie Isoxaflutol oder Isox- achlortol, Trione, wie Mesotrion oder Sulcotrion
Phosphinothricinacetyltransferase O-Methyltransferase	Phosphinothricin Veränderte Ligninmengen

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridinderivative, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1	Xenobiotica und Herbizide, wie Sulfonyl-
	harnstoffe
Dimboabiosynthese (Bx1 Gen)	Helminthosporium turcicum, Rhopalosi-
	phum maydis, Diplodia maydis, Ostrinia
	nubilalis, Lepidoptera sp.
CMIII (Maispeptid -small basic maize	Pflanzenpathogene, z.B. Fusarium, Al-
seed peptide)	ternaria, Sclerotina
Corn- SAFP (Zeamatin)	Pflanzenpathogene, z.B. Fusarium, Al-
	ternaria, Sclerotina, Rhizoctonia, Chae-
	tomium, Phycomyces
Hm1-Gen	Cochliobulus
Chitinasen	Pflanzenpathogene
Ġlucanasen	Pflanzenpathogene
Hüllenproteine	Viren, wie Maiszwergmosaikvirus, Mais-
	zwergbleichvirus
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Coleoptera, Diptera, Ne-
cillus cereus-Toxine, Photorabdus und	matoden, z.B. Ostrinia nubilalis, Heliothis
Xenorhabdus-Toxine	zea, Heerwürmer, z.B. Spodoptera frugi-
	1

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	perda, Westlicher Maiswurzelbohrer, Se-
	samia sp., Erdraupe, Asiatischer Mais-
	bohrer, Rüsselkäfer
3-Hydroxysteroidoxidase	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden, z.B. Ostrinia nubilalis, Heliothis
	zea, Heerwürmer, z.B. Spodoptera frugi-
	perda, Westlicher Maiswurzelbohrer, Se-
	samia sp., Erdraupe, Asiatischer Mais-
	bohrer, Rüsselkäfer
Peroxidase	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden, z.B. Ostrinia nubilalis, Heliothis
	zea, Heerwürmer, z.B. Spodoptera frugi-
	perda, Westlicher Maiswurzelbohrer, Se-
	samia sp., Erdraupe, Asiatischer Mais-
	bohrer, Rüsselkäfer
Aminopeptidasseinhibitoren, z.B. Leucin-	Lepidoptera, Coleoptera, Diptera, Ne-
aminopeptidaseinhibitor (LAPI)	matoden, z.B. Ostrinia nubilalis, Heliothis
	zea, Heerwürmer, z.B. Spodoptera frugi-
	perda, Westlicher Maiswurzelbohrer, Se-
	samia sp., Erdraupe, Asiatischer Mais-
	bohrer, Rüsselkäfer
Limonensynthase	Westlicher Maiswurzelbohrer
Lectine	Lepidoptera, Coleoptera, Diptera, Ne-
•	matoden, z.B. Ostrinia nubilalis, Heliothis
	zea, Heerwürmer, z.B. Spodoptera frugi-
	perda, Westlicher Maiswurzelbohrer, Se-
	samia sp., Erdraupe, Asiatischer Mais-
	bohrer, Rüsselkäfer
Protease-Inhibitoren, z.B. Cystatin, Pata-	Rüsselkäfer, Westlicher Maiswurzelboh-
tin, Virgiferin, CPTI	rer
Ribosom-inaktivierendes Protein	Lepidoptera, Coleoptera, Diptera, Ne-

Kulturphänotyp / Toleranz gegen
matoden, z.B. Ostrinia nubilalis, Heliothis
zea, Heerwürmer, z.B. Spodoptera frugi-
perda, Westlicher Maiswurzelbohrer, Se-
samia sp., Erdraupe, Asiatischer Mais-
bohrer, Rüsselkäfer
Lepidoptera, Coleoptera, Diptera, Ne-
matoden, z.B. Ostrinia nubilalis, Heliothis
zea, Heerwürmer, z.B. Spodoptera frugi-
perda, Westlicher Maiswurzelbohrer, Se-
samia sp., Erdraupe, Asiatischer Mais-
bohrer, Rüsselkäfer
Lepidoptera, Coleoptera, Diptera, Ne-
matoden, z.B. Ostrinia nubilalis, Heliothis
zea, Heerwürmer, z.B. Spodoptera frugi-
perda, Westlicher Maiswurzelbohrer, Se-
samia sp., Erdraupe, Asiatischer Mais-
bohrer, Rüsselkäfer

Tabelle A2: Kultur: Weizen

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylhamstoffe Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
45	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridinderivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1	Xenobiotica und Herbizide, wie Sulfonyl-
	harnstoffe
Antifungizides Polypeptid AlyAFP	Pflanzenpathogene, z.B. Septoria und
	Fusarioum
Glucoseoxidase	Pflanzenpathogene, z.B. Fusarium,
	Septoria
Pyrrolnitrinsynthesegene	Pflanzenpathogene z.B. Fusarium, Sep-
	toria
Serin/Threoninkinasen	Pflanzenpathogene, z.B. Fusarium,
	Septoria und andere Krankheiten
Hypersensibilisierendes Polypeptid (Hy-	Pflanzenpathogene z.B. Fusarium, Sep-
persensitive response eliciting polypepti-	toria und andere Krankheiten
de)	
Systemic acquires resistance (SAR)-	Virale, bakterielle, fungale, nematodale
Gene	Pathogene
Chitinase	Pflanzenpathogene
Glucanase	Pflanzenpathogene
	1

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Doppelsträngige Ribonuclease	Viren, wie BYDV und MSMV
Hüllproteine	Viren, wie BYDV und MSMV
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Coleoptera, Diptera, Ne-
cillus cereus-Toxine, Photorabdus- und	matoden,
Xenorhabdus-Toxine	
3-Hydroxysteroidoxidase	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden,
Peroxidase	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden,
Aminopeptidaseinhibitoren, z.B. Leucin-	Lepidoptera, Coleoptera, Diptera, Ne-
aminopeptidaseinhibitor	matoden,
Lectine	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden, Blattläuse
Protease-Inhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Coleoptera, Diptera, Ne-
tin, Virgiferin, CPTI	matoden, Blattläuse
Ribosom-inaktivierendes Protein	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden, Biattläuse
HMG-CoA-Reduktase	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden, z.B. Ostrinia nubilalis, Heliothis
	zea, Heerwürmer, z.B. Spodoptera frugi-
	perda, Westlicher Maiswurzelbohrer, Se-
	samia sp., Erdraupe, Asiatischer Mais-
	bohrer, Rüsselkäfer
	•

Tabelle A3: Kultur: Gerste

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinatsynthese
Anthranilat-Synthase	Inhibitoren der Synthese und Catabolis- mus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivative, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1	Xenobiotica und Herbizide, wie Sulfonyl-
	harnstoffe
Antifungales Polypeptid AlyAFP	Pflanzenpathogene, z.B. Septoria und
	Fusarium
Glucoseoxidase	Pflanzenpathogene, z.B. Fusarium,
	Septoria
Pyrrolnitrin-Synthese-Gene	Pflanzenpathogene, z.B. Fusarium,
	Septoria
Serin/Threonin-Kinasen	Pflanzenpathogene, z.B. Fusarium,
	Septoria und andere Krankheiten
Hypersensibilisierendes Polypeptid (Hy-	Pflanzenpathogene, z.B. Fusarium,

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
persensitive response eliciting polypepti-	Septoria und andere Krankheiten
de)	
Systemic acquires resistance (SAR)-	Virale, bakterielle, fungale, nematodale
Gene	Pathogene
Chitinasen	Pflanzenpathogene
Glucanasen	Pflanzenpathogene
Doppelsträngige Ribonuclease	Viren, wie BYDV und MSMV
Hüllproteine	Viren, wie BYDV und MSMV
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Coleoptera, Diptera, Ne-
cillus cereus-Toxine, Photorabdus- und	matoden,
Xenorhabdus-Toxine	
3- Hydroxysteroidoxidase	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden,
Peroxidase	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden,
Aminopeptidaseinhibitoren, z.B. Leucin-	Lepidoptera, Coleoptera, Diptera, Ne-
aminopeptidaseinhibitor	matoden,
Lectine	Lepidoptera, Coleoptera, Diptera, Ne-
•	matoden, Blattläuse
Protease-Inhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Coleoptera, Diptera, Ne-
tin, Virgiferin, CPTI	matoden, Blattläuse
Ribosom-inaktivierendes Protein	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden, Blattläuse
HMG-CoA-Reduktase	Lepidoptera, Coleoptera, Diptera, Ne-
	matoden, Blattläuse
	•
Tabelle A4: Kultur: Reis	

Wirkziel oder exprimierte(s) Prinzip(ien)

Acetolactatsynthase (ALS)

Kulturphänotyp / Toleranz gegen

Sulfonylhamstoffe, Imidazolinone, Tria-

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren der Tryptophan-Synthese und
	Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1	Xenobiotica und Herbizide, wie Sulfonyl-
	harnstoffe
Antifungales Polypeptid AlyAFP	Pflanzenpathogene
Glucoseoxidase	Pflanzenpathogene
Pyrrolnitrinsynthesegene	Pflanzenpathogene
Serin/Threonin-Kinasen	Pflanzenpathogene
Phenylalaninammoniaklyase (PAL)	Pflanzenpathogene, z.B. Bakterielle
•	Blattfäule (bacterial leaf blight) und Rice
	Blast (Pilzpathogen), induzierbare
	I

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Phytoalexine	Pflanzenpathogene, z.B. Bakterielle
	Blattfäule (bacterial leaf blight) und Rice
·	Blast (Pilzpathogen)
B-1,3-Glucanaseantisense	Pflanzenpathogene, z.B. Bakterielle
	Blattfäule (bacterial leaf blight) und Rice
	Blast (Pilzpathogen)
Rezeptorkinase	Pflanzenpathogene, z.B. Bakterielle
•	Blattfäule (bacterial leaf blight) und Rice
	Blast (Pilzpathogen)
Hypersensibilisierendes Polypeptid (Hy-	Pflanzenpathogene
persensitive response eliciting polypepti-	
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Chitinasen	Pflanzenpathogene, z.B. Bakterielle
	Blattfäule (bacterial leaf blight) und Rice
	Blast (Pilzpathogen)
Glucanasen	Pflanzenpathogene
doppelsträngige Ribonuclease	Viren, wie BYDV und MSMV
Hüllproteine	Viren, wie BYDV und MSMV
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, z.B. Stengelbohrerkäfer
cillus cereus-Toxine, Photorabdus- und	(stemborer), Coleoptera, z.B.
Xenorhabdus-Toxine	Reiswasserkäfer (rice water weevil),
	Diptera, Reiszikaden, z.B. Braune Reis-
	zikade (brown rice hopper)
3- Hydroxysteroidoxidase	Lepidoptera, z.B. Stengelbohrerkäfer
	(stemborer), Coleoptera, z.B.
	Reiswasserkäfer (rice water weevil),
	Diptera, Reiszikaden, z.B. Braune Reis-
	zikade (brown rice hopper)
Peroxidase	Lepidoptera z.B. Stengelbohrerkäfer

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	(stemborer), Coleoptera, z.B.
	Reiswasserkäfer (rice water weevil),
	Diptera, Reiszikaden, z.B. Braune Reis-
	zikade (brown rice hopper)
Aminopeptidaseinhibitoren z.B. Leucin-	Lepidoptera z.B. Stengelbohrerkäfer
aminopeptidaseinhibitor	(stemborer), Coleoptera, z.B.
	Reiswasserkäfer (rice water weevil),
	Diptera, Reiszikaden, z.B. Braune Reis-
	zikade (brown rice hopper)
Lectine	Lepidoptera z.B. Stengelbohrerkäfer
	(stemborer), Coleoptera, z.B.
	Reiswasserkäfer (rice water weevil),
	Diptera, Reiszikaden, z.B. Braune Reis-
	zikade (brown rice hopper)
Proteaseinhibitoren,	Lepidoptera z.B. Stengelbohrerkäfer
	(stemborer), Coleoptera, z.B.
	Reiswasserkäfer (rice water weevil),
•	Diptera, Reiszikaden, z.B. Braune Reis-
	zikade (brown rice hopper)
Ribosom-inaktivierendes Protein	Lepidoptera z.B. Stengelbohrerkäfer
i .	(stemborer), Coleoptera, z.B.
	Reiswasserkäfer (rice water weevil),
	Diptera, Reiszikaden, z.B. Braune Reis-
	zikade (brown rice hopper)
HMG-CoA-Reduktase	Lepidoptera z.B. Stengelbohrerkäfer
	(stemborer), Coleoptera, z.B.
	Reiswasserkäfer (rice water weevil),
	Diptera, Reiszikaden, z.B. Braune Reis-
·	zikade (brown rice hopper)
	•

Tabelle A5: Kultur: Soja

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactat-Synthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Antifungales Polypeptid AlyAFP	bakterielle und fungale Pathogene, wie
	Fusarium, Sclerotinia, Kleekrebs (stem
	rot)
	l .

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Oxalatoxidase	bakterielle und fungale Pathogene, wie
	Fusarium, Sclerotinia, Kleekrebs (stem
	rot)
Glucoseoxidase	bakterielle und fungale Pathogene, wie
	Fusarium, Sclerotinia, Kleekrebs (stem
	rot)
Pyrrolnitrinsynthesegene	bakterielle und fungale Pathogene, wie
·	Fusarium, Sclerotinia, Kleekrebs (stem
!	rot)
Serin/Threonin-Kinasen	bakterielle und fungale Pathogene, wie
•	Fusarium, Sclerotinia, Kleekrebs (stem
	rot)
Phenylalaninammoniaklyase (PAL)	bakterielle und fungale Pathogene, wie
	Fusarium, Sclerotinia, Kleekrebs (stem
	rot)
Phytoalexine	Pflanzenpathogene, z.B. Bakterielle
	Blattfăule (bacterial leaf blight) und Rice
	Blast (Pilzpathogen)
B-1,3-Glucanaseantisense	Pflanzenpathogene, z.B. Bakterielle
	Blattfäule (bacterial leaf blight) und Rice
	Blast (Pilzpathogen)
Rezeptorkinase	bakterielle und fungale Pathogene, wie
	Fusarium, Scierotinia, Kleekrebs (stem
	rot)
Hypersensibilisierendes Polypeptid (Hy-	Pflanzenpathogene
persensitive response eliciting polypepti-	
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Chitinasen	bakterielle und fungale Pathogene, wie
	Fusarium, Sclerotinia, Kleekrebs (stem

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	rot)
Glucanasen	bakterielle und fungale Pathogene, wie Fusarium, Sclerotinia, Kleekrebs (stem
•	
	rot)
doppelsträngige Ribonuclease	Viren, wie BPMV und SbMV
Hüllproteine	Viren, wie BYDV und MSMV
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Coleoptera, Blattläuse
cillus cereus-Toxine, Photorabdus- und	·
Xenorhabdus-Toxine	L. L. Luc Colombon Blows
3-Hydroxysteroidoxidase	Lepidoptera, Coleoptera, Blattläuse
Peroxidase	Lepidoptera, Coleoptera, Blattläuse
Aminopeptidaseinhibitoren, z.B. Leucin-	Lepidoptera, Coleoptera, Blattläuse
aminopeptidaseinhibitor	Bladdyna a
Lectine	Lepidoptera, Coleoptera, Blattläuse
Protease-Inhibitoren, z.B. Virgiferin	Lepidoptera, Coleoptera, Blattläuse
Ribosom-inaktivierendes Protein	Lepidoptera, Coleoptera, Blattläuse
HMG-CoA-Reduktase	Lepidoptera, Coleoptera, Blattläuse
Barnase	Nematoden, z.B. Wurzelgallen-
; .	Nematoden und Zysten bildende Nema-
	toden
Zysten bildende Nematoden-	Zysten bildende Nematoden
Schlüpfstimulus	
Antifeeding-Prinzipien	Nematoden, z.B. Wurzelgallen-
Trialooding t inicipion	Nematoden und Zysten bildende Nema-
	toden
·	100011

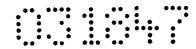


Tabelle A6: Kultur: Kartoffel

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
and the second s	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
:	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Polyphenoloxidase oder Polyphenoloxi-	Stoßstellenfäule (blackspot bruise)
daseantisense	
Metallothionein	bakterielle und fungale Pathogene, wie
	Phytophtora

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Ribonuclease	Phytophtora, Verticillium, Rhizoctonia
Antifungales Polypeptid AlyAFP	bakterielle und fungale Pathogene, wie
	Phytophtora
Oxalatoxidase	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
Glucoseoxidase	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
Pyrrolinitrinsynthesegene	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
Serin/Threonin-Kinasen	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
Cecropin B	Bakterien, wie Corynebacterium sepedo-
	nicum, Erwinia carotovora
Phenylalaninammoniaklyase (PAL)	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
Phytoalexine	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
B-1,3-Glucanaseantisense	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
Rezeptorkinase	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
Hypersensibilisierendes Polypeptid (Hy-	bakterielle und fungale Pathogene, wie
persensitive response eliciting polypepti-	Phytophtora, Verticillium, Rhizoctonia
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Chitinasen	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
Barnase	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
Krankheitsresistenzreaktionsgen (Disea-	bakterielle und fungale Pathogene, wie

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
se resistance response gene 49)	Phytophtora, Verticillium, Rhizoctonia
Trans-Aldolaseantisense	Stoßstellenfäule (blackspots)
Glucanasen	bakterielle und fungale Pathogene, wie
	Phytophtora, Verticillium, Rhizoctonia
doppelsträngige Ribonuclease	Viren, wie PLRV, PVY und TRV
Hüllproteine	Viren, wie PLRV, PVY und TRV
17kDa oder 60 kDa-Protein	Viren, wie PLRV, PVY und TRV
Kerneinschlußproteine (Nuclear inclusion	Viren, wie PLRV, PVY und TRV
proteins) z.B. a oder b	
Pseudoubiquitin	Viren, wie PLRV, PVY und TRV
Replicase	Viren, wie PLRV, PVY und TRV
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Coleoptera, z.B. Kartoffelkäfer, Blattläu-
cillus cereus-Toxine, Photorabdus- und	se
Xenorhabdus-Toxine	
3-Hydroxysteroidoxidase	Coleoptera, z.B. Kartoffelkäfer, Blattläu-
	se
Peroxidase	Coleoptera, z.B. Kartoffelkäfer, Blattläu-
	se
Aminopeptidaseinhibitoren z.B. Leucin-	Coleoptera, z.B. Kartoffelkäfer, Blattläu-
aminopeptidaseinhibitor	se .
Stilbensynthase	Coleoptera, z.B. Kartoffelkäfer, Blattläu-
: .	se
Lectine	Coleoptera, z.B. Kartoffelkäfer, Blattläu-
	se
Protease-Inhibitoren, z.B. Cystatin, Pata-	Coleoptera, z.B. Kartoffelkäfer, Blattläu-
tin	se
Ribosom-inaktivierendes Protein	Coleoptera, z.B. Kartoffelkäfer, Blattläu-
	se
HMG-CoA-Reduktase	Coleoptera, z.B. Kartoffelkäfer, Blattläu-
	se
Zysten bildende Nematoden-	Zysten bildende Nematoden
	•

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Schlüpfstimulus	
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden
Antifeeding-Prinzipien	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden
•	

Tabelle A7: Kultur: Tomaten

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylhamstoffe, Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotia und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Polyphenoloxidase oder Polyphenoloxi-	Stoßstellenfäule (blackspot bruise)
daseantisense	
Metallothionein	bakterielle und fungale Pathogene, wie
	Phytophtora
Ribonuclease	Phytophtora, Verticillium, Rhizoctonia
Antifungales Polypeptid AlyAFP	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
•	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Oxalatoxidase	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
•	Wurzelhaisfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Glucoseoxidase	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
•	Wurzelhalsfäule (crown rot), Braunflek-

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	kenkrankheit (leaf mould) usw.
Pyrrolinitrinsynthesegene	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
•	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Serin/Threonin-Kinasen	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Cecropin B	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
•	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Phenylalaninammoniaklyase (PAL)	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzeihalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	Braunfleckenkrankheit
Osmotin	Alternaria solani

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Alpha Hordothionin	Bakterien
Systemin	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Polygalacturonaseinhibitoren	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Prf-Regulatorgen	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
l2 Fusarium-Resistenzort	Fusarium
Phytoalexine	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfăule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
B-1,3-Glucanaseantisense	bakterielle und fungale Pathogene, wie

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Rezeptorkinase	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
•	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Hypersensibilisierendes Polypeptid (Hy-	bakterielle und fungale Pathogene, wie
persensitive response eliciting polypepti-	Bakterienbrand (bacterial speck),
de)	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Chitinasen	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Barnase	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
Glucanasen	bakterielle und fungale Pathogene, wie
	Bakterienbrand (bacterial speck),
	Schneeschimmel (Fusarium), Knollen-
	naßfäule und Schwarzbeinigkeit (soft
	rot), Apfelmehltau (powdery mildew),
	Wurzelhalsfäule (crown rot), Braunflek-
	kenkrankheit (leaf mould) usw.
doppelsträngige Ribonuclease	Viren, wie PLRV, PVY und ToMoV
Hüllproteine	Viren, wie PLRV, PVY und ToMoV
17kDa oder 60 kDa-Protein	Viren, wie PLRV, PVY und ToMoV
Kerneinschlußproteine (Nuclear inclusion proteins)	Viren, wie PLRV, PVY und ToMoV TRV
Pseudoubiquitin	Viren, wie PLRV, PVY und ToMoV
Replicase	Viren, wie PLRV, PVY und ToMoV
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, z.B. Heliothis, Weiße Fliege
cillus cereus-Toxine, Photorabdus- und	(Mottenläuse), Blattläuse
Xenorhabdus-Toxine	
3-Hydroxysteroidoxidase	Lepidoptera, z.B. Heliothis, Weiße Fliege
	(Mottenläuse), Blattläuse
Peroxidase	Lepidoptera, z.B. Heliothis, Weiße Fliege
	(Mottenläuse), Blattläuse
Aminopeptidaseinhibitoren, z.B. Leucin-	Lepidoptera, z.B. Heliothis, Weiße Fliege
aminopeptidaseinhibitor	(Mottenläuse), Blattläuse
Lectine	Lepidoptera, z.B. Heliothis, Weiße Fliege
	•

(Mottenläuse), Blattläuse

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Protease-Inhibitoren, z.B. Cystatin, Pata-	Lepidoptera, z.B. Heliothis, Weiße Fliege
tin	(Mottenläuse), Blattläuse
Ribosom-inaktivierendes Protein	Lepidoptera, z.B. Heliothis, Weiße Fliege
	(Mottenläuse), Blattläuse
Stilbensynthase	Lepidoptera, z.B. Heliothis, Weiße Fliege
	(Mottenläuse), Blattläuse
HMG-CoA-Reduktase	Lepidoptera, z.B. Heliothis, Weiße Fliege
•	(Mottenläuse), Blattläuse
Zysten bildende Nematoden-	Zysten bildende Nematoden
Schlüpfstimulus	
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden
Antifeeding-Prinzipien	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden
	1

Tabelle A8: Kultur: Paprika

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylhamstoffe, Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen

Kulturphänotyp / Toleranz gegen Wirkziel oder exprimierte(s) Prinzip(ien) Glufosinat, Bialaphos Glutaminsynthetase Inhibitoren der IMP- und AMP-Synthese Adenylsuccinat-Lyase (ADSL) Inhibitoren der Adenylsuccinat-Synthese Adenylsuccinat-Synthase Inhibitoren von Tryptophan-Synthese Anthranilat-Synthase und Catabolismus 3,5-Dihalogen-4-hydroxybenzonitrile, wie **Nitrilase** Bromoxynil und loxinyl Glyphosat oder Sulfosat 5-Enolpyruvyl-3-phosphoshikimat-Synthase (EPSPS). Glyphosat oder Sulfosat Glyphosatoxidoreduktase Diphenylether, cyclische Imide, Phenyl-Protoporphyrinogenoxidase (PROTOX) pyrazole, Pyridin-Derivate, Phenopylat, Oxadiazole usw. Xenobiotica und Herbizide, wie Sulfonyl-Cytochrom P450 z.B. P450 SU1 oder harnstoffe Selektion bakterielle und fungale Pathogene Polyphenoloxidase oder Polyphenoloxidaseantisense bakterielle und fungale Pathogene Metallothionein bakterielle und fungale Pathogene Ribonuclease bakterielle und fungale Pathogene Antifungales Polypeptid AlyAFP bakterielle und fungale Pathogene Oxalatoxidase bakterielle und fungale Pathogene Glucoseoxidase bakterielle und fungale Pathogene Pyrrolinitrinsynthesegene bakterielle und fungale Pathogene Serin/Threonin-Kinasen bakterielle und fungale Pathogene, Fäu-Cecropin B le, Braunfleckenkrankheit usw. bakterielle und fungale Pathogene Phenylalaninammoniaklyase (PAL) bakterielle und fungale Pathogene Cf-Gen. z.B. Cf 9 Cf5 Cf4 Cf2 bakterielle und fungale Pathogene Osmotin bakterielle und fungale Pathogene Alpha Hordothionin

Systemin

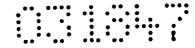
bakterielle und fungale Pathogene

Kulturphänotyp / Toleranz gegen Wirkziel oder exprimierte(s) Prinzip(ien) bakterielle und fungale Pathogene Polygalacturonaseinhibitoren bakterielle und fungale Pathogene Prf-Regulatorgen Fusarium 12 Fusariumresistenzort bakterielle und fungale Pathogene Phytoalexine bakterielle und fungale Pathogene **B-1.3-Glucanaseantisense** bakterielle und fungale Pathogene Rezeptorkinase bakterielle und fungale Pathogene Hypersensibilisierendes Polypeptid (Hypersensitive response eliciting polypeptivirale, bakterielle, fungale, nematodale Systemic acquires resistance (SAR)-Pathogene Gene bakterielle und fungale Pathogene Chitinasen bakterielle und fungale Pathogene Barnase bakterielle und fungale Pathogene Glucanasen Viren, wie CMV, TEV doppelsträngige Ribonuclease Viren, wie CMV, TEV Hüllproteine Viren, wie CMV, TEV 17kDa oder 60 kDa-Protein Viren, wie CMV, TEV Kerneinschlußproteine (Nuclear inclusion proteins) z.B. a oder b oder Nucleoprotein Viren, wie CMV, TEV Pseudoubiquitin Viren, wie CMV, TEV Replicase Lepidoptera, Weiße Fliege (Mottenläu-Bacillus thuringiensis-Toxine, VIP 3, Base), Blattläuse cillus cereus-Toxine, Photorabdus- und Xenorhabdus-Toxine Lepidoptera, Weiße Fliege (Mottenläu-3-Hydroxysteroidoxidase se), Blattläuse Lepidoptera, Weiße Fliege (Mottenläu-Peroxidase se), Blattläuse

Aminopeptidaseinhibitoren, z.B. Leucin-

aminopeptidaseinhibitor

Lepidoptera, Weiße Fliege (Mottenläu-


se), Blattläuse

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Lectine	Lepidoptera, Weiße Fliege (Mottenläu-
	se), Blattläuse
Protease-Inhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Weiße Fliege (Mottenläu-
tin	se), Blattläuse
Ribosom-inaktivierendes Protein	Lepidoptera, Weiße Fliege (Mottenläu-
	se), Blattläuse
Stilbensynthase	Lepidoptera, Weiße Fliege (Mottenläu-
	se), Blattläuse
HMG-CoA-Reduktase	Lepidoptera, Weiße Fliege (Mottenläu-
	se), Blattläuse
Zysten bildende Nematoden-	Zysten bildende Nematoden
Schlüpfstimulus	
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
·	toden
Antifeeding-Prinzipien	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden

Tabelle A9: Kultur: Pampelmusen

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria- zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
•	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
	I .

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase .	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Polyphenoloxidase oder Polyphenoloxi-	bakterielle und fungale Pathogene, wie
daseantisense	Botrytis und Apfelmehltau
Metallothionein	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Ribonuclease	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Antifungales Polypeptid AlyAFP	bakterielle und fungale Pathogene, wie
•	Botrytis und Apfelmehltau
Oxalatoxidase	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Glucoseoxidase	bakterielle und fungale Pathogene, wie
·	Botrytis und Apfelmehltau
Pyrrolinitrinsynthesegene	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
	į.

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Serin/Threonin-Kinasen	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Cecropin B	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Phenylalaninammoniaklyase (PAL)	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Osmotin	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Alpha Hordothionin	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Systemin	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Polygalacturonase-Inhibitoren	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Prf-Regulatorgen	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Phytoalexine	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
B-1,3-Glucanaseantisense	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Rezeptorkinase	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Hypersensibilisierendes Polypeptid (Hy-	bakterielle und fungale Pathogene, wie
persensitive response eliciting polypepti-	Botrytis und Apfelmehltau
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Chitinase	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Barnase	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
Glucanasen	bakterielle und fungale Pathogene, wie
	Botrytis und Apfelmehltau
doppelsträngige Ribonuclease	Viren
Hüllproteine	Viren
17kDa oder 60 kDa-Protein	Viren
Kerneinschlußproteine (Nuclear inclusion	Viren
proteins) z.B. a oder b oder Nucleo-	
protein	
Pseudoubiquitin	Viren
Replicase	Viren
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Blattläuse
cillus cereus-Toxine, Photorabdus- und	
Xenorhabdus-Toxine	
3- Hydroxysteroidoxidase	Lepidoptera, Blattläuse
Peroxidase	Lepidoptera, Blattläuse
Aminopeptidaseinhibitoren z.B. Leucin-	Lepidoptera, Blattläuse
aminopeptidaseinhibitor	
Lectine	Lepidoptera, Blattläuse
Protease-Inhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Blattläuse
tin : .	
Ribosom-inaktivierendes Protein	Lepidoptera, Blattläuse
Stilbensynthase	Lepidoptera, Blattläuse, Krankheiten
HMG-CoA-Reduktase	Lepidoptera, Blattläuse
Zysten bildende Nematoden-	Zysten bildende Nematoden
Schlüpfstimulus	
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema
	toden oder allgemeine Erkrankung
СВІ	Wurzelgallen-Nematoden

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Antifeeding-Prinzipien	Nematoden, z.B. Wurzelgallen-
	Nematoden oder an der Wurzel Zysten
·	bildende Nematoden

Tabelle A10: Kultur: Raps

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
: .	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.

	Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
٠	Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
	Selektion	harnstoffe
	Polyphenoloxidase oder Polyphe-	bakterielle und fungale Pathogene, wie
	noloxidaseantisense	Cylindrosporium, Phoma, Sclerotinia
	Metallothionein	bakterielle und fungale Pathogene, wie
	· į	Cylindrosporium, Phoma, Sclerotinia
	Ribonuclease	bakterielle und fungale Pathogene, wie
	·	Cylindrosporium, Phoma, Sclerotinia
	Antifungales Polypeptid AlyAFP	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Oxalatoxidase	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Glucoseoxidase	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Pyrrolinitrinsynthesegene	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Serin/Threonin-Kinasen	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Cecropin B	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Phenylalaninammoniaklyase (PAL)	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Osmotin	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Alpha Hordothionin	bakterielle und fungale Pathogene, wie
	•	Cylindrosporium, Phoma, Sclerotinia
	Systemin	bakterielle und fungale Pathogene, wie
		Cylindrosporium, Phoma, Sclerotinia
	Polygalacturonase-Inhibitoren	bakterielle und fungale Pathogene, wie
	. 3., 3	1

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	Cylindrosporium, Phoma, Sclerotinia
Prf-Regulatorgen	bakterielle und fungale Pathogene, wie
	Cylindrosporium, Phoma, Sclerotinia
Phytoalexine	bakterielle und fungale Pathogene, wie
·	Cylindrosporium, Phoma, Sclerotinia
B-1,3-Glucanaseantisense	bakterielle und fungale Pathogene, wie
	Cylindrosporium, Phoma, Sclerotinia
Rezeptorkinase	bakterielle und fungale Pathogene, wie
	Cylindrosporium, Phoma, Sclerotinia
Hypersensibilisierendes Polypeptid (Hy-	bakterielle und fungale Pathogene, wie
persensitive response eliciting polypepti-	Cylindrosporium, Phoma, Sclerotinia
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Chitinasen	bakterielle und fungale Pathogene, wie
,	Cylindrosporium, Phoma, Sclerotinia
Barnase	bakterielle und fungale Pathogene, wie
	Cylindrosporium, Phoma, Sclerotinia,
	Nematoden
Glucanasen	bakterielle und fungale Pathogene, wie
	Cylindrosporium, Phoma, Sclerotinia
doppelsträngige Ribonuclease	Viren
Hüllproteine	Viren
17kDa oder 60 kDa-Protein	Viren
Kerneinschlußproteine (Nuclear inclusion	Viren
proteins) z.B. a oder b	
Pseudoubiquitin	Viren
Replicase	Viren
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Blattläuse
cillus cereus-Toxine, Photorabdus- und	
Xenorhabdus-Toxine	

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
3-Hydroxysteroidoxidase	Lepidoptera, Blattläuse
Peroxidase	Lepidoptera, Blattläuse
Aminopeptidase-Inhibitoren z.B.	Lepidoptera, Blattläuse
Leucinaminopeptidaseinhibitor	
Lectine	Lepidoptera, Blattläuse
Protease-Inhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Blattläuse
tin, CPTI	
Ribosom-inaktivierendes Protein	Lepidoptera, Blattläuse
Stilbensynthase	Lepidoptera, Blattläuse, Krankheiten
HMG-CoA-Reduktase	Lepidoptera, Blattläuse
Zysten bildende Nematoden-	Zysten bildende Nematoden
Schlüpfstimulus	
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden
CBI	Wurzelgallen-Nematoden
Antifeeding-Prinzipien induziert am Nah-	Nematoden, z.B. Wurzelgallen-
rungsaufnahmeort der Nematoden	Nematoden, an der Wurzel Zysten bil-
	dende Nematoden

Tabelle A11: Kultur: Kohlgemüse (Weißkohl, Rosenkohl, Brokkoli usw.)

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylhamstoffe, Imidazolinone, Tria- zolopyrimidine, Pyrimidyloxybenzoate, Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy- clohexandione
Hydroxyphenylpyruvatdioxygenase (HPPD)	Isoxazole, wie Isoxaflutol oder Isox- achlortol, Trione, wie Mesotrion oder

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Polyphenoloxidase oder Polyphe-	bakterielle und fungale Pathogene
noloxidaseantisense	
Metallothionein	bakterielle und fungale Pathogene
Ribonuclease	bakterielle und fungale Pathogene
Antifungales Polypeptid AlyAFP	bakterielle und fungale Pathogene
Oxalatoxidase	bakterielle und fungale Pathogene.
Glucoseoxidase	bakterielle und fungale Pathogene
Pyrrolinitrinsynthesegene	bakterielle und fungale Pathogene
Serin/Threonin-Kinasen	bakterielle und fungale Pathogene
Cecropin B	bakterielle und fungale Pathogene
Phenylalaninammoniaklyase (PAL)	bakterielle und fungale Pathogene
Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	bakterielle und fungale Pathogene

bakterielle und fungale Pathogene

Osmotin

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Alpha Hordothionin	bakterielle und fungale Pathogene
Systemin	bakterielle und fungale Pathogene
Polygalacturonase-Inhibitoren	bakterielle und fungale Pathogene
Prf-Regulatorgen	bakterielle und fungale Pathogene
Phytoalexine	bakterielle und fungale Pathogene
B-1,3-Glucanaseantisense	bakterielle und fungale Pathogene
Rezeptorkinase	bakterielle und fungale Pathogene
Hypersensibilisierendes Polypeptid (Hy-	bakterielle und fungale Pathogene
persensitive response eliciting polypepti-	
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Chitinasen	bakterielle und fungale Pathogene
Barnase	bakterielle und fungale Pathogene
Glucanasen	bakterielle und fungale Pathogene
doppelsträngige Ribonuclease	Viren
Hüllproteine	Viren
17kDa oder 60 kDa-Protein	Viren
Kerneinschlußproteine (Nuclear inclusion	Viren
proteins) z.B. a oder b oder Nukleo-	
protein	
Pseudoubiquitin	Viren
Replicase	Viren
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Blattläuse
cillus cereus-Toxine, Photorabdus, und	
Xenorhabdus-Toxine	
3- Hydroxysteroidoxidase	Lepidoptera, Blattläuse
Peroxidase	Lepidoptera, Blattläuse
Aminopeptidase-Inhibitoren z.B. Leucin-	Lepidoptera, Blattläuse
aminopeptidaseinhibitor	
Lectine	Lepidoptera, Blattläuse
	•

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Protease-Inhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Blattläuse
tin, CPTI	
Ribosom-inaktivierendes Protein	Lepidoptera, Blattläuse
Stilbensynthase	Lepidoptera, Blattläuse, Krankheiten
HMG-CoA-Reduktase	Lepidoptera, Blattläuse
Zysten bildende Nematoden-	Zysten bildende Nematoden
Schlüpfstimulus	
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden
CBI	Wurzelgallen-Nematoden
Antifeeding-Prinzipien induziert am Nah-	Nematoden, z.B. Wurzelgallen-
rungsaufnahmeort der Nematoden	Nematoden, an der Wurzel Zysten bil-
	dende Nematoden

Tabelle A12: Kultur: Kernobst z.B. Apfel, Birnen usw.

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP und AMP-Synthese
	1

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Polyphenoloxidase oder Polyphe-	bakterielle und fungale Pathogene, wie
noloxidaseantisense	Apfelschorf oder Feuerbrand
Metallothionein	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Ribonuclease	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Antifungales Polypeptid AlyAFP	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Oxalatoxidase	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Glucoseoxidase	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Pyrrolinitrinsynthesegene	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Serin/Threonin-Kinasen	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Cecropin B	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand

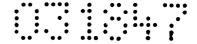
Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Phenylalaninammoniaklyase (PAL)	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Osmotin	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Alpha Hordothionin	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Systemin	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Polygalacturonase-Inhibitoren	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Prf-Regulatorgen	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Phytoalexine	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
B-1,3-Glucanaseantisense	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Rezeptorkinase	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Hypersensibilisierendes Polypeptid (Hy-	bakterielle und fungale Pathogene, wie
persensitive response eliciting polypepti-	Apfelschorf oder Feuerbrand
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Lytisches Protein	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Lysozym	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Chitinasen	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
	1

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Barnase	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
Glucanasen	bakterielle und fungale Pathogene, wie
	Apfelschorf oder Feuerbrand
doppelsträngige Ribonuclease	Viren
Hüllproteine	Viren
17kDa oder 60 kDa-Protein	Viren
Kerneinschlußproteine (Nuclear inclusion	Viren
proteins) z.B. a oder b oder Nukleo-	
protein	
Pseudoubiquitin	Viren
Replicase	Viren
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Blattläuse, Milben
cillus cereus-Toxine, Photorabdus- und	
Xenorhabdus-Toxine	
3-Hydroxysteroidoxidase	Lepidoptera, Blattläuse, Milben
Peroxidase	Lepidoptera, Blattläuse, Milben
Aminopeptidaseinhibitoren, z.B. Leucin-	Lepidoptera, Blattläuse, Milben
Aminopeptidaseinhibitor	
Lectine	Lepidoptera, Blattläuse, Milben
Protease-Inhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Blattläuse , Milben
tin, CPTI	
Ribosom-inaktivierendes Protein	Lepidoptera, Blattläuse, Milben
Stilbensynthase	Lepidoptera, Blattläuse, Erkrankungen,
	Milben
HMG-CoA-Reduktase	Lepidoptera, Blattläuse, Milben
Zysten bildende Nematoden-	Zysten bildende Nematoden
Schlüpfstimulus	
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden (cyst nematodes)

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
СВІ	Wurzelgallen-Nematoden
Antifeeding-Prinzipien induziert am Nah-	Nematoden, z.B. Wurzelgallen-
rungsaufnahmeort der Nematoden	Nematoden, an der Wurzel Zysten bil-
	dende Nematoden
Tabelle A13: Kultur: Melonen	
Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Polyphenoloxidase oder Polyphenoloxi-	bakterielle oder fungale Pathogene, wie
daseantisense	Phytophtora
Metallothionein	bakterielle oder fungale Pathogene, wie
•	Phytophtora
Ribonuclease	bakterielle oder fungale Pathogene, wie
	Phytophtora
Antifungales Polypeptid AlyAFP	bakterielle oder fungale Pathogene, wie
	Phytophtora
Oxalatoxidase	bakterielle oder fungale Pathogene, wie
	Phytophtora
Glucoseoxidase	bakterielle oder fungale Pathogene, wie
·	Phytophtora
Pyrrolinitrinsynthesegene	bakterielle oder fungale Pathogene, wie
•	Phytophtora
Serin/Threonin-Kinasen	bakterielle oder fungale Pathogene, wie
	Phytophtora
Cecropin B	bakterielle oder fungale Pathogene, wie
	Phytophtora
Phenylalaninammoniaklyase (PAL)	bakterielle oder fungale Pathogene, wie
	Phytophtora
Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	bakterielle oder fungale Pathogene, wie
	Phytophtora
Osmotin	bakterielle oder fungale Pathogene, wie
	Phytophtora
Alpha Hordothionin	bakterielle oder fungale Pathogene, wie
	Phytophtora
Systemin	bakterielle oder fungale Pathogene, wie
•	Phytophtora
	I

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Polygalacturonase-Inhibitoren	bakterielle oder fungale Pathogene, wie
	Phytophtora
Prf-Regulatorgen	bakterielle oder fungale Pathogene, wie
	Phytophtora
Phytoalexine	bakterielle oder fungale Pathogene, wie
•	Phytophtora
B-1,3-Glucanaseantisense	bakterielle oder fungale Pathogene, wie
	Phytophtora
Rezeptorkinase	bakterielle oder fungale Pathogene, wie
•	Phytophtora
Hypersensibilisierendes Polypeptid (Hy-	bakterielle oder fungale Pathogene, wie
persensitive response eliciting polypepti-	Phytophtora
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Lytisches Protein	bakterielle oder fungale Pathogene, wie
	Phytophtora
Lysozym	bakterielle oder fungale Pathogene, wie
	Phytophtora
Chitinasen	bakterielle oder fungale Pathogene, wie
	Phytophtora
Barnase	bakterielle oder fungale Pathogene, wie
	Phytophtora
Glucanasen	bakterielle oder fungale Pathogene, wie
	Phytophtora
doppelsträngige Ribonuclease	Viren, wie CMV, PRSV, WMV2, SMV,
	ZYMV
Hüllproteine	Viren, wie CMV, PRSV, WMV2, SMV,
	ZYMV
17kDa oder 60 kDa-Protein	Viren, wie CMV, PRSV, WMV2, SMV,
	ZYMV
	· ·



Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Kerneinschlußproteine (Nuclear inclusion	Viren, wie CMV, PRSV, WMV2, SMV,
proteins) z.B. a oder b oder Nukleo-	ZYMV
protein	
Pseudoubiquitin	Viren, wie CMV, PRSV, WMV2, SMV,
	ZYMV
Replicase	Viren, wie CMV, PRSV, WMV2, SMV,
	ZYMV
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Blattläuse, Milben
cillus cereus-Toxine, Photorabdus- und	
Xenorhabdus-Toxine	·
3-Hydroxysteroidoxidase	Lepidoptera, Blattläuse, Milben, Weiße
	Fliege (Mottenläuse),
Peroxidase	Lepidoptera, Blattläuse, Milben, Weiße
	Fliege (Mottenläuse),
Aminopeptidaseinhibitoren z.B. Leucin-	Lepidoptera, Blattläuse, Milben, Weiße
aminopeptidaseinhibitor	Fliege (Mottenläuse),
Lectine	Lepidoptera, Blattläuse, Milben, Weiße
	Fliege (Mottenläuse),
Proteaseinhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Blattläuse, Milben, Weiße
tin, CPTI, Virgiferin	Fliege (Mottenläuse),
Ribosom-inaktivierendes Protein	Lepidoptera, Blattläuse, Milben, Weiße
	Fliege (Mottenläuse),
Stilbensynthase	Lepidoptera, Blattläuse, Milben, Weiße
	Fliege (Mottenläuse),
HMG-CoA-Reduktase	Lepidoptera, Blattläuse, Milben, Weiße
	Fliege (Mottenläuse),
Zysten bildende Nematoden-	Zysten bildende Nematoden (cyst ne-
Schlüpfstimulus	matodes)
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden (cyst nematodes)
	•

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
СВІ	Wurzelgallen- Nematoden
Antifeeding-Prinzipien induziert am Nah-	Nematoden, z.B. Wurzelgallen-
rungsaufnahmeort der Nematoden	Nematoden, an der Wurzel Zysten bil-
	dende Nematoden
Tabelle A14: Kultur: Bananen	
Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wid
	Bromoxynil und loxinyl
5-Enolpyruvyi-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
•	pyrazole, Pyridin-Derivate, Phenopylat,

Kulturphänotyp / Toleranz gegen

Wirkziel oder exprimierte(s) Prinzip(ien) Cytochrom P450 z.B. P450 SU1 oder Selektion Polyphenoloxidase oder Polyphenoloxidaseantisense Metallothionein Ribonuclease Antifungales Polypeptid AlyAFP Oxalatoxidase Glucoseoxidase Pyrrolinitrinsynthesegene Serin/Threonin-Kinasen Cecropin B Phenylalaninammoniaklyase (PAL) Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2 Osmotin Alpha Hordothionin Systemin Polygalacturonase-Inhibitoren Prf-Regulatorgen **Phytoalexine** B-1,3-Glucanaseantisense Rezeptorkinase Hypersensibilisierendes Polypeptid (Hypersensitive response eliciting polypeptide) Systemic acquires resistance (SAR)-Gene Lytisches Protein Lysozym

Chitinasen

Oxadiazole usw. Xenobiotica und Herbizide, wie Sulfonylharnstoffe bakterielle oder fungale Pathogene virale, bakterielle, fungale, nematodale Pathogene bakterielle oder fungale Pathogene bakterielle oder fungale Pathogene

bakterielle oder fungale Pathogene

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Barnase	bakterielle oder fungale Pathogene
Glucanasen	bakterielle oder fungale Pathogene
doppelsträngige Ribonuclease	Viren, wie "Banana bunchy top virus"
	(BBTV)
Hüllproteine	Viren, wie "Banana bunchy top virus"
	(BBTV)
17kDa oder 60 kDa-Protein	Viren, wie "Banana bunchy top virus"
	(BBTV)
Kerneinschlußproteine (Nuclear inclusion	Viren, wie "Banana bunchy top virus"
proteins) z.B. a oder b oder Nukleo-	(BBTV)
protein	
Pseudoubiquitin	Viren, wie "Banana bunchy top virus"
	(BBTV)
Replicase	Viren, wie "Banana bunchy top virus"
	(BBTV)
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Blattläuse, Milben, Nema-
cillus cereus-Toxine, Photorabdus- und	toden
Xenorhabdus-Toxine	
3-Hydroxysteroidoxidase	Lepidoptera, Blattläuse, Milben, Nema-
	toden
Peroxidase	Lepidoptera, Blattläuse, Milben, Nema-
	toden
Aminopeptidaseinhibitoren z.B. Leucin-	Lepidoptera, Blattläuse, Milben, Nema-
aminopeptidaseinhibitor	toden
Lectine	Lepidoptera, Blattläuse, Milben, Nema-
	toden
Proteaseinhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Blattläuse, Milben, Nema-
tin, CPTI, Virgiferin	toden
Ribosom-inaktivierendes Protein	Lepidoptera, Blattläuse, Milben, Nema-
	toden
Stilbensynthase	Lepidoptera, Blattläuse, Milben, Nema-

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	toden
HMG-CoA-Reduktase	Lepidoptera, Blattläuse, Milben, Nema-
	toden
Zysten bildende Nematoden-	Zysten bildende Nematoden (cyst ne-
Schlüpfstimulus	matodes)
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
	toden (cyst nematodes)
CBI	Wurzelgallen- Nematoden
Antifeeding-Prinzipien induziert am Nah-	Nematoden, z.B. Wurzelgallen-
rungsaufnahmeort der Nematoden	Nematoden, an der Wurzel Zysten bil-
	dende Nematoden (cyst nematodes)
Tabelle A15: Kultur: Baumwolle	

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphanotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	1

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
•	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Polyphenoloxidase oder Polyphenoloxi-	bakterielle oder fungale Pathogene
daseantisense	
Metallothionein	bakterielle oder fungale Pathogene
Ribonuclease	bakterielle oder fungale Pathogene
Antifungales Polypeptid AlyAFP	bakterielle oder fungale Pathogene
Oxalatoxidase	bakterielle oder fungale Pathogene
Glucoseoxidase	bakterielle oder fungale Pathogene
Pyrrolinitrinsynthesegene	bakterielle oder fungale Pathogene
Serin/Threonin-Kinasen	bakterielle oder fungale Pathogene
Cecropin B	bakterielle oder fungale Pathogene
Phenylalaninammoniaklyase (PAL)	bakterielle oder fungale Pathogene
Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	bakterielle oder fungale Pathogene
Osmotin	bakterielle oder fungale Pathogene
Alpha Hordothionin	bakterielle oder fungale Pathogene
Systemin	bakterielle oder fungale Pathogene
Polygalacturonase-Inhibitoren	bakterielle oder fungale Pathogene
Prf-Regulatorgen	bakterielle oder fungale Pathogene
Phytoalexine	bakterielle oder fungale Pathogene
B-1,3-Glucanaseantisense	bakterielle oder fungale Pathogene
Rezeptorkinase	bakterielle oder fungale Pathogene
	ı

Wirkziel oder exprimierte(s) Prinzip(ien)

Kulturphänotyp / Toleranz gegen

bakterielle oder fungale Pathogene

Hypersensibilisierendes Polypeptid (Hypersensitive response eliciting polypeptide)

Systemic acquires resistance (SAR)-

Gene

Lytisches Protein

Lysozym

Chitinasen

Barnase

Glucanasen

doppelsträngige Ribonuclease

Hüllproteine

17kDa oder 60 kDa-Protein

Kerneinschlußproteine (Nuclear inclusion

proteins) z.B. a oder b

Pseudoubiquitin

Replicase

Bacillus thuringiensis-Toxine, VIP 3, Bacillus cereus-Toxine, Photorabdus- und

Xenorhabdus-Toxine

3-Hydroxysteroidoxidase

Peroxidase

Aminopeptidaseinhibitoren, z.B. Leucinaminopeptidaseinhibitor

Lectine

Protease-Inhibitoren, z.B. Cystatin, Patatin, CPTI, Virgiferin

Ribosom-inaktivierendes Protein

virale, bakterielle, fungale, nematodale Pathogene

bakterielle oder fungale Pathogene
bakterielle oder fungale Pathogene
bakterielle oder fungale Pathogene
bakterielle oder fungale Pathogene
bakterielle oder fungale Pathogene
bakterielle oder fungale Pathogene
Viren, wie "Wound tumor virus" (WTV)
Viren, wie "Wound tumor virus" (WTV)
Viren, wie "Wound tumor virus" (WTV)

Viren, wie "Wound tumor virus" (WTV) Viren, wie "Wound tumor virus" (WTV) Lepidoptera, Blattläuse, Milben, Nematoden, Weiße Fliege (Mottenläuse),

Lepidoptera, Blattläuse, Milben, Nematoden, Weiße Fliege (Mottenläuse),
Lepidoptera, Blattläuse, Milben, Nematoden, Weiße Fliege (Mottenläuse),
Lepidoptera, Blattläuse, Milben, Nematoden, Weiße Fliege (Mottenläuse),
Lepidoptera, Blattläuse, Milben, Nematoden, Weiße Fliege (Mottenläuse),
Lepidoptera, Blattläuse, Milben, Nematoden, Weiße Fliege (Mottenläuse),
Lepidoptera, Blattläuse, Milben, Nematoden, Weiße Fliege (Mottenläuse),

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
	toden, Weiße Fliege (Mottenläuse),
Stilbensynthase	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse),
HMG-CoA-Reduktase	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse),
Zysten bildende Nematoden-	Zysten bildende Nematoden (cyst ne-
Schlüpfstimulus	matodes)
Barnase	Nematoden, z.B. Wurzelgallen- Nemato-
	den und Zysten bildende Nematoden
	(cyst nematodes)
CBI	Wurzelgallen-Nematoden
Antifeeding-Prinzipien induziert am Nah-	Nematoden, z.B. Wurzelgallen- Nemato-
rungsaufnahmeort der Nematoden	den, an der Wurzel Zysten bildende Ne-
	matoden (cyst nematodes)
Tabelle A16: Kultur: Zuckerrohr	
Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Wirkziel oder exprimierte(s) Prinzip(ien) Acetolactatsynthase (ALS)	Kulturphänotyp / Toleranz gegen Sulfonylharnstoffe, Imidazolinone, Tria-
	Sulfonylharnstoffe, Imidazolinone, Tria-
	Sulfonylharnstoffe, Imidazolinone, Tria- zolopyrimidine, Pyrimidyloxybenzoate,
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria- zolopyrimidine, Pyrimidyloxybenzoate, Phtalide
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria- zolopyrimidine, Pyrimidyloxybenzoate, Phtalide Aryloxyphenoxyalkancarbonsäuren, Cy-
Acetolactatsynthase (ALS) AcetylCoA-Carboxylase (ACCase)	Sulfonylharnstoffe, Imidazolinone, Tria- zolopyrimidine, Pyrimidyloxybenzoate, Phtalide Aryloxyphenoxyalkancarbonsäuren, Cy- clohexandione
Acetolactatsynthase (ALS) AcetylCoA-Carboxylase (ACCase) Hydroxyphenylpyruvatdioxygenase	Sulfonylharnstoffe, Imidazolinone, Triazolopyrimidine, Pyrimidyloxybenzoate, Phtalide Aryloxyphenoxyalkancarbonsäuren, Cyclohexandione Isoxazole, wie Isoxaflutol oder Isox-
Acetolactatsynthase (ALS) AcetylCoA-Carboxylase (ACCase) Hydroxyphenylpyruvatdioxygenase	Sulfonylharnstoffe, Imidazolinone, Triazolopyrimidine, Pyrimidyloxybenzoate, Phtalide Aryloxyphenoxyalkancarbonsäuren, Cyclohexandione Isoxazole, wie Isoxaflutol oder Isoxachlortol, Trione, wie Mesotrion oder
Acetolactatsynthase (ALS) AcetylCoA-Carboxylase (ACCase) Hydroxyphenylpyruvatdioxygenase (HPPD)	Sulfonylharnstoffe, Imidazolinone, Triazolopyrimidine, Pyrimidyloxybenzoate, Phtalide Aryloxyphenoxyalkancarbonsäuren, Cyclohexandione Isoxazole, wie Isoxaflutol oder Isoxachlortol, Trione, wie Mesotrion oder Sulcotrion

Glutaminsynthetase

Adenyisuccinat-Lyase (ADSL)

Glufosinat, Bialaphos

Inhibitoren der IMP- und AMP-Synthese

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimate	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Polyphenoloxidase oder Polyphenoloxi-	bakterielle oder fungale Pathogene
daseantisense	
Metallothionein	bakterielle oder fungale Pathogene
Ribonuclease	bakterielle oder fungale Pathogene
Antifungales Polypeptid AlyAFP	bakterielle oder fungale Pathogene
Oxalatoxidase	bakterielle oder fungale Pathogene
Glucoseoxidase	bakterielle oder fungale Pathogene
Pyrrolinitrinsynthesegene	bakterielle oder fungale Pathogene
Serin/Threonin-Kinasen	bakterielle oder fungale Pathogene
Cecropin B	bakterielle oder fungale Pathogene
Phenylalaninammoniaklyase (PAL)	bakterielle oder fungale Pathogene
Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	bakterielle oder fungale Pathogene
Osmotin	bakterielle oder fungale Pathogene
Alpha Hordothionin	bakterielle oder fungale Pathogene
Systemin	bakterielle oder fungale Pathogene
Polygalacturonase-Inhibitoren	bakterielle oder fungale Pathogene
Prf-Regulatorgen	bakterielle oder fungale Pathogene
Phytoalexine	bakterielle oder fungale Pathogene
	•

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
B-1,3-Glucanaseantisense	bakterielle oder fungale Pathogene
Rezeptorkinase	bakterielle oder fungale Pathogene
Hypersensibilisierendes Polypeptid (Hy-	bakterielle oder fungale Pathogene
persensitive response eliciting polypepti-	
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Lytisches Protein	bakterielle oder fungale Pathogene
Lysozym	bakterielle oder fungale Pathogene, z.B.
	Clavibacter
Chitinasen	bakterielle oder fungale Pathogene
Barnase	bakterielle oder fungale Pathogene
Glucanasen	bakterielle oder fungale Pathogene
doppelsträngige Ribonuclease	Viren, wie SCMV, SrMV
Hüllproteine	Viren, wie SCMV, SrMV
17kDa oder 60 kDa-Protein	Viren, wie SCMV, SrMV
Kerneinschlußproteine (Nuclear inclusion	Viren, wie SCMV, SrMV
proteins) z.B. a oder b oder Nukleo-	
protein	
Pseudoubiquitin	Viren, wie SCMV, SrMV
Replicase	Viren, wie SCMV, SrMV
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Blattläuse, Milben, Nema-
cillus cereus-Toxine, Photorabdus- und	toden, Weiße Fliege (Mottenläuse), Kä-
Xenorhabdus-Toxine	fer, z.B. Mexikanischer Reiskäfer
3-Hydroxysteroidoxidase	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, z.B. Mexikanischer Reiskäfer
Peroxidase	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, z.B. Mexikanischer Reiskäfer
Aminopeptidaseinhibitoren, z.B. Leucin-	Lepidoptera, Blattläuse, Milben, Nema-

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
aminopeptidaseinhibitor	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, z.B. Mexikanischer Reiskäfer
Lectine	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, z.B. Mexikanischer Reiskäfer
Proteaseinhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Blattläuse, Milben, Nema-
tin, CPTI, Virgiferin	toden, Weiße Fliege (Mottenläuse), Kä-
·	fer, z.B. Mexikanischer Reiskäfer
Ribosom-inaktivierendes Protein	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, z.B. Mexikanischer Reiskäfer
Stilbensynthase	Lepidoptera, Blattläuse, Milben, Nema-
_	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, z.B. Mexikanischer Reiskäfer
HMG-CoA-Reduktase	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, z.B. Mexikanischer Reiskäfer
Zysten bildende Nematoden-	Zysten bildende Nematoden (cyst ne-
Schlüpfstimulus	matodes)
Barnase	Nematoden, z.B. Wurzelgallen-
	Nematoden und Zysten bildende Nema-
· .	toden (cyst nematodes)
CBI	Wurzeigalien-Nematoden
Antifeeding-Prinzipien induziert am Nah-	Nematoden, z.B. Wurzelgallen-
rungsaufnahmeort der Nematoden	Nematoden, an der Wurzel Zysten bil-
	dende Nematoden (cyst nematodes)
	•

Tabelle A17: Kultur: Sonnenblumen

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
·	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
Selektion	harnstoffe
Polyphenoloxidase oder Polyphenoloxi-	bakterielle oder fungale Pathogene
daseantisense	1
Metallothionein	bakterielle oder fungale Pathogene

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Ribonuclease	bakterielle oder fungale Pathogene
Antifungales Polypeptid AlyAFP	bakterielle oder fungale Pathogene
Oxalatoxidase	bakterielle oder fungale Pathogene, z.B.
	Sclerotinia
Glucoseoxidase	bakterielle oder fungale Pathogene
Pyrrolinitrinsynthesegene	bakterielle oder fungale Pathogene
Serin/Threonin-Kinasen	bakterielle oder fungale Pathogene
Cecropin B	bakterielle oder fungale Pathogene
Phenylalaninammoniaklyase (PAL)	bakterielle oder fungale Pathogene
Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	bakterielle oder fungale Pathogene
Osmotin	bakterielle oder fungale Pathogene
Alpha Hordothionin	bakterielle oder fungale Pathogene
Systemin _	bakterielle oder fungale Pathogene
Polygalacturonase-Inhibitoren	bakterielle oder fungale Pathogene
Prf-Regulatorgen	bakterielle oder fungale Pathogene
Phytoalexine	bakterielle oder fungale Pathogene
B-1,3-Glucanaseantisense	bakterielle oder fungale Pathogene
Rezeptorkinase	bakterielle oder fungale Pathogene
Hypersensibilisierendes Polypeptid (Hy-	bakterielle oder fungale Pathogene
persensitive response eliciting polypepti-	
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene	Pathogene
Lytisches Protein	bakterielle oder fungale Pathogene
Lysozym	bakterielle oder fungale Pathogene
Chitinasen	bakterielle oder fungale Pathogene
Barnase	bakterielle oder fungale Pathogene
Glucanasen	bakterielle oder fungale Pathogene
doppelsträngige Ribonuclease	Viren, wie CMV, TMV
Hüllproteine	Viren, wie CMV, TMV
17kDa oder 60 kDa-Protein	Viren, wie CMV, TMV

