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BRIEF DESCRIPTION OF DRAWINGS 

[ 0002 ] FIG . 1A illustrates a first example system for data 
storage in accordance with some implementations . 
[ 0003 ] FIG . 1B illustrates a second example system for 
data storage in accordance with some implementations . 
[ 0004 ] FIG . 1C illustrates a third example system for data 
storage in accordance with some implementations . 
[ 0005 ] FIG . 1D illustrates a fourth example system for 
data storage in accordance with some implementations . 
[ 0006 ] FIG . 2A is a perspective view of a storage cluster 
with multiple storage nodes and internal storage coupled to 
each storage node to provide network attached storage , in 
accordance with some embodiments . 
[ 0007 ] FIG . 2B is a block diagram showing an intercon 
nect switch coupling multiple storage nodes in accordance 
with some embodiments . 
[ 0008 ] FIG . 2C is a multiple level block diagram , showing 
contents of a storage node and contents of one of the 
non - volatile solid state storage units in accordance with 
some embodiments . 
[ 0009 ] FIG . 2D shows a storage server environment , 
which uses embodiments of the storage nodes and storage 
units of some previous figures in accordance with some 
embodiments . 
[ 0010 ] FIG . 2E is a blade hardware block diagram , show 
ing a control plane , compute and storage planes , and authori 
ties interacting with underlying physical resources , in accor 
dance with some embodiments . 
[ 0011 ] FIG . 2F depicts elasticity software layers in blades 
of a storage cluster , in accordance with some embodiments . 
[ 0012 ] FIG . 2G depicts authorities and storage resources 
in blades of a storage cluster , in accordance with some 
embodiments . 
[ 0013 ] FIG . 3A sets forth a diagram of a storage system 
that is coupled for data communications with a cloud 
services provider in accordance with some embodiments of 
the present disclosure . 
[ 0014 ] FIG . 3B sets forth a diagram of a storage system in 
accordance with some embodiments of the present disclo 
sure . 
[ 0015 ) FIG . 4 sets forth a flow chart illustrating an 
example method for executing a big data analytics pipeline 

in a storage system that includes compute resources and 
shared storage resources according to some embodiments of 
the present disclosure . 
10016 ) FIG . 5 sets forth a flow chart illustrating an addi 
tional example method for executing a big data analytics 
pipeline in a storage system that includes compute resources 
and shared storage resources according to some embodi 
ments of the present disclosure . 
[ 0017 ] FIG . 6 sets forth a flow chart illustrating an addi 
tional example method for executing a big data analytics 
pipeline in a storage system that includes compute resources 
and shared storage resources according to some embodi 
ments of the present disclosure . 
[ 0018 ] . FIG . 7 sets forth a flow chart illustrating an addi 
tional example method for executing a big data analytics 
pipeline in a storage system that includes compute resources 
and shared storage resources according to some embodi 
ments of the present disclosure . 
[ 0019 ] FIG . 8A sets forth a diagram illustrating an 
example computer architecture for implementing an artifi 
cial intelligence and machine learning infrastructure config 
ured to fit within a single chassis according to some embodi 
ments of the present disclosure . 
[ 0020 ] FIG . 8B sets forth a flow chart illustrating an 
additional example method for executing a big data analytics 
pipeline in a storage system that includes compute resources 
and shared storage resources according to some embodi 
ments of the present disclosure . 
[ 0021 ] FIG . 9 sets forth a flow chart illustrating an addi 
tional example method for executing a big data analytics 
pipeline in a storage system that includes compute resources 
and shared storage resources according to some embodi 
ments of the present disclosure . 
10022 ] FIG . 10 sets forth a flow chart illustrating an 
additional example method for executing a big data analytics 
pipeline in a storage system that includes compute resources 
and shared storage resources according to some embodi 
ments of the present disclosure . 
[ 0023 ] FIG . 11A sets forth a diagram illustrating an 
example artificial intelligence and machine learning infra 
structure according to some embodiments of the present 
disclosure . 
[ 0024 ] FIG . 11B sets forth a diagram illustrating an 
example computer architecture for implementing an artifi 
cial intelligence and machine learning infrastructure within 
a single chassis according to some embodiments of the 
present disclosure . 
100251 . FIG . 11C sets forth a diagram illustrating an 
example implementation of an artificial intelligence and 
machine learning infrastructure software stack according to 
some embodiments of the present disclosure . 
[ 0026 ] FIG . 11D sets forth a flow chart illustrating an 
example method for interconnecting a graphical processing 
unit layer and a storage layer of an artificial intelligence and 
machine learning infrastructure according to some embodi 
ments of the present disclosure . 
[ 0027 ] FIG . 12A sets forth a flow chart illustrating an 
example method of monitoring an artificial intelligence and 
machine learning infrastructure according to some embodi 
ments of the present disclosure . 
[ 0028 ] FIG . 12B sets forth a flow chart illustrating an 
example method of optimizing an artificial intelligence and 
machine learning infrastructure according to some embodi 
ments of the present disclosure . 
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[ 0029 ] FIG . 13 sets forth a flow chart illustrating an 
example method of data transformation caching in an arti 
ficial intelligence infrastructure that includes one or more 
storage systems and one or more GPU servers according to 
some embodiments of the present disclosure . 
0030 ] FIG . 14 sets forth a flow chart illustrating an 

additional example method of data transformation caching 
in an artificial intelligence infrastructure that includes one or 
more storage systems and one or more GPU servers accord 
ing to some embodiments of the present disclosure . 
[ 0031 ] FIG . 15 sets forth a flow chart illustrating an 
example method of data transformation caching in an arti 
ficial intelligence infrastructure that includes one or more 
storage systems and one or more GPU servers according to 
some embodiments of the present disclosure . 
[ 0032 ] FIG . 16 sets forth a flow chart illustrating an 
example method of data transformation caching in an arti 
ficial intelligence infrastructure that includes one or more 
storage systems and one or more GPU servers according to 
some embodiments of the present disclosure . 

DESCRIPTION OF EMBODIMENTS 
[ 0033 ] Example methods , apparatuses , and products for 
data transformation caching in an artificial intelligence infra 
structure in accordance with embodiments of the present 
disclosure are described with reference to the accompanying 
drawings , beginning with FIG . 1A . FIG . 1A illustrates an 
example system for data storage , in accordance with some 
implementations . System 100 ( also referred to as “ storage 
system ” herein ) includes numerous elements for purposes of 
illustration rather than limitation . It may be noted that 
system 100 may include the same , more , or fewer elements 
configured in the same or different manner in other imple 
mentations . 
[ 0034 ] System 100 includes a number of computing 
devices 164A - B . Computing devices ( also referred to as 
“ client devices " herein ) may be embodied , for example , a 
server in a data center , a workstation , a personal computer , 
a notebook , or the like . Computing devices 164A - B may be 
coupled for data communications to one or more storage 
arrays 102A - B through a storage area network ( “ SAN ’ ) 158 
or a local area network ( “ LAN ' ) 160 . 
[ 0035 ] The SAN 158 may be implemented with a variety 
of data communications fabrics , devices , and protocols . For 
example , the fabrics for SAN 158 may include Fibre Chan 
nel , Ethernet , Infiniband , Serial Attached Small Computer 
System Interface ( ' SAS ' ) , or the like . Data communications 
protocols for use with SAN 158 may include Advanced 
Technology Attachment ( “ ATA ” ) , Fibre Channel Protocol , 
Small Computer System Interface ( “ SCSI ' ) , Internet Small 
Computer System Interface ( “ iSCSI ' ) , HyperSCSI , Non 
Volatile Memory Express ( ‘ NVMe ' ) over Fabrics , or the 
like . It may be noted that SAN 158 is provided for illustra 
tion , rather than limitation . Other data communication cou 
plings may be implemented between computing devices 
164A - B and storage arrays 102A - B . 
[ 0036 ] The LAN 160 may also be implemented with a 
variety of fabrics , devices , and protocols . For example , the 
fabrics for LAN 160 may include Ethernet ( 802 . 3 ) , wireless 
( 802 . 11 ) , or the like . Data communication protocols for use 
in LAN 160 may include Transmission Control Protocol 
( TCP ' ) , User Datagram Protocol ( “ UDP ' ) , Internet Protocol 
( ?IP ' ) , HyperText Transfer Protocol ( * HTTP ' ) , Wireless 
Access Protocol ( “ WAP ' ) , Handheld Device Transport Pro 

tocol ( " HDTP ) , Session Initiation Protocol ( “ SIP ' ) , Real 
Time Protocol ( ?RTP ' ) , or the like . 
[ 0037 ] Storage arrays 102A - B may provide persistent data 
storage for the computing devices 164A - B . Storage array 
102A may be contained in a chassis ( not shown ) , and storage 
array 102B may be contained in another chassis ( not shown ) , 
in implementations . Storage array 102A and 102B may 
include one or more storage array controllers 110A - D ( also 
referred to as “ controller ” herein ) . A storage array controller 
110A - D may be embodied as a module of automated com 
puting machinery comprising computer hardware , computer 
software , or a combination of computer hardware and soft 
ware . In some implementations , the storage array controllers 
110A - D may be configured to carry out various storage 
tasks . Storage tasks may include writing data received from 
the computing devices 164A - B to storage array 102A - B , 
erasing data from storage array 102A - B , retrieving data from 
storage array 102A - B and providing data to computing 
devices 164A - B , monitoring and reporting of disk utilization 
and performance , performing redundancy operations , such 
as Redundant Array of Independent Drives ( ?RAID ' ) or 
RAID - like data redundancy operations , compressing data , 
encrypting data , and so forth . 
[ 0038 ] Storage array controller 110A - D may be imple 
mented in a variety of ways , including as a Field Program 
mable Gate Array ( * FPGA ' ) , a Programmable Logic Chip 
( ?PLC ' ) , an Application Specific Integrated Circuit 
( “ ASIC ' ) , System - on - Chip ( “ SOC ' ) , or any computing 
device that includes discrete components such as a process 
ing device , central processing unit , computer memory , or 
various adapters . Storage array controller 110A - D may 
include , for example , a data communications adapter con 
figured to support communications via the SAN 158 or LAN 
160 . In some implementations , storage array controller 
110A - D may be independently coupled to the LAN 160 . In 
implementations , storage array controller 110A - D may 
include an I / O controller or the like that couples the storage 
array controller 110A - D for data communications , through a 
midplane ( not shown ) , to a persistent storage resource 
170A - B ( also referred to as a “ storage resource ” herein ) . The 
persistent storage resource 170A - B main include any num 
ber of storage drives 171A - F ( also referred to as " storage 
devices ” herein ) and any number of non - volatile Random 
Access Memory ( ‘ NVRAM ' ) devices ( not shown ) . 
[ 0039 ] In some implementations , the NVRAM devices of 
a persistent storage resource 170A - B may be configured to 
receive , from the storage array controller 110A - D , data to be 
stored in the storage drives 171A - F . In some examples , the 
data may originate from computing devices 164A - B . In 
some examples , writing data to the NVRAM device may be 
carried out more quickly than directly writing data to the 
storage drive 171A - F . In implementations , the storage array 
controller 110A - D may be configured to utilize the NVRAM 
devices as a quickly accessible buffer for data destined to be 
written to the storage drives 171A - F . Latency for write 
requests using NVRAM devices as a buffer may be 
improved relative to a system in which a storage array 
controller 110A - D writes data directly to the storage drives 
171A - F . In some implementations , the NVRAM devices 
may be implemented with computer memory in the form of 
high bandwidth , low latency RAM . The NVRAM device is 
referred to as “ non - volatile ” because the NVRAM device 
may receive or include a unique power source that maintains 
the state of the RAM after main power loss to the NVRAM 
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device . Such a power source may be a battery , one or more 
capacitors , or the like . In response to a power loss , the 
NVRAM device may be configured to write the contents of 
the RAM to a persistent storage , such as the storage drives 
171A - F . 
[ 0040 ] In implementations , storage drive 171A - F may 
refer to any device configured to record data persistently , 
where “ persistently ” or “ persistent ” refers as to a device ' s 
ability to maintain recorded data after loss of power . In some 
implementations , storage drive 171A - F may correspond to 
non - disk storage media . For example , the storage drive 
171A - F may be one or more solid - state drives ( SSDs ' ) , 
flash memory based storage , any type of solid - state non 
volatile memory , or any other type of non - mechanical stor 
age device . In other implementations , storage drive 171A - F 
may include may include mechanical or spinning hard disk , 
such as hard - disk drives ( ‘ HDD ' ) . 
[ 0041 ] In some implementations , the storage array con 
trollers 110A - D may be configured for offloading device 
management responsibilities from storage drive 171A - F in 
storage array 102A - B . For example , storage array control 
lers 110A - D may manage control information that may 
describe the state of one or more memory blocks in the 
storage drives 171A - F . The control information may indi 
cate , for example , that a particular memory block has failed 
and should no longer be written to , that a particular memory 
block contains boot code for a storage array controller 
110A - D , the number of program - erase ( ™P / E ) cycles that 
have been performed on a particular memory block , the age 
of data stored in a particular memory block , the type of data 
that is stored in a particular memory block , and so forth . In 
some implementations , the control information may be 
stored with an associated memory block as metadata . In 
other implementations , the control information for the stor 
age drives 171A - F may be stored in one or more particular 
memory blocks of the storage drives 171A - F that are 
selected by the storage array controller 110A - D . The 
selected memory blocks may be tagged with an identifier 
indicating that the selected memory block contains control 
information . The identifier may be utilized by the storage 
array controllers 110A - D in conjunction with storage drives 
171A - F to quickly identify the memory blocks that contain 
control information . For example , the storage controllers 
110A - D may issue a command to locate memory blocks that 
contain control information . It may be noted that control 
information may be so large that parts of the control infor 
mation may be stored in multiple locations , that the control 
information may be stored in multiple locations for purposes 
of redundancy , for example , or that the control information 
may otherwise be distributed across multiple memory blocks 
in the storage drive 171A - F . 
[ 0042 ] In implementations , storage array controllers 
110A - D may offload device management responsibilities 
from storage drives 171A - F of storage array 102A - B by 
retrieving , from the storage drives 171A - F , control informa 
tion describing the state of one or more memory blocks in 
the storage drives 171A - F . Retrieving the control informa 
tion from the storage drives 171A - F may be carried out , for 
example , by the storage array controller 110A - D querying 
the storage drives 171A - F for the location of control infor 
mation for a particular storage drive 171A - F . The storage 
drives 171A - F may be configured to execute instructions 
that enable the storage drive 171A - F to identify the location 
of the control information . The instructions may be executed 

by a controller ( not shown ) associated with or otherwise 
located on the storage drive 171A - F and may cause the 
storage drive 171A - F to scan a portion of each memory 
block to identify the memory blocks that store control 
information for the storage drives 171A - F . The storage 
drives 171A - F may respond by sending a response message 
to the storage array controller 110A - D that includes the 
location of control information for the storage drive 171A - F . 
Responsive to receiving the response message , storage array 
controllers 110A - D may issue a request to read data stored 
at the address associated with the location of control infor 
mation for the storage drives 171A - F . 
[ 0043 ] In other implementations , the storage array con 
trollers 110A - D may further offload device management 
responsibilities from storage drives 171A - F by performing , 
in response to receiving the control information , a storage 
drive management operation . A storage drive management 
operation may include , for example , an operation that is 
typically performed by the storage drive 171A - F ( e . g . , the 
controller ( not shown ) associated with a particular storage 
drive 171A - F ) . A storage drive management operation may 
include , for example , ensuring that data is not written to 
failed memory blocks within the storage drive 171A - F , 
ensuring that data is written to memory blocks within the 
storage drive 171A - F in such a way that adequate wear 
leveling is achieved , and so forth . 
[ 0044 ] In implementations , storage array 102A - B may 
implement two or more storage array controllers 110A - D . 
For example , storage array 102A may include storage array 
controllers 110A and storage array controllers 110B . At a 
given instance , a single storage array controller 110A - D 
( e . g . , storage array controller 110A ) of a storage system 100 
may be designated with primary status ( also referred to as 
“ primary controller " herein ) , and other storage array con 
trollers 110A - D ( e . g . , storage array controller 110A ) may be 
designated with secondary status ( also referred to as “ sec 
ondary controller " herein ) . The primary controller may have 
particular rights , such as permission to alter data in persis 
tent storage resource 170A - B ( e . g . , writing data to persistent 
storage resource 170A - B ) . At least some of the rights of the 
primary controller may supersede the rights of the secondary 
controller . For instance , the secondary controller may not 
have permission to alter data in persistent storage resource 
170A - B when the primary controller has the right . The status 
of storage array controllers 110A - D may change . For 
example , storage array controller 110A may be designated 
with secondary status , and storage array controller 110B 
may be designated with primary status . 
[ 0045 ] In some implementations , a primary controller , 
such as storage array controller 110A , may serve as the 
primary controller for one or more storage arrays 102A - B , 
and a second controller , such as storage array controller 
110B , may serve as the secondary controller for the one or 
more storage arrays 102A - B . For example , storage array 
controller 110A may be the primary controller for storage 
array 102A and storage array 102B , and storage array 
controller 110B may be the secondary controller for storage 
array 102A and 102B . In some implementations , storage 
array controllers 110C and 110D ( also referred to as " storage 
processing modules ” ) may neither have primary or second 
ary status . Storage array controllers 110C and 110D , imple 
mented as storage processing modules , may act as a com 
munication interface between the primary and secondary 
controllers ( e . g . , storage array controllers 110A and 110B , 
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respectively ) and storage array 102B . For example , storage 
array controller 110A of storage array 102A may send a 
write request , via SAN 158 , to storage array 102B . The write 
request may be received by both storage array controllers 
110C and 110D of storage array 102B . Storage array con - 
trollers 110C and 110D facilitate the communication , e . g . , 
send the write request to the appropriate storage drive 
171A - F . It may be noted that in some implementations 
storage processing modules may be used to increase the 
number of storage drives controlled by the primary and 
secondary controllers . 
[ 0046 ] In implementations , storage array controllers 
110A - D are communicatively coupled , via a midplane ( not 
shown ) , to one or more storage drives 171A - F and to one or 
more NVRAM devices ( not shown ) that are included as part 
of a storage array 102A - B . The storage array controllers 
110A - D may be coupled to the midplane via one or more 
data communication links and the midplane may be coupled 
to the storage drives 171A - F and the NVRAM devices via 
one or more data communications links . The data commu 
nications links described herein are collectively illustrated 
by data communications links 108A - D and may include a 
Peripheral Component Interconnect Express ( “ PCIe ' ) bus , 
for example . 
[ 0047 ] FIG . 1B illustrates an example system for data 
storage , in accordance with some implementations . Storage 
array controller 101 illustrated in FIG . 1B may similar to the 
storage array controllers 110A - D described with respect to 
FIG . 1A . In one example , storage array controller 101 may 
be similar to storage array controller 110A or storage array 
controller 110B . Storage array controller 101 includes 
numerous elements for purposes of illustration rather than 
limitation . It may be noted that storage array controller 101 
may include the same , more , or fewer elements configured 
in the same or different manner in other implementations . It 
may be noted that elements of FIG . 1A may be included 
below to help illustrate features of storage array controller 
101 . 
[ 0048 ] Storage array controller 101 may include one or 
more processing devices 104 and random access memory 
( RAM ) 111 . Processing device 104 ( or controller 101 ) 
represents one or more general - purpose processing devices 
such as a microprocessor , central processing unit , or the like . 
More particularly , the processing device 104 ( or controller 
101 ) may be a complex instruction set computing ( “ CISC ' ) 
microprocessor , reduced instruction set computing ( “ RISC ' ) 
microprocessor , very long instruction word ( ' VLIW ' ) 
microprocessor , or a processor implementing other instruc 
tion sets or processors implementing a combination of 
instruction sets . The processing device 104 ( or controller 
101 ) may also be one or more special - purpose processing 
devices such as an application specific integrated circuit 
( ?ASIC ' ) , a field programmable gate array ( * FPGA ' ) , a 
digital signal processor ( ‘ DSP ' ) , network processor , or the 
like . 
[ 0049 The processing device 104 may be connected to the 
RAM 111 via a data communications link 106 , which may 
be embodied as a high speed memory bus such as a 
Double - Data Rate 4 ( DDR4 ' ) bus . Stored in RAM 111 is an 
operating system 112 . In some implementations , instructions 
113 are stored in RAM 111 . Instructions 113 may include 
computer program instructions for performing operations in 
in a direct - mapped flash storage system . In one embodiment , 
a direct - mapped flash storage system is one that that 

addresses data blocks within flash drives directly and with 
out an address translation performed by the storage control 

l ers of the flash drives . 
[ 0050 ] In implementations , storage array controller 101 
includes one or more host bus adapters 103A - C that are 
coupled to the processing device 104 via a data communi 
cations link 105A - C . In implementations , host bus adapters 
103A - C may be computer hardware that connects a host 
system ( e . g . , the storage array controller ) to other network 
and storage arrays . In some examples , host bus adapters 
103A - C may be a Fibre Channel adapter that enables the 
storage array controller 101 to connect to a SAN , an 
Ethernet adapter that enables the storage array controller 101 
to connect to a LAN , or the like . Host bus adapters 103A - C 
may be coupled to the processing device 104 via a data 
communications link 105A - C such as , for example , a PCIe 
bus . 
[ 0051 ] In implementations , storage array controller 101 
may include a host bus adapter 114 that is coupled to an 
expander 115 . The expander 115 may be used to attach a host 
system to a larger number of storage drives . The expander 
115 may , for example , be a SAS expander utilized to enable 
the host bus adapter 114 to attach to storage drives in an 
implementation where the host bus adapter 114 is embodied 
as a SAS controller . 
[ 0052 ] In implementations , storage array controller 101 
may include a switch 116 coupled to the processing device 
104 via a data communications link 109 . The switch 116 
may be a computer hardware device that can create multiple 
endpoints out of a single endpoint , thereby enabling multiple 
devices to share a single endpoint . The switch 116 may , for 
example , be a PCIe switch that is coupled to a PCIe bus ( e . g . , 
data communications link 109 ) and presents multiple PCIe 
connection points to the midplane . 
10053 ] In implementations , storage array controller 101 
includes a data communications link 107 for coupling the 
storage array controller 101 to other storage array control 
lers . In some examples , data communications link 107 may 
be a QuickPath Interconnect ( QPI ) interconnect . 
[ 0054 ] A traditional storage system that uses traditional 
flash drives may implement a process across the flash drives 
that are part of the traditional storage system . For example , 
a higher level process of the storage system may initiate and 
control a process across the flash drives . However , a flash 
drive of the traditional storage system may include its own 
storage controller that also performs the process . Thus , for 
the traditional storage system , a higher level process ( e . g . , 
initiated by the storage system ) and a lower level process 
( e . g . , initiated by a storage controller of the storage system ) 
may both be performed . 
[ 0055 ] To resolve various deficiencies of a traditional 
storage system , operations may be performed by higher 
level processes and not by the lower level processes . For 
example , the flash storage system may include flash drives 
that do not include storage controllers that provide the 
process . Thus , the operating system of the flash storage 
system itself may initiate and control the process . This may 
be accomplished by a direct - mapped flash storage system 
that addresses data blocks within the flash drives directly 
and without an address translation performed by the storage 
controllers of the flash drives . 
f0056 ] The operating system of the flash storage system 
may identify and maintain a list of allocation units across 
multiple flash drives of the flash storage system . The allo 
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cation units may be entire erase blocks or multiple erase 
blocks . The operating system may maintain a map or address 
range that directly maps addresses to erase blocks of the 
flash drives of the flash storage system . 
[ 0057 ] Direct mapping to the erase blocks of the flash 
drives may be used to rewrite data and erase data . For 
example , the operations may be performed on one or more 
allocation units that include a first data and a second data 
where the first data is to be retained and the second data is 
no longer being used by the flash storage system . The 
operating system may initiate the process to write the first 
data to new locations within other allocation units and 
erasing the second data and marking the allocation units as 
being available for use for subsequent data . Thus , the 
process may only be performed by the higher level operating 
system of the flash storage system without an additional 
lower level process being performed by controllers of the 
flash drives . 
[ 0058 ] Advantages of the process being performed only by 
the operating system of the flash storage system include 
increased reliability of the flash drives of the flash storage 
system as unnecessary or redundant write operations are not 
being performed during the process . One possible point of 
novelty here is the concept of initiating and controlling the 
process at the operating system of the flash storage system . 
In addition , the process can be controlled by the operating 
system across multiple flash drives . This is contrast to the 
process being performed by a storage controller of a flash 
drive . 
[ 0059 ] A storage system can consist of two storage array 
controllers that share a set of drives for failover purposes , or 
it could consist of a single storage array controller that 
provides a storage service that utilizes multiple drives , or it 
could consist of a distributed network of storage array 
controllers each with some number of drives or some 
amount of Flash storage where the storage array controllers 
in the network collaborate to provide a complete storage 
service and collaborate on various aspects of a storage 
service including storage allocation and garbage collection . 
[ 0060 ] FIG . 1C illustrates a third example system 117 for 
data storage in accordance with some implementations . 
System 117 ( also referred to as “ storage system ” herein ) 
includes numerous elements for purposes of illustration 
rather than limitation . It may be noted that system 117 may 
include the same , more , or fewer elements configured in the 
same or different manner in other implementations . 
[ 0061 ] In one embodiment , system 117 includes a dual 
Peripheral Component Interconnect ( “ PCI ' ) flash storage 
device 118 with separately addressable fast write storage . 
System 117 may include a storage controller 119 . In one 
embodiment , storage controller 119A - D may be a CPU , 
ASIC , FPGA , or any other circuitry that may implement 
control structures necessary according to the present disclo 
sure . In one embodiment , system 117 includes flash memory 
devices ( e . g . , including flash memory devices 120a - n ) , 
operatively coupled to various channels of the storage 
device controller 119 . Flash memory devices 120a - n , may 
be presented to the controller 119A - D as an addressable 
collection of Flash pages , erase blocks , and / or control ele 
ments sufficient to allow the storage device controller 
119A - D to program and retrieve various aspects of the Flash . 
In one embodiment , storage device controller 119A - D may 
perform operations on flash memory devices 120A - N . 
including storing and retrieving data content of pages , 

arranging and erasing any blocks , tracking statistics related 
to the use and reuse of Flash memory pages , erase blocks , 
and cells , tracking and predicting error codes and faults 
within the Flash memory , controlling voltage levels associ 
ated with programming and retrieving contents of Flash 
cells , etc . 
50062 ] In one embodiment , system 117 may include RAM 
121 to store separately addressable fast - write data . In one 
embodiment , RAM 121 may be one or more separate 
discrete devices . In another embodiment , RAM 121 may be 
integrated into storage device controller 119 A - D or multiple 
storage device controllers . The RAM 121 may be utilized for 
other purposes as well , such as temporary program memory 
for a processing device ( e . g . , a CPU ) in the storage device 
controller 119 . 
[ 0063 ] In one embodiment , system 119A - D may include a 
stored energy device 122 , such as a rechargeable battery or 
a capacitor . Stored energy device 122 may store energy 
sufficient to power the storage device controller 119 , some 
amount of the RAM ( e . g . , RAM 121 ) , and some amount of 
Flash memory ( e . g . , Flash memory 120a - 120n ) for sufficient 
time to write the contents of RAM to Flash memory . In one 
embodiment , storage device controller 119A - D may write 
the contents of RAM to Flash Memory if the storage device 
controller detects loss of external power . 
[ 0064 ] In one embodiment , system 117 includes two data 
communications links 123a , 123b . In one embodiment , data 
communications links 123a , 123b may be PCI interfaces . In 
another embodiment , data communications links 123a , 123b 
may be based on other communications standards ( e . g . , 
HyperTransport , InfiniBand , etc . ) . Data communications 
links 123a , 123b may be based on non - volatile memory 
express ( “ NVMe ' ) or NVMe over fabrics ( ‘ NVMf ' ) speci 
fications that allow external connection to the storage device 
controller 119A - D from other components in the storage 
system 117 . It should be noted that data communications 
links may be interchangeably referred to herein as PCI buses 
for convenience . 
[ 0065 ] System 117 may also include an external power 
source ( not shown ) , which may be provided over one or both 
data communications links 123a , 123b , or which may be 
provided separately . An alternative embodiment includes a 
separate Flash memory ( not shown ) dedicated for use in 
storing the content of RAM 121 . The storage device con 
troller 119 A - D may present a logical device over a PCI bus 
which may include an addressable fast - write logical device , 
or a distinct part of the logical address space of the storage 
device 118 , which may be presented as PCI memory or as 
persistent storage . In one embodiment , operations to store 
into the device are directed into the RAM 121 . On power 
failure , the storage device controller 119A - D may write 
stored content associated with the addressable fast - write 
logical storage to Flash memory ( e . g . , Flash memory 120a 
n ) for long - term persistent storage . 
[ 0066 ] In one embodiment , the logical device may include 
some presentation of some or all of the content of the Flash 
memory devices 120a - n , where that presentation allows a 
storage system including a storage device 118 ( e . g . , storage 
system 117 ) to directly address Flash memory pages and 
directly reprogram erase blocks from storage system com 
ponents that are external to the storage device through the 
PCI bus . The presentation may also allow one or more of the 
external components to control and retrieve other aspects of 
the Flash memory including some or all of : tracking statis 
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tics related to use and reuse of Flash memory pages , erase 
blocks , and cells across all the Flash memory devices ; 
tracking and predicting error codes and faults within and 
across the Flash memory devices ; controlling voltage levels 
associated with programming and retrieving contents of 
Flash cells ; etc . 
[ 0067 ] In one embodiment , the stored energy device 122 
may be sufficient to ensure completion of in - progress opera 
tions to the Flash memory devices 107a - 120n stored energy 
device 122 may power storage device controller 119A - D and 
associated Flash memory devices ( e . g . , 120a - n ) for those 
operations , as well as for the storing of fast - write RAM to 
Flash memory . Stored energy device 122 may be used to 
store accumulated statistics and other parameters kept and 
tracked by the Flash memory devices 120a - n and / or the 
storage device controller 119 . Separate capacitors or stored 
energy devices ( such as smaller capacitors near or embedded 
within the Flash memory devices themselves ) may be used 
for some or all of the operations described herein . 
[ 0068 ] Various schemes may be used to track and optimize 
the life span of the stored energy component , such as 
adjusting voltage levels over time , partially discharging the 
storage energy device 122 to measure corresponding dis 
charge characteristics , etc . If the available energy decreases 
over time , the effective available capacity of the addressable 
fast - write storage may be decreased to ensure that it can be 
written safely based on the currently available stored energy . 
[ 0069 ] FIG . 1D illustrates a third example system 124 for 
data storage in accordance with some implementations . In 
one embodiment , system 124 includes storage controllers 
125a , 125b . In one embodiment , storage controllers 125a , 
125b are operatively coupled to Dual PCI storage devices 
119a , 119b and 119c , 119d , respectively . Storage controllers 
125a , 125b may be operatively coupled ( e . g . , via a storage 
network 130 ) to some number of host computers 127a - n . 
[ 0070 ] In one embodiment , two storage controllers ( e . g . , 
125a and 125b ) provide storage services , such as a SCS ) 
block storage array , a file server , an object server , a database 
or data analytics service , etc . The storage controllers 125a , 
125b may provide services through some number of network 
interfaces ( e . g . , 126a - d ) to host computers 127a - n outside of 
the storage system 124 . Storage controllers 125a , 125b may 
provide integrated services or an application entirely within 
the storage system 124 , forming a converged storage and 
compute system . The storage controllers 125a , 125b may 
utilize the fast write memory within or across storage 
devices 119a - d to journal in progress operations to ensure 
the operations are not lost on a power failure , storage 
controller removal , storage controller or storage system 
shutdown , or some fault of one or more software or hard 
ware components within the storage system 124 . 
[ 0071 ] In one embodiment , controllers 125a , 125b operate 
as PCI masters to one or the other PCI buses 128a , 128b . In 
another embodiment , 128a and 128b may be based on other 
communications standards ( e . g . , HyperTransport , Infini 
Band , etc . ) . Other storage system embodiments may operate 
storage controllers 125a , 125b as multi - masters for both PCI 
buses 128a , 128b . Alternately , a PCI / NVMe / NVMf switch 
ing infrastructure or fabric may connect multiple storage 
controllers . Some storage system embodiments may allow 
storage devices to communicate with each other directly 
rather than communicating only with storage controllers . In 
one embodiment , a storage device controller 119a may be 
operable under direction from a storage controller 125a to 

