
US 20190121673A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0121673 A1

GOLD et al . (43) Pub . Date : Apr . 25 , 2019

(54) DATA TRANSFORMATION CACHING IN AN
ARTIFICIAL INTELLIGENCE
INFRASTRUCTURE (51)

(71) Applicant : PURE STORAGE , INC . , Mountain
View , CA (US)

Publication Classification
Int . Ci .
G06F 9 / 50 (2006 . 01)
G06T 1 / 60 (2006 . 01)
G06N 37063 (2006 . 01)
G06F 9 / 48 (2006 . 01)
G06T 1 / 20 (2006 . 01)
GOON 3 / 08 (2006 . 01)
U . S . CI .
CPC G06F 9 / 5027 (2013 . 01) ; G06T 1 / 60

(2013 . 01) ; G06N 37063 (2013 . 01) ; G06F
9 / 4881 (2013 . 01) ; G06T 2200 / 28 (2013 . 01) ;
G06T 1 / 20 (2013 . 01) ; GO6N 3 / 08 (2013 . 01)

(52)

(72) Inventors : BRIAN GOLD , LOS ALTOS , CA
(US) ; EMILY WATKINS ,
MOUNTAIN VIEW , CA (US) ; IVAN
JIBAJA , SAN JOSE , CA (US) ; IGOR
OSTROVSKY , SUNNYVALE , CA
(US) ; ROY KIM , LOS ALTOS , CA
(US)

(21) Appl . No . : 16 / 046 , 337
(22) Filed : Jul . 26 , 2018

(63)

(57) ABSTRACT
Data transformation caching in an artificial intelligence
infrastructure that includes one or more storage systems and
one or more graphical processing unit (GPU ') servers ,
including : identifying , in dependence upon one or more
machine learning models to be executed on the GPU servers ,
one or more transformations to apply to a dataset ; generat
ing , in dependence upon the one or more transformations , a
transformed dataset ; storing , within one or more of the
storage systems , the transformed dataset ; receiving a plu
rality of requests to transmit the transformed dataset to one
or more of the GPU servers ; and responsive to each request ,
transmitting , from the one or more storage systems to the
one or more GPU servers without re - performing the one or
more transformations on the dataset , the transformed data
set .

Related U . S . Application Data
Continuation of application No . 16 / 040 , 996 , filed on
Jul . 20 , 2018 .
Provisional application No . 62 / 574 , 534 , filed on Oct .
19 , 2017 , provisional application No . 62 / 576 , 523 ,
filed on Oct . 24 , 2017 , provisional application No .
62 / 620 , 286 , filed on Jan . 22 , 2018 , provisional appli
cation No . 62 / 648 , 368 , filed on Mar . 26 , 2018 , pro
visional application No . 62 / 650 , 736 , filed on Mar . 30 ,
2018 .

(60)

Computing Device 164A Computing Device 164B

LAN 160 SAN 158
-

+

Controller 110A Controller 110B
Primary / Secondary Secondary / Primary Controller 110C Controller 110D

-

-

-

-

108A 1080 - 1080 108D
-

-

-

-

-

-

-

-

??????????????? ??????????? ? ? ? ? ? ? ???? ?

-

-

-

-

Storage
Drive
171A

Storage
Drive
171B

-

Storage
Drive

171C

Storage
Drive
171D

Storage
Drive
171E

Storage
Drive
171F

-

-

-

-

-

-

-

-

-

-

-

-

- Persistent Storage Resource 170A
Storage Array 102A

-

Persistent Storage Resource 170B
Storage Array 102B

100

Computing Device 164A

Computing Device 164B

Patent Application Publication

LAN 160

SAN 158

. ??????

????????????????????????????????
wwwwww ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

wwwwwww ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

- - -

Controller 110A

Controller 110B

- - -

Primary / Secondary

Controller 110C

Secondary / Primary

mmmmmmmm

Controller 110D

- - - - -

108A

108C

- -

AA

-

- -

-

Apr . 25 , 2019 Sheet 1 of 30

-

-

-

-

-

-

-

. .

-

-

.

-

-

.

Storage

.

-

-

.

-

-

.

Storage Drive 171A

Storage Drive 171B

Storage Drive 171C

Storage Drive 171D

Storage Drive 171€

.

* * * * * * * * * * * * * * * * *

-

Drive 171F

-

.

-

-

. .

-

-

.

-

.

- - - - - -

-

- -

- -

-

Persistent Storage Resource 170B

-

-

Persistent Storage Resource 170A Storage Array 102A

-

Storage Array 102B

wweeee

w wwwwwwwwww ~

m

Lu

m

woww
~

~

~

~

~

~

~

*

*

*

*

*

*

*

US 2019 / 0121673 A1

FIG . 1A

Controller 101

Host Bus Adapter 103A

Host Bus Adapter 103B

Host Bus Adapter 103C

Patent Application Publication

105A

105B

105C

106

wwwwwwwwwww

w

wwwwww

Processing device 104

RAM 111

107

109

Operating System
112

Host Bus Adapter 114

Apr . 25 , 2019 Sheet 2 of 30

wwwwww

Switch

Instructions

116

113

Expander 115
. " httt

US 2019 / 0121673 A1

FIG . 1B

Patent Application Publication

Stored Energy

RAM 121

???????????????????????????????????

Flash 120a

Flash

Flash

Flash

122

Flash

Flash

Flash

D

Flash

I

LLIT
123a

Led

Flash

Flash

Flash

Flash

Storage Device Controller 119a

Apr . 25 , 2019 Sheet 3 of 30

123b

Flash

Flash

Flash

Flash 1200
1 118

.

.

US 2019 / 0121673 A1

FIG . 1C

Patent Application Publication Apr . 25 , 2019 Sheet 4 of 30 US 2019 / 0121673 A1

www !

am www . wand a

OOOD

OHHHH Storage System 124
?

www ww www www wwwvwwwwwwwwwwwwww
.

119a 1190 1190

118m 128b

128a XV

NNNNN .

129a 125a 1250 FIG . 1D
PORCHORRO

. wwwwwwwwwwwwwwww 126a 126b 1260 126d
* * I - -

127a 127n

1612

Storage Node

Patent Application Publication

154

159

146

O

MEM

wwwwww

DO

Switch Fabric

OOOOOOOOOOOOOOOOOO

Non Volatile Solid State Siorage
YAVAMAAVAANVUVVVVVVVVVVVVN AVAA

- 156

M

'

??

Apr . 25 , 2019 Sheet 5 of 30

Wwwmmmmmmm
Men

152

? 150

? 150

? 150

150

144

148

142

L

150

US 2019 / 0121673 A1

FIG . 2A

138

150

150

150

152 Storage Node

152

Storage Node

Storage Node Compute Only

Patent Application Publication

152

152
Authority A1

A1 ' A4 A2 A5 A3 ' A6

173

161

Comms . Interconnect

External Port

Apr . 25 , 2019 Sheet 6 of 30

168

External Port

Power Distribution

176

172

External Power Port

US 2019 / 0121673 A1

FIG . 2B

Patent Application Publication Apr . 25 , 2019 Sheet 7 of 30 US 2019 / 0121673 A1

150

Storage Node

F
CPU

156 152 152 152 , 152 ,

NIC NIC
????????????

NN

202

Non - Volatile Solid State
Memory

NVRAM 204

Flash 206
152 -

Non - Volatile Solid State Memory
208 T PLD

1 / 0 210 Flash 1 / 0 220

Controller 212 DRAM 216 - - -

- - - - - - - - -

• -

DMA 214 - - - - -

- -

Flash 222 primininoniminin 206
16 KB Page 224

* * * * * * * * * * * * * * * *
.

Energy Reserve
218

brany Register 226
FIG . 2C VA

Patent Application Publication Apr . 25 , 2019 Sheet 8 of 30 US 2019 / 0121673 A1

Host Controller 242

Mid - tier Controller 244

Storage Unit 152 Storage Unit 152 -

mi

i

NVRAM 204 NVRAM 204 m

mi

SU Controller 246 SU Controller 246

wwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwwwwww mi RAM RAM
mi

www

i

in

206 1 it Flash Flash Flash Flash
in

FIG . 2D

Blade 252

Blade 252

Blade 252

iiiiiiii

w

m Compute

Compute
ang

Compute 256

Patent Application Publication

256

256

winnininiiiiiiiiiiiiiiiii

Authority 168

Authority 168)

: :

:

: : : : : : : : : : : :

:

wwwwwwwwwwwwwwwwwwwwww ww
ISUU

AA

* *

A

* *

11

* * * *

Flash

* * *

AAAAAAAAAAA

*

???????????????????

Flash 206

Flash .
206

ii

Wwwwwwwwwwwwwwww

Apr . 25 , 2019 Sheet 9 of 30

260

260

260

260

260

260

NVRAM 204

NVRAM 204

WA

vvvvv

NVRAM 204

-

-

. .

.

260

260

260

260

260

260

US 2019 / 0121673 A1

161

FIG . 2E

Patent Application Publication Apr . 25 , 2019 Sheet 10 of 30 US 2019 / 0121673 A1

FABRIC (SWITCH) 146 FABRIC (SWITCH) 146
* * * * * * * *

YOU

Blade 252 Blade 252 Blade 252

270
Bagopute module Compute module

270
????????????????????????????????????

-

152 I STORAGE UNIT Endpoints 272

FLASH NVRAM
Authorities 168

206 204 (206 Storage Manager 224 h270
FIG . 2F

FABRIC (SWITCH) 146 FABRIC (SWITCH) 146

P lllll

Blade 252
Compute module

Blade 252
Compute module

270

Blade 252
Compute module

270
Authorities

2701 . ••••••••••• (Authorities
- 1684 NVRAM

writes triple
mirrored 152 ??????????

Men Geen . ISH

152 STORAGE UNIT STORAGE UNIT STORAGE UNIT

BLASHI NVRAMI TISLAS I WRAMI

RAID stripes 206 204 206 204 206 204 FIG 2G span blades

Patent Application Publication Apr . 25 , 2019 Sheet 11 of 30 US 2019 / 0121673 A1

Cloud Services Provider
302

304

Storage System 306

FIG . 3A

Patent Application Publication Apr . 25 , 2019 Sheet 12 of 30 US 2019 / 0121673 A1

* * * Storage System 306

- Storage Resources 308 -

-

-

-

-

-

-

-

-

-

-

-

Communications Resources 310

-

Processing Resources 312

Software Resources 314

FIG . 3B

Patent Application Publication Apr . 25 , 2019 Sheet 13 of 30 US 2019 / 0121673 A1

Data Producer
402 Data Producer

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Dataset 404

Storage System 406

Receive A Dataset 408

Store The Dataset 410

Allocate Processing Resources To An Analytics Application 412 www Execute The Analytics Application On The Processing Resources , including ingesting
The Dataset From The Storage System 414

. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .

Processing Resources 416 ??

??

i Processing
Resources 418

?? Analytics Application 422
Processing

Resources 420 ??

??

wwwwwwwww

ni

mi

Dataset
Slice 424

Dataset
Slice 426

Dataset
Slice 428

im wir imar mim wuni in

Storage Device 430 Storage Device 432
h

Storage Device 434
FIG . 4

Patent Application Publication Apr . 25 , 2019 Sheet 14 of 30 US 2019 / 0121673 A1

Data Producer
402

Dataset 404

* ~ * * Storage System 406
Receive A Dataset 408

Allocate Additional Processing Resources To A Real - time Analytics Application 502

Execute The Real - time Analytics Application On The Additional Processing Resources ,
Including Ingesting At Least A Portion Of The Dataset 504

Store The Dataset 410 ww www Allocate Processing Resources To An Analytics Application 412

Execute The Analytics Application On The Processing Resources , including ingesting
The Dataset From The Storage System 414

* * * * * * * * * * * * * - - - -

Processing Resources 416 ! Processing Resources 418
Real - Time Analytics

Application 506 Analytics Application 422
Processing
Resources

420

1
RRRARA -

- Dataset
Slice 424 wwwwwwwwwwww Dataset

Slice 426
Dataset
Slice 428 -

•

Storage Device 430 Storage Device 432 Storage Device 434 1

FIG . 5

Patent Application Publication Apr . 25 , 2019 Sheet 15 of 30 US 2019 / 0121673 A1

Data Producer
402

Dataset 404
Log Files 602

wwwwwwwwwwwwwwwwwwwwww

Storage System 406

Receive A Dataset 408
?? ?????? ? ? ?? ????? ?????? ?

Store The Dataset 410

Allocate Processing Resources To An Analytics Application 412 ? ?????? ? ? ?????? ? ??? ??????

Execute The Analytics Application On The Processing Resources , including Ingesting
The Dataset From The Storage System 414

GROORRR TTTTTTTTTTTT

Evaluate The Log Files To Identify One Or More Execution Patterns Associated
With The Computing System 604

Compare Fingerprints Associated With Known Execution Patters To
Information Contained in The Log Files 606

? ? ??? ?????? ?? ?? . ?????? ? ??? ??????

wwwmmwwwwwwwwwwwwwww wwwwwwwwww Processing Resources 416 ~ - - Durces
? ??? ?????? ??? ???? ??????

wa

Analytics Application 422 more than other who
Processing

Resources 418
Processing

Resources 420 wwwwwwww ?? ?? ?? ? ?? ? ? ? ? ? ? ? ? ? ??? ?? … ?? ? ?? ?? ?? ?? ??
wwwwwwwwwwwwwwwwwwwwwwwwwww w wwwwwwwwwwy

? ?? ? ? ? ; ; ?? ?? ? ? ?? ?????? ? ? ? ? ? ? ? ? ? . ???? ? ? ? ???? ??? ???????? ? ? ????? ? ? ????? ? ? ? ? ? ? ??

???? ??? ??? ????
? ??? ?????? ??? ?? ?? ???????? ??? . ???? ?

??? ?? ???? ?????????? ?????? ?????? ?????? RRRRRRR

Dataset
Slice 424 wwwww Dataset

Slice 426 wwwwwwwww Dataset
Slice 428

i Storage Device 430 Storage Device 432 Storage Device 434
? ??? ???

FIG . 6

Patent Application Publication Apr . 25 , 2019 Sheet 16 of 30 US 2019 / 0121673 A1

PYAAA

Data Producer 402

Dataset 404
*

Storage System 406
* *

* * Receive A Dataset 408
*

* Receive An Unstructured Dataset 702 wwwwwwwwwwwwwwwwww *

HORROR OOOO DOO OOOOOO

*

Prodotto
*

* * Convert The Unstructured Dataset Into A Structured Dataset 704

*

* Store The Dataset 410 *

* Store The Structured Dataset Within The Storage System 706 *

* wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww * Organize The Dataset Into An Indexed Directory Structure 708 * www *

*

*

* Allocate Processing Resources To An Analytics Application 412
*

*

* * *

RRRRRRRRR * *
*

* Execute The Analytics Application On The Processing Resources , including Ingesting
The Dataset From The Storage System 414 * * minimin

Processing Resources 416 ww
Analytics Application 422

Processing
Resources 418 wwwmmw Processing

Resources 420
w

*

? ? ? 7
Dataset

Slice 424
Dataset

Slice 426
Dataset
Slice 428

????? ? ???? ?

{ Storage Device 43 Storage Device 432 1 Storage Device 434
* * * * * * * * * * * * * * *

FIG 7

Patent Application Publication Apr . 25 , 2019 Sheet 17 of 30 US 2019 / 0121673 A1

Artificial
Intelligence and
Machine Learning
Infrastructure 800

Network Appliance 800A
, 2

1992

4x 100GbE 4x 100GbE

- 803 803
??? 20 : XXX W X98XoXoW
Yw

100GbE Switch 100GbE Switch

2x 100GbE 2x 100GbE

. . . NVIDIA DGX - 1

FIG . 8A

Patent Application Publication Apr . 25 , 2019 Sheet 18 of 30 US 2019 / 0121673 A1

Data Producer
402

Data Producer
802

Dataset Dataset
804

- - - - - - - = - = - - - ~ - P 4 ? - - ? Storage System 406
Receive A Dataset 408

Receive A Dataset That Is Unique To Each Data Producer 806
EEEEEEEEEEEEEEEEEEEEE

Store The Dataset 410
Store Each Unique Dataset 808

Allocate Processing Resources To An Analytics Application 412
Allocate Unique Processing Resources To Each Analytics Application 810

Execute The Analytics Application On The Processing Resources 414
Execute The Plurality Of Analytics Applications On The Processing Resources ,

including Ingesting Each Unique Dataset From The Storage System 812
v v www

twin
tube Processing Resources 416

Analytics
Application 422

ww

Processing Resources 4187
1 Analytics

Application 814
sie

Processing
Resources 420 wie wa * *

titute RA

hot Dataset
Slice 424

Dataset
Slice 426

Dataset
Slice 428

toto wake
wet wat

purpurpurple koh tutututututututut pothulutettu hututututok

otto oto oto oto otot too
1 1 Dataset

Slice 816
i Storage Device 430

1
Dataset

Slice 818
Storage Device 4321

Dataset
Slice 820

i Storage Device 434 toteutet
i ht . Het

FIG . 8B

Patent Application Publication Apr . 25 , 2019 Sheet 19 of 30 US 2019 / 0121673 A1

wwwvwwwvvvvvvvvvvvvvvvvvvv

Data Producer 402
: : : : : : : : : : : : : RR : HTTPP PPPPPPPPPPPPPPPPPPPPPPP P

Dataset 404
c omo RO OM CHO CHORRO

* Storage System 406 *

Receive A Dataset 408 *

*

Store The Dataset 410 *

*

Allocate Processing Resources To An Analytics Application 412
*

ssssssssssssssongna n onenwannoundananonomonomanangnonomonomemonomonomononeeeeeeeeeeeeeeeeeeeeeeeeeeeeee PA
*

*

Execute The Analytics Application On The Processing Resources , Including Ingesting
The Dataset From The Storage System 414 *

*

Detect That The Analytics Application Has Ceased Executing Properly 902
*

Allocate Second Processing Resources To The Analytics Application 904
*

Execute The Analytics Application On The Second Processing Resources , including
Ingesting The Dataset 906 *

* Processing Resources 416
RRRRRRRR

Processing Resources 418
Analytics

Application 422
Processing

Resources 420 www
*

*

??? ? ? ? ? ? ?? ?? ? ? ? ? ? ? * = * = * & ?? ??? ?? ?? ?? ??? ? ? ? ? ? ? ? ?? ? ?
?

???

Dataset
Slice 424

Dataset
Slice 426

Dataset
Slice 428 *

?? ? * - ;

iw Storage Device 430 Storage Device 432
*

Storage Device 434

FIG . 9

Patent Application Publication Apr . 25 , 2019 Sheet 20 of 30 US 2019 / 0121673 A1

Data Producer 402

PRRRRRRR

Dataset 404

Storage System 406 *

.

* Receive A Dataset 408 *

* AAAHIIHIIIAAAHH ; . FIRAALAAAAAAAAAAA

* * * *

*

Store The Dataset 410
wwwwwwwwwwwwwwwvvvvvvvvvvvvvvvvvvvvvvvv

*

*

????????? ??????? ?????????? ??? '

Allocate Processing Resources To An Analytics Application 412 *

* *

*

*

* *

Execute The Analytics Application On The Processing Resources , Including Ingesting
The Dataset From The Storage System 414 * *

*

* *

* *

Detect That The Analytics Application Needs Additional Processing Resources 1002 *

* *

* *

? . . . ??? ? ? ? . ??? ???? ? ?????? ? . . ? ?????? ????????????????? ??????

*

*

Allocate Additional Processing Resources To The Analytics Application 1004
*

*

* *

*

Execute The Analytics Application On The Additional Processing Resources 1006 * *

*

. :
* *

Processing Resources 416 Processing Resources 418 ,
* *

*

*

* * ' * ' - t ' e ' t ' ' . ' ' ' ' x ' ' * ' ' * x + ' * x x
Processing

Resources 420
* Analytics Application 422 *

*

*

- - - - - - - - - -
.

*

*

*

DS 424 V
Storage Device 430

DS 426 7
i Storage Device 432

ADS 4287
i Storage Device 434 * i

ww

FIG . 10

Patent Application Publication Apr . 25 , 2019 Sheet 21 of 30 US 2019 / 0121673 A1

Artificial
Intelligence and

Machine Learning
Infrastructure

AN
Chassis 1101

Width 1104

Storage System (s) 1120

Height
1102

Depth
1106

GPU System (s) 1130A

Width 1110

GPU System (s) 1130N
VV . AYU

Height
1108

Depth
1112

FIG . 11A

Patent Application Publication Apr . 25 , 2019 Sheet 22 of 30 US 2019 / 0121673 A1

Computing Device (s) 1129
Network
1131

Chassis 1101

Switch 1132A

1 .

Switch 1132B

NNNNNNNNNNNNNNNNN WY Switch 1132C
19

www

Storage System (s) 1120
WAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

GPU System (s) 1130A

GPU System (s) 1130B

GPU System (s) 1130N

FIG . 11B

Patent Application Publication Apr . 25 , 2019 Sheet 23 of 30 US 2019 / 0121673 A1

Artificial Intelligence and Machine
Learning Infrastructure Software Stack

1105

??? ? ???? ???? ??? ?????? ???? ???? ????? ????? ?????? ??? ???? ????? ?? ? ?????? ???? ???? ???? ???? ??????? ?? ???? ???? ???? ????? ??? ???? ????? ???? ??? ???????

Multi - Node Training 1107A
*

*

whithinihithishini

Deep Learning Framework 1107B

Containerization 1107C
y y yyyyyyyyyyyyyyyyyyyyyyyyyy

Scale - Out GPU Compute 1107D

EEEEEEEEEEEEEEEEEEEEEEE

Scale - Out Files / Object Protocols 1107E

Scale - Out Storage 1107F

FIG . 11C

Patent Application Publication Apr . 25 , 2019 Sheet 24 of 30 US 2019 / 0121673 A1

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Artificial Intelligence And Machine Learning Infrastructure System 1100

GPU System (s) 1130A - 1130N Storage System (s) 1120
Y

bbbbbbbbbb
Generate , At A Graphical Processing

Unit Of A Computer System , A Function
Call Specifying One Or More

Operations To Be Performed By A
Storage System Of The Computer

System 1152
AN DEBEREDERDERBER

RRRR RRRRRRRRRRR

.

.

?????????????????
. Function

Call 1152A Function
Call 1152A

-

T

. Y

.

A

Transmit , Across A Communication
Fabric Of The Computer System , The

Function Call From The Graphical
Processing Unit To The Storage System

1154

Generate , At The Storage System Of
The Computer System And Based on
The Function Call , One Or More Results

1156 DDDDDDDDDDDD

Result (s)
1156A

Transmit , Across The Communication
Fabric , The One Or More Results From
The Storage System To The Graphical

Processing Unit 1158

Result (s)
1156A

Cloud Services Provider
1173A FIG . 110 M

- - - Cloud Al
Service 1171 - - - - Computing Device

1129 - - - - - - -

- - - .

Patent Application Publication Apr . 25 , 2019 Sheet 25 of 30 US 2019 / 0121673 A1

Artificial Intelligence And Machine Learning Infrastructure 1100

Monitoring Module
1202a

Monitoring Module
12026

Monitoring Module
! 1202n

- - - -

Identify A Bottleneck In An Execution Pipeline 1203

Initiate Reconfiguration Of The Artificial Intelligence And Machine Learning
Infrastructure To Resolve The Bottleneck In The Execution Pipeline 1204

.

Monitor Access Patterns To One Or More Of The Storage Systems Contained in The
Artificial Intelligence And Machine Learning Infrastructure 1206

- Monitor Data - related Aspects Of The Artificial Intelligence Or Machine Learning
Pipeline 1208 -

-

-

* UNIUNIISUUNNNNNNNN * * * * * * * * * * * * * * * * *
-

-

-

-

-

-

-

- Create Auditing Information For The Artificial Intelligence Or Machine Learning
Pipeline 1210

-

-

-

-

-

-

-

-

- Create Trending Information For The Artificial Intelligence Or Machine Learning
Pipeline 1212 -

-

-

-

-

Lemowww

FIG . 12A

Patent Application Publication Apr . 25 , 2019 Sheet 26 of 30 US 2019 / 0121673 A1

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Artificial Intelligence And Machine Learning Infrastructure 1100 i
Optimization

Module 1252a
Optimization

Module 12526
Optimization

Module 1252n
PAP

.

Determine whether A Particular Artificial Intelligence Or Machine Learning Pipeline
Will Fit On A Particular Artificial Intelligence And Machine Learning Infrastructure

i 1254

Initiate Execution Of The Particular Artificial Intelligence Or Machine Learning
Pipeline On The Particular Artificial Intelligence And Machine Learning Infrastructure

1256

te iwiwiti
Determine An Estimated Time For Completion For A Particular Artificial Intelligence

Or Machine Learning Job 1258
inte imi i

w

Determine The Extent To Which One Or More Artificial Intelligence Or Machine
Learning Models Are Improving Over Time 1260

iwi
te

iwiw Generate Model Recommendations 1262
te

Tune An Artificial Intelligence Or Machine Learning Pipeline 1212 i

inte

i i

ww

FIG . 12B

Patent Application Publication Apr . 25 , 2019 Sheet 27 of 30 US 2019 / 0121673 A1

- * - * - * - * - * - * * - * * - * - * * - * - - * * - * * - * * * - * - * - * . Artificial Inteligence Infrastructure 1302 * * * * *
-

w w

-

- , Dalaset 1998 Dataset 1306 7 w -

- w

-

i ii wimmiminimiminimiminiminininininininininininininiiiiiiiiiiiiiiiiiiiiiiiiiii
-

w w

-

w -

-

- w Identify , In Dependence Upon One Or More Machine Learning Models To Be Executed
On The GPU Servers , One Or More Transformations To Apply To A Dataset 1308 w

-

-

w

-

w w

-

-

w

w

- YYYYYYYYYYYY Generate , In Dependence Upon The One Or More Transformations , A Transformed
Dataset 1310

-

-

w w

-

w -

-

* * hotel c o m todo o 1 - Storage System 1304 w -

- w

-

- Transformed
Dataset 1314 - w

- w

-

-

- w

-

w w

XXXXXXXXXXXXXXXXXXXXXXXX -

-

w

- Store , Within One Or More Of The Storage Systems , The Transformed Dataset 1312 w w

-

-

-

-

w w

-

-

w w w

Receive A Plurality Of Requests To Transmit The Transformed Dataset To One Or More
Of The GPU Servers 1320

w w w

w

w w

Transmit , From The One Or More Storage Systems To The One Or More GPU Servers
Without Re - performing The One Or More Transformations On The Dataset , The

Transformed Dataset 1322
w w

w

w w w

w

w

? ???? ? ??? . ? ? ? w

w

w w 4 Request 1847 Machine Learning
Model 1316 Request 1324 sinine | Transformed

Dataset 1314
ww

GPU Server 1318 an w

CHO HO HO HO HO HO HO HO HO HO HO
m

How * * * * * * * * * * * * * * * * * tot mai a * * * * * * * * * * . * * * * * * * * * * * * * *

FIG . 13

Patent Application Publication Apr . 25 , 2019 Sheet 28 of 30 US 2019 / 0121673 A1

Artificial Intelligence Infrastructure 1302
Dataset 1306

Storage System 1304 * * * www - identify , In Dependence Upon One Or More Machine Learning Models To Be Executed
On The GPU Servers , One Or More Transformations To Apply To A Dataset 1308

-

-

-

hom ROOOOOOOOO OOOOOOOOOOOOO

-

-

-

-

-

- Generate , In Dependence Upon The One Or More Transformations , A Transformed
Dataset 1310 -

-

- wwwwwwwwwwwwwwwwwwwwwwww -

-

-

-

-

-

- / Transformed
Dataset 1314 beste spaene wwwwww -

-

-

-

-

-

-

-

- Store , Within One Or More Of The Storage Systems , The Transformed Dataset 1312
-

-

- tot www what
-

- wwww -

w

Receive A Plurality of Requests To Transmit The Transformed Dataset To One Or More
Of The GPU Servers 1320 -

w
-

-

-

-

-
w w w what the ~ ~ ~ ~

-

-

-

Transmit , From The One Or More Storage Systems To The One Or More GPU Servers
Without Re - Performing The One Or More Transformations On The Dataset , The

Transformed Dataset 1322
-

~

-

~ M

- Pro

-

- Transmit The Transformed Dataset From The One Or More Storage Systems
Directly To Application Memory On The GPU Servers 1402 -

-
w

-

~
O hhhhhhh
-

-

-

-

- - - - - - - 1 ??????? www .
XXX ~

~ Request 1324
Machine Learning

Model 1316 Transformed
Dataset 1314

W

GPU Server 1318
~

FIG . 14

Patent Application Publication Apr . 25 , 2019 Sheet 29 of 30 US 2019 / 0121673 A1

?