Kulturphänotyp / Toleranz gegen Wirkziel oder exprimierte(s) Prinzip(ien) Viren, wie CMV, TMV Kerneinschlußproteine (Nuclear inclusion proteins) z.B. a oder b oder Nukleoprotein Viren, wie CMV, TMV **Pseudoubiquitin** Viren, wie CMV, TMV Replicase Lepidoptera, Blattläuse, Milben, Nema-Bacillus thuringiensis-Toxine, VIP 3, Batoden, Weiße Fliege (Mottenläuse), Käfer cillus cereus-Toxine, Photorabdus- und Xenorhabdus-Toxine Lepidoptera, Blattläuse, Milben, Nema-3-Hydroxysteroidoxidase toden, Weiße Fliege (Mottenläuse), Käfer Lepidoptera, Blattläuse, Milben, Nema-Peroxidase toden, Weiße Fliege (Mottenläuse), Käfer Lepidoptera, Blattläuse, Milben, Nema-Aminopeptidaseinhibitoren z.B. Leucintoden, Weiße Fliege (Mottenläuse), Käfer aminopeptidaseinhibitor Lepidoptera, Blattläuse, Milben, Nema-Lectine toden, Weiße Fliege (Mottenläuse), Käfer Lepidoptera, Blattläuse, Milben, Nema-Proteaseinhibitoren, z.B. Cystatin, Patatoden, Weiße Fliege (Mottenläuse), Käfer tin, CPTI, Virgiferin Lepidoptera, Blattläuse, Milben, Nema-Ribosom-inaktivierendes Protein toden. Weiße Fliege (Mottenläuse), Käfer Lepidoptera, Blattläuse, Milben, Nema-Stilbensynthase toden, Weiße Fliege (Mottenläuse), Käfer Lepidoptera, Blattläuse, Milben, Nema-**HMG-CoA-Reduktase** toden, Weiße Fliege (Mottenläuse), Käfer Zysten bildende Nematoden (cyst ne-Zysten bildende Nematodenmatodes) Schlüpfstimulus Nematoden, z.B. Wurzelgallen-Barnase Nematoden und Zysten bildende Nematoden (cyst nematodes)

CBI

Antifeeding-Prinzipien induziert am Nah-

Wurzelgallen-Nematoden

Nematoden, z.B. Wurzelgallen-

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
rungsaufnahmeort der Nematoden	Nematoden, an der Wurzel Zysten bil-
	dende Nematoden (cyst nematodes)

Tabelle A18: Kultur: Zuckerrübe, Rote Beete

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Acetolactatsynthase (ALS)	Sulfonylharnstoffe, Imidazolinone, Tria-
·	zolopyrimidine, Pyrimidyloxybenzoate,
	Phtalide
AcetylCoA-Carboxylase (ACCase)	Aryloxyphenoxyalkancarbonsäuren, Cy-
	clohexandione
Hydroxyphenylpyruvatdioxygenase	Isoxazole, wie Isoxaflutol oder Isox-
(HPPD)	achlortol, Trione, wie Mesotrion oder
	Sulcotrion
Phosphinothricinacetyltransferase	Phosphinothricin
O-Methyltransferase	Veränderte Ligninmengen
Glutaminsynthetase	Glufosinat, Bialaphos
Adenylsuccinat-Lyase (ADSL)	Inhibitoren der IMP- und AMP-Synthese
Adenylsuccinat-Synthase	Inhibitoren der Adenylsuccinat-Synthese
Anthranilat-Synthase	Inhibitoren von Tryptophan-Synthese
	und Catabolismus
Nitrilase	3,5-Dihalogen-4-hydroxybenzonitrile, wie
	Bromoxynil und loxinyl
5-Enolpyruvyl-3-phosphoshikimat-	Glyphosat oder Sulfosat
Synthase (EPSPS)	
Glyphosatoxidoreduktase	Glyphosat oder Sulfosat
Protoporphyrinogenoxidase (PROTOX)	Diphenylether, cyclische Imide, Phenyl-
	pyrazole, Pyridin-Derivate, Phenopylat,
	Oxadiazole usw.
Cytochrom P450 z.B. P450 SU1 oder	Xenobiotica und Herbizide, wie Sulfonyl-
	1

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Selektion	harnstoffe
Polyphenoloxidase oder Polyphenoloxi-	bakterielle oder fungale Pathogene
daseantisense	
Metallothionein	bakterielle oder fungale Pathogene
Ribonuclease	bakterielle oder fungale Pathogene
Antifungales Polypeptid AlyAFP	bakterielle oder fungale Pathogene
Oxalatoxidase	bakterielle oder fungale Pathogene, z.B.
	Sclerotinia
Glucoseoxidase	bakterielle oder fungale Pathogene
Pyrrolinitrinsynthesegene	bakterielle oder fungale Pathogene
Serin/Threonin-Kinasen	bakterielle oder fungale Pathogene
Cecropin B	bakterielle oder fungale Pathogene
Phenylalaninammoniaklyase (PAL)	bakterielle oder fungale Pathogene
Cf-Gen, z.B. Cf 9 Cf5 Cf4 Cf2	bakterielle oder fungale Pathogene
Osmotin	bakterielle oder fungale Pathogene
Alpha Hordothionin	bakterielle oder fungale Pathogene
Systemin	bakterielle oder fungale Pathogene
Polygalacturonase-Inhibitoren	bakterielle oder fungale Pathogene
Prf-Regulatorgen	bakterielle oder fungale Pathogene
Phytoalexine	bakterielle oder fungale Pathogene
B-1,3-Glucanaseantisense	bakterielle oder fungale Pathogene
AX + WIN-Proteine	bakterielle oder fungale Pathogene, wie
	Cercospora beticola
Rezeptorkinase	bakterielle oder fungale Pathogene
Hypersensibilisierendes Polypeptid (Hy-	bakterielle oder fungale Pathogene
persensitive response eliciting polypepti-	
de)	
Systemic acquires resistance (SAR)-	virale, bakterielle, fungale, nematodale
Gene .	Pathogene
Lytisches Protein	bakterielle oder fungale Pathogene
Lysozym	bakterielle oder fungale Pathogene
	•

Wirkziel oder exprimierte(s) Prinzip(ien)	Kulturphänotyp / Toleranz gegen
Chitinasen	bakterielle oder fungale Pathogene
Barnase	bakterielle oder fungale Pathogene
Glucanasen	bakterielle oder fungale Pathogene
doppelsträngige Ribonuclease	Viren, wie BNYVV
Hüllproteine	Viren, wie BNYVV
17kDa oder 60 kDa-Protein	Viren, wie BNYVV
Kerneinschlußproteine (Nuclear inclusion	Viren, wie BNYVV
proteins) z.B. a oder b oder Nucleopro-	
tein	
Pseudoubiquitin	Viren, wie BNYVV
Replicase	Viren, wie BNYVV
Bacillus thuringiensis-Toxine, VIP 3, Ba-	Lepidoptera, Blattläuse, Milben, Nema-
cillus cereus-Toxine, Photorabdus- und	toden, Weiße Fliege (Mottenläuse), Kä-
Xenorhabdus-Toxine	fer, kleine Kohlfliege
3-Hydroxysteroidoxidase	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, kleine Kohlfliege
Peroxidase	Lepidoptera, Blattläuse, Milben, Nema-
•	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, kleine Kohlfliege
Aminopeptidaseinhibitoren, z.B. Leucin-	Lepidoptera, Blattläuse, Milben, Nema-
aminopeptidaseinhibitor	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, kleine Kohlfliege
Lectine	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, kleine Kohlfliege
Proteaseinhibitoren, z.B. Cystatin, Pata-	Lepidoptera, Blattläuse, Milben, Nema-
tin, CPTI, Virgiferin	toden, Weiße Fliege (Mottenläuse), Kä-
	fer, kleine Kohlfliege
Ribosom-inaktivierendes Protein	Lepidoptera, Blattläuse, Milben, Nema-
	toden, Weiße Fliege (Mottenläuse), Kä-

Kulturphänotyp / Toleranz gegen
fer, kleine Kohlfliege
Lepidoptera, Blattläuse, Milben, Nema-
toden, Weiße Fliege (Mottenläuse), Kä-
fer, kleine Kohlfliege
Lepidoptera, Blattläuse, Milben, Nema-
toden, Weiße Fliege (Mottenläuse), Kä-
fer, kleine Kohlfliege
Zysten bildende Nematoden (cyst ne-
matodes)
Nematoden, z.B. Wurzelgallen-
Nematoden und Zysten bildende Nema-
toden (cyst nematodes)
Zysten bildende Nematoden (cyst ne-
matodes)
Wurzelgallen-Nematoden
Nematoden, z.B. Wurzelgallen-
Nematoden, an der Wurzel Zysten bil-
dende Nematoden

Die vorstehend erwähnten tierischen Schädlinge, die durch das erfindungsgemässe Verfahren (A) bekämpft werden können, schließen beispielsweise Insekten, Vertreter der Ordnung Acarina und Vertreter der Klasse Nematoda ein; insbesondere

aus der Ordnung Lepidoptera Acleris spp., Adoxophyes spp., insbesondere Adoxophyes reticulana; Aegeria spp., Agrotis spp., insbesondere Agrotis spinifera; Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyrotaenia spp., Autographa spp., Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Crocidolomia binotalis, Cryptophlebia leucotreta, Cydia spp., insbesondere Cydia pomonella; Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., insbesondere E. Khüniella; Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Grapholita spp., Hedya nubiferana, Heliothis spp., insbesondere H. virescens und H. zea; Hellula undalis, Hyphan-

tria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesiaspp., Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Operophtera spp., Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Pectinophora spp., Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodopteralittoralis, Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni und Yponomeuta spp.;

aus der Ordnung Coleoptera, beispielsweise Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Cosmopolites spp., Curculio spp., Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp., Melolontha spp., Oryzaephilus spp., Otiorhynchus spp., Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp. und Trogoderma spp.;

aus der Ordnung Orthoptera, beispielsweise Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. und Schistocerca spp.;

aus der Ordnung Isoptera, beispielsweise Reticulitermes spp.;

aus der Ordnung Psocoptera, beispielsweise Liposcelis spp.;

aus der Ordnung Anoplura, beispielsweise Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. und Phylloxera spp.;

aus der Ordnung Mallophaga, beispielsweise Damalinea spp. und Trichodectes spp.;

aus der Ordnung Thysanoptera, beispielsweise Frankliniella spp., Hercinothrips spp., Taeniothrips spp., Thrips palmi, Thrips tabaci und Scirtothrips aurantii;

aus der Ordnung Heteroptera, beispielsweise Cimex spp., Distantiella theobroma, Dysdercus spp., Euchistus spp. Eurygaster spp. Leptocorisa spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotinophara spp. und Triatoma spp.;

aus der Ordnung Homoptera, beispielsweise Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella aurantii, Aphididae, Aphiscraccivora, A. fabae, A. gosypii; Aspidiotus spp., Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma lanigerum, Erythroneura spp., Gascardia spp., Laodelphax spp., Lecanium corni, Lepidosaphes spp., Macrosiphus spp., Myzus spp., insbeson-

dere M. persicae; Nephotettix spp., insbesondere N. cincticeps; Nilaparvata spp., insbesondere N. lugens; Paratoria spp., Pemphigus spp., Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., insbesondere P. Fragilis, P. citriculus und P. comstocki; Psylla spp., insbesondere P. pyri; Pulvinaria aethiopica, Quadraspidiotus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Trialeurodes vaporariorum, Trioza erytreae und Unaspis citri;

aus der Ordnung Hymenoptera, beispielsweise Acromyrmex, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplocampa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Solenopsis spp. und Vespa spp.;

aus der Ordnung Diptera, beispielsweise Aedes spp., Antherigona soccata, Bibio hortulanus, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Drosophila melanogaster, Fannia spp., Gastrophilus spp., Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. und Tipula spp.; aus der Ordnung Siphonaptera, beispielsweise Ceratophyllus spp. und Xenopsylla cheopis;

aus der Ordnung Thysanura, beispielsweise Lepisma saccharina und

aus der Ordnung Acarina, beispielsweise Acarus siro, Aceria sheldoni; Aculus spp., insbesondere A. schlechtendali; Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., insbesondere B. californicus und B. phoenicis; Bryobia praetiosa, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Eotetranychus spp., insbesondere E. carpini und E. orientalis; Eriophyes spp., insbesondere E. vitis; Hyalomma spp., Ixodes spp., Olygonychus pratensis, Omithodoros spp., Panonychus spp., insbesondere P. ulmi und P. citri; Phyllocoptruta spp., insbesondere P. oleivora; Polyphagotarsonemus spp., insbesondere P. latus; Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Tarsonemus spp. und Tetranychus spp., besonders T. urticae, T. cinnabarinus und T. Kanzawai;

Vertreter der Klasse Nematoda;

(1) Nematoden, ausgewählt aus der Gruppe, bestehend aus Wurzelgallen-Nematoden, Zysten bildende Nematoden sowie Stock- und Blattälchen;

- (2) Nematoden, ausgewählt aus der Gruppe, bestehend aus Anguina spp.; Aphelenchoides spp.; Ditylenchus spp.; Globodera spp., beispielsweise Globodera rostochiensis; Heterodera spp., beispielsweise Heterodera avenae, Heterodera glycines, Heterodera schachtii oder Heterodera trifolii; Longidorus spp.; Meloidogyne spp., beispielsweise Meloidogyne incognita oder Meloidogyne javanica; Pratylenchus, beispielsweise Pratylenchus neglectans oder Pratylenchus penetrans; Radopholus spp., beispielsweise Radopholus similis; Trichodorus spp.; Tylenchulus, beispielsweise Tylenchulus semipenetrans; und Xiphinema spp.; oder
- (3) Nematoden, ausgewählt aus der Gruppe, bestehend aus Heterodera spp., beispielsweise Heterodera glycines; und Meloidogyne spp., beispielsweise Meloidogyne incognita.

Mit Hilfe des Verfahrens gemäss der Erfindung (A) kann man insbesondere an transgenen Pflanzen, vor allem an Nutz- und Zierpflanzen in der Landwirtschaft, im Gartenbau und im Forst, oder an Teilen, wie Früchten, Blüten, Laubwerk, Stengeln, Knollen oder Wurzeln, solcher Pflanzen auftretende Schädlinge des erwähnten Typus bekämpfen, d.h. eindämmen oder vernichten, wobei zum Teil auch später zuwachsende Pflanzenteile noch gegen diese Schädlinge geschützt werden.

Das Verfahren gemäss der Erfindung (A) kann mit Vorteil zur Schädlingsbekämpfung in Reis, Getreide, wie Mais oder Sorghum; in Obst, z.B. Kern-, Stein- und Beerenobst, wie Äpfeln, Birnen, Pflaumen, Pfirsichen, Mandeln, Kirschen oder Beeren, z.B. Erdbeeren, Himbeeren und Brombeeren; in Hülsenfrüchten, wie Bohnen, Linsen, Erbsen oder Soja; in Ölfrüchten, wie Raps, Senf, Mohn, Oliven, Sonnenblumen, Kokos, Rizinus, Kakao oder Erdnüssen; in Gurkengewächsen, wie Kürbissen, Gurken oder Melonen; in Fasergewächsen, wie Baumwolle, Flachs, Hanf oder Jute; in Zitrusfrüchten, wie Orangen, Zitronen, Pampelmusen oder Mandarinen; in Gemüse, wie Spinat, Kopfsalat, Spargel, Kohlarten, Möhren, Zwiebeln, Tomaten, Kartoffeln, Rüben oder Paprika; in Lorbeergewächsen, wie Avocado, Cinnamonium oder Kampfer; oder in Tabak, Nüssen, Kaffee, Eierfrüchten, Zuckerrohr, Tee, Pfeffer, Weinreben, Hopfen, Bananengewächsen, Naturkautschukgewächsen oder Zierpflanzen, vor allem in Mais, Reis, Getreide, Soja, Tomaten, Baumwolle, Kartoffeln, Zuckerrüben, Reis und Senf; insbesondere in Baumwolle, Reis, Soja, Kartoffeln und Mais eingesetzt werden.

Es hat sich gezeigt, dass das Verfahren gemäss der Erfindung (A) auf dem Gebiet der Schädlingsbekämpfung bereits bei niedrigen Anwendungskonzentrationen des pestiziden

Mittels präventiv und/oder kurativ wertvoll ist und dass damit ein sehr günstiges biozides Spektrum erreicht wird. Bei günstiger Warmblüter-, Fisch- und Pflanzenverträglichkeit des eingesetzten Mittels kann das erfindungsgemässe Verfahren, je nach Art der transgenen Kulturpflanze, die vor Schädlingsbefall geschützt werden soll, gegen alle oder einzelne Entwicklungsstadien von normal sensiblen, aber auch von resistenten, tierischen Schädlingen, wie Insekten und Vertretern der Ordnung Acarina, eingesetzt werden. Der insektizide und/oder akarizide Effekt des erfindungsgemässen Verfahrens kann sich dabei direkt, d.h. in einer Abtötung der Schädlinge, welche unmittelbar oder erst nach einiger Zeit, beispielsweise bei einer Häutung, oder indirekt, z.B. in einer verminderten Eiablage und/oder Schlupfrate, zeigen, wobei die gute Wirkung einer Abtötungsrate (Mortalität) von mindestens 40 bis 50% entspricht.

Bei den Schädlingsbekämpfungsmitteln, die an sich bekannt sind, handelt es sich je nach angestrebten Zielen und gegebenen Verhältnissen um emulgierbare Konzentrate, Suspensionskonzentrate, direkt versprüh- oder verdünnbare Lösungen, streichfähige Pasten, verdünnte Emulsionen, Spritzpulver, lösliche Pulver, dispergierbare Pulver, benetzbare Pulver, Stäubemittel, Granulate oder Verkapselungen in polymeren Stoffen, welche eine Macrolidverbindung enthalten.

Die Wirkstoffe werden in diesen Mitteln zusammen mit mindestens einem der in der Formulierungstechnik üblichen Hilfsstoffe, wie Streckmitteln, z.B. Lösungsmitteln oder festen Trägerstoffen, oder wie oberflächenaktiven Verbindungen (Tensiden), eingesetzt.

Als Formulierungshilfsstoffe dienen beispielsweise feste Trägerstoffe, Lösungsmittel, Stabilisatoren, "slow release"-Hilfsstoffe, Farbstoffe und gegebenenfalls oberflächenaktive Stoffe (Tenside). Als Träger- und Hilfsstoffe kommen hierbei alle bei Pflanzenschutzmitteln, insbesondere bei Schneckenbekämpfungsmitteln, üblicherweise verwendeten Stoffe in Frage. Als Hilfsstoffe, wie Lösungsmittel, feste Trägerstoffe, oberflächenaktive Verbindungen, nichtionische Tenside, kationische Tenside, anionische Tenside und weitere Hilfsstoffe in den erfindungsgemäss eingesetzten Mitteln, kommen beispielsweise die gleichen in Frage, wie sie in EP-A-736 252 beschrieben sind.

Diese Mittel zur Bekämpfung von Schädlingen können beispielsweise als benetzbare Pulver, Stäube, Granulate, Lösungen, emulgierbare Konzentrate, Emulsionen, Suspensionskonzen-

trate oder Aerosole formuliert werden. Die Mittel sind beispielsweise von der gleichen Art wie sie in EP-A-736 252 beschrieben sind.

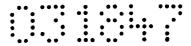
Die Wirkung der Mittel im Rahmen der Erfindung (A), welche eine Macrolidverbindung enthalten, lässt sich durch Zusatz von anderen insektiziden, akariziden und/oder fungiziden Wirkstoffen wesentlich verbreitern und an gegebene Umstände anpassen. Als Wirkstoff-Zusätze kommen dabei z.B. Vertreter der folgenden Wirkstoffklassen in Betracht: Organische Phosphorverbindungen, Nitrophenole und Derivate, Formamidine, Harnstoffe, Carbamate, Pyrethroide, chlorierte Kohlenwasserstoffe; besonders bevorzugte Mischungspartner sind etwa Thiamethoxam, Pymethrozine, Fenoxycarb, Imidacloprid, Ti-435, Fipronil, Pyriproxyfen, Emamectin, Diazinon oder Diafenthiuron.

Die Mittel gemäß der Erfindung (A) enthalten in der Regel 0,1 bis 99%, insbesondere 0,1 bis 95% einer Macrolidverbindung und 1 bis 99,9%, insbesondere 5 bis 99,9%, - mindestens - eines festen oder flüssigen Hilfsstoffes, wobei in der Regel 0 bis 25%, insbesondere 0,1 bis 20%, der Mittel Tenside sein können (% bedeutet jeweils Gewichtsprozent). Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Mittel, die wesentlich geringere Wirkstoffkonzentrationen aufweisen.

Die Mittel gemäß der Erfindung (A) können auch weitere feste oder flüssige Hilfsstoffe, wie Stabilisatoren, z.B. gegebenenfalls epoxidierte Pflanzenöle (z.B. epoxidiertes Kokosnussöl, Rapsöl oder Sojaöl), Entschäumer, z.B. Silikonöl, Konservierungsmittel, Viskositätsregulatoren, Bindemittel und/oder Haftmittel, sowie Düngemittel oder andere Wirkstoffe zur Erzielung spezieller Effekte, z.B. Bakterizide, Fungizide, Nematizide, Molluskizide oder Herbizide, enthalten.

Die Mittel gemäß der Erfindung (A) werden in bekannter Weise hergestellt, z.B. vor der Mischung mit dem/den Hilfsstoff(en) durch Vermahlen, Sieben und/oder Pressen des Wirkstoffes, z.B. auf eine bestimmte Komgrösse, sowie durch inniges Vermischen und/oder Vermahlen des Wirkstoffes mit dem (den) Hilfsstoff(en).

Das erfindungsgemässe Verfahren zur Bekämpfung von Schädlingen des erwähnten Typus wird je nach angestrebten Zielen und gegebenen Verhältnissen in einer dem Fachmann an sich bekannten Weise durchgeführt, das heisst durch Versprühen, Benetzen, Vernebeln, Bestäuben, Bestreichen, Beizen, Streuen oder Giessen des Mittels. Typische Anwendungskonzentrationen liegen dabei zwischen 0,1 und 1000 ppm, bevorzugt zwischen 0,1 und 500



ppm, Wirkstoff. Die Aufwandmenge kann innerhalb weiter Bereiche variieren und hängt von der Beschaffenheit des Bodens, der Art der Anwendung (Blattapplikation; Saatbeizung; Anwendung in der Saatfurche), der transgenen Kulturpflanze, dem zu bekämpfenden Schädling, den jeweils vorherrschenden klimatischen Verhältnissen und anderen durch Anwendungsart, Anwendungszeitpunkt und Zielkultur bestimmten Faktoren ab. Die Aufwandmengen pro Hektar betragen im allgemeinen 1 bis 2000 g Macrolidverbindung pro Hektar, insbesondere 10 bis 1000 g/ha, vorzugsweise 10 bis 500 g/ha, besonders bevorzugt 10 bis 200 g/ha.

Ein bevorzugtes Anwendungsverfahren im Rahmen der Erfindung (A) auf dem Gebiet des Pflanzenschutzes ist das Aufbringen auf das Blattwerk der Pflanzen (Blattapplikation), wobei sich Applikationsfrequenz und Aufwandmenge auf den Befallsdruck des jeweiligen Schädlings ausrichten lassen. Der Wirkstoff kann aber auch durch das Wurzelwerk in die Pflanzen gelangen (systemische Wirkung), indem man den Standort der Pflanzen mit einem flüssigen Mittel tränkt oder den Wirkstoff in fester Form in den Standort der Pflanzen, z.B. in den Boden, einbringt, z.B. in Form von Granulat (Bodenapplikation). Bei Wasserreiskulturen kann man solche Granulate dem überfluteten Reisfeld zudosieren.

Die Mittel gemäss der Erfindung (A) eignen sich auch für den Schutz von Vermehrungsgut transgener Pflanzen, z.B. Saatgut, wie Früchten, Knollen oder Körnern, oder Pflanzenstecklingen, vor tierischen Schädlingen, besonders Insekten und Vertretern der Ordnung Acarina. Das Vermehrungsgut kann dabei vor dem Ausbringen mit dem Mittel behandelt, Saatgut z.B. vor der Aussaat gebeizt, werden. Der Wirkstoff kann auch auf Samenkörner aufgebracht werden (Coating), indem man die Körner entweder in einem flüssigen Mittel tränkt oder sie mit einem festen Mittel beschichtet. Das Mittel kann auch beim Ausbringen des Vermehrungsguts auf den Ort der Einsaat, z.B. bei der Aussaat in die Saatfurche, appliziert werden. Diese Behandlungsverfahren für pflanzliches Vermehrungsgut und das so behandelte pflanzliche Vermehrungsgut sind weitere Gegenstände der Erfindung.

Beispiele von Formulierungen von Macrolidverbindungen, welche im erfindungsgemässen Verfahren eingesetzt werden können, also Lösungen, Granulate, Stäubemittel, Spritzpulver, Emulsions-Konzentrate, Umhüllungs-Granulate und Suspensions-Konzentrate, sind von der Art, wie sie etwa in EP-A-580 553, Beispiele F1 bis F10, aufgeführt sind.

Tabelle B

Die nachstehenden Abkürzungen werden in der Tabelle verwendet:

Wirkprinzip der transgenen Pflanze: AP

Photorhabdus luminescens: PL Xenorhabdus nematophilus: XN

Proteinaseinhibitoren: Plnh.

Pflanzenlectine: Plec

Agglutinine: Aggl.

3-Hydroxysteroidoxidase: HO

Cholesterinoxidase: CO

Chitinase: CH Glucanase: GL

Stilbensynthase SS

Tabelle B:

	AP.	Bekämpfung von		AP	Bekämpfung von
B.1	CrylA(a)	Adoxophyes spp.	B.12	CrylA(a)	Heliothis spp.
B.2	CrylA(a)	Agrotis spp.	B.13	CrylA(a)	Hellula undalis
B.3	CrylA(a)	Alabama argilla-	B.14	CrylA(a)	Keiferia lycoper-
		ceae			sicella
B.4	CrylA(a)	Anticarsia gemma-	B.15	CrylA(a)	Leucoptera scitella
		talis	B.16	CrylA(a)	Lithocollethis spp.
B.5	CrylA(a)	Chilo spp.	B.17	CrylA(a)	Lobesia botrana
B.6	CrylA(a)	Clysia ambiguella	B.18	CrylA(a)	Ostrinia nubilalis
B.7	CrylA(a)	Crocidolomia bino-	B.19	CrylA(a)	Pandemis spp.
		talis	B.20	CrylA(a)	Pectinophora gos-
B.8	CrylA(a)	Cydia spp.			syp.
B.9	CrylA(a)	Diparopsis casta-	B.21	CrylA(a)	Phyllocnistis citrella
		nea	B.22	CrylA(a)	Pieris spp.
B.10	CrylA(a)	Earias spp.	B.23	CrylA(a)	Plutella xylostella
B.11	CrylA(a)	Ephestia spp.	B.24	CrylA(a)	Scirpophaga spp.
	3	1		1	I

	AP	Bekämpfung von		AP	Bekämpfung von
B.25	CrylA(a)	Sesamia spp.	B.54	CrylA(a)	Phorbia spp.
B.26	CrylA(a)	Sparganothis spp.	B.55	CrylA(a)	Frankliniella spp.
B.27	CrylA(a)	Spodoptera spp.	B.56	CrylA(a)	Thrips spp.
B.28	CrylA(a)	Tortrix spp.	B.57	CrylA(a)	Scirtothrips aurantii
B.29	CrylA(a)	Trichoplusia ni	B.58	CrylA(a)	Aceria spp.
B.30	CryiA(a)	Agriotes spp.	B.59	CrylA(a)	Aculus spp.
B.31	CrylA(a)	Anthonomus gran-	B.60	CrylA(a)	Brevipalpus spp.
		dis	B.61	CrylA(a)	Panonychus spp.
B.32	CrylA(a)	Curculio spp.	B.62	CrylA(a)	Phyllocoptruta spp.
B.33	CrylA(a)	Diabrotica balteata	B.63	CrylA(a)	Tetranychus spp.
B.34	CrylA(a)	Leptinotarsa spp.	B.64	CrylA(a)	Heterodera spp.
B.35	CrylA(a)	Lissorhoptrus spp.	B.65	CryIA(a)	Meloidogyne spp.
B.36	CrylA(a)	Otiorhynchus spp.	B.66	CrylA(b)	Adoxophyes spp.
B.37	CrylA(a)	Aleurothrixus spp.	B.67	CrylA(b)	Agrotis spp.
B.38	CrylA(a)	Aleyrodes spp.	B.68	CrylA(b)	Alabama argilla-
B.39	CrylA(a)	Aonidiella spp.			ceae
B.40	CrylA(a)	Aphididae spp.	B.69	CrylA(b)	Anticarsia gemma-
B.41	CrylA(a)	Aphis spp.			talis
B.42	CrylA(a)	Bemisia tabaci	B.70	CrylA(b)	Chilo spp.
B.43	CrylA(a)	Empoasca spp.	B.71	CrylA(b)	Clysia ambiguella
B.44	CrylA(a)	Mycus spp.	B.72	CrylA(b)	Crocidolomia bino-
B.45	CrylA(a)	Nephotettix spp.			talis
B.46	CrylA(a)	Nilaparvata spp.	B.73	CrylA(b)	Cydia spp.
B.47	CrylA(a)	Pseudococcus spp.	B.74	CrylA(b)	Diparopsis casta-
B.48	CrylA(a)	Psylla spp.			nea
B.49	CrylA(a)	Quadraspidiotus	B.75	CrylA(b)	Earias spp.
	·	spp.	B.76	CrylA(b)	Ephestia spp.
B.50	CrylA(a)	Schizaphis spp.	B.77	CrylA(b)	Heliothis spp.
B.51	CrylA(a)	Trialeurodes spp.	B.78	CrylA(b)	Hellula undalis
B.52	CrylA(a)	Lyriomyza spp.	B.79	CrylA(b)	Keiferia lycoper-
B.53	CrylA(a)	Oscinella spp.			sicella
	l	1		1	I