synthesize and transfer data to be stored into Flash memory 
devices from data that has been stored in RAM ( e . g . , RAM 
121 of FIG . 1C ) . For example , a recalculated version of 
RAM content may be transferred after a storage controller 
has determined that an operation has fully committed across 
the storage system , or when fast - write memory on the device 
has reached a certain used capacity , or after a certain amount 
of time , to ensure improve safety of the data or to release 
addressable fast - write capacity for reuse . This mechanism 
may be used , for example , to avoid a second transfer over a 
bus ( e . g . , 128a , 128b ) from the storage controllers 125a , 
125b . In one embodiment , a recalculation may include 
compressing data , attaching indexing or other metadata , 
combining multiple data segments together , performing era 
sure code calculations , etc . 
[ 0072 ] In one embodiment , under direction from a storage 
controller 125a , 125b , a storage device controller 119a , 119b 
may be operable to calculate and transfer data to other 
storage devices from data stored in RAM ( e . g . , RAM 121 of 
FIG . 1C ) without involvement of the storage controllers 
125a , 125b . This operation may be used to mirror data stored 
in one controller 125a to another controller 125b , or it could 
be used to offload compression , data aggregation , and / or 
erasure coding calculations and transfers to storage devices 
to reduce load on storage controllers or the storage controller 
interface 129a , 129b to the PCI bus 128a , 128b . 
[ 0073 ] A storage device controller 119 A - D may include 
mechanisms for implementing high availability primitives 
for use by other parts of a storage system external to the Dual 
PCI storage device 118 . For example , reservation or exclu 
sion primitives may be provided so that , in a storage system 
with two storage controllers providing a highly available 
storage service , one storage controller may prevent the other 
storage controller from accessing or continuing to access the 
storage device . This could be used , for example , in cases 
where one controller detects that the other controller is not 
functioning properly or where the interconnect between the 
two storage controllers may itself not be functioning prop 
erly . 
10074 ] In one embodiment , a storage system for use with 
Dual PCI direct mapped storage devices with separately 
addressable fast write storage includes systems that manage 
erase blocks or groups of erase blocks as allocation units for 
storing data on behalf of the storage service , or for storing 
metadata ( e . g . , indexes , logs , etc . ) associated with the stor 
age service , or for proper management of the storage system 
itself . Flash pages , which may be a few kilobytes in size , 
may be written as data arrives or as the storage system is to 
persist data for long intervals of time ( e . g . , above a defined 
threshold of time ) . To commit data more quickly , or to 
reduce the number of writes to the Flash memory devices , 
the storage controllers may first write data into the sepa 
rately addressable fast write storage on one more storage 
devices . 
[ 0075 ] In one embodiment , the storage controllers 125a , 
125b may initiate the use of erase blocks within and across 
storage devices ( e . g . , 118 ) in accordance with an age and 
expected remaining lifespan of the storage devices , or based 
on other statistics . The storage controllers 125a , 125b may 
initiate garbage collection and data migration data between 
storage devices in accordance with pages that are no longer 
needed as well as to manage Flash page and erase block 
lifespans and to manage overall system performance . 
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[ 0076 ] In one embodiment , the storage system 124 may 
utilize mirroring and / or erasure coding schemes as part of 
storing data into addressable fast write storage and / or as part 
of writing data into allocation units associated with erase 
blocks . Erasure codes may be used across storage devices , as 
well as within erase blocks or allocation units , or within and 
across Flash memory devices on a single storage device , to 
provide redundancy against single or multiple storage device 
failures or to protect against internal corruptions of Flash 
memory pages resulting from Flash memory operations or 
from degradation of Flash memory cells . Mirroring and 
erasure coding at various levels may be used to recover from 
multiple types of failures that occur separately or in com 
bination . 
[ 0077 ] The embodiments depicted with reference to FIGS . 
2A - G illustrate a storage cluster that stores user data , such 
as user data originating from one or more user or client 
systems or other sources external to the storage cluster . The 
storage cluster distributes user data across storage nodes 
housed within a chassis , or across multiple chassis , using 
erasure coding and redundant copies of metadata . Erasure 
coding refers to a method of data protection or reconstruc 
tion in which data is stored across a set of different locations , 
such as disks , storage nodes or geographic locations . Flash 
memory is one type of solid - state memory that may be 
integrated with the embodiments , although the embodiments 
may be extended to other types of solid - state memory or 
other storage medium , including non - solid state memory . 
Control of storage locations and workloads are distributed 
across the storage locations in a clustered peer - to - peer 
system . Tasks such as mediating communications between 
the various storage nodes , detecting when a storage node has 
become unavailable , and balancing I / Os ( inputs and outputs ) 
across the various storage nodes , are all handled on a 
distributed basis . Data is laid out or distributed across 
multiple storage nodes in data fragments or stripes that 
support data recovery in some embodiments . Ownership of 
data can be reassigned within a cluster , independent of input 
and output patterns . This architecture described in more 
detail below allows a storage node in the cluster to fail , with 
the system remaining operational , since the data can be 
reconstructed from other storage nodes and thus remain 
available for input and output operations . In various embodi 
ments , a storage node may be referred to as a cluster node , 
a blade , or a server . 
[ 0078 ] The storage cluster may be contained within a 
chassis , i . e . , an enclosure housing one or more storage 
nodes . A mechanism to provide power to each storage node , 
such as a power distribution bus , and a communication 
mechanism , such as a communication bus that enables 
communication between the storage nodes are included 
within the chassis . The storage cluster can run as an inde 
pendent system in one location according to some embodi 
ments . In one embodiment , a chassis contains at least two 
instances of both the power distribution and the communi 
cation bus which may be enabled or disabled independently . 
The internal communication bus may be an Ethernet bus , 
however , other technologies such as PCIe , InfiniBand , and 
others , are equally suitable . The chassis provides a port for 
an external communication bus for enabling communication 
between multiple chassis , directly or through a switch , and 
with client systems . The external communication may use a 
technology such as Ethernet , InfiniBand , Fibre Channel , etc . 
In some embodiments , the external communication bus uses 

different communication bus technologies for inter - chassis 
and client communication . If a switch is deployed within or 
between chassis , the switch may act as a translation between 
multiple protocols or technologies . When multiple chassis 
are connected to define a storage cluster , the storage cluster 
may be accessed by a client using either proprietary inter 
faces or standard interfaces such as network file system 
( ‘ NFS ' ) , common internet file system ( “ CIFS ' ) , small com 
puter system interface ( “ SCSI ' ) or hypertext transfer proto 
col ( ' HTTP ' ) . Translation from the client protocol may 
occur at the switch , chassis external communication bus or 
within each storage node . In some embodiments , multiple 
chassis may be coupled or connected to each other through 
an aggregator switch . A portion and / or all of the coupled or 
connected chassis may be designated as a storage cluster . As 
discussed above , each chassis can have multiple blades , each 
blade has a media access control ( “ MAC ' ) address , but the 
storage cluster is presented to an external network as having 
a single cluster IP address and a single MAC address in some 
embodiments . 
[ 0079 ] Each storage node may be one or more storage 
servers and each storage server is connected to one or more 
non - volatile solid state memory units , which may be 
referred to as storage units or storage devices . One embodi 
ment includes a single storage server in each storage node 
and between one to eight non - volatile solid state memory 
units , however this one example is not meant to be limiting . 
The storage server may include a processor , DRAM and 
interfaces for the internal communication bus and power 
distribution for each of the power buses . Inside the storage 
node , the interfaces and storage unit share a communication 
bus , e . g . , PCI Express , in some embodiments . The non 
volatile solid state memory units may directly access the 
internal communication bus interface through a storage node 
communication bus , or request the storage node to access the 
bus interface . The non - volatile solid state memory unit 
contains an embedded CPU , solid state storage controller , 
and a quantity of solid state mass storage , e . g . , between 2 - 32 
terabytes ( “ TB ' ) in some embodiments . An embedded vola 
tile storage medium , such as DRAM , and an energy reserve 
apparatus are included in the non - volatile solid state 
memory unit . In some embodiments , the energy reserve 
apparatus is a capacitor , super - capacitor , or battery that 
enables transferring a subset of DRAM contents to a stable 
storage medium in the case of power loss . In some embodi 
ments , the non - volatile solid state memory unit is con 
structed with a storage class memory , such as phase change 
or magnetoresistive random access memory ( MRAM ' ) that 
substitutes for DRAM and enables a reduced power hold - up 
apparatus . 

[ 0080 ] One of many features of the storage nodes and 
non - volatile solid state storage is the ability to proactively 
rebuild data in a storage cluster . The storage nodes and 
non - volatile solid state storage can determine when a storage 
node or non - volatile solid state storage in the storage cluster 
is unreachable , independent of whether there is an attempt to 
read data involving that storage node or non - volatile solid 
state storage . The storage nodes and non - volatile solid state 
storage then cooperate to recover and rebuild the data in at 
least partially new locations . This constitutes a proactive 
rebuild , in that the system rebuilds data without waiting until 
the data is needed for a read access initiated from a client 
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system employing the storage cluster . These and further 
details of the storage memory and operation thereof are 
discussed below . 
[ 0081 ] FIG . 2A is a perspective view of a storage cluster 
161 , with multiple storage nodes 150 and internal solid - state 
memory coupled to each storage node to provide network 
attached storage or storage area network , in accordance with 
some embodiments . A network attached storage , storage 
area network , or a storage cluster , or other storage memory , 
could include one or more storage clusters 161 , each having 
one or more storage nodes 150 , in a flexible and reconfigu 
rable arrangement of both the physical components and the 
amount of storage memory provided thereby . The storage 
cluster 161 is designed to fit in a rack , and one or more racks 
can be set up and populated as desired for the storage 
memory . The storage cluster 161 has a chassis 138 having 
multiple slots 142 . It should be appreciated that chassis 138 
may be referred to as a housing , enclosure , or rack unit . In 
one embodiment , the chassis 138 has fourteen slots 142 , 
although other numbers of slots are readily devised . For 
example , some embodiments have four slots , eight slots , 
sixteen slots , thirty - two slots , or other suitable number of 
slots . Each slot 142 can accommodate one storage node 150 
in some embodiments . Chassis 138 includes flaps 148 that 
can be utilized to mount the chassis 138 on a rack . Fans 144 
provide air circulation for cooling of the storage nodes 150 
and components thereof , although other cooling components 
could be used , or an embodiment could be devised without 
cooling components . A switch fabric 146 couples storage 
nodes 150 within chassis 138 together and to a network for 
communication to the memory . In an embodiment depicted 
in herein , the slots 142 to the left of the switch fabric 146 and 
fans 144 are shown occupied by storage nodes 150 , while 
the slots 142 to the right of the switch fabric 146 and fans 
144 are empty and available for insertion of storage node 
150 for illustrative purposes . This configuration is one 
example , and one or more storage nodes 150 could occupy 
the slots 142 in various further arrangements . The storage 
node arrangements need not be sequential or adjacent in 
some embodiments . Storage nodes 150 are hot pluggable , 
meaning that a storage node 150 can be inserted into a slot 
142 in the chassis 138 , or removed from a slot 142 , without 
stopping or powering down the system . Upon insertion or 
removal of storage node 150 from slot 142 , the system 
automatically reconfigures in order to recognize and adapt to 
the change . Reconfiguration , in some embodiments , 
includes restoring redundancy and / or rebalancing data or 
load . 
[ 0082 ] Each storage node 150 can have multiple compo 
nents . In the embodiment shown here , the storage node 150 
includes a printed circuit board 159 populated by a CPU 
156 , i . e . , processor , a memory 154 coupled to the CPU 156 , 
and a non - volatile solid state storage 152 coupled to the CPU 
156 , although other mountings and / or components could be 
used in further embodiments . The memory 154 has instruc 
tions which are executed by the CPU 156 and / or data 
operated on by the CPU 156 . As further explained below , the 
non - volatile solid state storage 152 includes flash or , in 
further embodiments , other types of solid - state memory . 
[ 0083 ] Referring to FIG . 2A , storage cluster 161 is scal 
able , meaning that storage capacity with non - uniform stor 
age sizes is readily added , as described above . One or more 
storage nodes 150 can be plugged into or removed from each 
chassis and the storage cluster self - configures in some 

embodiments . Plug - in storage nodes 150 , whether installed 
in a chassis as delivered or later added , can have different 
sizes . For example , in one embodiment a storage node 150 
can have any multiple of 4 TB , e . g . , 8 TB , 12 TB , 16 TB , 32 
TB , etc . In further embodiments , a storage node 150 could 
have any multiple of other storage amounts or capacities . 
Storage capacity of each storage node 150 is broadcast , and 
influences decisions of how to stripe the data . For maximum 
storage efficiency , an embodiment can self - configure as wide 
as possible in the stripe , subject to a predetermined require 
ment of continued operation with loss of up to one , or up to 
two , non - volatile solid state storage units 152 or storage 
nodes 150 within the chassis . 
[ 0084 ] FIG . 2B is a block diagram showing a communi 
cations interconnect 173 and power distribution bus 172 
coupling multiple storage nodes 150 . Referring back to FIG . 
2A , the communications interconnect 173 can be included in 
or implemented with the switch fabric 146 in some embodi 
ments . Where multiple storage clusters 161 occupy a rack , 
the communications interconnect 173 can be included in or 
implemented with a top of rack switch , in some embodi 
ments . As illustrated in FIG . 2B , storage cluster 161 is 
enclosed within a single chassis 138 . External port 176 is 
coupled to storage nodes 150 through communications inter 
connect 173 , while external port 174 is coupled directly to 
a storage node . External power port 178 is coupled to power 
distribution bus 172 . Storage nodes 150 may include varying 
amounts and differing capacities of non - volatile solid state 
storage 152 as described with reference to FIG . 2A . In 
addition , one or more storage nodes 150 may be a compute 
only storage node as illustrated in FIG . 2B . Authorities 168 
are implemented on the non - volatile solid state storages 152 , 
for example as lists or other data structures stored in 
memory . In some embodiments the authorities are stored 
within the non - volatile solid state storage 152 and supported 
by software executing on a controller or other processor of 
the non - volatile solid state storage 152 . In a further embodi 
ment , authorities 168 are implemented on the storage nodes 
150 , for example as lists or other data structures stored in the 
memory 154 and supported by software executing on the 
CPU 156 of the storage node 150 . Authorities 168 control 
how and where data is stored in the non - volatile solid state 
storages 152 in some embodiments . This control assists in 
determining which type of erasure coding scheme is applied 
to the data , and which storage nodes 150 have which 
portions of the data . Each authority 168 may be assigned to 
a non - volatile solid state storage 152 . Each authority may 
control a range of inode numbers , segment numbers , or other 
data identifiers which are assigned to data by a file system , 
by the storage nodes 150 , or by the non - volatile solid state 
storage 152 , in various embodiments . 
[ 0085 ] Every piece of data , and every piece of metadata , 
has redundancy in the system in some embodiments . In 
addition , every piece of data and every piece of metadata has 
an owner , which may be referred to as an authority . If that 
authority is unreachable , for example through failure of a 
storage node , there is a plan of succession for how to find 
that data or that metadata . In various embodiments , there are 
redundant copies of authorities 168 . Authorities 168 have a 
relationship to storage nodes 150 and non - volatile solid state 
storage 152 in some embodiments . Each authority 168 , 
covering a range of data segment numbers or other identi 
fiers of the data , may be assigned to a specific non - volatile 
solid state storage 152 . In some embodiments the authorities 
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168 for all of such ranges are distributed over the non 
volatile solid state storages 152 of a storage cluster . Each 
storage node 150 has a network port that provides access to 
the non - volatile solid state storage ( s ) 152 of that storage 
node 150 . Data can be stored in a segment , which is 
associated with a segment number and that segment number 
is an indirection for a configuration of a RAID ( redundant 
array of independent disks ) stripe in some embodiments . 
The assignment and use of the authorities 168 thus estab 
lishes an indirection to data . Indirection may be referred to 
as the ability to reference data indirectly , in this case via an 
authority 168 , in accordance with some embodiments . A 
segment identifies a set of non - volatile solid state storage 
152 and a local identifier into the set of non - volatile solid 
state storage 152 that may contain data . In some embodi 
ments , the local identifier is an offset into the device and may 
be reused sequentially by multiple segments . In other 
embodiments the local identifier is unique for a specific 
segment and never reused . The offsets in the non - volatile 
solid state storage 152 are applied to locating data for 
writing to or reading from the non - volatile solid state storage 
152 ( in the form of a RAID stripe ) . Data is striped across 
multiple units of non - volatile solid state storage 152 , which 
may include or be different from the non - volatile solid state 
storage 152 having the authority 168 for a particular data 
segment . 
[ 0086 ] If there is a change in where a particular segment 
of data is located , e . g . , during a data move or a data 
reconstruction , the authority 168 for that data segment 
should be consulted , at that non - volatile solid state storage 
152 or storage node 150 having that authority 168 . In order 
to locate a particular piece of data , embodiments calculate a 
hash value for a data segment or apply an inode number or 
a data segment number . The output of this operation points 
to a non - volatile solid state storage 152 having the authority 
168 for that particular piece of data . In some embodiments 
there are two stages to this operation . The first stage maps an 
entity identifier ( ID ) , e . g . , a segment number , inode number , 
or directory number to an authority identifier . This mapping 
may include a calculation such as a hash or a bit mask . The 
second stage is mapping the authority identifier to a par 
ticular non - volatile solid state storage 152 , which may be 
done through an explicit mapping . The operation is repeat 
able , so that when the calculation is performed , the result of 
the calculation repeatably and reliably points to a particular 
non - volatile solid state storage 152 having that authority 
168 . The operation may include the set of reachable storage 
nodes as input . If the set of reachable non - volatile solid state 
storage units changes the optimal set changes . In some 
embodiments , the persisted value is the current assignment 
( which is always true ) and the calculated value is the target 
assignment the cluster will attempt to reconfigure towards . 
This calculation may be used to determine the optimal 
non - volatile solid state storage 152 for an authority in the 
presence of a set of non - volatile solid state storage 152 that 
are reachable and constitute the same cluster . The calcula 
tion also determines an ordered set of peer non - volatile solid 
state storage 152 that will also record the authority to 
non - volatile solid state storage mapping so that the authority 
may be determined even if the assigned non - volatile solid 
state storage is unreachable . A duplicate or substitute author 
ity 168 may be consulted if a specific authority 168 is 
unavailable in some embodiments . 

[ 0087 ] With reference to FIGS . 2A and 2B , two of the 
many tasks of the CPU 156 on a storage node 150 are to 
break up write data , and reassemble read data . When the 
system has determined that data is to be written , the author 
ity 168 for that data is located as above . When the segment 
ID for data is already determined the request to write is 
forwarded to the non - volatile solid state storage 152 cur 
rently determined to be the host of the authority 168 deter 
mined from the segment . The host CPU 156 of the storage 
node 150 , on which the non - volatile solid state storage 152 
and corresponding authority 168 reside , then breaks up or 
shards the data and transmits the data out to various non 
volatile solid state storage 152 . The transmitted data is 
written as a data stripe in accordance with an erasure coding 
scheme . In some embodiments , data is requested to be 
pulled , and in other embodiments , data is pushed . In reverse , 
when data is read , the authority 168 for the segment ID 
containing the data is located as described above . The host 
CPU 156 of the storage node 150 on which the non - volatile 
solid state storage 152 and corresponding authority 168 
reside requests the data from the non - volatile solid state 
storage and corresponding storage nodes pointed to by the 
authority . In some embodiments the data is read from flash 
storage as a data stripe . The host CPU 156 of storage node 
150 then reassembles the read data , correcting any errors ( if 
present ) according to the appropriate erasure coding scheme , 
and forwards the reassembled data to the network . In further 
embodiments , some or all of these tasks can be handled in 
the non - volatile solid state storage 152 . In some embodi 
ments , the segment host requests the data be sent to storage 
node 150 by requesting pages from storage and then sending 
the data to the storage node making the original request . 
[ 0088 ] In some systems , for example in UNIX - style file 
systems , data is handled with an index node or inode , which 
specifies a data structure that represents an object in a file 
system . The object could be a file or a directory , for example . 
Metadata may accompany the object , as attributes such as 
permission data and a creation timestamp , among other 
attributes . A segment number could be assigned to all or a 
portion of such an object in a file system . In other systems , 
data segments are handled with a segment number assigned 
elsewhere . For purposes of discussion , the unit of distribu 
tion is an entity , and an entity can be a file , a directory or a 
segment . That is , entities are units of data or metadata stored 
by a storage system . Entities are grouped into sets called 
authorities . Each authority has an authority owner , which is 
a storage node that has the exclusive right to update the 
entities in the authority . In other words , a storage node 
contains the authority , and that the authority , in turn , con 
tains entities . 
100891 . A segment is a logical container of data in accor 
dance with some embodiments . A segment is an address 
space between medium address space and physical flash 
locations , i . e . , the data segment number , are in this address 
space . Segments may also contain meta - data , which enable 
data redundancy to be restored ( rewritten to different flash 
locations or devices ) without the involvement of higher level 
software . In one embodiment , an internal format of a seg 
ment contains client data and medium mappings to deter 
mine the position of that data . Each data segment is pro 
tected , e . g . , from memory and other failures , by breaking the 
segment into a number of data and parity shards , where 
applicable . The data and parity shards are distributed , i . e . , 
striped , across non - volatile solid state storage 152 coupled 
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to the host CPUs 156 ( See FIGS . 2E and 2G ) in accordance 
with an erasure coding scheme . Usage of the term segments 
refers to the container and its place in the address space of 
segments in some embodiments . Usage of the term stripe 
refers to the same set of shards as a segment and includes 
how the shards are distributed along with redundancy or 
parity information in accordance with some embodiments . 
[ 0090 ] A series of address - space transformations takes 
place across an entire storage system . At the top are the 
directory entries ( file names ) which link to an inode . Inodes 
point into medium address space , where data is logically 
stored . Medium addresses may be mapped through a series 
of indirect mediums to spread the load of large files , or 
implement data services like deduplication or snapshots . 
Medium addresses may be mapped through a series of 
indirect mediums to spread the load of large files , or 
implement data services like deduplication or snapshots . 
Segment addresses are then translated into physical flash 
locations . Physical flash locations have an address range 
bounded by the amount of flash in the system in accordance 
with some embodiments . Medium addresses and segment 
addresses are logical containers , and in some embodiments 
use a 128 bit or larger identifier so as to be practically 
infinite , with a likelihood of reuse calculated as longer than 
the expected life of the system . Addresses from logical 
containers are allocated in a hierarchical fashion in some 
embodiments . Initially , each non - volatile solid state storage 
unit 152 may be assigned a range of address space . Within 
this assigned range , the non - volatile solid state storage 152 
is able to allocate addresses without synchronization with 
other non - volatile solid state storage 152 . 
[ 0091 ] Data and metadata is stored by a set of underlying 
storage layouts that are optimized for varying workload 
patterns and storage devices . These layouts incorporate 
multiple redundancy schemes , compression formats and 
index algorithms . Some of these layouts store information 
about authorities and authority masters , while others store 
file metadata and file data . The redundancy schemes include 
error correction codes that tolerate corrupted bits within a 
single storage device ( such as a NAND flash chip ) , erasure 
codes that tolerate the failure of multiple storage nodes , and 
replication schemes that tolerate data center or regional 
failures . In some embodiments , low density parity check 
( ?LDPC ' ) code is used within a single storage unit . Reed 
Solomon encoding is used within a storage cluster , and 
mirroring is used within a storage grid in some embodi 
ments . Metadata may be stored using an ordered log struc 
tured index ( such as a Log Structured Merge Tree ) , and large 
data may not be stored in a log structured layout . 
[ 0092 ] In order to maintain consistency across multiple 
copies of an entity , the storage nodes agree implicitly on two 
things through calculations : ( 1 ) the authority that contains 
the entity , and ( 2 ) the storage node that contains the author - 
ity . The assignment of entities to authorities can be done by 
pseudo randomly assigning entities to authorities , by split 
ting entities into ranges based upon an externally produced 
key , or by placing a single entity into each authority . 
Examples of pseudorandom schemes are linear hashing and 
the Replication Under Scalable Hashing ( “ RUSH ' ) family of 
hashes , including Controlled Replication Under Scalable 
Hashing ( CRUSH ' ) . In some embodiments , pseudo - ran 
dom assignment is utilized only for assigning authorities to 
nodes because the set of nodes can change . The set of 
authorities cannot change so any subjective function may be 

applied in these embodiments . Some placement schemes 
automatically place authorities on storage nodes , while other 
placement schemes rely on an explicit mapping of authori 
ties to storage nodes . In some embodiments , a pseudoran 
dom scheme is utilized to map from each authority to a set 
of candidate authority owners . A pseudorandom data distri 
bution function related to CRUSH may assign authorities to 
storage nodes and create a list of where the authorities are 
assigned . Each storage node has a copy of the pseudorandom 
data distribution function , and can arrive at the same calcu 
lation for distributing , and later finding or locating an 
authority . Each of the pseudorandom schemes requires the 
reachable set of storage nodes as input in some embodiments 
in order to conclude the same target nodes . Once an entity 
has been placed in an authority , the entity may be stored on 
physical devices so that no expected failure will lead to 
unexpected data loss . In some embodiments , rebalancing 
algorithms attempt to store the copies of all entities within 
an authority in the same layout and on the same set of 
machines . 

[ 0093 ] Examples of expected failures include device fail 
ures , stolen machines , datacenter fires , and regional disas 
ters , such as nuclear or geological events . Different failures 
lead to different levels of acceptable data loss . In some 
embodiments , a stolen storage node impacts neither the 
security nor the reliability of the system , while depending on 
system configuration , a regional event could lead to no loss 
of data , a few seconds or minutes of lost updates , or even 
complete data loss . 
[ 0094 ] In the embodiments , the placement of data for 
storage redundancy is independent of the placement of 
authorities for data consistency . In some embodiments , 
storage nodes that contain authorities do not contain any 
persistent storage . Instead , the storage nodes are connected 
to non - volatile solid state storage units that do not contain 
authorities . The communications interconnect between stor 
age nodes and non - volatile solid state storage units consists 
of multiple communication technologies and has non - uni 
form performance and fault tolerance characteristics . In 
some embodiments , as mentioned above , non - volatile solid 
state storage units are connected to storage nodes via PCI 
express , storage nodes are connected together within a 
single chassis using Ethernet backplane , and chassis are 
connected together to form a storage cluster . Storage clusters 
are connected to clients using Ethernet or fiber channel in 
some embodiments . If multiple storage clusters are config 
ured into a storage grid , the multiple storage clusters are 
connected using the Internet or other long - distance network 
ing links , such as a “ metro scale ” link or private link that 
does not traverse the internet . 
10095 ) Authority owners have the exclusive right to 
modify entities , to migrate entities from one non - volatile 
solid state storage unit to another non - volatile solid state 
storage unit , and to add and remove copies of entities . This 
allows for maintaining the redundancy of the underlying 
data . When an authority owner fails , is going to be decom 
missioned , or is overloaded , the authority is transferred to a 
new storage node . Transient failures make it non - trivial to 
ensure that all non - faulty machines agree upon the new 
authority location . The ambiguity that arises due to transient 
failures can be achieved automatically by a consensus 
protocol such as Paxos , hot - warm failover schemes , via 
manual intervention by a remote system administrator , or by 
a local hardware administrator ( such as by physically 
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removing the failed machine from the cluster , or pressing a 
button on the failed machine ) . In some embodiments , a 
consensus protocol is used , and failover is automatic . If too 
many failures or replication events occur in too short a time 
period , the system goes into a self - preservation mode and 
halts replication and data movement activities until an 
administrator intervenes in accordance with some embodi 
ments . 
[ 0096 ] As authorities are transferred between storage 
nodes and authority owners update entities in their authori 
ties , the system transfers messages between the storage 
nodes and non - volatile solid state storage units . With regard 
to persistent messages , messages that have different pur 
poses are of different types . Depending on the type of the 
message , the system maintains different ordering and dura 
bility guarantees . As the persistent messages are being 
processed , the messages are temporarily stored in multiple 
durable and non - durable storage hardware technologies . In 
some embodiments , messages are stored in RAM , NVRAM 
and on NAND flash devices , and a variety of protocols are 
used in order to make efficient use of each storage medium . 
Latency - sensitive client requests may be persisted in repli 
cated NVRAM , and then later NAND , while background 
rebalancing operations are persisted directly to NAND . 
[ 0097 ] Persistent messages are persistently stored prior to 
being transmitted . This allows the system to continue to 
serve client requests despite failures and component replace 
ment . Although many hardware components contain unique 
identifiers that are visible to system administrators , manu 
facturer , hardware supply chain and ongoing monitoring 
quality control infrastructure , applications running on top of 
the infrastructure address virtualize addresses . These virtu 
alized addresses do not change over the lifetime of the 
storage system , regardless of component failures and 
replacements . This allows each component of the storage 
system to be replaced over time without reconfiguration or 
disruptions of client request processing , i . e . , the system 
supports non - disruptive upgrades . 
[ 0098 ] In some embodiments , the virtualized addresses are 
stored with sufficient redundancy . A continuous monitoring 
system correlates hardware and software status and the 
hardware identifiers . This allows detection and prediction of 
failures due to faulty components and manufacturing details . 
The monitoring system also enables the proactive transfer of 
authorities and entities away from impacted devices before 
failure occurs by removing the component from the critical 
path in some embodiments . 
[ 0099 ] FIG . 2C is a multiple level block diagram , showing 
contents of a storage node 150 and contents of a non - volatile 
solid state storage 152 of the storage node 150 . Data is 
communicated to and from the storage node 150 by a 
network interface controller ( NIC ) 202 in some embodi 
ments . Each storage node 150 has a CPU 156 , and one or 
more non - volatile solid state storage 152 , as discussed 
above . Moving down one level in FIG . 2C , each non - volatile 
solid state storage 152 has a relatively fast non - volatile solid 
state memory , such as nonvolatile random access memory 
( ?NVRAM ' ) 204 , and flash memory 206 . In some embodi 
ments , NVRAM 204 may be a component that does not 
require program / erase cycles ( DRAM , MRAM , PCM ) , and 
can be a memory that can support being written vastly more 
often than the memory is read from . Moving down another 
level in FIG . 2C , the NVRAM 204 is implemented in one 
embodiment as high speed volatile memory , such as 