?

in him in him win w in win in win in a wi n in which win which was in wat min menim main www www www win ?

?

Artificial Intelligence Infrastructure 1302 * * *
Unified Management Plane 1502

Schedule One Or More Transformations For One Or More Of The Storage Systems To
Apply To The Dataset 1504

?

.

?????? ?????? ???????? ????????? ???????? ?????? ????????? ???????? ?????? ?????? ???????? ????????? ???????? ?????? ?????? ???????? ????????? ????????? ????????? ?

? . . .

*
?

. ? Schedule Execution Of One Or More Machine Learning Algorithms Associated With The
Machine Learning Model By The One Or More GPU Servers 1506 ?

?

?

?

?

??????????? ?????? ?? ???? ?? ???? ?? ???? ? ?????? ?? ?? ???? ?? ? ? ? ? ? ? ? ?? ?????? ?? ?? ?????? ? ???? . ?? ??? ??? . ??? ?? ?? ?
? AAA Storage System 1304 Dataset 1306 7 ?

?

?

? Identify , In Dependence Upon One Or More Machine Learning Models To Be Executed
On The GPU Servers , One Or More Transformations To Apply To A Dataset 1308 ?

?

?

?

?

? Generate , In Dependence Upon The One Or More Transformations , A Transformed
Dataset 1310 ?

?

?

?

?

? Transformed Dataset 1314 wwwwwwwwwwwwwwwwwwww ?

? wwwwwwwwwwwwwwwwwwwwwwwwwwww ?? .

?

Store , Within One Or More Of The Storage Systems , The Transformed Dataset 1312 ? .

? . ?

?

?

? Receive A Plurality Of Requests To Transmit The Transformed Dataset To One Or More
Of The GPU Servers 1320 ?

?

?

?

?

?

Transmit , From The One Or More Storage Systems To The One Or More GPU Servers
Without Re - performing The One Or More Transformations On The Dataset , The

Transformed Dataset 1322
?

?

?

?

?

?

?

?

?

?

: : : : : : : : : : : : : : _ . _ _
?

?

?

Execute One Or More Machine Learning
Algorithms Associated With The Machine
Learning Model Using The Transformed

Dataset As Input 1508
?

?

? Request
1324

Transformed
Dataset
1314 ?

?????????????????????????????????? HORRORROR CORROR ?

?

?

?

Machine Learning Model 1316

GPU Server 1318 ?

?

?? ?? ?? ???? ??? ?? ???? ?? ??? ?? ?? ?? ??? ??? ?? ??? ??? ??? ?? ???? ??? ??? ?? ??? ??? ?? ?

? To * Www * * * * * * * * * * * * *

w FIG . 15

Patent Application Publication Apr . 25 , 2019 Sheet 30 of 30 US 2019 / 0121673 A1

wote tutet
Artificial Intelligence Infrastructure 1302

Unified Management Plane 1502
Provide , To The One Or More GPU Servers , Information

Describing The Dataset , The One Or More
Transformations Applied To The Dataset , And The

Transformed Dataset 1602

ut tuto foto

Info . 1604 *
t

* *

*

tet toteute

wwwwwwwwwwwwwwwwwwwwwwwwww

www . www . www . wat tott tetet
Storage System 1304

Dataset 1306
te

thote

Identify , In Dependence Upon One Or More Machine Learning Models To Be Executed
On The GPU Servers , One Or More Transformations To Apply To A Dataset 1308 te

tuto

t

u

wat toteutet
Generate , In Dependence Upon The One Or More Transformations , A Transformed

Dataset 1310 ute awwwwwwwwwwwwwwwwwwwwwvwwwwwwwwwwwwwww HHH tot teste toate

w

tot u Transformed
Dataset 1314 t

we to

www ~ ~
that

MVN

Store , Within One Or More Of The Storage Systems , The Transformed Dataset 1312 tuto tute

??? ??? ????????????????????????????? ???
te

e tu

t

~ o

Receive A Plurality Of Requests To Transmit The Transformed Dataset To One Or More
Of The GPU Servers 1320 tuto fot

t

u

ut toteutet

t

Transmit , From The One Or More Storage Systems To The One Or More GPU Servers
Without Re - performing The One Or More Transformations On The Dataset , The

Transformed Dataset 1322 to

te teste

Ahoooooooooooooo ooooooooooo

? ??? ?????????????????? ; ; ; ; ; ; ????? ??? ?????? ??? ??? ??? ?????

te thote wwwwww gegeegeegeegeegeegeegeegeegeegeegeegeegeegeegeegeegegee

Request 1324
Machine Learning

Model 1316 Transformed
Dataset 1314 te

hooo tute GPU Server 1318 e

. wwwwwwwwwww

to - * * * *

FIG . 16

US 2019 / 0121673 A1 Apr . 25 , 2019

DATA TRANSFORMATION CACHING IN AN
ARTIFICIAL INTELLIGENCE

INFRASTRUCTURE

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation application of
and claims priority from U . S . patent application Ser . No .
16 / 040 , 996 , filed Jul . 20 , 2018 , which is a non - provisional
application for patent entitled to a filing date and claiming
the benefit of earlier - filed U . S . Provisional Patent Applica
tion Ser . No . 62 / 574 , 534 , filed Oct . 19 , 2017 , U . S . Provi
sional Patent Application Ser . No . 62 / 576 , 523 , filed Oct . 24 ,
2017 , U . S . Provisional Patent Application Ser . No . 62 / 620 ,
286 , filed Jan . 22 , 2018 , U . S . Provisional Patent Application
Ser . No . 62 / 648 , 368 , filed Mar . 26 , 2018 , and U . S . Provi
sional Patent Application Ser . No . 62 / 650 , 736 , filed Mar . 30 ,
2018 .

BRIEF DESCRIPTION OF DRAWINGS

[0002] FIG . 1A illustrates a first example system for data
storage in accordance with some implementations .
[0003] FIG . 1B illustrates a second example system for
data storage in accordance with some implementations .
[0004] FIG . 1C illustrates a third example system for data
storage in accordance with some implementations .
[0005] FIG . 1D illustrates a fourth example system for
data storage in accordance with some implementations .
[0006] FIG . 2A is a perspective view of a storage cluster
with multiple storage nodes and internal storage coupled to
each storage node to provide network attached storage , in
accordance with some embodiments .
[0007] FIG . 2B is a block diagram showing an intercon
nect switch coupling multiple storage nodes in accordance
with some embodiments .
[0008] FIG . 2C is a multiple level block diagram , showing
contents of a storage node and contents of one of the
non - volatile solid state storage units in accordance with
some embodiments .
[0009] FIG . 2D shows a storage server environment ,
which uses embodiments of the storage nodes and storage
units of some previous figures in accordance with some
embodiments .
[0010] FIG . 2E is a blade hardware block diagram , show
ing a control plane , compute and storage planes , and authori
ties interacting with underlying physical resources , in accor
dance with some embodiments .
[0011] FIG . 2F depicts elasticity software layers in blades
of a storage cluster , in accordance with some embodiments .
[0012] FIG . 2G depicts authorities and storage resources
in blades of a storage cluster , in accordance with some
embodiments .
[0013] FIG . 3A sets forth a diagram of a storage system
that is coupled for data communications with a cloud
services provider in accordance with some embodiments of
the present disclosure .
[0014] FIG . 3B sets forth a diagram of a storage system in
accordance with some embodiments of the present disclo
sure .
[0015) FIG . 4 sets forth a flow chart illustrating an
example method for executing a big data analytics pipeline

in a storage system that includes compute resources and
shared storage resources according to some embodiments of
the present disclosure .
10016) FIG . 5 sets forth a flow chart illustrating an addi
tional example method for executing a big data analytics
pipeline in a storage system that includes compute resources
and shared storage resources according to some embodi
ments of the present disclosure .
[0017] FIG . 6 sets forth a flow chart illustrating an addi
tional example method for executing a big data analytics
pipeline in a storage system that includes compute resources
and shared storage resources according to some embodi
ments of the present disclosure .
[0018] . FIG . 7 sets forth a flow chart illustrating an addi
tional example method for executing a big data analytics
pipeline in a storage system that includes compute resources
and shared storage resources according to some embodi
ments of the present disclosure .
[0019] FIG . 8A sets forth a diagram illustrating an
example computer architecture for implementing an artifi
cial intelligence and machine learning infrastructure config
ured to fit within a single chassis according to some embodi
ments of the present disclosure .
[0020] FIG . 8B sets forth a flow chart illustrating an
additional example method for executing a big data analytics
pipeline in a storage system that includes compute resources
and shared storage resources according to some embodi
ments of the present disclosure .
[0021] FIG . 9 sets forth a flow chart illustrating an addi
tional example method for executing a big data analytics
pipeline in a storage system that includes compute resources
and shared storage resources according to some embodi
ments of the present disclosure .
10022] FIG . 10 sets forth a flow chart illustrating an
additional example method for executing a big data analytics
pipeline in a storage system that includes compute resources
and shared storage resources according to some embodi
ments of the present disclosure .
[0023] FIG . 11A sets forth a diagram illustrating an
example artificial intelligence and machine learning infra
structure according to some embodiments of the present
disclosure .
[0024] FIG . 11B sets forth a diagram illustrating an
example computer architecture for implementing an artifi
cial intelligence and machine learning infrastructure within
a single chassis according to some embodiments of the
present disclosure .
100251 . FIG . 11C sets forth a diagram illustrating an
example implementation of an artificial intelligence and
machine learning infrastructure software stack according to
some embodiments of the present disclosure .
[0026] FIG . 11D sets forth a flow chart illustrating an
example method for interconnecting a graphical processing
unit layer and a storage layer of an artificial intelligence and
machine learning infrastructure according to some embodi
ments of the present disclosure .
[0027] FIG . 12A sets forth a flow chart illustrating an
example method of monitoring an artificial intelligence and
machine learning infrastructure according to some embodi
ments of the present disclosure .
[0028] FIG . 12B sets forth a flow chart illustrating an
example method of optimizing an artificial intelligence and
machine learning infrastructure according to some embodi
ments of the present disclosure .

US 2019 / 0121673 A1 Apr . 25 , 2019

[0029] FIG . 13 sets forth a flow chart illustrating an
example method of data transformation caching in an arti
ficial intelligence infrastructure that includes one or more
storage systems and one or more GPU servers according to
some embodiments of the present disclosure .
0030] FIG . 14 sets forth a flow chart illustrating an

additional example method of data transformation caching
in an artificial intelligence infrastructure that includes one or
more storage systems and one or more GPU servers accord
ing to some embodiments of the present disclosure .
[0031] FIG . 15 sets forth a flow chart illustrating an
example method of data transformation caching in an arti
ficial intelligence infrastructure that includes one or more
storage systems and one or more GPU servers according to
some embodiments of the present disclosure .
[0032] FIG . 16 sets forth a flow chart illustrating an
example method of data transformation caching in an arti
ficial intelligence infrastructure that includes one or more
storage systems and one or more GPU servers according to
some embodiments of the present disclosure .

DESCRIPTION OF EMBODIMENTS
[0033] Example methods , apparatuses , and products for
data transformation caching in an artificial intelligence infra
structure in accordance with embodiments of the present
disclosure are described with reference to the accompanying
drawings , beginning with FIG . 1A . FIG . 1A illustrates an
example system for data storage , in accordance with some
implementations . System 100 (also referred to as “ storage
system ” herein) includes numerous elements for purposes of
illustration rather than limitation . It may be noted that
system 100 may include the same , more , or fewer elements
configured in the same or different manner in other imple
mentations .
[0034] System 100 includes a number of computing
devices 164A - B . Computing devices (also referred to as
“ client devices " herein) may be embodied , for example , a
server in a data center , a workstation , a personal computer ,
a notebook , or the like . Computing devices 164A - B may be
coupled for data communications to one or more storage
arrays 102A - B through a storage area network (“ SAN ’) 158
or a local area network (“ LAN ') 160 .
[0035] The SAN 158 may be implemented with a variety
of data communications fabrics , devices , and protocols . For
example , the fabrics for SAN 158 may include Fibre Chan
nel , Ethernet , Infiniband , Serial Attached Small Computer
System Interface (' SAS ') , or the like . Data communications
protocols for use with SAN 158 may include Advanced
Technology Attachment (“ ATA ”) , Fibre Channel Protocol ,
Small Computer System Interface (“ SCSI ') , Internet Small
Computer System Interface (“ iSCSI ') , HyperSCSI , Non
Volatile Memory Express (‘ NVMe ') over Fabrics , or the
like . It may be noted that SAN 158 is provided for illustra
tion , rather than limitation . Other data communication cou
plings may be implemented between computing devices
164A - B and storage arrays 102A - B .
[0036] The LAN 160 may also be implemented with a
variety of fabrics , devices , and protocols . For example , the
fabrics for LAN 160 may include Ethernet (802 . 3) , wireless
(802 . 11) , or the like . Data communication protocols for use
in LAN 160 may include Transmission Control Protocol
(TCP ') , User Datagram Protocol (“ UDP ') , Internet Protocol
(?IP ') , HyperText Transfer Protocol (* HTTP ') , Wireless
Access Protocol (“ WAP ') , Handheld Device Transport Pro

tocol (" HDTP) , Session Initiation Protocol (“ SIP ') , Real
Time Protocol (?RTP ') , or the like .
[0037] Storage arrays 102A - B may provide persistent data
storage for the computing devices 164A - B . Storage array
102A may be contained in a chassis (not shown) , and storage
array 102B may be contained in another chassis (not shown) ,
in implementations . Storage array 102A and 102B may
include one or more storage array controllers 110A - D (also
referred to as “ controller ” herein) . A storage array controller
110A - D may be embodied as a module of automated com
puting machinery comprising computer hardware , computer
software , or a combination of computer hardware and soft
ware . In some implementations , the storage array controllers
110A - D may be configured to carry out various storage
tasks . Storage tasks may include writing data received from
the computing devices 164A - B to storage array 102A - B ,
erasing data from storage array 102A - B , retrieving data from
storage array 102A - B and providing data to computing
devices 164A - B , monitoring and reporting of disk utilization
and performance , performing redundancy operations , such
as Redundant Array of Independent Drives (?RAID ') or
RAID - like data redundancy operations , compressing data ,
encrypting data , and so forth .
[0038] Storage array controller 110A - D may be imple
mented in a variety of ways , including as a Field Program
mable Gate Array (* FPGA ') , a Programmable Logic Chip
(?PLC ') , an Application Specific Integrated Circuit
(“ ASIC ') , System - on - Chip (“ SOC ') , or any computing
device that includes discrete components such as a process
ing device , central processing unit , computer memory , or
various adapters . Storage array controller 110A - D may
include , for example , a data communications adapter con
figured to support communications via the SAN 158 or LAN
160 . In some implementations , storage array controller
110A - D may be independently coupled to the LAN 160 . In
implementations , storage array controller 110A - D may
include an I / O controller or the like that couples the storage
array controller 110A - D for data communications , through a
midplane (not shown) , to a persistent storage resource
170A - B (also referred to as a “ storage resource ” herein) . The
persistent storage resource 170A - B main include any num
ber of storage drives 171A - F (also referred to as " storage
devices ” herein) and any number of non - volatile Random
Access Memory (‘ NVRAM ') devices (not shown) .
[0039] In some implementations , the NVRAM devices of
a persistent storage resource 170A - B may be configured to
receive , from the storage array controller 110A - D , data to be
stored in the storage drives 171A - F . In some examples , the
data may originate from computing devices 164A - B . In
some examples , writing data to the NVRAM device may be
carried out more quickly than directly writing data to the
storage drive 171A - F . In implementations , the storage array
controller 110A - D may be configured to utilize the NVRAM
devices as a quickly accessible buffer for data destined to be
written to the storage drives 171A - F . Latency for write
requests using NVRAM devices as a buffer may be
improved relative to a system in which a storage array
controller 110A - D writes data directly to the storage drives
171A - F . In some implementations , the NVRAM devices
may be implemented with computer memory in the form of
high bandwidth , low latency RAM . The NVRAM device is
referred to as “ non - volatile ” because the NVRAM device
may receive or include a unique power source that maintains
the state of the RAM after main power loss to the NVRAM

US 2019 / 0121673 A1 Apr . 25 , 2019

device . Such a power source may be a battery , one or more
capacitors , or the like . In response to a power loss , the
NVRAM device may be configured to write the contents of
the RAM to a persistent storage , such as the storage drives
171A - F .
[0040] In implementations , storage drive 171A - F may
refer to any device configured to record data persistently ,
where “ persistently ” or “ persistent ” refers as to a device ' s
ability to maintain recorded data after loss of power . In some
implementations , storage drive 171A - F may correspond to
non - disk storage media . For example , the storage drive
171A - F may be one or more solid - state drives (SSDs ') ,
flash memory based storage , any type of solid - state non
volatile memory , or any other type of non - mechanical stor
age device . In other implementations , storage drive 171A - F
may include may include mechanical or spinning hard disk ,
such as hard - disk drives (‘ HDD ') .
[0041] In some implementations , the storage array con
trollers 110A - D may be configured for offloading device
management responsibilities from storage drive 171A - F in
storage array 102A - B . For example , storage array control
lers 110A - D may manage control information that may
describe the state of one or more memory blocks in the
storage drives 171A - F . The control information may indi
cate , for example , that a particular memory block has failed
and should no longer be written to , that a particular memory
block contains boot code for a storage array controller
110A - D , the number of program - erase (™P / E) cycles that
have been performed on a particular memory block , the age
of data stored in a particular memory block , the type of data
that is stored in a particular memory block , and so forth . In
some implementations , the control information may be
stored with an associated memory block as metadata . In
other implementations , the control information for the stor
age drives 171A - F may be stored in one or more particular
memory blocks of the storage drives 171A - F that are
selected by the storage array controller 110A - D . The
selected memory blocks may be tagged with an identifier
indicating that the selected memory block contains control
information . The identifier may be utilized by the storage
array controllers 110A - D in conjunction with storage drives
171A - F to quickly identify the memory blocks that contain
control information . For example , the storage controllers
110A - D may issue a command to locate memory blocks that
contain control information . It may be noted that control
information may be so large that parts of the control infor
mation may be stored in multiple locations , that the control
information may be stored in multiple locations for purposes
of redundancy , for example , or that the control information
may otherwise be distributed across multiple memory blocks
in the storage drive 171A - F .
[0042] In implementations , storage array controllers
110A - D may offload device management responsibilities
from storage drives 171A - F of storage array 102A - B by
retrieving , from the storage drives 171A - F , control informa
tion describing the state of one or more memory blocks in
the storage drives 171A - F . Retrieving the control informa
tion from the storage drives 171A - F may be carried out , for
example , by the storage array controller 110A - D querying
the storage drives 171A - F for the location of control infor
mation for a particular storage drive 171A - F . The storage
drives 171A - F may be configured to execute instructions
that enable the storage drive 171A - F to identify the location
of the control information . The instructions may be executed

by a controller (not shown) associated with or otherwise
located on the storage drive 171A - F and may cause the
storage drive 171A - F to scan a portion of each memory
block to identify the memory blocks that store control
information for the storage drives 171A - F . The storage
drives 171A - F may respond by sending a response message
to the storage array controller 110A - D that includes the
location of control information for the storage drive 171A - F .
Responsive to receiving the response message , storage array
controllers 110A - D may issue a request to read data stored
at the address associated with the location of control infor
mation for the storage drives 171A - F .
[0043] In other implementations , the storage array con
trollers 110A - D may further offload device management
responsibilities from storage drives 171A - F by performing ,
in response to receiving the control information , a storage
drive management operation . A storage drive management
operation may include , for example , an operation that is
typically performed by the storage drive 171A - F (e . g . , the
controller (not shown) associated with a particular storage
drive 171A - F) . A storage drive management operation may
include , for example , ensuring that data is not written to
failed memory blocks within the storage drive 171A - F ,
ensuring that data is written to memory blocks within the
storage drive 171A - F in such a way that adequate wear
leveling is achieved , and so forth .
[0044] In implementations , storage array 102A - B may
implement two or more storage array controllers 110A - D .
For example , storage array 102A may include storage array
controllers 110A and storage array controllers 110B . At a
given instance , a single storage array controller 110A - D
(e . g . , storage array controller 110A) of a storage system 100
may be designated with primary status (also referred to as
“ primary controller " herein) , and other storage array con
trollers 110A - D (e . g . , storage array controller 110A) may be
designated with secondary status (also referred to as “ sec
ondary controller " herein) . The primary controller may have
particular rights , such as permission to alter data in persis
tent storage resource 170A - B (e . g . , writing data to persistent
storage resource 170A - B) . At least some of the rights of the
primary controller may supersede the rights of the secondary
controller . For instance , the secondary controller may not
have permission to alter data in persistent storage resource
170A - B when the primary controller has the right . The status
of storage array controllers 110A - D may change . For
example , storage array controller 110A may be designated
with secondary status , and storage array controller 110B
may be designated with primary status .
[0045] In some implementations , a primary controller ,
such as storage array controller 110A , may serve as the
primary controller for one or more storage arrays 102A - B ,
and a second controller , such as storage array controller
110B , may serve as the secondary controller for the one or
more storage arrays 102A - B . For example , storage array
controller 110A may be the primary controller for storage
array 102A and storage array 102B , and storage array
controller 110B may be the secondary controller for storage
array 102A and 102B . In some implementations , storage
array controllers 110C and 110D (also referred to as " storage
processing modules ”) may neither have primary or second
ary status . Storage array controllers 110C and 110D , imple
mented as storage processing modules , may act as a com
munication interface between the primary and secondary
controllers (e . g . , storage array controllers 110A and 110B ,

US 2019 / 0121673 A1 Apr . 25 , 2019

respectively) and storage array 102B . For example , storage
array controller 110A of storage array 102A may send a
write request , via SAN 158 , to storage array 102B . The write
request may be received by both storage array controllers
110C and 110D of storage array 102B . Storage array con -
trollers 110C and 110D facilitate the communication , e . g . ,
send the write request to the appropriate storage drive
171A - F . It may be noted that in some implementations
storage processing modules may be used to increase the
number of storage drives controlled by the primary and
secondary controllers .
[0046] In implementations , storage array controllers
110A - D are communicatively coupled , via a midplane (not
shown) , to one or more storage drives 171A - F and to one or
more NVRAM devices (not shown) that are included as part
of a storage array 102A - B . The storage array controllers
110A - D may be coupled to the midplane via one or more
data communication links and the midplane may be coupled
to the storage drives 171A - F and the NVRAM devices via
one or more data communications links . The data commu
nications links described herein are collectively illustrated
by data communications links 108A - D and may include a
Peripheral Component Interconnect Express (“ PCIe ') bus ,
for example .
[0047] FIG . 1B illustrates an example system for data
storage , in accordance with some implementations . Storage
array controller 101 illustrated in FIG . 1B may similar to the
storage array controllers 110A - D described with respect to
FIG . 1A . In one example , storage array controller 101 may
be similar to storage array controller 110A or storage array
controller 110B . Storage array controller 101 includes
numerous elements for purposes of illustration rather than
limitation . It may be noted that storage array controller 101
may include the same , more , or fewer elements configured
in the same or different manner in other implementations . It
may be noted that elements of FIG . 1A may be included
below to help illustrate features of storage array controller
101 .
[0048] Storage array controller 101 may include one or
more processing devices 104 and random access memory
(RAM) 111 . Processing device 104 (or controller 101)
represents one or more general - purpose processing devices
such as a microprocessor , central processing unit , or the like .
More particularly , the processing device 104 (or controller
101) may be a complex instruction set computing (“ CISC ')
microprocessor , reduced instruction set computing (“ RISC ')
microprocessor , very long instruction word (' VLIW ')
microprocessor , or a processor implementing other instruc
tion sets or processors implementing a combination of
instruction sets . The processing device 104 (or controller
101) may also be one or more special - purpose processing
devices such as an application specific integrated circuit
(?ASIC ') , a field programmable gate array (* FPGA ') , a
digital signal processor (‘ DSP ') , network processor , or the
like .
[0049 The processing device 104 may be connected to the
RAM 111 via a data communications link 106 , which may
be embodied as a high speed memory bus such as a
Double - Data Rate 4 (DDR4 ') bus . Stored in RAM 111 is an
operating system 112 . In some implementations , instructions
113 are stored in RAM 111 . Instructions 113 may include
computer program instructions for performing operations in
in a direct - mapped flash storage system . In one embodiment ,
a direct - mapped flash storage system is one that that

addresses data blocks within flash drives directly and with
out an address translation performed by the storage control

l ers of the flash drives .
[0050] In implementations , storage array controller 101
includes one or more host bus adapters 103A - C that are
coupled to the processing device 104 via a data communi
cations link 105A - C . In implementations , host bus adapters
103A - C may be computer hardware that connects a host
system (e . g . , the storage array controller) to other network
and storage arrays . In some examples , host bus adapters
103A - C may be a Fibre Channel adapter that enables the
storage array controller 101 to connect to a SAN , an
Ethernet adapter that enables the storage array controller 101
to connect to a LAN , or the like . Host bus adapters 103A - C
may be coupled to the processing device 104 via a data
communications link 105A - C such as , for example , a PCIe
bus .
[0051] In implementations , storage array controller 101
may include a host bus adapter 114 that is coupled to an
expander 115 . The expander 115 may be used to attach a host
system to a larger number of storage drives . The expander
115 may , for example , be a SAS expander utilized to enable
the host bus adapter 114 to attach to storage drives in an
implementation where the host bus adapter 114 is embodied
as a SAS controller .
[0052] In implementations , storage array controller 101
may include a switch 116 coupled to the processing device
104 via a data communications link 109 . The switch 116
may be a computer hardware device that can create multiple
endpoints out of a single endpoint , thereby enabling multiple
devices to share a single endpoint . The switch 116 may , for
example , be a PCIe switch that is coupled to a PCIe bus (e . g . ,
data communications link 109) and presents multiple PCIe
connection points to the midplane .
10053] In implementations , storage array controller 101
includes a data communications link 107 for coupling the
storage array controller 101 to other storage array control
lers . In some examples , data communications link 107 may
be a QuickPath Interconnect (QPI) interconnect .
[0054] A traditional storage system that uses traditional
flash drives may implement a process across the flash drives
that are part of the traditional storage system . For example ,
a higher level process of the storage system may initiate and
control a process across the flash drives . However , a flash
drive of the traditional storage system may include its own
storage controller that also performs the process . Thus , for
the traditional storage system , a higher level process (e . g . ,
initiated by the storage system) and a lower level process
(e . g . , initiated by a storage controller of the storage system)
may both be performed .
[0055] To resolve various deficiencies of a traditional
storage system , operations may be performed by higher
level processes and not by the lower level processes . For
example , the flash storage system may include flash drives
that do not include storage controllers that provide the
process . Thus , the operating system of the flash storage
system itself may initiate and control the process . This may
be accomplished by a direct - mapped flash storage system
that addresses data blocks within the flash drives directly
and without an address translation performed by the storage
controllers of the flash drives .
f0056] The operating system of the flash storage system
may identify and maintain a list of allocation units across
multiple flash drives of the flash storage system . The allo