, 1	AP	Bekämpfung von		AP	Bekämpfung von
B.80	CrylA(b)	Leucoptera scitella	B.109	CrylA(b)	Mycus spp.
B.81	CrylA(b)	Lithocollethis spp.	B.110	CrylA(b)	Nephotettix spp.
B.82	CrylA(b)	Lobesia botrana	B.111	CrylA(b)	Nilaparvata spp.
B.83	CrylA(b)	Ostrinia nubilalis	B.112	CrylA(b)	Pseudococcus spp.
B.84	CrylA(b)	Pandemis spp.	B.113	CrylA(b)	Psylla spp.
B.85	CrylA(b)	Pectinophora gos-	B.114	CrylA(b)	Quadraspidiotus
		syp.			spp.
B.86	CrylA(b)	Phyllocnistis citrella	B.115	CrylA(b)	Schizaphis spp.
B.87	CrylA(b)	Pieris spp.	B.116	CrylA(b)	Trialeurodes spp.
B.88	CrylA(b)	Plutella xylostella	B.117	CrylA(b)	Lyriomyza spp.
B.89	CrylA(b)	Scirpophaga spp.	B.118	CrylA(b)	Oscinella spp.
B.90	CrylA(b)	Sesamia spp.	B.119	CrylA(b)	Phorbia spp.
B.91	CrylA(b)	Sparganothis spp.	B.120	CrylA(b)	Frankliniella spp.
B.92	CrylA(b)	Spodoptera spp.	B.121	CrylA(b)	Thrips spp.
B.93	CryIA(b)	Tortrix spp.	B.122	CrylA(b)	Scirtothrips aurantii
B.94	CrylA(b)	Trichoplusia ni	B.123	CrylA(b)	Aceria spp.
B.95	CrylA(b)	Agriotes spp.	B.124	CrylA(b)	Aculus spp.
B.96	CrylA(b)	Anthonomus gran-	B.125	CryIA(b)	Brevipalpus spp.
		dis	B.126	CrylA(b)	Panonychus spp.
B.97	CrylA(b)	Curculio spp.	B.127	CrylA(b)	Phyllocoptruta spp.
B.98	CrylA(b)	Diabrotica balteata	B.128	CrylA(b)	Tetranychus spp.
B.99	CrylA(b)	Leptinotarsa spp.	B.129	CrylA(b)	Heterodera spp.
B.100	CryiA(b)	Lissorhoptrus spp.	B.130	CrylA(b)	Meloidogyne spp.
B.101	CrylA(b)	Otiorhynchus spp.	B.131	CrylA(c)	Adoxophyes spp.
B.102	CryIA(b)	Aleurothrixus spp.	B.132	CrylA(c)	Agrotis spp.
B.103	CrylA(b)	Aleyrodes spp.	B.133	CrylA(c)	Alabama argilla-
B.104	CrylA(b)	Aonidiella spp.			ceae
B.105	CrylA(b)	Aphididae spp.	B.134	CrylA(c)	Anticarsia gemma-
B.106	CrylA(b)	Aphis spp.			talis
B.107	CrylA(b)	Bemisia tabaci	B.135	CrylA(c)	Chilo spp.
B.108	CrylA(b)	Empoasca spp.	B.136	CrylA(c)	Clysia ambiguella
	1	1		J	•

. !	AP	Bekämpfung von		AP	Bekämpfung von
B.137	CrylA(c)	Crocidolomia bino-	B.163	CrylA(c)	Diabrotica balteata
		talis	B.164	CrylA(c)	Leptinotarsa spp.
B.138	CrylA(c)	Cydia spp.	B.165	CrylA(c)	Lissorhoptrus spp.
B.139	CrylA(c)	Diparopsis casta-	B.166	CrylA(c)	Otiorhynchus spp.
	:	nea	B.167	CrylA(c)	Aleurothrixus spp.
B.140	CrylA(c)	Earias spp.	B.168	CrylA(c)	Aleyrodes spp.
B.141	CryIA(c)	Ephestia spp.	B.169	CrylA(c)	Aonidiella spp.
B.142	CrylA(c)	Heliothis spp.	B.170	CrylA(c)	Aphididae spp.
B.143	CrylA(c)	Hellula undalis	B.171	CrylA(c)	Aphis spp.
B.144	CrylA(c)	Keiferia lycoper-	B.172	CrylA(c)	Bemisia tabaci
 		sicella	B.173	CrylA(c)	Empoasca spp.
B.145	CrylA(c)	Leucoptera scitella	B.174	CryIA(c)	Mycus spp.
B.146	CryIA(c)	Lithocollethis spp.	B.175	CryIA(c)	Nephotettix spp.
B.147	CryIA(c)	Lobesia botrana	B.176	CrylA(c)	Nilaparvata spp.
B.148	CryIA(c)	Ostrinia nubilalis	B.177	CrylA(c)	Pseudococcus spp.
B.149	CrylA(c)	Pandemis spp.	B.178	CrylA(c)	Psylla spp.
B.150	CryIA(c)	Pectinophora gos-	B.179	CryIA(c)	Quadraspidiotus
		sypiella.			spp.
B.151	CrylA(c)	Phyllocnistis citrella	B.180	CrylA(c)	Schizaphis spp.
B.152	CrylA(c)	Pieris spp.	B.181	CrylA(c)	Trialeurodes spp.
B.153	CrylA(c)	Plutella xylostella	B.182	CryIA(c)	Lyriomyza spp.
B.154	CrylA(c)	Scirpophaga spp.	B.183	CrylA(c)	Oscinella spp.
B.155	CrylA(c)	Sesamia spp.	B.184	CrylA(c)	Phorbia spp.
B.156	CrylA(c)	Sparganothis spp.	B.185	CrylA(c)	Frankliniella spp.
B.157	CrylA(c)	Spodoptera spp.	B.186	CrylA(c)	Thrips spp.
B.158	CrylA(c)	Tortrix spp.	B.187	CrylA(c)	Scirtothrips aurantii
B.159	CrylA(c)	Trichoplusia ni	B.188	CrylA(c)	Aceria spp.
B.160	CrylA(c)	Agriotes spp.	B.189	CrylA(c)	Aculus spp.
B.161	CrylA(c)	Anthonomus gran-	B.190	CryIA(c)	Brevipalpus spp.
		dis	B.191	CrylA(c)	Panonychus spp.
B.162	CrylA(c)	Curculio spp.	B.192	CrylA(c)	Phyllocoptruta spp.
		Ī.		1	1

			•		
	AP	Bekämpfung von	,	AP	Bekämpfung von
B.193	CrylA(c)	Tetranychus spp.	B.218	CryllA	Plutella xylostella
B.194	CryIA(c)	Heterodera spp.	B.219	CryllA	Scirpophaga spp.
B.195	CryIA(c)	Meloidogyne spp.	B.220	CryllA	Sesamia spp.
B.196	CryllA	Adoxophyes spp.	B.221	CryllA	Sparganothis spp.
B.197	CryllA	Agrotis spp.	B.222	CryllA	Spodoptera spp.
B.198	CryllA	Alabama argilla-	B.223	CryllA	Tortrix spp.
		ceae	B.224	CryllA	Trichoplusia ni
B.199	CryllA	Anticarsia gemma-	B.225	CryllA	Agriotes spp.
	1	talis	B.226	CryllA	Anthonomus gran-
B.200	CryllA	Chilo spp.			dis
B.201	CryllA	Clysia ambiguella	B.227	CryllA	Curculio spp.
B.202	CryllA	Crocidolomia bino-	B.228	CryllA	Diabrotica balteata
		talis	B.229	CryllA	Leptinotarsa spp.
B.203	CryllA	Cydia spp.	B.230	CryllA	Lissorhoptrus spp.
B.204	CryllA	Diparopsis casta-	B.231	CryllA	Otiorhynchus spp.
		nea	B.232	CryllA	Aleurothrixus spp.
B.205	CryllA	Earias spp.	B.233	CryllA	Aleyrodes spp.
B.206	CryllA	Ephestia spp.	B.234	CryllA	Aonidiella spp.
B.207	CryllA	Heliothis spp.	B.235	CryllA	Aphididae spp.
B.208	CryllA	Hellula undalis	B.236	CryllA	Aphis spp.
B.209	CryllA	Keiferia lycoper-	B.237	CryllA	Bemisia tabaci
		sicella	B.238	CryllA	Empoasca spp.
B.210	CryllA	Leucoptera scitella	B.239	CryllA	Mycus spp.
B.211	CryllA	Lithocollethis spp.	B.240	CryllA	Nephotettix spp.
B.212	CryllA	Lobesia botrana	B.241	CryllA	Nilaparvata spp.
B.213	CryllA	Ostrinia nubilalis	B.242	CryllA	Pseudococcus spp.
B.214	CryllA	Pandemis spp.	B.243	CryllA	Psylla spp.
B.215	CryllA	Pectinophora gos-	B.244	CryllA	Quadraspidiotus
		syp.			spp.
B.216	CryllA	Phyllocnistis citrella	B.245	CryllA	Schizaphis spp.
B.217	CryllA	Pieris spp.	B.246	CryllA	Trialeurodes spp.
	1	I .		•	•

1	AP	Bekämpfung von		AP	Bekämpfung von
B.247	CryllA	Lyriomyza spp.	B.274	CrylliA	Keiferia lycoper-
B.248	CryllA	Oscinella spp.			sicella
B.249	CryllA	Phorbia spp.	B.275	CryllA	Leucoptera scitella
B.250	CryllA	Frankliniella spp.	B.276	CryllIA	Lithocollethis spp.
B.251	CryllA	Thrips spp.	B.277	CrylllA	Lobesia botrana
B.252	CryllA	Scirtothrips aurantii	B.278	CrylllA	Ostrinia nubilalis
B.253	CryllA	Aceria spp.	B.279	CrylliA	Pandemis spp.
B.254	CryliA	Aculus spp.	B.280	CrylliA	Pectinophora gos-
B.255	CryllA	Brevipalpus spp.			syp.
B.256	CryllA	Panonychus spp.	B.281	CrylliA	Phyllocnistis citrella
B.257	CryllA	Phyllocoptruta spp.	B.282	CrylllA	Pieris spp.
B.258	CryllA	Tetranychus spp.	B.283	CrylllA	Plutella xylostella
B.259	CryllA	Heterodera spp.	B.284	CrylliA	Scirpophaga spp.
B.260	CryllA	Meloidogyne spp.	B.285	CrylllA	Sesamia spp.
B.261	CrylliA	Adoxophyes spp.	B.286	CrylllA	Sparganothis spp.
B.262	CryllA	Agrotis spp.	B.287	CrylliA	Spodoptera spp.
B.263	CryllA	Alabama argilla-	B.288	CrylllA	Tortrix spp.
	<u>.</u>	ceae	B.289	CrylliA	Trichoplusia ni
B.264	CrylliA	Anticarsia gemma-	B.290	CryllA	Agriotes spp.
		talis	B.291	CrylliA	Anthonomus gran-
B.265	CrylllA	Chilo spp.			dis
B.266	CrylliA	Clysia ambiguella	B.292	CrylliA	Curculio spp.
B.267	CryllIA	Crocidolomia bino-	B.293	CryllIA	Diabrotica balteata
		talis	B.294	CrylliA	Leptinotarsa spp.
B.268	CrylliA	Cydia spp.	B.295	CrylliA	Lissorhoptrus spp.
B.269	CryllA	Diparopsis casta-	B.296	CrylliA	Otiorhynchus spp.
		nea	B.297	CrylllA	Aleurothrixus spp.
B.270	CrylliA	Earias spp.	B.298	CrylllA	Aleyrodes spp.
B.271	CrylllA	Ephestia spp.	B.299	CrylllA	Aonidiella spp.
B.272	CrylllA	Heliothis spp.	B.300	CrylllA	Aphididae spp.
B.273	CrylliA	Hellula undalis	B.301	CrylllA	Aphis spp.

	AP	Bekämpfung von		AP	Bekämpfung von
B.302	CryllIA	Bemisia tabaci	B.330	CrylliB2	Chilo spp.
B.303	CrylllA	Empoasca spp.	B.331	CrylllB2	Clysia ambiguella
B.304	CryllA	Mycus spp.	B.332	CrylllB2	Crocidolomia bino-
B.305	CrylllA	Nephotettix spp.			talis
B.306	CrylllA	Nilaparvata spp.	B.333	CrylllB2	Cydia spp.
B.307	CrylllA	Pseudococcus spp.	B.334	CrylllB2	Diparopsis casta-
B.308	CrylllA	Psylla spp.			nea
B.309	CrylliA	Quadraspidiotus	B.335	CrylllB2	Earias spp.
		spp.	B.336	CrylllB2	Ephestia spp.
B.310	CrylllA	Schizaphis spp.	B.337	CrylllB2	Heliothis spp.
B.311	CrylllA	Trialeurodes spp.	B.338	CrylllB2	Hellula undalis
B.312	CrylliA	Lyriomyza spp.	B.339	CrylllB2	Keiferia lycoper-
B.313	CrylliA	Oscinella spp.			sicella
B.314	CrylllA	Phorbia spp.	B.340	CrylllB2	Leucoptera scitella
B.315	CryllA	Frankliniella spp.	B.341	CrylllB2	Lithocollethis spp.
B.316	CrylliA	Thrips spp.	B.342	CrylllB2	Lobesia botrana
B.317	CrylliA	Scirtothrips aurantii	B.343	CrylllB2	Ostrinia nubilalis
B.318	CrylllA	Aceria spp.	B.344	CrylliB2	Pandemis spp.
B.319	CrylllA	Aculus spp.	B.345	CrylllB2	Pectinophora gos-
B.320	CrylllA	Brevipalpus spp.			syp.
B.321	CrylllA	Panonychus spp.	B.346	CrylllB2	Phyllocnistis citrella
B.322	CryllA	Phyllocoptruta spp.	B.347	CrylllB2	Pieris spp.
B.323	CryllA	Tetranychus spp.	B.348	CrylliB2	Plutella xylostella
B.324	CrylliA	Heterodera spp.	B.349	CrylllB2	Scirpophaga spp.
B.325	CryllA	Meloidogyne spp.	B.350	CrylllB2	Sesamia spp.
B.326	CrylliB2	Adoxophyes spp.	B.351	CrylllB2	Sparganothis spp.
B.327	CrylllB2	Agrotis spp.	B.352	CryllB2	Spodoptera spp.
B.328	CrylllB2	Alabama argilla-	B.353	CrylliB2	Tortrix spp.
		ceae	B.354	CrylllB2	Trichoplusia ni
B.329	CrylllB2	Anticarsia gemma-	B.355	CrylllB2	Agriotes spp.
		talis	B.356	CrylliB2	Anthonomus gran-

	AP	Bekämpfung von		AP	Bekämpfung von
		dis	B.386	CrylllB2	Panonychus spp.
B.357	CrylllB2	Curculio spp.	B.387	CrylllB2	Phyllocoptruta spp.
B.358	CrylllB2	Diabrotica balteata	B.388	CrylliB2	Tetranychus spp.
B.359	CrylllB2	Leptinotarsa spp.	B.389	CrylllB2	Heterodera spp.
B.360	CrylllB2	Lissorhoptrus spp.	B.390	CrylllB2	Meloidogyne spp.
B.361	CrylllB2	Otiorhynchus spp.	B.391	CytA	Adoxophyes spp.
B.362	CrylllB2	Aleurothrixus spp.	B.392	CytA	Agrotis spp.
B.363	CryllB2	Aleyrodes spp.	B.393	CytA	Alabama argilla-
B.364	CrylllB2	Aonidiella spp.			ceae
B.365	CrylllB2	Aphididae spp.	B.394	CytA	Anticarsia gemma-
B.366	CrylllB2	Aphis spp.			talis
B.367	CrylllB2	Bemisia tabaci	B.395	CytA	Chilo spp.
B.368	CrylllB2	Empoasca spp.	B.396	CytA	Clysia ambiguella
B.369	CrylllB2	Mycus spp.	B.397	CytA	Crocidolomia bino-
B.370	CrylllB2	Nephotettix spp.			talis
B.371	CrylllB2	Nilaparvata spp.	B.398	CytA	Cydia spp.
B.372	CrylllB2	Pseudococcus spp.	B.399	CytA	Diparopsis casta-
B.373	CrylllB2	Psylla spp.			nea
B.374	CrylllB2	Quadraspidiotus	B.400	CytA	Earias spp.
		spp.	B.401	CytA	Ephestia spp.
B.375	CrylllB2	Schizaphis spp.	B.402	CytA	Heliothis spp.
B.376	CrylllB2	Trialeurodes spp.	B.403	CytA	Hellula undalis
B.377	CrylliB2	Lyriomyza spp.	B.404	CytA	Keiferia lycoper-
B.378	CrylllB2	Oscinella spp.			sicella
B.379	CrylllB2	Phorbia spp.	B.405	CytA	Leucoptera scitella
B.380	CrylliB2	Frankliniella spp.	B.406	CytA	Lithocollethis spp.
B.381	CrylllB2	Thrips spp.	B.407	CytA	Lobesia botrana
B.382	CrylllB2	Scirtothrips aurantii	B.408	CytA	Ostrinia nubilalis
B.383	CrylliB2	Aceria spp.	B.409	CytA	Pandemis spp.
B.384	CrylllB2	Aculus spp.	B.410	CytA	Pectinophora gos-
B.385	CrylllB2	Brevipalpus spp.			syp.
		I		ı	•

	AP	Bekämpfung von		AP	Bekämpfung von
B.411	CytA	Phyllocnistis citrella	B.440	CytA	Schizaphis spp.
B.412	CytA	Pieris spp.	B.441	CytA	Trialeurodes spp.
B.413	CytA	Plutella xylostella	B.442	CytA	Lyriomyza spp.
B.414	CytA	Scirpophaga spp.	B.443	CytA	Oscinella spp.
B.415	CytA	Sesamia spp.	B.444	CytA	Phorbia spp.
B.416	CytA	Sparganothis spp.	B.445	CytA	Frankliniella spp.
B.417	CytA	Spodoptera spp.	B.446	CytA	Thrips spp.
B.418	CytA	Tortrix spp.	B.447	CytA	Scirtothrips aurantii
B.419	CytA	Trichoplusia ni	B.448	CytA	Aceria spp.
B.420	CytA	Agriotes spp.	B.449	CytA	Aculus spp.
B.421	CytA	Anthonomus gran-	B.450	CytA	Brevipalpus spp.
		dis	B.451	CytA	Panonychus spp.
B.422	CytA	Curculio spp.	B.452	CytA	Phyllocoptruta spp.
B.423	CytA	Diabrotica balteata	B.453	CytA	Tetranychus spp.
B.424	CytA	Leptinotarsa spp.	B.454	CytA	Heterodera spp.
B.425	CytA	Lissorhoptrus spp.	B.455	CytA	Meloidogyne spp.
B.426	CytA	Otiorhynchus spp.	B.456	VIP3	Adoxophyes spp.
B.427	CytA	Aleurothrixus spp.	B.457	VIP3	Agrotis spp.
B.428	CytA	Aleyrodes spp.	B.458	VIP3	Alabama argilla-
B.429	CytA	Aonidiella spp.			ceae
B.430	CytA	Aphididae spp.	B.459	VIP3	Anticarsia gemma-
B.431	CytA	Aphis spp.			talis
B.432	CytA	Bemisia tabaci	B.460	VIP3	Chilo spp.
B.433	CytA	Empoasca spp.	B.461	VIP3	Clysia ambiguella
B.434	CytA	Mycus spp.	B.462	VIP3	Crocidolomia bino-
B.435	CytA	Nephotettix spp.			talis
B.436	CytA	Nilaparvata spp.	B.463	VIP3	Cydia spp.
B.437	CytA	Pseudococcus spp.	B.464	VIP3	Diparopsis casta-
B.438	CytA	Psylla spp.			nea
B.439	CytA	Quadraspidiotus	B.465	VIP3	Earias spp.
		spp.	B.466	VIP3	Ephestia spp.

		•			
	AP .	Bekämpfung von		AP	Bekämpfung von
B.467	VIP3	Heliothis spp.	B.495	VIP3	Aphididae spp.
B.468	VIP3	Hellula undalis	B.496	VIP3	Aphis spp.
B.469	VIP3	Keiferia lycoper-	B.497	VIP3	Bemisia tabaci
		sicella	B.498	VIP3	Empoasca spp.
B.470	VIP3	Leucoptera scitella	B.499	VIP3	Mycus spp.
B.471	VIP3	Lithocollethis spp.	B.500	VIP3	Nephotettix spp.
B.472	VIP3	Lobesia botrana	B.501	VIP3	Nilaparvata spp.
B.473	VIP3	Ostrinia nubilalis	B.502	VIP3	Pseudococcus spp.
B.474	VIP3	Pandemis spp.	B.503	VIP3	Psylla spp.
B.475	VIP3	Pectinophora gos-	B.504	VIP3	Quadraspidiotus
		syp.			spp.
B.476	VIP3	Phyllocnistis citrella	B.505	VIP3	Schizaphis spp.
B.477	VIP3	Pieris spp.	B.506	VIP3	Trialeurodes spp.
B.478	VIP3	Plutella xylostella	B.507	VIP3	Lyriomyza spp.
B.479	VIP3	Scirpophaga spp.	B.508	VIP3	Oscinella spp.
B.480	VIP3	Sesamia spp.	B.509	VIP3	Phorbia spp.
B.481	VIP3	Sparganothis spp.	B.510	VIP3	Frankliniella spp.
B.482	VIP3	Spodoptera spp.	B.511	VIP3	Thrips spp.
B.483	VIP3	Tortrix spp.	B.512	VIP3	Scirtothrips aurantii
B.484	VIP3	Trichoplusia ni	B.513	VIP3	Aceria spp.
B.485	VIP3	Agriotes spp.	B.514	VIP3	Aculus spp.
B.486	VIP3	Anthonomus gran-	B.515	VIP3	Brevipalpus spp.
		dis	B.516	VIP3	Panonychus spp.
B.487	VIP3	Curculio spp.	B.517	VIP3	Phyllocoptruta spp.
B.488	VIP3	Diabrotica balteata	B.518	VIP3	Tetranychus spp.
B.489	VIP3	Leptinotarsa spp.	B.519	VIP3	Heterodera spp.
B.490	VIP3	Lissorhoptrus spp.	B.520	VIP3	Meloidogyne spp.
B.491	VIP3	Otiorhynchus spp.	B.521	GL	Adoxophyes spp.
B.492	VIP3	Aleurothrixus spp.	B.522	GL	Agrotis spp.
B.493	VIP3	Aleyrodes spp.	B.523	GL	Alabama argilla-
B.494	VIP3	Aonidiella spp.			ceae
	i	I		1	1

	AP	Bekämpfung von		AP	Bekämpfung von
B.524	GL	Anticarsia gemma-	B.550	GL	Agriotes spp.
ļ		talis	B.551	GL	Anthonomus gran-
B.525	GL	Chilo spp.			dis
B.526	GL	Clysia ambiguella	B.552	GL	Curculio spp.
B.527	GL	Crocidolomia bino-	B.553	GL	Diabrotica balteata
		talis	B.554	GL	Leptinotarsa spp.
B.528	GL	Cydia spp.	B.555	GL	Lissorhoptrus spp.
B.529	GL	Diparopsis casta-	B.556	GL	Otiorhynchus spp.
		nea	B.557	GL	Aleurothrixus spp.
B.530	GL	Earias spp.	B.558	GL	Aleyrodes spp.
B.531	GL	Ephestia spp.	B.559	GL	Aonidiella spp.
B.532	GL	Heliothis spp.	B.560	GL	Aphididae spp.
B.533	GL	Hellula undalis	B.561	GL	Aphis spp.
B.534	GL	Keiferia lycoper-	B.562	GL`	Bemisia tabaci
		sicella	B.563	GL	Empoasca spp.
B.535	GL	Leucoptera scitella	B.564	GL	Mycus spp.
B.536	GL	Lithocollethis spp.	B.565	GL	Nephotettix spp.
B.537	GL	Lobesia botrana	B.566	GL	Nilaparvata spp.
B.538	GL	Ostrinia nubilalis	B.567	GL	Pseudococcus spp.
B.539	GL	Pandemis spp.	B.568	GL	Psylla spp.
B.540	GL	Pectinophora gos-	B.569	GL	Quadraspidiotus
		syp.			spp.
B.541	GL	Phyllocnistis citrella	B.570	GL	Schizaphis spp.
B.542	GL	Pieris spp.	B.571	GL	Trialeurodes spp.
B.543	GL	Plutella xylostella	B.572	GL	Lyriomyza spp.
B.544	GL	Scirpophaga spp.	B.573	GL	Oscinella spp.
B.545	GL	Sesamia spp.	B.574	GL	Phorbia spp.
B.546	GL	Sparganothis spp.	B.575	GL	Frankliniella spp.
B.547	GL	Spodoptera spp.	B.576	GL	Thrips spp.
B.548	GL	Tortrix spp.	B.577	GL	Scirtothrips aurantii
B.549	GL	Trichoplusia ni	B.578	GL	Aceria spp.
	1	1			•

1	AP	Bekämpfung von		AP	Bekämpfung von
B.579	GL	Aculus spp.	B.605	PL	Pectinophora gos-
B.580	GL	Brevipalpus spp.		:	syp.
B.581	GL	Panonychus spp.	B.606	PL	Phyllocnistis citrella
B.582	GL	Phyllocoptruta spp.	B.607	PL	Pieris spp.
B.583	GL	Tetranychus spp.	B.608	PL	Plutella xylostella
B.584	GL	Heterodera spp.	B.609	PL	Scirpophaga spp.
B.585	GL	Meloidogyne spp.	B.610	PL	Sesamia spp.
B.586	PL	Adoxophyes spp.	B.611	PL ·	Sparganothis spp.
B.587	PL	Agrotis spp.	B.612	PL	Spodoptera spp.
B.588	PL	Alabama argilla-	B.613	PL	Tortrix spp.
		ceae	B.614	PL	Trichoplusia ni
B.589	PL	Anticarsia gemma-	B.615	PL	Agriotes spp.
		talis	B.616	PL	Anthonomus gran-
B.590	PL	Chilo spp.		\	dis
B.591	PL	Clysia ambiguella	B.617	PL	Curculio spp.
B.592	PL	Crocidolomia bino-	B.618	PL	Diabrotica balteata
		talis	B.619	PL	Leptinotarsa spp.
B.593	PL	Cydia spp.	B.620	PL	Lissorhoptrus spp.
B.594	PL	Diparopsis casta-	B.621	PL	Otiorhynchus spp.
		nea	B.622	PL	Aleurothrixus spp.
B.595	PL	Earias spp.	B.623	PL	Aleyrodes spp.
B.596	PL	Ephestia spp.	B.624	PL	Aonidiella spp.
B.597	PL	Heliothis spp.	B.625	PL	Aphididae spp.
B.598	PL	Hellula undalis	B.626	PL	Aphis spp.
B.599	PL	Keiferia lycoper-	B.627	PL	Bemisia tabaci
		sicella	B.628	PL	Empoasca spp.
B.600	PL	Leucoptera scitella	B.629	PL	Mycus spp.
B.601	PL	Lithocollethis spp.	B.630	PL	Nephotettix spp.
B.602	PL	Lobesia botrana	B.631	PL	Nilaparvata spp.
B.603	PL	Ostrinia nubilalis	B.632	PL	Pseudococcus spp.
B.604	PL	Pandemis spp.	B.633	PL	Psylla spp.
		i		,	1

	AP	Bekämpfung von		AP	Bekämpfung von
B.634	PL	Quadraspidiotus	B.660	XN	Earias spp.
		spp.	B.661	XN	Ephestia spp.
B.635	PL	Schizaphis spp.	B.662	XN	Heliothis spp.
B.636	PL	Trialeurodes spp.	B.663	XN	Hellula undalis
B.637	PL	Lyriomyza spp.	B.664	XN	Keiferia lycoper-
B.638	PL	Oscinella spp.			sicella
B.639	PL	Phorbia spp.	B.665	XN	Leucoptera scitella
B.640	PL	Frankliniella spp.	B.666	XN	Lithocollethis spp.
B.641	PL	Thrips spp.	B.667	XN	Lobesia botrana
B.642	PL	Scirtothrips aurantii	B.668	XN	Ostrinia nubilalis
B.643	PL	Aceria spp.	B.669	XN	Pandemis spp.
B.644	PL	Aculus spp.	B.670	XN	Pectinophora gos-
B.645	PL	Brevipalpus spp.			syp.
B.646	PL	Panonychus spp.	B.671	XN,	Phyllocnistis citrella
B.647	PL	Phyllocoptruta spp.	B.672	XN	Pieris spp.
B.648	PL	Tetranychus spp.	B.673	XN	Plutella xylostella
B.649	PL	Heterodera spp.	B.674	XN	Scirpophaga spp.
B.650	PL	Meloidogyne spp.	B.675	XN	Sesamia spp.
B.651	XN .	Adoxophyes spp.	B.676	XN	Sparganothis spp.
B.652	XN	Agrotis spp.	B.677	XN	Spodoptera spp.
B.653	XN	Alabama argilla-	B.678	XN	Tortrix spp.
		ceae	B.679	XN	Trichoplusia ni
B.654	XN	Anticarsia gemma-	B.680	XN	Agriotes spp.
		talis	B.681	XN	Anthonomus gran-
B.655	XN	Chilo spp.			dis
B.656	XN	Clysia ambiguella	B.682	XN	Curculio spp.
B.657	XN	Crocidolomia bino-	B.683	XN	Diabrotica balteata
		talis	B.684	XN	Leptinotarsa spp.
B.658	XN	Cydia spp.	B.685	XN	Lissorhoptrus spp.
B.659	XN	Diparopsis casta-	B.686	XN	Otiorhynchus spp.
		nea	B.687	XN	Aleurothrixus spp.

	AP	Bekämpfung von		AP	Bekämpfung von
B.688	XN	Aleyrodes spp.	B.718	Pinh.	Alabama argilla-
B.689	XN	Aonidiella spp.			ceae
B.690	XN	Aphididae spp.	B.719	Plnh.	Anticarsia gemma-
B.691	XN	Aphis spp.			talis
B.692	XN	Bemisia tabaci	B.720	Pinh.	Chilo spp.
B.693	XN	Empoasca spp.	B.721	Plnh.	Clysia ambiguella
B.694	XN	Mycus spp.	B.722	Plnh.	Crocidolomia bino-
B.695	XN	Nephotettix spp.			talis
B.696	XN	Nilaparvata spp.	B.723	Pinh.	Cydia spp.
B.697	XN	Pseudococcus spp.	B.724	Pinh.	Diparopsis casta-
B.698	XN	Psylla spp.			nea
B.699	XN	Quadraspidiotus	B.725	Pinh.	Earias spp.
		spp.	B.726	Pinh.	Ephestia spp.
B.700	XN	Schizaphis spp.	B.727	Plnh.	Heliothis spp.
B.701	XN	Trialeurodes spp.	B.728	Pinh.	Hellula undalis
B.702	XN	Lyriomyza spp.	B.729	Pinh.	Keiferia lycoper-
B.703	XN	Oscinella spp.			sicella
B.704	XN	Phorbia spp.	B.730	Pinh.	Leucoptera scitella
B.705	XN	Frankliniella spp.	B.731	Pinh.	Lithocollethis spp.
B.706	XN	Thrips spp.	B.732	Pinh.	Lobesia botrana
B .707	XN	Scirtothrips aurantii	B.733	Pinh.	Ostrinia nubilalis
B.708	XN	Aceria spp.	B.734	Plnh.	Pandemis spp.
B.709	XN	Aculus spp.	B.735	Pinh.	Pectinophora gos-
B.710	XN	Brevipalpus spp.			syp.
B.711	XN	Panonychus spp.	B.736	Plnh.	Phyllocnistis citrella
B.712	XN	Phyllocoptruta spp.	B.737	Pinh.	Pieris spp.
B.713	XN	Tetranychus spp.	B.738	Pinh.	Plutella xylostella
B.714	XN	Heterodera spp.	B.739	Pinh.	Scirpophaga spp.
B.715	XN	Meloidogyne spp.	B.740	Pinh.	Sesamia spp.
B.716	Pinh.	Adoxophyes spp.	B.741	Pinh.	Sparganothis spp.
B.717	Pinh.	Agrotis spp.	B.742	Pinh.	Spodoptera spp.