dynamic random access memory ( DRAM ) 216 , backed up 
by energy reserve 218 . Energy reserve 218 provides suffi 
cient electrical power to keep the DRAM 216 powered long 
enough for contents to be transferred to the flash memory 
206 in the event of power failure . In some embodiments , 
energy reserve 218 is a capacitor , super - capacitor , battery , or 
other device , that supplies a suitable supply of energy 
sufficient to enable the transfer of the contents of DRAM 
216 to a stable storage medium in the case of power loss . 
The flash memory 206 is implemented as multiple flash dies 
222 , which may be referred to as packages of flash dies 222 
or an array of flash dies 222 . It should be appreciated that the 
flash dies 222 could be packaged in any number of ways , 
with a single die per package , multiple dies per package ( i . e . 
multichip packages ) , in hybrid packages , as bare dies on a 
printed circuit board or other substrate , as encapsulated dies , 
etc . In the embodiment shown , the non - volatile solid state 
storage 152 has a controller 212 or other processor , and an 
input output ( 1 / 0 ) port 210 coupled to the controller 212 . I / O 
port 210 is coupled to the CPU 156 and / or the network 
interface controller 202 of the flash storage node 150 . Flash 
input output ( 1 / 0 ) port 220 is coupled to the flash dies 222 , 
and a direct memory access unit ( DMA ) 214 is coupled to 
the controller 212 , the DRAM 216 and the flash dies 222 . In 
the embodiment shown , the I / O port 210 , controller 212 , 
DMA unit 214 and flash I / O port 220 are implemented on a 
programmable logic device ( ?PLD ' ) 208 , e . g . , a field pro 
grammable gate array ( FPGA ) . In this embodiment , each 
flash die 222 has pages , organized as sixteen kB ( kilobyte ) 
pages 224 , and a register 226 through which data can be 
written to or read from the flash die 222 . In further embodi 
ments , other types of solid - state memory are used in place 
of , or in addition to flash memory illustrated within flash die 
222 . 
[ 0100 ] Storage clusters 161 , in various embodiments as 
disclosed herein , can be contrasted with storage arrays in 
general . The storage nodes 150 are part of a collection that 
creates the storage cluster 161 . Each storage node 150 owns 
a slice of data and computing required to provide the data . 
Multiple storage nodes 150 cooperate to store and retrieve 
the data . Storage memory or storage devices , as used in 
storage arrays in general , are less involved with processing 
and manipulating the data . Storage memory or storage 
devices in a storage array receive commands to read , write , 
or erase data . The storage memory or storage devices in a 
storage array are not aware of a larger system in which they 
are embedded , or what the data means . Storage memory or 
storage devices in storage arrays can include various types 
of storage memory , such as RAM , solid state drives , hard 
disk drives , etc . The storage units 152 described herein have 
multiple interfaces active simultaneously and serving mul 
tiple purposes . In some embodiments , some of the function 
ality of a storage node 150 is shifted into a storage unit 152 , 
transforming the storage unit 152 into a combination of 
storage unit 152 and storage node 150 . Placing computing 
( relative to storage data ) into the storage unit 152 places this 
computing closer to the data itself . The various system 
embodiments have a hierarchy of storage node layers with 
different capabilities . By contrast , in a storage array , a 
controller owns and knows everything about all of the data 
that the controller manages in a shelf or storage devices . In 
a storage cluster 161 , as described herein , multiple control 
lers in multiple storage units 152 and / or storage nodes 150 
cooperate in various ways ( e . g . , for erasure coding , data 
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sharding , metadata communication and redundancy , storage 
capacity expansion or contraction , data recovery , and so on ) . 
[ 0101 ] FIG . 2D shows a storage server environment , 
which uses embodiments of the storage nodes 150 and 
storage units 152 of FIGS . 2A - C . In this version , each 
storage unit 152 has a processor such as controller 212 ( see 
FIG . 2C ) , an FPGA ( field programmable gate array ) , flash 
memory 206 , and NVRAM 204 ( which is super - capacitor 
backed DRAM 216 , see FIGS . 2B and 2C ) on a PCIe 
( peripheral component interconnect express ) board in a 
chassis 138 ( see FIG . 2A ) . The storage unit 152 may be 
implemented as a single board containing storage , and may 
be the largest tolerable failure domain inside the chassis . In 
some embodiments , up to two storage units 152 may fail and 
the device will continue with no data loss . 
[ 0102 ] The physical storage is divided into named regions 
based on application usage in some embodiments . The 
NVRAM 204 is a contiguous block of reserved memory in 
the storage unit 152 DRAM 216 , and is backed by NAND 
flash . NVRAM 204 is logically divided into multiple 
memory regions written for two as spool ( e . g . , spool _ 
region ) . Space within the NVRAM 204 spools is managed 
by each authority 168 independently . Each device provides 
an amount of storage space to each authority 168 . That 
authority 168 further manages lifetimes and allocations 
within that space . Examples of a spool include distributed 
transactions or notions . When the primary power to a storage 
unit 152 fails , onboard super - capacitors provide a short 
duration of power hold up . During this holdup interval , the 
contents of the NVRAM 204 are flushed to flash memory 
206 . On the next power - on , the contents of the NVRAM 204 
are recovered from the flash memory 206 . 
[ 0103 ] As for the storage unit controller , the responsibility 
of the logical “ controller ” is distributed across each of the 
blades containing authorities 168 . This distribution of logi 
cal control is shown in FIG . 2D as a host controller 242 , 
mid - tier controller 244 and storage unit controller ( s ) 246 . 
Management of the control plane and the storage plane are 
treated independently , although parts may be physically 
co - located on the same blade . Each authority 168 effectively 
serves as an independent controller . Each authority 168 
provides its own data and metadata structures , its own 
background workers , and maintains its own lifecycle . 
[ 0104 ] FIG . 2E is a blade 252 hardware block diagram , 
showing a control plane 254 , compute and storage planes 
256 , 258 , and authorities 168 interacting with underlying 
physical resources , using embodiments of the storage nodes 
150 and storage units 152 of FIGS . 2A - C in the storage 
server environment of FIG . 2D . The control plane 254 is 
partitioned into a number of authorities 168 which can use 
the compute resources in the compute plane 256 to run on 
any of the blades 252 . The storage plane 258 is partitioned 
into a set of devices , each of which provides access to flash 
206 and NVRAM 204 resources . 
[ 0105 ] In the compute and storage planes 256 , 258 of FIG . 
2E , the authorities 168 interact with the underlying physical 
resources ( i . e . , devices ) . From the point of view of an 
authority 168 , its resources are striped over all of the 
physical devices . From the point of view of a device , it 
provides resources to all authorities 168 , irrespective of 
where the authorities happen to run . Each authority 168 has 
allocated or has been allocated one or more partitions 260 of 
storage memory in the storage units 152 , e . g . partitions 260 
in flash memory 206 and NVRAM 204 . Each authority 168 

uses those allocated partitions 260 that belong to it , for 
writing or reading user data . Authorities can be associated 
with differing amounts of physical storage of the system . For 
example , one authority 168 could have a larger number of 
partitions 260 or larger sized partitions 260 in one or more 
storage units 152 than one or more other authorities 168 . 
10106 ] FIG . 2F depicts elasticity software layers in blades 
252 of a storage cluster , in accordance with some embodi 
ments . In the elasticity structure , elasticity software is sym 
metric , i . e . , each blade ' s compute module 270 runs the three 
identical layers of processes depicted in FIG . 2F . Storage 
managers 274 execute read and write requests from other 
blades 252 for data and metadata stored in local storage unit 
152 NVRAM 204 and flash 206 . Authorities 168 fulfill client 
requests by issuing the necessary reads and writes to the 
blades 252 on whose storage units 152 the corresponding 
data or metadata resides . Endpoints 272 parse client con 
nection requests received from switch fabric 146 supervi 
sory software , relay the client connection requests to the 
authorities 168 responsible for fulfillment , and relay the 
authorities ' 168 responses to clients . The symmetric three 
layer structure enables the storage system ' s high degree of 
concurrency . Elasticity scales out efficiently and reliably in 
these embodiments . In addition , elasticity implements a 
unique scale - out technique that balances work evenly across 
all resources regardless of client access pattern , and maxi 
mizes concurrency by eliminating much of the need for 
inter - blade coordination that typically occurs with conven 
tional distributed locking . 
[ 0107 ] Still referring to FIG . 2F , authorities 168 running in 
the compute modules 270 of a blade 252 perform the internal 
operations required to fulfill client requests . One feature of 
elasticity is that authorities 168 are stateless , i . e . , they cache 
active data and metadata in their own blades ' 252 DRAMS 
for fast access , but the authorities store every update in their 
NVRAM 204 partitions on three separate blades 252 until 
the update has been written to flash 206 . All the storage 
system writes to NVRAM 204 are in triplicate to partitions 
on three separate blades 252 in some embodiments . With 
triple - mirrored NVRAM 204 and persistent storage pro 
tected by parity and Reed - Solomon RAID checksums , the 
storage system can survive concurrent failure of two blades 
252 with no loss of data , metadata , or access to either . 
[ 0108 ] Because authorities 168 are stateless , they can 
migrate between blades 252 . Each authority 168 has a 
unique identifier . NVRAM 204 and flash 206 partitions are 
associated with authorities ' 168 identifiers , not with the 
blades 252 on which they are running in some . Thus , when 
an authority 168 migrates , the authority 168 continues to 
manage the same storage partitions from its new location . 
When a new blade 252 is installed in an embodiment of the 
storage cluster , the system automatically rebalances load by : 
partitioning the new blade ' s 252 storage for use by the 
system ' s authorities 168 , migrating selected authorities 168 
to the new blade 252 , starting endpoints 272 on the new 
blade 252 and including them in the switch fabric ' s 146 
client connection distribution algorithm . 
0109 ] From their new locations , migrated authorities 168 
persist the contents of their NVRAM 204 partitions on flash 
206 , process read and write requests from other authorities 
168 , and fulfill the client requests that endpoints 272 direct 
to them . Similarly , if a blade 252 fails or is removed , the 
system redistributes its authorities 168 among the system ' s 
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remaining blades 252 . The redistributed authorities 168 
continue to perform their original functions from their new 
locations . 
[ 0110 ] FIG . 2G depicts authorities 168 and storage 
resources in blades 252 of a storage cluster , in accordance 
with some embodiments . Each authority 168 is exclusively 
responsible for a partition of the flash 206 and NVRAM 204 
on each blade 252 . The authority 168 manages the content 
and integrity of its partitions independently of other authori 
ties 168 . Authorities 168 compress incoming data and pre 
serve it temporarily in their NVRAM 204 partitions , and 
then consolidate , RAID - protect , and persist the data in 
segments of the storage in their flash 206 partitions . As the 
authorities 168 write data to flash 206 , storage managers 274 
perform the necessary flash translation to optimize write 
performance and maximize media longevity . In the back 
ground , authorities 168 “ garbage collect , ” or reclaim space 
occupied by data that clients have made obsolete by over 
writing the data . It should be appreciated that since authori 
ties ' 168 partitions are disjoint , there is no need for distrib 
uted locking to execute client and writes or to perform 
background functions . 
[ 0111 ] The embodiments described herein may utilize 
various software , communication and / or networking proto 
cols . In addition , the configuration of the hardware and / or 
software may be adjusted to accommodate various proto 
cols . For example , the embodiments may utilize Active 
Directory , which is a database based system that provides 
authentication , directory , policy , and other services in a 
WINDOWSTM environment . In these embodiments , LDAP 
( Lightweight Directory Access Protocol ) is one example 
application protocol for querying and modifying items in 
directory service providers such as Active Directory . In 
some embodiments , a network lock manager ( ‘ NLM ' ) is 
utilized as a facility that works in cooperation with the 
Network File System ( ™NFS ' ) to provide a System V style of 
advisory file and record locking over a network . The Server 
Message Block ( ' SMB ' ) protocol , one version of which is 
also known as Common Internet File System ( “ CIFS ' ) , may 
be integrated with the storage systems discussed herein . 
SMP operates as an application - layer network protocol 
typically used for providing shared access to files , printers , 
and serial ports and miscellaneous communications between 
nodes on a network . SMB also provides an authenticated 
inter - process communication mechanism . AMAZONTM S3 
( Simple Storage Service ) is a web service offered by Ama 
zon Web Services , and the systems described herein may 
interface with Amazon S3 through web services interfaces 
( REST ( representational state transfer ) , SOAP ( simple 
object access protocol ) , and BitTorrent ) . A RESTful API 
( application programming interface ) breaks down a trans 
action to create a series of small modules . Each module 
addresses a particular underlying part of the transaction . The 
control or permissions provided with these embodiments , 
especially for object data , may include utilization of an 
access control list ( ‘ ACL ' ) . The ACL is a list of permissions 
attached to an object and the ACL specifies which users or 
system processes are granted access to objects , as well as 
what operations are allowed on given objects . The systems 
may utilize Internet Protocol version 6 ( ?IPv6 ' ) , as well as 
IPv4 , for the communications protocol that provides an 
identification and location system for computers on net 
works and routes traffic across the Internet . The routing of 
packets between networked systems may include Equal - cost 

multi - path routing ( ' ECMP ' ) , which is a routing strategy 
where next - hop packet forwarding to a single destination 
can occur over multiple “ best paths ” which tie for top place 
in routing metric calculations . Multi - path routing can be 
used in conjunction with most routing protocols , because it 
is a per - hop decision limited to a single router . The software 
may support Multi - tenancy , which is an architecture in 
which a single instance of a software application serves 
multiple customers . Each customer may be referred to as a 
tenant . Tenants may be given the ability to customize some 
parts of the application , but may not customize the appli 
cation ' s code , in some embodiments . The embodiments may 
maintain audit logs . An audit log is a document that records 
an event in a computing system . In addition to documenting 
what resources were accessed , audit log entries typically 
include destination and source addresses , a timestamp , and 
user login information for compliance with various regula 
tions . The embodiments may support various key manage 
ment policies , such as encryption key rotation . In addition , 
the system may support dynamic root passwords or some 
variation dynamically changing passwords . 
[ 0112 ] FIG . 3A sets forth a diagram of a storage system 
306 that is coupled for data communications with a cloud 
services provider 302 in accordance with some embodi 
ments of the present disclosure . Although depicted in less 
detail , the storage system 306 depicted in FIG . 3A may be 
similar to the storage systems described above with refer 
ence to FIGS . 1A - 1D and FIGS . 2A - 2G . In some embodi 
ments , the storage system 306 depicted in FIG . 3A may be 
embodied as a storage system that includes imbalanced 
active / active controllers , as a storage system that includes 
balanced active / active controllers , as a storage system that 
includes active / active controllers where less than all of each 
controller ' s resources are utilized such that each controller 
has reserve resources that may be used to support failover , 
as a storage system that includes fully active / active control 
lers , as a storage system that includes dataset - segregated 
controllers , as a storage system that includes dual - layer 
architectures with front - end controllers and back - end inte 
grated storage controllers , as a storage system that includes 
scale - out clusters of dual - controller arrays , as well as com 
binations of such embodiments . 
10113 ] . In the example depicted in FIG . 3A , the storage 
system 306 is coupled to the cloud services provider 302 via 
a data communications link 304 . The data communications 
link 304 may be embodied as a dedicated data communica 
tions link , as a data communications pathway that is pro 
vided through the use of one or data communications 
networks such as a wide area network ( “ WAN ' ) or local area 
network ( “ LAN ' ) , or as some other mechanism capable of 
transporting digital information between the storage system 
306 and the cloud services provider 302 . Such a data 
communications link 304 may be fully wired , fully wireless , 
or some aggregation of wired and wireless data communi 
cations pathways . In such an example , digital information 
may be exchanged between the storage system 306 and the 
cloud services provider 302 via the data communications 
link 304 using one or more data communications protocols . 
For example , digital information may be exchanged between 
the storage system 306 and the cloud services provider 302 
via the data communications link 304 using the handheld 
device transfer protocol ( ‘ HDTP ' ) , hypertext transfer pro 
tocol ( ' HTTP ' ) , internet protocol ( IP ' ) , real - time transfer 
protocol ( ?RTP ' ) , transmission control protocol ( “ TCP ' ) , 
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user datagram protocol ( ?UDP ' ) , wireless application pro 
tocol ( “ WAP ' ) , or other protocol . 
[ 0114 ] The cloud services provider 302 depicted in FIG . 
3A may be embodied , for example , as a system and com 
puting environment that provides services to users of the 
cloud services provider 302 through the sharing of comput 
ing resources via the data communications link 304 . The 
cloud services provider 302 may provide on - demand access 
to a shared pool of configurable computing resources such as 
computer networks , servers , storage , applications and ser 
vices , and so on . The shared pool of configurable resources 
may be rapidly provisioned and released to a user of the 
cloud services provider 302 with minimal management 
effort . Generally , the user of the cloud services provider 302 
is unaware of the exact computing resources utilized by the 
cloud services provider 302 to provide the services . 
Although in many cases such a cloud services provider 302 
may be accessible via the Internet , readers of skill in the art 
will recognize that any system that abstracts the use of 
shared resources to provide services to a user through any 
data communications link may be considered a cloud ser 
vices provider 302 . 
[ 0115 ] In the example depicted in FIG . 3A , the cloud 
services provider 302 may be configured to provide a variety 
of services to the storage system 306 and users of the storage 
system 306 through the implementation of various service 
models . For example , the cloud services provider 302 may 
be configured to provide services to the storage system 306 
and users of the storage system 306 through the implemen 
tation of an infrastructure as a service ( IaaS ) service model 
where the cloud services provider 302 offers computing 
infrastructure such as virtual machines and other resources 
as a service to subscribers . In addition , the cloud services 
provider 302 may be configured to provide services to the 
storage system 306 and users of the storage system 306 
through the implementation of a platform as a service 
( “ PaaS ) service model where the cloud services provider 
302 offers a development environment to application devel 
opers . Such a development environment may include , for 
example , an operating system , programming - language 
execution environment , database , web server , or other com 
ponents that may be utilized by application developers to 
develop and run software solutions on a cloud platform . 
Furthermore , the cloud services provider 302 may be con 
figured to provide services to the storage system 306 and 
users of the storage system 306 through the implementation 
of a software as a service ( " SaaS ' ) service model where the 
cloud services provider 302 offers application software , 
databases , as well as the platforms that are used to run the 
applications to the storage system 306 and users of the 
storage system 306 , providing the storage system 306 and 
users of the storage system 306 with on - demand software 
and eliminating the need to install and run the application on 
local computers , which may simplify maintenance and sup 
port of the application . The cloud services provider 302 may 
be further configured to provide services to the storage 
system 306 and users of the storage system 306 through the 
implementation of an authentication as a service ( “ AaaS ' ) 
service model where the cloud services provider 302 offers 
authentication services that can be used to secure access to 
applications , data sources , or other resources . The cloud 
services provider 302 may also be configured to provide 
services to the storage system 306 and users of the storage 
system 306 through the implementation of a storage as a 

service model where the cloud services provider 302 offers 
access to its storage infrastructure for use by the storage 
system 306 and users of the storage system 306 . Readers 
will appreciate that the cloud services provider 302 may be 
configured to provide additional services to the storage 
system 306 and users of the storage system 306 through the 
implementation of additional service models , as the service 
models described above are included only for explanatory 
purposes and in no way represent a limitation of the services 
that may be offered by the cloud services provider 302 or a 
limitation as to the service models that may be implemented 
by the cloud services provider 302 . 
[ 0116 ] In the example depicted in FIG . 3A , the cloud 
services provider 302 may be embodied , for example , as a 
private cloud , as a public cloud , or as a combination of a 
private cloud and public cloud . In an embodiment in which 
the cloud services provider 302 is embodied as a private 
cloud , the cloud services provider 302 may be dedicated to 
providing services to a single organization rather than pro 
viding services to multiple organizations . In an embodiment 
where the cloud services provider 302 is embodied as a 
public cloud , the cloud services provider 302 may provide 
services to multiple organizations . Public cloud and private 
cloud deployment models may differ and may come with 
various advantages and disadvantages . For example , 
because a public cloud deployment involves the sharing of 
a computing infrastructure across different organization , 
such a deployment may not be ideal for organizations with 
security concerns , mission - critical workloads , uptime 
requirements demands , and so on . While a private cloud 
deployment can address some of these issues , a private cloud 
deployment may require on - premises staff to manage the 
private cloud . In still alternative embodiments , the cloud 
services provider 302 may be embodied as a mix of a private 
and public cloud services with a hybrid cloud deployment . 
[ 0117 ] Although not explicitly depicted in FIG . 3A , read 
ers will appreciate that additional hardware components and 
additional software components may be necessary to facili 
tate the delivery of cloud services to the storage system 306 
and users of the storage system 306 . For example , the 
storage system 306 may be coupled to ( or even include ) a 
cloud storage gateway . Such a cloud storage gateway may be 
embodied , for example , as hardware - based or software 
based appliance that is located on premise with the storage 
system 306 . Such a cloud storage gateway may operate as a 
bridge between local applications that are executing on the 
storage array 306 and remote , cloud - based storage that is 
utilized by the storage array 306 . Through the use of a cloud 
storage gateway , organizations may move primary iSCSI or 
NAS to the cloud services provider 302 , thereby enabling 
the organization to save space on their on - premises storage 
systems . Such a cloud storage gateway may be configured to 
emulate a disk array , a block - based device , a file server , or 
other storage system that can translate the SCSI commands , 
file server commands , or other appropriate command into 
REST - space protocols that facilitate communications with 
the cloud services provider 302 . 
[ 0118 ] In order to enable the storage system 306 and users 
of the storage system 306 to make use of the services 
provided by the cloud services provider 302 , a cloud migra 
tion process may take place during which data , applications , 
or other elements from an organization ' s local systems ( or 
even from another cloud environment ) are moved to the 
cloud services provider 302 . In order to successfully migrate 
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data , applications , or other elements to the cloud services 
provider ' s 302 environment , middleware such as a cloud 
migration tool may be utilized to bridge gaps between the 
cloud services provider ' s 302 environment and an organi 
zation ' s environment . Such cloud migration tools may also 
be configured to address potentially high network costs and 
long transfer times associated with migrating large volumes 
of data to the cloud services provider 302 , as well as 
addressing security concerns associated with sensitive data 
to the cloud services provider 302 over data communications 
networks . In order to further enable the storage system 306 
and users of the storage system 306 to make use of the 
services provided by the cloud services provider 302 , a 
cloud orchestrator may also be used to arrange and coordi 
nate automated tasks in pursuit of creating a consolidated 
process or workflow . Such a cloud orchestrator may perform 
tasks such as configuring various components , whether 
those components are cloud components or on - premises 
components , as well as managing the interconnections 
between such components . The cloud orchestrator can sim 
plify the inter - component communication and connections 
to ensure that links are correctly configured and maintained . 

[ 0119 ] In the example depicted in FIG . 3A , and as 
described briefly above , the cloud services provider 302 may 
be configured to provide services to the storage system 306 
and users of the storage system 306 through the usage of a 
SaaS service model where the cloud services provider 302 
offers application software , databases , as well as the plat 
forms that are used to run the applications to the storage 
system 306 and users of the storage system 306 , providing 
the storage system 306 and users of the storage system 306 
with on - demand software and eliminating the need to install 
and run the application on local computers , which may 
simplify maintenance and support of the application . Such 
applications may take many forms in accordance with 
various embodiments of the present disclosure . For example , 
the cloud services provider 302 may be configured to 
provide access to data analytics applications to the storage 
system 306 and users of the storage system 306 . Such data 
analytics applications may be configured , for example , to 
receive telemetry data phoned home by the storage system 
306 . Such telemetry data may describe various operating 
characteristics of the storage system 306 and may be ana 
lyzed , for example , to determine the health of the storage 
system 306 , to identify workloads that are executing on the 
storage system 306 , to predict when the storage system 306 
will run out of various resources , to recommend configura 
tion changes , hardware or software upgrades , workflow 
migrations , or other actions that may improve the operation 
of the storage system 306 . 
[ 0120 ] The cloud services provider 302 may also be 
configured to provide access to virtualized computing envi - 
ronments to the storage system 306 and users of the storage 
system 306 . Such virtualized computing environments may 
be embodied , for example , as a virtual machine or other 
virtualized computer hardware platforms , virtual storage 
devices , virtualized computer network resources , and so on . 
Examples of such virtualized environments can include 
virtual machines that are created to emulate an actual 
computer , virtualized desktop environments that separate a 
logical desktop from a physical machine , virtualized file 
systems that allow uniform access to different types of 
concrete file systems , and many others . 

[ 0121 ] For further explanation , FIG . 3B sets forth a dia 
gram of a storage system 306 in accordance with some 
embodiments of the present disclosure . Although depicted in 
less detail , the storage system 306 depicted in FIG . 3B may 
be similar to the storage systems described above with 
reference to FIGS . 1A - 1D and FIGS . 2A - 2G as the storage 
system may include many of the components described 
above . 
[ 0122 ] The storage system 306 depicted in FIG . 3B may 
include storage resources 308 , which may be embodied in 
many forms . For example , in some embodiments the storage 
resources 308 can include nano - RAM or another form of 
nonvolatile random access memory that utilizes carbon 
nanotubes deposited on a substrate . In some embodiments , 
the storage resources 308 may include 3D crosspoint non 
volatile memory in which bit storage is based on a change 
of bulk resistance , in conjunction with a stackable cross 
gridded data access array . In some embodiments , the storage 
resources 308 may include flash memory , including single 
level cell ( SLC ' ) NAND flash , multi - level cell ( ‘ MLC ' ) 
NAND flash , triple - level cell ( * TLC ' ) NAND flash , quad 
level cell ( ' QLC ' ) NAND flash , and others . In some embodi 
ments , the storage resources 308 may include non - volatile 
magnetoresistive random - access memory ( ‘ MRAM ' ) , 
including spin transfer torque ( “ STT ' ) MRAM , in which 
data is stored through the use of magnetic storage elements . 
In some embodiments , the example storage resources 308 
may include non - volatile phase - change memory ( ?PCM ' ) 
that may have the ability to hold multiple bits in a single cell 
as cells can achieve a number of distinct intermediary states . 
In some embodiments , the storage resources 308 may 
include quantum memory that allows for the storage and 
retrieval of photonic quantum information . In some embodi 
ments , the example storage resources 308 may include 
resistive random - access memory ( ReRAM ' ) in which data 
is stored by changing the resistance across a dielectric 
solid - state material . In some embodiments , the storage 
resources 308 may include storage class memory ( “ SCM ' ) in 
which solid - state nonvolatile memory may be manufactured 
at a high density using some combination of sub - litho 
graphic patterning techniques , multiple bits per cell , mul 
tiple layers of devices , and so on . Readers will appreciate 
that other forms of computer memories and storage devices 
may be utilized by the storage systems described above , 
including DRAM , SRAM , EEPROM , universal memory , 
and many others . The storage resources 308 depicted in FIG . 
3A may be embodied in a variety of form factors , including 
but not limited to , dual in - line memory modules ( DIMMs ' ) , 
non - volatile dual in - line memory modules ( ‘ NVDIMMs ' ) , 
M . 2 , U . 2 , and others . 
[ 0123 ] The example storage system 306 depicted in FIG . 
3B may implement a variety of storage architectures . For 
example , storage systems in accordance with some embodi 
ments of the present disclosure may utilize block storage 
where data is stored in blocks , and each block essentially 
acts as an individual hard drive . Storage systems in accor 
dance with some embodiments of the present disclosure may 
utilize object storage , where data is managed as objects . 
Each object may include the data itself , a variable amount of 
metadata , and a globally unique identifier , where object 
storage can be implemented at multiple levels ( e . g . , device 
level , system level , interface level ) . Storage systems in 
accordance with some embodiments of the present disclo 
sure utilize file storage in which data is stored in a hierar 
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chical structure . Such data may be saved in files and folders , 
and presented to both the system storing it and the system 
retrieving it in the same format . 
[ 0124 ] The example storage system 306 depicted in FIG . 
3B may be embodied as a storage system in which additional 
storage resources can be added through the use of a scale - up 
model , additional storage resources can be added through 
the use of a scale - out model , or through some combination 
thereof . In a scale - up model , additional storage may be 
added by adding additional storage devices . In a scale - out 
model , however , additional storage nodes may be added to 
a cluster of storage nodes , where such storage nodes can 
include additional processing resources , additional network 
ing resources , and so on . 
[ 0125 ] The storage system 306 depicted in FIG . 3B also 
includes communications resources 310 that may be useful 
in facilitating data communications between components 
within the storage system 306 , as well as data communica 
tions between the storage system 306 and computing devices 
that are outside of the storage system 306 . The communi 
cations resources 310 may be configured to utilize a variety 
of different protocols and data communication fabrics to 
facilitate data communications between components within 
the storage systems as well as computing devices that are 
outside of the storage system . For example , the communi 
cations resources 310 can include fibre channel ( * FC ' ) 
technologies such as FC fabrics and FC protocols that can 
transport SCSI commands over FC networks . The commu 
nications resources 310 can also include FC over ethernet 
( ?FCOE ' ) technologies through which FC frames are encap 
sulated and transmitted over Ethernet networks . The com 
munications resources 310 can also include InfiniBand 
( ' IB ' ) technologies in which a switched fabric topology is 
utilized to facilitate transmissions between channel adapters . 
The communications resources 310 can also include NVM 
Express ( ‘ NVMe ' ) technologies and NVMe over fabrics 
( “ NVMeoF ) technologies through which non - volatile stor 
age media attached via a PCI express ( PCIe ' ) bus may be 
accessed . The communications resources 310 can also 
include mechanisms for accessing storage resources 308 
within the storage system 306 utilizing serial attached SCSI 
( “ SAS ' ) , serial ATA ( SATA ) bus interfaces for connecting 
storage resources 308 within the storage system 306 to host 
bus adapters within the storage system 306 , internet small 
computer systems interface ( “ iSCSI ' ) technologies to pro 
vide block - level access to storage resources 308 within the 
storage system 306 , and other communications resources 
that that may be useful in facilitating data communications 
between components within the storage system 306 , as well 
as data communications between the storage system 306 and 
computing devices that are outside of the storage system 

system 306 may utilize the storage resources 312 to perform 
a variety of tasks including , but not limited to , supporting the 
execution of software resources 314 that will be described in 
greater detail below . 
[ 0127 ] The storage system 306 depicted in FIG . 3B also 
includes software resources 314 that , when executed by 
processing resources 312 within the storage system 306 , 
may perform various tasks . The software resources 314 may 
include , for example , one or more modules of computer 
program instructions that when executed by processing 
resources 312 within the storage system 306 are useful in 
carrying out various data protection techniques to preserve 
the integrity of data that is stored within the storage systems . 
Readers will appreciate that such data protection techniques 
may be carried out , for example , by system software execut 
ing on computer hardware within the storage system , by a 
cloud services provider , or in other ways . Such data protec 
tion techniques can include , for example , data archiving 
techniques that cause data that is no longer actively used to 
be moved to a separate storage device or separate storage 
system for long - term retention , data backup techniques 
through which data stored in the storage system may be 
copied and stored in a distinct location to avoid data loss in 
the event of equipment failure or some other form of 
catastrophe with the storage system , data replication tech 
niques through which data stored in the storage system is 
replicated to another storage system such that the data may 
be accessible via multiple storage systems , data snapshotting 
techniques through which the state of data within the storage 
system is captured at various points in time , data and 
database cloning techniques through which duplicate copies 
of data and databases may be created , and other data 
protection techniques . Through the use of such data protec 
tion techniques , business continuity and disaster recovery 
objectives may be met as a failure of the storage system may 
not result in the loss of data stored in the storage system . 
[ 0128 ] The software resources 314 may also include soft 
ware that is useful in implementing software - defined storage 
( SDS ' ) . In such an example , the software resources 314 
may include one or more modules of computer program 
instructions that , when executed , are useful in policy - based 
provisioning and management of data storage that is inde 
pendent of the underlying hardware . Such software 
resources 314 may be useful in implementing storage vir 
tualization to separate the storage hardware from the soft 
ware that manages the storage hardware . 
[ 0129 ] The software resources 314 may also include soft 
ware that is useful in facilitating and optimizing I / O opera 
tions that are directed to the storage resources 308 in the 
storage system 306 . For example , the software resources 314 
may include software modules that perform carry out vari 
ous data reduction techniques such as , for example , data 
compression , data deduplication , and others . The software 
resources 314 may include software modules that intelli 
gently group together 1 / 0 operations to facilitate better 
usage of the underlying storage resource 308 , software 
modules that perform data migration operations to migrate 
from within a storage system , as well as software modules 
that perform other functions . Such software resources 314 
may be embodied as one or more software containers or in 
many other ways . 
[ 0130 ] Readers will appreciate that the various compo 
nents depicted in FIG . 3B may be grouped into one or more 
optimized computing packages as converged infrastructures . 