US 2019 / 0121673 A1 Apr . 25 , 2019

i
Tot

cation units may be entire erase blocks or multiple erase
blocks . The operating system may maintain a map or address
range that directly maps addresses to erase blocks of the
flash drives of the flash storage system .
[0057] Direct mapping to the erase blocks of the flash
drives may be used to rewrite data and erase data . For
example , the operations may be performed on one or more
allocation units that include a first data and a second data
where the first data is to be retained and the second data is
no longer being used by the flash storage system . The
operating system may initiate the process to write the first
data to new locations within other allocation units and
erasing the second data and marking the allocation units as
being available for use for subsequent data . Thus , the
process may only be performed by the higher level operating
system of the flash storage system without an additional
lower level process being performed by controllers of the
flash drives .
[0058] Advantages of the process being performed only by
the operating system of the flash storage system include
increased reliability of the flash drives of the flash storage
system as unnecessary or redundant write operations are not
being performed during the process . One possible point of
novelty here is the concept of initiating and controlling the
process at the operating system of the flash storage system .
In addition , the process can be controlled by the operating
system across multiple flash drives . This is contrast to the
process being performed by a storage controller of a flash
drive .
[0059] A storage system can consist of two storage array
controllers that share a set of drives for failover purposes , or
it could consist of a single storage array controller that
provides a storage service that utilizes multiple drives , or it
could consist of a distributed network of storage array
controllers each with some number of drives or some
amount of Flash storage where the storage array controllers
in the network collaborate to provide a complete storage
service and collaborate on various aspects of a storage
service including storage allocation and garbage collection .
[0060] FIG . 1C illustrates a third example system 117 for
data storage in accordance with some implementations .
System 117 (also referred to as “ storage system ” herein)
includes numerous elements for purposes of illustration
rather than limitation . It may be noted that system 117 may
include the same , more , or fewer elements configured in the
same or different manner in other implementations .
[0061] In one embodiment , system 117 includes a dual
Peripheral Component Interconnect (“ PCI ') flash storage
device 118 with separately addressable fast write storage .
System 117 may include a storage controller 119 . In one
embodiment , storage controller 119A - D may be a CPU ,
ASIC , FPGA , or any other circuitry that may implement
control structures necessary according to the present disclo
sure . In one embodiment , system 117 includes flash memory
devices (e . g . , including flash memory devices 120a - n) ,
operatively coupled to various channels of the storage
device controller 119 . Flash memory devices 120a - n , may
be presented to the controller 119A - D as an addressable
collection of Flash pages , erase blocks , and / or control ele
ments sufficient to allow the storage device controller
119A - D to program and retrieve various aspects of the Flash .
In one embodiment , storage device controller 119A - D may
perform operations on flash memory devices 120A - N .
including storing and retrieving data content of pages ,

arranging and erasing any blocks , tracking statistics related
to the use and reuse of Flash memory pages , erase blocks ,
and cells , tracking and predicting error codes and faults
within the Flash memory , controlling voltage levels associ
ated with programming and retrieving contents of Flash
cells , etc .
50062] In one embodiment , system 117 may include RAM
121 to store separately addressable fast - write data . In one
embodiment , RAM 121 may be one or more separate
discrete devices . In another embodiment , RAM 121 may be
integrated into storage device controller 119 A - D or multiple
storage device controllers . The RAM 121 may be utilized for
other purposes as well , such as temporary program memory
for a processing device (e . g . , a CPU) in the storage device
controller 119 .
[0063] In one embodiment , system 119A - D may include a
stored energy device 122 , such as a rechargeable battery or
a capacitor . Stored energy device 122 may store energy
sufficient to power the storage device controller 119 , some
amount of the RAM (e . g . , RAM 121) , and some amount of
Flash memory (e . g . , Flash memory 120a - 120n) for sufficient
time to write the contents of RAM to Flash memory . In one
embodiment , storage device controller 119A - D may write
the contents of RAM to Flash Memory if the storage device
controller detects loss of external power .
[0064] In one embodiment , system 117 includes two data
communications links 123a , 123b . In one embodiment , data
communications links 123a , 123b may be PCI interfaces . In
another embodiment , data communications links 123a , 123b
may be based on other communications standards (e . g . ,
HyperTransport , InfiniBand , etc .) . Data communications
links 123a , 123b may be based on non - volatile memory
express (“ NVMe ') or NVMe over fabrics (‘ NVMf ') speci
fications that allow external connection to the storage device
controller 119A - D from other components in the storage
system 117 . It should be noted that data communications
links may be interchangeably referred to herein as PCI buses
for convenience .
[0065] System 117 may also include an external power
source (not shown) , which may be provided over one or both
data communications links 123a , 123b , or which may be
provided separately . An alternative embodiment includes a
separate Flash memory (not shown) dedicated for use in
storing the content of RAM 121 . The storage device con
troller 119 A - D may present a logical device over a PCI bus
which may include an addressable fast - write logical device ,
or a distinct part of the logical address space of the storage
device 118 , which may be presented as PCI memory or as
persistent storage . In one embodiment , operations to store
into the device are directed into the RAM 121 . On power
failure , the storage device controller 119A - D may write
stored content associated with the addressable fast - write
logical storage to Flash memory (e . g . , Flash memory 120a
n) for long - term persistent storage .
[0066] In one embodiment , the logical device may include
some presentation of some or all of the content of the Flash
memory devices 120a - n , where that presentation allows a
storage system including a storage device 118 (e . g . , storage
system 117) to directly address Flash memory pages and
directly reprogram erase blocks from storage system com
ponents that are external to the storage device through the
PCI bus . The presentation may also allow one or more of the
external components to control and retrieve other aspects of
the Flash memory including some or all of : tracking statis

US 2019 / 0121673 A1 Apr . 25 , 2019

tics related to use and reuse of Flash memory pages , erase
blocks , and cells across all the Flash memory devices ;
tracking and predicting error codes and faults within and
across the Flash memory devices ; controlling voltage levels
associated with programming and retrieving contents of
Flash cells ; etc .
[0067] In one embodiment , the stored energy device 122
may be sufficient to ensure completion of in - progress opera
tions to the Flash memory devices 107a - 120n stored energy
device 122 may power storage device controller 119A - D and
associated Flash memory devices (e . g . , 120a - n) for those
operations , as well as for the storing of fast - write RAM to
Flash memory . Stored energy device 122 may be used to
store accumulated statistics and other parameters kept and
tracked by the Flash memory devices 120a - n and / or the
storage device controller 119 . Separate capacitors or stored
energy devices (such as smaller capacitors near or embedded
within the Flash memory devices themselves) may be used
for some or all of the operations described herein .
[0068] Various schemes may be used to track and optimize
the life span of the stored energy component , such as
adjusting voltage levels over time , partially discharging the
storage energy device 122 to measure corresponding dis
charge characteristics , etc . If the available energy decreases
over time , the effective available capacity of the addressable
fast - write storage may be decreased to ensure that it can be
written safely based on the currently available stored energy .
[0069] FIG . 1D illustrates a third example system 124 for
data storage in accordance with some implementations . In
one embodiment , system 124 includes storage controllers
125a , 125b . In one embodiment , storage controllers 125a ,
125b are operatively coupled to Dual PCI storage devices
119a , 119b and 119c , 119d , respectively . Storage controllers
125a , 125b may be operatively coupled (e . g . , via a storage
network 130) to some number of host computers 127a - n .
[0070] In one embodiment , two storage controllers (e . g . ,
125a and 125b) provide storage services , such as a SCS)
block storage array , a file server , an object server , a database
or data analytics service , etc . The storage controllers 125a ,
125b may provide services through some number of network
interfaces (e . g . , 126a - d) to host computers 127a - n outside of
the storage system 124 . Storage controllers 125a , 125b may
provide integrated services or an application entirely within
the storage system 124 , forming a converged storage and
compute system . The storage controllers 125a , 125b may
utilize the fast write memory within or across storage
devices 119a - d to journal in progress operations to ensure
the operations are not lost on a power failure , storage
controller removal , storage controller or storage system
shutdown , or some fault of one or more software or hard
ware components within the storage system 124 .
[0071] In one embodiment , controllers 125a , 125b operate
as PCI masters to one or the other PCI buses 128a , 128b . In
another embodiment , 128a and 128b may be based on other
communications standards (e . g . , HyperTransport , Infini
Band , etc .) . Other storage system embodiments may operate
storage controllers 125a , 125b as multi - masters for both PCI
buses 128a , 128b . Alternately , a PCI / NVMe / NVMf switch
ing infrastructure or fabric may connect multiple storage
controllers . Some storage system embodiments may allow
storage devices to communicate with each other directly
rather than communicating only with storage controllers . In
one embodiment , a storage device controller 119a may be
operable under direction from a storage controller 125a to

synthesize and transfer data to be stored into Flash memory
devices from data that has been stored in RAM (e . g . , RAM
121 of FIG . 1C) . For example , a recalculated version of
RAM content may be transferred after a storage controller
has determined that an operation has fully committed across
the storage system , or when fast - write memory on the device
has reached a certain used capacity , or after a certain amount
of time , to ensure improve safety of the data or to release
addressable fast - write capacity for reuse . This mechanism
may be used , for example , to avoid a second transfer over a
bus (e . g . , 128a , 128b) from the storage controllers 125a ,
125b . In one embodiment , a recalculation may include
compressing data , attaching indexing or other metadata ,
combining multiple data segments together , performing era
sure code calculations , etc .
[0072] In one embodiment , under direction from a storage
controller 125a , 125b , a storage device controller 119a , 119b
may be operable to calculate and transfer data to other
storage devices from data stored in RAM (e . g . , RAM 121 of
FIG . 1C) without involvement of the storage controllers
125a , 125b . This operation may be used to mirror data stored
in one controller 125a to another controller 125b , or it could
be used to offload compression , data aggregation , and / or
erasure coding calculations and transfers to storage devices
to reduce load on storage controllers or the storage controller
interface 129a , 129b to the PCI bus 128a , 128b .
[0073] A storage device controller 119 A - D may include
mechanisms for implementing high availability primitives
for use by other parts of a storage system external to the Dual
PCI storage device 118 . For example , reservation or exclu
sion primitives may be provided so that , in a storage system
with two storage controllers providing a highly available
storage service , one storage controller may prevent the other
storage controller from accessing or continuing to access the
storage device . This could be used , for example , in cases
where one controller detects that the other controller is not
functioning properly or where the interconnect between the
two storage controllers may itself not be functioning prop
erly .
10074] In one embodiment , a storage system for use with
Dual PCI direct mapped storage devices with separately
addressable fast write storage includes systems that manage
erase blocks or groups of erase blocks as allocation units for
storing data on behalf of the storage service , or for storing
metadata (e . g . , indexes , logs , etc .) associated with the stor
age service , or for proper management of the storage system
itself . Flash pages , which may be a few kilobytes in size ,
may be written as data arrives or as the storage system is to
persist data for long intervals of time (e . g . , above a defined
threshold of time) . To commit data more quickly , or to
reduce the number of writes to the Flash memory devices ,
the storage controllers may first write data into the sepa
rately addressable fast write storage on one more storage
devices .
[0075] In one embodiment , the storage controllers 125a ,
125b may initiate the use of erase blocks within and across
storage devices (e . g . , 118) in accordance with an age and
expected remaining lifespan of the storage devices , or based
on other statistics . The storage controllers 125a , 125b may
initiate garbage collection and data migration data between
storage devices in accordance with pages that are no longer
needed as well as to manage Flash page and erase block
lifespans and to manage overall system performance .

US 2019 / 0121673 A1 Apr . 25 , 2019

[0076] In one embodiment , the storage system 124 may
utilize mirroring and / or erasure coding schemes as part of
storing data into addressable fast write storage and / or as part
of writing data into allocation units associated with erase
blocks . Erasure codes may be used across storage devices , as
well as within erase blocks or allocation units , or within and
across Flash memory devices on a single storage device , to
provide redundancy against single or multiple storage device
failures or to protect against internal corruptions of Flash
memory pages resulting from Flash memory operations or
from degradation of Flash memory cells . Mirroring and
erasure coding at various levels may be used to recover from
multiple types of failures that occur separately or in com
bination .
[0077] The embodiments depicted with reference to FIGS .
2A - G illustrate a storage cluster that stores user data , such
as user data originating from one or more user or client
systems or other sources external to the storage cluster . The
storage cluster distributes user data across storage nodes
housed within a chassis , or across multiple chassis , using
erasure coding and redundant copies of metadata . Erasure
coding refers to a method of data protection or reconstruc
tion in which data is stored across a set of different locations ,
such as disks , storage nodes or geographic locations . Flash
memory is one type of solid - state memory that may be
integrated with the embodiments , although the embodiments
may be extended to other types of solid - state memory or
other storage medium , including non - solid state memory .
Control of storage locations and workloads are distributed
across the storage locations in a clustered peer - to - peer
system . Tasks such as mediating communications between
the various storage nodes , detecting when a storage node has
become unavailable , and balancing I / Os (inputs and outputs)
across the various storage nodes , are all handled on a
distributed basis . Data is laid out or distributed across
multiple storage nodes in data fragments or stripes that
support data recovery in some embodiments . Ownership of
data can be reassigned within a cluster , independent of input
and output patterns . This architecture described in more
detail below allows a storage node in the cluster to fail , with
the system remaining operational , since the data can be
reconstructed from other storage nodes and thus remain
available for input and output operations . In various embodi
ments , a storage node may be referred to as a cluster node ,
a blade , or a server .
[0078] The storage cluster may be contained within a
chassis , i . e . , an enclosure housing one or more storage
nodes . A mechanism to provide power to each storage node ,
such as a power distribution bus , and a communication
mechanism , such as a communication bus that enables
communication between the storage nodes are included
within the chassis . The storage cluster can run as an inde
pendent system in one location according to some embodi
ments . In one embodiment , a chassis contains at least two
instances of both the power distribution and the communi
cation bus which may be enabled or disabled independently .
The internal communication bus may be an Ethernet bus ,
however , other technologies such as PCIe , InfiniBand , and
others , are equally suitable . The chassis provides a port for
an external communication bus for enabling communication
between multiple chassis , directly or through a switch , and
with client systems . The external communication may use a
technology such as Ethernet , InfiniBand , Fibre Channel , etc .
In some embodiments , the external communication bus uses

different communication bus technologies for inter - chassis
and client communication . If a switch is deployed within or
between chassis , the switch may act as a translation between
multiple protocols or technologies . When multiple chassis
are connected to define a storage cluster , the storage cluster
may be accessed by a client using either proprietary inter
faces or standard interfaces such as network file system
(‘ NFS ') , common internet file system (“ CIFS ') , small com
puter system interface (“ SCSI ') or hypertext transfer proto
col (' HTTP ') . Translation from the client protocol may
occur at the switch , chassis external communication bus or
within each storage node . In some embodiments , multiple
chassis may be coupled or connected to each other through
an aggregator switch . A portion and / or all of the coupled or
connected chassis may be designated as a storage cluster . As
discussed above , each chassis can have multiple blades , each
blade has a media access control (“ MAC ') address , but the
storage cluster is presented to an external network as having
a single cluster IP address and a single MAC address in some
embodiments .
[0079] Each storage node may be one or more storage
servers and each storage server is connected to one or more
non - volatile solid state memory units , which may be
referred to as storage units or storage devices . One embodi
ment includes a single storage server in each storage node
and between one to eight non - volatile solid state memory
units , however this one example is not meant to be limiting .
The storage server may include a processor , DRAM and
interfaces for the internal communication bus and power
distribution for each of the power buses . Inside the storage
node , the interfaces and storage unit share a communication
bus , e . g . , PCI Express , in some embodiments . The non
volatile solid state memory units may directly access the
internal communication bus interface through a storage node
communication bus , or request the storage node to access the
bus interface . The non - volatile solid state memory unit
contains an embedded CPU , solid state storage controller ,
and a quantity of solid state mass storage , e . g . , between 2 - 32
terabytes (“ TB ') in some embodiments . An embedded vola
tile storage medium , such as DRAM , and an energy reserve
apparatus are included in the non - volatile solid state
memory unit . In some embodiments , the energy reserve
apparatus is a capacitor , super - capacitor , or battery that
enables transferring a subset of DRAM contents to a stable
storage medium in the case of power loss . In some embodi
ments , the non - volatile solid state memory unit is con
structed with a storage class memory , such as phase change
or magnetoresistive random access memory (MRAM ') that
substitutes for DRAM and enables a reduced power hold - up
apparatus .

[0080] One of many features of the storage nodes and
non - volatile solid state storage is the ability to proactively
rebuild data in a storage cluster . The storage nodes and
non - volatile solid state storage can determine when a storage
node or non - volatile solid state storage in the storage cluster
is unreachable , independent of whether there is an attempt to
read data involving that storage node or non - volatile solid
state storage . The storage nodes and non - volatile solid state
storage then cooperate to recover and rebuild the data in at
least partially new locations . This constitutes a proactive
rebuild , in that the system rebuilds data without waiting until
the data is needed for a read access initiated from a client

US 2019 / 0121673 A1 Apr . 25 , 2019

system employing the storage cluster . These and further
details of the storage memory and operation thereof are
discussed below .
[0081] FIG . 2A is a perspective view of a storage cluster
161 , with multiple storage nodes 150 and internal solid - state
memory coupled to each storage node to provide network
attached storage or storage area network , in accordance with
some embodiments . A network attached storage , storage
area network , or a storage cluster , or other storage memory ,
could include one or more storage clusters 161 , each having
one or more storage nodes 150 , in a flexible and reconfigu
rable arrangement of both the physical components and the
amount of storage memory provided thereby . The storage
cluster 161 is designed to fit in a rack , and one or more racks
can be set up and populated as desired for the storage
memory . The storage cluster 161 has a chassis 138 having
multiple slots 142 . It should be appreciated that chassis 138
may be referred to as a housing , enclosure , or rack unit . In
one embodiment , the chassis 138 has fourteen slots 142 ,
although other numbers of slots are readily devised . For
example , some embodiments have four slots , eight slots ,
sixteen slots , thirty - two slots , or other suitable number of
slots . Each slot 142 can accommodate one storage node 150
in some embodiments . Chassis 138 includes flaps 148 that
can be utilized to mount the chassis 138 on a rack . Fans 144
provide air circulation for cooling of the storage nodes 150
and components thereof , although other cooling components
could be used , or an embodiment could be devised without
cooling components . A switch fabric 146 couples storage
nodes 150 within chassis 138 together and to a network for
communication to the memory . In an embodiment depicted
in herein , the slots 142 to the left of the switch fabric 146 and
fans 144 are shown occupied by storage nodes 150 , while
the slots 142 to the right of the switch fabric 146 and fans
144 are empty and available for insertion of storage node
150 for illustrative purposes . This configuration is one
example , and one or more storage nodes 150 could occupy
the slots 142 in various further arrangements . The storage
node arrangements need not be sequential or adjacent in
some embodiments . Storage nodes 150 are hot pluggable ,
meaning that a storage node 150 can be inserted into a slot
142 in the chassis 138 , or removed from a slot 142 , without
stopping or powering down the system . Upon insertion or
removal of storage node 150 from slot 142 , the system
automatically reconfigures in order to recognize and adapt to
the change . Reconfiguration , in some embodiments ,
includes restoring redundancy and / or rebalancing data or
load .
[0082] Each storage node 150 can have multiple compo
nents . In the embodiment shown here , the storage node 150
includes a printed circuit board 159 populated by a CPU
156 , i . e . , processor , a memory 154 coupled to the CPU 156 ,
and a non - volatile solid state storage 152 coupled to the CPU
156 , although other mountings and / or components could be
used in further embodiments . The memory 154 has instruc
tions which are executed by the CPU 156 and / or data
operated on by the CPU 156 . As further explained below , the
non - volatile solid state storage 152 includes flash or , in
further embodiments , other types of solid - state memory .
[0083] Referring to FIG . 2A , storage cluster 161 is scal
able , meaning that storage capacity with non - uniform stor
age sizes is readily added , as described above . One or more
storage nodes 150 can be plugged into or removed from each
chassis and the storage cluster self - configures in some

embodiments . Plug - in storage nodes 150 , whether installed
in a chassis as delivered or later added , can have different
sizes . For example , in one embodiment a storage node 150
can have any multiple of 4 TB , e . g . , 8 TB , 12 TB , 16 TB , 32
TB , etc . In further embodiments , a storage node 150 could
have any multiple of other storage amounts or capacities .
Storage capacity of each storage node 150 is broadcast , and
influences decisions of how to stripe the data . For maximum
storage efficiency , an embodiment can self - configure as wide
as possible in the stripe , subject to a predetermined require
ment of continued operation with loss of up to one , or up to
two , non - volatile solid state storage units 152 or storage
nodes 150 within the chassis .
[0084] FIG . 2B is a block diagram showing a communi
cations interconnect 173 and power distribution bus 172
coupling multiple storage nodes 150 . Referring back to FIG .
2A , the communications interconnect 173 can be included in
or implemented with the switch fabric 146 in some embodi
ments . Where multiple storage clusters 161 occupy a rack ,
the communications interconnect 173 can be included in or
implemented with a top of rack switch , in some embodi
ments . As illustrated in FIG . 2B , storage cluster 161 is
enclosed within a single chassis 138 . External port 176 is
coupled to storage nodes 150 through communications inter
connect 173 , while external port 174 is coupled directly to
a storage node . External power port 178 is coupled to power
distribution bus 172 . Storage nodes 150 may include varying
amounts and differing capacities of non - volatile solid state
storage 152 as described with reference to FIG . 2A . In
addition , one or more storage nodes 150 may be a compute
only storage node as illustrated in FIG . 2B . Authorities 168
are implemented on the non - volatile solid state storages 152 ,
for example as lists or other data structures stored in
memory . In some embodiments the authorities are stored
within the non - volatile solid state storage 152 and supported
by software executing on a controller or other processor of
the non - volatile solid state storage 152 . In a further embodi
ment , authorities 168 are implemented on the storage nodes
150 , for example as lists or other data structures stored in the
memory 154 and supported by software executing on the
CPU 156 of the storage node 150 . Authorities 168 control
how and where data is stored in the non - volatile solid state
storages 152 in some embodiments . This control assists in
determining which type of erasure coding scheme is applied
to the data , and which storage nodes 150 have which
portions of the data . Each authority 168 may be assigned to
a non - volatile solid state storage 152 . Each authority may
control a range of inode numbers , segment numbers , or other
data identifiers which are assigned to data by a file system ,
by the storage nodes 150 , or by the non - volatile solid state
storage 152 , in various embodiments .
[0085] Every piece of data , and every piece of metadata ,
has redundancy in the system in some embodiments . In
addition , every piece of data and every piece of metadata has
an owner , which may be referred to as an authority . If that
authority is unreachable , for example through failure of a
storage node , there is a plan of succession for how to find
that data or that metadata . In various embodiments , there are
redundant copies of authorities 168 . Authorities 168 have a
relationship to storage nodes 150 and non - volatile solid state
storage 152 in some embodiments . Each authority 168 ,
covering a range of data segment numbers or other identi
fiers of the data , may be assigned to a specific non - volatile
solid state storage 152 . In some embodiments the authorities

US 2019 / 0121673 A1 Apr . 25 , 2019

168 for all of such ranges are distributed over the non
volatile solid state storages 152 of a storage cluster . Each
storage node 150 has a network port that provides access to
the non - volatile solid state storage (s) 152 of that storage
node 150 . Data can be stored in a segment , which is
associated with a segment number and that segment number
is an indirection for a configuration of a RAID (redundant
array of independent disks) stripe in some embodiments .
The assignment and use of the authorities 168 thus estab
lishes an indirection to data . Indirection may be referred to
as the ability to reference data indirectly , in this case via an
authority 168 , in accordance with some embodiments . A
segment identifies a set of non - volatile solid state storage
152 and a local identifier into the set of non - volatile solid
state storage 152 that may contain data . In some embodi
ments , the local identifier is an offset into the device and may
be reused sequentially by multiple segments . In other
embodiments the local identifier is unique for a specific
segment and never reused . The offsets in the non - volatile
solid state storage 152 are applied to locating data for
writing to or reading from the non - volatile solid state storage
152 (in the form of a RAID stripe) . Data is striped across
multiple units of non - volatile solid state storage 152 , which
may include or be different from the non - volatile solid state
storage 152 having the authority 168 for a particular data
segment .
[0086] If there is a change in where a particular segment
of data is located , e . g . , during a data move or a data
reconstruction , the authority 168 for that data segment
should be consulted , at that non - volatile solid state storage
152 or storage node 150 having that authority 168 . In order
to locate a particular piece of data , embodiments calculate a
hash value for a data segment or apply an inode number or
a data segment number . The output of this operation points
to a non - volatile solid state storage 152 having the authority
168 for that particular piece of data . In some embodiments
there are two stages to this operation . The first stage maps an
entity identifier (ID) , e . g . , a segment number , inode number ,
or directory number to an authority identifier . This mapping
may include a calculation such as a hash or a bit mask . The
second stage is mapping the authority identifier to a par
ticular non - volatile solid state storage 152 , which may be
done through an explicit mapping . The operation is repeat
able , so that when the calculation is performed , the result of
the calculation repeatably and reliably points to a particular
non - volatile solid state storage 152 having that authority
168 . The operation may include the set of reachable storage
nodes as input . If the set of reachable non - volatile solid state
storage units changes the optimal set changes . In some
embodiments , the persisted value is the current assignment
(which is always true) and the calculated value is the target
assignment the cluster will attempt to reconfigure towards .
This calculation may be used to determine the optimal
non - volatile solid state storage 152 for an authority in the
presence of a set of non - volatile solid state storage 152 that
are reachable and constitute the same cluster . The calcula
tion also determines an ordered set of peer non - volatile solid
state storage 152 that will also record the authority to
non - volatile solid state storage mapping so that the authority
may be determined even if the assigned non - volatile solid
state storage is unreachable . A duplicate or substitute author
ity 168 may be consulted if a specific authority 168 is
unavailable in some embodiments .