	AP	Bekämpfung von		AP	Bekämpfung von
B.743	Pinh.	Tortrix spp.	B.772	Pinh.	Scirtothrips aurantii
B.744	Pinh.	Trichoplusia ni	B.773	Pinh.	Aceria spp.
B.745	Pinh.	Agriotes spp.	B.774	Pinh.	Aculus spp.
B.746	Plnh.	Anthonomus gran-	B.775	Plnh.	Brevipalpus spp.
		dis	B.776	Pinh.	Panonychus spp.
B.747	Pinh.	Curculio spp.	B.777	Pinh.	Phyllocoptruta spp.
B.748	Pinh.	Diabrotica balteata	B.778	Pinh.	Tetranychus spp.
B.749	Pinh.	Leptinotarsa spp.	B.779	Plnh.	Heterodera spp.
B.750	Pinh.	Lissorhoptrus spp.	B.780	Pinh.	Meloidogyne spp.
B.751	Plnh.	Otiorhynchus spp.	B.781	Plec	Adoxophyes spp.
B.752	Plnh.	Aleurothrixus spp.	B.782	Plec	Agrotis spp.
B.753	Pinh.	Aleyrodes spp.	B.783	Plec	Alabama argilla-
B.754	Pinh.	Aonidiella spp.			ceae
B.755	Plnh.	Aphididae spp.	B.784	Plec	Anticarsia gemma-
B.756	Pinh.	Aphis spp.			talis
B.757	Pinh.	Bemisia tabaci	B.785	Plec	Chilo spp.
B.758	Pinh.	Empoasca spp.	B.786	Plec	Clysia ambiguella
B.759	Pinh.	Mycus spp.	B.787	Plec	Crocidolomia bino-
B.760	Pinh.	Nephotettix spp.			talis
B.761	Plnh.	Nilaparvata spp.	B.788	Plec	Cydia spp.
B.762	Pinh.	Pseudococcus spp.	B.789	Plec	Diparopsis casta-
B.763	Pinh.	Psylla spp.			nea
B.764	Pinh.	Quadraspidiotus	B.790	Plec	Earias spp.
		spp.	B.791	Plec	Ephestia spp.
B.765	Pinh.	Schizaphis spp.	B.792	Plec	Heliothis spp.
B.766	Pinh.	Trialeurodes spp.	B.793	Plec	Hellula undalis
B.767	Plnh.	Lyriomyza spp.	B.794	Plec	Keiferia lycoper-
B.768	Pinh.	Oscinella spp.	•		sicella
B.769	Pinh.	Phorbia spp.	B.795	Plec	Leucoptera scitella
B.770	Pinh.	Frankliniella spp.	B.796	Plec	Lithocollethis spp.
B.771	Plnh.	Thrips spp.	B.797	Plec	Lobesia botrana
		•			•

1	AP	Bekämpfung von		AP	Bekämpfung von
B.798	Plec	Ostrinia nubilalis	B.827	Plec	Pseudococcus spp.
B.799	Plec	Pandemis spp.	B.828	Plec	Psylla spp.
B.800	Plec	Pectinophora gos-	B.829	Plec	Quadraspidiotus
		syp.			spp.
B.801	Plec	Phyllocnistis citrella	B.830	Plec	Schizaphis spp.
B.802	Plec	Pieris spp.	B.831	Plec	Trialeurodes spp.
B.803	Plec	Plutella xylostella	B.832	Plec	Lyriomyza spp.
B.804	Plec	Scirpophaga spp.	B.833	Plec	Oscinella spp.
B.805	Plec	Sesamia spp.	B.834	Plec	Phorbia spp.
B.806	Plec	Sparganothis spp.	B.835	Plec	Frankliniella spp.
B.807	Plec	Spodoptera spp.	B.836	Plec	Thrips spp.
B.808	Plec	Tortrix spp.	B.837	Plec	Scirtothrips aurantii
B.809	Plec	Trichoplusia ni	B.838	Plec	Aceria spp.
B.810	Plec	Agriotes spp.	B.839	Plec	Aculus spp.
B.811	Plec	Anthonomus gran-	B.840	Plec	Brevipalpus spp.
		dis	B.841	Plec	Panonychus spp.
B.812	Plec	Curculio spp.	B.842	Plec	Phyllocoptruta spp.
B.813	Plec	Diabrotica balteata	B.843	Plec	Tetranychus spp.
B.814	Plec	Leptinotarsa spp.	B.844	Plec	Heterodera spp.
B.815	Plec	Lissorhoptrus spp.	B.845	Plec	Meloidogyne spp.
B.816	Plec	Otiorhynchus spp.	B.846	Aggl.	Adoxophyes spp.
B.817	Plec	Aleurothrixus spp.	B.847	Aggl.	Agrotis spp.
B.818	Plec	Aleyrodes spp.	B.848	Aggl.	Alabama argilla-
B.819	Plec	Aonidiella spp.			ceae
B.820	Plec	Aphididae spp.	B.849	Aggl.	Anticarsia gemma-
B.821	Plec	Aphis spp.			talis
B.822	Plec	Bemisia tabaci	B.850	Aggl.	Chilo spp.
B.823	Plec	Empoasca spp.	B.851	Aggl.	Clysia ambiguella
B.824	Plec	Mycus spp.	B.852	Aggl.	Crocidolomia bino-
B.825	Plec	Nephotettix spp.			talis
B.826	Plec	Nilaparvata spp.	B.853	Aggl.	Cydia spp.
	1	i.		ī	I

	AP	Bekämpfung von		AP	Bekämpfung von
B.854	Aggl.	Diparopsis casta-	B.881	Aggl.	Otiorhynchus spp.
		nea	B.882	Aggl.	Aleurothrixus spp.
B.855	Aggl.	Earias spp.	B.883	Aggl.	Aleyrodes spp.
B.856	Aggl.	Ephestia spp.	B.884	Aggl.	Aonidiella spp.
B.857	Aggl.	Heliothis spp.	B.885	Aggl.	Aphididae spp.
B.858	Aggl.	Hellula undalis	B.886	Aggl.	Aphis spp.
B.859	Aggl.	Keiferia lycoper-	B.887	Aggl.	Bemisia tabaci
		sicella	B.888	Aggl.	Empoasca spp.
B.860	Aggl.	Leucoptera scitella	B.889	Aggl.	Mycus spp.
B.861	Aggl.	Lithocollethis spp.	B.890	Aggl.	Nephotettix spp.
B.862	Aggi.	Lobesia botrana	B.891	Aggl.	Nilaparvata spp.
B.863	Aggi.	Ostrinia nubilalis	B.892	Aggl.	Pseudococcus spp.
B.864	Aggl.	Pandemis spp.	B.893	Aggl.	Psylla spp.
B:865	Aggl.	Pectinophora gos-	B.894	Aggi.	Quadraspidiotus
	·	syp.			spp.
B.866	Aggl.	Phyllocnistis citrella	B.895	Aggl.	Schizaphis spp.
B.867	Aggl.	Pieris spp.	B.896	Aggl.	Trialeurodes spp.
B.868	Aggl.	Plutella xylostella	B.897	Aggl.	Lyriomyza spp.
B.869	Aggl.	Scirpophaga spp.	B.898	Aggl.	Oscinella spp.
B.870	Aggl.	Sesamia spp.	B.899	Aggl.	Phorbia spp.
B.871	Aggi.	Sparganothis spp.	B.900	Aggl.	Frankliniella spp.
B.872	Aggl.	Spodoptera spp.	B.901	Aggl.	Thrips spp.
B.873	Aggl.	Tortrix spp.	B.902	Aggi.	Scirtothrips aurantii
B.874	Aggl.	Trichoplusia ni	B.903	Aggl.	Aceria spp.
B.875	Aggl.	Agriotes spp.	B.904	Aggl.	Aculus spp.
B.876	Aggl.	Anthonomus gran-	B.905	Aggl.	Brevipalpus spp.
		dis	B.906	Aggl.	Panonychus spp.
B.877	Aggl.	Curculio spp.	B.907	Aggl.	Phyllocoptruta spp.
B.878	Aggi.	Diabrotica balteata	B.908	Aggi.	Tetranychus spp.
B.879	Aggl.	Leptinotarsa spp.	B.909	Aggl.	Heterodera spp.
B.880	Aggl.	Lissorhoptrus spp.	B.910	Aggl.	Meloidogyne spp.
	J	Į.		1	I

	AP	Bekämpfung von		AP	Bekämpfung von
B.911	co	Adoxophyes spp.	B.936	СО	Sparganothis spp.
B.912	co	Agrotis spp.	B.937	co ·	Spodoptera spp.
B.913	co	Alabama argilla-	B.938	со	Tortrix spp.
:		ceae	B.939	со	Trichoplusia ni
B.914	со	Anticarsia gemma-	B.940	СО	Agriotes spp.
		talis	B.941	СО	Anthonomus gran-
B.915	co	Chilo spp.			dis
B.916	co	Clysia ambiguella	B.942	co	Curculio spp.
B.917	co	Crocidolomia bino-	B.943	СО	Diabrotica balteata
		talis	B.944	СО	Leptinotarsa spp.
B.918	co	Cydia spp.	B.945	co	Lissorhoptrus spp.
B.919	co	Diparopsis casta-	B.946	co	Otiorhynchus spp.
		nea	B.947	co	Aleurothrixus spp.
B.920	со	Earias spp.	B.948	co	Aleyrodes spp.
B.921	co	Ephestia spp.	B.949	co	Aonidiella spp.
B.922	co	Heliothis spp.	B.950	co	Aphididae spp.
B.923	СО	Hellula undalis	B.951	co	Aphis spp.
B.924	co	Keiferia lycoper-	B.952	co	Bemisia tabaci
		sicella	B.953	СО	Empoasca spp.
B.925	co	Leucoptera scitella	B.954	ĊO	Mycus spp.
B.926	co ·	Lithocollethis spp.	B.955	СО	Nephotettix spp.
B.927	co	Lobesia botrana	B.956	СО	Nilaparvata spp.
B.928	co	Ostrinia nubilalis	B.957	co	Pseudococcus spp.
B.929	co	Pandemis spp.	B.958	СО	Psylla spp.
B.930	co	Pectinophora gos-	B.959	co	Quadraspidiotus
		syp.			spp.
B.931	СО	Phyllocnistis citrella	B.960	co	Schizaphis spp.
B.932	co	Pieris spp.	B.961	co	Trialeurodes spp.
B.933	СО	Plutella xylostella	B.962	СО	Lyriomyza spp.
B.934	СО	Scirpophaga spp.	B.963	со	Oscinella spp.
B.935	co	Sesamia spp.	B.964	со	Phorbia spp.
	I	I		i	1


	AP	Bekämpfung von		AP	Bekämpfung von
B.965	СО	Frankliniella spp.	B.991	СН	Lithocollethis spp.
B.966	CO	Thrips spp.	B.992	СН	Lobesia botrana
B.967	СО	Scirtothrips aurantii	B.993	СН	Ostrinia nubilalis
B.968	co	Aceria spp.	B.994	СН	Pandemis spp.
B.969	СО	Aculus spp.	B.995	СН	Pectinophora gos-
B.970	co	Brevipalpus spp.			syp.
B.971	со	Panonychus spp.	B.996	СН	Phyllocnistis citrella
B.972	co	Phyllocoptruta spp.	B.997	СН	Pieris spp.
B.973	со	Tetranychus spp.	B.998	СН	Plutella xylostella
B.974	СО	Heterodera spp.	B.999	СН	Scirpophaga spp.
B.975	СО	Meloidogyne spp.	B.1000	СН	Sesamia spp.
B.976	СН	Adoxophyes spp.	B.1001	СН	Sparganothis spp.
B.977	СН	Agrotis spp.	B.1002	CH _	Spodoptera spp.
B.978	СН	Alabama argilla-	B.1003	СН	Tortrix spp.
		ceae	B.1004.	СН	Trichoplusia ni
B.979	СН	Anticarsia gemma-	B.1005	СН	Agriotes spp.
		talis	B.1006	СН	Anthonomus gran-
B.980	СН	Chilo spp.			dis
B.981	СН	Clysia ambiguella	B.1007	СН	Curculio spp.
B.982	СН	Crocidolomia bino-	B.1008	СН	Diabrotica balteata
		talis	B.1009	СН	Leptinotarsa spp.
B.983	СН	Cydia spp.	B.1010	СН	Lissorhoptrus spp.
B.984	СН	Diparopsis casta-	B.1011	СН	Otiorhynchus spp.
		nea	B.1012	СН	Aleurothrixus spp.
B.985	CH	Earias spp.	B.1013	СН	Aleyrodes spp.
B.986	СН	Ephestia spp.	B.1014	СН	Aonidiella spp.
B.987	СН	Heliothis spp.	B.1015	СН	Aphididae spp.
B.988	СН	Hellula undalis	B.1016	СН	Aphis spp.
B.989	СН	Keiferia lycoper-	B.1017	СН	Bemisia tabaci
		sicella	B.1018	СН	Empoasca spp.
B.990	СН	Leucoptera scitella	B.1019	СН	Mycus spp.
	I	I		ı	I

	AP	Bekämpfung von		AP	Bekämpfung von
B.1020	СН	Nephotettix spp.			talis
B.1021	СН	Nilaparvata spp.	B.1048	ss	Cydia spp.
B.1022	СН	Pseudococcus spp.	B.1049	ss	Diparopsis casta-
B.1023	СН	Psylla spp.			nea
B.1024	СН	Quadraspidiotus	B.1050	ss	Earias spp.
		spp.	B.1051	ss	Ephestia spp.
B.1025	СН	Schizaphis spp.	B.1052	ss	Heliothis spp.
B.1026	СН	Trialeurodes spp.	B.1053	ss	Hellula undalis
B.1027	СН	Lyriomyza spp.	B.1054	SS	Keiferia lycoper-
B.1028	СН	Oscinella spp.			sicella
B.1029	CH	Phorbia spp.	B.1055	SS	Leucoptera scitella
B.1030	СН	Frankliniella spp.	B.1056	SS	Lithocollethis spp.
B.1031	СН	Thrips spp.	B.1057	ss _	Lobesia botrana
B.1032	CH	Scirtothrips aurantii	B.1058	SS	Ostrinia nubilalis
B.1033	СН	Aceria spp.	B.1059	SS	Pandemis spp.
B.1034	СН	Aculus spp.	B.1060	SS	Pectinophora gos-
B.1035	СН	Brevipalpus spp.			syp.
B.1036	СН	Panonychus spp.	B.1061	SS	Phyllocnistis citrella
B.1037	СН	Phyllocoptruta spp.	B.1062	SS	Pieris spp.
B.1038	СН	Tetranychus spp.	B.1063	SS	Plutella xylostella
B.1039	СН	Heterodera spp.	B.1064	SS	Scirpophaga spp.
B.1040	СН	Meloidogyne spp.	B.1065	SS	Sesamia spp.
B.1041	SS	Adoxophyes spp.	B.1066	SS .	Sparganothis spp.
B.1042	SS	Agrotis spp.	B.1067	SS	Spodoptera spp.
B.1043	SS	Alabama argilla-	B.1068	SS	Tortrix spp.
		ceae	B.1069	SS	Trichoplusia ni
B.1044	SS	Anticarsia gemma-	B.1070	SS	Agriotes spp.
		talis	B.1071	SS	Anthonomus gran-
B.1045	SS	Chilo spp.			dis
B.1046	SS	Clysia ambiguella	B.1072	ss	Curculio spp.
B.1047	ss	Crocidolomia bino-	B.1073	SS	Diabrotica balteata
	1	I		1	1

		•	· ·		
	AP	Bekämpfung von		AP	Bekämpfung von
B.1074	SS	Leptinotarsa spp.	B.1104	SS	Heterodera spp.
B.1075	SS	Lissorhoptrus spp.	B.1105	SS	Meloidogyne spp.
B.1076	SS	Otiorhynchus spp.	B.1106	НО	Adoxophyes spp.
B.1077	ss	Aleurothrixus spp.	B.1107	НО	Agrotis spp.
B.1078	ss	Aleyrodes spp.	B.1108	НО	Alabama argilla-
B.1079	ss	Aonidiella spp.			ceae
B.1080	ss	Aphididae spp.	B.1109	НО	Anticarsia gemma-
B.1081	ss	Aphis spp.		• •	talis
B.1082	SS	Bemisia tabaci	B.1110	но	Chilo spp.
B.1083	SS	Empoasca spp.	B.1111	НО	Clysia ambiguella
B.1084	ss	Mycus spp.	B.1112	но	Crocidolomia bino-
B.1085	SS	Nephotettix spp.			talis
B.1086	SS	Nilaparvata spp.	B.1113	но _	Cydia spp.
B.1087	SS	Pseudococcus spp.	B.1114	НО	Diparopsis casta-
B.1088	SS	Psylla spp.		•	nea
B.1089	ss	Quadraspidiotus	B.1115	НО	Earias spp.
		spp.	B.1116	HO ⁻	Ephestia spp.
B.1090	SS	Schizaphis spp.	B.1117	но	Heliothis spp.
B.1091	ss	Trialeurodes spp.	B.1118	НО	Hellula undalis
B.1092	SS	Lyriomyza spp.	B.1119	но	Keiferia lycoper-
B.1093	ss .	Oscinella spp.			sicella
B.1094	SS	Phorbia spp.	B.1120	НО	Leucoptera scitella
B.1095	SS	Frankliniella spp.	B.1121	НО	Lithocollethis spp.
B.1096	SS	Thrips spp.	B.1122	НО	Lobesia botrana
B.1097	SS	Scirtothrips aurantii	B.1123	НО	Ostrinia nubilalis
B.1098	SS	Aceria spp.	B.1124	НО	Pandemis spp.
B.1099	SS	Aculus spp.	B.1125	НО	Pectinophora gos-
B.1100	ss	Brevipalpus spp.			sypiella
B.1101	ss	Panonychus spp.	B.1126	НО	Phyllocnistis citrella
B.1102	ss	Phyllocoptruta spp.	B.1127	но	Pieris spp.
B.1103	SS	Tetranychus spp.	B.1128	но	Plutella xylostella
	1	1		1	1

	AP	Bekämpfung von		AP	Bekämpfung von
B.1129	НО	Scirpophaga spp.	B.1150	НО	Nephotettix spp.
B.1130	НО	Sesamia spp.	B.1151	НО	Nilaparvata spp.
B.1131	НО	Sparganothis spp.	B.1152	НО	Pseudococcus spp.
B.1132	НО	Spodoptera spp.	B.1153	НО	Psylla spp.
B.1133	НО	Tortrix spp.	B.1154	НО	Quadraspidiotus
B.1134	НО	Trichoplusia ni			spp.
B.1135	НО	Agriotes spp.	B.1155	НО	Schizaphis spp.
B.1136	НО	Anthonomus gran-	B.1156	НО	Trialeurodes spp.
·		dis	B.1157	НО	Lyriomyza spp.
B.1137	НО	Curculio spp.	B.1158	но	Oscinella spp.
B.1138	НО	Diabrotica balteata	B.1159	НО	Phorbia spp.
B.1139	но	Leptinotarsa spp.	B.1160	НО	Frankliniella spp.
B.1140	но	Lissorhoptrus spp.	B.1161	но _	Thrips spp.
B.1141	НО	Otiorhynchus spp.	B.1162	НО	Scirtothrips aurantii
B.1142	НО	Aleurothrixus spp.	B.1163	НО	Aceria spp.
B.1143	но	Aleyrodes spp.	B.1164	НО	Aculus spp.
B.1144	но	Aonidiella spp.	B.1165	но	Brevipalpus spp.
B.1145	но	Aphididae spp.	B.1166	НО	Panonychus spp.
B.1146	но	Aphis spp.	B.1167	НО	Phyllocoptruta spp.
B.1147	НО	Bemisia tabaci	B.1168	НО	Tetranychus spp.
B.1148	НО	Empoasca spp.	B.1169	НО	Heterodera spp.
B.1149	НО	Mycus spp.	B.1170	НО	Meloidogyne spp.
					•

Biologische Beispiele

<u>Tabelle 1:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgene Baumwolle, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 2:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgenen Reis, worin die Kombination des Wirkprinzips, das durch die

transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 3:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgene Kartoffeln, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 4:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgene Kohlarten, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 5:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgene Tomaten, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 6:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgene Kürbisse, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 7</u>: Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgene Soja, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 8</u>: Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgenen Mais, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 9:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgenen Weizen, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 10:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgene Bananen, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 11:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgene Zitrusbäume, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 12:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Abamectin an transgene Kernobstbäume, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 13:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgene Baumwolle, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 14:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgenen Reis, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 15:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgene Kartoffeln, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 16:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgene Tomaten, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 17:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgene Kürbisse, worin die Kombination des Wirkprinzips,

das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 18:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgene Soja, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 19:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgenen Mais, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 20:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgenen Weizen, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 21:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgene Bananen, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 22:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgene Orangenbäume, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 23:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgenes Kernobst, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 24:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Emamectin-Benzoat an transgene Kürbisse, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 25:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgene Baumwolle, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 26:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgenen Reis, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 27:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgene Kartoffeln, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 28:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgene Kohlarten, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 29:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgene Tomaten, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 30:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgene Kürbisse, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 31:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgene Soja, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 32:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgenen Mais, worin die Kombination des Wirkprinzips, das durch die

transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 33:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgenen Weizen, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 34:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgene Bananen, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 35:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgene Zitrusbäume, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

<u>Tabelle 36:</u> Ein Verfahren zur Bekämpfung von Schädlingen, umfassend die Verabreichung von Spinosad an transgene Kernobstbäume, worin die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und der zu bekämpfende Schädling einer Zeile von Tabelle B entsprechen.

Tabelle C:

Abkürzungen:

Acetyl-COA-Carboxylase: ACCase

Acetolactat-Synthase: ALS

Hydroxyphenylpyruvatdioxygenase: HPPD

Inhibierung von Protein-Synthese: IPS

Hormon-Nachahmung: HO

Glutamin-Synthetase: GS

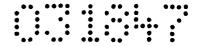
Protoporphyrinogenoxidase: PROTOX

5-Enolpyruvyl-3-phosphoshikimat-Synthase: EPSPS

	Prinzip	tolerant gegen	Kultur
C.1	ALS	Sulfonylharnstoffe usw.***	Baumwolle
C.2	ALS	Sulfonylhamstoffe usw. ***	Reis
C.3	ALS	Sulfonylhamstoffe usw. ***	Kohlarten
C.4	ALS	Sulfonylharnstoffe usw. ***	Kartoffeln
C.5	ALS	Sulfonylharnstoffe usw. ***	Tomaten
C.6	ALS	Sulfonylharnstoffe usw. ***	Kürbisse
C.7	ALS	Sulfonylharnstoffe usw. ***	Soja
C.8	ALS	Sulfonylharnstoffe usw. ***	Mais
C.9	ALS	Sulfonylharnstoffe usw. ***	Weizen
C.10	ALS	Sulfonylharnstoffe usw. ***	Kernobst
C.11	ALS	Sulfonylharnstoffe usw. ***	Steinobst
C.12	ALS	Sulfonylharnstoffe usw. ***	Zitrus
C.13	ACCase	+++	Baumwolle
C.14	ACCase	+++	Reis
C.15	ACCase	+++	Kohlarten
C.16	ACCase	+++	Kartoffeln
C.17	ACCase	+++	Tomaten
C.18	ACCase	+++	Kürbisse
C.19	ACCase	+++	Soja
C.20	ACCase	+++	Mais
C.21	ACCase	+++	Weizen
C.22	ACCase :	+++	Kernobst
C.23	ACCase	+++	Steinobst
C.24	ACCase	+++	Zitrus
C.25	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Baumwolle
C.26	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Reis
C.27	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Kohlarten
C.28	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Kartoffeln
C.29	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Tomaten
C.30	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Kürbisse
	•	•	•

:		<u> </u>	
	Prinzip	tolerant gegen	Kultur
C.31	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Soja
C.32	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Mais
C.33	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Weizen
C.34	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Kernobst
C.35	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Steinobst
C.36	HPPD	Isoxaflutol, Isoxachlotol, Sulcotrion, Mesotrion	Zitrus
C.37	Nitrilase	Bromoxynil, loxynil	Baumwolle
C.38	Nitrilase	Bromoxynil, loxynil	Reis
C.39	Nitrilase	Bromoxynil, loxynil	Kohlarten
C.40	Nitrilase	Bromoxynil, loxynil	Kartoffeln
C.41	Nitrilase	Bromoxynil, loxynil	Tomaten
C.42	Nitrilase	Bromoxynil, loxynil	Kürbisse
C.43	Nitrilase	Bromoxynil, loxynil	Soja
C.44	Nitrilase	Bromoxynil, loxynil	Mais
C.45	Nitrilase	Bromoxynil, loxynil	Weizen
C.46	Nitrilase	Bromoxynil, loxynil	Kernobst
C.47	Nitrilase	Bromoxynil, loxynil	Steinobst
C.48	Nitrilase	Bromoxynil, loxynil	Zitrus
C.49	IPS	Chloractanilide &&&	Baumwolle
C.50	IPS	Chloractanilide &&&	Reis
C.51	IPS	Chloractanilide &&&s	Kohlarten
C.52	IPS :	Chloractanilide &&&	Kartoffeln
C.53	IPS	Chloractanilide &&&	Tomaten
C.54	IPS	Chloractanilide &&&	Kürbisse
C.55	IPS	Chloractanilide &&&	Soja
C.56	IPS	Chloractanilide &&&	Mais
C.57	IPS	Chloractanilide &&&	Weizen
C.58	IPS	Chloractanilide &&&	Kernobst
C.59	IPS	Chloractanilide &&&	Steinobst
C.60	IPS	Chloractanilide &&&	Zitrus
	i	I	1 .

	Prinzip	tolerant gegen	Kultur
C.61	НОМ	2,4-D, Mecoprop-P	Baumwolle
C.62	НОМ	2,4-D, Mecoprop-P	Reis
C.63	HOM.	2,4-D, Mecoprop-P	Kohlarten
C.64	НОМ	2,4-D, Mecoprop-P	Kartoffeln
C.65	НОМ	2,4-D, Mecoprop-P	Tomaten
C.66	ном	2,4-D, Mecoprop-P	Kürbisse
C.67	ном	2,4-D, Mecoprop-P	Soja
C.68	ном	2,4-D, Mecoprop-P	Mais
C.69	НОМ	2,4-D, Mecoprop-P	Weizen
C.70	НОМ	2,4-D, Mecoprop-P	Kernobst
C.71	НОМ	2,4-D, Mecoprop-P	Steinobst
C.72	НОМ	2,4-D, Mecoprop-P	Zitrus
C.73	PROTOX	Protox-Inhibitoren ///	Baumwolle
C.74	PROTOX	Protox-Inhibitoren ///	Reis
C.75	PROTOX	Protox-Inhibitoren ///	Kohlarten
C.76	PROTOX	Protox-Inhibitoren ///	Kartoffeln
C.77	PROTOX	Protox-Inhibitoren ///	Tomaten
C.78	PROTOX	Protox-Inhibitoren ///	Kürbisse
C.79	PROTOX	Protox-Inhibitoren ///	Soja
C.80	PROTOX	Protox-Inhibitoren ///	Mais
C.81	PROTOX	Protox-Inhibitoren ///	Weizen
C.82	PROTOX	Protox-Inhibitoren ///	Kernobst
C.83	PROTOX	Protox-Inhibitoren ///	Steinobst
C.84	PROTOX	Protox-Inhibitoren ///	Zitrus
C.85	EPSPS	Glyphosat und /oder Sulphosat	Baumwolle
C.86	EPSPS	Glyphosat und /oder Sulphosat	Reis
C.87	EPSPS	Glyphosat und /oder Sulphosat	Kohlarten
C.88	EPSPS	Glyphosat und /oder Sulphosat	Kartoffeln
C.89	EPSPS	Glyphosat und /oder Sulphosat	Tomaten
C.90	EPSPS	Glyphosat und /oder Sulphosat	Kürbisse
	I .		i


	Prinzip	tolerant gegen	Kultur
C.91	EPSPS	Glyphosat und /oder Sulphosat	Soja
C.92	EPSPS	Glyphosat und /oder Sulphosat	Mais
C.93	EPSPS	Glyphosat und /oder Sulphosat	Weizen
C.94	EPSPS	Glyphosat und /oder Sulphosat	Kernobst
C.95	EPSPS	Glyphosat und /oder Sulphosat	Steinobst
C.96	EPSPS	Glyphosat und /oder Sulphosat	Zitrus
C.97	GS	Gluphosinat und /oder Bialaphos	Baumwolle
C.98	GS	Gluphosinat und /oder Bialaphos	Reis
C.99	GS	Gluphosinat und /oder Bialaphos	Kohlarten
C.100	GS	Gluphosinat und /oder Bialaphos	Kartoffeln
C.101	GS	Gluphosinat und /oder Bialaphos	Tomaten
C.102	GS	Gluphosinat und /oder Bialaphos	Kürbisse
C.103	GS	Gluphosinat und /oder Bialaphos	Soja
C.104	GS	Gluphosinat und /oder Bialaphos	Mais
C.105	GS	Gluphosinat und /oder Bialaphos	Weizen
C.106	GS	Gluphosinat und /oder Bialaphos	Kernobst
C.107	GS	Gluphosinat und /oder Bialaphos	Steinobst
C.108	GS	Gluphosinat und /oder Bialaphos	Zitrus
	ı	1	1

^{***} Eingeschlossen sind Sulfonylharnstoffe, Imidazolinone, Triazolopyrimidine, Dimethoxypyrimidine und N-Acylsulfonamide:

Sulfonylharnstoffe, wie Chlorsulfuron, Chlorimuron, Ethamethsulfuron, Metsulfuron, Primisulfuron, Prosulfuron, Triasulfuron, Cinosulfuron, Trifusulfuron, Oxasulfuron, Bensulfuron, Tribenuron, ACC 322140, Fluzasulfuron, Ethoxysulfuron, Fluzasdulfuron, Nicosulfuron, Rimsulfuron, Thifensulfuron, Pyrazosulfuron, Clopyrasulfuron, NC 330, Azimsulfuron, Imazosulfuron, Sulfosulfuron, Amidosulfuron, Flupyrsulfuron, CGA 362622

Imidazolinone, wie Imazamethabenz, Imazaquin, Imazamethypyr, Imazethapyr, Imazapyr und Imazamox;

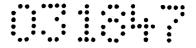
Triazolopyrimidine, wie DE 511, Flumetsulam und Chloransulam;

Dimethoxypyrimidine, wie Pyrithiobac, Pyriminobac, Bispyribac und Pyribenzoxim.