306 . 
[ 0126 ] The storage system 306 depicted in FIG . 3B also 
includes processing resources 312 that may be useful in 
useful in executing computer program instructions and per 
forming other computational tasks within the storage system 
306 . The processing resources 312 may include one or more 
application - specific integrated circuits ( “ ASICs ' ) that are 
customized for some particular purpose as well as one or 
more central processing units ( “ CPUs ' ) . The processing 
resources 312 may also include one or more digital signal 
processors ( ‘ DSPs ) , one or more field - programmable gate 
arrays ( “ FPGAs ' ) , one or more systems on a chip ( “ SoCs ' ) , 
or other form of processing resources 312 . The storage 
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Such converged infrastructures may include pools of com 
puters , storage and networking resources that can be shared 
by multiple applications and managed in a collective manner 
using policy - driven processes . Such converged infrastruc 
tures may minimize compatibility issues between various 
components within the storage system 306 while also reduc 
ing various costs associated with the establishment and 
operation of the storage system 306 . Such converged infra 
structures may be implemented with a converged infrastruc 
ture reference architecture , with standalone appliances , with 
a software driven hyper - converged approach ( e . g . , hyper 
converged infrastructures ) , or in other ways . 
[ 0131 ] Readers will appreciate that the storage system 306 
depicted in FIG . 3B may be useful for supporting various 
types of software applications . For example , the storage 
system 306 may be useful in supporting artificial intelli 
gence ( ‘ AI ' ) applications , database applications , DevOps 
projects , electronic design automation tools , event - driven 
software applications , high performance computing appli 
cations , simulation applications , high - speed data capture 
and analysis applications , machine learning applications , 
media production applications , media serving applications , 
picture archiving and communication systems ( * PACS ' ) 
applications , software development applications , virtual 
reality applications , augmented reality applications , and 
many other types of applications by providing storage 
resources to such applications . 
[ 0132 ] The storage systems described above may operate 
to support a wide variety of applications . In view of the fact 
that the storage systems include compute resources , storage 
resources , and a wide variety of other resources , the storage 
systems may be well suited to support applications that are 
resource intensive such as , for example , AI applications . 
Such AI applications may enable devices to perceive their 
environment and take actions that maximize their chance of 
success at some goal . Examples of such AI applications can 
include IBM Watson , Microsoft Oxford , Google DeepMind , 
Baidu Minwa , and others . The storage systems described 
above may also be well suited to support other types of 
applications that are resource intensive such as , for example , 
machine learning applications . Machine learning applica 
tions may perform various types of data analysis to automate 
analytical model building . Using algorithms that iteratively 
learn from data , machine learning applications can enable 
computers to learn without being explicitly programmed . 
[ 0133 ] In addition to the resources already described , the 
storage systems described above may also include graphics 
processing units ( " GPUs ' ) , occasionally referred to as visual 
processing unit ( “ VPUS ' ) . Such GPUs may be embodied as 
specialized electronic circuits that rapidly manipulate and 
alter memory to accelerate the creation of images in a frame 
buffer intended for output to a display device . Such GPUs 
may be included within any of the computing devices that 
are part of the storage systems described above , including as 
one of many individually scalable components of a storage 
system , where other examples of individually scalable com 
ponents of such storage system can include storage compo 
nents , memory components , compute components ( e . g . , 
CPUs , FPGAs , ASICs ) , networking components , software 
components , and others . In addition to GPUs , the storage 
systems described above may also include neural network 
processors ( ‘ NNPs ' ) for use in various aspects of neural 

network processing . Such NNPs may be used in place of ( or 
in addition to ) GPUs and may be also be independently 
scalable . 
10134 ] . As described above , the storage systems described 
herein may be configured to support artificial intelligence 
applications , machine learning applications , big data ana 
lytics applications , and many other types of applications . 
The rapid growth in these sort of applications is being driven 
by three technologies : deep learning ( DL ) , GPU processors , 
and Big Data . Deep learning is a computing model that 
makes use of massively parallel neural networks inspired by 
the human brain . Instead of experts handcrafting software , a 
deep learning model writes its own software by learning 
from lots of examples . A GPU is a modern processor with 
thousands of cores , well - suited to run algorithms that 
loosely represent the parallel nature of the human brain . 
[ 0135 ] Advances in deep neural networks have ignited a 
new wave of algorithms and tools for data scientists to tap 
into their data with artificial intelligence ( AI ) . With 
improved algorithms , larger data sets , and various frame 
works ( including open - source software libraries for machine 
learning across a range of tasks ) , data scientists are tackling 
new use cases like autonomous driving vehicles , natural 
language processing and understanding , computer vision , 
machine reasoning , strong AI , and many others . Applica 
tions of such techniques may include : machine and vehicular 
object detection , identification and avoidance ; visual recog 
nition , classification and tagging ; algorithmic financial trad 
ing strategy performance management ; simultaneous local 
ization and mapping ; predictive maintenance of high - value 
machinery ; prevention against cyber security threats , exper 
tise automation ; image recognition and classification ; ques 
tion answering ; robotics ; text analytics ( extraction , classifi 
cation ) and text generation and translation , and many others . 
Applications of AI techniques has materialized in a wide 
array of products include , for example , Amazon Echo ' s 
speech recognition technology that allows users to talk to 
their machines , Google TranslateTM which allows for 
machine - based language translation , Spotify ' s Discover 
Weekly that provides recommendations on new songs and 
artists that a user may like based on the user ' s usage and 
traffic analysis , Quill ' s text generation offering that takes 
structured data and turns it into narrative stories , Chatbots 
that provide real - time , contextually specific answers to ques 
tions in a dialog format , and many others . Furthermore , AI 
may impact a wide variety of industries and sectors . For 
example , Al solutions may be used in healthcare to take 
clinical notes , patient files , research data , and other inputs to 
generate potential treatment options for doctors to explore . 
Likewise , Al solutions may be used by retailers to person 
alize consumer recommendations based on a person ' s digital 
footprint of behaviors , profile data , or other data . 
[ 0136 ] Data is the heart of modern AI and deep learning 
algorithms . Before training can begin , one problem that 
must be addressed revolves around collecting the labeled 
data that is crucial for training an accurate Al model . A full 
scale AI deployment may be required to continuously col 
lect , clean , transform , label , and store large amounts of data . 
Adding additional high quality data points directly translates 
to more accurate models and better insights . Data samples 
may undergo a series of processing steps including , but not 
limited to : 1 ) ingesting the data from an external source into 
the training system and storing the data in raw form , 2 ) 
cleaning and transforming the data in a format convenient 
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for training , including linking data samples to the appropri 
ate label , 3 ) exploring parameters and models , quickly 
testing with a smaller dataset , and iterating to converge on 
the most promising models to push into the production 
cluster , 4 ) executing training phases to select random 
batches of input data , including both new and older samples , 
and feeding those into production GPU servers for compu 
tation to update model parameters , and 5 ) evaluating includ 
ing using a holdback portion of the data not used in training 
in order to evaluate model accuracy on the holdout data . This 
lifecycle may apply for any type of parallelized machine 
learning , not just neural networks or deep learning . For 
example , standard machine learning frameworks may rely 
on CPUs instead of GPUs but the data ingest and training 
workflows may be the same . Readers will appreciate that a 
single shared storage data hub creates a coordination point 
throughout the lifecycle without the need for extra data 
copies among the ingest , preprocessing , and training stages . 
Rarely is the ingested data used for only one purpose , and 
shared storage gives the flexibility to train multiple different 
models or apply traditional analytics to the data . 
[ 0137 ] Readers will appreciate that each stage in the AI 
data pipeline may have varying requirements from the data 
hub ( e . g . , the storage system or collection of storage sys 
tems ) . Scale - out storage systems must deliver uncompro 
mising performance for all manner of access types and 
patterns — from small , metadata - heavy to large files , from 
random to sequential access patterns , and from low to high 
concurrency . The storage systems described above may 
serve as an ideal Al data hub as the systems may service 
unstructured workloads . In the first stage , data is ideally 
ingested and stored on to the same data hub that following 
stages will use , in order to avoid excess data copying . The 
next two steps can be done on a standard compute server that 
optionally includes a GPU , and then in the fourth and last 
stage , full training production jobs are run on powerful 
GPU - accelerated servers . Often , there is a production pipe 
line alongside an experimental pipeline operating on the 
same dataset . Further , the GPU - accelerated servers can be 
used independently for different models or joined together to 
train on one larger model , even spanning multiple systems 
for distributed training . If the shared storage tier is slow , then 
data must be copied to local storage for each phase , resulting 
in wasted time staging data onto different servers . The ideal 
data hub for the AI training pipeline delivers performance 
similar to data stored locally on the server node while also 
having the simplicity and performance to enable all pipeline 
stages to operate concurrently . 
[ 0138 ] A data scientist works to improve the usefulness of 
the trained model through a wide variety of approaches : 
more data , better data , smarter training , and deeper models . 
In many cases , there will be teams of data scientists sharing 
the same datasets and working in parallel to produce new 
and improved training models . Often , there is a team of data 
scientists working within these phases concurrently on the 
same shared datasets . Multiple , concurrent workloads of 
data processing , experimentation , and full - scale training 
layer the demands of multiple access patterns on the storage 
tier . In other words , storage cannot just satisfy large file 
reads , but must contend with a mix of large and small file 
reads and writes . Finally , with multiple data scientists 
exploring datasets and models , it may be critical to store data 
in its native format to provide flexibility for each user to 
transform , clean , and use the data in a unique way . The 

storage systems described above may provide a natural 
shared storage home for the dataset , with data protection 
redundancy ( e . g . , by using RAID6 ) and the performance 
necessary to be a common access point for multiple devel 
opers and multiple experiments . Using the storage systems 
described above may avoid the need to carefully copy 
subsets of the data for local work , saving both engineering 
and GPU - accelerated servers use time . These copies become 
a constant and growing tax as the raw data set and desired 
transformations constantly update and change . 
( 01391 . Readers will appreciate that a fundamental reason 
why deep learning has seen a surge in success is the 
continued improvement of models with larger data set sizes . 
In contrast , classical machine learning algorithms , like logis 
tic regression , stop improving in accuracy at smaller data set 
sizes . As such , the separation of compute resources and 
storage resources may also allow independent scaling of 
each tier , avoiding many of the complexities inherent in 
managing both together . As the data set size grows or new 
data sets are considered , a scale out storage system must be 
able to expand easily . Similarly , if more concurrent training 
is required , additional GPUs or other compute resources can 
be added without concern for their internal storage . Further 
more , the storage systems described above may make build 
ing , operating , and growing an AI system easier due to the 
random read bandwidth provided by the storage systems , the 
ability to of the storage systems to randomly read small files 
( 50 KB ) high rates ( meaning that no extra effort is required 
to aggregate individual data points to make larger , storage 
friendly files ) , the ability of the storage systems to scale 
capacity and performance as either the dataset grows or the 
throughput requirements grow , the ability of the storage 
systems to support files or objects , the ability of the storage 
systems to tune performance for large or small files ( i . e . , no 
need for the user to provision filesystems ) , the ability of the 
storage systems to support non - disruptive upgrades of hard 
ware and software even during production model training , 
and for many other reasons . 
[ 0140 ] Small file performance of the storage tier may be 
critical as many types of inputs , including text , audio , or 
images will be natively stored as small files . If the storage 
tier does not handle small files well , an extra step will be 
required to pre - process and group samples into larger files . 
Storage , built on top of spinning disks , that relies on SSD as 
a caching tier , may fall short of the performance needed . 
Because training with random input batches results in more 
accurate models , the entire data set must be accessible with 
full performance . SSD caches only provide high perfor 
mance for a small subset of the data and will be ineffective 
at hiding the latency of spinning drives . 
[ 0141 ] Although the preceding paragraphs discuss deep 
learning applications , readers will appreciate that the storage 
systems described herein may also be part of a distributed 
deep learning ( ?DDL ' ) platform to support the execution of 
DDL algorithms . Distributed deep learning may can be used 
to significantly accelerate deep learning with distributed 
computing on GPUs ( or other form of accelerator or com 
puter program instruction executor ) , such that parallelism 
can be achieved . In addition , the output of training machine 
learning and deep learning models , such as a fully trained 
machine learning model , may be used for a variety of 
purposes and in conjunction with other tools . For example , 
trained machine learning models may be used in conjunction 
with tools like Core ML to integrate a broad variety of 
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machine learning model types into an application . In fact , 
trained models may be run through Core ML converter tools 
and inserted into a custom application that can be deployed 
on compatible devices . The storage systems described above 
may also be paired with other technologies such as Tensor 
Flow , an open - source software library for dataflow program 
ming across a range of tasks that may be used for machine 
learning applications such as neural networks , to facilitate 
the development of such machine learning models , applica 
tions , and so on . 
[ 0142 ] The storage systems described above may also be 
used in a neuromorphic computing environment . Neuromor 
phic computing is a form of computing that mimics brain 
cells . To support neuromorphic computing , an architecture 
of interconnected “ neurons ” replace traditional computing 
models with low - powered signals that go directly between 
neurons for more efficient computation . Neuromorphic com 
puting may make use of very - large - scale integration ( VLSI ) 
systems containing electronic analog circuits to mimic 
neuro - biological architectures present in the nervous system , 
as well as analog , digital , mixed - mode analog / digital VLSI , 
and software systems that implement models of neural 
systems for perception , motor control , or multisensory inte 
gration . 
[ 0143 ] Readers will appreciate that the storage systems 
described above may be configured to support the storage of 
( among of types of data ) blockchains . Such blockchains may 
be embodied as a continuously growing list of records , 
called blocks , which are linked and secured using cryptog 
raphy . Each block in a blockchain may contain a hash 
pointer as a link to a previous block , a timestamp , transac 
tion data , and so on . Blockchains may be designed to be 
resistant to modification of the data and can serve as an open , 
distributed ledger that can record transactions between two 
parties efficiently and in a verifiable and permanent way . 
This makes blockchains potentially suitable for the record 
ing of events , medical records , and other records manage 
ment activities , such as identity management , transaction 
processing , and others . In addition to supporting the storage 
and use of blockchain technologies , the storage systems 
described above may also support the storage and use of 
derivative items such as , for example , open source block 
chains and related tools that are part of the IBMTM Hyper 
ledger project , permissioned blockchains in which a certain 
number of trusted parties are allowed to access the block 
chain , blockchain products that enable developers to build 
their own distributed ledger projects , and others . Readers 
will appreciate that blockchain technologies may impact a 
wide variety of industries and sectors . For example , block 
chain technologies may be used in real estate transactions as 
blockchain based contracts whose use can eliminate the need 
for 3rd parties and enable self - executing actions when 
conditions are met . Likewise , universal health records can 
be created by aggregating and placing a person ' s health 
history onto a blockchain ledger for any healthcare provider , 
or permissioned health care providers , to access and update . 
[ 0144 ] Readers will further appreciate that in some 
embodiments , the storage systems described above may be 
paired with other resources to support the applications 
described above . For example , one infrastructure could 
include primary compute in the form of servers and work 
stations which specialize in using General - purpose comput 
ing on graphics processing units ( GPGPU ' ) to accelerate 
deep learning applications that are interconnected into a 

computation engine to train parameters for deep neural 
networks . Each system may have Ethernet external connec 
tivity , InfiniBand external connectivity , some other form of 
external connectivity , or some combination thereof . In such 
an example , the GPUs can be grouped for a single large 
training or used independently to train multiple models . The 
infrastructure could also include a storage system such as 
those described above to provide , for example , a scale - out 
all - flash file or object store through which data can be 
accessed via high - performance protocols such as NFS , S3 , 
and so on . The infrastructure can also include , for example , 
redundant top - of - rack Ethernet switches connected to stor 
age and compute via ports in MLAG port channels for 
redundancy . The infrastructure could also include additional 
compute in the form of whitebox servers , optionally with 
GPUs , for data ingestion , pre - processing , and model debug 
ging . Readers will appreciate that additional infrastructures 
are also be possible . 
[ 0145 ] Readers will appreciate that the systems described 
above may be better suited for the applications described 
above relative to other systems that may include , for 
example , a distributed direct - attached storage ( DDAS ) solu 
tion deployed in server nodes . Such DDAS solutions may be 
built for handling large , less sequential accesses but may be 
less able to handle small , random accesses . Readers will 
further appreciate that the storage systems described above 
may be utilized to provide a platform for the applications 
described above that is preferable to the utilization of 
cloud - based resources as the storage systems may be 
included in an on - site or in - house infrastructure that is more 
secure , more locally and internally managed , more robust in 
feature sets and performance , or otherwise preferable to the 
utilization of cloud - based resources as part of a platform to 
support the applications described above . For example , 
services built on platforms such as IBM ' s Watson may 
require a business enterprise to distribute individual user 
information , such as financial transaction information or 
identifiable patient records , to other institutions . As such , 
cloud - based offerings of AI as a service may be less desir 
able than internally managed and offered AI as a service that 
is supported by storage systems such as the storage systems 
described above , for a wide array of technical reasons as 
well as for various business reasons . 
[ 0146 ] Readers will appreciate that the storage systems 
described above , either alone or in coordination with other 
computing machinery may be configured to support other AI 
related tools . For example , the storage systems may make 
use of tools like ONXX or other open neural network 
exchange formats that make it easier to transfer models 
written in different AI frameworks . Likewise , the storage 
systems may be configured to support tools like Amazon ' s 
Gluon that allow developers to prototype , build , and train 
deep learning models . In fact , the storage systems described 
above may be part of a larger platform , such as IBMTM 
Cloud Private for Data , that includes integrated data science , 
data engineering and application building services . Such 
platforms may seamlessly collect , organize , secure , and 
analyze data across an enterprise , as well as simplify hybrid 
data management , unified data governance and integration , 
data science and business analytics with a single solution . 
[ 0147 ] Readers will further appreciate that the storage 
systems described above may also be deployed as an edge 
solution . Such an edge solution may be in place to optimize 
cloud computing systems by performing data processing at 
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the edge of the network , near the source of the data . Edge 
computing can push applications , data and computing power 
( i . e . , services ) away from centralized points to the logical 
extremes of a network . Through the use of edge solutions 
such as the storage systems described above , computational 
tasks may be performed using the compute resources pro 
vided by such storage systems , data may be storage using the 
storage resources of the storage system , and cloud - based 
services may be accessed through the use of various 
resources of the storage system ( including networking 
resources ) . By performing computational tasks on the edge 
solution , storing data on the edge solution , and generally 
making use of the edge solution , the consumption of expen 
sive cloud - based resources may be avoided and , in fact , 
performance improvements may be experienced relative to 
a heavier reliance on cloud - based resources . 
[ 0148 ] While many tasks may benefit from the utilization 
of an edge solution , some particular uses may be especially 
suited for deployment in such an environment . For example , 
devices like drones , autonomous cars , robots , and others 
may require extremely rapid processing so fast , in fact , 
that sending data up to a cloud environment and back to 
receive data processing support may simply be too slow . 
Likewise , machines like locomotives and gas turbines that 
generate large amounts of information through the use of a 
wide array of data - generating sensors may benefit from the 
rapid data processing capabilities of an edge solution . As an 
additional example , some IoT devices such as connected 
video cameras may not be well - suited for the utilization of 
cloud - based resources as it may be impractical ( not only 
from a privacy perspective , security perspective , or a finan 
cial perspective ) to send the data to the cloud simply because 
of the pure volume of data that is involved . As such , many 
tasks that really on data processing , storage , or communi 
cations may be better suited by platforms that include edge 
solutions such as the storage systems described above . 
[ 0149 ] Consider a specific example of inventory manage 
ment in a warehouse , distribution center , or similar location . 
A large inventory , warehousing , shipping , order - fulfillment , 
manufacturing or other operation has a large amount of 
inventory on inventory shelves , and high resolution digital 
cameras that produce a firehose of large data . All of this data 
may be taken into an image processing system , which may 
reduce the amount of data to a firehose of small data . All of 
the small data may be stored on - premises in storage . The 
on - premises storage , at the edge of the facility , may be 
coupled to the cloud , for external reports , real - time control 
and cloud storage . Inventory management may be per 
formed with the results of the image processing , so that 
inventory can be tracked on the shelves and restocked , 
moved , shipped , modified with new products , or discontin 
ued / obsolescent products deleted , etc . The above scenario is 
a prime candidate for an embodiment of the configurable 
processing and storage systems described above . A combi 
nation of compute - only blades and offload blades suited for 
the image processing , perhaps with deep learning on 
offload - FPGA or offload - custom blade ( s ) could take in the 
firehose of large data from all of the digital cameras , and 
produce the firehose of small data . All of the small data 
could then be stored by storage nodes , operating with 
storage units in whichever combination of types of storage 
blades best handles the data flow . This is an example of 
storage and function acceleration and integration . Depend 
ing on external communication needs with the cloud , and 

external processing in the cloud , and depending on reliabil 
ity of network connections and cloud resources , the system 
could be sized for storage and compute management with 
bursty workloads and variable conductivity reliability . Also , 
depending on other inventory management aspects , the 
system could be configured for scheduling and resource 
management in a hybrid edge / cloud environment . 
[ 0150 ] The storage systems described above may alone , or 
in combination with other computing resources , serves as a 
network edge platform that combines compute resources , 
storage resources , networking resources , cloud technologies 
and network virtualization technologies , and so on . As part 
of the network , the edge may take on characteristics similar 
to other network facilities , from the customer premise and 
backhaul aggregation facilities to Points of Presence ( PoPs ) 
and regional data centers . Readers will appreciate that 
network workloads , such as Virtual Network Functions 
( VNFs ) and others , will reside on the network edge plat 
form . Enabled by a combination of containers and virtual 
machines , the network edge platform may rely on control 
lers and schedulers that are no longer geographically co 
located with the data processing resources . The functions , as 
microservices , may split into control planes , user and data 
planes , or even state machines , allowing for independent 
optimization and scaling techniques to be applied . Such user 
and data planes may be enabled through increased accelera 
tors , both those residing in server platforms , such as FPGAs 
and Smart NICs , and through SDN - enabled merchant silicon 
and programmable ASICs . 
[ 0151 ] The storage systems described above may also be 
optimized for use in big data analytics . Big data analytics 
may be generally described as the process of examining 
large and varied data sets to uncover hidden patterns , 
unknown correlations , market trends , customer preferences 
and other useful information that can help organizations 
make more - informed business decisions . Big data analytics 
applications enable data scientists , predictive modelers , stat 
isticians and other analytics professionals to analyze grow 
ing volumes of structured transaction data , plus other forms 
of data that are often left untapped by conventional business 
intelligence ( BI ) and analytics programs . As part of that 
process , semi - structured and unstructured data such as , for 
example , internet clickstream data , web server logs , social 
media content , text from customer emails and survey 
responses , mobile - phone call - detail records , IoT sensor data , 
and other data may be converted to a structured form . Big 
data analytics is a form of advanced analytics , which 
involves complex applications with elements such as pre 
dictive models , statistical algorithms and what - if analyses 
powered by high - performance analytics systems . 
[ 0152 ] The storage systems described above may also 
support ( including implementing as a system interface ) 
applications that perform tasks in response to human speech . 
For example , the storage systems may support the execution 
intelligent personal assistant applications such as , for 
example , Amazon ' s Alexa , Apple Siri , Google Voice , Sam 
sung Bixby , Microsoft Cortana , and others . While the 
examples described in the previous sentence make use of 
voice as input , the storage systems described above may also 
support chatbots , talkbots , chatterbots , or artificial conver 
sational entities or other applications that are configured to 
conduct a conversation via auditory or textual methods . 
Likewise , the storage system may actually execute such an 
application to enable a user such as a system administrator 
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to interact with the storage system via speech . Such appli - 
cations are generally capable of voice interaction , music 
playback , making to - do lists , setting alarms , streaming pod 
casts , playing audiobooks , and providing weather , traffic , 
and other real time information , such as news , although in 
embodiments in accordance with the present disclosure , 
such applications may be utilized as interfaces to various 
system management operations . 
[ 0153 ] The storage systems described above may also 
implement Al platforms for delivering on the vision of 
self - driving storage . Such Al platforms may be configured to 
deliver global predictive intelligence by collecting and ana 
lyzing large amounts of storage system telemetry data points 
to enable effortless management , analytics and support . In 
fact , such storage systems may be capable of predicting both 
capacity and performance , as well as generating intelligent 
advice on workload deployment , interaction and optimiza 
tion . Such Al platforms may be configured to scan all 
incoming storage system telemetry data against a library of 
issue fingerprints to predict and resolve incidents in real 
time , before they impact customer environments , and cap 
tures hundreds of variables related to performance that are 
used to forecast performance load . 
[ 0154 ] . The storage systems described above may support 
the serialized or simultaneous execution artificial intelli 
gence applications , machine learning applications , data ana 
lytics applications , data transformations , and other tasks that 
collectively may form an Al ladder . Such an AI ladder may 
effectively be formed by combining such elements to form 
a complete data science pipeline , where exist dependencies 
between elements of the AI ladder . For example , AI may 
require that some form of machine learning has taken place , 
machine learning may require that some form of analytics 
has taken place , analytics may require that some form of 
data and information architecting has taken place , and so on . 
As such , each element may be viewed as a rung in an AI 
ladder that collectively can form a complete and sophisti 
cated Al solution . 
[ 0155 ] The storage systems described above may also , 
either alone or in combination with other computing envi 
ronments , be used to deliver an AI everywhere experience 
where AI permeates wide and expansive aspects of business 
and life . For example , AI may play an important role in the 
delivery of deep learning solutions , deep reinforcement 
learning solutions , artificial general intelligence solutions , 
autonomous vehicles , cognitive computing solutions , com 
mercial UAVs or drones , conversational user interfaces , 
enterprise taxonomies , ontology management solutions , 
machine learning solutions , smart dust , smart robots , smart 
workplaces , and many others . The storage systems described 
above may also , either alone or in combination with other 
computing environments , be used to deliver a wide range of 
transparently immersive experiences where technology can 
introduce transparency between people , businesses , and 
things . Such transparently immersive experiences may be 
delivered as augmented reality technologies , connected 
homes , virtual reality technologies , brain - computer inter 
faces , human augmentation technologies , nanotube electron 
ics , volumetric displays , 4D printing technologies , or others . 
The storage systems described above may also , either alone 
or in combination with other computing environments , be 
used to support a wide variety of digital platforms . Such 
digital platforms can include , for example , 5G wireless 
systems and platforms , digital twin platforms , edge com 

puting platforms , IoT platforms , quantum computing plat 
forms , serverless PaaS , software - defined security , neuro 
morphic computing platforms , and so on . 
[ 0156 ] The storage systems described above may also be 
part of a multi - cloud environment in which multiple cloud 
computing and storage services are deployed in a single 
heterogeneous architecture . In order to facilitate the opera 
tion of such a multi - cloud environment , DevOps tools may 
be deployed to enable orchestration across clouds . Likewise , 
continuous development and continuous integration tools 
may be deployed to standardize processes around continu 
ous integration and delivery , new feature rollout and provi 
sioning cloud workloads . By standardizing these processes , 
a multi - cloud strategy may be implemented that enables the 
utilization of the best provider for each workload . Further 
more , application monitoring and visibility tools may be 
deployed to move application workloads around different 
clouds , identify performance issues , and perform other 
tasks . In addition , security and compliance tools may be 
deployed for to ensure compliance with security require 
ments , government regulations , and so on . Such a multi 
cloud environment may also include tools for application 
delivery and smart workload management to ensure efficient 
application delivery and help direct workloads across the 
distributed and heterogeneous infrastructure , as well as tools 
that ease the deployment and maintenance of packaged and 
custom applications in the cloud and enable portability 
amongst clouds . The multi - cloud environment may similarly 
include tools for data portability . 
[ 0157 ] The storage systems described above may be used 
as a part of a platform to enable the use of crypto - anchors 
that may be used to authenticate a product ' s origins and 
contents to ensure that it matches a blockchain record 
associated with the product . Such crypto - anchors may take 
many forms including , for example , as edible ink , as a 
mobile sensor , as a microchip , and others . Similarly , as part 
of a suite of tools to secure data stored on the storage system , 
the storage systems described above may implement various 
encryption technologies and schemes , including lattice cryp 
tography . Lattice cryptography can involve constructions of 
cryptographic primitives that involve lattices , either in the 
construction itself or in the security proof . Unlike public - key 
schemes such as the RSA , Diffie - Hellman or Elliptic - Curve 
cryptosystems , which are easily attacked by a quantum 
computer , some lattice - based constructions appear to be 
resistant to attack by both classical and quantum computers . 
[ 0158 ] A quantum computer is a device that performs 
quantum computing . Quantum computing is computing 
using quantum - mechanical phenomena , such as superposi 
tion and entanglement . Quantum computers differ from 
traditional computers that are based on transistors , as such 
traditional computers require that data be encoded into 
binary digits ( bits ) , each of which is always in one of two 
definite states ( 0 or 1 ) . In contrast to traditional computers , 
quantum computers use quantum bits , which can be in 
superpositions of states . A quantum computer maintains a 
sequence of qubits , where a single qubit can represent a one , 
a zero , or any quantum superposition of those two qubit 
states . A pair of qubits can be in any quantum superposition 
of 4 states , and three qubits in any superposition of 8 states . 
A quantum computer with n qubits can generally be in an 
arbitrary superposition of up to 2în different states simulta 
neously , whereas a traditional computer can only be in one 
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of these states at any one time . A quantum Turing machine 
is a theoretical model of such a computer . 
[ 0159 ] For further explanation , FIG . 4 sets forth a flow 
chart illustrating an example method for executing a big data 
analytics pipeline in a storage system that includes compute 
resources and shared storage resources according to some 
embodiments of the present disclosure . Although depicted in 
less detail , the storage system ( 406 ) depicted in FIG . 4 may 
be similar to the storage systems described above with 
reference to FIGS . 1A - 1D , FIGS . 2A - 2G , FIGS . 3A - 3B , or 
any combination thereof . In fact , the storage system depicted 
in FIG . 4 may include the same , fewer , additional compo 
nents as the storage systems described above . 
[ 0160 ] The storage system ( 406 ) depicted in FIG . 4 is 
illustrated as including compute resources in the form of 
processing resources ( 416 , 418 , 420 ) . The processing 
resources ( 416 , 418 , 420 ) may be embodied , for example , as 
physical resources such as one or more computer processors 
or as virtualized resources such as a virtual machine , con 
tainer , or some other virtualized component that can be used 
to execute a software application . The storage system ( 406 ) 
depicted in FIG . 4 is also illustrated as including shared 
storage resources in the form of storage devices ( 430 , 432 , 
434 ) . The storage devices ( 430 , 432 , 434 ) may be embodied , 
for example , as one or more SSDs , HDDs , or other storage 
device . 
[ 0161 ] The example method depicted in FIG . 4 includes 
receiving ( 408 ) , from a data producer ( 402 ) , a dataset ( 404 ) . 
The data producer ( 402 ) depicted in FIG . 4 may be embod 
ied , for example , as a simulation of a storage system that is 
executed in order to test hardware and software components 
within the storage system that is being tested . Consider an 
example in which software for a storage system is developed 
and tested utilizing a continuous integration ( “ CI ' ) model in 
which all developer working copies of system software are 
frequently merged to a shared mainline . In such an example , 
such software may be tested by running a simulation of the 
storage system and running automated tests against the 
simulated storage system , thereby generating a very large 
dataset ( 404 ) that consisted of log files , error logs , or some 
other form of data that describes the operational state of the 
simulated storage system . 
[ 0162 ] In the example method depicted in FIG . 4 , receiv 
ing ( 408 ) the dataset ( 404 ) from the data producer ( 402 ) may 
be carried out , for example , by receiving the dataset as it is 
generated by the data producer ( 402 ) , by periodically polling 
a location that the data producer ( 402 ) writes the dataset to , 
or in other ways . In fact , although the data producer ( 402 ) is 
depicted as residing outside of the storage system ( 406 ) in 
the embodiment depicted in FIG . 4 , in other embodiments , 
the data producer ( 402 ) may actually be executing on the 
storage system ( 406 ) itself and may even write the dataset 
directly to storage resources within the storage system ( 406 ) . 
[ 0163 ] The example method depicted in FIG . 4 also 
includes storing ( 410 ) , within the storage system ( 406 ) , the 
dataset ( 404 ) . In the example method depicted in FIG . 4 , the 
dataset ( 404 ) is depicted as being stored within the storage 
system ( 406 ) in multiple slices ( 424 , 426 , 428 ) . In such an 
example , a first slice ( 424 ) may represent a first portion of 
the dataset , a second slice ( 426 ) may represent a second 
portion of the dataset , a third slice ( 428 ) may represent a 
third portion of the dataset , where RAID or RAID - like 
techniques are used to provide for data redundancy in the 
event that one or more of the storage devices becomes 