[0087] With reference to FIGS . 2A and 2B , two of the
many tasks of the CPU 156 on a storage node 150 are to
break up write data , and reassemble read data . When the
system has determined that data is to be written , the author
ity 168 for that data is located as above . When the segment
ID for data is already determined the request to write is
forwarded to the non - volatile solid state storage 152 cur
rently determined to be the host of the authority 168 deter
mined from the segment . The host CPU 156 of the storage
node 150 , on which the non - volatile solid state storage 152
and corresponding authority 168 reside , then breaks up or
shards the data and transmits the data out to various non
volatile solid state storage 152 . The transmitted data is
written as a data stripe in accordance with an erasure coding
scheme . In some embodiments , data is requested to be
pulled , and in other embodiments , data is pushed . In reverse ,
when data is read , the authority 168 for the segment ID
containing the data is located as described above . The host
CPU 156 of the storage node 150 on which the non - volatile
solid state storage 152 and corresponding authority 168
reside requests the data from the non - volatile solid state
storage and corresponding storage nodes pointed to by the
authority . In some embodiments the data is read from flash
storage as a data stripe . The host CPU 156 of storage node
150 then reassembles the read data , correcting any errors (if
present) according to the appropriate erasure coding scheme ,
and forwards the reassembled data to the network . In further
embodiments , some or all of these tasks can be handled in
the non - volatile solid state storage 152 . In some embodi
ments , the segment host requests the data be sent to storage
node 150 by requesting pages from storage and then sending
the data to the storage node making the original request .
[0088] In some systems , for example in UNIX - style file
systems , data is handled with an index node or inode , which
specifies a data structure that represents an object in a file
system . The object could be a file or a directory , for example .
Metadata may accompany the object , as attributes such as
permission data and a creation timestamp , among other
attributes . A segment number could be assigned to all or a
portion of such an object in a file system . In other systems ,
data segments are handled with a segment number assigned
elsewhere . For purposes of discussion , the unit of distribu
tion is an entity , and an entity can be a file , a directory or a
segment . That is , entities are units of data or metadata stored
by a storage system . Entities are grouped into sets called
authorities . Each authority has an authority owner , which is
a storage node that has the exclusive right to update the
entities in the authority . In other words , a storage node
contains the authority , and that the authority , in turn , con
tains entities .
100891 . A segment is a logical container of data in accor
dance with some embodiments . A segment is an address
space between medium address space and physical flash
locations , i . e . , the data segment number , are in this address
space . Segments may also contain meta - data , which enable
data redundancy to be restored (rewritten to different flash
locations or devices) without the involvement of higher level
software . In one embodiment , an internal format of a seg
ment contains client data and medium mappings to deter
mine the position of that data . Each data segment is pro
tected , e . g . , from memory and other failures , by breaking the
segment into a number of data and parity shards , where
applicable . The data and parity shards are distributed , i . e . ,
striped , across non - volatile solid state storage 152 coupled

US 2019 / 0121673 A1 Apr . 25 , 2019
10

to the host CPUs 156 (See FIGS . 2E and 2G) in accordance
with an erasure coding scheme . Usage of the term segments
refers to the container and its place in the address space of
segments in some embodiments . Usage of the term stripe
refers to the same set of shards as a segment and includes
how the shards are distributed along with redundancy or
parity information in accordance with some embodiments .
[0090] A series of address - space transformations takes
place across an entire storage system . At the top are the
directory entries (file names) which link to an inode . Inodes
point into medium address space , where data is logically
stored . Medium addresses may be mapped through a series
of indirect mediums to spread the load of large files , or
implement data services like deduplication or snapshots .
Medium addresses may be mapped through a series of
indirect mediums to spread the load of large files , or
implement data services like deduplication or snapshots .
Segment addresses are then translated into physical flash
locations . Physical flash locations have an address range
bounded by the amount of flash in the system in accordance
with some embodiments . Medium addresses and segment
addresses are logical containers , and in some embodiments
use a 128 bit or larger identifier so as to be practically
infinite , with a likelihood of reuse calculated as longer than
the expected life of the system . Addresses from logical
containers are allocated in a hierarchical fashion in some
embodiments . Initially , each non - volatile solid state storage
unit 152 may be assigned a range of address space . Within
this assigned range , the non - volatile solid state storage 152
is able to allocate addresses without synchronization with
other non - volatile solid state storage 152 .
[0091] Data and metadata is stored by a set of underlying
storage layouts that are optimized for varying workload
patterns and storage devices . These layouts incorporate
multiple redundancy schemes , compression formats and
index algorithms . Some of these layouts store information
about authorities and authority masters , while others store
file metadata and file data . The redundancy schemes include
error correction codes that tolerate corrupted bits within a
single storage device (such as a NAND flash chip) , erasure
codes that tolerate the failure of multiple storage nodes , and
replication schemes that tolerate data center or regional
failures . In some embodiments , low density parity check
(?LDPC ') code is used within a single storage unit . Reed
Solomon encoding is used within a storage cluster , and
mirroring is used within a storage grid in some embodi
ments . Metadata may be stored using an ordered log struc
tured index (such as a Log Structured Merge Tree) , and large
data may not be stored in a log structured layout .
[0092] In order to maintain consistency across multiple
copies of an entity , the storage nodes agree implicitly on two
things through calculations : (1) the authority that contains
the entity , and (2) the storage node that contains the author -
ity . The assignment of entities to authorities can be done by
pseudo randomly assigning entities to authorities , by split
ting entities into ranges based upon an externally produced
key , or by placing a single entity into each authority .
Examples of pseudorandom schemes are linear hashing and
the Replication Under Scalable Hashing (“ RUSH ') family of
hashes , including Controlled Replication Under Scalable
Hashing (CRUSH ') . In some embodiments , pseudo - ran
dom assignment is utilized only for assigning authorities to
nodes because the set of nodes can change . The set of
authorities cannot change so any subjective function may be

applied in these embodiments . Some placement schemes
automatically place authorities on storage nodes , while other
placement schemes rely on an explicit mapping of authori
ties to storage nodes . In some embodiments , a pseudoran
dom scheme is utilized to map from each authority to a set
of candidate authority owners . A pseudorandom data distri
bution function related to CRUSH may assign authorities to
storage nodes and create a list of where the authorities are
assigned . Each storage node has a copy of the pseudorandom
data distribution function , and can arrive at the same calcu
lation for distributing , and later finding or locating an
authority . Each of the pseudorandom schemes requires the
reachable set of storage nodes as input in some embodiments
in order to conclude the same target nodes . Once an entity
has been placed in an authority , the entity may be stored on
physical devices so that no expected failure will lead to
unexpected data loss . In some embodiments , rebalancing
algorithms attempt to store the copies of all entities within
an authority in the same layout and on the same set of
machines .

[0093] Examples of expected failures include device fail
ures , stolen machines , datacenter fires , and regional disas
ters , such as nuclear or geological events . Different failures
lead to different levels of acceptable data loss . In some
embodiments , a stolen storage node impacts neither the
security nor the reliability of the system , while depending on
system configuration , a regional event could lead to no loss
of data , a few seconds or minutes of lost updates , or even
complete data loss .
[0094] In the embodiments , the placement of data for
storage redundancy is independent of the placement of
authorities for data consistency . In some embodiments ,
storage nodes that contain authorities do not contain any
persistent storage . Instead , the storage nodes are connected
to non - volatile solid state storage units that do not contain
authorities . The communications interconnect between stor
age nodes and non - volatile solid state storage units consists
of multiple communication technologies and has non - uni
form performance and fault tolerance characteristics . In
some embodiments , as mentioned above , non - volatile solid
state storage units are connected to storage nodes via PCI
express , storage nodes are connected together within a
single chassis using Ethernet backplane , and chassis are
connected together to form a storage cluster . Storage clusters
are connected to clients using Ethernet or fiber channel in
some embodiments . If multiple storage clusters are config
ured into a storage grid , the multiple storage clusters are
connected using the Internet or other long - distance network
ing links , such as a “ metro scale ” link or private link that
does not traverse the internet .
10095) Authority owners have the exclusive right to
modify entities , to migrate entities from one non - volatile
solid state storage unit to another non - volatile solid state
storage unit , and to add and remove copies of entities . This
allows for maintaining the redundancy of the underlying
data . When an authority owner fails , is going to be decom
missioned , or is overloaded , the authority is transferred to a
new storage node . Transient failures make it non - trivial to
ensure that all non - faulty machines agree upon the new
authority location . The ambiguity that arises due to transient
failures can be achieved automatically by a consensus
protocol such as Paxos , hot - warm failover schemes , via
manual intervention by a remote system administrator , or by
a local hardware administrator (such as by physically

US 2019 / 0121673 A1 Apr . 25 , 2019

m

removing the failed machine from the cluster , or pressing a
button on the failed machine) . In some embodiments , a
consensus protocol is used , and failover is automatic . If too
many failures or replication events occur in too short a time
period , the system goes into a self - preservation mode and
halts replication and data movement activities until an
administrator intervenes in accordance with some embodi
ments .
[0096] As authorities are transferred between storage
nodes and authority owners update entities in their authori
ties , the system transfers messages between the storage
nodes and non - volatile solid state storage units . With regard
to persistent messages , messages that have different pur
poses are of different types . Depending on the type of the
message , the system maintains different ordering and dura
bility guarantees . As the persistent messages are being
processed , the messages are temporarily stored in multiple
durable and non - durable storage hardware technologies . In
some embodiments , messages are stored in RAM , NVRAM
and on NAND flash devices , and a variety of protocols are
used in order to make efficient use of each storage medium .
Latency - sensitive client requests may be persisted in repli
cated NVRAM , and then later NAND , while background
rebalancing operations are persisted directly to NAND .
[0097] Persistent messages are persistently stored prior to
being transmitted . This allows the system to continue to
serve client requests despite failures and component replace
ment . Although many hardware components contain unique
identifiers that are visible to system administrators , manu
facturer , hardware supply chain and ongoing monitoring
quality control infrastructure , applications running on top of
the infrastructure address virtualize addresses . These virtu
alized addresses do not change over the lifetime of the
storage system , regardless of component failures and
replacements . This allows each component of the storage
system to be replaced over time without reconfiguration or
disruptions of client request processing , i . e . , the system
supports non - disruptive upgrades .
[0098] In some embodiments , the virtualized addresses are
stored with sufficient redundancy . A continuous monitoring
system correlates hardware and software status and the
hardware identifiers . This allows detection and prediction of
failures due to faulty components and manufacturing details .
The monitoring system also enables the proactive transfer of
authorities and entities away from impacted devices before
failure occurs by removing the component from the critical
path in some embodiments .
[0099] FIG . 2C is a multiple level block diagram , showing
contents of a storage node 150 and contents of a non - volatile
solid state storage 152 of the storage node 150 . Data is
communicated to and from the storage node 150 by a
network interface controller (NIC) 202 in some embodi
ments . Each storage node 150 has a CPU 156 , and one or
more non - volatile solid state storage 152 , as discussed
above . Moving down one level in FIG . 2C , each non - volatile
solid state storage 152 has a relatively fast non - volatile solid
state memory , such as nonvolatile random access memory
(?NVRAM ') 204 , and flash memory 206 . In some embodi
ments , NVRAM 204 may be a component that does not
require program / erase cycles (DRAM , MRAM , PCM) , and
can be a memory that can support being written vastly more
often than the memory is read from . Moving down another
level in FIG . 2C , the NVRAM 204 is implemented in one
embodiment as high speed volatile memory , such as

dynamic random access memory (DRAM) 216 , backed up
by energy reserve 218 . Energy reserve 218 provides suffi
cient electrical power to keep the DRAM 216 powered long
enough for contents to be transferred to the flash memory
206 in the event of power failure . In some embodiments ,
energy reserve 218 is a capacitor , super - capacitor , battery , or
other device , that supplies a suitable supply of energy
sufficient to enable the transfer of the contents of DRAM
216 to a stable storage medium in the case of power loss .
The flash memory 206 is implemented as multiple flash dies
222 , which may be referred to as packages of flash dies 222
or an array of flash dies 222 . It should be appreciated that the
flash dies 222 could be packaged in any number of ways ,
with a single die per package , multiple dies per package (i . e .
multichip packages) , in hybrid packages , as bare dies on a
printed circuit board or other substrate , as encapsulated dies ,
etc . In the embodiment shown , the non - volatile solid state
storage 152 has a controller 212 or other processor , and an
input output (1 / 0) port 210 coupled to the controller 212 . I / O
port 210 is coupled to the CPU 156 and / or the network
interface controller 202 of the flash storage node 150 . Flash
input output (1 / 0) port 220 is coupled to the flash dies 222 ,
and a direct memory access unit (DMA) 214 is coupled to
the controller 212 , the DRAM 216 and the flash dies 222 . In
the embodiment shown , the I / O port 210 , controller 212 ,
DMA unit 214 and flash I / O port 220 are implemented on a
programmable logic device (?PLD ') 208 , e . g . , a field pro
grammable gate array (FPGA) . In this embodiment , each
flash die 222 has pages , organized as sixteen kB (kilobyte)
pages 224 , and a register 226 through which data can be
written to or read from the flash die 222 . In further embodi
ments , other types of solid - state memory are used in place
of , or in addition to flash memory illustrated within flash die
222 .
[0100] Storage clusters 161 , in various embodiments as
disclosed herein , can be contrasted with storage arrays in
general . The storage nodes 150 are part of a collection that
creates the storage cluster 161 . Each storage node 150 owns
a slice of data and computing required to provide the data .
Multiple storage nodes 150 cooperate to store and retrieve
the data . Storage memory or storage devices , as used in
storage arrays in general , are less involved with processing
and manipulating the data . Storage memory or storage
devices in a storage array receive commands to read , write ,
or erase data . The storage memory or storage devices in a
storage array are not aware of a larger system in which they
are embedded , or what the data means . Storage memory or
storage devices in storage arrays can include various types
of storage memory , such as RAM , solid state drives , hard
disk drives , etc . The storage units 152 described herein have
multiple interfaces active simultaneously and serving mul
tiple purposes . In some embodiments , some of the function
ality of a storage node 150 is shifted into a storage unit 152 ,
transforming the storage unit 152 into a combination of
storage unit 152 and storage node 150 . Placing computing
(relative to storage data) into the storage unit 152 places this
computing closer to the data itself . The various system
embodiments have a hierarchy of storage node layers with
different capabilities . By contrast , in a storage array , a
controller owns and knows everything about all of the data
that the controller manages in a shelf or storage devices . In
a storage cluster 161 , as described herein , multiple control
lers in multiple storage units 152 and / or storage nodes 150
cooperate in various ways (e . g . , for erasure coding , data

US 2019 / 0121673 A1 Apr . 25 , 2019

sharding , metadata communication and redundancy , storage
capacity expansion or contraction , data recovery , and so on) .
[0101] FIG . 2D shows a storage server environment ,
which uses embodiments of the storage nodes 150 and
storage units 152 of FIGS . 2A - C . In this version , each
storage unit 152 has a processor such as controller 212 (see
FIG . 2C) , an FPGA (field programmable gate array) , flash
memory 206 , and NVRAM 204 (which is super - capacitor
backed DRAM 216 , see FIGS . 2B and 2C) on a PCIe
(peripheral component interconnect express) board in a
chassis 138 (see FIG . 2A) . The storage unit 152 may be
implemented as a single board containing storage , and may
be the largest tolerable failure domain inside the chassis . In
some embodiments , up to two storage units 152 may fail and
the device will continue with no data loss .
[0102] The physical storage is divided into named regions
based on application usage in some embodiments . The
NVRAM 204 is a contiguous block of reserved memory in
the storage unit 152 DRAM 216 , and is backed by NAND
flash . NVRAM 204 is logically divided into multiple
memory regions written for two as spool (e . g . , spool _
region) . Space within the NVRAM 204 spools is managed
by each authority 168 independently . Each device provides
an amount of storage space to each authority 168 . That
authority 168 further manages lifetimes and allocations
within that space . Examples of a spool include distributed
transactions or notions . When the primary power to a storage
unit 152 fails , onboard super - capacitors provide a short
duration of power hold up . During this holdup interval , the
contents of the NVRAM 204 are flushed to flash memory
206 . On the next power - on , the contents of the NVRAM 204
are recovered from the flash memory 206 .
[0103] As for the storage unit controller , the responsibility
of the logical “ controller ” is distributed across each of the
blades containing authorities 168 . This distribution of logi
cal control is shown in FIG . 2D as a host controller 242 ,
mid - tier controller 244 and storage unit controller (s) 246 .
Management of the control plane and the storage plane are
treated independently , although parts may be physically
co - located on the same blade . Each authority 168 effectively
serves as an independent controller . Each authority 168
provides its own data and metadata structures , its own
background workers , and maintains its own lifecycle .
[0104] FIG . 2E is a blade 252 hardware block diagram ,
showing a control plane 254 , compute and storage planes
256 , 258 , and authorities 168 interacting with underlying
physical resources , using embodiments of the storage nodes
150 and storage units 152 of FIGS . 2A - C in the storage
server environment of FIG . 2D . The control plane 254 is
partitioned into a number of authorities 168 which can use
the compute resources in the compute plane 256 to run on
any of the blades 252 . The storage plane 258 is partitioned
into a set of devices , each of which provides access to flash
206 and NVRAM 204 resources .
[0105] In the compute and storage planes 256 , 258 of FIG .
2E , the authorities 168 interact with the underlying physical
resources (i . e . , devices) . From the point of view of an
authority 168 , its resources are striped over all of the
physical devices . From the point of view of a device , it
provides resources to all authorities 168 , irrespective of
where the authorities happen to run . Each authority 168 has
allocated or has been allocated one or more partitions 260 of
storage memory in the storage units 152 , e . g . partitions 260
in flash memory 206 and NVRAM 204 . Each authority 168

uses those allocated partitions 260 that belong to it , for
writing or reading user data . Authorities can be associated
with differing amounts of physical storage of the system . For
example , one authority 168 could have a larger number of
partitions 260 or larger sized partitions 260 in one or more
storage units 152 than one or more other authorities 168 .
10106] FIG . 2F depicts elasticity software layers in blades
252 of a storage cluster , in accordance with some embodi
ments . In the elasticity structure , elasticity software is sym
metric , i . e . , each blade ' s compute module 270 runs the three
identical layers of processes depicted in FIG . 2F . Storage
managers 274 execute read and write requests from other
blades 252 for data and metadata stored in local storage unit
152 NVRAM 204 and flash 206 . Authorities 168 fulfill client
requests by issuing the necessary reads and writes to the
blades 252 on whose storage units 152 the corresponding
data or metadata resides . Endpoints 272 parse client con
nection requests received from switch fabric 146 supervi
sory software , relay the client connection requests to the
authorities 168 responsible for fulfillment , and relay the
authorities ' 168 responses to clients . The symmetric three
layer structure enables the storage system ' s high degree of
concurrency . Elasticity scales out efficiently and reliably in
these embodiments . In addition , elasticity implements a
unique scale - out technique that balances work evenly across
all resources regardless of client access pattern , and maxi
mizes concurrency by eliminating much of the need for
inter - blade coordination that typically occurs with conven
tional distributed locking .
[0107] Still referring to FIG . 2F , authorities 168 running in
the compute modules 270 of a blade 252 perform the internal
operations required to fulfill client requests . One feature of
elasticity is that authorities 168 are stateless , i . e . , they cache
active data and metadata in their own blades ' 252 DRAMS
for fast access , but the authorities store every update in their
NVRAM 204 partitions on three separate blades 252 until
the update has been written to flash 206 . All the storage
system writes to NVRAM 204 are in triplicate to partitions
on three separate blades 252 in some embodiments . With
triple - mirrored NVRAM 204 and persistent storage pro
tected by parity and Reed - Solomon RAID checksums , the
storage system can survive concurrent failure of two blades
252 with no loss of data , metadata , or access to either .
[0108] Because authorities 168 are stateless , they can
migrate between blades 252 . Each authority 168 has a
unique identifier . NVRAM 204 and flash 206 partitions are
associated with authorities ' 168 identifiers , not with the
blades 252 on which they are running in some . Thus , when
an authority 168 migrates , the authority 168 continues to
manage the same storage partitions from its new location .
When a new blade 252 is installed in an embodiment of the
storage cluster , the system automatically rebalances load by :
partitioning the new blade ' s 252 storage for use by the
system ' s authorities 168 , migrating selected authorities 168
to the new blade 252 , starting endpoints 272 on the new
blade 252 and including them in the switch fabric ' s 146
client connection distribution algorithm .
0109] From their new locations , migrated authorities 168
persist the contents of their NVRAM 204 partitions on flash
206 , process read and write requests from other authorities
168 , and fulfill the client requests that endpoints 272 direct
to them . Similarly , if a blade 252 fails or is removed , the
system redistributes its authorities 168 among the system ' s

US 2019 / 0121673 A1 Apr . 25 , 2019
13

remaining blades 252 . The redistributed authorities 168
continue to perform their original functions from their new
locations .
[0110] FIG . 2G depicts authorities 168 and storage
resources in blades 252 of a storage cluster , in accordance
with some embodiments . Each authority 168 is exclusively
responsible for a partition of the flash 206 and NVRAM 204
on each blade 252 . The authority 168 manages the content
and integrity of its partitions independently of other authori
ties 168 . Authorities 168 compress incoming data and pre
serve it temporarily in their NVRAM 204 partitions , and
then consolidate , RAID - protect , and persist the data in
segments of the storage in their flash 206 partitions . As the
authorities 168 write data to flash 206 , storage managers 274
perform the necessary flash translation to optimize write
performance and maximize media longevity . In the back
ground , authorities 168 “ garbage collect , ” or reclaim space
occupied by data that clients have made obsolete by over
writing the data . It should be appreciated that since authori
ties ' 168 partitions are disjoint , there is no need for distrib
uted locking to execute client and writes or to perform
background functions .
[0111] The embodiments described herein may utilize
various software , communication and / or networking proto
cols . In addition , the configuration of the hardware and / or
software may be adjusted to accommodate various proto
cols . For example , the embodiments may utilize Active
Directory , which is a database based system that provides
authentication , directory , policy , and other services in a
WINDOWSTM environment . In these embodiments , LDAP
(Lightweight Directory Access Protocol) is one example
application protocol for querying and modifying items in
directory service providers such as Active Directory . In
some embodiments , a network lock manager (‘ NLM ') is
utilized as a facility that works in cooperation with the
Network File System (™NFS ') to provide a System V style of
advisory file and record locking over a network . The Server
Message Block (' SMB ') protocol , one version of which is
also known as Common Internet File System (“ CIFS ') , may
be integrated with the storage systems discussed herein .
SMP operates as an application - layer network protocol
typically used for providing shared access to files , printers ,
and serial ports and miscellaneous communications between
nodes on a network . SMB also provides an authenticated
inter - process communication mechanism . AMAZONTM S3
(Simple Storage Service) is a web service offered by Ama
zon Web Services , and the systems described herein may
interface with Amazon S3 through web services interfaces
(REST (representational state transfer) , SOAP (simple
object access protocol) , and BitTorrent) . A RESTful API
(application programming interface) breaks down a trans
action to create a series of small modules . Each module
addresses a particular underlying part of the transaction . The
control or permissions provided with these embodiments ,
especially for object data , may include utilization of an
access control list (‘ ACL ') . The ACL is a list of permissions
attached to an object and the ACL specifies which users or
system processes are granted access to objects , as well as
what operations are allowed on given objects . The systems
may utilize Internet Protocol version 6 (?IPv6 ') , as well as
IPv4 , for the communications protocol that provides an
identification and location system for computers on net
works and routes traffic across the Internet . The routing of
packets between networked systems may include Equal - cost

multi - path routing (' ECMP ') , which is a routing strategy
where next - hop packet forwarding to a single destination
can occur over multiple “ best paths ” which tie for top place
in routing metric calculations . Multi - path routing can be
used in conjunction with most routing protocols , because it
is a per - hop decision limited to a single router . The software
may support Multi - tenancy , which is an architecture in
which a single instance of a software application serves
multiple customers . Each customer may be referred to as a
tenant . Tenants may be given the ability to customize some
parts of the application , but may not customize the appli
cation ' s code , in some embodiments . The embodiments may
maintain audit logs . An audit log is a document that records
an event in a computing system . In addition to documenting
what resources were accessed , audit log entries typically
include destination and source addresses , a timestamp , and
user login information for compliance with various regula
tions . The embodiments may support various key manage
ment policies , such as encryption key rotation . In addition ,
the system may support dynamic root passwords or some
variation dynamically changing passwords .
[0112] FIG . 3A sets forth a diagram of a storage system
306 that is coupled for data communications with a cloud
services provider 302 in accordance with some embodi
ments of the present disclosure . Although depicted in less
detail , the storage system 306 depicted in FIG . 3A may be
similar to the storage systems described above with refer
ence to FIGS . 1A - 1D and FIGS . 2A - 2G . In some embodi
ments , the storage system 306 depicted in FIG . 3A may be
embodied as a storage system that includes imbalanced
active / active controllers , as a storage system that includes
balanced active / active controllers , as a storage system that
includes active / active controllers where less than all of each
controller ' s resources are utilized such that each controller
has reserve resources that may be used to support failover ,
as a storage system that includes fully active / active control
lers , as a storage system that includes dataset - segregated
controllers , as a storage system that includes dual - layer
architectures with front - end controllers and back - end inte
grated storage controllers , as a storage system that includes
scale - out clusters of dual - controller arrays , as well as com
binations of such embodiments .
10113] . In the example depicted in FIG . 3A , the storage
system 306 is coupled to the cloud services provider 302 via
a data communications link 304 . The data communications
link 304 may be embodied as a dedicated data communica
tions link , as a data communications pathway that is pro
vided through the use of one or data communications
networks such as a wide area network (“ WAN ') or local area
network (“ LAN ') , or as some other mechanism capable of
transporting digital information between the storage system
306 and the cloud services provider 302 . Such a data
communications link 304 may be fully wired , fully wireless ,
or some aggregation of wired and wireless data communi
cations pathways . In such an example , digital information
may be exchanged between the storage system 306 and the
cloud services provider 302 via the data communications
link 304 using one or more data communications protocols .
For example , digital information may be exchanged between
the storage system 306 and the cloud services provider 302
via the data communications link 304 using the handheld
device transfer protocol (‘ HDTP ') , hypertext transfer pro
tocol (' HTTP ') , internet protocol (IP ') , real - time transfer
protocol (?RTP ') , transmission control protocol (“ TCP ') ,