+++ Tolerant gegen Diclofop-methyl, Fluazifop-P-butyl, Haloxyfop-P-methyl, Haloxyfop-P-ethyl, Quizalafop-P-ethyl, Clodinafop-propargyl, Fenoxaprop-ethyl, Tepraloxydim, Alloxydim, Sethoxydim, Cycloxydim, Cloproxydim, Tralkoxydim, Butoxydim, Caloxydim, Clefoxydim, Clethodim.

&&& Chloracetanilide, wie Alachlor Acetochlor, Dimethenamid

/// Protox-Inhibitoren: Zum Beispiel Diphenylether, wie Acifluorfen, Aclonifen, Bifenox, Chlornitrofen, Ethoxyfen, Fluoroglycofen, Fomesafen, Lactofen, Oxyfluorfen; Imide, wie Azafenidin, Carfentrazon-ethyl, Cinidon-ethyl, Flumiclorac-pentyl, Flumioxazin, Fluthiacet-methyl, Oxadiargyl, Oxadiazon, Pentoxazone, Sulfentrazone, Imide und andere, wie Flumipropyn, Flupropacil, Nipyraclofen und Thidiazimin; und weiterhin Fluazolat und Pyraflufen-ethyl


Biologische Beispiele

<u>Tabelle 39:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Adoxophyes, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 40:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Agrotis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 41: Ein Verfahren zur Bekämpfung von Alabama argillaceae, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 42:</u> Ein Verfahren zur Bekämpfung von Anticarsia gemmatalis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 43:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Chilo, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 44:</u> Ein Verfahren zur Bekämpfung von Clysia ambiguella, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 45:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Cnephalocrocis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 46:</u> Ein Verfahren zur Bekämpfung von Crocidolomia binotalis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 47:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Cydia, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 48:</u> Ein Verfahren zur Bekämpfung von Diparopsis castanea, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 49:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Earias, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 50:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Ephestia, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombi-

nation des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 51:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Heliothis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 52:</u> Ein Verfahren zur Bekämpfung von Hellula undalis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 53:</u> Ein Verfahren zur Bekämpfung von Keiferia lycopersicella, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 54:</u> Ein Verfahren zur Bekämpfung von Leucoptera scitella, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 55:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Lithocollethis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 56:</u> Ein Verfahren zur Bekämpfung von Lobesia botrana, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 57:</u> Ein Verfahren zur Bekämpfung von Ostrinia nubilalis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 58:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Pandemis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 59:</u> Ein Verfahren zur Bekämpfung von Pectinophora gossypiella, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 60:</u> Ein Verfahren zur Bekämpfung von Phyllocnistis citrella, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 61:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Pieris, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 62:</u> Ein Verfahren zur Bekämpfung von Plutella xylostella, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 63:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Scirpophaga, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 64:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Sesamia, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 65:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Sparganothis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die

Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 66:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Spodoptera, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 67:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Tortrix, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 68:</u> Ein Verfahren zur Bekämpfung von Trichoplusia ni, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 69:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Agriotes, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 70:</u> Ein Verfahren zur Bekämpfung von Anthonomus grandis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen

<u>Tabelle 71:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Curculio, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 72:</u> Ein Verfahren zur Bekämpfung von Diabrotica balteata, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 73:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Leptinotarsa, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 74:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Lissorhoptrus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 75:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Otiorhynchus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 76:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aleurothrixus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 77:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aleyrodes, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 78:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aonidiella, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 79:</u> Ein Verfahren zur Bekämpfung von Vertretern der Familie Aphididae, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 80:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aphis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombinati-

on des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 81:</u> Ein Verfahren zur Bekämpfung von Bemisia tabaci, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 82:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Empoasca, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 83:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Mycus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 84:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Nephotettix, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 85:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Nilaparvata, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 86:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Pseudococcus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 87:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Psylla, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 88:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Quadraspidiotus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 89:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Schizaphis, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 90:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Trialeurodes, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 91:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Lyriomyza, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 92:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Oscinella, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 93:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Phorbia, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 94:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Frankliniella, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 95:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Thrips, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombi-

nation des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 96:</u> Ein Verfahren zur Bekämpfung von Scirtothrips aurantii, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 97:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aceria, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 98:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aculus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 99:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Brevipalpus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 100:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Panonychus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 101:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Phyllocoptruta, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 102:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Tetranychus, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 103:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Heterodera, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 104:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Meloidogyne, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 105:</u> Ein Verfahren zur Bekämpfung von Mamestra brassica, umfassend die Applikation von Abamectin an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 106:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Adoxophyes, umfassend die Applikation von Emamectin-Benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 107:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Agrotis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 108:</u> Ein Verfahren zur Bekämpfung von Alabama argillaceae, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 109:</u> Ein Verfahren zur Bekämpfung von Anticarsia gemmatalis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 110:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Chilo, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei

die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 111:</u> Ein Verfahren zur Bekämpfung von Clysia ambiguella, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 112: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Cnephalocrocis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 113:</u>Ein Verfahren zur Bekämpfung von Crocidolomia binotalis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 114: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Cydia, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 115</u>: Ein Verfahren zur Bekämpfung von Diparopsis castanea, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 116:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Earias, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 117</u>: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Ephestia, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur,

wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 118:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Heliothis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 119:</u> Ein Verfahren zur Bekämpfung von Hellula undalis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 120:</u> Ein Verfahren zur Bekämpfung von Keiferia lycopersicella, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 121:</u> Ein Verfahren zur Bekämpfung von Leucoptera scitella, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 122:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Lithocollethis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 123:</u> Ein Verfahren zur Bekämpfung von Lobesia botrana, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 124:</u> Ein Verfahren zur Bekämpfung von Ostrinia nubilalis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 125: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Pandemis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 126:</u> Ein Verfahren zur Bekämpfung von Pectinophora gossypiella, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 127:</u> Ein Verfahren zur Bekämpfung von Phyllocnistis citrella, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 128:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Pieris, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 129:</u> Ein Verfahren zur Bekämpfung von Plutella xylostella, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 130:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Scirpophaga, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 131:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Sesamia, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 132:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Sparganothis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur,

wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 133:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Spodoptera, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 134: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Tortrix, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 135</u>; Ein Verfahren zur Bekämpfung von Trichoplusia ni, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 136:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Agriotes, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 137: Ein Verfahren zur Bekämpfung von Anthonomus grandis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 138: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Curculio, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 139</u>: Ein Verfahren zur Bekämpfung von Diabrotica balteata, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 140: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Leptinotarsa, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 141: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Lissorhoptrus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 142:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Otiorhynchus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 143:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aleurothrixus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 144: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aleyrodes, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 145:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aonidiella, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 146: Ein Verfahren zur Bekämpfung von Vertretern der Familie Aphididae, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 147:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aphis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei

die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 148:</u> Ein Verfahren zur Bekämpfung von Bemisia tabaci, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 149:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Empoasca, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 150:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Mycus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 151:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Nephotettix, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 152:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Nilaparvata, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 153: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Pseudococcus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 154: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Psylla, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei

die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 155:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Quadraspidiotus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 156:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Schizaphis, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 157:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Trialeurodes, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 158:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Lyriomyza, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 159:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Oscinella, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 160:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Phorbia, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 161:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Frankliniella, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur,

wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 162:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Thrips, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 163:</u> Ein Verfahren zur Bekämpfung von Scirtothrips aurantii, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 164:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aceria, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 165:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aculus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 166:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Brevipalpus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 167:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Panonychus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 168:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Phyllocoptruta, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

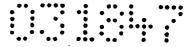


Tabelle 169: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Tetranychus, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 170:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Heterodera, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 171: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Meloidogyne, umfassend die Applikation von Emamectin-benzoat an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 172:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Adoxophyes, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 173:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Agrotis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 174:</u> Ein Verfahren zur Bekämpfung von Alabama argillaceae, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 175:</u> Ein Verfahren zur Bekämpfung von Anticarsia gemmatalis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 176: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Chilo, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombi-

....

nation des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 177:</u> Ein Verfahren zur Bekämpfung von Clysia ambiguella, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 178:</u> Ein Verfahren zur Bekämpfung von Crocidolomia binotalis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 179:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Cydia, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 180:</u> Ein Verfahren zur Bekämpfung von Diparopsis castanea, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 181</u>: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Earias, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 182:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Ephestia, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 183:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Heliothis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 184:</u> Ein Verfahren zur Bekämpfung von Hellula undalis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 185:</u> Ein Verfahren zur Bekämpfung von Keiferia lycopersicella, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 186:</u> Ein Verfahren zur Bekämpfung von Leucoptera scitella, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 187:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Lithocollethis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 188:</u> Ein Verfahren zur Bekämpfung von Lobesia botrana, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 189:</u> Ein Verfahren zur Bekämpfung von Ostrinia nubilalis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 190:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Pandemis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 191:</u> Ein Verfahren zur Bekämpfung von Pectinophora gossypiella, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination

des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 192:</u> Ein Verfahren zur Bekämpfung von Phyllocnistis citrella, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 193:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Pieris, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 194:</u> Ein Verfahren zur Bekämpfung von Plutella xylostella, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 195:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Scirpophaga, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 196:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Sesamia, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 197: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Sparganothis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 198:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Spodoptera, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 199:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Tortrix, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 200:</u> Ein Verfahren zur Bekämpfung von Trichoplusia ni, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 201:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Agriotes, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 202:</u> Ein Verfahren zur Bekämpfung von Anthonomus grandis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 203:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Curculio, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 204:</u> Ein Verfahren zur Bekämpfung von Diabrotica balteata, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 205: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Leptinotarsa, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

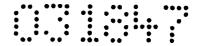
Tabelle 206: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Lissorhoptrus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die

: 1

Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 207:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Otiorhynchus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 208:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aleurothrixus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.


Tabelle 209: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aleyrodes, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 210:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aonidiella, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 211:</u> Ein Verfahren zur Bekämpfung von Vertretern der Familie Aphididae, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 212:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aphis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 213:</u> Ein Verfahren zur Bekämpfung von Bemisia tabaci, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 214:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Empoasca, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 215:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Mycus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 216: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Nephotettix, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 217:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Nilaparvata, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 218: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Pseudococcus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 219:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Psylla, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 220:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Quadraspidiotus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 221: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Schizaphis, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die

Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 222:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Trialeurodes, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 223:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Lyriomyza, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 224: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Oscinella, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 225:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Phorbia, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 226:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Frankliniella, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 227:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Thrips, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 228:</u> Ein Verfahren zur Bekämpfung von Scirtothrips aurantii, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 229: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aceria, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 230:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Aculus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 231:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Brevipalpus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Tabelle 232: Ein Verfahren zur Bekämpfung von Vertretern der Gattung Panonychus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 233:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Phyllocoptruta, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 234:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Tetranychus, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 235:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Heterodera, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 236:</u> Ein Verfahren zur Bekämpfung von Vertretern der Gattung Meloidogyne, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die

Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

<u>Tabelle 237:</u> Ein Verfahren zur Bekämpfung von Mamestra brassica, umfassend die Applikation von Spinosad an eine herbizidresistente transgene Kultur, wobei die Kombination des Wirkprinzips, das durch die transgene Pflanze exprimiert wird, und die gegen den Schädling zu schützende Kultur einer Zeile von Tabelle C entsprechen.

Beispiel B1: Wirkung gegen adulte Anthonomus grandis. Spodoptera littoralis oder Heliothis virescens

Junge transgene Baumwollpflanzen, welche das δ-Endotoxin CrylllA exprimieren, werden mit einem wässrigen Emulsionsspritzbrühengemisch, das 100, 50, 10, 5 bzw. 1 ppm Emamectinbenzoat enthält, besprüht. Nach dem Antrocknen des Spritzbelages werden die Baumwollpflanzen mit 10 adulten Anthonomus grandis, 10 Spodoptera littoralis-Larven oder 10 Heliothis virescens-Larven besiedelt und in einen Plastikbehälter gegeben. 3 bis 10 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Käfer und des Frassschadens auf den transgenen Baumwollpflanzen mit derjenigen von nichttransgenen Baumwollpflanzen, welche mit einem Emulsionsspritzbrühengemisch behandelt wurden, das Emamectinbenzoat und übliches CrylllA-Toxin in einer Konzentration von je 100, 50, 10, 5 bzw. 1 ppm enthält, wird die prozentuale Reduktion der Population oder die prozentuale Reduktion des Frassschadens (% Wirkung) bestimmt.

In diesem Test wird bei der transgenen Pflanze eine ausgezeichnete Bekämpfung der getesteten Insekten gefunden, während sie bei der nichttransgenen Pflanze ungenügend ist.

Beispiel B2: Wirkung gegen adulte Anthonomus grandis. Spodoptera littoralis oder Heliothis virescens

Junge transgene Baumwollpflanzen, welche das δ -Endotoxin CrylllA exprimieren, werden mit einem wässrigen Emulsionsspritzbrühengemisch, das 100, 50, 10, 5 bzw. 1 ppm Abamectin enthält, besprüht. Nach dem Antrocknen des Spritzbelages werden die Baumwollpflanzen mit 10 adulten Anthonomus grandis, 10 Spodoptera littoralis-Larven oder 10 Heliothis virescens-Larven besiedelt und in einen Plastikbehälter gegeben. 3 bis 10 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Käfer und des Frassscha-

dens auf den transgenen Baumwollpflanzen mit derjenigen von nichttransgenen Baumwollpflanzen, welche mit einem Emulsionsspritzbrühengemisch behandelt wurden, das Abamectin und übliches CrylllA-Toxin in einer Konzentration von je 100, 50, 10, 5 bzw. 1 ppm enthält, wird die prozentuale Reduktion der Population oder die prozentuale Reduktion des Frassschadens (% Wirkung) bestimmt.

In diesem Test wird bei der transgenen Pflanze eine ausgezeichnete Bekämpfung der getesteten Insekten gefunden, während sie bei der nichttransgenen Pflanze ungenügend ist.

Beispiel B3: Wirkung gegen adulte Anthonomus grandis. Spodoptera littoralis oder Heliothis virescens

Junge transgene Baumwollpflanzen, welche das δ-Endotoxin CrylllA exprimieren, werden mit einem wässrigen Emulsionsspritzbrühengemisch, das 100, 50, 10, 5 bzw. 1 ppm Spinosad enthält, besprüht. Nach dem Antrocknen des Spritzbelages werden die Baumwollpflanzen mit 10 adulten Anthonomus grandis, 10 Spodoptera littoralis-Larven oder 10 Heliothis virescens-Larven besiedelt und in einen Plastikbehälter gegeben. 3 bis 10 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Käfer und des Frassschadens auf den transgenen Baumwollpflanzen mit derjenigen von nichttransgenen Baumwollpflanzen, welche mit einem Emulsionsspritzbrühengemisch behandelt wurden, das Spinosad und übliches CrylllA-Toxin in einer Konzentration von je 100, 50, 10, 5 bzw. 1 ppm enthält, wird die prozentuale Reduktion der Population oder die prozentuale Reduktion des Frassschadens (% Wirkung) bestimmt.

In diesem Test wird bei der transgenen Pflanze eine ausgezeichnete Bekämpfung der getesteten Insekten gefunden, während sie bei der nichttransgenen Pflanze ungenügend ist.

Beispiel B4: Wirkung gegen adulte Anthonomus grandis. Spodoptera littoralis oder Heliothis virescens

Junge transgene Baumwollpflanzen, welche das δ-Endotoxin Cryla(c) exprimieren, werden mit einem wässrigen Emulsionsspritzbrühengemisch, das 100, 50, 10, 5 bzw. 1 ppm Spinosad enthält, besprüht. Nach dem Antrocknen des Spritzbelages werden die Baumwollpflanzen mit 10 adulten Anthonomus grandis, 10 Spodoptera littoralis-Larven oder 10 He-

liothis virescens-Larven besiedelt und in einen Plastikbehälter gegeben. 3 bis 10 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Käfer und des Frassschadens auf den transgenen Baumwollpflanzen mit derjenigen von nichttransgenen Baumwollpflanzen, welche mit einem Emulsionsspritzbrühengemisch behandelt wurden, das Spinosad und übliches CrylllA-Toxin in einer Konzentration von je 100, 50, 10, 5 bzw. 1 ppm enthält, wird die prozentuale Reduktion der Population oder die prozentuale Reduktion des Frassschadens (% Wirkung) bestimmt.

In diesem Test wird bei der transgenen Pflanze eine ausgezeichnete Bekämpfung der getesteten Insekten gefunden, während sie bei der nichttransgenen Pflanze ungenügend ist.

Beispiel B5: Wirkung gegen adulte Anthonomus grandis. Spodoptera littoralis oder Heliothis virescens

Junge transgene Baumwollpflanzen, welche das δ–Endotoxin Cryla(c) exprimieren, werden mit einem wässrigen Emulsionsspritzbrühengemisch, das 100, 50, 10, 5 bzw. 1 ppm Abamectin enthält, besprüht. Nach dem Antrocknen des Spritzbelages werden die Baumwollpflanzen mit 10 adulten Anthonomus grandis, 10 Spodoptera littoralis-Larven oder 10 Heliothis virescens-Larven besiedelt und in einen Plastikbehälter gegeben. 3 bis 10 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Käfer und des Frassschadens auf den transgenen Baumwollpflanzen mit derjenigen von nichttransgenen Baumwollpflanzen, welche mit einem Emulsionsspritzbrühengemisch behandelt wurden, das Abamectin und übliches CrylllA-Toxin in einer Konzentration von je 100, 50, 10, 5 bzw. 1 ppm enthält, wird die prozentuale Reduktion der Population oder die prozentuale Reduktion des Frassschadens (% Wirkung) bestimmt.

In diesem Test wird bei der transgenen Pflanze eine ausgezeichnete Bekämpfung der getesteten Insekten gefunden, während sie bei der nichttransgenen Pflanze ungenügend ist.

Beispiel B6: Wirkung gegen adulte Anthonomus grandis. Spodoptera littoralis oder Heliothis virescens

Junge transgene Baumwollpflanzen, welche das δ -Endotoxin Cryla(c) exprimieren, werden mit einem wässrigen Emulsionsspritzbrühengemisch, das 100, 50, 10, 5 bzw. 1 ppm Ema-

mectinbenzoat enthält, besprüht. Nach dem Antrocknen des Spritzbelages werden die Baumwollpflanzen mit 10 adulten Anthonomus grandis, 10 Spodoptera littoralis-Larven oder 10 Heliothis virescens-Larven besiedelt und in einen Plastikbehälter gegeben. 3 bis 10 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Käfer und des Frassschadens auf den transgenen Baumwollpflanzen mit derjenigen von nichttransgenen Baumwollpflanzen, welche mit einem Emulsionsspritzbrühengemisch behandelt wurden, das Emamectinbenzoat und übliches CrylllA-Toxin in einer Konzentration von je 100, 50, 10, 5 bzw. 1 ppm enthält, wird die prozentuale Reduktion der Population oder die prozentuale Reduktion des Frassschadens (% Wirkung) bestimmt.

In diesem Test wird bei der transgenen Pflanze eine ausgezeichnete Bekämpfung der getesteten Insekten gefunden, während sie bei der nichttransgenen Pflanze ungenügend ist.

Beispiel B7; Wirkung gegen Ostrinia nubilalis, Spodoptera spp. oder Heliothis spp.

Eine mit Mais der Sorte KnockOut® bepflanzte Parzelle (a), und eine benachbarte gleich grosse Parzelle (b), welche mit üblichem Mais bepflanzt ist, und die beide einen natürlichen Befall von Ostrinia nubilalis, Spodoptera spp. oder Heliothis haben, werden mit einem wässrigen Emulsionsspritzbrühengemisch, das 200, 100, 50, 10, 5, 1 ppm Spinosad enthält, besprüht. Parzelle (b) wird unmittelbar danach mit einem Emulsionsspritzbrühengemisch behandelt, welches 200, 100, 50, 10, 5, 1 ppm des von KnockOut® exprimierten Endotoxins enthält. 6 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Schädlinge auf den Pflanzen der Parzelle (a) zu derjenigen auf den Pflanzen der Parzelle (b) wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.

Verbesserte Bekämpfung von Ostrinia nubilalis, Spodoptera spp. oder Heliothis wird auf den Pflanzen von Parzelle (a) beobachtet, während Parzelle (b) einen Bekämpfungsgrad nicht oberhalb 80% zeigt.

Beispiel B8: Wirkung gegen Ostrinia nubilalis, Spodoptera spp. oder Heliothis spp.

Eine mit Mais der Sorte KnockOut® bepflanzte Parzelle (a), und eine benachbarte gleich grosse Parzelle (b), welche mit üblichem Mais bepflanzt ist, und die beide einen natürlichen Befall von Ostrinia nubilalis, Spodoptera spp. oder Heliothis haben, werden mit einem wäss-

rigen Emulsionsspritzbrühengemisch, das 200, 100, 50, 10, 5, 1 ppm Abamectin enthält, besprüht. Parzelle (b) wird unmittelbar danach mit einem Emulsionsspritzbrühengemisch behandelt, welches 200, 100, 50, 10, 5, 1 ppm des von KnockOut® exprimierten Endotoxins enthält. 6 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Schädlinge auf den Pflanzen der Parzelle (a) zu derjenigen auf den Pflanzen der Parzelle (b) wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.

Verbesserte Bekämpfung von Ostrinia nubilalis, Spodoptera spp. oder Heliothis wird auf den Pflanzen von Parzelle (a) beobachtet, während Parzelle (b) einen Bekämpfungsgrad nicht oberhalb 80% zeigt.

Beispiel B9: Wirkung gegen Ostrinia nubilalis. Spodoptera spp. oder Heliothis spp.

Eine mit Mais der Sorte KnockOut® bepflanzte Parzelle (a), und eine benachbarte gleich grosse Parzelle (b), welche mit üblichem Mais bepflanzt ist, und die beide einen natürlichen Befall von Ostrinia nubilalis, Spodoptera spp. oder Heliothis haben, werden mit einem wässrigen Emulsionsspritzbrühengemisch, das 200, 100, 50, 10, 5, 1 ppm Emamectinbenzoat enthält, besprüht. Parzelle (b) wird unmittelbar danach mit einem Emulsionsspritzbrühengemisch behandelt, welches 200, 100, 50, 10, 5, 1 ppm des von KnockOut® exprimierten Endotoxins enthält. 6 Tage später erfolgt die Auswertung. Aus dem Vergleich der Anzahl toter Schädlinge auf den Pflanzen der Parzelle (a) zu derjenigen auf den Pflanzen der Parzelle (b) wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.

Verbesserte Bekämpfung von Ostrinia nubilalis, Spodoptera spp. oder Heliothis wird auf den Pflanzen von Parzelle (a) beobachtet, während Parzelle (b) einen Bekämpfungsgrad nicht oberhalb 80% zeigt.

Die Erfindung betrifft weiterhin

(B) ein Verfahren zum Schutz von pflanzlichem Vermehrungsgut und später zuwachsenden Pflanzenteilen vor Schädlingsbefall, dadurch gekennzeichnet, dass

ein Schädlingsbekämpfungsmittel, welches als pestizid aktive Verbindung mindestens eine Macrolidverbindung, besonders Abamectin, Emamectin oder Spinosad, in freier Form oder in

agrochemisch verwendbarer Salzform, als Wirkstoff und mindestens einen Hilfsstoff enthält, in naher räumlicher Nachbarschaft zu oder räumlich zusammen mit der Auspflanzung oder Einsaat des Vermehrungsguts auf den Ort der Auspflanzung oder Einsaat eingesetzt wird;

die entsprechende Verwendung dieser Verbindungen, entsprechende Schädlingsbekämpfungsmittel, deren Wirkstoff aus diesen Verbindungen ausgewählt ist, ein Verfahren zur Herstellung und die Verwendung dieser Mittel und vor Schädlingsbefall entsprechend geschütztes pflanzliches Vermehrungsgut.

Die erfindungsgemäss verwendeten Macrolide sind dem Fachmann bekannt. Es handelt sich dabei um die Stoffklassen, welche in Teil (A) der Erfindung erwähnt werden. Bevorzugt sind Abamectin und Emamectin.

Agrochemisch verwendbare Salze der Macrolide sind erfindungsgemäss z.B. die Gleichen wie unter Erfindung Teil (A).

Im Fall von Avermectin ist im Rahmen der Erfindung Teil (B) die freie Form bevorzugt. Besonders bevorzugt ist im Rahmen der vorliegenden Erfindung Teil (B) ein Verfahren, bei welchem Emamectin in freier Form oder als agrochemisch verträgliches Salz; besonders als Salz; insbesondere als Benzoat, substituiertes Benzoat, Benzolsulfonat, Citrat, Phosphat, Tartrat oder Maleat; bevorzugt als Benzoat oder Benzolsulfonat, besonders bevorzugt als Benzoat, eingesetzt wird.

Im Rahmen des Gegenstands der Erfindung (B) können insbesondere Vertreter der Klassen Insecta, Arachnida und Nematoda bekämpft werden.

Es handelt sich dabei vor allem um Insekten der Ordnung Lepidoptera, beispielsweise Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyrotaenia spp., Astylus atromaculatus, Autographa spp., Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Crocidolomia binotalis, Cryptophlebia leucotreta, Cydia spp., Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Grapholita spp., Hedya nubiferana, Heliothis spp., Hellula undalis, Heteronychus arator, Hyphantria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra

brassicae, Manduca sexta, Operophtera spp., Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Pectinophora gossypiella, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni und Yponomeuta spp.;

der Ordnung Coleoptera, beispielsweise

Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Cosmopolites spp., Curculio spp., Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp., Melolontha spp., Orycaephilus spp., Otiorhynchus spp., Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp. und Trogoderma spp.;

der Ordnung Orthoptera, beispielsweise

Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. und Schistocerca spp.;

der Ordnung Psocoptera, beispielsweise Liposcelis spp.;

der Ordnung Anoplura, beispielsweise

Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. und Phylloxera spp.; der Ordnung Mallophaga, beispielsweise Damalinea spp. und Trichodectes spp.;

der Ordnung Thysanoptera, beispielsweise Frankliniella spp., Hercinothrips spp., Taeniothrips spp., Thrips palmi, Thrips tabaci und Scirtothrips aurantii;

der Ordnung Heteroptera, beispielsweise Cimex spp., Distantiella theobroma, Dysdercus spp., Euchistus spp. Eurygaster spp. Leptocorisa spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotinophara spp. und Triatoma spp.;

der Ordnung Homoptera, beispielsweise Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma larigerum, Erythroneura spp., Gascardia spp., Laodelphax spp., Lecanium corni, Lepidosaphes spp., Macrosiphus spp., Myzus spp., Nephotettix spp., Nilaparvata spp., Paratoria spp., Pemphigus spp., Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Psylla spp., Pulvinaria aethiopica, Quadraspidiotus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Trialeurodes vaporariorum, Trioza erytreae und Unaspis citri;

der Ordnung Hymenoptera, beispielsweise Acromyrmex, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplocampa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Solenopsis spp. und Vespa spp.;

der Ordnung Diptera, beispielsweise Aedes spp., Antherigona soccata, Bibio hortulanus, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Drosophila melanogaster, Fannia spp., Gastrophilus spp., Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. und Tipula spp.;

der Ordnung Siphonaptera, beispielsweise Ceratophyllus spp. und Xenopsylla cheopis; oder der Ordnung Thysanura, beispielsweise Lepisma saccharina.

Aus der Klasse Arachnida handelt es sich bevorzugt um Verteter der Ordnung Acarina, beispielsweise

Acarus siro, Aceria sheldoni, Aculus schlechtendali, Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia praetiosa, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Eotetranychus carpini, Eriophyes spp., Hyalomma spp., Ixodes spp., Olygonychus pratensis, Ornithodoros spp., Panonychus spp., Phyllocoptruta oleivora, Polyphagotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Tarsonemus spp. und Tetranychus spp..

Besonders bevorzugt ist die Bekämpfung von Insekten der Ordnungen Coleoptera und Lepidoptera;

bei der Ordnung Colepotera insbesondere die Gattungen und Arten Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Diabrotica spp. und Leptinotarsa decemlineata;

bei der Ordnung Lepidoptera die Gattungen und Arten Adoxophyes spp., Agrotis spp., Alabama argillaceae, Anticarsia gemmatalis, Chilo spp., Cydia spp., Ephestia spp., Heliothis spp., Keiferia lycopersicella, Mamestra brassicae, Pectinophora gossypiella, Plutella xylostella, Sesamia spp., Spodoptera spp., Tortrix spp., und Trichoplusia.

Ein weiterer bevorzugter Gegenstand gemäss der Erfindung Teil (B) ist die Bekämpfung von Vertretern der Klasse Nematoda, wie Wurzelgallennematoden sowie Stock- und Blattälchen;

besonders von Heterodera spp., beispielsweise Heterodera schachtii, Heterodora avenae und Heterodora trifolii; Globodera spp., beispielsweise Globodera rostochiensis; Meloidogyne spp., beispielsweise Meloidogyne incoginita und Meloidogyne javanica; Radopholus spp., beispielsweise Radopholus similis; Pratylenchus, beispielsweise Pratylenchus neglectans und Pratylenchus penetrans; Tylenchulus, beispielsweise Tylenchulus semipenetrans; Longidorus, Trichodorus, Xiphinema, Ditylenchus, Aphelenchoides und Anguina,

besonders von Meloidogyne, beispielsweise Meloidogyne incognita, und Heterodera, beispielsweise Heterodera glycines.

Die gemäss der Erfindung Teil (B) verwendeten Macrolide sind auf den Gebieten der Insektenbekämpfung bei günstiger Warmblüter-, Fisch-, Nützlings- und Pflanzenverträglichkeit bereits bei niedrigen Anwendungskonzentrationen präventiv und/oder kurativ wertvolle Wirkstoffe. Die erfindungsgemäss verwendeten Wirkstoffe sind gegen alle oder einzelne Entwicklungsstadien von normal sensiblen, aber auch von resistenten, Schädlingen wirksam. Die Wirkung der erfindungsgemäss verwendeten Wirkstoffe kann sich dabei direkt, d. h. in einer Abtötung der Schädlinge, welche unmittelbar oder erst nach einiger Zeit, beispielsweise bei einer Häutung, eintritt, oder indirekt, z.B. in einer verminderten Eiablage und/oder Schlupfrate, zeigen, wobei die gute Wirkung einer Abtötungsrate (Mortalität) von mindestens 50 bis 60% entspricht.