unavailable . As such , parity data may also be maintained on 
the storage system ( 406 ) , such that the dataset slices ( 424 , 
426 , 428 ) and any parity data form a RAID stripe . Readers 
will appreciate that the dataset ( 404 ) may be stored in other 
ways and that the dataset ( 404 ) may be stored ( 410 ) within 
the storage system ( 406 ) by the data producer ( 402 ) itself 
accessing the storage system ( 406 ) , by system software and 
system hardware on the storage system causing the dataset 
( 404 ) ( or the slices thereof ) to be written to storage devices 
( 430 , 432 , 434 ) in the storage system ( 406 ) , or in some other 
way . 
[ 0164 ] The example method depicted in FIG . 4 also 
includes allocating ( 412 ) processing resources ( 416 ) to an 
analytics application ( 422 ) . The analytics application ( 422 ) 
depicted in FIG . 4 may be embodied , for example , as an 
application that examines datasets in order to draw conclu 
sions about the information contained in the datasets , includ 
ing drawing conclusions about the data producer ( 402 ) . The 
analytics application ( 422 ) may include artificial intelli 
gence or machine learning components , components that 
transform unstructured data into structured or semi - struc 
tured data , big data components , and many others . 
[ 0165 ] In the example method depicted in FIG . 4 , allocat 
ing ( 412 ) processing resources ( 416 ) to an analytics appli 
cation ( 422 ) may be carried out , for example , by allocating 
physical resources within the storage system ( 406 ) for use 
by the analytics application ( 422 ) . For example , one or more 
computer processors may be allocated for use by the ana 
lytics application ( 422 ) such that the analytics application 
( 422 ) is executing on the one or more computer processors . 
Alternatively , allocating ( 412 ) processing resources ( 416 ) to 
an analytics application ( 422 ) may be carried out by allo 
cating virtualized physical resources within the storage 
system ( 406 ) for use by the analytics application ( 422 ) . For 
example , one or more virtual machines may be allocated for 
use by the analytics application ( 422 ) such that the analytics 
application ( 422 ) is executing on the one or more virtual 
machines . Likewise , allocating ( 412 ) processing resources 
( 416 ) to an analytics application ( 422 ) may be carried out 
through the use of one or more containers , such that the 
analytics application ( 422 ) is deployed and executed within 
the one or more containers . 
[ 0166 ] In the example method depicted in FIG . 4 , execut 
ing ( 414 ) the analytics application ( 422 ) on the processing 
resources ( 416 ) includes ingesting the dataset ( 404 ) from the 
storage system ( 406 ) . In such an example , the analytics 
application ( 422 ) can ingest the dataset ( 404 ) from the 
storage system ( 406 ) by reading the dataset ( 404 ) from the 
storage system ( 406 ) after it has been stored within the 
storage system ( 406 ) . Readers will appreciate that , because 
the dataset ( 404 ) is stored within shared storage , the ana 
lytics application ( 422 ) does not need to retain a copy of the 
dataset in storage ( e . g . , direct - attached storage ) that is only 
accessible by the processing resources that are being used to 
execute the analytics application ( 422 ) . 
10167 ] . For further explanation , FIG . 5 sets forth a flow 
chart illustrating an additional example method for execut 
ing a big data analytics pipeline in a storage system that 
includes compute resources and shared storage resources 
according to some embodiments of the present disclosure . 
The example method depicted in FIG . 5 is similar to the 
example method depicted in FIG . 4 , as the example method 
depicted in FIG . 5 also includes receiving ( 408 ) a dataset 
( 404 ) from a data producer ( 402 ) , storing ( 410 ) the dataset 
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( 404 ) within the storage system ( 406 ) , allocating ( 412 ) 
processing resources ( 416 ) to an analytics application ( 422 ) , 
and executing ( 414 ) the analytics application ( 422 ) on the 
processing resources ( 416 ) , including ingesting the dataset 
( 404 ) from the storage system ( 406 ) . 
[ 0168 ] The example method depicted in FIG . 5 also 
includes allocating ( 502 ) additional processing resources 
( 418 ) to a real - time analytics application ( 506 ) . The real 
time analytics application ( 506 ) may be embodied , for 
example , as an application that examines datasets in order to 
draw conclusions about the information contained in the 
datasets , including drawing conclusions about the data pro 
ducer ( 402 ) . Much like the analytics application ( 422 ) , the 
real - time analytics application ( 506 ) may also include arti 
ficial intelligence or machine learning components , compo 
nents that transform unstructured data into structured or 
semi - structured data , big data components , and many others . 
Unlike the analytics application ( 422 ) , however , the real 
time analytics application ( 506 ) examines datasets as they 
are generated , rather than analyzing datasets that are more 
historical in nature . 
[ 0169 ] In the example method depicted in FIG . 5 , allocat 
ing ( 502 ) additional processing resources ( 418 ) to the real 
time analytics application ( 506 ) may be carried out , for 
example , by allocating physical resources within the storage 
system ( 406 ) for use by the real - time analytics application 
( 506 ) . For example , one or more computer processors may 
be allocated for use by the real - time analytics application 
( 506 ) such that the real - time analytics application ( 506 ) is 
executing on the one or more computer processors . Alter 
natively , allocating ( 502 ) additional processing resources 
( 418 ) to the real - time analytics application ( 506 ) may be 
carried out by allocating virtualized physical resources 
within the storage system ( 406 ) for use by the real - time 
analytics application ( 506 ) . For example , one or more virtual 
machines may be allocated for use by the real - time analytics 
application ( 506 ) such that the real - time analytics applica 
tion ( 506 ) is executing on the one or more virtual machines . 
Likewise , allocating ( 502 ) additional processing resources 
( 418 ) to the real - time analytics application ( 506 ) may be 
carried out through the use of one or more containers , such 
that the real - time analytics application ( 506 ) is deployed and 
executed within the one or more containers . 
[ 0170 ] In the example method depicted in FIG . 5 , execut 
ing ( 504 ) the real - time analytics application ( 506 ) on the 
additional processing resources can include ingesting the 
dataset ( 404 ) prior to storing ( 410 ) the dataset ( 404 ) within 
the storage system ( 406 ) . In such an example , the real - time 
analytics application ( 506 ) may , in effect , be part of the data 
path as the dataset ( 404 ) is fed to the real - time analytics 
application ( 506 ) upon receipt by the storage system . Read 
ers will appreciate that in other embodiments , the real - time 
nature of the real - time analytics application ( 506 ) may be 
enforced in other ways . For example , the real - time analytics 
application ( 506 ) may only consume the portions of the 
dataset ( 404 ) that have been produced within some threshold 
( e . g . , the real - time analytics application ( 506 ) may only 
consume portions of the dataset ( 404 ) that have been pro 
duced within the last 30 minutes ) while the analytics appli 
cation ( 422 ) consumes all other portions of the dataset ( 404 ) . 
Readers will appreciate that , because the dataset ( 404 ) is 
stored within shared storage , the analytics application ( 422 ) 
and the real - time analytics application ( 506 ) do not need to 
retain copies of the dataset in storage ( e . g . , direct - attached 

storage ) that is only accessible by the processing resources 
that are being used to execute the analytics application ( 422 ) 
or the real - time analytics application ( 506 ) . In fact , the 
analytics application ( 422 ) and the real - time analytics appli 
cation ( 506 ) may be reading their respective portions of the 
dataset ( 404 ) from a single copy of the dataset ( 404 ) that is 
stored within the storage system ( 406 ) . 
0171 ] For further explanation , FIG . 6 sets forth a flow 
chart illustrating an additional example method for execut 
ing a big data analytics pipeline in a storage system that 
includes compute resources and shared storage resources 
according to some embodiments of the present disclosure . 
The example method depicted in FIG . 6 is similar to the 
example method depicted in FIG . 4 , as the example method 
depicted in FIG . 6 also includes receiving ( 408 ) a dataset 
( 404 ) from a data producer ( 402 ) , storing ( 410 ) the dataset 
( 404 ) within the storage system ( 406 ) , allocating ( 412 ) 
processing resources ( 416 ) to an analytics application ( 422 ) , 
and executing ( 414 ) the analytics application ( 422 ) on the 
processing resources ( 416 ) , including ingesting the dataset 
( 404 ) from the storage system ( 406 ) . 
[ 0172 ] In the example method depicted in FIG . 6 , the 
dataset ( 404 ) includes log files ( 602 ) describing one or more 
execution states of a computing system . In the example 
depicted in FIG . 6 , the computing system whose execution 
states are described in the log files ( 602 ) may be embodied , 
for example , as a storage system that is being tested as a part 
of a software development and testing process . In such an 
example , the log files ( 602 ) may include information 
describing how the storage system is operating in response 
to a test suite being executed on the storage system . 
10173 ] In the example method depicted in FIG . 6 , execut 
ing ( 414 ) the analytics application ( 422 ) on the processing 
resources ( 416 ) can include evaluating ( 604 ) the log files 
( 602 ) to identify one or more execution patterns associated 
with the computing system . Continuing with the example 
described above in which the computing system whose 
execution states are described in the log files ( 602 ) is 
embodied as a storage system that is being tested as a part 
of a software development and testing process , the log files 
( 602 ) may include information such as the amount of time 
that each read or write took to complete , information that 
indicates the number of IOPS that were being serviced , and 
so on . In such an example , evaluating ( 604 ) the log files 
( 602 ) to identify one or more execution patterns associated 
with the computing system may include examining the log 
files ( 602 ) to determine the average amount of time that each 
read or write took to complete and whether the average 
amount of time that each read or write took to complete was 
acceptable , examining the log files ( 602 ) to determine 
whether the average amount of time that each read or write 
took to complete was trending up or down , examining the 
log files ( 602 ) to determine whether the average amount of 
time that each read or write took to complete was acceptable 
at varying levels of load , and so on . In fact , the one or more 
execution patterns associated with the computing system can 
focus on a wide range of metrics and can be used to examine 
many aspects of system health , system operation , and so on . 
101741 . In the example method depicted in FIG . 6 , evalu 
ating ( 604 ) the log files ( 602 ) to identify one or more 
execution patterns associated with the computing system can 
include comparing ( 606 ) fingerprints associated with known 
execution patterns to information contained in the log files 
( 602 ) . In such an example , the fingerprints that are associ 
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ated with known execution patterns may include information 
such as , for example , ranges for one or more metrics that are 
associated with some particular known execution pattern , a 
pattern of alerts that are associated with some particular 
known execution pattern , and so on . For example , a par 
ticular sequence of alerts may have been identified as being 
associated with a computing system that is about to fail , and 
as such , a fingerprint may exist that includes the particular 
sequence of alerts , such that the log files ( 602 ) may be 
examined to determine whether the particular sequence of 
alerts contained in the fingerprint are also found in the log 
files ( 602 ) , thereby indicating that the system under test may 
be about to fail . In the example method depicted in FIG . 6 , 
the fingerprints associated with known execution patterns 
may include multi - line fingerprints , where multiple lines of 
a log file are examined to determine whether the log files 
contain a particular fingerprint . Likewise , fingerprints can 
include sequences and combinations of events such that a 
match is identified only if a sequence or combination of 
events is identified in the log files ( 602 ) . 
[ 0175 ] For further explanation , FIG . 7 sets forth a flow 
chart illustrating an additional example method for execut 
ing a big data analytics pipeline in a storage system that 
includes compute resources and shared storage resources 
according to some embodiments of the present disclosure . 
The example method depicted in FIG . 7 is similar to the 
example method depicted in FIG . 4 , as the example method 
depicted in FIG . 7 also includes receiving ( 408 ) a dataset 
( 404 ) from a data producer ( 402 ) , storing ( 410 ) the dataset 
( 404 ) within the storage system ( 406 ) , allocating ( 412 ) 
processing resources ( 416 ) to an analytics application ( 422 ) , 
and executing ( 414 ) the analytics application ( 422 ) on the 
processing resources ( 416 ) , including ingesting the dataset 
( 404 ) from the storage system ( 406 ) . 
[ 0176 ] In the example method depicted in FIG . 7 , storing 
( 410 ) the dataset ( 404 ) within the storage system ( 406 ) can 
include organizing ( 708 ) the dataset into an indexed direc 
tory structure . In such an example , the indexed directory 
structure may be created by storing data in such a way so as 
to facilitate fast and accurate searching of the directory 
structure . In fact , large datasets such as the log files that are 
generated during testing may be generated with names that 
include things like a timestamp , an identification of the 
cluster that generated the log file , and so on and organized 
in the directory structure according to some indexing 
scheme . As such , the indexed file system may essentially be 
used as a database that can be quickly searched , but without 
the limitations of a database that causes databases to perform 
poorly on very , very large datasets . 
( 0177 ] In the example method depicted in FIG . 7 , receiv 
ing ( 408 ) a dataset ( 404 ) from a data producer ( 402 ) can 
include receiving ( 702 ) an unstructured dataset . In the 
example method depicted in FIG . 7 , the unstructured dataset 
may include unstructured data that either does not have a 
pre - defined data model or is not organized in a pre - defined 
manner . Such unstructured information , as is often contained 
in log files , is typically text - heavy for ease of understanding 
by a human ( e . g . , a system administrator ) that is tasked with 
reviewing the log files . Unstructured data , however , fre 
quently has irregularities and ambiguities that make it dif 
ficult to understand using traditional programs as compared 
to structured data such as data stored in fielded form in 
databases or annotated in documents . 

[ 0178 ] The example method depicted in FIG . 7 also 
includes converting ( 704 ) the unstructured dataset into a 
structured dataset . In the example method depicted in FIG . 
7 , a structured dataset includes structured ( or semi - struc 
tured ) data where data can reside in a fixed field within a 
record or file . In such an example , the structured dataset can 
include information with a high degree of organization , such 
that inclusion in a relational database ( or similar data 
repository ) is seamless and readily searchable by simple , 
straightforward search engine algorithms or other search 
operations . 
[ 0179 ] In the example method depicted in FIG . 7 , con 
verting ( 704 ) the unstructured dataset into a structured 
dataset may be carried out , for example , through the use of 
techniques such as data mining , natural language processing 
( NLP ) , and text analytics to find patterns in , or otherwise 
interpret , the unstructured data . Techniques for structuring 
text can involve tagging unstructured data with metadata . In 
such embodiments , software that creates machine - process 
able structure can utilize the linguistic , auditory , and visual 
structure that exist in various forms of human communica 
tion and algorithms can infer this inherent structure from 
text , for instance , by examining word morphology , sentence 
syntax , and so on . In such an example , unstructured infor 
mation can be enriched and tagged to address ambiguities 
and relevancy - based techniques then used to facilitate search 
and discovery . In the example method depicted in FIG . 7 , 
storing ( 410 ) the dataset ( 404 ) within the storage system 
( 406 ) can include storing ( 706 ) the structured dataset within 
the storage system . 
[ 0180 ] For further explanation , FIG . 8A sets forth a dia 
gram illustrating an example computer architecture for 
implementing an artificial intelligence and machine learning 
infrastructure ( 800 ) ( also referred to herein as an “ artificial 
infrastructure ' ) that is configured to fit within a single 
chassis ( not depicted ) according to some embodiments of 
the present disclosure . While in this example , the commu 
nication fabric includes a set of network switches ( 803 ) for 
interconnecting a network appliance ( 800A ) with the one or 
more GPU system ( s ) ( 801 ) , and for the artificial intelligence 
and machine learning infrastructure ( 800 ) to communicate 
with one or more computing devices over one or more 
networks , in other implementations , the communication 
fabric may be architected to define different communication 
paths between the network appliance ( 800A ) and the GPU 
system ( s ) ( 801 ) , and one or more computing devices or host 
computer systems . 
10181 ] In this example artificial intelligence and machine 
learning infrastructure ( 800 ) , the network appliance ( 800A ) 
may be a storage system that includes one or more storage 
devices , and the GPU systems ( 801 ) may be , in this 
example , five ( 5 ) NVIDIA DGX - 1 GPU systems . In this 
example , the network appliance ( 800A ) may be connected to 
two switches ( 803 ) using , respectively , four , 100 GbE con 
nections , where each switch ( 801 ) may be connected to each 
GPU system ( 801 ) by two 100 GbE connections resulting 
in each of the GPU system ( 801 ) having four ( 4 ) 100 GbE 
connections to the network appliance ( 800A ) . 
[ 0182 ] For further explanation , FIG . 8B sets forth a flow 
chart illustrating an additional example method for execut 
ing a big data analytics pipeline in a storage system that 
includes compute resources and shared storage resources 
according to some embodiments of the present disclosure . 
The example method depicted in FIG . 8B is similar to the 
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example method depicted in FIG . 4 , as the example method 
depicted in FIG . 8B also includes receiving ( 408 ) a dataset 
( 404 ) from a data producer ( 402 ) , storing ( 410 ) the dataset 
( 404 ) within the storage system ( 406 ) , allocating ( 412 ) 
processing resources ( 416 ) to an analytics application ( 422 ) , 
and executing ( 414 ) the analytics application ( 422 ) on the 
processing resources ( 416 ) , including ingesting the dataset 
( 404 ) from the storage system ( 406 ) . 
[ 0183 ] In the example method depicted in FIG . 8B , receiv 
ing ( 408 ) a dataset ( 404 ) from a data producer ( 402 ) can 
include receiving ( 806 ) , from a plurality of data producers 
( 402 , 802 ) , a dataset ( 404 , 804 ) that is unique to each data 
producer . The data producers ( 402 , 802 ) depicted in FIG . 8B 
may be embodied , for example , as simulations of multiple 
storage system that is executed in order to test hardware and 
software components within the storage system that is being 
tested . For example , the first data producer ( 402 ) may be a 
simulated version of a first storage system and the second 
data producer ( 802 ) may be a simulation of a second storage 
system . In the example method depicted in FIG . 8B , receiv 
ing ( 806 ) a dataset ( 404 , 804 ) that is unique to each data 
producer may be carried out , for example , by receiving each 
dataset as it is generated by the respective data producer 
( 402 , 802 ) , by periodically polling a location that each data 
producer ( 402 , 802 ) writes the dataset to , or in other ways . 
In fact , although the data producers ( 402 , 802 ) are depicted 
as residing outside of the storage system ( 406 ) in the 
embodiment depicted in FIG . 8B , in other embodiments , one 
or more of the data producers ( 402 , 802 ) may actually be 
executing on the storage system ( 406 ) itself and may even 
write the dataset directly to storage resources within the 
storage system ( 406 ) . 
[ 0184 ] In the example method depicted in FIG . 8B , storing 
( 410 ) the dataset ( 404 ) within the storage system ( 406 ) can 
include storing ( 808 ) , within the storage system ( 406 ) , each 
unique dataset ( 404 , 804 ) . In the example method depicted 
in FIG . 8B , each unique dataset ( 404 , 804 ) is depicted as 
being stored within the storage system ( 406 ) in multiple 
slices ( 424 , 426 , 428 , 816 , 818 , 820 ) . For example , a first 
dataset ( 404 ) is stored as a first set of slices ( 424 , 426 , 428 ) 
and a second dataset ( 804 ) is stored as a second set of slices 
( 816 , 818 , 820 ) . In such an example , each slice may repre 
sent a distinct portion of the dataset , where RAID or 
RAID - like techniques are used to provide for data redun 
dancy that one or more of the storage devices becomes 
unavailable . As such , parity data may also be maintained on 
the storage system ( 406 ) , such that the dataset slices ( 424 , 
426 , 428 , 816 , 818 , 820 ) and any parity data form a RAID 
stripe . Readers will appreciate that each dataset ( 404 , 804 ) 
may be stored in other ways and that each dataset ( 404 , 804 ) 
may be stored ( 808 ) within the storage system ( 406 ) by the 
data producer ( 402 , 802 ) itself accessing the storage system 
( 406 ) , by system software and system hardware on the 
storage system causing each dataset ( 404 , 804 ) ( or the slices 
thereof ) to be written to storage devices ( 430 , 432 , 434 ) in 
the storage system ( 406 ) , or in some other way . 
10185 ) In the example method depicted in FIG . 8B , allo 
cating ( 412 ) processing resources ( 416 ) to an analytics 
application ( 422 ) can include allocating ( 810 ) unique pro 
cessing resources ( 416 , 418 ) to each of a plurality of 
analytics applications ( 422 , 814 ) . In the example method 
depicted in FIG . 8B , allocating ( 810 ) unique processing 
resources ( 416 , 418 ) to each of a plurality of analytics 
applications ( 422 , 814 ) may be carried out , for example , by 

allocating physical resources within the storage system 
( 406 ) for use by the analytics applications ( 422 , 814 ) . For 
example , a first computer processor may be allocated for use 
by a first analytics application ( 422 ) such that the analytics 
application ( 422 ) is executing on the first computer proces 
sor and a second computer processor may be allocated for 
use by a second analytics application ( 814 ) such that the 
analytics application ( 814 ) is executing on the second com 
puter processor . Alternatively , allocating ( 810 ) unique pro 
cessing resources ( 416 , 418 ) to each of a plurality of 
analytics applications ( 422 , 814 ) may be carried out by 
allocating virtualized physical resources within the storage 
system ( 406 ) for use by each of the analytics applications 
( 422 , 814 ) . For example , a first set of virtual machines may 
be allocated for use by a first analytics application ( 422 ) 
such that the analytics application ( 422 ) is executing on the 
first set of virtual machines and a second set of virtual 
machines may be allocated for use by a second analytics 
application ( 814 ) such that the analytics application ( 814 ) is 
executing on the second set of virtual machines . Likewise , 
allocating ( 810 ) unique processing resources ( 416 , 418 ) to 
each of a plurality of analytics applications ( 422 , 814 ) may 
be carried out through the use of containers , such that a first 
analytics application ( 422 ) is deployed and executed within 
a first container and a second analytics application ( 814 ) is 
deployed and executed within a second container . 
[ 0186 ] In the example method depicted in FIG . 8B , 
executing ( 414 ) the analytics application ( 422 ) on the pro 
cessing resources ( 416 ) can include executing ( 812 ) the 
plurality of analytics applications ( 422 , 814 ) on the process 
ing resources ( 416 , 418 ) , including ingesting each unique 
dataset ( 404 , 804 ) from the storage system ( 406 ) . In such an 
example , a first analytics application ( 422 ) can ingest a first 
dataset ( 404 ) from the storage system ( 406 ) by reading the 
dataset ( 404 ) from the storage system ( 406 ) after it has been 
stored within the storage system ( 406 ) and a second analyt 
ics application ( 814 ) can ingest a second dataset ( 804 ) from 
the storage system ( 406 ) by reading the dataset ( 804 ) from 
the storage system ( 406 ) after it has been stored within the 
storage system ( 406 ) . Readers will appreciate that , because 
the dataset ( 404 ) is stored within shared storage , neither 
analytics application ( 422 , 814 ) will need to retain a copy of 
the dataset in storage ( e . g . , direct - attached storage ) that is 
only accessible by the processing resources that are being 
used to execute the analytics application ( 422 , 814 ) . 
[ 0187 ] For further explanation , FIG . 9 sets forth a flow 
chart illustrating an additional example method for execut 
ing a big data analytics pipeline in a storage system that 
includes compute resources and shared storage resources 
according to some embodiments of the present disclosure . 
The example method depicted in FIG . 9 is similar to the 
example method depicted in FIG . 4 , as the example method 
depicted in FIG . 9 also includes receiving ( 408 ) a dataset 
( 404 ) from a data producer ( 402 ) , storing ( 410 ) the dataset 
( 404 ) within the storage system ( 406 ) , allocating ( 412 ) 
processing resources ( 416 ) to an analytics application ( 422 ) , 
and executing ( 414 ) the analytics application ( 422 ) on the 
processing resources ( 416 ) , including ingesting the dataset 
( 404 ) from the storage system ( 406 ) . 
[ 0188 ] The example method depicted in FIG . 9 also 
includes detecting ( 902 ) that the analytics application ( 422 ) 
has ceased executing properly . Detecting ( 902 ) that the 
analytics application ( 422 ) has ceased executing properly 
may be carried out , for example , by detecting that the 
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analytics application ( 422 ) has crashed , by detecting that the 
analytics application ( 422 ) has become unresponsive , by 
detecting that the processing resources that the analytics 
application ( 422 ) is executing on have become unavailable , 
or in other ways . In such an example , the storage system 
( 406 ) can detect ( 902 ) that the analytics application ( 422 ) 
has ceased executing properly through the use of a heartbeat 
mechanism , by detecting an absence of messaging or report 
ing from the analytics application ( 422 ) , or through the use 
of a similar mechanism . 
[ 0189 ] The example method depicted in FIG . 9 also 
includes allocating ( 904 ) second processing resources ( 418 ) 
to the analytics application ( 422 ) . In the example method 
depicted in FIG . 9 , allocating ( 904 ) second processing 
resources ( 418 ) to the analytics application ( 422 ) may be 
carried out , for example , by allocating physical resources 
within the storage system ( 406 ) for use by the analytics 
application ( 422 ) . For example , one or more computer 
processors may be allocated for use by the analytics appli 
cation ( 422 ) such that the analytics application ( 422 ) is 
executing on the one or more computer processors . Alter 
natively , allocating ( 904 ) second processing resources ( 418 ) 
to the analytics application ( 422 ) may be carried out by 
allocating virtualized physical resources within the storage 
system ( 406 ) for use by the analytics application ( 422 ) . For 
example , one or more virtual machines may be allocated for 
use by the analytics application ( 422 ) such that the analytics 
application ( 422 ) is executing on the one or more virtual 
machines . Likewise , allocating ( 904 ) second processing 
resources ( 418 ) to the analytics application ( 422 ) may be 
carried out through the use of one or more containers , such 
that the analytics application ( 422 ) is deployed and executed 
within the one or more containers . 
[ 0190 ] The example method depicted in FIG . 9 also 
includes executing ( 906 ) the analytics application ( 422 ) on 
the second processing resources ( 418 ) , including ingesting 
the dataset ( 404 ) . In such an example , the analytics appli 
cation ( 422 ) can ingest the dataset ( 404 ) from the storage 
system ( 406 ) by reading the dataset ( 404 ) from the storage 
system ( 406 ) after it has been stored within the storage 
system ( 406 ) . Readers will appreciate that , because the 
dataset ( 404 ) is stored within shared storage , the analytics 
application ( 422 ) does not need to retain a copy of the 
dataset in storage ( e . g . , direct - attached storage ) that is only 
accessible by the processing resources that are being used to 
execute the analytics application ( 422 ) . 
[ 0191 ] For further explanation , FIG . 10 sets forth a flow 
chart illustrating an additional example method for execut 
ing a big data analytics pipeline in a storage system that 
includes compute resources and shared storage resources 
according to some embodiments of the present disclosure . 
The example method depicted in FIG . 10 is similar to the 
example method depicted in FIG . 4 , as the example method 
depicted in FIG . 10 also includes receiving ( 408 ) a dataset 
( 404 ) from a data producer ( 402 ) , storing ( 410 ) the dataset 
( 404 ) within the storage system ( 406 ) , allocating ( 412 ) 
processing resources ( 416 ) to an analytics application ( 422 ) , 
and executing ( 414 ) the analytics application ( 422 ) on the 
processing resources ( 416 ) , including ingesting the dataset 
( 404 ) from the storage system ( 406 ) . 
[ 0192 ] The example method depicted in FIG . 10 also 
includes detecting ( 1002 ) that the analytics application ( 422 ) 
needs additional processing resources . Detecting ( 1002 ) that 
the analytics application ( 422 ) needs additional processing 

resources may be carried out , for example , by detecting that 
the processing resources upon which the analytics applica 
tion ( 422 ) is executing are fully utilized or that utilization 
has reached a threshold level , by detecting that the analytics 
application ( 422 ) has become unresponsive , slow to respond 
to messages , slow to report findings , or is otherwise exhib 
iting some behavior that is associated with a lack of suffi 
cient processing resources , or in some other way . 
0193 ] The example method depicted in FIG . 10 also 
includes allocating ( 1004 ) additional processing resources 
( 418 ) to the analytics application ( 422 ) . In the example 
method depicted in FIG . 10 , allocating ( 1004 ) additional 
processing resources ( 418 ) to the analytics application ( 422 ) 
may be carried out , for example , by allocating additional 
physical resources within the storage system ( 406 ) for use 
by the analytics applications ( 422 ) . For example , a first 
computer processor may initially be allocated for use by the 
analytics application ( 422 ) such that the analytics applica 
tion ( 422 ) is executing on the first computer processor . In 
such an example , a second computer processor may addi 
tionally be allocated for use by the analytics application 
( 422 ) such that the analytics application ( 422 ) is executing 
on both the first computer processor and the second com 
puter processor . Alternatively , allocating ( 1004 ) additional 
processing resources ( 418 ) to the analytics application ( 422 ) 
may be carried out by allocating additional virtualized 
physical resources within the storage system ( 406 ) for use 
by the analytics applications ( 422 ) . For example , a first set 
of virtual machines may be initially allocated for use by the 
analytics application ( 422 ) such that the analytics applica 
tion ( 422 ) is executing on the first set of virtual machines . In 
such an example , a second set of virtual machines may be 
additionally allocated for use by the analytics application 
( 422 ) such that the analytics application ( 422 ) is executing 
on both the first set of virtual machines and the second set 
of virtual machines . Likewise , allocating ( 1004 ) additional 
processing resources ( 418 ) to the analytics application ( 422 ) 
may be carried out through the use of containers , such that 
an analytics application ( 422 ) is initially deployed and 
executed within a first container and a second container is 
subsequently utilized to support the analytics application 
( 422 ) . 
[ 0194 ] The example method depicted in FIG . 10 also 
includes executing ( 1006 ) the analytics application ( 422 ) on 
the additional processing resources ( 418 ) . Readers will 
appreciate that although the embodiments described above 
relate to embodiments where instances of the analytics 
application ( 422 ) are executed on multiple processing 
resources ( 416 , 418 ) , in other embodiments different pro 
cessing resources ( 416 , 418 ) instead be used to execute 
various portions of the analytics application ( 422 ) . For 
example , a first portion of the analytics application ( 422 ) 
may execute on a first set of processing resources ( 416 ) and 
a second portion of the analytics application ( 422 ) may 
execute on a second set of processing resources ( 418 ) . 
Readers will further appreciate that the shared nature of the 
storage that is utilized by the analytics application ( 422 ) 
results in more efficient scalability , as the application can be 
scaled up ( i . e . , more processing resources can be given to the 
analytics application ) without needing to copy the dataset , 
send the dataset over a network connection , and so on as 
would be required if the analytics application ( 422 ) were 
executing on a processing node with direct - attached storage 
where each node maintained its own copy of the dataset . 
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[ 0195 ] As described above , the analytics application ( 422 ) 
may include artificial intelligence or machine learning com - 
ponents . In fact , the analytics application ( 422 ) may be an AI 
application . Data is the heart of modern AI and deep learning 
algorithms . Before training can begin , one problem that 
must be addressed revolves around collecting the labeled 
data that is crucial for training an accurate Al model . A full 
scale AI deployment may be required to continuously col 
lect , clean , transform , label , and store large amounts of data . 
Adding additional high quality data points directly translates 
to more accurate models and better insights . Data samples 
may undergo a series of processing steps including , but not 
limited to : 1 ) ingesting the data from an external source into 
the training system and storing the data in raw form , 2 ) 
cleaning and transforming the data in a format convenient 
for training , including linking data samples to the appropri 
ate label , 3 ) exploring parameters and models , quickly 
testing with a smaller dataset , and iterating to converge on 
the most promising models to push into the production 
cluster , 4 ) executing training phases to select random 
batches of input data , including both new and older samples , 
and feeding those into production GPU servers for compu 
tation to update model parameters , and 5 ) evaluating includ 
ing using a holdback portion of the data not used in training 
in order to evaluate model accuracy on the holdout data . This 
lifecycle may apply for any type of parallelized machine 
learning , not just neural networks or deep learning . For 
example , standard machine learning frameworks may rely 
on CPUs instead of GPUs but the data ingest and training 
workflows may be the same . Readers will appreciate that a 
single shared storage data hub creates a coordination point 
throughout the lifecycle without the need for extra data 
copies among the ingest , preprocessing , and training stages . 
Rarely is the ingested data used for only one purpose , and 
shared storage gives the flexibility to train multiple different 
models or apply traditional analytics to the data . 
[ 0196 ] Readers will appreciate that each stage in the AI 
data pipeline may have varying requirements from the data 
hub ( e . g . , the storage system or collection of storage sys 
tems ) . Scale - out storage systems must deliver uncompro 
mising performance for all manner of access types and 
patterns — from small , metadata - heavy to large files , from 
random to sequential access patterns , and from low to high 
concurrency . The storage systems described above may 
serve as an ideal Al data hub as the systems may service 
unstructured workloads . In the first stage , data is ideally 
ingested and stored on to the same data hub that following 
stages will use , in order to avoid excess data copying . The 
next two steps can be done on a standard compute server that 
optionally includes a GPU , and then in the fourth and last 
stage , full training production jobs are run on powerful 
GPU - accelerated servers . Often , there is a production pipe 
line alongside an experimental pipeline operating on the 
same dataset . Further , the GPU - accelerated servers can be 
used independently for different models or joined together to 
train on one larger model , even spanning multiple systems 
for distributed training . If the shared storage tier is slow , then 
data must be copied to local storage for each phase , resulting 
in wasted time staging data onto different servers . The ideal 
data hub for the AI training pipeline delivers performance 
similar to data stored locally on the server node while also 
having the simplicity and performance to enable all pipeline 
stages to operate concurrently . 