US 2019 / 0121673 A1 Apr . 25 , 2019
14

user datagram protocol (?UDP ') , wireless application pro
tocol (“ WAP ') , or other protocol .
[0114] The cloud services provider 302 depicted in FIG .
3A may be embodied , for example , as a system and com
puting environment that provides services to users of the
cloud services provider 302 through the sharing of comput
ing resources via the data communications link 304 . The
cloud services provider 302 may provide on - demand access
to a shared pool of configurable computing resources such as
computer networks , servers , storage , applications and ser
vices , and so on . The shared pool of configurable resources
may be rapidly provisioned and released to a user of the
cloud services provider 302 with minimal management
effort . Generally , the user of the cloud services provider 302
is unaware of the exact computing resources utilized by the
cloud services provider 302 to provide the services .
Although in many cases such a cloud services provider 302
may be accessible via the Internet , readers of skill in the art
will recognize that any system that abstracts the use of
shared resources to provide services to a user through any
data communications link may be considered a cloud ser
vices provider 302 .
[0115] In the example depicted in FIG . 3A , the cloud
services provider 302 may be configured to provide a variety
of services to the storage system 306 and users of the storage
system 306 through the implementation of various service
models . For example , the cloud services provider 302 may
be configured to provide services to the storage system 306
and users of the storage system 306 through the implemen
tation of an infrastructure as a service (IaaS) service model
where the cloud services provider 302 offers computing
infrastructure such as virtual machines and other resources
as a service to subscribers . In addition , the cloud services
provider 302 may be configured to provide services to the
storage system 306 and users of the storage system 306
through the implementation of a platform as a service
(“ PaaS) service model where the cloud services provider
302 offers a development environment to application devel
opers . Such a development environment may include , for
example , an operating system , programming - language
execution environment , database , web server , or other com
ponents that may be utilized by application developers to
develop and run software solutions on a cloud platform .
Furthermore , the cloud services provider 302 may be con
figured to provide services to the storage system 306 and
users of the storage system 306 through the implementation
of a software as a service (" SaaS ') service model where the
cloud services provider 302 offers application software ,
databases , as well as the platforms that are used to run the
applications to the storage system 306 and users of the
storage system 306 , providing the storage system 306 and
users of the storage system 306 with on - demand software
and eliminating the need to install and run the application on
local computers , which may simplify maintenance and sup
port of the application . The cloud services provider 302 may
be further configured to provide services to the storage
system 306 and users of the storage system 306 through the
implementation of an authentication as a service (“ AaaS ')
service model where the cloud services provider 302 offers
authentication services that can be used to secure access to
applications , data sources , or other resources . The cloud
services provider 302 may also be configured to provide
services to the storage system 306 and users of the storage
system 306 through the implementation of a storage as a

service model where the cloud services provider 302 offers
access to its storage infrastructure for use by the storage
system 306 and users of the storage system 306 . Readers
will appreciate that the cloud services provider 302 may be
configured to provide additional services to the storage
system 306 and users of the storage system 306 through the
implementation of additional service models , as the service
models described above are included only for explanatory
purposes and in no way represent a limitation of the services
that may be offered by the cloud services provider 302 or a
limitation as to the service models that may be implemented
by the cloud services provider 302 .
[0116] In the example depicted in FIG . 3A , the cloud
services provider 302 may be embodied , for example , as a
private cloud , as a public cloud , or as a combination of a
private cloud and public cloud . In an embodiment in which
the cloud services provider 302 is embodied as a private
cloud , the cloud services provider 302 may be dedicated to
providing services to a single organization rather than pro
viding services to multiple organizations . In an embodiment
where the cloud services provider 302 is embodied as a
public cloud , the cloud services provider 302 may provide
services to multiple organizations . Public cloud and private
cloud deployment models may differ and may come with
various advantages and disadvantages . For example ,
because a public cloud deployment involves the sharing of
a computing infrastructure across different organization ,
such a deployment may not be ideal for organizations with
security concerns , mission - critical workloads , uptime
requirements demands , and so on . While a private cloud
deployment can address some of these issues , a private cloud
deployment may require on - premises staff to manage the
private cloud . In still alternative embodiments , the cloud
services provider 302 may be embodied as a mix of a private
and public cloud services with a hybrid cloud deployment .
[0117] Although not explicitly depicted in FIG . 3A , read
ers will appreciate that additional hardware components and
additional software components may be necessary to facili
tate the delivery of cloud services to the storage system 306
and users of the storage system 306 . For example , the
storage system 306 may be coupled to (or even include) a
cloud storage gateway . Such a cloud storage gateway may be
embodied , for example , as hardware - based or software
based appliance that is located on premise with the storage
system 306 . Such a cloud storage gateway may operate as a
bridge between local applications that are executing on the
storage array 306 and remote , cloud - based storage that is
utilized by the storage array 306 . Through the use of a cloud
storage gateway , organizations may move primary iSCSI or
NAS to the cloud services provider 302 , thereby enabling
the organization to save space on their on - premises storage
systems . Such a cloud storage gateway may be configured to
emulate a disk array , a block - based device , a file server , or
other storage system that can translate the SCSI commands ,
file server commands , or other appropriate command into
REST - space protocols that facilitate communications with
the cloud services provider 302 .
[0118] In order to enable the storage system 306 and users
of the storage system 306 to make use of the services
provided by the cloud services provider 302 , a cloud migra
tion process may take place during which data , applications ,
or other elements from an organization ' s local systems (or
even from another cloud environment) are moved to the
cloud services provider 302 . In order to successfully migrate

US 2019 / 0121673 A1 Apr . 25 , 2019
15

data , applications , or other elements to the cloud services
provider ' s 302 environment , middleware such as a cloud
migration tool may be utilized to bridge gaps between the
cloud services provider ' s 302 environment and an organi
zation ' s environment . Such cloud migration tools may also
be configured to address potentially high network costs and
long transfer times associated with migrating large volumes
of data to the cloud services provider 302 , as well as
addressing security concerns associated with sensitive data
to the cloud services provider 302 over data communications
networks . In order to further enable the storage system 306
and users of the storage system 306 to make use of the
services provided by the cloud services provider 302 , a
cloud orchestrator may also be used to arrange and coordi
nate automated tasks in pursuit of creating a consolidated
process or workflow . Such a cloud orchestrator may perform
tasks such as configuring various components , whether
those components are cloud components or on - premises
components , as well as managing the interconnections
between such components . The cloud orchestrator can sim
plify the inter - component communication and connections
to ensure that links are correctly configured and maintained .

[0119] In the example depicted in FIG . 3A , and as
described briefly above , the cloud services provider 302 may
be configured to provide services to the storage system 306
and users of the storage system 306 through the usage of a
SaaS service model where the cloud services provider 302
offers application software , databases , as well as the plat
forms that are used to run the applications to the storage
system 306 and users of the storage system 306 , providing
the storage system 306 and users of the storage system 306
with on - demand software and eliminating the need to install
and run the application on local computers , which may
simplify maintenance and support of the application . Such
applications may take many forms in accordance with
various embodiments of the present disclosure . For example ,
the cloud services provider 302 may be configured to
provide access to data analytics applications to the storage
system 306 and users of the storage system 306 . Such data
analytics applications may be configured , for example , to
receive telemetry data phoned home by the storage system
306 . Such telemetry data may describe various operating
characteristics of the storage system 306 and may be ana
lyzed , for example , to determine the health of the storage
system 306 , to identify workloads that are executing on the
storage system 306 , to predict when the storage system 306
will run out of various resources , to recommend configura
tion changes , hardware or software upgrades , workflow
migrations , or other actions that may improve the operation
of the storage system 306 .
[0120] The cloud services provider 302 may also be
configured to provide access to virtualized computing envi -
ronments to the storage system 306 and users of the storage
system 306 . Such virtualized computing environments may
be embodied , for example , as a virtual machine or other
virtualized computer hardware platforms , virtual storage
devices , virtualized computer network resources , and so on .
Examples of such virtualized environments can include
virtual machines that are created to emulate an actual
computer , virtualized desktop environments that separate a
logical desktop from a physical machine , virtualized file
systems that allow uniform access to different types of
concrete file systems , and many others .

[0121] For further explanation , FIG . 3B sets forth a dia
gram of a storage system 306 in accordance with some
embodiments of the present disclosure . Although depicted in
less detail , the storage system 306 depicted in FIG . 3B may
be similar to the storage systems described above with
reference to FIGS . 1A - 1D and FIGS . 2A - 2G as the storage
system may include many of the components described
above .
[0122] The storage system 306 depicted in FIG . 3B may
include storage resources 308 , which may be embodied in
many forms . For example , in some embodiments the storage
resources 308 can include nano - RAM or another form of
nonvolatile random access memory that utilizes carbon
nanotubes deposited on a substrate . In some embodiments ,
the storage resources 308 may include 3D crosspoint non
volatile memory in which bit storage is based on a change
of bulk resistance , in conjunction with a stackable cross
gridded data access array . In some embodiments , the storage
resources 308 may include flash memory , including single
level cell (SLC ') NAND flash , multi - level cell (‘ MLC ')
NAND flash , triple - level cell (* TLC ') NAND flash , quad
level cell (' QLC ') NAND flash , and others . In some embodi
ments , the storage resources 308 may include non - volatile
magnetoresistive random - access memory (‘ MRAM ') ,
including spin transfer torque (“ STT ') MRAM , in which
data is stored through the use of magnetic storage elements .
In some embodiments , the example storage resources 308
may include non - volatile phase - change memory (?PCM ')
that may have the ability to hold multiple bits in a single cell
as cells can achieve a number of distinct intermediary states .
In some embodiments , the storage resources 308 may
include quantum memory that allows for the storage and
retrieval of photonic quantum information . In some embodi
ments , the example storage resources 308 may include
resistive random - access memory (ReRAM ') in which data
is stored by changing the resistance across a dielectric
solid - state material . In some embodiments , the storage
resources 308 may include storage class memory (“ SCM ') in
which solid - state nonvolatile memory may be manufactured
at a high density using some combination of sub - litho
graphic patterning techniques , multiple bits per cell , mul
tiple layers of devices , and so on . Readers will appreciate
that other forms of computer memories and storage devices
may be utilized by the storage systems described above ,
including DRAM , SRAM , EEPROM , universal memory ,
and many others . The storage resources 308 depicted in FIG .
3A may be embodied in a variety of form factors , including
but not limited to , dual in - line memory modules (DIMMs ') ,
non - volatile dual in - line memory modules (‘ NVDIMMs ') ,
M . 2 , U . 2 , and others .
[0123] The example storage system 306 depicted in FIG .
3B may implement a variety of storage architectures . For
example , storage systems in accordance with some embodi
ments of the present disclosure may utilize block storage
where data is stored in blocks , and each block essentially
acts as an individual hard drive . Storage systems in accor
dance with some embodiments of the present disclosure may
utilize object storage , where data is managed as objects .
Each object may include the data itself , a variable amount of
metadata , and a globally unique identifier , where object
storage can be implemented at multiple levels (e . g . , device
level , system level , interface level) . Storage systems in
accordance with some embodiments of the present disclo
sure utilize file storage in which data is stored in a hierar

US 2019 / 0121673 A1 Apr . 25 , 2019
16

chical structure . Such data may be saved in files and folders ,
and presented to both the system storing it and the system
retrieving it in the same format .
[0124] The example storage system 306 depicted in FIG .
3B may be embodied as a storage system in which additional
storage resources can be added through the use of a scale - up
model , additional storage resources can be added through
the use of a scale - out model , or through some combination
thereof . In a scale - up model , additional storage may be
added by adding additional storage devices . In a scale - out
model , however , additional storage nodes may be added to
a cluster of storage nodes , where such storage nodes can
include additional processing resources , additional network
ing resources , and so on .
[0125] The storage system 306 depicted in FIG . 3B also
includes communications resources 310 that may be useful
in facilitating data communications between components
within the storage system 306 , as well as data communica
tions between the storage system 306 and computing devices
that are outside of the storage system 306 . The communi
cations resources 310 may be configured to utilize a variety
of different protocols and data communication fabrics to
facilitate data communications between components within
the storage systems as well as computing devices that are
outside of the storage system . For example , the communi
cations resources 310 can include fibre channel (* FC ')
technologies such as FC fabrics and FC protocols that can
transport SCSI commands over FC networks . The commu
nications resources 310 can also include FC over ethernet
(?FCOE ') technologies through which FC frames are encap
sulated and transmitted over Ethernet networks . The com
munications resources 310 can also include InfiniBand
(' IB ') technologies in which a switched fabric topology is
utilized to facilitate transmissions between channel adapters .
The communications resources 310 can also include NVM
Express (‘ NVMe ') technologies and NVMe over fabrics
(“ NVMeoF) technologies through which non - volatile stor
age media attached via a PCI express (PCIe ') bus may be
accessed . The communications resources 310 can also
include mechanisms for accessing storage resources 308
within the storage system 306 utilizing serial attached SCSI
(“ SAS ') , serial ATA (SATA) bus interfaces for connecting
storage resources 308 within the storage system 306 to host
bus adapters within the storage system 306 , internet small
computer systems interface (“ iSCSI ') technologies to pro
vide block - level access to storage resources 308 within the
storage system 306 , and other communications resources
that that may be useful in facilitating data communications
between components within the storage system 306 , as well
as data communications between the storage system 306 and
computing devices that are outside of the storage system

system 306 may utilize the storage resources 312 to perform
a variety of tasks including , but not limited to , supporting the
execution of software resources 314 that will be described in
greater detail below .
[0127] The storage system 306 depicted in FIG . 3B also
includes software resources 314 that , when executed by
processing resources 312 within the storage system 306 ,
may perform various tasks . The software resources 314 may
include , for example , one or more modules of computer
program instructions that when executed by processing
resources 312 within the storage system 306 are useful in
carrying out various data protection techniques to preserve
the integrity of data that is stored within the storage systems .
Readers will appreciate that such data protection techniques
may be carried out , for example , by system software execut
ing on computer hardware within the storage system , by a
cloud services provider , or in other ways . Such data protec
tion techniques can include , for example , data archiving
techniques that cause data that is no longer actively used to
be moved to a separate storage device or separate storage
system for long - term retention , data backup techniques
through which data stored in the storage system may be
copied and stored in a distinct location to avoid data loss in
the event of equipment failure or some other form of
catastrophe with the storage system , data replication tech
niques through which data stored in the storage system is
replicated to another storage system such that the data may
be accessible via multiple storage systems , data snapshotting
techniques through which the state of data within the storage
system is captured at various points in time , data and
database cloning techniques through which duplicate copies
of data and databases may be created , and other data
protection techniques . Through the use of such data protec
tion techniques , business continuity and disaster recovery
objectives may be met as a failure of the storage system may
not result in the loss of data stored in the storage system .
[0128] The software resources 314 may also include soft
ware that is useful in implementing software - defined storage
(SDS ') . In such an example , the software resources 314
may include one or more modules of computer program
instructions that , when executed , are useful in policy - based
provisioning and management of data storage that is inde
pendent of the underlying hardware . Such software
resources 314 may be useful in implementing storage vir
tualization to separate the storage hardware from the soft
ware that manages the storage hardware .
[0129] The software resources 314 may also include soft
ware that is useful in facilitating and optimizing I / O opera
tions that are directed to the storage resources 308 in the
storage system 306 . For example , the software resources 314
may include software modules that perform carry out vari
ous data reduction techniques such as , for example , data
compression , data deduplication , and others . The software
resources 314 may include software modules that intelli
gently group together 1 / 0 operations to facilitate better
usage of the underlying storage resource 308 , software
modules that perform data migration operations to migrate
from within a storage system , as well as software modules
that perform other functions . Such software resources 314
may be embodied as one or more software containers or in
many other ways .
[0130] Readers will appreciate that the various compo
nents depicted in FIG . 3B may be grouped into one or more
optimized computing packages as converged infrastructures .

306 .
[0126] The storage system 306 depicted in FIG . 3B also
includes processing resources 312 that may be useful in
useful in executing computer program instructions and per
forming other computational tasks within the storage system
306 . The processing resources 312 may include one or more
application - specific integrated circuits (“ ASICs ') that are
customized for some particular purpose as well as one or
more central processing units (“ CPUs ') . The processing
resources 312 may also include one or more digital signal
processors (‘ DSPs) , one or more field - programmable gate
arrays (“ FPGAs ') , one or more systems on a chip (“ SoCs ') ,
or other form of processing resources 312 . The storage

US 2019 / 0121673 A1 Apr . 25 , 2019
17

Such converged infrastructures may include pools of com
puters , storage and networking resources that can be shared
by multiple applications and managed in a collective manner
using policy - driven processes . Such converged infrastruc
tures may minimize compatibility issues between various
components within the storage system 306 while also reduc
ing various costs associated with the establishment and
operation of the storage system 306 . Such converged infra
structures may be implemented with a converged infrastruc
ture reference architecture , with standalone appliances , with
a software driven hyper - converged approach (e . g . , hyper
converged infrastructures) , or in other ways .
[0131] Readers will appreciate that the storage system 306
depicted in FIG . 3B may be useful for supporting various
types of software applications . For example , the storage
system 306 may be useful in supporting artificial intelli
gence (‘ AI ') applications , database applications , DevOps
projects , electronic design automation tools , event - driven
software applications , high performance computing appli
cations , simulation applications , high - speed data capture
and analysis applications , machine learning applications ,
media production applications , media serving applications ,
picture archiving and communication systems (* PACS ')
applications , software development applications , virtual
reality applications , augmented reality applications , and
many other types of applications by providing storage
resources to such applications .
[0132] The storage systems described above may operate
to support a wide variety of applications . In view of the fact
that the storage systems include compute resources , storage
resources , and a wide variety of other resources , the storage
systems may be well suited to support applications that are
resource intensive such as , for example , AI applications .
Such AI applications may enable devices to perceive their
environment and take actions that maximize their chance of
success at some goal . Examples of such AI applications can
include IBM Watson , Microsoft Oxford , Google DeepMind ,
Baidu Minwa , and others . The storage systems described
above may also be well suited to support other types of
applications that are resource intensive such as , for example ,
machine learning applications . Machine learning applica
tions may perform various types of data analysis to automate
analytical model building . Using algorithms that iteratively
learn from data , machine learning applications can enable
computers to learn without being explicitly programmed .
[0133] In addition to the resources already described , the
storage systems described above may also include graphics
processing units (" GPUs ') , occasionally referred to as visual
processing unit (“ VPUS ') . Such GPUs may be embodied as
specialized electronic circuits that rapidly manipulate and
alter memory to accelerate the creation of images in a frame
buffer intended for output to a display device . Such GPUs
may be included within any of the computing devices that
are part of the storage systems described above , including as
one of many individually scalable components of a storage
system , where other examples of individually scalable com
ponents of such storage system can include storage compo
nents , memory components , compute components (e . g . ,
CPUs , FPGAs , ASICs) , networking components , software
components , and others . In addition to GPUs , the storage
systems described above may also include neural network
processors (‘ NNPs ') for use in various aspects of neural

network processing . Such NNPs may be used in place of (or
in addition to) GPUs and may be also be independently
scalable .
10134] . As described above , the storage systems described
herein may be configured to support artificial intelligence
applications , machine learning applications , big data ana
lytics applications , and many other types of applications .
The rapid growth in these sort of applications is being driven
by three technologies : deep learning (DL) , GPU processors ,
and Big Data . Deep learning is a computing model that
makes use of massively parallel neural networks inspired by
the human brain . Instead of experts handcrafting software , a
deep learning model writes its own software by learning
from lots of examples . A GPU is a modern processor with
thousands of cores , well - suited to run algorithms that
loosely represent the parallel nature of the human brain .
[0135] Advances in deep neural networks have ignited a
new wave of algorithms and tools for data scientists to tap
into their data with artificial intelligence (AI) . With
improved algorithms , larger data sets , and various frame
works (including open - source software libraries for machine
learning across a range of tasks) , data scientists are tackling
new use cases like autonomous driving vehicles , natural
language processing and understanding , computer vision ,
machine reasoning , strong AI , and many others . Applica
tions of such techniques may include : machine and vehicular
object detection , identification and avoidance ; visual recog
nition , classification and tagging ; algorithmic financial trad
ing strategy performance management ; simultaneous local
ization and mapping ; predictive maintenance of high - value
machinery ; prevention against cyber security threats , exper
tise automation ; image recognition and classification ; ques
tion answering ; robotics ; text analytics (extraction , classifi
cation) and text generation and translation , and many others .
Applications of AI techniques has materialized in a wide
array of products include , for example , Amazon Echo ' s
speech recognition technology that allows users to talk to
their machines , Google TranslateTM which allows for
machine - based language translation , Spotify ' s Discover
Weekly that provides recommendations on new songs and
artists that a user may like based on the user ' s usage and
traffic analysis , Quill ' s text generation offering that takes
structured data and turns it into narrative stories , Chatbots
that provide real - time , contextually specific answers to ques
tions in a dialog format , and many others . Furthermore , AI
may impact a wide variety of industries and sectors . For
example , Al solutions may be used in healthcare to take
clinical notes , patient files , research data , and other inputs to
generate potential treatment options for doctors to explore .
Likewise , Al solutions may be used by retailers to person
alize consumer recommendations based on a person ' s digital
footprint of behaviors , profile data , or other data .
[0136] Data is the heart of modern AI and deep learning
algorithms . Before training can begin , one problem that
must be addressed revolves around collecting the labeled
data that is crucial for training an accurate Al model . A full
scale AI deployment may be required to continuously col
lect , clean , transform , label , and store large amounts of data .
Adding additional high quality data points directly translates
to more accurate models and better insights . Data samples
may undergo a series of processing steps including , but not
limited to : 1) ingesting the data from an external source into
the training system and storing the data in raw form , 2)
cleaning and transforming the data in a format convenient

US 2019 / 0121673 A1 Apr . 25 , 2019

for training , including linking data samples to the appropri
ate label , 3) exploring parameters and models , quickly
testing with a smaller dataset , and iterating to converge on
the most promising models to push into the production
cluster , 4) executing training phases to select random
batches of input data , including both new and older samples ,
and feeding those into production GPU servers for compu
tation to update model parameters , and 5) evaluating includ
ing using a holdback portion of the data not used in training
in order to evaluate model accuracy on the holdout data . This
lifecycle may apply for any type of parallelized machine
learning , not just neural networks or deep learning . For
example , standard machine learning frameworks may rely
on CPUs instead of GPUs but the data ingest and training
workflows may be the same . Readers will appreciate that a
single shared storage data hub creates a coordination point
throughout the lifecycle without the need for extra data
copies among the ingest , preprocessing , and training stages .
Rarely is the ingested data used for only one purpose , and
shared storage gives the flexibility to train multiple different
models or apply traditional analytics to the data .
[0137] Readers will appreciate that each stage in the AI
data pipeline may have varying requirements from the data
hub (e . g . , the storage system or collection of storage sys
tems) . Scale - out storage systems must deliver uncompro
mising performance for all manner of access types and
patterns — from small , metadata - heavy to large files , from
random to sequential access patterns , and from low to high
concurrency . The storage systems described above may
serve as an ideal Al data hub as the systems may service
unstructured workloads . In the first stage , data is ideally
ingested and stored on to the same data hub that following
stages will use , in order to avoid excess data copying . The
next two steps can be done on a standard compute server that
optionally includes a GPU , and then in the fourth and last
stage , full training production jobs are run on powerful
GPU - accelerated servers . Often , there is a production pipe
line alongside an experimental pipeline operating on the
same dataset . Further , the GPU - accelerated servers can be
used independently for different models or joined together to
train on one larger model , even spanning multiple systems
for distributed training . If the shared storage tier is slow , then
data must be copied to local storage for each phase , resulting
in wasted time staging data onto different servers . The ideal
data hub for the AI training pipeline delivers performance
similar to data stored locally on the server node while also
having the simplicity and performance to enable all pipeline
stages to operate concurrently .
[0138] A data scientist works to improve the usefulness of
the trained model through a wide variety of approaches :
more data , better data , smarter training , and deeper models .
In many cases , there will be teams of data scientists sharing
the same datasets and working in parallel to produce new
and improved training models . Often , there is a team of data
scientists working within these phases concurrently on the
same shared datasets . Multiple , concurrent workloads of
data processing , experimentation , and full - scale training
layer the demands of multiple access patterns on the storage
tier . In other words , storage cannot just satisfy large file
reads , but must contend with a mix of large and small file
reads and writes . Finally , with multiple data scientists
exploring datasets and models , it may be critical to store data
in its native format to provide flexibility for each user to
transform , clean , and use the data in a unique way . The

storage systems described above may provide a natural
shared storage home for the dataset , with data protection
redundancy (e . g . , by using RAID6) and the performance
necessary to be a common access point for multiple devel
opers and multiple experiments . Using the storage systems
described above may avoid the need to carefully copy
subsets of the data for local work , saving both engineering
and GPU - accelerated servers use time . These copies become
a constant and growing tax as the raw data set and desired
transformations constantly update and change .
(01391 . Readers will appreciate that a fundamental reason
why deep learning has seen a surge in success is the
continued improvement of models with larger data set sizes .
In contrast , classical machine learning algorithms , like logis
tic regression , stop improving in accuracy at smaller data set
sizes . As such , the separation of compute resources and
storage resources may also allow independent scaling of
each tier , avoiding many of the complexities inherent in
managing both together . As the data set size grows or new
data sets are considered , a scale out storage system must be
able to expand easily . Similarly , if more concurrent training
is required , additional GPUs or other compute resources can
be added without concern for their internal storage . Further
more , the storage systems described above may make build
ing , operating , and growing an AI system easier due to the
random read bandwidth provided by the storage systems , the
ability to of the storage systems to randomly read small files
(50 KB) high rates (meaning that no extra effort is required
to aggregate individual data points to make larger , storage
friendly files) , the ability of the storage systems to scale
capacity and performance as either the dataset grows or the
throughput requirements grow , the ability of the storage
systems to support files or objects , the ability of the storage
systems to tune performance for large or small files (i . e . , no
need for the user to provision filesystems) , the ability of the
storage systems to support non - disruptive upgrades of hard
ware and software even during production model training ,
and for many other reasons .
[0140] Small file performance of the storage tier may be
critical as many types of inputs , including text , audio , or
images will be natively stored as small files . If the storage
tier does not handle small files well , an extra step will be
required to pre - process and group samples into larger files .
Storage , built on top of spinning disks , that relies on SSD as
a caching tier , may fall short of the performance needed .
Because training with random input batches results in more
accurate models , the entire data set must be accessible with
full performance . SSD caches only provide high perfor
mance for a small subset of the data and will be ineffective
at hiding the latency of spinning drives .
[0141] Although the preceding paragraphs discuss deep
learning applications , readers will appreciate that the storage
systems described herein may also be part of a distributed
deep learning (?DDL ') platform to support the execution of
DDL algorithms . Distributed deep learning may can be used
to significantly accelerate deep learning with distributed
computing on GPUs (or other form of accelerator or com
puter program instruction executor) , such that parallelism
can be achieved . In addition , the output of training machine
learning and deep learning models , such as a fully trained
machine learning model , may be used for a variety of
purposes and in conjunction with other tools . For example ,
trained machine learning models may be used in conjunction
with tools like Core ML to integrate a broad variety of