Mit den gemäss der Erfindung Teil (B) verwendeten Wirkstoffen kann man an pflanzlichem Vermehrungsgut, vor allem an Vermehrungsgut von Nutz- und Zierpflanzen in der Landwirtschaft, im Gartenbau und im Forst, auftretende Schädlinge bekämpfen, d.h. eindämmen oder vernichten, wobei auch später zuwachsende Pflanzenteile noch gegen diese Schädlinge geschützt werden, der Schutz also z.B. anhält, bis sich widerstandsfähige erwachsene Pflanzen entwickelt haben, und wobei das Vermehrungsgut bzw. die sich daraus entwikkelnden Pflanzen sowohl vor Schädlingen, welche die oberirdischen Pflanzenteile befallen, als auch vor im Boden lebenden Schädlingen geschützt werden.

Als pflanzliches Vermehrungsgut, also z.B. Keimlinge, Rhizome, Setzlinge, Stecklinge oder insbesondere Saatgut (Samen), wie Früchte, Knollen, Körner oder Zwiebeln, kommt gemäss der Erfindung Teil (B) insbesondere Vermehrungsgut von Getreide, wie Weizen, Gerste, Roggen, Hafer, Reis, Mais oder Sorghum; Rüben, wie Zucker- oder Futterrüben; Obst, z.B. Kern-, Stein- und Beerenobst, wie Äpfeln, Birnen, Pflaumen, Pfirsichen, Mandeln, Kirschen

oder Beeren, z.B. Erdbeeren, Himbeeren und Brombeeren; Hülsenfrüchten, wie Bohnen, Linsen, Erbsen oder Soja; Ölfrüchten, wie Raps, Senf, Mohn, Oliven, Sonnenblumen, Kokos, Rizinus, Kakao oder Erdnüssen; Gurkengewächsen, wie Kürbissen, Gurken oder Melonen; Fasergewächsen, wie Baumwolle, Flachs, Hanf oder Jute; Zitrusfrüchten, wie Orangen, Zitronen, Pampelmusen oder Mandarinen; Gemüse, wie Spinat, Kopfsalat, Spargel, Kohlarten, Möhren, Zwiebeln, Tomaten, Kartoffeln oder Paprika; Lorbeergewächsen, wie Avocado, Cinnamonium oder Kampfer; oder Tabak, Nüssen, Kaffee, Eierfrüchten, Zuckerrohr, Tee, Pfeffer, Weinreben, Hopfen, Bananengewächsen, Naturkautschukgewächsen oder Zierpflanzen;

besonders von Getreide, Reis, Baumwolle, Mais, Soja, Raps, Gemüse, Kartoffeln, Sonnenblumen, Zuckerrübe und Sorghum in Betracht.

Beim genetisch modifizierten Vermehrungsgut handelt es sich vorzugsweise um Vermehrungsgut, besonders Saatgut, welches ein oder mehrere Gene enthält, welche(s) eine pestizide Resistenz, insbesondere eine insektizide, oder akarizide Resistenz, exprimieren, die Pflanze gegen Herbizide resistent machen, zu einer erhöhten Resistenz gegen Pflanzenkrankheiten führen oder sonstige agronomisch vorteilhafte Eigenschaften in die Pflanze einführen. Insbesondere handelt es sich um solche Pflanzen bzw. ihr Vermehrungsgut, welche ein Gen enthalten, welches aus einem Bacillus thuringiensis abgeleitet ist und für ein insektizid aktives Protein kodieren oder ein Gen enthalten. Besonders handelt es sich um genetisch modifiziertes pflanzliches Vermehrungsgut von Kartoffeln, Alfalfa, Getreide, wie Weizen, Gerste, Roggen, Hafer, Reis, Mais oder Sorghum; Hülsenfrüchten, wie Bohnen, Linsen, Erbsen oder Soja; Rüben, wie Zucker- oder Futterrüben; Ölfrüchten, wie Raps, Senf, Mohn, Oliven, Sonnenblumen, Kokos, Rizinus, Kakao oder Erdnüssen; Gurkengewächsen, wie Kürbissen, Gurken oder Melonen; Fasergewächsen, wie Baumwolle, Flachs, Hanf oder Jute; Zitrusfrüchten, wie Orangen, Zitronen, Pampelmusen oder Mandarinen; sowie Gemüse, wie Spinat, Kopfsalat, Spargel, Kohlarten, Möhren, Zwiebeln oder Tomaten.

Bei dem genannten genetisch modifizierten pflanzlichen Vermehrungsgut handelt es sich beispielsweise um die dem Fachmann bekannten handelsüblichen Produkte Maximizer® (KnockOut®), Yieldgard®, Roundup Ready Sojabohnen®, TC Blend® oder NuCOTN 33B®.

Weitere Anwendungsgebiete der gemäss der Erfindung Teil (B) verwendeten Wirkstoffe sind beispielsweise der Schutz von Vorräten oder Lagern oder im Hygienesektor; insbesondere der Schutz von Haus- oder Nutztieren vor Schädlingen.

Die Erfindung gemäss Gegenstand (B) betrifft daher auch entsprechende Schädlingsbekämpfungsmittel zur Anwendung, wie, je nach angestrebten Zielen und gegebenen Verhältnissen zu wählende, emulgierbare Konzentrate, Suspensionskonzentrate, direkt versprühoder verdünnbare Lösungen, streichfähige Pasten, verdünnte Emulsionen, Spritzpulver, lösliche Pulver, dispergierbare Pulver, benetzbare Pulver, Stäubemittel, Granulate oder Verkapselungen in polymeren Stoffen, welche - mindestens - einen der erfindungsgemäss verwendeten Wirkstoffe enthalten und die Verwendung dieser Insektenbekämpfungsmittel zur Anwendung in einem Verfahren. Bevorzugt ist ein Mittel, welches nur eine Macrolidverbindung enthält, besonders Emamectin oder ein Salz davon.

Der Wirkstoff wird in diesen Mitteln in reiner Form, z.B. als fester Wirkstoff in einer speziellen Korngrösse, oder vorzugsweise zusammen mit - mindestens - einem der in der Formulierungstechnik üblichen Hilfsstoffe, wie Streckmitteln, z.B. Lösungsmitteln oder festen Trägerstoffen, oder wie oberflächenaktiven Verbindungen (Tensiden), eingesetzt.

Als Hilfsstoffe, wie Lösungsmittel, feste Trägerstoffe, oberflächenaktive Verbindungen, nichtionische Tenside, kationische Tenside und anionische Tenside in den erfindungsgemäss eingesetzten Mitteln, kommen beispielsweise die gleichen in Frage, wie sie in EP-A-736 252 beschrieben sind.

Flüssige Formulierungen zur Behandlung von pflanzlichem Vermehrungsgut, besonders von Saatgut, enthalten beispielsweise

Oberflächenaktive Substanzen (1 - 15 Gewichts%), wie ethoxylierte Tristyrolphenole und ihre Salze, Alkylpolyglykolether-Ethoxylate, Polyoxypropylen-Polyoxyethylen-Copolymere, Lignosulfonsäurenatriumsalz, Polynaphthalinsulfonsäuresalze und Alkylbenzolsulfonsäuretriethanolaminsalz;

Frostschutzmittel (5 - 15%), wie etwa DL-Propanediol-(1,2) oder Propan-1,2,3-triol;

Färbemittel (1 - 10 %), wie Pigmente oder wasserlösliche Farbstoffe;

Antischaummittel (0,05 - 1 %), wie Polydimethylsiloxan;

Beschichtungsmittel (1 - 10 %), wie Polyethylenglykol, Polyvinylacetat, Polyvinylpyrrolidon, Polyacrylat;

Konservierungsmittel (0,1 - 1%), wie 1,2-Benzisothiazol-3-on; Verdicker (0,1 - 1%), wie Heteropolysaccharid; sowie Lösungsmittel, wie Wasser.

Feste Formulierungen zur Behandlung von pflanzlichem Vermehrungsgut, besonders von Saatgut, enthalten beispielsweise:

Oberflächenaktive Substanzen (1- 10 %), wie Alkylpolyglkolether-Ethoxylat, Polyoxypropylen-Polyoxyethylen-Copolymere, Ligninsulfonsäurenatriumsalz, Polynaphthalinsulfonsäuresalze;

Färbemittel (1 - 10 %), wie Pigmente oder wasserlösliche Farbstoffe;

Antischaummittel (0,05 - 1 %), wie Polydimethylsiloxan;

Beschichtungsmittel (1 - 10 %), wie Polyethylenglykol oder Cellulose; sowie

Trägermaterial (zu 100% Gew./Gew.), wie Silicapulver, Talkumpulver, Tone usw..

Die Mittel enthalten in der Regel 0,1 bis 99%, insbesondere 0,1 bis 95%, Wirkstoff und 1 bis 99,9%, insbesondere 5 bis 99,9%, - mindestens - eines festen oder flüssigen Hilfsstoffes, wobei in der Regel 0 bis 25%, insbesondere 0,1 bis 20%, der Mittel Tenside sein können (% bedeutet jeweils Gewichtsprozent). Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Mittel, die wesentlich geringere Wirkstoffkonzentrationen aufweisen.

Bevorzugte Mittel, wie emulgierbare Konzentrate, Stäubemittel, Suspensionskonzentrate, benetzbare Pulver und Granulate haben beispielsweise die gleichen Zusammensetzungen, wie sie in EP-A-736 252 erwähnt sind.

Die Mittel gemäss der Erfindung Teil (B) können auch weitere feste oder flüssige Hilfsstoffe, wie Stabilisatoren, z.B. gegebenenfalls epoxidierte Pflanzenöle (z.B. epoxidiertes Kokosnussöl, Rapsöl oder Sojaöl), Entschäumer, z.B. Silikonöl, Konservierungsmittel, Viskositätsregulatoren, Bindemittel und/oder Haftmittel, sowie Düngemittel oder andere Wirkstoffe zur Erzielung spezieller Effekte, z.B. Bakterizide, Nematizide, Molluskizide oder selektive Herbizide, enthalten.

Die Wirkung der Mittel gemäss der Erfindung Teil (B) lässt sich durch Zusatz von anderen, z.B. insektizid, akarizid und/oder fungizid wirksamen, Wirkstoffen wesentlich verbreitern und an gegebene Umstände anpassen.

Als insektizide und akarizide Wirkstoff-Zusätze kommen dabei z.B. Vertreter der folgenden Wirkstoffklassen in Betracht: organische Phosphorverbindungen, Nitrophenole und Derivate, Formamidine, Triazinderivate, Nitroenaminderivate, Nitro- und Cyanoguanidinderivate, Harnstoffe, Benzoylharnstoffe, Carbamate, Pyrethroide, chlorierte Kohlenwasserstoffe und Bacillus thuringiensis-Präparate. Besonders bevorzugte Mischungspartner sind etwa NI-25, TI-304, TI-435, MTI-446, Fipronil, Lufenuron, Pyriproxyfen, Thiacloprid, Fluxofenime; Imidacloprid, Thiamethoxam, Fenoxycarb, Diafenthiuron, Pymethrozine, Diazinon, Disulfoton; Profenofos, Furathiocarb, Cyromazin, Cypermethrin, Tau-Fluvalinate, Tefluthrin oder Bacillus thuringiensis-Präparate, ganz besonders NI-25, TI-304, TI-435, MTI-446, Fipronil, Thiacloprid, Imidacloprid, Thiamethoxam, und Tefluthrin.

Als fungizid aktive Wirkstoff-Zusätze kommen z.B. folgende Verbindungen in Betracht: Azoxystrobin; Bitertanol; Carboxin; Cu₂O; Cymoxanil; Cyproconazole; Cyprodinil; Dichlofluamid; Difenoconazole; Diniconazole; Epoxiconazole; Fenpiclonil; Fludioxonil; Fluquiconazole; Flusilazole; Flutriafol; Furalaxyl; Guazatin; Hexaconazole; Hymexazol; Imazalil; Imibenconazole; Ipconazole; Kresoxim-methyl; Mancozeb; Metalaxyl; R-Metalaxyl; Metconazole; Oxadixyl, Pefurazoate; Penconazole; Pencycuron; Prochloraz; Propiconazole; Pyroquilone; SSF-109; Spiroxamin; Tebuconazole; Teflutrin; Thiabendazole; Tolifluamide; Triazoxide; Triadimefon; Triadimenol; Triflumizole; Triticonazole und Uniconazole.

Die gemäss der Erfindung Teil (B) anzuwendenden Mittel werden in bekannter Weise hergestellt, bei Abwesenheit von Hilfsstoffen z.B. durch Vermahlen und/oder Sieben, z.B. auf eine bestimmte Korngrösse, oder Verpressen eines festen Wirkstoffs, und bei Anwesenheit von mindestens einem Hilfsstoff z.B. durch inniges Vermischen und/oder Vermahlen des Wirkstoffs mit dem (den) Hilfsstoff(en). Diese Verfahren zur Herstellung der erfindungsgemässen Mittel und die Verwendung von Macroliden zur Herstellung dieser Mittel bilden ebenfalls Gegenstände der Erfindung.

Die erfindungsgemässen Anwendungsverfahren zum Schutz von pflanzlichem Vermehrungsgut, welches erfindungsgemäss jedes pflanzliche Material ist, aus dem sich nach Auspflanzen oder Ausbringen auf den Ort der Auspflanzung oder Einsaat vollständige Pflanzen entwickeln können, z.B. Keimlinge, Rhizome, Setzlinge, Stecklinge oder insbesondere Saatgut (Samen), wie Früchte, Knollen, Körner oder Zwiebeln, vor Schädlingsbefall, sind z.B. dadurch gekennzeichnet, dass entsprechende Mittel in der Weise appliziert werden, dass ihre

Applikation in naher räumlicher Nachbarschaft zu oder räumlich zusammen mit der Auspflanzung oder Einsaat des Vermehrungsguts auf den Ort der Auspflanzung oder Einsaat erfolgt. Die Applikation dieser Mittel in naher räumlicher Nachbarschaft zu der Auspflanzung oder Einsaat des Vermehrungsguts auf den Ort der Auspflanzung oder Einsaat erfolgt dabei erfindungsgemäss, vorzugsweise vor der Auspflanzung oder Einsaat des Vermehrungsguts. durch Bodenapplikation der Mittel direkt auf den Ort der Auspflanzung oder Einsaat des Vermehrungsguts, z.B., vorzugsweise vor der Aussaat, in die Saatfurche, oder auf eine eng begrenzte Fläche um den Ort der Auspflanzung oder Einsaat des Vermehrungsguts herum. Die Applikation der entsprechenden Mittel, die räumlich zusammen mit der Auspflanzung oder Einsaat des Vermehrungsguts auf den Ort der Auspflanzung oder Einsaat erfolgt, ist so zu verstehen, dass mit diesen Mitteln vorbehandeltes Vermehrungsgut auf den Ort der Auspflanzung oder Einsaat ausgepflanzt oder ausgebracht wird, wobei, je nach angestrebten Zielen und gegebenen Verhältnissen, die Vorbehandlung des Vermehrungsguts z.B. dadurch erfolgen kann, dass das Vermehrungsgut mit den Mitteln besprüht, benebelt, bestäubt, bestrichen, bestreut oder begossen wird, oder, im Falle von Saatgut insbesondere auch dadurch, dass das Saatgut gebeizt wird. Bei der erfindungsgemäss bevorzugten Saatgutbeizung, d.h. bei der Trocken-, Feucht-, Nass- oder Schlammbeizung, wird dem Saatgut vor der Aussaat in einer Beizvorrichtung ein geeignetes Schädlingsbekämpfungsmittel zugesetzt und das Mittel, z.B. durch Rühren des Inhalts der Beizvorrichtung und/oder Rotation und/oder Schütteln der gesamten Beizvorrichtung, gleichmässig über das Saatgut verteilt. Besondere Ausführungsformen dieser Beizung umfassen z.B. Tränken des Saatguts in einem flüssigen Mittel, Beschichten des Saatguts mit einem festen Mittel (Saatgutbeschichtung; Sead Coating) oder Erreichen von Eindringen des Wirkstoffs in das Saatgut durch Zusatz des Mittels zu dem zum Vorquellen des Saatguts verwendeten Wasser (Saatgutquellung; Seed Soaking). Bei der erfindungsgemässen Saatgutbeizung liegen die typischen Aufwandmengen für die verwendeten Mittel z.B. zwischen 0,1 und 100 g Wirkstoff pro 100 kg Saatgut, insbesondere zwischen 1 und 60 g / 100 kg Saatgut, bevorzugt zwischen 4 und 40g / 100 kg Saatgut.

Die Saatgutbeizung gemäss der Erfindung Teil (B) zeichnet sich insbesondere dadurch aus, dass, wegen der geringen Toxizität des verwendeten Wirkstoffs, bei Vögeln eine gute Toleranz gegenüber dem gebeizten Saatgut beobachtet wird, z.B. bei den Vögeln, welche in der freien Natur als Saatguträuber dazu neigen, Saatgut von frisch besäten Feldern aufnehmen,

wie Ammern, Amsein, Drossein, Enten, Fasanen, Finken, Gänsen, Hänflingen, Hühnern, Krähen, Lerchen, Meisen, Möven, Raben, Rebhühnern, Ringeltauben, Stieglitzen, Tauben oder Zeisigen. Die erfindungsgemässe Saatgutbeizung umfasst auch die Beizung von Saatgutvorräten.

Das erfindungsgemäss vorbehandelte, handelsfähige, pflanzliche Vermehrungsgut bildet einen weiteren Gegenstand der Erfindung Teil (B).

Formulierungsbeispiele der Macrolidverbindungen, die in dem Verfahren gemäss der Erfindung Teil (B) angewendet werden können, das heißt Lösungen, Granulate, Stäube, Spritzpulver, Emulsionskonzentrate, Umhüllungsgranulate und Suspensionskonzentrate, sind von der Art, die beispielsweise in EP-A-580 553, Beispiele F1 bis F10, beschrieben wurde.

Beispiel F1: Allgemeines Vorgehen für eine Nassbeizung

Die benötigte Menge flüssige Formulierung wird in einen Erlenmeyerkolben gegeben. Der Kolben wird geschüttelt, um die Flüssigkeit auf dem gesamten Gefässboden zu verteilen. Unmittelbar danach wird die benötigte Menge des Saatgutes in den Kolben gegeben. Der Kolben wird von Hand ungefähr eine Minute stark geschüttelt, so dass das gesamte Saatgut mit Flüssigkeit bedeckt ist. Der Inhalt des Kolbens wird auf ein Trocknungsblech geschüttet und in einem Ofen getrocknet.

Beispiel F2: Allgemeines Vorgehen für eine Trockenbeizung

Man füllt je gleich viele Samenkörner in verschiedene Weithalsflaschen und gibt in jede Flasche soviel Spritzpulver, dass die gewünschte Menge an Wirkstoff pro Samenkorn (beispielsweise 0,03, 0,1 bzw. 0,3 mg pro Korn) erreicht wird. Man legt die Flaschen auf einen Flaschenroller und lässt die Flaschen drei Minuten bei 80 Umdrehungen / Minute drehen. Dann werden die Samenkörner, welche an den Flaschenwänden kleben, durch Schütteln von Hand entfernt und die Flaschen während drei Minuten in der umgekehrten Richtung rotiert.

Biologische Beispiele (% = Gewichtsprozent, sofern nichts anderes angegeben)

Beispiel B4: Beizwirkung gegen Larven des ersten Stadiums von Spodoptera littoralis auf Maisblättern

Maissamen, welche gemäss Vorschrift F13 gebeizt wurden, werden ausgesät. 12, 19, 26, 33, 40 und 47 Tage nach Aussaat werden 5 bis 8 cm lange Stücke der obersten Blätter der Pflanzen in Glasbecher gelegt und mit einer vorbestimmten Menge einer Suspension frisch geschlüpfter L1-Larven von Spodoptera littoralis infestiert. Die Becher werden mit einem Deckel geschlossen und bei 25°C, 60% relativer Luftfeuchtigkeit und einem Tageslichtzyklus von 16 Stunden gehalten. Die Auswertung erfolgt drei bis fünf Tage nach Infestation. Aus dem Vergleich der Anzahl überlebender Larven auf den aus den gebeizten Samen gezogenen und auf aus nicht gebeizten Samen gezogenen Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.

Beispiel B5; Beizwirkung gegen adulte Diabrotica balteata auf Zuckerrübenblättern

Zückerrübensamen, welche gemäss Vorschrift F13 gebeizt wurden, werden ausgesät. 33, 40, 47, 54 und 61 Tage nach Aussaat werden die Blätter von je drei bis 5 Pflanzen in einen Glasbecher gelegt und mit einer vorbestimmten Anzahl junger adulten Diabrotica balteata infestiert. Die Becher werden mit einem Deckel geschlossen und bei 25°C, 60% relativer Luftfeuchtigkeit und 16 Stunden Tageslicht gehalten. Die Auswertung erfolgt drei bis fünf Tage nach Infestation. Aus dem Vergleich der Anzahl überlebender adulter Diabrotica auf den aus den gebeizten Samen gezogenen und auf aus nicht gebeizten Samen gezogenen Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.

Beispiel B6: Beizwirkung gegen Larven des dritten Stadiums von Diabrotica balteata an Maiswurzeln

Maissamen, welche gemäss der Vorschrift F1 gebeizt wurden, werden ausgesät. 14, 21 und 28 Tage nach Aussaat werden auf den Boden jedes Pflanzentopfes je fünf Larven des dritten Stadiums von Diabrotica balteata gegeben. Die Evaluation erfolgt 6 Tage nach Infestation. Registriert wird die Zahl überlebender Stadien (Larven und Puppen) im Stamm der Pflanzen, auf der Erdoberfläche und im Boden. Aus dem Vergleich der Anzahl überlebender

Larven und Puppen auf den aus den gebeizten Samen gezogenen und auf aus nicht gebeizten Samen gezogenen Pflanzen sowie deren Umgebung wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.

Beispiel B7: Beizwirkung gegen Aphis fabae

In eine Glasflasche oder einen Kunststoffbehälter füllt man 100 g Bohnensamen und soviel einer Formulierung des Wirkstoffs, dass ein Verhältnis von 0,1, 1 oder 10 g Wirkstoff pro kg Samen erreicht wird. Durch Rotation und/oder Schütteln des Behältnisses wird der Wirkstoff gleichmässig auf der Oberfläche der Samen verteilt. Die so gebeizten Samen werden in Blumentöpfen (3 Samen pro Topf) ausgesät. Die Jungpflanzen werden in einem Gewächshaus bei 25 bis 30° bis zum 2-Blatt-Stadium kultiviert und dann mit Aphis fabae besiedelt. 6 Tage nach der Besiedlung erfolgt die Auswertung. Aus dem Vergleich der Anzahl überlebender Individuen auf den aus den gebeizten Samen gezogenen und auf aus nicht gebeizten Samen gezogenen Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.

Abamectin, Emamectin und Spinosad zeigen gute Wirkung in diesem Test.

Beispiel B8: Beizwirkung gegen Myzus persicae

In eine Glasflasche oder einen Kunststoffbehälter füllt man 100 g Zuckerrübensamen und soviel einer, aus einem Spritzpulver und wenig Wasser hergestellten, Pasten-Formulierung des Wirkstoffs, dass ein Verhältnis von 0,1, 1 oder 10 g Wirkstoff pro kg Samen erreicht wird. Das verschlossene Beizgefäss wird solange auf einer Rollbank bewegt, bis sich die Paste gleichmässig auf der Oberfläche der Samen verteilt hat. Die so gebeizten (beschichteten) Samen werden getrocknet und in Plastiktöpfen in Löss-Erde ausgesät. Die Keimlinge werden in einem Gewächshaus bei 24 bis 26°C, einer relativen Luftfeuchtigkeit von 50 bis 60% und einer Beleuchtungsdauer von täglich 14 Stunden kultiviert. 4 Wochen nach der Keimung werden die 10 cm hohen Pflanzen mit einer Mischpopulation von Myzus persicae besiedelt. 2 und 7 Tage nach der Besiedlung erfolgt die Auswertung. Aus dem Vergleich der Anzahl überlebender Individuen auf den aus den gebeizten Samen gezogenen und auf aus

nicht gebeizten Samen gezogenen Pflanzen wird die prozentuale Reduktion der Population (% Wirkung) bestimmt.

Abamectin, Emamectin und Spinosad zeigen gute Wirkung in diesem Test.

Die Erfindung betrifft weiterhin

(C) ein Verfahren zur Bekämpfung von Holzschädlingen sowie von Mollusken, dadurch gekennzeichnet,


dass man eine pestizid aktive Menge eines Schädlingsbekämpfungsmittels, welches als pestizid aktive Verbindung mindestens ein Macrolid, bevorzugt Abamectin, Emamectin oder Spinosad, in freier Form oder in agrochemisch verwendbarer Salzform, als Wirkstoff und mindestens einen Hilfsstoff enthält, auf die Schädlinge oder ihren Lebensraum appliziert;

die entsprechende Verwendung dieser Verbindungen, entsprechende Schädlingsbekämpfungsmittel, deren Wirkstoff aus diesen Verbindungen ausgewählt ist, ein Verfahren zur Herstellung und die Verwendung dieser Mittel und vor Schädlingsbefall entsprechend geschütztes pflanzliches Vermehrungsgut.

Die erfindungsgemäß verwendeten Macrolide, einschließlich ihrer Salze, sind die gleichen, wie die unter Aspekt (A) der Erfindung verwendeten. Sofern es sich um Abamectin (A) handelt, ist erfindungsgemäss die freie Form bevorzugt. Besonders bevorzugt ist im Rahmen der vorliegenden Erfindung ein Mittel, welches Emamectin in freier Form oder als agrochemisch verträgliches Salz als einzige pestizid aktive Komponente; besonders als Salz; insbesondere als Benzoat, substituiertes Benzoat, Benzolsulfonat, Citrat, Phosphat, Tartrat oder Maleat; bevorzugt als Benzoat oder Benzolsulfonat, besonders bevorzugt als Benzoat enthält.

In der Literatur werden viele verschiedene Wirkstoffklassen als arthropodazid wirkende Wirkstoffe in zur Bekämpfung von Gastropoden und Termiten aufgeführt. Überraschenderweise wurde nun gefunden, dass auch die unter dem Sammelbegriff Macrolide bekannten Verbindungen eine bedeutende molluskizide und termitizide Aktivität aufweisen, speziell gegen Gastropoden, wie Nacktschnecken und Gehäuseschnecken, sowie gegen Holzschädlinge, insbesondere Vertreter der Ordnung Isoptera.

Zu den Mollusken zählen z.B.

Ampullariidae; Arion (A. ater, A. circumscriptus, A. hortensis, A. rufus); Bradybaenidae (Bradybaena fruticum); Cepaea (C. hortensis, C. Nemoralis); Cochlodina; Deroceras (D. agrestis, D. empiricorum, D. laeve, D. reticulatum); Discus (D. rotundatus); Euomphalia; Galba (G. trunculata); Helicella (H. itala, H. obvia); Helicidae (Helicigona arbustorum); Helicodiscus; Helix (H. aperta); Limax (L. cinereoniger, L. flavus, L. marginatus, L. maximus, L. tenellus); Lymnaea; Milax (M. gagates, M. marginatus, M. sowerbyi); Opeas; Pomacea (P. canaticulata); Vallonia und Zanitoides.

Zu den Termiten zählen insbesondere die Familien Hodotermitidae, Kalotermitidae, Rhinotermitidae und Termitidae. Unter den weiteren Schädlingen, welche Holzschäden anrichten, indem sie sich von Holz ernähren, darauf leben oder sich auf Holz vermehren, versteht man etwa holzbohrende Insekten wie Vertreter der Familie Lyctidae, der Familie Apidae, beispielsweise Xylocopa virginica, und der Familie Anobiidae, wie Anobium punctatum.

Schnecken stellen als Schädlinge in Gartenbau und Landwirtschaft ein stark zunehmendes Problem dar. Sie können durch Frass schwerwiegende Pflanzenschäden verursachen und auch unerwünschte Verunreinigungen durch Schneckenschleim und Kot herbeiführen. Neuere Veränderungen in der Haltung von Pflanzenkulturen haben zu einer Erhöhung der Zahl der Varietäten von Pflanzenarten geführt, welche schneckenempfindlich sind, und der im Naturschutz-Gedanken begründete Zwang, auf das Abbrennen der Stoppelfelder zu verzichten und stattdessen das Stroh unterzupflügen, lässt erwarten, dass die bestehenden Probleme mit Mollusken, besonders Nacktschnecken, verschlimmert werden.

Termiten können insbesondere in geographischen Breiten zwischen 42° N und 42 S° bedeutende Schäden an Gebäuden anrichten. Man unterscheidet grundsätzlich zwei Arten von Termiten:

Im Untergrund lebende Termiten, die am weitesten verbreitet sind, benötigen warme Luft und eine feuchte Umgebung. Um immer über die notwendige Feuchtigkeit zu verfügen, müssen diese Termiten über eine direkte Verbindung zur feuchten Erde verfügen. Schäden von unterirdisch aktiven Termiten sind fast immer mit Schäden an Holz verbunden.

Termiten, welche ihren Lebensraum auf trockenem Holz haben, stellen - obschon weniger häufig - ein grosses Problem dar, weil sie keinen Kontakt mit dem feuchten Boden benötigen. Sie dringen unter Dachschindeln, durch Ritzen und Luftlöcher in Gebäude ein. Andere werden auch über bereits befallene Möbelstücke in Haushalte eingeschleppt. Vorbehandlung

des Holzes wird als die effizienteste Methode zur Bekämpfung solcher Termiten angesehen. Die Schäden, welche von Termiten, die auf trockenem Holz leben, werden langsamer angerichtet, als von in feuchter Umgebung lebenden Termiten. Daher werden Schäden von Termiten der ersten Art vor allem in alten Gebäuden festgestellt.

Schäden von unterirdisch, in feuchter Umgebung lebenden Termiten können durch die Anwendung von insektizid aktiven Substanzen auf die Termiten oder ihren Lebensraum verhindert werden. Solche Verbindungen werden vor allem auf konventionelle Art durch Einbringen in den Boden um die Gebäude herum eingesetzt.