[ 0197 ] A data scientist works to improve the usefulness of 
the trained model through a wide variety of approaches : 
more data , better data , smarter training , and deeper models . 
In many cases , there will be teams of data scientists sharing 
the same datasets and working in parallel to produce new 
and improved training models . Often , there is a team of data 
scientists working within these phases concurrently on the 
same shared datasets . Multiple , concurrent workloads of 
data processing , experimentation , and full - scale training 
layer the demands of multiple access patterns on the storage 
tier . In other words , storage cannot just satisfy large file 
reads , but must contend with a mix of large and small file 
reads and writes . Finally , with multiple data scientists 
exploring datasets and models , it may be critical to store data 
in its native format to provide flexibility for each user to 
transform , clean , and use the data in a unique way . The 
storage systems described above may provide a natural 
shared storage home for the dataset , with data protection 
redundancy ( e . g . , by using RAID6 ) and the performance 
necessary to be a common access point for multiple devel 
opers and multiple experiments . Using the storage systems 
described above may avoid the need to carefully copy 
subsets of the data for local work , saving both engineering 
and GPU - accelerated servers use time . These copies become 
a constant and growing tax as the raw data set and desired 
transformations constantly update and change . 
[ 0198 ] Readers will appreciate that a fundamental reason 
why deep learning has seen a surge in success is the 
continued improvement of models with larger data set sizes . 
In contrast , classical machine learning algorithms , like logis 
tic regression , stop improving in accuracy at smaller data set 
sizes . As such , the separation of compute resources and 
storage resources may also allow independent scaling of 
each tier , avoiding many of the complexities inherent in 
managing both together . As the data set size grows or new 
data sets are considered , a scale out storage system must be 
able to expand easily . Similarly , if more concurrent training 
is required , additional GPUs or other compute resources can 
be added without concern for their internal storage . Further 
more , the storage systems described above may make build 
ing , operating , and growing an AI system easier due to the 
random read bandwidth provided by the storage systems , the 
ability to of the storage systems to randomly read small files 
( 50 KB ) high rates ( meaning that no extra effort is required 
to aggregate individual data points to make larger , storage 
friendly files ) , the ability of the storage systems to scale 
capacity and performance as either the dataset grows or the 
throughput requirements grow , the ability of the storage 
systems to support files or objects , the ability of the storage 
systems to tune performance for large or small files ( i . e . , no 
need for the user to provision filesystems ) , the ability of the 
storage systems to support non - disruptive upgrades of hard 
ware and software even during production model training , 
and for many other reasons . 
[ 0199 ] Small file performance of the storage tier may be 
critical as many types of inputs , including text , audio , or 
images will be natively stored as small files . If the storage 
tier does not handle small files well , an extra step will be 
required to pre - process and group samples into larger files . 
Storage , built on top of spinning disks , that relies on SSD as 
a caching tier , may fall short of the performance needed . 
Because training with random input batches results in more 
accurate models , the entire data set must be accessible with 
full performance . SSD caches only provide high perfor 
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mance for a small subset of the data and will be ineffective 
at hiding the latency of spinning drives . 
[ 0200 ] Readers will further appreciate that in some 
embodiments of the present disclosure , big data services 
may be built - in to the shared storage system such that big 
data analytics , machine learning , artificial intelligence , and 
other functionality can be offered as a service . In such an 
example , big data analytics applications , machine learning 
applications , artificial intelligence applications , and others 
may be incorporated into the same ( or otherwise accessible ) 
codebase as system software that controls the operation of 
the storage system , such that the interactions between sys 
tem hardware , system software , and the additional applica 
tions can be optimized . Furthermore , these additional appli 
cations can be offered as cogs in an analytics stack to assist 
users of the storage system in the development and deploy 
ment of big data analytics applications , machine learning 
applications , artificial intelligence applications , and similar 
applications . 
[ 0201 ] Readers will further appreciate that in some 
embodiments of the present disclosure , idempotent opera 
tions may allow for arbitrary reruns and modification of the 
analytics pipeline . Through the use of orchestration and 
containerization related concepts described above , a storage 
system may present a software layer that runs in idempotent 
chunks such that a hands - off approach to recovery manage 
ment may be taken . In such an example , if a dependency 
graph of jobs were in place where each job had some level 
of idempotency , changes could be made to a job anywhere 
in the graph and determinations could be made regarding 
what jobs would need to be rerun to complete recovery . 
Furthermore , because additional compute resources may be 
allocated , the system could automate data changes or 
execute them from a simple form . 
[ 0202 ] Readers will further appreciate that in some 
embodiments of the present disclosure , with the addition of 
heartbeat events or expected data patterns , a storage system 
could essentially run continuous testing on a data pipeline , 
take recovery actions , and rerun steps if heartbeats are 
missing . Because there are many things that can go wrong 
when analytics are being performed in an environment that 
includes many hosts with different network and rack con 
figurations , errors can occur and may be hard to detect . Even 
if errors are not common , they may be hard to detect and 
hard to trace back to the root cause . As such , embodiments 
described herein may add continuous monitoring to the 
outputs of the pipeline by adding fingerprints to be expected , 
regular events that are expected to occur , and information 
may be persisted to capture actual system performance . 
Once anomalies are found , the storage system may attempt 
to re - collect data , rerun jobs , issue alerts if anomalies are 
still detected , and otherwise support a self - healing big data 
analytics pipeline . 
10203 ] Readers will appreciate that although the embodi 
ments described above relate to embodiments where steps 
may appear to occur according to some order , no ordering is 
actually required unless explicitly stated . Furthermore , in 
some embodiments , steps that appear in different figures 
may actually occur in a single embodiment . That is , the 
organization of steps that is included above is for ease of 
explanation , and in no way limits the various embodiments 
of the concepts described herein . In fact , embodiments of the 
present disclosure may include any combination of the steps 
described above and claimed herein . Likewise , embodi 

ments of the present disclosure may be implemented on any 
of the storage systems , or any combination therefore , 
described herein . 
[ 0204 ] For further explanation , FIG . 11A sets forth a 
diagram illustrating an example artificial intelligence and 
machine learning infrastructure ( 1100 ) according to some 
embodiments of the present disclosure . As depicted , the 
artificial and machine learning infrastructure ( 1100 ) may be 
embodied or implemented entirely within a single chassis 
( 1101 ) . In some examples , the chassis ( 1101 ) may be imple 
mented according to the dimensions of a standard rack 
within a data center — where the single chassis ( 1101 ) 
includes the one or more storage systems ( 1120 ) , such as any 
of the storage systems described above or any combination 
of such storage systems , and where the single chassis ( 1101 ) 
may further include one or more GPU systems ( 1130A 
1130N ) . 
[ 0205 ] As one example embodiment , the chassis ( 1101 ) 
may include storage system ( S ) ( 1120 ) implemented as one or 
more PureTM FlashBladeTM storage systems of flash storage 
devices or one or more other types of flash storage devices , 
and the one or more GPU systems ( 1130A - 1130N ) may be 
implemented as one or more NVIDIATM DGX - 1TM GPU 
architectures or as one or more other GPU architectures . In 
this example , the GPU architectures may further include 
multiple GPUs and one or more CPUs — where the GPU 
architecture may further include onboard system memory . 
However , in other examples , different combinations of stor 
age systems and GPU architectures may be implemented as 
an integrated artificial intelligence and machine learning 
infrastructure within the single chassis ( 1101 ) . 
[ 0206 ] Further , in some examples , the single chassis 
( 1101 ) may include one or more length , width , and depth 
physical dimensions that are smaller or larger than a stan 
dard rack size - for example the single chassis ( 1101 ) may 
be a half rack or smaller . In this example , a rack may be 
about 42 U , or 6 feet ( 180 cm ) in height , where a “ U ” unit 
of measure may be defined as 44 . 50 millimeters ( 1 . 752 in . ) , 
and where the rack width may be 19 inches ( 482 . 60 mm ) , 
and where the depth may be 36 inches ( 914 . 40 mm ) . 
[ 0207 ] In this embodiment , the height ( 1102 ) of the stor 
age system ( s ) ( 1120 ) may be 4 U , where the width ( 1104 ) 
and depth ( 1106 ) are defined to fit within the physical 
dimensions of the chassis ( 1101 ) . Similarly , each of the GPU 
system ( s ) ( 1130A - 1130N ) may be of the same or different 
dimensions , where an example height ( 1108 ) may be defined 
to be 1 U or 2 U , and where the width ( 1110 ) and depth 
( 1112 ) may be defined to fit within the physical dimensions 
of the chassis ( 1101 ) . 
[ 0208 ] For further explanation , FIG . 11B sets forth a 
diagram illustrating an example computer architecture for 
implementing an artificial intelligence and machine learning 
infrastructure ( 1100 ) within a single chassis ( 1101 ) accord 
ing to some embodiments of the present disclosure . While in 
this example , the communication fabric includes a tiered set 
of network switches ( 1132A - 1132C ) for interconnecting the 
storage system ( s ) ( 1120 ) with the one or more GPU system 
( s ) ( 1130A - 1130N ) , and for the artificial intelligence and 
machine learning infrastructure ( 1100 ) to communicate with 
one or more computing devices ( 1129 ) over one or more 
networks ( 1131 ) , in other implementations , the communi 
cation fabric may be architected to define different commu 
nication paths between the storage system ( s ) ( 1120 ) and the 

neline 
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GPU system ( s ) ( 1130A - 1130N ) , and one or more computing 
devices or host computer systems . 
[ 0209 ] In some implementations , the artificial intelligence 
and machine learning infrastructure ( 1100 ) communication 
fabric may implement a remote direct memory access 
( RDMA ) protocol over converged ethernet ( ROCE ) fabric , 
where such a communication fabric implements direct 
memory access from a source computer system to a target 
computer system without involvement of an operating sys 
tem on either the source or target computer system — where , 
depending on the direction of a communication path , the 
storage system ( s ) ( 1120 ) may be a source or target computer 
system and the GPU systems ( 1130A - 1130N ) may be a 
source or target computer system . 
[ 0210 ] In this example , given the communication fabric 
depicted in artificial intelligence and machine learning infra 
structure ( 1100 ) — where the communication fabric may 
implement multiple parallel communication channels 
through each switch ( 1132A - 1132C ) — and based on the 
storage system ( s ) ( 1120 ) including multiple storage devices , 
where each storage device may include one or more con 
trollers that may each communicate directly with one or 
more of the GPUs within GPU systems ( s ) ( 1130A - 1130N ) , 
artificial intelligence and machine learning infrastructure 
( 1100 ) may implement multiple , parallel high - speed com 
munication paths between different combinations of storage 
devices within the storage system ( s ) ( 1120 ) and computing 
elements of the GPU system ( s ) ( 1130A - 1130N ) . 
[ 0211 ] In other example implementations , the communi 
cation fabric may implement other network communication 
protocols , including the communication protocols discussed 
above with respect to the storage system ( 340 ) described in 
FIGS . 1A - 3B , including InfiniBand and iWARP . 
0212 ] In some implementations , artificial intelligence and 
machine learning infrastructure ( 1100 ) may be scaled to 
include additional storage systems or additional GPU sys 
tems within the same chassis ( 1101 ) , where the communi 
cation fabric may be similarly scaled to connect the addi 
tional storage systems and / or GPU systems via network 
switches ( 1132A - 1132C ) . In other cases , the communication 
fabric may be scaled to include additional network switches 
or additional tiers to the communication fabric . 
[ 0213 ] For further explanation , FIG . 11C sets forth a 
diagram illustrating an example implementation of an arti 
ficial intelligence and machine learning infrastructure soft 
ware stack ( 1105 ) according to some embodiments of the 
present disclosure . 
[ 0214 ] As depicted in FIG . 11C , the artificial intelligence 
and machine learning infrastructure software stack ( 1105 ) 
may be implemented entirely within the artificial intelli 
gence and machine learning infrastructure ( 110 ) depicted in 
FIGS . 11A and 11B . Further , the artificial intelligence and 
machine learning infrastructure software stack ( 1105 ) may 
include multiple software layers , including a multi - node 
training ( 1107A ) layer , a deep learning framework ( 1107B ) 
layer , a containerization ( 1107C ) layer , a scale - out GPU 
compute ( 1107D ) layer , a scale - out files / object protocol 
( 1107E ) layer , and a scale - out storage ( 1107F ) layer , among 
other potential software layers not depicted in FIG . 11C . 
[ 0215 ] The multi - node training ( 1107A ) layer may imple 
ment a scaling toolkit , or a configuration interface , that 
provides specifications for multi - node training within the 
artificial intelligence and machine learning infrastructure 
( 1100 ) . The scaling toolkit may be used to specify configu 

ration settings between the storage system ( s ) ( 1120 ) , the 
GPU systems ( 1130A - 1130N ) , and network components , 
including network switches ( 1132A - 132C ) of the commu 
nication fabric . 
[ 0216 ] The deep learning framework ( 1107B ) layer may 
implement deep learning frameworks such as Caffe , Caffe2 , 
mxnet , pytorch , torch , among other deep learning frame 
works . Further , each deep learning framework implemented 
at the deep learning framework ( 1107B ) layer may be 
delivered as a container to the containerization ( 1107C ) 
layer . Further , the containerization ( 1107C ) layer may 
implement GPU drivers for communicating with the GPUs 
of the scale - out GPU compute ( 1107D ) layer , and the 
containerization ( 1107C ) layer may also implement 
NVIDIATM DockerTM 
[ 0217 ] The scale - out GPU compute ( 1107D ) layer may be 
implemented by the GPU systems ( 1130A - 1130N ) , and the 
scale - out GPU compute ( 1107D ) layer may provide an 
interface for assigning jobs , sending or receiving data , 
adding or removing GPU systems , or for configuring one or 
more of the GPUs within the GPU systems ( 1130A - 1130N ) . 
In some examples , the functionality provided by the scale 
out GPU compute ( 1107D ) layer may be provided to layers 
above and below via an API specifying commands and 
parameters for each supported functionality for the corre 
sponding layer interface . 
[ 0218 ] . The scale - out file / object protocols ( 1107E ) layer 
may provide an API for a logical data handling layer , such 
as a file system that provides file systems operations for 
creating , deleting , moving , copying , or other standard file 
system operations . In some examples , the scale - out file / 
objects protocols ( 1107E ) layer may provide block level 
access , or data access according to a specified range or 
ranges of bytes . 
0219 ] The scale - out storage ( 1107F ) layer may be imple 
mented by the storage system ( s ) ( 1130 ) , and the scale - out 
storage ( 1107F ) layer may provide an interface for any 
storage system functionality described above with respect to 
FIGS . 1A - 3B , including reading , writing , erasing , or con 
figuring storage device settings , or configuring garbage 
collection , or for programming the one or more controllers 
implemented by each of the included storage systems or 
storage devices . For example , the scale - out storage ( 1107F ) 
layer may provide an API for performing input / output 
operations on physical data stored within the memory com 
ponents of the storage system . 
[ 0220 ] In some examples , the scale - out file / object protocol 
( 1107E ) layer and the scale - out storage ( 1107F ) layer , indi 
vidually or in combination , may provide for implementa 
tions of a virtual memory environment , memory manage 
ment , or one or more types of files systems or methods for 
creating , deleting , copying , reading , or writing files or 
objects . 
[ 0221 ] For further explanation , FIG . 11D sets forth a flow 
chart illustrating an example method for interconnecting a 
graphical processing unit layer and a storage layer of an 
artificial intelligence and machine learning infrastructure 
according to some embodiments of the present disclosure . 
Although depicted in less detail , the example artificial 
intelligence and machine learning infrastructure ( 1100 ) may 
be similar to the implementations described above with 
reference to FIGS . 11A - 11C , or any combination thereof . 
0222 ] In this example , a data path may be considered use 
of one or more protocols for a communication path directly 
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between the scale - out GPU compute ( 1107D ) layer and the 
scale - out storage ( 1107F ) layer . In other examples , the data 
path may be considered use of one or more protocols for 
implementing a communication path between the scale - out 
GPU compute ( 1107D ) layer , the scale - out files / object pro 
tocols ( 1107E ) layer , and the scale - out storage ( 1107F ) 
layer — where the scale - out GPU compute ( 1107D ) layer 
communicates to and from the scale - out files / object proto 
cols ( 1107E ) layer via one or more APIs , and where the 
scale - out files / object protocols ( 1107E ) layer communicates 
with the scale - out storage ( 1107F ) layer via one or more 
APIs . While in this example , the data path includes the 
bottom three layers of the artificial intelligence and machine 
learning infrastructure software stack ( 1107D , 1107E , 
1107F ) , in other examples , the data path may include one or 
more other software layers , including the multi - node train 
ing ( 1107A ) layer , the deep learning framework ( 1107B ) 
layer , and / or the containerization ( 1107C ) layer . 
0223 ] In this example , a definition of a data path may be 

based on the integration of the software stack as depicted 
and described above with respect to FIGS . 11A - 11C . For 
example , the scale - out storage ( 1107F ) may be configured to 
provide an API call that specifies for the scale - out storage 
( 1107F ) layer to implement a data transformation or data 
analysis on stored data — where the result of the API call is 
a result of the data transformation or data analysis performed 
by the scale - out storage ( 1107F ) layer , and where the scale 
out storage ( 1107F ) layer implements the data analysis or 
data transformation using one or more controllers for one or 
more storage devices . 
[ 0224 ] In some examples , the API provided by the scale 
out storage ( 1107F ) layer may provide data analysis or data 
transformation functionality or routines that include one or 
more of : JPEG decode , shuffle , combining files , and / or 
reshaping matrices / tensors . In general , and in dependence 
upon the controllers of the storage devices of the storage 
system ( 1130 ) being configured to perform any type of 
general computing functionality as described above with 
reference to FIGS . 1A - 3B , the API provided by the scale - out 
storage ( 1107F ) layer may provide an API interface for any 
type of data analysis or data transformation . As one 
example , the scale - out storage ( 1107F ) layer may provide an 
API call that instructs the scale - out storage ( 1107F ) layer to 
select a subset of data that matches a particular category . 
[ 0225 ] Further , in some examples , the API provided by the 
scale - out storage ( 1107F ) layer may include an API call that 
takes as a parameter function code , or a reference to function 
code , where one or more controllers of the storage system ( s ) 
( 1130 ) of the scale - out storage ( 1107F ) layer may execute 
the function code to perform a specified data analysis or data 
transformation . In this way , the scale - out GPU compute 
( 1107D ) layer may offload to the scale - out storage ( 1107F ) 
layer some of the computational tasks that would otherwise 
be performed by the scale - out GPU compute ( 1107D ) layer . 
[ 0226 ] In some examples , the scale - out storage ( 1107F ) 
layer may manage a compute cluster so that data analysis 
and / or data transformation happen under a centralized man 
agement plane . In other examples , the scale - out storage 
( 1107F ) layer may initiate data analysis and / or data trans 
formation or data management operation without any 
instruction or command from the scale - out GPU compute 
( 1107D ) layer , where the initiation of a data analysis and / or 
data transformation , or data management operation may be 
based at least in part on the one or more controllers identi 

fying a pattern within the operations requested from the 
scale - out GPU compute ( 1107D ) layer via the API . In some 
examples , a given GPU within the scale - out GPU compute 
( 1107D ) layer may communicate directly with a storage 
device of the scale - out storage ( 1107F ) layer without the 
intervention of an operating system . 
[ 0227 ] In some implementations , the scale - out GPU com 
pute ( 1107D ) layer may make calls to the API of the 
scale - out files / objects protocols ( 1107E ) layer or the scale 
out GPU compute ( 1107D ) layer may make calls directly to 
the scale - out storage ( 1107F ) layer . 
[ 0228 ] Similarly , the scale - out storage ( 1107F ) layer may 
generate results directly to the system memory of one or 
more GPUs within the scale - out GPU compute ( 1107D ) 
layer . For example , the scale - out storage ( 1107E ) layer may 
write results from an API call directly into a cache or other 
memory component of one or more GPUs of the scale - out 
GPU compute ( 1107D ) layer . 
[ 0229 ] As depicted in FIG . 11D , the example method 
includes generating ( 1152 ) , at a graphical processing unit of 
a computer system , a function call ( 1152A ) specifying one 
or more operations to be performed by a storage system of 
the computer system ; transmitting ( 1154 ) , across a commu 
nication fabric of the computer system , the function call 
( 1152A ) from the graphical processing unit to the storage 
system ( 1154 ) ; generating ( 1156 ) , at the storage system of 
the computer system and based on the function call ( 1152A ) , 
one or more results ( 1156A ) ; and transmitting ( 1158 ) , across 
the communication fabric , the one or more results ( 1156A ) 
from the storage system to the graphical processing unit . 
[ 0230 ] In this example , the graphical processing unit may 
be any of the graphical processing units of the GPU system 
( s ) 1130A - 1130N , the computer system may be a computer 
system comprising the artificial intelligence and machine 
learning infrastructure ( 1100 ) , and the storage system may 
be any storage system of the storage systems of storage 
system ( s ) ( 1120 ) . Further , in this example , the artificial 
intelligence and machine learning infrastructure system 
( 1100 ) may be operating to perform one or more machine 
learning tasks received from a cloud AI service ( 1171 ) 
implemented as a cloud service within a cloud services 
provider ( 1173A , where the cloud AI service ( 1171 ) receives 
tasks from a host computer ( 1170 ) across a network ( not 
depicted ) , where the tasks may be specified via a user 
interface provided by the cloud Al service ( 1171 ) . Further , 
the artificial intelligence and machine learning infrastructure 
system ( 1100 ) may be implemented within a data center ( not 
depicted ) or on site at a client location . 
[ 0231 ] Generating ( 1152 ) , 1152 ) , at the graphical process 
ing unit of the computer system , the function call ( 1152A ) 
specifying one or more operations to be performed by a 
storage system of the computer system may be implemented 
as described above with reference to FIGS . 11A - 11C , where 
given a specific task , the GPU identifies a corresponding API 
call , and generates parameters for the API call . 
10232 ] Transmitting ( 1154 ) , across a communication fab 
ric of the computer system , the function call ( 1152A ) from 
the graphical processing unit to the storage system ( 1154 ) 
may be implemented as described above with reference to 
FIGS . 11A - 11C , where the function call ( 1152A ) is trans 
mitted across a communication port to one a network switch , 
and where the network switch routs the function call to a 
network port on at the storage system ( s ) ( 1120 ) . 
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[ 0233 ] Generating ( 1156 ) , at the storage system of the 
computer system and based on the function call ( 1152A ) , 
one or more results ( 1156A ) may be implemented as 
described above with reference to FIGS . 11A - 11C , where 
one or more controllers on the storage system ( s ) ( 1120 ) may 
perform the function call according to the operation and 
parameters specified by the function call . 
[ 0234 Transmitting ( 1158 ) , across the communication 
fabric , the one or more results ( 1156A ) from the storage 
system to the graphical processing unit may be implemented 
as described above with reference to FIGS . 11A - 11C , where 
the results ( 1156A ) are transmitted across a communication 
port to a network switch , and where the network switch routs 
the results ( 1156A ) to a network port on at the GPU 
system ( s ) ( 1130A - 1130N ) . 
[ 0235 ] For further explanation , FIG . 12A sets forth a flow 
chart illustrating an example method of monitoring an 
artificial intelligence and machine learning infrastructure 
( 1100 ) according to some embodiments of the present dis 
closure . The artificial intelligence and machine learning 
infrastructure ( 1100 ) described above may include one or 
more monitoring modules ( 1202a , 1202b , 1202n ) or may be 
otherwise coupled to one or more monitoring modules . The 
monitoring modules ( 1202a , 1202b , 1202n ) may be embod 
ied , for example , computer program instructions executing 
on computer hardware such as a CPU . Such computer 
program instructions may be stored , for example , within 
memory that is contained in one or more of the blades that 
is included within a storage system that is included within 
the artificial intelligence and machine learning infrastructure 
( 1100 ) and executed by one or more CPUs that are included 
within the storage system that is included within the artificial 
intelligence and machine learning infrastructure ( 1100 ) . 
Readers will appreciate that other embodiments are contem 
plated such as , for example , the one or more monitoring 
modules ( 1202a , 1202b , 1202n ) residing within and being 
executed by a server that is included within the artificial 
intelligence and machine learning infrastructure ( 1100 ) , the 
one or more monitoring modules ( 1202a , 1202b , 1202n ) 
residing within and being executed by cloud computing 
resources that the artificial intelligence and machine learning 
infrastructure ( 1100 ) is in communications with , or in some 
other way . 
[ 0236 ] The example method depicted in FIG . 12A 
includes identifying ( 1203 ) , by the one or more monitoring 
modules ( 1202a , 12026 , 1202n ) , a bottleneck in an execu 
tion pipeline . The execution pipeline may be embodied , for 
example , as an artificial intelligence or machine learning 
pipeline in which various stages of executing an artificial 
intelligence or machine learning application are carried out . 
Such an execution pipeline can include , for example , iden 
tifying a particular dataset to use as input to the artificial 
intelligence or machine learning application , reading such a 
dataset from storage that is contained within the artificial 
intelligence and machine learning infrastructure ( 1100 ) , 
performing a series of transformations to the dataset , run 
ning the dataset through a plurality of artificial intelligence 
or machine learning models , retaining auditing information 
describing the steps performed and the content of the dataset 
during the various stages of execution , and many other steps . 
[ 0237 ] In the example method depicted in FIG . 12A , a 
bottleneck can occur for a variety of reasons . For example , 
a bottleneck can occur when insufficient resources are allo 
cated to one portion of the execution pipeline , thereby 