US 2019 / 0121673 A1 Apr . 25 , 2019
19

machine learning model types into an application . In fact ,
trained models may be run through Core ML converter tools
and inserted into a custom application that can be deployed
on compatible devices . The storage systems described above
may also be paired with other technologies such as Tensor
Flow , an open - source software library for dataflow program
ming across a range of tasks that may be used for machine
learning applications such as neural networks , to facilitate
the development of such machine learning models , applica
tions , and so on .
[0142] The storage systems described above may also be
used in a neuromorphic computing environment . Neuromor
phic computing is a form of computing that mimics brain
cells . To support neuromorphic computing , an architecture
of interconnected “ neurons ” replace traditional computing
models with low - powered signals that go directly between
neurons for more efficient computation . Neuromorphic com
puting may make use of very - large - scale integration (VLSI)
systems containing electronic analog circuits to mimic
neuro - biological architectures present in the nervous system ,
as well as analog , digital , mixed - mode analog / digital VLSI ,
and software systems that implement models of neural
systems for perception , motor control , or multisensory inte
gration .
[0143] Readers will appreciate that the storage systems
described above may be configured to support the storage of
(among of types of data) blockchains . Such blockchains may
be embodied as a continuously growing list of records ,
called blocks , which are linked and secured using cryptog
raphy . Each block in a blockchain may contain a hash
pointer as a link to a previous block , a timestamp , transac
tion data , and so on . Blockchains may be designed to be
resistant to modification of the data and can serve as an open ,
distributed ledger that can record transactions between two
parties efficiently and in a verifiable and permanent way .
This makes blockchains potentially suitable for the record
ing of events , medical records , and other records manage
ment activities , such as identity management , transaction
processing , and others . In addition to supporting the storage
and use of blockchain technologies , the storage systems
described above may also support the storage and use of
derivative items such as , for example , open source block
chains and related tools that are part of the IBMTM Hyper
ledger project , permissioned blockchains in which a certain
number of trusted parties are allowed to access the block
chain , blockchain products that enable developers to build
their own distributed ledger projects , and others . Readers
will appreciate that blockchain technologies may impact a
wide variety of industries and sectors . For example , block
chain technologies may be used in real estate transactions as
blockchain based contracts whose use can eliminate the need
for 3rd parties and enable self - executing actions when
conditions are met . Likewise , universal health records can
be created by aggregating and placing a person ' s health
history onto a blockchain ledger for any healthcare provider ,
or permissioned health care providers , to access and update .
[0144] Readers will further appreciate that in some
embodiments , the storage systems described above may be
paired with other resources to support the applications
described above . For example , one infrastructure could
include primary compute in the form of servers and work
stations which specialize in using General - purpose comput
ing on graphics processing units (GPGPU ') to accelerate
deep learning applications that are interconnected into a

computation engine to train parameters for deep neural
networks . Each system may have Ethernet external connec
tivity , InfiniBand external connectivity , some other form of
external connectivity , or some combination thereof . In such
an example , the GPUs can be grouped for a single large
training or used independently to train multiple models . The
infrastructure could also include a storage system such as
those described above to provide , for example , a scale - out
all - flash file or object store through which data can be
accessed via high - performance protocols such as NFS , S3 ,
and so on . The infrastructure can also include , for example ,
redundant top - of - rack Ethernet switches connected to stor
age and compute via ports in MLAG port channels for
redundancy . The infrastructure could also include additional
compute in the form of whitebox servers , optionally with
GPUs , for data ingestion , pre - processing , and model debug
ging . Readers will appreciate that additional infrastructures
are also be possible .
[0145] Readers will appreciate that the systems described
above may be better suited for the applications described
above relative to other systems that may include , for
example , a distributed direct - attached storage (DDAS) solu
tion deployed in server nodes . Such DDAS solutions may be
built for handling large , less sequential accesses but may be
less able to handle small , random accesses . Readers will
further appreciate that the storage systems described above
may be utilized to provide a platform for the applications
described above that is preferable to the utilization of
cloud - based resources as the storage systems may be
included in an on - site or in - house infrastructure that is more
secure , more locally and internally managed , more robust in
feature sets and performance , or otherwise preferable to the
utilization of cloud - based resources as part of a platform to
support the applications described above . For example ,
services built on platforms such as IBM ' s Watson may
require a business enterprise to distribute individual user
information , such as financial transaction information or
identifiable patient records , to other institutions . As such ,
cloud - based offerings of AI as a service may be less desir
able than internally managed and offered AI as a service that
is supported by storage systems such as the storage systems
described above , for a wide array of technical reasons as
well as for various business reasons .
[0146] Readers will appreciate that the storage systems
described above , either alone or in coordination with other
computing machinery may be configured to support other AI
related tools . For example , the storage systems may make
use of tools like ONXX or other open neural network
exchange formats that make it easier to transfer models
written in different AI frameworks . Likewise , the storage
systems may be configured to support tools like Amazon ' s
Gluon that allow developers to prototype , build , and train
deep learning models . In fact , the storage systems described
above may be part of a larger platform , such as IBMTM
Cloud Private for Data , that includes integrated data science ,
data engineering and application building services . Such
platforms may seamlessly collect , organize , secure , and
analyze data across an enterprise , as well as simplify hybrid
data management , unified data governance and integration ,
data science and business analytics with a single solution .
[0147] Readers will further appreciate that the storage
systems described above may also be deployed as an edge
solution . Such an edge solution may be in place to optimize
cloud computing systems by performing data processing at

US 2019 / 0121673 A1 Apr . 25 , 2019
20

the edge of the network , near the source of the data . Edge
computing can push applications , data and computing power
(i . e . , services) away from centralized points to the logical
extremes of a network . Through the use of edge solutions
such as the storage systems described above , computational
tasks may be performed using the compute resources pro
vided by such storage systems , data may be storage using the
storage resources of the storage system , and cloud - based
services may be accessed through the use of various
resources of the storage system (including networking
resources) . By performing computational tasks on the edge
solution , storing data on the edge solution , and generally
making use of the edge solution , the consumption of expen
sive cloud - based resources may be avoided and , in fact ,
performance improvements may be experienced relative to
a heavier reliance on cloud - based resources .
[0148] While many tasks may benefit from the utilization
of an edge solution , some particular uses may be especially
suited for deployment in such an environment . For example ,
devices like drones , autonomous cars , robots , and others
may require extremely rapid processing so fast , in fact ,
that sending data up to a cloud environment and back to
receive data processing support may simply be too slow .
Likewise , machines like locomotives and gas turbines that
generate large amounts of information through the use of a
wide array of data - generating sensors may benefit from the
rapid data processing capabilities of an edge solution . As an
additional example , some IoT devices such as connected
video cameras may not be well - suited for the utilization of
cloud - based resources as it may be impractical (not only
from a privacy perspective , security perspective , or a finan
cial perspective) to send the data to the cloud simply because
of the pure volume of data that is involved . As such , many
tasks that really on data processing , storage , or communi
cations may be better suited by platforms that include edge
solutions such as the storage systems described above .
[0149] Consider a specific example of inventory manage
ment in a warehouse , distribution center , or similar location .
A large inventory , warehousing , shipping , order - fulfillment ,
manufacturing or other operation has a large amount of
inventory on inventory shelves , and high resolution digital
cameras that produce a firehose of large data . All of this data
may be taken into an image processing system , which may
reduce the amount of data to a firehose of small data . All of
the small data may be stored on - premises in storage . The
on - premises storage , at the edge of the facility , may be
coupled to the cloud , for external reports , real - time control
and cloud storage . Inventory management may be per
formed with the results of the image processing , so that
inventory can be tracked on the shelves and restocked ,
moved , shipped , modified with new products , or discontin
ued / obsolescent products deleted , etc . The above scenario is
a prime candidate for an embodiment of the configurable
processing and storage systems described above . A combi
nation of compute - only blades and offload blades suited for
the image processing , perhaps with deep learning on
offload - FPGA or offload - custom blade (s) could take in the
firehose of large data from all of the digital cameras , and
produce the firehose of small data . All of the small data
could then be stored by storage nodes , operating with
storage units in whichever combination of types of storage
blades best handles the data flow . This is an example of
storage and function acceleration and integration . Depend
ing on external communication needs with the cloud , and

external processing in the cloud , and depending on reliabil
ity of network connections and cloud resources , the system
could be sized for storage and compute management with
bursty workloads and variable conductivity reliability . Also ,
depending on other inventory management aspects , the
system could be configured for scheduling and resource
management in a hybrid edge / cloud environment .
[0150] The storage systems described above may alone , or
in combination with other computing resources , serves as a
network edge platform that combines compute resources ,
storage resources , networking resources , cloud technologies
and network virtualization technologies , and so on . As part
of the network , the edge may take on characteristics similar
to other network facilities , from the customer premise and
backhaul aggregation facilities to Points of Presence (PoPs)
and regional data centers . Readers will appreciate that
network workloads , such as Virtual Network Functions
(VNFs) and others , will reside on the network edge plat
form . Enabled by a combination of containers and virtual
machines , the network edge platform may rely on control
lers and schedulers that are no longer geographically co
located with the data processing resources . The functions , as
microservices , may split into control planes , user and data
planes , or even state machines , allowing for independent
optimization and scaling techniques to be applied . Such user
and data planes may be enabled through increased accelera
tors , both those residing in server platforms , such as FPGAs
and Smart NICs , and through SDN - enabled merchant silicon
and programmable ASICs .
[0151] The storage systems described above may also be
optimized for use in big data analytics . Big data analytics
may be generally described as the process of examining
large and varied data sets to uncover hidden patterns ,
unknown correlations , market trends , customer preferences
and other useful information that can help organizations
make more - informed business decisions . Big data analytics
applications enable data scientists , predictive modelers , stat
isticians and other analytics professionals to analyze grow
ing volumes of structured transaction data , plus other forms
of data that are often left untapped by conventional business
intelligence (BI) and analytics programs . As part of that
process , semi - structured and unstructured data such as , for
example , internet clickstream data , web server logs , social
media content , text from customer emails and survey
responses , mobile - phone call - detail records , IoT sensor data ,
and other data may be converted to a structured form . Big
data analytics is a form of advanced analytics , which
involves complex applications with elements such as pre
dictive models , statistical algorithms and what - if analyses
powered by high - performance analytics systems .
[0152] The storage systems described above may also
support (including implementing as a system interface)
applications that perform tasks in response to human speech .
For example , the storage systems may support the execution
intelligent personal assistant applications such as , for
example , Amazon ' s Alexa , Apple Siri , Google Voice , Sam
sung Bixby , Microsoft Cortana , and others . While the
examples described in the previous sentence make use of
voice as input , the storage systems described above may also
support chatbots , talkbots , chatterbots , or artificial conver
sational entities or other applications that are configured to
conduct a conversation via auditory or textual methods .
Likewise , the storage system may actually execute such an
application to enable a user such as a system administrator

US 2019 / 0121673 A1 Apr . 25 , 2019
21

to interact with the storage system via speech . Such appli -
cations are generally capable of voice interaction , music
playback , making to - do lists , setting alarms , streaming pod
casts , playing audiobooks , and providing weather , traffic ,
and other real time information , such as news , although in
embodiments in accordance with the present disclosure ,
such applications may be utilized as interfaces to various
system management operations .
[0153] The storage systems described above may also
implement Al platforms for delivering on the vision of
self - driving storage . Such Al platforms may be configured to
deliver global predictive intelligence by collecting and ana
lyzing large amounts of storage system telemetry data points
to enable effortless management , analytics and support . In
fact , such storage systems may be capable of predicting both
capacity and performance , as well as generating intelligent
advice on workload deployment , interaction and optimiza
tion . Such Al platforms may be configured to scan all
incoming storage system telemetry data against a library of
issue fingerprints to predict and resolve incidents in real
time , before they impact customer environments , and cap
tures hundreds of variables related to performance that are
used to forecast performance load .
[0154] . The storage systems described above may support
the serialized or simultaneous execution artificial intelli
gence applications , machine learning applications , data ana
lytics applications , data transformations , and other tasks that
collectively may form an Al ladder . Such an AI ladder may
effectively be formed by combining such elements to form
a complete data science pipeline , where exist dependencies
between elements of the AI ladder . For example , AI may
require that some form of machine learning has taken place ,
machine learning may require that some form of analytics
has taken place , analytics may require that some form of
data and information architecting has taken place , and so on .
As such , each element may be viewed as a rung in an AI
ladder that collectively can form a complete and sophisti
cated Al solution .
[0155] The storage systems described above may also ,
either alone or in combination with other computing envi
ronments , be used to deliver an AI everywhere experience
where AI permeates wide and expansive aspects of business
and life . For example , AI may play an important role in the
delivery of deep learning solutions , deep reinforcement
learning solutions , artificial general intelligence solutions ,
autonomous vehicles , cognitive computing solutions , com
mercial UAVs or drones , conversational user interfaces ,
enterprise taxonomies , ontology management solutions ,
machine learning solutions , smart dust , smart robots , smart
workplaces , and many others . The storage systems described
above may also , either alone or in combination with other
computing environments , be used to deliver a wide range of
transparently immersive experiences where technology can
introduce transparency between people , businesses , and
things . Such transparently immersive experiences may be
delivered as augmented reality technologies , connected
homes , virtual reality technologies , brain - computer inter
faces , human augmentation technologies , nanotube electron
ics , volumetric displays , 4D printing technologies , or others .
The storage systems described above may also , either alone
or in combination with other computing environments , be
used to support a wide variety of digital platforms . Such
digital platforms can include , for example , 5G wireless
systems and platforms , digital twin platforms , edge com

puting platforms , IoT platforms , quantum computing plat
forms , serverless PaaS , software - defined security , neuro
morphic computing platforms , and so on .
[0156] The storage systems described above may also be
part of a multi - cloud environment in which multiple cloud
computing and storage services are deployed in a single
heterogeneous architecture . In order to facilitate the opera
tion of such a multi - cloud environment , DevOps tools may
be deployed to enable orchestration across clouds . Likewise ,
continuous development and continuous integration tools
may be deployed to standardize processes around continu
ous integration and delivery , new feature rollout and provi
sioning cloud workloads . By standardizing these processes ,
a multi - cloud strategy may be implemented that enables the
utilization of the best provider for each workload . Further
more , application monitoring and visibility tools may be
deployed to move application workloads around different
clouds , identify performance issues , and perform other
tasks . In addition , security and compliance tools may be
deployed for to ensure compliance with security require
ments , government regulations , and so on . Such a multi
cloud environment may also include tools for application
delivery and smart workload management to ensure efficient
application delivery and help direct workloads across the
distributed and heterogeneous infrastructure , as well as tools
that ease the deployment and maintenance of packaged and
custom applications in the cloud and enable portability
amongst clouds . The multi - cloud environment may similarly
include tools for data portability .
[0157] The storage systems described above may be used
as a part of a platform to enable the use of crypto - anchors
that may be used to authenticate a product ' s origins and
contents to ensure that it matches a blockchain record
associated with the product . Such crypto - anchors may take
many forms including , for example , as edible ink , as a
mobile sensor , as a microchip , and others . Similarly , as part
of a suite of tools to secure data stored on the storage system ,
the storage systems described above may implement various
encryption technologies and schemes , including lattice cryp
tography . Lattice cryptography can involve constructions of
cryptographic primitives that involve lattices , either in the
construction itself or in the security proof . Unlike public - key
schemes such as the RSA , Diffie - Hellman or Elliptic - Curve
cryptosystems , which are easily attacked by a quantum
computer , some lattice - based constructions appear to be
resistant to attack by both classical and quantum computers .
[0158] A quantum computer is a device that performs
quantum computing . Quantum computing is computing
using quantum - mechanical phenomena , such as superposi
tion and entanglement . Quantum computers differ from
traditional computers that are based on transistors , as such
traditional computers require that data be encoded into
binary digits (bits) , each of which is always in one of two
definite states (0 or 1) . In contrast to traditional computers ,
quantum computers use quantum bits , which can be in
superpositions of states . A quantum computer maintains a
sequence of qubits , where a single qubit can represent a one ,
a zero , or any quantum superposition of those two qubit
states . A pair of qubits can be in any quantum superposition
of 4 states , and three qubits in any superposition of 8 states .
A quantum computer with n qubits can generally be in an
arbitrary superposition of up to 2în different states simulta
neously , whereas a traditional computer can only be in one

US 2019 / 0121673 A1 Apr . 25 , 2019

of these states at any one time . A quantum Turing machine
is a theoretical model of such a computer .
[0159] For further explanation , FIG . 4 sets forth a flow
chart illustrating an example method for executing a big data
analytics pipeline in a storage system that includes compute
resources and shared storage resources according to some
embodiments of the present disclosure . Although depicted in
less detail , the storage system (406) depicted in FIG . 4 may
be similar to the storage systems described above with
reference to FIGS . 1A - 1D , FIGS . 2A - 2G , FIGS . 3A - 3B , or
any combination thereof . In fact , the storage system depicted
in FIG . 4 may include the same , fewer , additional compo
nents as the storage systems described above .
[0160] The storage system (406) depicted in FIG . 4 is
illustrated as including compute resources in the form of
processing resources (416 , 418 , 420) . The processing
resources (416 , 418 , 420) may be embodied , for example , as
physical resources such as one or more computer processors
or as virtualized resources such as a virtual machine , con
tainer , or some other virtualized component that can be used
to execute a software application . The storage system (406)
depicted in FIG . 4 is also illustrated as including shared
storage resources in the form of storage devices (430 , 432 ,
434) . The storage devices (430 , 432 , 434) may be embodied ,
for example , as one or more SSDs , HDDs , or other storage
device .
[0161] The example method depicted in FIG . 4 includes
receiving (408) , from a data producer (402) , a dataset (404) .
The data producer (402) depicted in FIG . 4 may be embod
ied , for example , as a simulation of a storage system that is
executed in order to test hardware and software components
within the storage system that is being tested . Consider an
example in which software for a storage system is developed
and tested utilizing a continuous integration (“ CI ') model in
which all developer working copies of system software are
frequently merged to a shared mainline . In such an example ,
such software may be tested by running a simulation of the
storage system and running automated tests against the
simulated storage system , thereby generating a very large
dataset (404) that consisted of log files , error logs , or some
other form of data that describes the operational state of the
simulated storage system .
[0162] In the example method depicted in FIG . 4 , receiv
ing (408) the dataset (404) from the data producer (402) may
be carried out , for example , by receiving the dataset as it is
generated by the data producer (402) , by periodically polling
a location that the data producer (402) writes the dataset to ,
or in other ways . In fact , although the data producer (402) is
depicted as residing outside of the storage system (406) in
the embodiment depicted in FIG . 4 , in other embodiments ,
the data producer (402) may actually be executing on the
storage system (406) itself and may even write the dataset
directly to storage resources within the storage system (406) .
[0163] The example method depicted in FIG . 4 also
includes storing (410) , within the storage system (406) , the
dataset (404) . In the example method depicted in FIG . 4 , the
dataset (404) is depicted as being stored within the storage
system (406) in multiple slices (424 , 426 , 428) . In such an
example , a first slice (424) may represent a first portion of
the dataset , a second slice (426) may represent a second
portion of the dataset , a third slice (428) may represent a
third portion of the dataset , where RAID or RAID - like
techniques are used to provide for data redundancy in the
event that one or more of the storage devices becomes

unavailable . As such , parity data may also be maintained on
the storage system (406) , such that the dataset slices (424 ,
426 , 428) and any parity data form a RAID stripe . Readers
will appreciate that the dataset (404) may be stored in other
ways and that the dataset (404) may be stored (410) within
the storage system (406) by the data producer (402) itself
accessing the storage system (406) , by system software and
system hardware on the storage system causing the dataset
(404) (or the slices thereof) to be written to storage devices
(430 , 432 , 434) in the storage system (406) , or in some other
way .
[0164] The example method depicted in FIG . 4 also
includes allocating (412) processing resources (416) to an
analytics application (422) . The analytics application (422)
depicted in FIG . 4 may be embodied , for example , as an
application that examines datasets in order to draw conclu
sions about the information contained in the datasets , includ
ing drawing conclusions about the data producer (402) . The
analytics application (422) may include artificial intelli
gence or machine learning components , components that
transform unstructured data into structured or semi - struc
tured data , big data components , and many others .
[0165] In the example method depicted in FIG . 4 , allocat
ing (412) processing resources (416) to an analytics appli
cation (422) may be carried out , for example , by allocating
physical resources within the storage system (406) for use
by the analytics application (422) . For example , one or more
computer processors may be allocated for use by the ana
lytics application (422) such that the analytics application
(422) is executing on the one or more computer processors .
Alternatively , allocating (412) processing resources (416) to
an analytics application (422) may be carried out by allo
cating virtualized physical resources within the storage
system (406) for use by the analytics application (422) . For
example , one or more virtual machines may be allocated for
use by the analytics application (422) such that the analytics
application (422) is executing on the one or more virtual
machines . Likewise , allocating (412) processing resources
(416) to an analytics application (422) may be carried out
through the use of one or more containers , such that the
analytics application (422) is deployed and executed within
the one or more containers .
[0166] In the example method depicted in FIG . 4 , execut
ing (414) the analytics application (422) on the processing
resources (416) includes ingesting the dataset (404) from the
storage system (406) . In such an example , the analytics
application (422) can ingest the dataset (404) from the
storage system (406) by reading the dataset (404) from the
storage system (406) after it has been stored within the
storage system (406) . Readers will appreciate that , because
the dataset (404) is stored within shared storage , the ana
lytics application (422) does not need to retain a copy of the
dataset in storage (e . g . , direct - attached storage) that is only
accessible by the processing resources that are being used to
execute the analytics application (422) .
10167] . For further explanation , FIG . 5 sets forth a flow
chart illustrating an additional example method for execut
ing a big data analytics pipeline in a storage system that
includes compute resources and shared storage resources
according to some embodiments of the present disclosure .
The example method depicted in FIG . 5 is similar to the
example method depicted in FIG . 4 , as the example method
depicted in FIG . 5 also includes receiving (408) a dataset
(404) from a data producer (402) , storing (410) the dataset

US 2019 / 0121673 A1 Apr . 25 , 2019
23

(404) within the storage system (406) , allocating (412)
processing resources (416) to an analytics application (422) ,
and executing (414) the analytics application (422) on the
processing resources (416) , including ingesting the dataset
(404) from the storage system (406) .
[0168] The example method depicted in FIG . 5 also
includes allocating (502) additional processing resources
(418) to a real - time analytics application (506) . The real
time analytics application (506) may be embodied , for
example , as an application that examines datasets in order to
draw conclusions about the information contained in the
datasets , including drawing conclusions about the data pro
ducer (402) . Much like the analytics application (422) , the
real - time analytics application (506) may also include arti
ficial intelligence or machine learning components , compo
nents that transform unstructured data into structured or
semi - structured data , big data components , and many others .
Unlike the analytics application (422) , however , the real
time analytics application (506) examines datasets as they
are generated , rather than analyzing datasets that are more
historical in nature .
[0169] In the example method depicted in FIG . 5 , allocat
ing (502) additional processing resources (418) to the real
time analytics application (506) may be carried out , for
example , by allocating physical resources within the storage
system (406) for use by the real - time analytics application
(506) . For example , one or more computer processors may
be allocated for use by the real - time analytics application
(506) such that the real - time analytics application (506) is
executing on the one or more computer processors . Alter
natively , allocating (502) additional processing resources
(418) to the real - time analytics application (506) may be
carried out by allocating virtualized physical resources
within the storage system (406) for use by the real - time
analytics application (506) . For example , one or more virtual
machines may be allocated for use by the real - time analytics
application (506) such that the real - time analytics applica
tion (506) is executing on the one or more virtual machines .
Likewise , allocating (502) additional processing resources
(418) to the real - time analytics application (506) may be
carried out through the use of one or more containers , such
that the real - time analytics application (506) is deployed and
executed within the one or more containers .
[0170] In the example method depicted in FIG . 5 , execut
ing (504) the real - time analytics application (506) on the
additional processing resources can include ingesting the
dataset (404) prior to storing (410) the dataset (404) within
the storage system (406) . In such an example , the real - time
analytics application (506) may , in effect , be part of the data
path as the dataset (404) is fed to the real - time analytics
application (506) upon receipt by the storage system . Read
ers will appreciate that in other embodiments , the real - time
nature of the real - time analytics application (506) may be
enforced in other ways . For example , the real - time analytics
application (506) may only consume the portions of the
dataset (404) that have been produced within some threshold
(e . g . , the real - time analytics application (506) may only
consume portions of the dataset (404) that have been pro
duced within the last 30 minutes) while the analytics appli
cation (422) consumes all other portions of the dataset (404) .
Readers will appreciate that , because the dataset (404) is
stored within shared storage , the analytics application (422)
and the real - time analytics application (506) do not need to
retain copies of the dataset in storage (e . g . , direct - attached

storage) that is only accessible by the processing resources
that are being used to execute the analytics application (422)
or the real - time analytics application (506) . In fact , the
analytics application (422) and the real - time analytics appli
cation (506) may be reading their respective portions of the
dataset (404) from a single copy of the dataset (404) that is
stored within the storage system (406) .
0171] For further explanation , FIG . 6 sets forth a flow
chart illustrating an additional example method for execut
ing a big data analytics pipeline in a storage system that
includes compute resources and shared storage resources
according to some embodiments of the present disclosure .
The example method depicted in FIG . 6 is similar to the
example method depicted in FIG . 4 , as the example method
depicted in FIG . 6 also includes receiving (408) a dataset
(404) from a data producer (402) , storing (410) the dataset
(404) within the storage system (406) , allocating (412)
processing resources (416) to an analytics application (422) ,
and executing (414) the analytics application (422) on the
processing resources (416) , including ingesting the dataset
(404) from the storage system (406) .
[0172] In the example method depicted in FIG . 6 , the
dataset (404) includes log files (602) describing one or more
execution states of a computing system . In the example
depicted in FIG . 6 , the computing system whose execution
states are described in the log files (602) may be embodied ,
for example , as a storage system that is being tested as a part
of a software development and testing process . In such an
example , the log files (602) may include information
describing how the storage system is operating in response
to a test suite being executed on the storage system .
10173] In the example method depicted in FIG . 6 , execut
ing (414) the analytics application (422) on the processing
resources (416) can include evaluating (604) the log files
(602) to identify one or more execution patterns associated
with the computing system . Continuing with the example
described above in which the computing system whose
execution states are described in the log files (602) is
embodied as a storage system that is being tested as a part
of a software development and testing process , the log files
(602) may include information such as the amount of time
that each read or write took to complete , information that
indicates the number of IOPS that were being serviced , and
so on . In such an example , evaluating (604) the log files
(602) to identify one or more execution patterns associated
with the computing system may include examining the log
files (602) to determine the average amount of time that each
read or write took to complete and whether the average
amount of time that each read or write took to complete was
acceptable , examining the log files (602) to determine
whether the average amount of time that each read or write
took to complete was trending up or down , examining the
log files (602) to determine whether the average amount of
time that each read or write took to complete was acceptable
at varying levels of load , and so on . In fact , the one or more
execution patterns associated with the computing system can
focus on a wide range of metrics and can be used to examine
many aspects of system health , system operation , and so on .
101741 . In the example method depicted in FIG . 6 , evalu
ating (604) the log files (602) to identify one or more
execution patterns associated with the computing system can
include comparing (606) fingerprints associated with known
execution patterns to information contained in the log files
(602) . In such an example , the fingerprints that are associ

US 2019 / 0121673 A1 Apr . 25 , 2019
24

ated with known execution patterns may include information
such as , for example , ranges for one or more metrics that are
associated with some particular known execution pattern , a
pattern of alerts that are associated with some particular
known execution pattern , and so on . For example , a par
ticular sequence of alerts may have been identified as being
associated with a computing system that is about to fail , and
as such , a fingerprint may exist that includes the particular
sequence of alerts , such that the log files (602) may be
examined to determine whether the particular sequence of
alerts contained in the fingerprint are also found in the log
files (602) , thereby indicating that the system under test may
be about to fail . In the example method depicted in FIG . 6 ,
the fingerprints associated with known execution patterns
may include multi - line fingerprints , where multiple lines of
a log file are examined to determine whether the log files
contain a particular fingerprint . Likewise , fingerprints can
include sequences and combinations of events such that a
match is identified only if a sequence or combination of
events is identified in the log files (602) .
[0175] For further explanation , FIG . 7 sets forth a flow
chart illustrating an additional example method for execut
ing a big data analytics pipeline in a storage system that
includes compute resources and shared storage resources
according to some embodiments of the present disclosure .
The example method depicted in FIG . 7 is similar to the
example method depicted in FIG . 4 , as the example method
depicted in FIG . 7 also includes receiving (408) a dataset
(404) from a data producer (402) , storing (410) the dataset
(404) within the storage system (406) , allocating (412)
processing resources (416) to an analytics application (422) ,
and executing (414) the analytics application (422) on the
processing resources (416) , including ingesting the dataset
(404) from the storage system (406) .
[0176] In the example method depicted in FIG . 7 , storing
(410) the dataset (404) within the storage system (406) can
include organizing (708) the dataset into an indexed direc
tory structure . In such an example , the indexed directory
structure may be created by storing data in such a way so as
to facilitate fast and accurate searching of the directory
structure . In fact , large datasets such as the log files that are
generated during testing may be generated with names that
include things like a timestamp , an identification of the
cluster that generated the log file , and so on and organized
in the directory structure according to some indexing
scheme . As such , the indexed file system may essentially be
used as a database that can be quickly searched , but without
the limitations of a database that causes databases to perform
poorly on very , very large datasets .
(0177] In the example method depicted in FIG . 7 , receiv
ing (408) a dataset (404) from a data producer (402) can
include receiving (702) an unstructured dataset . In the
example method depicted in FIG . 7 , the unstructured dataset
may include unstructured data that either does not have a
pre - defined data model or is not organized in a pre - defined
manner . Such unstructured information , as is often contained
in log files , is typically text - heavy for ease of understanding
by a human (e . g . , a system administrator) that is tasked with
reviewing the log files . Unstructured data , however , fre
quently has irregularities and ambiguities that make it dif
ficult to understand using traditional programs as compared
to structured data such as data stored in fielded form in
databases or annotated in documents .