Zur Zeit kommerziell erhältliche Schneckenbekämpfungsmittel umfassen Metaldehyd und Carbamate, wie z.B. Methiocarb. Carbamate sind als Molluskizide sehr wirkungsvoll, haben aber den grossen Nachteil hoher Toxizität gegenüber Säugetieren, wie z.B. Katzen, Hunden und Igeln, und anderen Organismen, wie z.B. Regenwürmern, welche nicht geschädigt werden sollen. Die Metaldehyd-Molluskizide weisen zwar eine geringere Toxizität auf, wirken jedoch gegen Mollusken nicht tödlich, sondern haben eine narkotisierende oder entwässernde Wirkung, wodurch sie die Schädlinge immobilisieren. Es besteht daher ein Bedarf nach einem nützlichen Molluskizid, welches höchst wirksam gegen z.B. Nacktschnecken und Gehäuseschnecken ist, jedoch gegenüber Nützlingen, wie z.B. Regenwürmern, und Säugetieren nicht oder sehr gering toxisch wirkt. Dieses Ziel wird mit den Macroliden der vorliegenden Erfindung erreicht.

Auch die zur Zeit verfügbaren Mittel zur Bekämpfung von Termiten vermögen nicht allen Ansprüchen zu genügen, da im allgemeinen vergleichsweise grosse Zonen um bauliche Konstruktionen, bzw. diese Bauten selbst mit grossen Mengen von Insektizid behandelt werden müssen. Dies kann insbesondere bei persistenten Pestiziden, vor allem in Häusern, zu Folgeproblemen führen. Es besteht daher auch in diesem Falle ein weiteres Bedürfnis nach verbesserten Lösungen, insbesondere durch Anwendung von Wirkstoffen, die in besonders geringen Mengen eingesetzt werden können und welche wenig flüchtig sind.

Die Erfindung Teil (C) betrifft daher auch Schädlingsbekämpfungsmittel, wie, je nach angestrebten Zielen und gegebenen Verhältnissen zu wählende, emulgierbare Konzentrate, Suspensionskonzentrate, direkt versprüh- oder verdünnbare Lösungen, streichfähige Pasten, verdünnte Emulsionen, Spritzpulver, lösliche Pulver, dispergierbare Pulver, benetzbare Pulver,

ver, Stäubemittel, Granulate, Pellets oder Verkapselungen in polymeren Stoffen, welche - mindestens - einen der erfindungsgemässen Wirkstoffe enthalten.

Der Wirkstoff wird in diesen Mitteln in reiner Form, ein fester Wirkstoff z.B. in einer speziellen Korngrösse, oder vorzugsweise zusammen mit - mindestens - einem der in der Formulierungstechnik üblichen Hilfs- oder Trägerstoffen eingesetzt.

Als Formulierungshilfsstoffe dienen beispielsweise feste Trägerstoffe, Lösungsmittel, Stabilisatoren, "slow release"-Hilfsstoffe, Farbstoffe und gegebenenfalls oberflächenaktive Stoffe (Tenside). Als Träger- und Hilfsstoffe kommen hierbei alle bei Pflanzenschutzmitteln, insbesondere bei Schneckenbekämpfungsmitteln, üblicherweise verwendeten Stoffe in Frage. Als Hilfsstoffe, wie Lösungsmittel, feste Trägerstoffe, oberflächenaktive Verbindungen, nichtionische Tenside, kationische Tenside, anionische Tenside und weitere Hilfsstoffe in den erfindungsgemäss eingesetzten Mitteln, kommen beispielsweise die gleichen in Frage, wie sie in EP-A-736 252 beschrieben sind.

Andere geeignete Stoffe, die als Trägerstoffe für Molluskizide verwendet werden können, sind Phagostimulantien (Frassstoffe), also die üblicherweise in Schneckenköderformulierungen enthaltenen Lockstoffe und/oder Futterstoffe (also für Schnecken physiologisch verwertbare Substanzen). Auch Mischungen von Frassstoffen mit geeigneten anderen organischen und/oder anorganischen Trägerstoffen sind verwendbar.

Geeignete Frassstoffe für Molluskizide sind vorzugsweise: Gemahlenes Getreide, wie z.B. Weizenmehl, Gerstenmehl, Roggenmehl, sowie Reisstärke, Sojaschrot, Fischmehl, Melasse, Rapsschrot u. a.. Es kann entweder nur ein Frassstoff oder auch ein Gemisch von Frassstoffen eingesetzt werden.

Eine oder mehrere der folgenden Substanzen kann als Schneckenköder-Zusatz verwendet werden, um den Köder für die Mollusken schmackhafter zu machen:

- a) ein Vitamin B, insbesondere B1, B2, Nicotinsäure oder Nicotinamid;
- b) Vitamin E;
- c) tierisches oder pflanzliches Proteinmaterial, z.B. Albumine und ihre hydrolytischen Abbauprodukte, insbesondere jene aus enzymatischer Hydrolyse von z.B. Pepsin, wie Metaproteine, Proteosen, Peptone, Polypeptide, Peptide, Diketopiperazine und Aminosäuren;

- d) eine oder mehrere Aminosäuren oder deren Salze oder Amide, welche auch synthetische Produkte sein können;
- e) eine Nukleinsäure oder ein hydrolytisches Abbauprodukt davon, wie ein Nukleotid, ein Nukleosid, Adenin, Guanin, Cytosin, Uracii oder Thymin;
- f) Harnstoff, Carbaminsäure;
- g) ein Ammoniumsalz, z.B. Ammoniumacetat;
- h) ein Aminozucker, z.B. Glucosamin oder Galactosamin;
- i) Natrium-, Kalium-, Calcium- oder Magnesium-Verbindungen oder Spuren von Mangan-, Kupfer-, Eisen-, Kobalt-, Zink-, Aluminium-, Bor- oder Molybdän-Verbindungen, insbesondere Chelate davon, wie Versene®;
- j) Phosphorsäure oder Glyceryl- oder Zuckerphosphate;
- k) Wasser.

Stabilisatoren können alle bekannten Nahrungsmittel-Stabilisatoren sein, welche fungistatische, fungizide, bacteriostatische und/oder bacterizide Wirkung haben, wie Natriumbenzoat, Methyl-p-hydroxybenzoat, Cetyl-trimethylammoniumbromid, Zitronensäure, Weinsäure, Sorbinsäure, Phenole, Alkylphenole oder chlorierte Phenole.

Als "slow release"-Hilfsmittel können neben den als feste Trägerstoffe bezeichneten Substanzen auch Harze, wie Harnstoff-Formaldehyd-Harze, Sojamehl, Wachse, Stearate und Öle, wie Rizinusöl, eingesetzt werden.

Als Hilfsstoffe für Molluskizide können gemäss Teil (C) der Erfindung beispielsweise Bindemittel, wie Methylcellosolve, Polyvinylpyrrolidon, Polyvinylalkohol, Polyacrylate, Polymethacrylate, natürliche Wachse, chemisch veränderte Wachse und synthetische Wachse, Zucker, Stärke, Alginate, Agar agar, Ligninsulfonate und Gummi arabicum, Mittel, die die Austrocknung der Präparate verhindern, wie Polyalkohole, z.B. Zucker oder Glycerin, Konservierungsstoffe, Farbstoffe, Schneckenlockstoffe, Warmblüter-Repellents und/oder sonstige Formulierungshilfsstoffe eingesetzt werden. Auch Kombinationen mit bekannten molluskiziden Wirkstoffen, z.B. Metaldehyd oder Mercaptodimethur, sind möglich.

Die Formulierungsschritte können durch Kneten, Granulieren (Granulate) und gegebenenfalls Pressen (Pillen, Tabletten, Pellets) ergänzt werden.

Die molluskiziden Mittel, welche bevorzugt neben dem Wirkstoff weitere Träger- und/oder Hilfsstoffe enthalten, liegen in ihrer anwendungsfertigen Form vorzugsweise als spritz- oder streubare Pulver, als Granulate (wobei der Wirkstoff mit dem Trägermaterial vermischt vorliegt), oder als Pellets vor. Besonders bevorzugte Formulierungen sind streufähige Pulver, Granulate oder Pellets.

Speziell geeignete Formulierungen zur Bekämpfung von Mollusken gemäss Teil (C) der Erfindung sind Granulate oder Pellets, welche in der Regel 0 bis 90%, vorzugsweise 0 bis 70%, Trägermaterial, 0,1 bis 10%, vorzugsweise 1 bis 5%, Wirkstoff, 10 bis 95%, vorzugsweise 25 bis 90%, Frassstoff, 0,5 bis 25%, vorzugsweise 5 bis 20%, Bindemittel und gegebenenfalls 0 bis 15% weitere Hilfsstoffe enthalten (% bedeutet jeweils Gewichtsprozent).

Die jeweils als Schneckenbekämpfungsmittel auszubringende Menge ist wegen der fehlenden oder geringen Warmblütertoxizität unkritisch und richtet sich nach den jeweiligen Gegebenheiten, wie Befallsgrad, Klimabedingungen und zu schützende Pflanzen. Die Aufwandmenge an erfindungsgemässen Ködertypen kann innerhalb eines grösseren Bereichs variiert werden. Im allgemeinen verwendet man zwischen 3 und 15 kg Schneckenköder pro Hektar, vorzugsweise zwischen 5 und 10 kg pro Hektar. Zweckmässigerweise werden die Schnekkenbekämpfungsmittel möglichst gleichmässig zwischen den Kulturpflanzen durch Aufsprühen einer wässrigen Suspension oder durch Streuen der Pulver, Granulate oder Pellets auf dem Boden verteilt. Bei nicht dichtem Pflanzenbewuchs kann es auch zweckmässig sein, um die zu schützenden Pflanzen "Fangstreifen" anzulegen.

Wegen der hervorragenden Pflanzenverträglichkeit der erfindungsgemässen Schneckenbekämpfungsmittel gemäss Teil (C) der Erfindung ergeben sich von der Seite der zu schützenden Pflanzen keinerlei Einschränkungen. So können alle Zier- und Kulturpflanzen in Landwirtschaft, Forst und Gartenbau (auch in Gewächshäusern) in allen Wachstumsstadien vor Schäden durch Schnecken geschützt werden.

Die Formulierung und die Verwendung der erfindungsgemässen Schneckenköder und der Mittel zur Bekämpfung von Holzschädlingen geht aus folgenden Beispielen hervor.

Die gemäss Teil (C) der Erfindung anzuwendenden Mittel zur Bekämpfung von Gastropoden und Holzschädlingen werden in bekannter Weise hergestellt, bei Abwesenheit von Hilfsstoffen z.B. durch Mahlen und/oder Sieben, z.B. auf eine bestimmte Korngrösse, oder Pressen eines festen Wirkstoffs, und bei Anwesenheit von mindestens einem Hilfsstoff z.B. durch in-

niges Vermischen und/oder Vermahlen des Wirkstoffs mit dem (den) Hilfsstoff(en). Diese Verfahren zur Herstellung der erfindungsgemässen Mittel und die Verwendung der Macrolide zur Herstellung dieser Mittel bilden ebenfalls Gegenstände der Erfindung.


Die Mittel im Rahmen von Teil (C) der Erfindung enthalten in der Regel 0,1 bis 99%, insbesondere 0,1 bis 95%, Wirkstoff und 1 bis 99,9%, insbesondere 5 bis 99,9%, - mindestens - eines festen oder flüssigen Hilfsstoffes, wobei in der Regel 0 bis 25%, insbesondere 0,1 bis 20%, der Mittel Tenside sein können (% bedeutet jeweils Gewichtsprozent). Während als Handelsware eher konzentrierte Mittel bevorzugt werden, verwendet der Endverbraucher in der Regel verdünnte Mittel, die wesentlich geringere Wirkstoffkonzentrationen aufweisen.

Die Aktivität der erfindungsgemäßen Mittel kann durch Zugabe anderer, beispielsweise insektizider, akarizider und/oder fungizider Wirkstoffe und angepaßt an die vorherrschende Umgebung beträchtlich erweitert werden. Beispiele geeigneter zugegebener Wirkstoffe sind die gleichen wie unter Teil (B) der Erfindung erwähnt.

In einer besonders bevorzugten Ausführungsform der Erfindung wird die Macrolidverbindung verwendet, um die Termiten bzw. anderen holzzerstörenden Schädlinge in der Erde zu bekämpfen, womit ein indirekter Schutz von Holzkonstruktionen erreicht wird. Es wird dabei eine für die Bekämpfung der Schädlinge ausreichende Menge des Macrolids auf den Boden appliziert, vorzugsweise in einer Aufwandmenge von 1 g bis 2000 g pro Hektar, besonders 2 bis 200 g, insbesondere 5 bis 100 g.

Arbeitstermiten müssen die mit dem pestizid behandelte Erde betreten, um zum Holz zu gelangen. Sie werden dabei unvermeidlich vom Pestizid aufnehmen und es in den Termitenstock zurücktragen und den Wirkstoff so im Termitenstock verbreiten.

Der oder die Wirkstoffe können auch in Form von Ködern ausgebracht werden, z.B. in Form von Tabletten, welche den Wirkstoff enthalten, wie sie etwa in U.S. Patent Nr. 5 096 710 beschrieben sind. Besonders bevorzugt wird das Macrolid auf Materialien ausgebracht, welche von den Termiten als Nahrungsmittel und Baustoffe für den Termitenstock verwendet werden. Beispiele solcher Materialien sind etwa Karton, Papier, Holzstaub, Cellulosepulver oder Baumwolle. Brauchbare Konzentrationen auf diesen Materialien sind 0,01 bis 10 000 ppm. Solche Köder sind insbesondere effizient, wenn auch noch Pheromone eingesetzt werden und Holz verwendet wird, welches schon von Pilzen befallen ist. Solche Anwendungsarten werden etwa in U.S. Patent Nr. 5 151 443 diskutiert.

Die Macrolide gemäss Teil (C) der Erfindung sind auf dem Gebiet der Bekämpfung von Mollusken und Holzschädlingen bei günstiger Warmblüter-, Fisch- und Pflanzenverträglich-keit bereits bei niedrigen Anwendungskonzentrationen präventiv und/oder kurativ wertvolle Wirkstoffe mit einem sehr günstigen bioziden Spektrum. Die erfindungsgemässen Wirkstoffe sind gegen alle oder einzelne Entwicklungsstadien von normal sensiblen, aber auch von resistenten, Mollusken und Holzschädlingen, besonders Termiten, wirksam. Die molluskizide Wirkung der erfindungsgemässen Wirkstoffe kann sich dabei direkt, d. h. in einer Abtötung der Schädlinge, welche unmittelbar oder erst nach einiger Zeit eintritt, oder indirekt, z.B. in einer verminderten Eiablage und/oder Schlupfrate, zeigen, wobei die gute Wirkung einer Abtötungsrate (Mortalität) von mindestens 50 bis 60% entspricht.

Mit den Wirkstoffen gemäss Teil (C) der Erfindung kann man Schäden von Mollusken insbesondere an Pflanzen, vor allem an Nutz- und Zierpflanzen in der Landwirtschaft, im Gartenbau und im Forst, oder an Teilen, wie Früchten, Blüten, Laubwerk, Stengeln, Knollen oder Wurzeln, solcher Pflanzen auftretende Schädlinge des erwähnten Typus bekämpfen, d. h. eindämmen oder vernichten, wobei zum Teil auch später zuwachsende Pflanzenteile noch gegen diese Schädlinge geschützt werden.

Als Zielkulturen bei der Bekämpfung von Mollusken kommen insbesondere Getreide, wie Weizen, Gerste, Roggen, Hafer, Reis, Mais oder Sorghum; Rüben, wie Zucker- oder Futterrüben; Obst, z.B. Kern-, Stein- und Beerenobst, wie Äpfel, Birnen, Pflaumen, Pfirsiche, Mandeln, Kirschen oder Beeren, z.B. Erdbeeren, Himbeeren oder Brombeeren; Hülsenfrüchte, wie Bohnen, Linsen, Erbsen oder Soja; Ölfrüchte, wie Raps, Senf, Mohn, Oliven, Sonnenblumen, Kokos, Rizinus, Kakao oder Erdnüsse; Gurkengewächse, wie Kürbisse, Gurken oder Melonen; Fasergewächse, wie Baumwolle, Flachs, Hanf oder Jute; Zitrusfrüchte, wie Orangen, Zitronen, Pampelmusen oder Mandarinen; Gemüse, wie Spinat, Kopfsalat, Spargel, Kohlarten, Möhren, Zwiebeln, Tomaten, Kartoffeln oder Paprika; Lorbeergewächse, wie Avocado, Cinnamonium oder Kampfer; sowie Tabak, Nüsse, Kaffee, Eierfrüchte, Zuckerrohr, Tee, Pfeffer, Weinreben, Hopfen, Bananengewächse, Naturkautschukgewächse und Zierpflanzen, in Betracht.

Weitere Anwendungsgebiete der erfindungsgemässen Wirkstoffe sind der Schutz von Vorräten und Lagern und von Material vor Mollusken und Holzschädlingen.

Die Mittel gemäss Teil (C) der Erfindung eignen sich auch für den Schutz von pflanzlichem Vermehrungsgut, z.B. Saatgut, wie Früchten, Knollen oder Körnern, oder Pflanzenstecklingen, vor Gastropoden und Termiten, besonders Gastropoden. Das Vermehrungsgut kann dabei vor dem Ausbringen mit dem Mittel behandelt, Saatgut z.B. vor der Aussaat gebeizt, werden. Die erfindungsgemässen Wirkstoffe können auch auf Samenkörner aufgebracht werden (Coating), indem man die Körner entweder in einem flüssigen Mittel tränkt oder sie mit einem festen Mittel beschichtet. Das Mittel kann andererseits auch beim Ausbringen des Vermehrungsguts auf den Ort der Einsaat, z.B. bei der Aussaat in die Saatfurche, appliziert werden. Diese Behandlungsverfahren für pflanzliches Vermehrungsgut und das so behandelte pflanzliche Vermehrungsgut sind weitere Gegenstände der Erfindung.

Die folgenden Beispiele dienen der Erläuterung gemäss Teil (C) der Erfindung. Sie schränken die Erfindung nicht ein.

Formulierungsbeispiele

Beispiel F3: Herstellung eines Schneckenkorns

In einen Mischer werden nacheinander 40 kg Rapsschrot (Verhältnis entölter/nichtentölter Rapsschrot = 65:35), 2,6 kg einer fein gemahlenen Vormischung, welche 2,1 kg Macrolid und 500 g hochdisperser Kieselsäure enthält, 4,7 kg kalt vernetzende Maisstärke, 540 g Harnstoff-Formaldehyd-Harz, 100 g Isopropanol, 3 kg Zuckerrübenmelasse und 140 g blauer Farbstoff (1,4-Di(isobutylamino)-anthrachinon) gegeben und innig vermischt. Anschliessend wird über eine Matrizenpresse verpresst. Man lässt abkühlen, trocknen und siebt Feinteile über ein 0,5 mm-Sieb ab. Man erhält so eine gebrauchsfertige Schneckenköder-Formulierung.

Man kann anstelle der vorgenannten Verpressung über eine Matrizenpresse auch eine andere übliche Verdichtungsmethode zur Herstellung der Schneckenköder-Formulierung anwenden.

Anwendungsbeispiele

Beispiel A1: Test zur Ermittlung der Wirksamkeit von Schneckenkorn gegen Deroceras reticulatum

Die Prüfung der Wirksamkeit von Schneckenkorn gegen kleine Schneckenarten, z.B. Deroceras-Arten, erfolgt in Kästen aus Polycarbonat mit einer Grundfläche von 17 cm x 22 cm. Der Boden des Kastens wird mit mehreren Lagen Zellstoffpapier ausgelegt, das ausreichend angefeuchtet wird. Auf die eine Hälfte der Versuchsfläche wird das Schneckenkorn mit einer Aufwandmenge von 20 Partikeln gleichmässig ausgestreut; die andere Hälfte bleibt unbehandelt. Zur Vermeidung einer Zwangssituation erhalten die Schnecken zusätzlich unbehandeltes Beifutter: zwei Kartoffelhälften in diagonal gegenüberliegende Ecken des Kastens. Pro Kasten werden 10 adulte genetzte Ackerschnecken (Derocers reticulatum) auf die unbehandelte Fläche gesetzt. Jede Prüfung erfolgt mit drei Wiederholungen. Temperatur und Luftfeuchte werden während der gesamten Versuchsdauer annähernd konstant gehalten: 19° und 90 bis 95% relative Luftfeuchte. Täglich, an sieben aufeinanderfolgenden Tagen, wird der Zustand der Schnecken überprüft und bonitiert. Neben der Mortalitätsrate wird auch die Anzahl der Tiere mit Schadsymptomen bei der Beurteilung der Wirksamkeit berücksichtigt.

Die erfindungsgemässen Macrolide zeigen gute Wirkung in diesem Test.

Beispiel A2: Test zur Ermittlung der Wirksamkeit von Schneckenkorn gegen Arion rufus

Die Wirksamkeit von Schneckenkörnern gegen grössere Schneckenarten wird in drahtbespannten Versuchskästen aus Kunststoff geprüft. Jeder Kasten hat eine Grundfläche von 0,25 m². Den Boden des Kastens bedeckt eine 2 bis 3 cm hohe Schicht Blumenerde. Diese wird vor Versuchsbeginn ausreichend angefeuchtet. Auf die linke Hälfte der Versuchsfläche wird das Schneckenkorn mit einer Aufwandmenge von 3,1 g gleichmässig ausgestreut; die rechte Hälfte bleibt unbehandelt. Zur Vermeidung einer Zwangssituation erhalten die Schnecken zusätzlich unbehandeltes Beifutter: zwei Kartoffelhälften in diagonal gegenüberliegende Ecken jedes Kastens. Pro Kasten werden 10 adulte rote Wegschnecken (Arion rufus) auf die unbehandelte Fläche gesetzt. Jede Prüfung erfolgt mit vier Wiederholungen. Temperatur und Luftfeuchte werden während der gesamten Versuchsdauer annähernd kon-

stant gehalten: 19° und 90 bis 95% relative Luftfeuchte. Täglich, an sieben aufeinanderfolgenden Tagen, wird der Zustand der Schnecken überprüft und bonitiert. Neben der Mortalitätsrate wird auch die Anzahl der Tiere mit Schadsymptomen bei der Beurteilung der Wirksamkeit berücksichtigt.

Die erfindungsgemässen Macrolide zeigen gute Wirkung in diesem Test.

Beispiel A3: Test zur Ermittlung der systemischen Wirksamkeit gegen Deroceras reticulatum a) Salatpflanzen

Es wird eine Testlösung durch Lösen einer Probe eines Macrolids in 1 ml Aceton und Auffüllen mit Wasser auf 50 ml hergestellt. In diese Lösung werden die vorher mit frischem Wasser gereinigten Wurzeln junger, 6 cm hoher Salatpflanzen während mindestens zweier Tage eingetaucht. Für jeden Test werden nun einzelne Blätter von diesen Salatpflanzen geschnitten und auf ein Filterpapier in einer 9 cm-Petrischale gelegt. Auf jedes Filterpapier wird 1 ml Wasser pipettiert, um die Blätter während des Versuchs feucht zu halten. Anschliessend werden in jede Petrischale zwei mittelgrosse Schnecken gegeben und über eine Zeit von zwei Tagen die Menge an gefressenen Blättern und die Mortalität festgestellt.

Die erfindungsgemässen Macrolide zeigen gute Wirkung in diesem Test.

b) Saatgut

In 5 versiegelte Kästen mit einer Grundfläche von 35 cm x 20 cm, welche Komposterde enthalten, werden je 10 Schnecken gegeben. In vier Kästen werden je 100 behandelte Winterweizenkörner gleichmässig gestreut. Im fünften Kasten werden zur Prüfung der Repellentwirkung auf die eine Seite des Kastens 50 behandelte und auf die andere Seite 50 unbehandelte Winterweizenkörner verteilt.

Die erfindungsgemässen Macrolide zeigen gute Wirkung in diesem Test.

Beispiel A4: Wirkung gegen Termiten

Holzköder werden mit verschiedenen Mengen Macrolid behandelt und der Einfluss auf Schlupfrate und Überleben von Termiten getestet. Lösungen mit Konzentrationen von 0 ppm, 0,1 ppm, 100 ppm and 1000 ppm der Testsubstanz in Aceton werden verwendet. Wasser wird in der Kontrollstudie verwendet. Die Köder bestehen aus Pinienholz, welches für vier Monate in natürlicher Umgebung aufbewahrt wurde.

Die Termiten werden von in freier Umgebung befallenen Holzstücken gesammelt. Für die Holzköderstudie wird das Holz während 48 Stunden in einem Ofen bei 80°C gehalten. Dann wird das getrocknete Holz gewogen und die Stücke für 18 Stunden in Lösungen des Wirkstoffs der gewünschten Konzentration gelegt. Dann werden die Holzstücke aus den Lösungen genommen, an der Luft getrocknet und wieder gewogen. Um die Wirkung der Köder gegen Termiten zu ermitteln, werden die so behandelten Holzstücke in Petrischalen auf eine dünne Schicht unbehandelter Erde gelegt.

Die Termiten (50 Arbeiter und 2 Soldaten) werden in jede Petrischale gegeben. Die Schalen werden während 8 Wochen jede Woche dreimal inspiziert. Entwicklung der Insekten, Abnormalitäten bzw. Mortalitäten werden aufgezeichnet. Nach 8 Wochen werden die Holzblökke mit Wasser gespült und im Ofen wieder während 48 Stunden bei 80°C getrocknet. Es wird anschliessend wiederum das Gewicht jedes Holzstückes ermittelt. Die Gewichtsdifferenz ergibt die Menge des von den Termiten konsumierten Holzes.

Die erfindungsgemässen Macrolide zeigen einen gute Wirkung in diesem Test.

Patentansprüche:

- 1. Verfahren zur Bekämpfung von Holzschädlingen sowie von Mollusken, dadurch gekennzeichnet, daß eine pestizid wirksame Menge eines Schädlingsbekämpfungsmittels, welches als pestizid wirksame Verbindung mindestens ein Macrolid, in freier Form oder in agrochemisch verwendbarer Salzform, als Wirkstoff und mindestens einen Hilfsstoff enthält, auf die Schädlinge oder ihren Lebensraum appliziert wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Wirkstoff Abamectin, Emamectin oder Spinosad, in freier Form oder in agrochemisch verwendbarer Salzform, eingesetzt wird.
- 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Wirkstoff Emamectin als Benzoatsalz eingesetzt wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Gastropoden bekämpft werden.
- 5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Termiten bekämpft werden.
- 6. Mittel zur Bekämpfung von Mollusken und Holzschädlingen, dadurch gekennzeichnet, daß es als pestiziden Wirkstoff mindestens ein Macrolid und mindestens einen Hilfsstoff umfaßt.

Wien, am 5. November 2001

Patentanwalt

Patentansprüche

- 1. Verfahren zur Bekämpfung von Mollusken, dadurch gekennzeichnet, dass ein Schädlingsbekämpfungsmittel in Form von Körnern oder Pellets, welches
 - 0,1 bis 10 Gew.-% mindestens eines Macrolids, ausgewählt aus Abamectin, Emamectin und Spinosad in freier Form oder in agrochemisch verwendbarer Salzform, als Wirkstoff,
 - 0 bis 90 % Trägermaterial,
 - 10 bis 95 % Fraßstoff,
 - 0,5 bis 25 % Bindemittel und, wo dies zweckmäßig ist, 0 bis 15 % andere Hilfsstoffe enthält, auf die Mollusken oder ihre Umgebung angewendet wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Wirkstoff Abamectin eingesetzt wird.
- 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass Gastropoden bekämpft werden.
- 4. Zusammensetzung in Form von Körnern oder Pellets zur Bekämpfung von Mollusken, dadurch gekennzeichnet, dass sie
 - 0,1 bis 10 Gew.-% mindestens eines Macrolids, ausgewählt aus Abamectin, Emamectin und Spinosad in freier Form oder in agrochemisch verwendbarer Salzform, als Wirkstoff,
 - 0 bis 90 % Trägermaterial,
 - 10 bis 95 % Fraßstoff,
 - 0.5 bis 25 % Bindemittel und, wo dies zweckmäßig ist, 0 bis 15 % andere Hilfsstoffe enthält.

Wien, am 23. Mai 2006

PACENTANWAYEE
PUCHBERGER, BERGER PARTNER
A-1010 Wien Religies at strages 1:
Teleion 5 2 2002 Teleiox 5 3 3 705

WACHGEREICH

Recherchenbericht zu A 1735/2001 Technische Abteilung 4A

Klassifikation des Anmeldungsgegenstands gemäß IPC ⁸ : A01N 43/00 (2006.01); A01N 43/04 (2006.01)					
Recherchierter Prüfstoff (Klassifikation): A01N, C07H, C07D					
Konsultierte Online-Datenbank: EPODOC, WPI					
Dieser Recherchenbericht wurde zu den am 5. November 2001 eingereichten Ansprüchen 1-6 erstellt.					
Kategorie)	Bezeichnung der Veröffentlichung: Ländercode, Veröffentlichungsnummer, Dokumentart (Anmelder), Veröffentlichungsdatum, Textstelle oder Figur soweit erforderlich				Betreffend Anspruch
х	EP 165 029 A1 (MERCK & CO.INC.) 18. Dezember 1985 (18.12.1985) Beschreibung, Spalten 1 und 11				1
Х	EP 186 043 A1 (CIBA-GEIGY AG) 2. Juli 1986 (02.07.1986) Beschreibung, Spalten 3 und 12				1
X	EP 246 739 A2 (SANKYO COMPANY LIMITED) 25. November 1987 (25.11.1987) Beschreibung, Seiten 3 und 16				1
X	EP 89 202 A1 (MERCK & CO.INC.) 21. September 1983 (21.09.1983) Beschreibung, Spalten 1 und 12				1
A	WO 1996/028023 A2 (ABBOTT LABORATORIES) 9. September 1996 (09.09.1996) gesamtes Dokument				1-6
Datum der Beendigung der Recherche: 7. Juni 2006 □ Fortsetzung siehe Folgeblatt □ Prüfer(in): DiplIng.			Prüfer(in): DiplIng. THÜRRIEDL		
X Veröffentlichung von besonderer Bedeutung: der Anmeldungsgegenstand kann allein aufgrund dieser Druckschrift nicht als neu bzw. auf erfinderischer Tätigkeit beruhend betrachtet werden. A Veröffentlichung, die den allgemeinen S Dokument, das von Bedeutung ist (Kat dem Prioritätstag der Anmeldung verö				s von Bedeutung ist (Kategorien X stag der Anmeldung veröffentlich	Coder Y), jedoch nach twurde.
Y Veröffentlichung von Bedeutung: der Anmeldungsgegenstand kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren weiteren Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für elnen Fachmann nahellegend ist. E Dokument, das von besonderer Bedeutung ist (Kategorie X), aus dem ein älteres Recht hervorgehen könnte (früheres Anmeldedatum, jedoch nachveröffentlicht, Schutz ist in Österreich möglich, würde Neuheit in Frage stellen). Veröffentlichung, die Mitglied der selben Patentfamilie ist.					