causing one portion of the execution pipeline to create a 
bottleneck for the remaining portions of the execution 
pipeline . Consider an example in which one portion of the 
execution pipeline includes a series of transformations to the 
dataset , where each transformation in the series of transfor 
mations is performed by a distinct module of computer 
program instructions . In such an example , assume that when 
a first module of computer program instructions has com 
pleted a first transformation , the first module of computer 
program instructions sends the transformed data to a second 
module of computer program instructions which will per 
form a second transformation . Further assume that when the 
second module of computer program instructions has com 
pleted the second transformation , the second module of 
computer program instructions sends the transformed data to 
a third module of computer program instructions which will 
perform a third transformation . In such an example , assume 
that the second transformation is more complex than the 
other transformations and further assume that each module 
of computer program instructions is given an identical 
amount of processing resources upon which the modules 
will execute . In such an example , the performance of the 
second transformation could create a bottleneck as the 
second transformation may take more time to complete 
given that it is the most complex transformation and further 
given that the second module of computer program instruc 
tions only has access to the same amount of computing 
resources as the first module of computer program instruc 
tions and the third module of computer program instruc 
tions . 
[ 0238 ] The example method depicted in FIG . 12A also 
includes initiating ( 1204 ) , by the one or more monitoring 
modules ( 1202a , 1202b , 1202n ) , reconfiguration of the 
artificial intelligence and machine learning infrastructure 
( 1100 ) to resolve the bottleneck in the execution pipeline . 
Initiating , by the one or more monitoring modules ( 1202a , 
12026 , 1202n ) , reconfiguration of the artificial intelligence 
and machine learning infrastructure ( 1100 ) to resolve the 
bottleneck in the execution pipeline may be carried out , for 
example , by reallocating resources to resolve the bottleneck 
in the execution pipeline . Continuing with the example 
described above , initiating reconfiguration of the artificial 
intelligence and machine learning infrastructure ( 1100 ) to 
resolve the bottleneck in the execution pipeline may be 
carried out , for example , by the one or more monitoring 
modules ( 1202a , 1202b , 1202n ) allocating additional com 
pute resources to support the execution of the second 
module of computer program instructions . Readers will 
appreciate that the example described above is just one of 
many bottlenecks that can occur and the actions taken to 
resolve such bottlenecks can take many other forms . For 
example , bottlenecks may occur as the result of processing 
bottlenecks , scheduling bottlenecks , workload allocation 
and distribution bottlenecks , and many others . As such , the 
actions taken to resolve such bottlenecks can include split 
ting a single step into multiple steps and vice versa , chang 
ing the manner in which operations are scheduled , moving 
workloads around to different physical or virtual resources , 
and so on . 
[ 0239 ] The example method depicted in FIG . 12A can also 
include monitoring ( 1206 ) access patterns to one or more of 
the storage systems contained in the artificial intelligence 
and machine learning infrastructure ( 1100 ) . Monitoring 
( 1206 ) access patterns to one or more of the storage systems 
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contained in the artificial intelligence and machine learning 
infrastructure ( 1100 ) may be carried out , for example , by 
tracking the location of accesses to the storage systems , by 
tracking the types of accesses ( e . g . , reads , writes ) to the 
storage systems , and so on . In such an example , the access 
patterns to one or more of the storage systems contained in 
the artificial intelligence and machine learning infrastructure 
( 1100 ) may be used to gain certain insights into the execu 
tion of the artificial intelligence or machine learning pipe - 
line . 
10240 ] Consider an example in which a time - series data 
base is being built off of the I / O access patterns of the 
training data and a time - series database is also being built off 
of the scheduler and the GPUs . In such an example , this 
information could be used to determine how to schedule 
things in a way to make best use of the artificial intelligence 
and machine learning infrastructure ' s ( 1100 ) resources . In 
such an example , the artificial intelligence or machine 
learning pipeline may be represented by a complicated 
execution graph and a scheduler must decide what to run 
when . In such an example , feedback loops from storage , 
networking , compute , and any other parts of the system 
stack may be used to inform the scheduler and enable the 
scheduler to make better scheduling decisions . In fact , all of 
this information could be maintained in a centralized time 
series database that includes all of this information . As such , 
information from a first training run can be used to make 
better decisions on a second training run . Readers will 
appreciate that although depicted as a distinct step , in some 
embodiments , monitoring ( 1206 ) access patterns to one or 
more of the storage systems contained in the artificial 
intelligence and machine learning infrastructure ( 1100 ) may 
be part of identifying ( 1203 ) a bottleneck in an execution 
pipeline , as described above . 
[ 0241 ] The example method depicted in FIG . 12A also 
includes monitoring ( 1208 ) data - related aspects of the arti 
ficial intelligence or machine learning pipeline . Monitoring 
( 1208 ) data - related aspects of the artificial intelligence or 
machine learning pipeline can include not only monitoring 
whether some data that is needed by one or more of the 
GPUs is available for use by the GPUs , but also monitoring 
the nature of the data . For example , during each training run 
of a particular Al or machine learning model , data may be 
ingested as training data for the Al or machine learning 
model . In such an example , monitoring the nature of the data 
can include , for example , monitoring the training data that is 
ingested during each training run to identify exceptional data 
( i . e . , data that is dissimilar to data that was previously 
received training data for the AI or machine learning model ) . 
In such an example , by monitoring ( 1208 ) data - related 
aspects of the artificial intelligence or machine learning 
pipeline , changes to the input data to the artificial intelli 
gence or machine learning pipeline can be identified . Read 
ers will appreciate that while the previous sentences relate to 
the monitoring of training data , in a production environment , 
data - related aspects of the artificial intelligence or machine 
learning pipeline may similarly be monitored ( 1208 ) . 
[ 0242 ] The example method depicted in FIG . 12A also 
includes creating ( 1210 ) auditing information for the artifi 
cial intelligence or machine learning pipeline . The auditing 
information for the artificial intelligence or machine learning 
pipeline may include , for example , information describing 
the data that was fed into the artificial intelligence or 
machine learning pipeline , the source code that was used 

when executing the artificial intelligence or machine learn 
ing pipeline , and so on . Consider an example in which the 
pipeline is an artificial intelligence pipeline for a self - driving 
car . In such an example , auditing information may be 
maintained to capture what data was fed into the artificial 
intelligence pipeline ( e . g . , what data was received from the 
self - driving car ' s sensors at various points in time ) , what 
code was executed to control the operation of the self 
driving car , and so on . The auditing information may be 
creating , for example , by applying a hash function to rep 
resentations of the data and code to create a hash value that 
captures the data and code , by storing such information in a 
blockchain , by storing such information in a database , and 
so on . 
[ 0243 ] Readers will appreciate that creating ( 1210 ) audit 
ing information for the artificial intelligence or machine 
learning pipeline may also take advantage of an approach to 
only retain the deltas each time auditing information is 
created . For example , if auditing information is created at 
time 0 and auditing information is subsequently created at 
time 1 , any audit information that has not changed between 
time 1 and time 0 may not need to be retained . For example , 
if the code that was used at time 0 is captured in the auditing 
information for time 0 , and such code does not change at 
time 1 , then the code that was used at time 1 need not be 
included in the auditing information for time 1 . In such an 
example , a pointer or other instrument can be included in the 
auditing information for time 1 to indicate that the code used 
at time 1 was identical to the code used at a previous point 
in time . 
[ 0244 ] The example method depicted in FIG . 12A also 
includes creating ( 1212 ) trending information for the artifi 
cial intelligence or machine learning pipeline . The trending 
information for the artificial intelligence or machine learning 
pipeline may include , for example , information describing 
improvements in the models over time , information describ 
ing changes to the data that is input into the models over 
time , and so on . In such an example , the trending informa 
tion for the artificial intelligence or machine learning pipe 
line may be used to validate certain models , identify data 
drift , or used for a variety of other purposes . In such an 
example , the trending information for the artificial intelli 
gence or machine learning pipeline may be displayed and 
presented to a user , for example , via a tool that shows the 
improvement of a particular model over time . 
[ 0245 ] Readers will appreciate that although the embodi 
ment depicted in FIG . 12 A illustrates an embodiment where 
the one or more monitoring modules ( 1202a , 12026 , 1202n ) 
reside within the artificial intelligence and machine learning 
infrastructure ( 1100 ) , other embodiments can exist . In fact , 
in an alternative embodiment the one or more monitoring 
modules ( 1202a , 1202b , 1202n ) may reside outside of the 
artificial intelligence and machine learning infrastructure 
( 1100 ) . The one or more monitoring modules ( 1202a , 1202b , 
1202n ) may reside , for example , on one or more remote 
servers that communicate with one or more artificial intel 
ligence and machine learning infrastructures ( 1100 ) . Alter 
natively , the one or more monitoring modules ( 1202a , 
1202b , 1202n ) may reside within a cloud environment that 
includes resources that can communicate with one or more 
artificial intelligence and machine learning infrastructures 
( 1100 ) . In such embodiments , the one or more artificial 
intelligence and machine learning infrastructures ( 1100 ) 
may periodically send telemetry data to the one or more 
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monitoring modules ( 1202a , 1202b , 1202n ) that includes , 
for example , data telemetry , storage telemetry , networking 
telemetry , compute telemetry , and so on . 
[ 0246 ] For further explanation , FIG . 12B sets forth a flow 
chart illustrating an example method of optimizing an arti 
ficial intelligence and machine learning infrastructure ( 1100 ) 
according to some embodiments of the present disclosure . 
The artificial intelligence and machine learning infrastruc 
ture ( 1100 ) described above may include one or more 
optimization modules ( 1252a , 1252b , 1252n ) or may be 
otherwise coupled to one or more optimization modules . The 
optimization modules ( 1252a , 1252b , 1252n ) may be 
embodied , for example , computer program instructions 
executing on computer hardware such as a CPU . Such 
computer program instructions may be stored , for example , 
within memory that is contained in one or more of the blades 
that is included within a storage system that is included 
within the artificial intelligence and machine learning infra 
structure ( 1100 ) and executed by one or more CPUs that are 
included within the storage system that is included within 
the artificial intelligence and machine learning infrastructure 
( 1100 ) . Readers will appreciate that other embodiments are 
contemplated such as , for example , the one or more opti 
mization modules ( 1252a , 1252b , 1252n ) residing within 
and being executed by a server that is included within the 
artificial intelligence and machine learning infrastructure 
( 1100 ) , the one or more optimization modules ( 1252a , 
12526 , 1252n ) residing within and being executed by cloud 
computing resources that the artificial intelligence and 
machine learning infrastructure ( 1100 ) is in communications 
with , or in some other way . 
[ 0247 ] The example method depicted in FIG . 12B 
includes determining ( 1254 ) whether a particular artificial 
intelligence or machine learning pipeline will fit on a 
particular artificial intelligence and machine learning infra 
structure ( 1100 ) . Readers will appreciate that multiple arti 
ficial intelligence or machine learning pipelines may be 
executed on a particular artificial intelligence and machine 
learning infrastructure ( 1100 ) . Each artificial intelligence or 
machine learning pipeline that is being executed on a 
particular artificial intelligence and machine learning infra 
structure ( 1100 ) will consume resources ( e . g . , storage , com 
pute , networking ) . Given that each artificial intelligence and 
machine learning infrastructure ( 1100 ) has finite resources , 
each artificial intelligence and machine learning infrastruc 
ture ( 1100 ) cannot support an infinite number of artificial 
intelligence or machine learning pipelines . As such , a deter 
mination ( 1254 ) may need to be made as to whether a 
particular artificial intelligence or machine learning pipeline 
will fit on a particular artificial intelligence and machine 
learning infrastructure ( 1100 ) . Determining ( 1254 ) whether 
a particular artificial intelligence or machine learning pipe 
line will fit on a particular artificial intelligence and machine 
learning infrastructure ( 1100 ) may be carried out , for 
example , by determining an amount of resources that are 
expected to be required to execute a particular artificial 
intelligence or machine learning pipeline and determining 
whether the artificial intelligence and machine learning 
infrastructure ( 1100 ) has an amount of available resources to 
satisfy the expected demand for resources from the particu 
lar artificial intelligence or machine learning pipeline . 
[ 0248 ] Readers will appreciate that determining ( 1254 ) 
whether a particular artificial intelligence or machine learn - 
ing pipeline will fit on a particular artificial intelligence and 

machine learning infrastructure ( 1100 ) can be more compli 
cated than a simple comparison of available resources to 
expected demand for resources by the particular artificial 
intelligence or machine learning pipeline . For example , the 
optimization modules ( 1252a , 1252b , 1252n ) may take into 
consideration the performance impact on other artificial 
intelligence or machine learning pipelines that are currently 
executing on the particular artificial intelligence and 
machine learning infrastructure ( 1100 ) to determine whether 
satisfactory performance metrics could be maintained even 
with the addition of the particular artificial intelligence or 
machine learning pipeline to the particular artificial intelli 
gence and machine learning infrastructure ( 1100 ) . In such an 
example , other artificial intelligence or machine learning 
pipelines that are currently executing on the particular 
artificial intelligence and machine learning infrastructure 
( 1100 ) may be subject to various service level agreements , 
quality of service requirements , and so on that may be 
violated with the addition of the particular artificial intelli 
gence or machine learning pipeline to the particular artificial 
intelligence and machine learning infrastructure ( 1100 ) 
even if the particular artificial intelligence and machine 
learning infrastructure ( 1100 ) could technically support the 
particular artificial intelligence or machine learning pipeline . 
Likewise , the particular artificial intelligence or machine 
learning pipeline may itself have various performance and 
service requirements / expectations that are attached to the 
particular artificial intelligence or machine learning pipeline , 
such that the mere ability to support the execution of the 
particular artificial intelligence or machine learning pipeline 
may be insufficient . 
[ 0249 ] Readers will further appreciate that trending infor 
mation , including the expected increase or decrease in 
resource consumption of the particular artificial intelligence 
or machine learning pipeline , as well as the expected 
increase or decrease in resource consumption of the other 
artificial intelligence or machine learning pipelines that are 
currently executing on the particular artificial intelligence 
and machine learning infrastructure ( 1100 ) may be taken 
into consideration when determining ( 1254 ) whether a par 
ticular artificial intelligence or machine learning pipeline 
will fit on a particular artificial intelligence and machine 
learning infrastructure ( 1100 ) . In such a way , the determi 
nation ( 1254 ) may be forward looking and avoid a predict 
able exhaustion of resources . 
[ 0250 ] Readers will further appreciate that determining 
( 1254 ) whether a particular artificial intelligence or machine 
learning pipeline will fit on a particular artificial intelligence 
and machine learning infrastructure ( 1100 ) may be of par 
ticular interest in embodiments where a cluster of artificial 
intelligence and machine learning infrastructures ( 1100 ) are 
available . In such an example , although a plurality of the 
artificial intelligence and machine learning infrastructures 
( 1100 ) may be able to support the execution of the particular 
artificial intelligence or machine learning pipeline , a best fit 
analysis may be performed to identify the artificial intelli 
gence and machine learning infrastructures ( 1100 ) that may 
best support the particular artificial intelligence or machine 
learning pipeline . In such a way , loading balancing objec 
tives may be met , higher service levels may be afforded to 
the other artificial intelligence or machine learning pipelines 
that are currently executing on the cluster of artificial 
intelligence and machine learning infrastructures ( 1100 ) , 
and so on . 
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[ 0251 ] The example method depicted in FIG . 12B also 
includes , responsive to affirmatively determining that the 
particular artificial intelligence or machine learning pipeline 
will fit on the particular artificial intelligence and machine 
learning infrastructure ( 1100 ) , initiating ( 1256 ) execution of 
the particular artificial intelligence or machine learning 
pipeline on the particular artificial intelligence and machine 
learning infrastructure ( 1100 ) . Readers appreciate that in 
embodiments where a cluster of artificial intelligence and 
machine learning infrastructures ( 1100 ) are available , execu 
tion of the particular artificial intelligence or machine learn 
ing pipeline may be initiated ( 1256 ) on a particular artificial 
intelligence and machine learning infrastructure ( 1100 ) that 
was selected using a best fit analysis . 
[ 0252 ] The example method depicted in FIG . 12B also 
includes determining ( 1258 ) an estimated time for comple 
tion for a particular artificial intelligence or machine learn 
ing job . Determining ( 1258 ) an estimated time for comple 
tion for a particular artificial intelligence or machine 
learning job may be carried out , for example , by estimating 
an amount of time required to complete a particular artificial 
intelligence or machine learning job in view of the amount 
of resources that may be made available for use by the 
particular artificial intelligence or machine learning job . In 
such an example , users in a multi - tenant environment may 
even be provided with the estimated time for completion for 
a particular artificial intelligence or machine learning job , so 
that a user may determine whether to actually submit the 
particular artificial intelligence or machine learning job . 
Likewise , the estimated time for completion for a particular 
artificial intelligence or machine learning job may be given 
to a scheduler or other module of computer program instruc 
tions that can gather such information from a plurality of 
artificial intelligence and machine learning infrastructures 
( 1100 ) ( e . g . , in a clustered environment ) in order to identify 
which particular artificial intelligence and machine learning 
infrastructure ( 1100 ) the particular artificial intelligence or 
machine learning job should be submitted to . 
[ 0253 ] The example method depicted in FIG . 12B also 
includes determining ( 1260 ) the extent to which one or more 
artificial intelligence or machine learning models are 
improving over time . Determining ( 1260 ) the extent to 
which one or more artificial intelligence or machine learning 
models are improving over time may be carried out , for 
example , through the use of trending information for a 
particular artificial intelligence or machine learning job . In 
fact , determining ( 1260 ) the extent to which one or more 
artificial intelligence or machine learning models are 
improving over time can include performing things like A / B 
testing between different models or transformations , per 
forming canary testing to quickly and automatically verify 
that everything that a particular model depends on is ready 
before other time - consuming tests are conducted , and so on . 
In fact , in context of canary testing , a deeply learned model 
may be used that predicts if the learned model passed A / B 
testing using a history of previous A / B tests , particular for a 
continuous integration pipeline . In such an example , 
weighted scores may be created to show if the output is 
likely to pass . Through the use of such techniques , historical 
trending of various models may be maintained and tracked 
such that the details and outcomes of steps in a pipeline may 
be maintained . 
[ 0254 ] The example method depicted in FIG . 12B also 
includes generating ( 1262 ) model recommendations . Read 

ers will appreciate that , in view of the fact that many 
artificial intelligence or machine learning pipelines may be 
executed a single artificial intelligence and machine learning 
infrastructure ( 1100 ) and further in view of the fact that 
multiple artificial intelligence and machine learning infra 
structures ( 1100 ) may be included in a single cluster , a 
substantial amount of information related to the execution of 
artificial intelligence or machine learning pipelines may be 
available . Such information may be mined to identify , for 
example , models that worked well on various datasets , 
transformations that led to improvements for a particular 
pipeline and dataset , and so on . As such , model recommen 
dations may be generated ( 1262 ) to recommend that a 
particular model be alerted in some particular way , particular 
transformations be excluded from or included in a particular , 
transformations be modified in some way , and so on . 
[ 0255 ] In the example method depicted in FIG . 12B , 
generating ( 1262 ) model recommendations may be carried 
out through the fingerprints or similar mechanisms that 
describe various aspects of a particular artificial intelligence 
or machine learning pipeline , the data ingested by the 
particular artificial intelligence or machine learning pipeline , 
and so on . In such a way , recommendations may only be 
generated based on information gathered from artificial 
intelligence or machine learning pipelines and datasets with 
similar fingerprints . For example , if a particular transforma 
tion was particularly useful in an image recognition machine 
learning pipeline that ingested images with certain charac 
teristics , such a transformation may only be recommended 
for owners of other image recognition machine learning 
pipelines that ingest images with similar characteristics , 
whereas such a recommendation would not be generated a 
speech processing artificial intelligence pipeline . Readers 
will appreciate that such recommendations could be anony 
mized so as to shield another user ' s data , specific informa 
tion about their model , and so on . 
[ 0256 ] In the example method depicted in FIG . 12B , 
embodiments may make use of auto - indexing techniques 
through which the artificial intelligence and machine learn 
ing infrastructure ( 1100 ) can , for example , generate vectors 
for data to quickly and effectively index and understand 
large amounts of data . Such auto - indexing techniques may 
be used to identify cold data that should be tiered off of the 
artificial intelligence and machine learning infrastructure 
( 1100 ) , to migrate data to a cache ( e . g . , for data that is being 
heavily used ) , and so on . Through the use of such auto 
indexing techniques , insights into the content of the data 
may cause the artificial intelligence and machine learning 
infrastructure ( 1100 ) to automatically tier some less useful 
data to slower storage as part of a migration process , rather 
than migrating the data and subsequently determining that 
the data that has already been stored in the artificial intel 
ligence and machine learning infrastructure ( 1100 ) should be 
tiered away . 
[ 0257 ] The example method depicted in FIG . 12B also 
includes tuning ( 1212 ) an artificial intelligence or machine 
learning pipeline . In the example method depicted in FIG . 
12B , tuning ( 1212 ) an artificial intelligence or machine 
learning pipeline may be carried out , for example , in a 
manner that is automated and / or predictive based on an 
examination of the workloads placed on the artificial intel 
ligence and machine learning infrastructure ( 1100 ) as well as 
the attributes of one or more artificial intelligence or 
machine learning pipelines . For example , the ratios of 
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compute - to - storage may be modified based on characteris 
tics of the workload , pipelines could be rebalanced based on 
an identification of bottlenecks ( e . g . , a bottleneck is identi 
fied , a solution is identified indicating that additional stream 
processing servers are needed , and additional stream - pro 
cessing servers are automatically spun up ) . Likewise , 
workloads or pipelines could be moved around and various 
other actions could be taken to tune ( 1212 ) the artificial 
intelligence or machine learning pipeline . 
[ 0258 ] Embodiments of the artificial intelligence and 
machine learning infrastructure ( 1100 ) may also make use of 
a job scheduler and a resource management tool that can 
reside within the storage system ( s ) that are contained in the 
artificial intelligence and machine learning infrastructure 
( 1100 ) . In such an embodiment , the storage system ( s ) may 
be responsible for managing the scheduling of jobs to the 
GPU and other types of resource management , where such 
management is carried out by the storage system ( s ) under a 
single management plane . Furthermore , such management 
may be carried out in an automated fashion , including 
automated scheduling based on various factors ( e . g . , the 
influx of some data , data contents , and so on ) . For example , 
pre - merge tests should see what code has changed and run 
tests based on those changes . Furthermore , the storage 
systems ( s ) could implement management in by making 
decisions such as , for example , selecting a particular dataset 
to train against , the appropriate interval to run tests and 
continuously re - train with new data , and so on . 
[ 0259 ] In some embodiments , a storage system or other 
management entity within the artificial intelligence and 
machine learning infrastructure ( 1100 ) may also implement 
automated training with continuous learning based on some 
triggers ( e . g . , new data , exceptional data ) . Furthermore , 
auto - indexing could be used to identify the particular cat 
egories of data within a dataset . For example , a user of an 
image processing pipeline may want to train against images 
of dogs and cats , with no understanding the dataset actually 
includes images of dogs , cats , birds , worms , and so on . An 
automated indexing solution , however , would detect each of 
the categories of data actually contained within the dataset . 
[ 0260 ] In some embodiments , a storage system or other 
management entity within the artificial intelligence and 
machine learning infrastructure ( 1100 ) may also implement 
the real - time coordination of workflows . Readers will appre 
ciate that the artificial intelligence and machine learning 
infrastructure ( 1100 ) do not just execute artificial intelli 
gence and machine learning pipelines , as the artificial intel 
ligence and machine learning infrastructure ( 1100 ) may also 
run message queue systems , data cleansing modules , and so 
on . As such , the artificial intelligence and machine learning 
infrastructure ( 1100 ) may be configured to handle the coor 
dination of all of the resources under a single management 
plane . 
10261 ] For further explanation , FIG . 13 sets forth a flow 
chart illustrating an example method of data transformation 
caching in an artificial intelligence infrastructure ( 1302 ) that 
includes one or more storage systems ( 1304 ) and one or 
more GPU servers ( 1318 ) according to some embodiments 
of the present disclosure . Although depicted in less detail , 
the storage system ( 1304 ) depicted in FIG . 13 may be 
similar to the storage systems described above , as the 
storage system ( 1304 ) depicted in FIG . 13 may include any 
combination of the components contained in the storage 
systems described above . The GPU servers ( 1318 ) depicted 

in FIG . 13 may be embodied , for example , as a server , 
workstation , or other computing device that specialize in 
using general - purpose computing on graphics processing 
units ( GPGPU ' ) to accelerate deep learning applications , 
machine learning applications , artificial intelligence appli 
cations , or similar applications . Although not explicitly 
depicted in FIG . 13 , the storage systems ( 1304 ) and the GPU 
servers ( 1318 ) may be coupled for data communications via 
one or more data communications links . Readers will appre 
ciate that the artificial intelligence infrastructure ( 1302 ) 
depicted in FIG . 13 may be similar to the artificial intelli 
gence and machine learning infrastructures described above . 
[ 0262 ] The artificial intelligence infrastructure ( 1302 ) 
depicted in FIG . 13 may be configured to support the 
execution of one or more machine learning models . Such 
machine learning models may consist of one or more 
machine learning algorithms that are executed on one or 
more of the GPU servers ( 1308 ) . Such machine learning 
algorithms can include supervised learning algorithms such 
as , for example , linear regression algorithms , logistic regres 
sion algorithms , decision tree algorithms , or others . Such 
machine learning algorithms can also include unsupervised 
learning algorithms such as , for example , Apriori algo 
rithms , k - means clustering algorithms , or others . Likewise , 
such machine learning algorithms can also include rein 
forcement learning algorithms such as , for example , Markov 
decision processes , Q - learning algorithms , or others . 
[ 0263 ] In the examples depicted herein , the machine learn 
ing models that are supported by the artificial intelligence 
infrastructure ( 1302 ) may be provided input data that is 
stored within one or more of the storage systems ( 1304 ) that 
are included in the artificial intelligence infrastructure 
( 1302 ) . As such , input data that is stored within one or more 
of the storage systems ( 1304 ) that are included in the 
artificial intelligence infrastructure ( 1302 ) may be provided 
to the GPU servers ( 1308 ) such that the GPU servers ( 1308 ) 
can utilize the input data as input into the machine learning 
algorithms that are being executed on the GPU servers 
( 1308 ) . Readers will appreciate , however , that different 
machine learning models may require input data that is in 
different formats , contains different types of data , and so on . 
For example , a first machine learning model may utilize a 
vector as input while a second machine learning model may 
utilize a matrix as input . 
[ 0264 ] The example method depicted in FIG . 13 includes 
identifying ( 1308 ) , in dependence upon one or more 
machine learning models ( 1316 ) to be executed on the GPU 
servers ( 1318 ) , one or more transformations to apply to a 
dataset ( 1306 ) . The dataset ( 1306 ) depicted in FIG . 13 may 
be embodied , for example , as a collection of files , objects , or 
other pieces of data that collectively form a set of data that 
is to be used for training a machine learning model . The 
dataset ( 1306 ) depicted in FIG . 13 may , however , not be in 
a format that can be efficiently used by a machine learning 
model . For example , the objects in the dataset ( 1306 ) may 
contain unstructured data that either does not have a pre 
defined data model or is not organized in a pre - defined 
manner . Such unstructured data may be , for example , text 
heavy data that contains data such as dates , numbers , and 
facts as well . Such unstructured data may be difficult to 
understand using traditional programs relative to data stored 
in fielded form in databases , annotated in documents , or 
otherwise structured . Alternatively , the objects in the dataset 
( 1306 ) may contain untagged data whose meaning cannot be 
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readily identified by a machine learning model . Readers will 
appreciate that in other examples , the contents of the dataset 
( 1306 ) may be inefficiently formatted , tagged , or otherwise 
inefficient for use as training data for a machine learning 
model . 
[ 0265 ] . Consider an example in which the dataset ( 1306 ) is 
embodied as a collection of log files generated by the storage 
system ( 1304 ) . In such an example , each line in each of the 
log files may be unstructured as each line is created in a way 
so as to be in a human readable format . Such unstructured 
data may be inefficient for use by a machine learning model 
as the unstructured data may not be structured via pre 
defined data models or schema that enable for easy search 
ing of the data . Other examples of datasets ( 1306 ) that 
contain unstructured data can include , for example , datasets 
that include video files , image files , audio files , and many 
others . 
[ 0266 ] In the example method depicted in FIG . 13 , the one 
or more transformations to apply to the dataset ( 1306 ) may 
include , for example , performing scaling transformations to 
standardize the range of independent variables or features of 
data , performing decomposition transformations to decom 
pose features that represent a complex concept into con 
stituent parts ( e . g . , decomposing a date that has day and time 
components an hour of the day constituent part ) , performing 
aggregation transformations to aggregate multiple features 
into a single feature ( e . g . , instances for each time a customer 
logged into a system could be aggregated into a count 
feature that identifies the number of logins ) , and many 
others . Readers will appreciate that the specific transforma 
tions to apply to the dataset ( 1306 ) may not only be a 
function of the format of the dataset ( 1306 ) itself , but 
specific transformations to apply may also be a function of 
the expected input for the one or more machine learning 
models ( 1316 ) to be executed on the GPU servers ( 1318 ) . 
The one or more transformations to apply to the dataset 
( 1306 ) can further include , for example , transforming 
unstructured data into structure data by extracting informa 
tion from the unstructured format and populating the data in 
a structured format , transforming structured data in a first 
format to a second format that is expected by the one or more 
machine learning models ( 1316 ) , and so on . 
[ 0267 ] The example method depicted in FIG . 13 also 
includes generating ( 1310 ) , in dependence upon the one or 
more transformations , a transformed dataset ( 1304 ) . The 
transformed dataset ( 1314 ) may be embodied , for example , 
as vector that can serve as input to a machine learning 
model , as a tensor that can serve as an input to a machine 
learning model , and so on . FIG . 13 relates to an embodiment 
where something other than the storage system ( 1304 ) 
generates ( 1310 ) the transformed dataset ( 1304 ) in depen 
dence upon the one or more transformations . For example , 
the artificial intelligence infrastructure ( 1302 ) may include 
other computing devices ( e . g . , dedicated servers ) that gen 
erate ( 1310 ) the transformed dataset ( 1304 ) . Likewise , in 
other embodiments the GPU servers ( 1318 ) may be used to 
generate ( 1310 ) the transformed dataset ( 1304 ) . In addi 
tional embodiments , generating ( 1310 ) the transformed 
dataset ( 1304 ) may be offloaded to a cloud services provider 
that is in data communications with the artificial intelligence 
infrastructure ( 1302 ) . Readers will appreciate that prior to 
actually generating ( 1310 ) the transformed dataset ( 1314 ) , 
the storage system ( 1304 ) or other computing resources that 
are performing the transformation may perform other opera 

tions to prepare the dataset ( 1306 ) for use by the machine 
learning models that are supported by the artificial intelli 
gence infrastructure ( 1302 ) . For example , the storage system 
( 1304 ) or other computing resources that are performing the 
transformation may select data for inclusion in the trans 
formed dataset ( 1314 ) , format the data to ensure that data 
formats are consistent for data received from different 
sources , clean the data to discard unwanted data , remove 
duplicated data , delete unusable data , handle missing data , 
or perform other preprocessing operations . 
[ 0268 ] Readers will appreciate that in embodiments where 
the storage system ( 1304 ) or other computing resources that 
performs the steps described above , the GPU servers ( 1318 ) 
that actually execute the machine learning algorithms may 
avoid performing the computationally demanding task of 
preparing data for use by the machine learning algorithms , 
as the process of receiving , cleaning , pre - processing , and 
transforming the data may be performed by the storage 
system ( 1304 ) rather than the GPU servers ( 1318 ) . As such , 
the computing resources provided by the GPU servers 
( 1318 ) may be reserved for actually executing the machine 
learning algorithms against an already prepared transformed 
dataset ( 1314 ) , rather than having the computing resources 
provided by the GPU servers ( 1318 ) burdened with the task 
of preparing data for ingestion by the machine learning 
algorithms . 
[ 0269 ] The example method depicted in FIG . 13 also 
includes storing ( 1312 ) , within one or more of the storage 
systems ( 1304 ) , the transformed dataset ( 1314 ) . In the 
example method depicted in FIG . 13 , portions of the trans 
formed dataset ( 1314 ) may be stored across multiple storage 
devices within the storage system ( 1304 ) , along with parity 
data , to increase the resiliency of the transformed dataset 
( 1314 ) through the use of a RAID ( e . g . , RAID 6 ) or 
RAID - like approach . Furthermore , concepts such as , for 
example , data tiering may be applied when storing ( 1312 ) 
the transformed dataset ( 1314 ) such that more frequently 
accessed transformed datasets are stored in portions of the 
storage system ( 1304 ) that provide for faster access while 
less frequently accessed transformed datasets are stored in 
portions of the storage system ( 1304 ) that provide for slower 
access . In fact , such concepts can be extended such that 
transformed datasets are tiered away from the storage sys 
tems ( 1304 ) themselves and stored on , for example , storage 
that is provided by a cloud services provider . In such 
examples , heuristics may be used to place and move the 
transformed datasets within a storage environment that can 
include the one or more storage systems ( 1304 ) as well as 
storage resources that may exist outside of the artificial 
intelligence infrastructure ( 1302 ) , although in other embodi 
ments storing ( 1312 ) the transformed dataset ( 1314 ) occurs 
exclusively within one or more of the storage systems 
( 1304 ) that reside within the artificial intelligence infrastruc 
ture ( 1302 ) . 
[ 0270 ] The example method depicted in FIG . 13 also 
includes receiving ( 1320 ) a plurality of requests ( 1324 ) to 
transmit the transformed dataset ( 1314 ) to one or more of the 
GPU servers ( 1318 ) . Readers will appreciate that multiple 
requests ( 1324 ) for the same transformed dataset ( 1314 ) may 
be received ( 1320 ) for a variety of reasons . For example , a 
first request to transmit the transformed dataset ( 1314 ) to 
one or more of the GPU servers ( 1318 ) may be received 
( 1320 ) in response to the GPU servers ( 1318 ) initiating 
execution of a particular machine learning model that will 
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train on the transformed dataset ( 1314 ) . In such an example , 
after training has completed , changes may be made to the 
particular machine learning model as part of an effort to 
improve the particular machine learning model . Once the 
changes have been made to the particular machine learning 
model , a second request to transmit the transformed dataset 
( 1314 ) to one or more of the GPU servers ( 1318 ) may be 
received ( 1324 ) in response to the GPU servers ( 1318 ) 
initiating execution of the updated machine learning model 
that will train on the transformed dataset ( 1314 ) . Similarly , 
multiple requests for the same transformed dataset ( 1314 ) 
may be received ( 1320 ) , for example , when a first GPU 
server is going to execute a first version of a particular 
machine learning model that trains on the transformed 
dataset ( 1314 ) more or less simultaneously to a second GPU 
server executing a second version of a particular machine 
learning model that trains on the transformed dataset ( 1314 ) . 
Readers will appreciate that , because the one or more 
storage systems ( 1304 ) can store the transformed dataset 
( 1314 ) within the storage systems ( 1304 ) themselves , nei 
ther the storage systems ( 1304 ) nor the GPU servers ( 1318 ) 
will need to repeat a transformation that has previously been 
performed 
[ 0271 ] The example method depicted in FIG . 13 also 
includes , responsive to each request ( 1324 ) , transmitting 
( 1322 ) , from the one or more storage systems ( 1304 ) to the 
one or more GPU servers ( 1318 ) without re - performing the 
one or more transformations on the dataset ( 1306 ) , the 
transformed dataset ( 1314 ) . The transformed dataset ( 1314 ) 
may be transmitted ( 1322 ) from the storage system ( 1304 ) to 
the one or more GPU servers ( 1318 ) , for example , via one 
or more data communications links between the storage 
system ( 1304 ) and the one or more GPU servers ( 1318 ) , 
which may be embodied in many different ways as described 
in more detail above . Transmitting ( 1322 ) the transformed 
dataset ( 1314 ) from the storage system ( 1304 ) to the one or 
more GPU servers ( 1318 ) may be carried out , for example , 
via RDMA . Transmitting ( 1322 ) the transformed dataset 
( 1314 ) via RDMA may be carried out , for example , by a 
network adapter that is included in the storage system ( 1304 ) 
transferring the transformed dataset ( 1314 ) directly from 
memory in the storage system ( 1304 ) to memory within the 
one or more GPU servers ( 1318 ) . Through the use of such 
an RDMA transfer , the operating system and the GPUs 
within the GPU servers ( 1318 ) may be bypassed such that no 
work is required by the GPUs within the GPU servers ( 1318 ) 
to obtain the transformed dataset ( 1314 ) , as would be 
required in non - RDMA transfers ( e . g . , message - based trans 
fers ) were used . Readers will appreciate that the use of 
RDMA transfers is an additional mechanism that can enable 
the GPU servers ( 1318 ) that actually execute the machine 
learning algorithms to avoid performing the computationally 
demanding task of obtaining the transformed dataset ( 1314 ) . 
As such , the computing resources provided by the GPU 
servers ( 1318 ) may be reserved for actually executing the 
machine learning algorithms against an already prepared 
transformed dataset ( 1314 ) , rather than having the comput - 
ing resources provided by the GPU servers ( 1318 ) burdened 
with the task of obtaining the transformed dataset ( 1314 ) . In 
such a way , the one or more storage systems ( 1304 ) may 
effectively operate as a cache that can be used by the GPU 
servers ( 1318 ) to obtain already transformed datasets 
( 1314 ) . 