[0178] The example method depicted in FIG . 7 also
includes converting (704) the unstructured dataset into a
structured dataset . In the example method depicted in FIG .
7 , a structured dataset includes structured (or semi - struc
tured) data where data can reside in a fixed field within a
record or file . In such an example , the structured dataset can
include information with a high degree of organization , such
that inclusion in a relational database (or similar data
repository) is seamless and readily searchable by simple ,
straightforward search engine algorithms or other search
operations .
[0179] In the example method depicted in FIG . 7 , con
verting (704) the unstructured dataset into a structured
dataset may be carried out , for example , through the use of
techniques such as data mining , natural language processing
(NLP) , and text analytics to find patterns in , or otherwise
interpret , the unstructured data . Techniques for structuring
text can involve tagging unstructured data with metadata . In
such embodiments , software that creates machine - process
able structure can utilize the linguistic , auditory , and visual
structure that exist in various forms of human communica
tion and algorithms can infer this inherent structure from
text , for instance , by examining word morphology , sentence
syntax , and so on . In such an example , unstructured infor
mation can be enriched and tagged to address ambiguities
and relevancy - based techniques then used to facilitate search
and discovery . In the example method depicted in FIG . 7 ,
storing (410) the dataset (404) within the storage system
(406) can include storing (706) the structured dataset within
the storage system .
[0180] For further explanation , FIG . 8A sets forth a dia
gram illustrating an example computer architecture for
implementing an artificial intelligence and machine learning
infrastructure (800) (also referred to herein as an “ artificial
infrastructure ') that is configured to fit within a single
chassis (not depicted) according to some embodiments of
the present disclosure . While in this example , the commu
nication fabric includes a set of network switches (803) for
interconnecting a network appliance (800A) with the one or
more GPU system (s) (801) , and for the artificial intelligence
and machine learning infrastructure (800) to communicate
with one or more computing devices over one or more
networks , in other implementations , the communication
fabric may be architected to define different communication
paths between the network appliance (800A) and the GPU
system (s) (801) , and one or more computing devices or host
computer systems .
10181] In this example artificial intelligence and machine
learning infrastructure (800) , the network appliance (800A)
may be a storage system that includes one or more storage
devices , and the GPU systems (801) may be , in this
example , five (5) NVIDIA DGX - 1 GPU systems . In this
example , the network appliance (800A) may be connected to
two switches (803) using , respectively , four , 100 GbE con
nections , where each switch (801) may be connected to each
GPU system (801) by two 100 GbE connections resulting
in each of the GPU system (801) having four (4) 100 GbE
connections to the network appliance (800A) .
[0182] For further explanation , FIG . 8B sets forth a flow
chart illustrating an additional example method for execut
ing a big data analytics pipeline in a storage system that
includes compute resources and shared storage resources
according to some embodiments of the present disclosure .
The example method depicted in FIG . 8B is similar to the

US 2019 / 0121673 A1 Apr . 25 , 2019
25

example method depicted in FIG . 4 , as the example method
depicted in FIG . 8B also includes receiving (408) a dataset
(404) from a data producer (402) , storing (410) the dataset
(404) within the storage system (406) , allocating (412)
processing resources (416) to an analytics application (422) ,
and executing (414) the analytics application (422) on the
processing resources (416) , including ingesting the dataset
(404) from the storage system (406) .
[0183] In the example method depicted in FIG . 8B , receiv
ing (408) a dataset (404) from a data producer (402) can
include receiving (806) , from a plurality of data producers
(402 , 802) , a dataset (404 , 804) that is unique to each data
producer . The data producers (402 , 802) depicted in FIG . 8B
may be embodied , for example , as simulations of multiple
storage system that is executed in order to test hardware and
software components within the storage system that is being
tested . For example , the first data producer (402) may be a
simulated version of a first storage system and the second
data producer (802) may be a simulation of a second storage
system . In the example method depicted in FIG . 8B , receiv
ing (806) a dataset (404 , 804) that is unique to each data
producer may be carried out , for example , by receiving each
dataset as it is generated by the respective data producer
(402 , 802) , by periodically polling a location that each data
producer (402 , 802) writes the dataset to , or in other ways .
In fact , although the data producers (402 , 802) are depicted
as residing outside of the storage system (406) in the
embodiment depicted in FIG . 8B , in other embodiments , one
or more of the data producers (402 , 802) may actually be
executing on the storage system (406) itself and may even
write the dataset directly to storage resources within the
storage system (406) .
[0184] In the example method depicted in FIG . 8B , storing
(410) the dataset (404) within the storage system (406) can
include storing (808) , within the storage system (406) , each
unique dataset (404 , 804) . In the example method depicted
in FIG . 8B , each unique dataset (404 , 804) is depicted as
being stored within the storage system (406) in multiple
slices (424 , 426 , 428 , 816 , 818 , 820) . For example , a first
dataset (404) is stored as a first set of slices (424 , 426 , 428)
and a second dataset (804) is stored as a second set of slices
(816 , 818 , 820) . In such an example , each slice may repre
sent a distinct portion of the dataset , where RAID or
RAID - like techniques are used to provide for data redun
dancy that one or more of the storage devices becomes
unavailable . As such , parity data may also be maintained on
the storage system (406) , such that the dataset slices (424 ,
426 , 428 , 816 , 818 , 820) and any parity data form a RAID
stripe . Readers will appreciate that each dataset (404 , 804)
may be stored in other ways and that each dataset (404 , 804)
may be stored (808) within the storage system (406) by the
data producer (402 , 802) itself accessing the storage system
(406) , by system software and system hardware on the
storage system causing each dataset (404 , 804) (or the slices
thereof) to be written to storage devices (430 , 432 , 434) in
the storage system (406) , or in some other way .
10185) In the example method depicted in FIG . 8B , allo
cating (412) processing resources (416) to an analytics
application (422) can include allocating (810) unique pro
cessing resources (416 , 418) to each of a plurality of
analytics applications (422 , 814) . In the example method
depicted in FIG . 8B , allocating (810) unique processing
resources (416 , 418) to each of a plurality of analytics
applications (422 , 814) may be carried out , for example , by

allocating physical resources within the storage system
(406) for use by the analytics applications (422 , 814) . For
example , a first computer processor may be allocated for use
by a first analytics application (422) such that the analytics
application (422) is executing on the first computer proces
sor and a second computer processor may be allocated for
use by a second analytics application (814) such that the
analytics application (814) is executing on the second com
puter processor . Alternatively , allocating (810) unique pro
cessing resources (416 , 418) to each of a plurality of
analytics applications (422 , 814) may be carried out by
allocating virtualized physical resources within the storage
system (406) for use by each of the analytics applications
(422 , 814) . For example , a first set of virtual machines may
be allocated for use by a first analytics application (422)
such that the analytics application (422) is executing on the
first set of virtual machines and a second set of virtual
machines may be allocated for use by a second analytics
application (814) such that the analytics application (814) is
executing on the second set of virtual machines . Likewise ,
allocating (810) unique processing resources (416 , 418) to
each of a plurality of analytics applications (422 , 814) may
be carried out through the use of containers , such that a first
analytics application (422) is deployed and executed within
a first container and a second analytics application (814) is
deployed and executed within a second container .
[0186] In the example method depicted in FIG . 8B ,
executing (414) the analytics application (422) on the pro
cessing resources (416) can include executing (812) the
plurality of analytics applications (422 , 814) on the process
ing resources (416 , 418) , including ingesting each unique
dataset (404 , 804) from the storage system (406) . In such an
example , a first analytics application (422) can ingest a first
dataset (404) from the storage system (406) by reading the
dataset (404) from the storage system (406) after it has been
stored within the storage system (406) and a second analyt
ics application (814) can ingest a second dataset (804) from
the storage system (406) by reading the dataset (804) from
the storage system (406) after it has been stored within the
storage system (406) . Readers will appreciate that , because
the dataset (404) is stored within shared storage , neither
analytics application (422 , 814) will need to retain a copy of
the dataset in storage (e . g . , direct - attached storage) that is
only accessible by the processing resources that are being
used to execute the analytics application (422 , 814) .
[0187] For further explanation , FIG . 9 sets forth a flow
chart illustrating an additional example method for execut
ing a big data analytics pipeline in a storage system that
includes compute resources and shared storage resources
according to some embodiments of the present disclosure .
The example method depicted in FIG . 9 is similar to the
example method depicted in FIG . 4 , as the example method
depicted in FIG . 9 also includes receiving (408) a dataset
(404) from a data producer (402) , storing (410) the dataset
(404) within the storage system (406) , allocating (412)
processing resources (416) to an analytics application (422) ,
and executing (414) the analytics application (422) on the
processing resources (416) , including ingesting the dataset
(404) from the storage system (406) .
[0188] The example method depicted in FIG . 9 also
includes detecting (902) that the analytics application (422)
has ceased executing properly . Detecting (902) that the
analytics application (422) has ceased executing properly
may be carried out , for example , by detecting that the

US 2019 / 0121673 A1 Apr . 25 , 2019
26

analytics application (422) has crashed , by detecting that the
analytics application (422) has become unresponsive , by
detecting that the processing resources that the analytics
application (422) is executing on have become unavailable ,
or in other ways . In such an example , the storage system
(406) can detect (902) that the analytics application (422)
has ceased executing properly through the use of a heartbeat
mechanism , by detecting an absence of messaging or report
ing from the analytics application (422) , or through the use
of a similar mechanism .
[0189] The example method depicted in FIG . 9 also
includes allocating (904) second processing resources (418)
to the analytics application (422) . In the example method
depicted in FIG . 9 , allocating (904) second processing
resources (418) to the analytics application (422) may be
carried out , for example , by allocating physical resources
within the storage system (406) for use by the analytics
application (422) . For example , one or more computer
processors may be allocated for use by the analytics appli
cation (422) such that the analytics application (422) is
executing on the one or more computer processors . Alter
natively , allocating (904) second processing resources (418)
to the analytics application (422) may be carried out by
allocating virtualized physical resources within the storage
system (406) for use by the analytics application (422) . For
example , one or more virtual machines may be allocated for
use by the analytics application (422) such that the analytics
application (422) is executing on the one or more virtual
machines . Likewise , allocating (904) second processing
resources (418) to the analytics application (422) may be
carried out through the use of one or more containers , such
that the analytics application (422) is deployed and executed
within the one or more containers .
[0190] The example method depicted in FIG . 9 also
includes executing (906) the analytics application (422) on
the second processing resources (418) , including ingesting
the dataset (404) . In such an example , the analytics appli
cation (422) can ingest the dataset (404) from the storage
system (406) by reading the dataset (404) from the storage
system (406) after it has been stored within the storage
system (406) . Readers will appreciate that , because the
dataset (404) is stored within shared storage , the analytics
application (422) does not need to retain a copy of the
dataset in storage (e . g . , direct - attached storage) that is only
accessible by the processing resources that are being used to
execute the analytics application (422) .
[0191] For further explanation , FIG . 10 sets forth a flow
chart illustrating an additional example method for execut
ing a big data analytics pipeline in a storage system that
includes compute resources and shared storage resources
according to some embodiments of the present disclosure .
The example method depicted in FIG . 10 is similar to the
example method depicted in FIG . 4 , as the example method
depicted in FIG . 10 also includes receiving (408) a dataset
(404) from a data producer (402) , storing (410) the dataset
(404) within the storage system (406) , allocating (412)
processing resources (416) to an analytics application (422) ,
and executing (414) the analytics application (422) on the
processing resources (416) , including ingesting the dataset
(404) from the storage system (406) .
[0192] The example method depicted in FIG . 10 also
includes detecting (1002) that the analytics application (422)
needs additional processing resources . Detecting (1002) that
the analytics application (422) needs additional processing

resources may be carried out , for example , by detecting that
the processing resources upon which the analytics applica
tion (422) is executing are fully utilized or that utilization
has reached a threshold level , by detecting that the analytics
application (422) has become unresponsive , slow to respond
to messages , slow to report findings , or is otherwise exhib
iting some behavior that is associated with a lack of suffi
cient processing resources , or in some other way .
0193] The example method depicted in FIG . 10 also
includes allocating (1004) additional processing resources
(418) to the analytics application (422) . In the example
method depicted in FIG . 10 , allocating (1004) additional
processing resources (418) to the analytics application (422)
may be carried out , for example , by allocating additional
physical resources within the storage system (406) for use
by the analytics applications (422) . For example , a first
computer processor may initially be allocated for use by the
analytics application (422) such that the analytics applica
tion (422) is executing on the first computer processor . In
such an example , a second computer processor may addi
tionally be allocated for use by the analytics application
(422) such that the analytics application (422) is executing
on both the first computer processor and the second com
puter processor . Alternatively , allocating (1004) additional
processing resources (418) to the analytics application (422)
may be carried out by allocating additional virtualized
physical resources within the storage system (406) for use
by the analytics applications (422) . For example , a first set
of virtual machines may be initially allocated for use by the
analytics application (422) such that the analytics applica
tion (422) is executing on the first set of virtual machines . In
such an example , a second set of virtual machines may be
additionally allocated for use by the analytics application
(422) such that the analytics application (422) is executing
on both the first set of virtual machines and the second set
of virtual machines . Likewise , allocating (1004) additional
processing resources (418) to the analytics application (422)
may be carried out through the use of containers , such that
an analytics application (422) is initially deployed and
executed within a first container and a second container is
subsequently utilized to support the analytics application
(422) .
[0194] The example method depicted in FIG . 10 also
includes executing (1006) the analytics application (422) on
the additional processing resources (418) . Readers will
appreciate that although the embodiments described above
relate to embodiments where instances of the analytics
application (422) are executed on multiple processing
resources (416 , 418) , in other embodiments different pro
cessing resources (416 , 418) instead be used to execute
various portions of the analytics application (422) . For
example , a first portion of the analytics application (422)
may execute on a first set of processing resources (416) and
a second portion of the analytics application (422) may
execute on a second set of processing resources (418) .
Readers will further appreciate that the shared nature of the
storage that is utilized by the analytics application (422)
results in more efficient scalability , as the application can be
scaled up (i . e . , more processing resources can be given to the
analytics application) without needing to copy the dataset ,
send the dataset over a network connection , and so on as
would be required if the analytics application (422) were
executing on a processing node with direct - attached storage
where each node maintained its own copy of the dataset .

US 2019 / 0121673 A1 Apr . 25 , 2019
27

[0195] As described above , the analytics application (422)
may include artificial intelligence or machine learning com -
ponents . In fact , the analytics application (422) may be an AI
application . Data is the heart of modern AI and deep learning
algorithms . Before training can begin , one problem that
must be addressed revolves around collecting the labeled
data that is crucial for training an accurate Al model . A full
scale AI deployment may be required to continuously col
lect , clean , transform , label , and store large amounts of data .
Adding additional high quality data points directly translates
to more accurate models and better insights . Data samples
may undergo a series of processing steps including , but not
limited to : 1) ingesting the data from an external source into
the training system and storing the data in raw form , 2)
cleaning and transforming the data in a format convenient
for training , including linking data samples to the appropri
ate label , 3) exploring parameters and models , quickly
testing with a smaller dataset , and iterating to converge on
the most promising models to push into the production
cluster , 4) executing training phases to select random
batches of input data , including both new and older samples ,
and feeding those into production GPU servers for compu
tation to update model parameters , and 5) evaluating includ
ing using a holdback portion of the data not used in training
in order to evaluate model accuracy on the holdout data . This
lifecycle may apply for any type of parallelized machine
learning , not just neural networks or deep learning . For
example , standard machine learning frameworks may rely
on CPUs instead of GPUs but the data ingest and training
workflows may be the same . Readers will appreciate that a
single shared storage data hub creates a coordination point
throughout the lifecycle without the need for extra data
copies among the ingest , preprocessing , and training stages .
Rarely is the ingested data used for only one purpose , and
shared storage gives the flexibility to train multiple different
models or apply traditional analytics to the data .
[0196] Readers will appreciate that each stage in the AI
data pipeline may have varying requirements from the data
hub (e . g . , the storage system or collection of storage sys
tems) . Scale - out storage systems must deliver uncompro
mising performance for all manner of access types and
patterns — from small , metadata - heavy to large files , from
random to sequential access patterns , and from low to high
concurrency . The storage systems described above may
serve as an ideal Al data hub as the systems may service
unstructured workloads . In the first stage , data is ideally
ingested and stored on to the same data hub that following
stages will use , in order to avoid excess data copying . The
next two steps can be done on a standard compute server that
optionally includes a GPU , and then in the fourth and last
stage , full training production jobs are run on powerful
GPU - accelerated servers . Often , there is a production pipe
line alongside an experimental pipeline operating on the
same dataset . Further , the GPU - accelerated servers can be
used independently for different models or joined together to
train on one larger model , even spanning multiple systems
for distributed training . If the shared storage tier is slow , then
data must be copied to local storage for each phase , resulting
in wasted time staging data onto different servers . The ideal
data hub for the AI training pipeline delivers performance
similar to data stored locally on the server node while also
having the simplicity and performance to enable all pipeline
stages to operate concurrently .

[0197] A data scientist works to improve the usefulness of
the trained model through a wide variety of approaches :
more data , better data , smarter training , and deeper models .
In many cases , there will be teams of data scientists sharing
the same datasets and working in parallel to produce new
and improved training models . Often , there is a team of data
scientists working within these phases concurrently on the
same shared datasets . Multiple , concurrent workloads of
data processing , experimentation , and full - scale training
layer the demands of multiple access patterns on the storage
tier . In other words , storage cannot just satisfy large file
reads , but must contend with a mix of large and small file
reads and writes . Finally , with multiple data scientists
exploring datasets and models , it may be critical to store data
in its native format to provide flexibility for each user to
transform , clean , and use the data in a unique way . The
storage systems described above may provide a natural
shared storage home for the dataset , with data protection
redundancy (e . g . , by using RAID6) and the performance
necessary to be a common access point for multiple devel
opers and multiple experiments . Using the storage systems
described above may avoid the need to carefully copy
subsets of the data for local work , saving both engineering
and GPU - accelerated servers use time . These copies become
a constant and growing tax as the raw data set and desired
transformations constantly update and change .
[0198] Readers will appreciate that a fundamental reason
why deep learning has seen a surge in success is the
continued improvement of models with larger data set sizes .
In contrast , classical machine learning algorithms , like logis
tic regression , stop improving in accuracy at smaller data set
sizes . As such , the separation of compute resources and
storage resources may also allow independent scaling of
each tier , avoiding many of the complexities inherent in
managing both together . As the data set size grows or new
data sets are considered , a scale out storage system must be
able to expand easily . Similarly , if more concurrent training
is required , additional GPUs or other compute resources can
be added without concern for their internal storage . Further
more , the storage systems described above may make build
ing , operating , and growing an AI system easier due to the
random read bandwidth provided by the storage systems , the
ability to of the storage systems to randomly read small files
(50 KB) high rates (meaning that no extra effort is required
to aggregate individual data points to make larger , storage
friendly files) , the ability of the storage systems to scale
capacity and performance as either the dataset grows or the
throughput requirements grow , the ability of the storage
systems to support files or objects , the ability of the storage
systems to tune performance for large or small files (i . e . , no
need for the user to provision filesystems) , the ability of the
storage systems to support non - disruptive upgrades of hard
ware and software even during production model training ,
and for many other reasons .
[0199] Small file performance of the storage tier may be
critical as many types of inputs , including text , audio , or
images will be natively stored as small files . If the storage
tier does not handle small files well , an extra step will be
required to pre - process and group samples into larger files .
Storage , built on top of spinning disks , that relies on SSD as
a caching tier , may fall short of the performance needed .
Because training with random input batches results in more
accurate models , the entire data set must be accessible with
full performance . SSD caches only provide high perfor

US 2019 / 0121673 A1 Apr . 25 , 2019

mance for a small subset of the data and will be ineffective
at hiding the latency of spinning drives .
[0200] Readers will further appreciate that in some
embodiments of the present disclosure , big data services
may be built - in to the shared storage system such that big
data analytics , machine learning , artificial intelligence , and
other functionality can be offered as a service . In such an
example , big data analytics applications , machine learning
applications , artificial intelligence applications , and others
may be incorporated into the same (or otherwise accessible)
codebase as system software that controls the operation of
the storage system , such that the interactions between sys
tem hardware , system software , and the additional applica
tions can be optimized . Furthermore , these additional appli
cations can be offered as cogs in an analytics stack to assist
users of the storage system in the development and deploy
ment of big data analytics applications , machine learning
applications , artificial intelligence applications , and similar
applications .
[0201] Readers will further appreciate that in some
embodiments of the present disclosure , idempotent opera
tions may allow for arbitrary reruns and modification of the
analytics pipeline . Through the use of orchestration and
containerization related concepts described above , a storage
system may present a software layer that runs in idempotent
chunks such that a hands - off approach to recovery manage
ment may be taken . In such an example , if a dependency
graph of jobs were in place where each job had some level
of idempotency , changes could be made to a job anywhere
in the graph and determinations could be made regarding
what jobs would need to be rerun to complete recovery .
Furthermore , because additional compute resources may be
allocated , the system could automate data changes or
execute them from a simple form .
[0202] Readers will further appreciate that in some
embodiments of the present disclosure , with the addition of
heartbeat events or expected data patterns , a storage system
could essentially run continuous testing on a data pipeline ,
take recovery actions , and rerun steps if heartbeats are
missing . Because there are many things that can go wrong
when analytics are being performed in an environment that
includes many hosts with different network and rack con
figurations , errors can occur and may be hard to detect . Even
if errors are not common , they may be hard to detect and
hard to trace back to the root cause . As such , embodiments
described herein may add continuous monitoring to the
outputs of the pipeline by adding fingerprints to be expected ,
regular events that are expected to occur , and information
may be persisted to capture actual system performance .
Once anomalies are found , the storage system may attempt
to re - collect data , rerun jobs , issue alerts if anomalies are
still detected , and otherwise support a self - healing big data
analytics pipeline .
10203] Readers will appreciate that although the embodi
ments described above relate to embodiments where steps
may appear to occur according to some order , no ordering is
actually required unless explicitly stated . Furthermore , in
some embodiments , steps that appear in different figures
may actually occur in a single embodiment . That is , the
organization of steps that is included above is for ease of
explanation , and in no way limits the various embodiments
of the concepts described herein . In fact , embodiments of the
present disclosure may include any combination of the steps
described above and claimed herein . Likewise , embodi

ments of the present disclosure may be implemented on any
of the storage systems , or any combination therefore ,
described herein .
[0204] For further explanation , FIG . 11A sets forth a
diagram illustrating an example artificial intelligence and
machine learning infrastructure (1100) according to some
embodiments of the present disclosure . As depicted , the
artificial and machine learning infrastructure (1100) may be
embodied or implemented entirely within a single chassis
(1101) . In some examples , the chassis (1101) may be imple
mented according to the dimensions of a standard rack
within a data center — where the single chassis (1101)
includes the one or more storage systems (1120) , such as any
of the storage systems described above or any combination
of such storage systems , and where the single chassis (1101)
may further include one or more GPU systems (1130A
1130N) .
[0205] As one example embodiment , the chassis (1101)
may include storage system (S) (1120) implemented as one or
more PureTM FlashBladeTM storage systems of flash storage
devices or one or more other types of flash storage devices ,
and the one or more GPU systems (1130A - 1130N) may be
implemented as one or more NVIDIATM DGX - 1TM GPU
architectures or as one or more other GPU architectures . In
this example , the GPU architectures may further include
multiple GPUs and one or more CPUs — where the GPU
architecture may further include onboard system memory .
However , in other examples , different combinations of stor
age systems and GPU architectures may be implemented as
an integrated artificial intelligence and machine learning
infrastructure within the single chassis (1101) .
[0206] Further , in some examples , the single chassis
(1101) may include one or more length , width , and depth
physical dimensions that are smaller or larger than a stan
dard rack size - for example the single chassis (1101) may
be a half rack or smaller . In this example , a rack may be
about 42 U , or 6 feet (180 cm) in height , where a “ U ” unit
of measure may be defined as 44 . 50 millimeters (1 . 752 in .) ,
and where the rack width may be 19 inches (482 . 60 mm) ,
and where the depth may be 36 inches (914 . 40 mm) .
[0207] In this embodiment , the height (1102) of the stor
age system (s) (1120) may be 4 U , where the width (1104)
and depth (1106) are defined to fit within the physical
dimensions of the chassis (1101) . Similarly , each of the GPU
system (s) (1130A - 1130N) may be of the same or different
dimensions , where an example height (1108) may be defined
to be 1 U or 2 U , and where the width (1110) and depth
(1112) may be defined to fit within the physical dimensions
of the chassis (1101) .
[0208] For further explanation , FIG . 11B sets forth a
diagram illustrating an example computer architecture for
implementing an artificial intelligence and machine learning
infrastructure (1100) within a single chassis (1101) accord
ing to some embodiments of the present disclosure . While in
this example , the communication fabric includes a tiered set
of network switches (1132A - 1132C) for interconnecting the
storage system (s) (1120) with the one or more GPU system
(s) (1130A - 1130N) , and for the artificial intelligence and
machine learning infrastructure (1100) to communicate with
one or more computing devices (1129) over one or more
networks (1131) , in other implementations , the communi
cation fabric may be architected to define different commu
nication paths between the storage system (s) (1120) and the