[ 0272 ] For further explanation , FIG . 14 sets forth a flow 
chart illustrating an additional example method of data 
transformation caching in an artificial intelligence infra 
structure ( 1302 ) that includes one or more storage systems 
( 1304 ) and one or more GPU servers ( 1318 ) according to 
some embodiments of the present disclosure . The example 
method depicted in FIG . 14 is similar to the example method 
depicted in FIG . 13 , as the example method depicted in FIG . 
14 also includes identifying ( 1308 ) one or more transfor 
mations to apply to a dataset ( 1306 ) , generating ( 1310 ) a 
transformed dataset ( 1304 ) , storing ( 1312 ) the transformed 
dataset ( 1314 ) within one or more of the storage systems 
( 1304 ) , receiving ( 1320 ) a plurality of requests ( 1324 ) to 
transmit the transformed dataset ( 1314 ) to one or more of the 
GPU servers ( 1318 ) , and responsive to each request ( 1324 ) , 
transmitting ( 1322 ) the transformed dataset ( 1314 ) from the 
one or more storage systems ( 1304 ) to the one or more GPU 
servers ( 1318 ) without re - performing the one or more trans 
formations on the dataset ( 1306 ) . 
10273 ] . In the example method depicted in FIG . 14 , the 
storage system ( 1304 ) both identifies ( 1308 ) one or more 
transformations to apply to the dataset ( 1306 ) and generates 
( 1310 ) the transformed dataset ( 1304 ) . Readers will appre 
ciate that , as described above , the storage system ( 1304 ) 
may include a variety of computing resources to perform 
such tasks . As such , the storage systems ( 1304 ) may be 
configured to include computer program instructions that , 
when executed by the computing resources within the stor 
age system ( 1304 ) , perform the steps of identifying ( 1308 ) 
one or more transformations to apply to the dataset ( 1306 ) 
and generating ( 1310 ) the transformed dataset ( 1304 ) . 
[ 0274 ] In the example method depicted in FIG . 14 , trans 
mitting ( 1322 ) the transformed dataset ( 1314 ) from the one 
or more storage systems ( 1304 ) to the one or more GPU 
servers ( 1318 ) without re - performing the one or more trans 
formations on the dataset ( 1306 ) can include transmitting 
( 1402 ) the transformed dataset ( 1314 ) from the one or more 
storage systems ( 1304 ) directly to application memory on 
the GPU servers ( 1318 ) . Transmitting ( 1322 ) the trans 
formed dataset ( 1314 ) from the one or more storage systems 
directly to application memory on the GPU servers ( 1318 ) 
may be carried , for example , by transmitting the transformed 
dataset ( 1314 ) from the storage system ( 1304 ) to the GPU 
servers ( 1318 ) via RDMA . Transmitting the transformed 
dataset ( 1314 ) via RDMA may be carried out , for example , 
by a network adapter that is included in the storage system 
( 1304 ) transferring the transformed dataset ( 1314 ) directly 
from memory in the storage system ( 1304 ) to application 
memory within the one or more GPU servers ( 1318 ) . 
Through the use of such an RDMA transfer , the operating 
system and the GPUs within the GPU servers ( 1318 ) may be 
bypassed such that no work is required by the GPUs within 
the GPU servers ( 1318 ) to obtain the transformed dataset 
( 1314 ) , as would be required in non - RDMA transfers ( e . g . , 
message - based transfers ) were used . Readers will appreciate 
that the use of RDMA transfers is an additional mechanism 
that can enable the GPU servers ( 1318 ) that actually execute 
the machine learning algorithms to avoid performing the 
computationally demanding task of obtaining the trans 
formed dataset ( 1314 ) . As such , the computing resources 
provided by the GPU servers ( 1318 ) may be reserved for 
actually executing the machine learning algorithms against 
an already prepared transformed dataset ( 1314 ) , rather than 
having the computing resources provided by the GPU serv 
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ers ( 1318 ) burdened with the task of obtaining the trans 
formed dataset ( 1314 ) . Readers will appreciate that in other 
embodiments , transmitting ( 1322 ) the transformed dataset 
( 1314 ) from the one or more storage systems directly to 
application memory on the GPU servers ( 1318 ) may be 
carried , for example , through the use of NFS or other 
appropriate technology . 
[ 0275 ] For further explanation , FIG . 15 sets forth a flow 
chart illustrating an additional example method of data 
transformation caching in an artificial intelligence infra 
structure ( 1302 ) that includes one or more storage systems 
( 1304 ) and one or more GPU servers ( 1318 ) according to 
some embodiments of the present disclosure . The example 
method depicted in FIG . 15 is similar to the example 
methods depicted in FIG . 13 and FIG . 14 , as the example 
method depicted in FIG . 15 also includes identifying ( 1308 ) 
one or more transformations to apply to a dataset ( 1306 ) , 
generating ( 1310 ) a transformed dataset ( 1304 ) , storing 
( 1312 ) the transformed dataset ( 1314 ) within one or more of 
the storage systems ( 1304 ) , receiving ( 1320 ) a plurality of 
requests ( 1324 ) to transmit the transformed dataset ( 1314 ) to 
one or more of the GPU servers ( 1318 ) , and responsive to 
each request ( 1324 ) , transmitting ( 1322 ) the transformed 
dataset ( 1314 ) from the one or more storage systems ( 1304 ) 
to the one or more GPU servers ( 1318 ) without re - perform 
ing the one or more transformations on the dataset ( 1306 ) . 
[ 0276 ] The example method depicted in FIG . 15 includes 
executing ( 1508 ) , by one or more of the GPU servers ( 1318 ) , 
one or more machine learning algorithms associated with the 
machine learning model ( 1316 ) using the transformed data 
set ( 1314 ) as input . Readers will appreciate that the output 
generated by executing ( 1508 ) one or more machine learn 
ing algorithms associated with the machine learning model 
( 1316 ) using the transformed dataset ( 1314 ) as input may 
vary in dependence upon the particular machine learning 
model that is being carried out . 
[ 0277 ] The example method depicted in FIG . 15 also 
includes scheduling ( 1504 ) , by a unified management plane 
( 1502 ) , one or more transformations for one or more of the 
storage systems ( 1304 ) to apply to the dataset ( 1306 ) . The 
unified management plane ( 1502 ) depicted in FIG . 15 may 
be embodied , for example , as a module of computer pro 
gram instructions executing on computer hardware such as 
one or more CPUs . The unified management plane ( 1502 ) 
may be configured to monitor and manage all elements 
within the artificial intelligence infrastructure ( 1302 ) , 
including the storage systems ( 1304 ) , the GPU servers 
( 1318 ) , and any devices ( e . g . , network switches ) that enable 
data communications between the storage systems ( 1304 ) 
and the GPU servers ( 1318 ) . The unified management plane 
( 1502 ) may be configured to perform tasks such as , for 
example , scheduling tasks such as one or more dataset 
transformations to be performed by one or more of the 
storage systems ( 1304 ) , scheduling tasks such as executing 
of one or more machine learning algorithms on the one or 
more GPU servers ( 1318 ) , managing the amount of storage 
system resources that are made available for performing one 
or more dataset transformations by one or more of the 
storage systems ( 1304 ) , managing the amount of GPU 
server resources that are made available for executing of one 
or more machine learning algorithms on the one or more 
GPU servers ( 1318 ) , managing data paths between the one 
or more storage systems ( 1304 ) and the one or more GPU 
servers ( 1318 ) , and so on . 

[ 0278 ] Readers will appreciate that , because the unified 
management plane ( 1502 ) has insights into both the storage 
systems ( 1304 ) and the GPU servers ( 1318 ) via monitoring 
both the storage systems ( 1304 ) and the GPU servers ( 1318 ) , 
the unified management plane ( 1502 ) can manage both the 
storage systems ( 1304 ) and the GPU servers ( 1318 ) in a way 
so as to optimize interactions between the storage systems 
( 1304 ) and the GPU servers ( 1318 ) and also to optimize the 
series of steps that are needed to support the execution of a 
machine learning model . In fact , the unified management 
plane ( 1502 ) may be configured to perform automated 
scheduling of tasks on the storage systems ( 1304 ) and on the 
GPU servers ( 1318 ) based on various factors ( e . g . , the influx 
of some data , data contents , and so on ) . For example , the 
unified management plane ( 1502 ) could be configured to 
decide that a particular machine learning model should train 
against a particular dataset , the unified management plane 
( 1502 ) could be configured to decide the appropriate interval 
to run tests and continuously re - train with new data , and so 
on . In such an example , the unified management plane 
( 1502 ) could be configured to support automated training 
with continuous learning based on some triggers ( e . g . , new 
data , exceptional data ) . 
[ 0279 ] In the example method depicted in FIG . 15 , the 
unified management plane ( 1502 ) is configured to schedule 
( 1504 ) one or more transformations for one or more of the 
storage systems ( 1304 ) to apply to the dataset ( 1306 ) and 
also configured to schedule ( 1506 ) execution of one or more 
machine learning algorithms associated with the machine 
learning model ( 1316 ) by the one or more GPU servers 
( 1318 ) . In such an example , the unified management plane 
( 1502 ) may be configured to work with a scheduler on one 
or more of the storage systems ( 1304 ) as well as a scheduler 
on the one or more GPU servers ( 1318 ) . The unified 
management plane ( 1502 ) may be configured to work with 
a scheduler on one or more of the storage systems ( 1304 ) as 
well as a scheduler on the one or more GPU servers ( 1318 ) , 
for example , by sending one or more messages to the storage 
systems ( 1304 ) that are understood by the storage system 
( 1304 ) as a scheduling instruction , by sending one or more 
messages to the GPU servers ( 1318 ) that are understood by 
the GPU servers ( 1318 ) as a scheduling instruction , and so 
on . In such an example , the storage systems ( 1304 ) and the 
GPU servers ( 1318 ) may be configured , via an API or some 
other mechanism , to receive scheduling instructions from 
the unified management plane ( 1502 ) and to implement the 
scheduling instructions received from the unified manage 
ment plane ( 1502 ) via one or more local schedulers . 
[ 0280 ] For further explanation , FIG . 16 sets forth a flow 
chart illustrating an additional example method of data 
transformation caching in an artificial intelligence infra 
structure ( 1302 ) that includes one or more storage systems 
( 1304 ) and one or more GPU servers ( 1318 ) according to 
some embodiments of the present disclosure . The example 
method depicted in FIG . 16 is similar to the example 
methods depicted in FIGS . 13 - 15 , as the example method 
depicted in FIG . 16 also includes identifying ( 1308 ) one or 
more transformations to apply to a dataset ( 1306 ) , generat 
ing ( 1310 ) a transformed dataset ( 1304 ) , storing ( 1312 ) the 
transformed dataset ( 1314 ) within one or more of the storage 
systems ( 1304 ) , receiving ( 1320 ) a plurality of requests 
( 1324 ) to transmit the transformed dataset ( 1314 ) to one or 
more of the GPU servers ( 1318 ) , and responsive to each 
request ( 1324 ) , transmitting ( 1322 ) the transformed dataset 
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( 1314 ) from the one or more storage systems ( 1304 ) to the 
one or more GPU servers ( 1318 ) without re - performing the 
one or more transformations on the dataset ( 1306 ) . 
[ 0281 ] The example method depicted in FIG . 16 also 
includes providing ( 1602 ) , by the unified management plane 
( 1502 ) to the one or more GPU servers ( 1318 ) , information 
( 1604 ) describing the dataset ( 1306 ) , the one or more 
transformations applied to the dataset ( 1306 ) , and the trans 
formed dataset ( 1314 ) . The information ( 1604 ) describing 
the dataset ( 1306 ) , the one or more transformations applied 
to the dataset ( 1306 ) , and the transformed dataset ( 1314 ) 
may be maintained , for example , by an entity such as the 
unified management plane ( 1502 ) described above , by the 
storage system itself , or by some other component that is 
within or accessible to the artificial intelligence infrastruc 
ture ( 1302 ) . By providing ( 1602 ) the information ( 1604 ) 
describing the dataset ( 1306 ) , the one or more transforma 
tions applied to the dataset ( 1306 ) , and the transformed 
dataset ( 1314 ) to the GPU servers ( 1318 ) , the GPU servers 
( 1318 ) may be configured to simply request such a trans 
formed dataset ( 1314 ) rather than seeking to have the 
transformations applied again . As such , the storage system 
( 1304 ) may serve as a transformation cache such that the 
computationally intensive process of transforming a dataset 
( 1306 ) for use by a machine learning model ( 1316 ) need not 
be repeated . Readers will appreciate that , in view of the fact 
that different machine learning models may require identical 
transformations and that different instances of the same 
machine learning mode may require identical transforma 
tions , by maintaining the information describing the dataset 
( 1306 ) , the one or more transformations applied to the 
dataset ( 1306 ) , the transformed dataset ( 1314 ) , as well as the 
transformed dataset ( 1314 ) itself , the storage system ( 1304 ) 
may serve as a transformation cache whose presence can 
prevent the GPUs within the GPU servers ( 1318 ) from being 
repeatedly tasked with the computationally intensive pro 
cess of transforming a dataset ( 1306 ) for use by a machine 
learning model ( 1316 ) that is supported by the GPU servers 
( 1318 ) . 
[ 0282 ] Readers will appreciate that although the previous 
paragraphs relate to embodiments where steps may be 
described as occurring in a certain order , no ordering is 
required unless otherwise stated . In fact , steps described in 
the previous paragraphs may occur in any order . Further 
more , although one step may be described in one figure and 
another step may be described in another figure , embodi 
ments of the present disclosure are not limited to such 
combinations , as any of the steps described above may be 
combined in particular embodiments . 
[ 0283 ] Readers will further appreciate that although the 
examples described above relate to embodiments where an 
artificial intelligence infrastructure supports the execution of 
machine learning models , the artificial intelligence infra 
structure may support the execution of a broader class of AI 
algorithms , including production algorithms . In fact , the 
steps described above may similarly apply to such a broader 
class of AI algorithms . 
[ 0284 ] Readers will further appreciate that although the 
embodiments described above relate to embodiments where 
the artificial intelligence infrastructure includes one or more 
storage systems and one or more GPU servers , in other 
embodiments , other technologies may be used . For example , 
in some embodiments the GPU servers may be replaced by 
a collection of GPUs that are embodied in a non - server form 

factor . Likewise , in some embodiments , the GPU servers 
may be replaced by some other form of computer hardware 
that can execute computer program instructions , where the 
computer hardware that can execute computer program 
instructions may be embodied in a server form factor or in 
a non - server form factor . 
[ 0285 ] Example embodiments are described largely in the 
context of a fully functional computer system . Readers of 
skill in the art will recognize , however , that the present 
disclosure also may be embodied in a computer program 
product disposed upon computer readable storage media for 
use with any suitable data processing system . Such com 
puter readable storage media may be any storage medium 
for machine - readable information , including magnetic 
media , optical media , or other suitable media . Examples of 
such media include magnetic disks in hard drives or dis 
kettes , compact disks for optical drives , magnetic tape , and 
others as will occur to those of skill in the art . Persons skilled 
in the art will immediately recognize that any computer 
system having suitable programming means will be capable 
of executing the steps of the method as embodied in a 
computer program product . Persons skilled in the art will 
recognize also that , although some of the example embodi 
ments described in this specification are oriented to software 
installed and executing on computer hardware , nevertheless , 
alternative embodiments implemented as firmware or as 
hardware are well within the scope of the present disclosure . 
[ 0286 ] Embodiments can include be a system , a method , 
and / or a computer program product . The computer program 
product may include a computer readable storage medium 
( or media ) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
present disclosure . 
0287 ] The computer readable storage medium can be a 

tangible device that can retain and store instructions for use 
by an instruction execution device . The computer readable 
storage medium may be , for example , but is not limited to , 
an electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 
semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
random access memory ( RAM ) , a read - only memory 
( ROM ) , an erasable programmable read - only memory 
( EPROM or Flash memory ) , a static random access memory 
( SRAM ) , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e . g . , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0288 ] Computer readable program instructions described 
herein can be downloaded to respective computing / process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net 
work , for example , the Internet , a local area network , a wide 
area network and / or a wireless network . The network may 
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comprise copper transmission cables , optical transmission 
fibers , wireless transmission , routers , firewalls , switches , 
gateway computers and / or edge servers . A network adapter 
card or network interface in each computing / processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing / processing 
device . 
[ 0289 ] Computer readable program instructions for carry 
ing out operations of the present disclosure may be assem 
bler instructions , instruction - set - architecture ( ISA ) instruc 
tions , machine instructions , machine dependent instructions , 
microcode , firmware instructions , state - setting data , or 
either source code or object code written in any combination 
of one or more programming languages , including an object 
oriented programming language such as Smalltalk , C + + or 
the like , and conventional procedural programming lan 
guages , such as the “ C ” programming language or similar 
programming languages . The computer readable program 
instructions may execute entirely on the user ' s computer , 
partly on the user ' s computer , as a stand - alone software 
package , partly on the user ' s computer and partly on a 
remote computer or entirely on the remote computer or 
server . In the latter scenario , the remote computer may be 
connected to the user ' s computer through any type of 
network , including a local area network ( LAN ) or a wide 
area network ( WAN ) , or the connection may be made to an 
external computer ( for example , through the Internet using 
an Internet Service Provider ) . In some embodiments , elec 
tronic circuitry including , for example , programmable logic 
circuitry , field - programmable gate arrays ( FPGA ) , or pro 
grammable logic arrays ( PLA ) may execute the computer 
readable program instructions by utilizing state information 
of the computer readable program instructions to personalize 
the electronic circuitry , in order to perform aspects of the 
present disclosure . 
10290 ] Aspects of the present disclosure are described 
herein with reference to flowchart illustrations and / or block 
diagrams of methods , apparatus ( systems ) , and computer 
program products according to some embodiments of the 
disclosure . It will be understood that each block of the 
flowchart illustrations and / or block diagrams , and combina 
tions of blocks in the flowchart illustrations and / or block 
diagrams , can be implemented by computer readable pro 
gram instructions . 
[ 0291 ] These computer readable program instructions may 
be provided to a processor of a general purpose computer , 
special purpose computer , or other programmable data pro 
cessing apparatus to produce a machine , such that the 
instructions , which execute via the processor of the com 
puter or other programmable data processing apparatus , 
create means for implementing the functions / acts specified 
in the flowchart and / or block diagram block or blocks . These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer , a programmable data processing apparatus , and / 
or other devices to function in a particular manner , such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function / act 
specified in the flowchart and / or block diagram block or 
blocks . 

[ 0292 ] The computer readable program instructions may 
also be loaded onto a computer , other programmable data 
processing apparatus , or other device to cause a series of 
operational steps to be performed on the computer , other 
programmable apparatus or other device to produce a com 
puter implemented process , such that the instructions which 
execute on the computer , other programmable apparatus , or 
other device implement the functions / acts specified in the 
flowchart and / or block diagram block or blocks . 
[ 0293 ] The flowchart and block diagrams in the Figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods , and com 
puter program products according to various embodiments 
of the present disclosure . In this regard , each block in the 
flowchart or block diagrams may represent a module , seg 
ment , or portion of instructions , which comprises one or 
more executable instructions for implementing the specified 
logical function ( s ) . In some alternative implementations , the 
functions noted in the block may occur out of the order noted 
in the figures . For example , two blocks shown in succession 
may , in fact , be executed substantially concurrently , or the 
blocks may sometimes be executed in the reverse order , 
depending upon the functionality involved . It will also be 
noted that each block of the block diagrams and / or flowchart 
illustration , and combinations of blocks in the block dia 
grams and / or flowchart illustration , can be implemented by 
special purpose hardware - based systems that perform the 
specified functions or acts or carry out combinations of 
special purpose hardware and computer instructions . 
[ 0294 ] Readers will appreciate that the steps described 
herein may be carried out in a variety ways and that no 
particular ordering is required . It will be further understood 
from the foregoing description that modifications and 
changes may be made in various embodiments of the present 
disclosure without departing from its true spirit . The descrip 
tions in this specification are for purposes of illustration only 
and are not to be construed in a limiting sense . The scope of 
the present disclosure is limited only by the language of the 
following claims . 

1 . A method of data transformation caching in an artificial 
intelligence infrastructure that includes one or more storage 
systems and one or more graphical processing unit ( “ GPU ' ) 
servers , the method comprising : 

identifying , by one or more computer processors of the 
artificial intelligence infrastructure , in dependence 
upon one or more machine learning models to be 
executed on the GPU servers , one or more transforma 
tions to apply to a dataset ; 

generating , in dependence upon the one or more trans 
formations , a transformed dataset ; 

storing , within one or more of the storage systems , the 
transformed dataset ; 

receiving a plurality of requests to transmit the trans 
formed dataset to one or more of the GPU servers , and 

responsive to each request , transmitting , from the one or 
more storage systems to the one or more GPU servers 
without re - performing the one or more transformations 
on the dataset , the transformed dataset . 

2 . The method of claim 1 wherein generating , in depen 
dence upon the one or more transformations , a transformed 
dataset further comprises generating , by the storage system 
in dependence upon the one or more transformations , trans 
formed dataset . 
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3 . The method of claim 1 wherein transmitting , from the 
one or more storage systems to the one or more GPU servers 
without re - performing the one or more transformations on 
the dataset , the transformed dataset further comprises trans 
mitting the transformed dataset from the one or more storage 
systems directly to application memory on the GPU servers . 

4 . The method of claim 3 wherein transmitting the trans 
formed dataset from the one or more storage systems 
directly to application memory on the GPU servers further 
comprises transmitting the transformed data dataset from the 
one or more storage systems to the GPU servers via remote 
direct memory access ( ?RDMA ' ) . 

5 . The method of claim 1 further comprising executing , by 
one or more of the GPU servers , one or more machine 
learning algorithms associated with the machine learning 
model using the transformed dataset as input . 

6 . The method of claim 1 further comprising : 
scheduling , by a unified management plane , one or more 

transformations for one or more of the storage systems 
to apply to the dataset ; and 

scheduling , by the unified management plane , execution 
of one or more machine learning algorithms associated 
with the machine learning model by the one or more 
GPU servers . 

7 . The method of claim 1 further comprising providing , by 
a unified management plane to the one or more GPU servers , 
information describing the dataset , the one or more trans 
formations applied to the dataset , and the transformed data 
set . 

8 . An artificial intelligence infrastructure that includes one 
or more memory of storage systems and one or more 
graphical processing unit ( GPU ' ) servers , and one or more 
computer processors of the artificial intelligence infrastruc 
ture that are configured to carry out the steps of : 

identifying , by the one or more computer processors of 
the artificial intelligence infrastructure , in dependence 
upon one or more machine learning models to be 
executed on the GPU servers , one or more transforma 
tions to apply to a dataset ; 

generating , in dependence upon the one or more trans 
formations , a transformed dataset ; 

storing , within the one or more memory of the storage 
systems , the transformed dataset ; 

receiving a plurality of requests to transmit the trans 
formed dataset to one or more of the GPU servers ; and 

responsive to each request , transmitting , from the one or 
more storage systems to the one or more GPU servers 
without re - performing the one or more transformations 
on the dataset , the transformed dataset . 

9 . The artificial intelligence infrastructure of claim 8 
wherein generating , in dependence upon the one or more 
transformations , a transformed dataset further comprises 
generating , by the storage system in dependence upon the 
one or more transformations , transformed dataset . 

10 . The artificial intelligence infrastructure of claim 8 
wherein transmitting , from the one or more storage systems 
to the one or more GPU servers without re - performing the 
one or more transformations on the dataset , the transformed 
dataset further comprises transmitting the transformed data 
set from the one or more storage systems directly to appli 
cation memory on the GPU servers . 

11 . The artificial intelligence infrastructure of claim 10 
wherein transmitting the transformed dataset from the one or 
more storage systems directly to application memory on the 

GPU servers further comprises transmitting the transformed 
data dataset from the one or more storage systems to the 
GPU servers via remote direct memory access ( ?RDMA ' ) . 

12 . The artificial intelligence infrastructure of claim 8 
wherein the artificial intelligence infrastructure is further 
configured to carry out the step of executing , by one or more 
of the GPU servers , one or more machine learning algo 
rithms associated with the machine learning model using the 
transformed dataset as input . 

13 . The artificial intelligence infrastructure of claim 8 
wherein the artificial intelligence infrastructure is further 
configured to carry out the steps of : 

scheduling , by a unified management plane , one or more 
transformations for one or more of the storage systems 
to apply to the dataset ; and 

scheduling , by the unified management plane , execution 
of one or more machine learning algorithms associated 
with the machine learning model by the one or more 
GPU servers . 

14 . The artificial intelligence infrastructure of claim 8 
wherein the artificial intelligence infrastructure is further 
configured to carry out the step of providing , by a unified 
management plane to the one or more GPU servers , infor 
mation describing the dataset , the one or more transforma 
tions applied to the dataset , and the transformed dataset . 

15 . An apparatus for data transformation offloading in an 
artificial intelligence infrastructure that includes one or more 
storage systems and one or more graphical processing unit 
( GPU ' ) servers , the apparatus comprising a computer pro 
cessor , a computer memory operatively coupled to the 
computer processor , the computer memory having disposed 
within it computer program instructions that , when executed 
by the computer processor , cause the apparatus to carry out 
the steps of : 

identifying , in dependence upon one or more machine 
learning models to be executed on the GPU servers , one 
or more transformations to apply to a dataset ; 

generating , in dependence upon the one or more trans 
formations , a transformed dataset ; 

storing , within one or more of the storage systems , the 
transformed dataset ; 

receiving a plurality of requests to transmit the trans 
formed dataset to one or more of the GPU servers ; and 

responsive to each request , transmitting , from the one or 
more storage systems to the one or more GPU servers 
without re - performing the one or more transformations 
on the dataset , the transformed dataset . 

16 . The apparatus of claim 15 wherein generating , in 
dependence upon the one or more transformations , a trans 
formed dataset further comprises generating , by the storage 
system in dependence upon the one or more transformations , 
transformed dataset . 

17 . The apparatus of claim 15 wherein transmitting , from 
the one or more storage systems to the one or more GPU 
servers without re - performing the one or more transforma 
tions on the dataset , the transformed dataset further com 
prises transmitting the transformed dataset from the one or 
more storage systems directly to application memory on the 
GPU servers . 

18 . The apparatus of claim 15 further comprising com 
puter program instructions that , when executed by the com 
puter processor , cause the apparatus to carry out the steps of : 
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scheduling , by a unified management plane , one or more 
transformations for one or more of the storage systems 
to apply to the dataset ; and 

scheduling , by the unified management plane , execution 
of one or more machine learning algorithms associated 
with the machine learning model by the one or more 
GPU server . 

19 . The apparatus of claim 15 further comprising com 
puter program instructions that , when executed by the com 
puter processor , cause the apparatus to carry out the step of 
providing , by a unified management plane to the one or more 
GPU servers , information describing the dataset , the one or 
more transformations applied to the dataset , and the trans 
formed dataset . 

20 . The apparatus of claim 15 further comprising com 
puter program instructions that , when executed by the com 
puter processor , cause the apparatus to carry out the step of 
executing , by one or more of the GPU servers , one or more 
machine learning algorithms associated with the machine 
learning model using the transformed dataset as input . 

* * * * * 