neline

US 2019 / 0121673 A1 Apr . 25 , 2019

GPU system (s) (1130A - 1130N) , and one or more computing
devices or host computer systems .
[0209] In some implementations , the artificial intelligence
and machine learning infrastructure (1100) communication
fabric may implement a remote direct memory access
(RDMA) protocol over converged ethernet (ROCE) fabric ,
where such a communication fabric implements direct
memory access from a source computer system to a target
computer system without involvement of an operating sys
tem on either the source or target computer system — where ,
depending on the direction of a communication path , the
storage system (s) (1120) may be a source or target computer
system and the GPU systems (1130A - 1130N) may be a
source or target computer system .
[0210] In this example , given the communication fabric
depicted in artificial intelligence and machine learning infra
structure (1100) — where the communication fabric may
implement multiple parallel communication channels
through each switch (1132A - 1132C) — and based on the
storage system (s) (1120) including multiple storage devices ,
where each storage device may include one or more con
trollers that may each communicate directly with one or
more of the GPUs within GPU systems (s) (1130A - 1130N) ,
artificial intelligence and machine learning infrastructure
(1100) may implement multiple , parallel high - speed com
munication paths between different combinations of storage
devices within the storage system (s) (1120) and computing
elements of the GPU system (s) (1130A - 1130N) .
[0211] In other example implementations , the communi
cation fabric may implement other network communication
protocols , including the communication protocols discussed
above with respect to the storage system (340) described in
FIGS . 1A - 3B , including InfiniBand and iWARP .
0212] In some implementations , artificial intelligence and
machine learning infrastructure (1100) may be scaled to
include additional storage systems or additional GPU sys
tems within the same chassis (1101) , where the communi
cation fabric may be similarly scaled to connect the addi
tional storage systems and / or GPU systems via network
switches (1132A - 1132C) . In other cases , the communication
fabric may be scaled to include additional network switches
or additional tiers to the communication fabric .
[0213] For further explanation , FIG . 11C sets forth a
diagram illustrating an example implementation of an arti
ficial intelligence and machine learning infrastructure soft
ware stack (1105) according to some embodiments of the
present disclosure .
[0214] As depicted in FIG . 11C , the artificial intelligence
and machine learning infrastructure software stack (1105)
may be implemented entirely within the artificial intelli
gence and machine learning infrastructure (110) depicted in
FIGS . 11A and 11B . Further , the artificial intelligence and
machine learning infrastructure software stack (1105) may
include multiple software layers , including a multi - node
training (1107A) layer , a deep learning framework (1107B)
layer , a containerization (1107C) layer , a scale - out GPU
compute (1107D) layer , a scale - out files / object protocol
(1107E) layer , and a scale - out storage (1107F) layer , among
other potential software layers not depicted in FIG . 11C .
[0215] The multi - node training (1107A) layer may imple
ment a scaling toolkit , or a configuration interface , that
provides specifications for multi - node training within the
artificial intelligence and machine learning infrastructure
(1100) . The scaling toolkit may be used to specify configu

ration settings between the storage system (s) (1120) , the
GPU systems (1130A - 1130N) , and network components ,
including network switches (1132A - 132C) of the commu
nication fabric .
[0216] The deep learning framework (1107B) layer may
implement deep learning frameworks such as Caffe , Caffe2 ,
mxnet , pytorch , torch , among other deep learning frame
works . Further , each deep learning framework implemented
at the deep learning framework (1107B) layer may be
delivered as a container to the containerization (1107C)
layer . Further , the containerization (1107C) layer may
implement GPU drivers for communicating with the GPUs
of the scale - out GPU compute (1107D) layer , and the
containerization (1107C) layer may also implement
NVIDIATM DockerTM
[0217] The scale - out GPU compute (1107D) layer may be
implemented by the GPU systems (1130A - 1130N) , and the
scale - out GPU compute (1107D) layer may provide an
interface for assigning jobs , sending or receiving data ,
adding or removing GPU systems , or for configuring one or
more of the GPUs within the GPU systems (1130A - 1130N) .
In some examples , the functionality provided by the scale
out GPU compute (1107D) layer may be provided to layers
above and below via an API specifying commands and
parameters for each supported functionality for the corre
sponding layer interface .
[0218] . The scale - out file / object protocols (1107E) layer
may provide an API for a logical data handling layer , such
as a file system that provides file systems operations for
creating , deleting , moving , copying , or other standard file
system operations . In some examples , the scale - out file /
objects protocols (1107E) layer may provide block level
access , or data access according to a specified range or
ranges of bytes .
0219] The scale - out storage (1107F) layer may be imple
mented by the storage system (s) (1130) , and the scale - out
storage (1107F) layer may provide an interface for any
storage system functionality described above with respect to
FIGS . 1A - 3B , including reading , writing , erasing , or con
figuring storage device settings , or configuring garbage
collection , or for programming the one or more controllers
implemented by each of the included storage systems or
storage devices . For example , the scale - out storage (1107F)
layer may provide an API for performing input / output
operations on physical data stored within the memory com
ponents of the storage system .
[0220] In some examples , the scale - out file / object protocol
(1107E) layer and the scale - out storage (1107F) layer , indi
vidually or in combination , may provide for implementa
tions of a virtual memory environment , memory manage
ment , or one or more types of files systems or methods for
creating , deleting , copying , reading , or writing files or
objects .
[0221] For further explanation , FIG . 11D sets forth a flow
chart illustrating an example method for interconnecting a
graphical processing unit layer and a storage layer of an
artificial intelligence and machine learning infrastructure
according to some embodiments of the present disclosure .
Although depicted in less detail , the example artificial
intelligence and machine learning infrastructure (1100) may
be similar to the implementations described above with
reference to FIGS . 11A - 11C , or any combination thereof .
0222] In this example , a data path may be considered use
of one or more protocols for a communication path directly

US 2019 / 0121673 A1 Apr . 25 , 2019
30

between the scale - out GPU compute (1107D) layer and the
scale - out storage (1107F) layer . In other examples , the data
path may be considered use of one or more protocols for
implementing a communication path between the scale - out
GPU compute (1107D) layer , the scale - out files / object pro
tocols (1107E) layer , and the scale - out storage (1107F)
layer — where the scale - out GPU compute (1107D) layer
communicates to and from the scale - out files / object proto
cols (1107E) layer via one or more APIs , and where the
scale - out files / object protocols (1107E) layer communicates
with the scale - out storage (1107F) layer via one or more
APIs . While in this example , the data path includes the
bottom three layers of the artificial intelligence and machine
learning infrastructure software stack (1107D , 1107E ,
1107F) , in other examples , the data path may include one or
more other software layers , including the multi - node train
ing (1107A) layer , the deep learning framework (1107B)
layer , and / or the containerization (1107C) layer .
0223] In this example , a definition of a data path may be

based on the integration of the software stack as depicted
and described above with respect to FIGS . 11A - 11C . For
example , the scale - out storage (1107F) may be configured to
provide an API call that specifies for the scale - out storage
(1107F) layer to implement a data transformation or data
analysis on stored data — where the result of the API call is
a result of the data transformation or data analysis performed
by the scale - out storage (1107F) layer , and where the scale
out storage (1107F) layer implements the data analysis or
data transformation using one or more controllers for one or
more storage devices .
[0224] In some examples , the API provided by the scale
out storage (1107F) layer may provide data analysis or data
transformation functionality or routines that include one or
more of : JPEG decode , shuffle , combining files , and / or
reshaping matrices / tensors . In general , and in dependence
upon the controllers of the storage devices of the storage
system (1130) being configured to perform any type of
general computing functionality as described above with
reference to FIGS . 1A - 3B , the API provided by the scale - out
storage (1107F) layer may provide an API interface for any
type of data analysis or data transformation . As one
example , the scale - out storage (1107F) layer may provide an
API call that instructs the scale - out storage (1107F) layer to
select a subset of data that matches a particular category .
[0225] Further , in some examples , the API provided by the
scale - out storage (1107F) layer may include an API call that
takes as a parameter function code , or a reference to function
code , where one or more controllers of the storage system (s)
(1130) of the scale - out storage (1107F) layer may execute
the function code to perform a specified data analysis or data
transformation . In this way , the scale - out GPU compute
(1107D) layer may offload to the scale - out storage (1107F)
layer some of the computational tasks that would otherwise
be performed by the scale - out GPU compute (1107D) layer .
[0226] In some examples , the scale - out storage (1107F)
layer may manage a compute cluster so that data analysis
and / or data transformation happen under a centralized man
agement plane . In other examples , the scale - out storage
(1107F) layer may initiate data analysis and / or data trans
formation or data management operation without any
instruction or command from the scale - out GPU compute
(1107D) layer , where the initiation of a data analysis and / or
data transformation , or data management operation may be
based at least in part on the one or more controllers identi

fying a pattern within the operations requested from the
scale - out GPU compute (1107D) layer via the API . In some
examples , a given GPU within the scale - out GPU compute
(1107D) layer may communicate directly with a storage
device of the scale - out storage (1107F) layer without the
intervention of an operating system .
[0227] In some implementations , the scale - out GPU com
pute (1107D) layer may make calls to the API of the
scale - out files / objects protocols (1107E) layer or the scale
out GPU compute (1107D) layer may make calls directly to
the scale - out storage (1107F) layer .
[0228] Similarly , the scale - out storage (1107F) layer may
generate results directly to the system memory of one or
more GPUs within the scale - out GPU compute (1107D)
layer . For example , the scale - out storage (1107E) layer may
write results from an API call directly into a cache or other
memory component of one or more GPUs of the scale - out
GPU compute (1107D) layer .
[0229] As depicted in FIG . 11D , the example method
includes generating (1152) , at a graphical processing unit of
a computer system , a function call (1152A) specifying one
or more operations to be performed by a storage system of
the computer system ; transmitting (1154) , across a commu
nication fabric of the computer system , the function call
(1152A) from the graphical processing unit to the storage
system (1154) ; generating (1156) , at the storage system of
the computer system and based on the function call (1152A) ,
one or more results (1156A) ; and transmitting (1158) , across
the communication fabric , the one or more results (1156A)
from the storage system to the graphical processing unit .
[0230] In this example , the graphical processing unit may
be any of the graphical processing units of the GPU system
(s) 1130A - 1130N , the computer system may be a computer
system comprising the artificial intelligence and machine
learning infrastructure (1100) , and the storage system may
be any storage system of the storage systems of storage
system (s) (1120) . Further , in this example , the artificial
intelligence and machine learning infrastructure system
(1100) may be operating to perform one or more machine
learning tasks received from a cloud AI service (1171)
implemented as a cloud service within a cloud services
provider (1173A , where the cloud AI service (1171) receives
tasks from a host computer (1170) across a network (not
depicted) , where the tasks may be specified via a user
interface provided by the cloud Al service (1171) . Further ,
the artificial intelligence and machine learning infrastructure
system (1100) may be implemented within a data center (not
depicted) or on site at a client location .
[0231] Generating (1152) , 1152) , at the graphical process
ing unit of the computer system , the function call (1152A)
specifying one or more operations to be performed by a
storage system of the computer system may be implemented
as described above with reference to FIGS . 11A - 11C , where
given a specific task , the GPU identifies a corresponding API
call , and generates parameters for the API call .
10232] Transmitting (1154) , across a communication fab
ric of the computer system , the function call (1152A) from
the graphical processing unit to the storage system (1154)
may be implemented as described above with reference to
FIGS . 11A - 11C , where the function call (1152A) is trans
mitted across a communication port to one a network switch ,
and where the network switch routs the function call to a
network port on at the storage system (s) (1120) .

US 2019 / 0121673 A1 Apr . 25 , 2019
31

[0233] Generating (1156) , at the storage system of the
computer system and based on the function call (1152A) ,
one or more results (1156A) may be implemented as
described above with reference to FIGS . 11A - 11C , where
one or more controllers on the storage system (s) (1120) may
perform the function call according to the operation and
parameters specified by the function call .
[0234 Transmitting (1158) , across the communication
fabric , the one or more results (1156A) from the storage
system to the graphical processing unit may be implemented
as described above with reference to FIGS . 11A - 11C , where
the results (1156A) are transmitted across a communication
port to a network switch , and where the network switch routs
the results (1156A) to a network port on at the GPU
system (s) (1130A - 1130N) .
[0235] For further explanation , FIG . 12A sets forth a flow
chart illustrating an example method of monitoring an
artificial intelligence and machine learning infrastructure
(1100) according to some embodiments of the present dis
closure . The artificial intelligence and machine learning
infrastructure (1100) described above may include one or
more monitoring modules (1202a , 1202b , 1202n) or may be
otherwise coupled to one or more monitoring modules . The
monitoring modules (1202a , 1202b , 1202n) may be embod
ied , for example , computer program instructions executing
on computer hardware such as a CPU . Such computer
program instructions may be stored , for example , within
memory that is contained in one or more of the blades that
is included within a storage system that is included within
the artificial intelligence and machine learning infrastructure
(1100) and executed by one or more CPUs that are included
within the storage system that is included within the artificial
intelligence and machine learning infrastructure (1100) .
Readers will appreciate that other embodiments are contem
plated such as , for example , the one or more monitoring
modules (1202a , 1202b , 1202n) residing within and being
executed by a server that is included within the artificial
intelligence and machine learning infrastructure (1100) , the
one or more monitoring modules (1202a , 1202b , 1202n)
residing within and being executed by cloud computing
resources that the artificial intelligence and machine learning
infrastructure (1100) is in communications with , or in some
other way .
[0236] The example method depicted in FIG . 12A
includes identifying (1203) , by the one or more monitoring
modules (1202a , 12026 , 1202n) , a bottleneck in an execu
tion pipeline . The execution pipeline may be embodied , for
example , as an artificial intelligence or machine learning
pipeline in which various stages of executing an artificial
intelligence or machine learning application are carried out .
Such an execution pipeline can include , for example , iden
tifying a particular dataset to use as input to the artificial
intelligence or machine learning application , reading such a
dataset from storage that is contained within the artificial
intelligence and machine learning infrastructure (1100) ,
performing a series of transformations to the dataset , run
ning the dataset through a plurality of artificial intelligence
or machine learning models , retaining auditing information
describing the steps performed and the content of the dataset
during the various stages of execution , and many other steps .
[0237] In the example method depicted in FIG . 12A , a
bottleneck can occur for a variety of reasons . For example ,
a bottleneck can occur when insufficient resources are allo
cated to one portion of the execution pipeline , thereby

causing one portion of the execution pipeline to create a
bottleneck for the remaining portions of the execution
pipeline . Consider an example in which one portion of the
execution pipeline includes a series of transformations to the
dataset , where each transformation in the series of transfor
mations is performed by a distinct module of computer
program instructions . In such an example , assume that when
a first module of computer program instructions has com
pleted a first transformation , the first module of computer
program instructions sends the transformed data to a second
module of computer program instructions which will per
form a second transformation . Further assume that when the
second module of computer program instructions has com
pleted the second transformation , the second module of
computer program instructions sends the transformed data to
a third module of computer program instructions which will
perform a third transformation . In such an example , assume
that the second transformation is more complex than the
other transformations and further assume that each module
of computer program instructions is given an identical
amount of processing resources upon which the modules
will execute . In such an example , the performance of the
second transformation could create a bottleneck as the
second transformation may take more time to complete
given that it is the most complex transformation and further
given that the second module of computer program instruc
tions only has access to the same amount of computing
resources as the first module of computer program instruc
tions and the third module of computer program instruc
tions .
[0238] The example method depicted in FIG . 12A also
includes initiating (1204) , by the one or more monitoring
modules (1202a , 1202b , 1202n) , reconfiguration of the
artificial intelligence and machine learning infrastructure
(1100) to resolve the bottleneck in the execution pipeline .
Initiating , by the one or more monitoring modules (1202a ,
12026 , 1202n) , reconfiguration of the artificial intelligence
and machine learning infrastructure (1100) to resolve the
bottleneck in the execution pipeline may be carried out , for
example , by reallocating resources to resolve the bottleneck
in the execution pipeline . Continuing with the example
described above , initiating reconfiguration of the artificial
intelligence and machine learning infrastructure (1100) to
resolve the bottleneck in the execution pipeline may be
carried out , for example , by the one or more monitoring
modules (1202a , 1202b , 1202n) allocating additional com
pute resources to support the execution of the second
module of computer program instructions . Readers will
appreciate that the example described above is just one of
many bottlenecks that can occur and the actions taken to
resolve such bottlenecks can take many other forms . For
example , bottlenecks may occur as the result of processing
bottlenecks , scheduling bottlenecks , workload allocation
and distribution bottlenecks , and many others . As such , the
actions taken to resolve such bottlenecks can include split
ting a single step into multiple steps and vice versa , chang
ing the manner in which operations are scheduled , moving
workloads around to different physical or virtual resources ,
and so on .
[0239] The example method depicted in FIG . 12A can also
include monitoring (1206) access patterns to one or more of
the storage systems contained in the artificial intelligence
and machine learning infrastructure (1100) . Monitoring
(1206) access patterns to one or more of the storage systems

US 2019 / 0121673 A1 Apr . 25 , 2019
32

contained in the artificial intelligence and machine learning
infrastructure (1100) may be carried out , for example , by
tracking the location of accesses to the storage systems , by
tracking the types of accesses (e . g . , reads , writes) to the
storage systems , and so on . In such an example , the access
patterns to one or more of the storage systems contained in
the artificial intelligence and machine learning infrastructure
(1100) may be used to gain certain insights into the execu
tion of the artificial intelligence or machine learning pipe -
line .
10240] Consider an example in which a time - series data
base is being built off of the I / O access patterns of the
training data and a time - series database is also being built off
of the scheduler and the GPUs . In such an example , this
information could be used to determine how to schedule
things in a way to make best use of the artificial intelligence
and machine learning infrastructure ' s (1100) resources . In
such an example , the artificial intelligence or machine
learning pipeline may be represented by a complicated
execution graph and a scheduler must decide what to run
when . In such an example , feedback loops from storage ,
networking , compute , and any other parts of the system
stack may be used to inform the scheduler and enable the
scheduler to make better scheduling decisions . In fact , all of
this information could be maintained in a centralized time
series database that includes all of this information . As such ,
information from a first training run can be used to make
better decisions on a second training run . Readers will
appreciate that although depicted as a distinct step , in some
embodiments , monitoring (1206) access patterns to one or
more of the storage systems contained in the artificial
intelligence and machine learning infrastructure (1100) may
be part of identifying (1203) a bottleneck in an execution
pipeline , as described above .
[0241] The example method depicted in FIG . 12A also
includes monitoring (1208) data - related aspects of the arti
ficial intelligence or machine learning pipeline . Monitoring
(1208) data - related aspects of the artificial intelligence or
machine learning pipeline can include not only monitoring
whether some data that is needed by one or more of the
GPUs is available for use by the GPUs , but also monitoring
the nature of the data . For example , during each training run
of a particular Al or machine learning model , data may be
ingested as training data for the Al or machine learning
model . In such an example , monitoring the nature of the data
can include , for example , monitoring the training data that is
ingested during each training run to identify exceptional data
(i . e . , data that is dissimilar to data that was previously
received training data for the AI or machine learning model) .
In such an example , by monitoring (1208) data - related
aspects of the artificial intelligence or machine learning
pipeline , changes to the input data to the artificial intelli
gence or machine learning pipeline can be identified . Read
ers will appreciate that while the previous sentences relate to
the monitoring of training data , in a production environment ,
data - related aspects of the artificial intelligence or machine
learning pipeline may similarly be monitored (1208) .
[0242] The example method depicted in FIG . 12A also
includes creating (1210) auditing information for the artifi
cial intelligence or machine learning pipeline . The auditing
information for the artificial intelligence or machine learning
pipeline may include , for example , information describing
the data that was fed into the artificial intelligence or
machine learning pipeline , the source code that was used

when executing the artificial intelligence or machine learn
ing pipeline , and so on . Consider an example in which the
pipeline is an artificial intelligence pipeline for a self - driving
car . In such an example , auditing information may be
maintained to capture what data was fed into the artificial
intelligence pipeline (e . g . , what data was received from the
self - driving car ' s sensors at various points in time) , what
code was executed to control the operation of the self
driving car , and so on . The auditing information may be
creating , for example , by applying a hash function to rep
resentations of the data and code to create a hash value that
captures the data and code , by storing such information in a
blockchain , by storing such information in a database , and
so on .
[0243] Readers will appreciate that creating (1210) audit
ing information for the artificial intelligence or machine
learning pipeline may also take advantage of an approach to
only retain the deltas each time auditing information is
created . For example , if auditing information is created at
time 0 and auditing information is subsequently created at
time 1 , any audit information that has not changed between
time 1 and time 0 may not need to be retained . For example ,
if the code that was used at time 0 is captured in the auditing
information for time 0 , and such code does not change at
time 1 , then the code that was used at time 1 need not be
included in the auditing information for time 1 . In such an
example , a pointer or other instrument can be included in the
auditing information for time 1 to indicate that the code used
at time 1 was identical to the code used at a previous point
in time .
[0244] The example method depicted in FIG . 12A also
includes creating (1212) trending information for the artifi
cial intelligence or machine learning pipeline . The trending
information for the artificial intelligence or machine learning
pipeline may include , for example , information describing
improvements in the models over time , information describ
ing changes to the data that is input into the models over
time , and so on . In such an example , the trending informa
tion for the artificial intelligence or machine learning pipe
line may be used to validate certain models , identify data
drift , or used for a variety of other purposes . In such an
example , the trending information for the artificial intelli
gence or machine learning pipeline may be displayed and
presented to a user , for example , via a tool that shows the
improvement of a particular model over time .
[0245] Readers will appreciate that although the embodi
ment depicted in FIG . 12 A illustrates an embodiment where
the one or more monitoring modules (1202a , 12026 , 1202n)
reside within the artificial intelligence and machine learning
infrastructure (1100) , other embodiments can exist . In fact ,
in an alternative embodiment the one or more monitoring
modules (1202a , 1202b , 1202n) may reside outside of the
artificial intelligence and machine learning infrastructure
(1100) . The one or more monitoring modules (1202a , 1202b ,
1202n) may reside , for example , on one or more remote
servers that communicate with one or more artificial intel
ligence and machine learning infrastructures (1100) . Alter
natively , the one or more monitoring modules (1202a ,
1202b , 1202n) may reside within a cloud environment that
includes resources that can communicate with one or more
artificial intelligence and machine learning infrastructures
(1100) . In such embodiments , the one or more artificial
intelligence and machine learning infrastructures (1100)
may periodically send telemetry data to the one or more

US 2019 / 0121673 A1 Apr . 25 , 2019
33

monitoring modules (1202a , 1202b , 1202n) that includes ,
for example , data telemetry , storage telemetry , networking
telemetry , compute telemetry , and so on .
[0246] For further explanation , FIG . 12B sets forth a flow
chart illustrating an example method of optimizing an arti
ficial intelligence and machine learning infrastructure (1100)
according to some embodiments of the present disclosure .
The artificial intelligence and machine learning infrastruc
ture (1100) described above may include one or more
optimization modules (1252a , 1252b , 1252n) or may be
otherwise coupled to one or more optimization modules . The
optimization modules (1252a , 1252b , 1252n) may be
embodied , for example , computer program instructions
executing on computer hardware such as a CPU . Such
computer program instructions may be stored , for example ,
within memory that is contained in one or more of the blades
that is included within a storage system that is included
within the artificial intelligence and machine learning infra
structure (1100) and executed by one or more CPUs that are
included within the storage system that is included within
the artificial intelligence and machine learning infrastructure
(1100) . Readers will appreciate that other embodiments are
contemplated such as , for example , the one or more opti
mization modules (1252a , 1252b , 1252n) residing within
and being executed by a server that is included within the
artificial intelligence and machine learning infrastructure
(1100) , the one or more optimization modules (1252a ,
12526 , 1252n) residing within and being executed by cloud
computing resources that the artificial intelligence and
machine learning infrastructure (1100) is in communications
with , or in some other way .
[0247] The example method depicted in FIG . 12B
includes determining (1254) whether a particular artificial
intelligence or machine learning pipeline will fit on a
particular artificial intelligence and machine learning infra
structure (1100) . Readers will appreciate that multiple arti
ficial intelligence or machine learning pipelines may be
executed on a particular artificial intelligence and machine
learning infrastructure (1100) . Each artificial intelligence or
machine learning pipeline that is being executed on a
particular artificial intelligence and machine learning infra
structure (1100) will consume resources (e . g . , storage , com
pute , networking) . Given that each artificial intelligence and
machine learning infrastructure (1100) has finite resources ,
each artificial intelligence and machine learning infrastruc
ture (1100) cannot support an infinite number of artificial
intelligence or machine learning pipelines . As such , a deter
mination (1254) may need to be made as to whether a
particular artificial intelligence or machine learning pipeline
will fit on a particular artificial intelligence and machine
learning infrastructure (1100) . Determining (1254) whether
a particular artificial intelligence or machine learning pipe
line will fit on a particular artificial intelligence and machine
learning infrastructure (1100) may be carried out , for
example , by determining an amount of resources that are
expected to be required to execute a particular artificial
intelligence or machine learning pipeline and determining
whether the artificial intelligence and machine learning
infrastructure (1100) has an amount of available resources to
satisfy the expected demand for resources from the particu
lar artificial intelligence or machine learning pipeline .
[0248] Readers will appreciate that determining (1254)
whether a particular artificial intelligence or machine learn -
ing pipeline will fit on a particular artificial intelligence and

machine learning infrastructure (1100) can be more compli
cated than a simple comparison of available resources to
expected demand for resources by the particular artificial
intelligence or machine learning pipeline . For example , the
optimization modules (1252a , 1252b , 1252n) may take into
consideration the performance impact on other artificial
intelligence or machine learning pipelines that are currently
executing on the particular artificial intelligence and
machine learning infrastructure (1100) to determine whether
satisfactory performance metrics could be maintained even
with the addition of the particular artificial intelligence or
machine learning pipeline to the particular artificial intelli
gence and machine learning infrastructure (1100) . In such an
example , other artificial intelligence or machine learning
pipelines that are currently executing on the particular
artificial intelligence and machine learning infrastructure
(1100) may be subject to various service level agreements ,
quality of service requirements , and so on that may be
violated with the addition of the particular artificial intelli
gence or machine learning pipeline to the particular artificial
intelligence and machine learning infrastructure (1100)
even if the particular artificial intelligence and machine
learning infrastructure (1100) could technically support the
particular artificial intelligence or machine learning pipeline .
Likewise , the particular artificial intelligence or machine
learning pipeline may itself have various performance and
service requirements / expectations that are attached to the
particular artificial intelligence or machine learning pipeline ,
such that the mere ability to support the execution of the
particular artificial intelligence or machine learning pipeline
may be insufficient .
[0249] Readers will further appreciate that trending infor
mation , including the expected increase or decrease in
resource consumption of the particular artificial intelligence
or machine learning pipeline , as well as the expected
increase or decrease in resource consumption of the other
artificial intelligence or machine learning pipelines that are
currently executing on the particular artificial intelligence
and machine learning infrastructure (1100) may be taken
into consideration when determining (1254) whether a par
ticular artificial intelligence or machine learning pipeline
will fit on a particular artificial intelligence and machine
learning infrastructure (1100) . In such a way , the determi
nation (1254) may be forward looking and avoid a predict
able exhaustion of resources .
[0250] Readers will further appreciate that determining
(1254) whether a particular artificial intelligence or machine
learning pipeline will fit on a particular artificial intelligence
and machine learning infrastructure (1100) may be of par
ticular interest in embodiments where a cluster of artificial
intelligence and machine learning infrastructures (1100) are
available . In such an example , although a plurality of the
artificial intelligence and machine learning infrastructures
(1100) may be able to support the execution of the particular
artificial intelligence or machine learning pipeline , a best fit
analysis may be performed to identify the artificial intelli
gence and machine learning infrastructures (1100) that may
best support the particular artificial intelligence or machine
learning pipeline . In such a way , loading balancing objec
tives may be met , higher service levels may be afforded to
the other artificial intelligence or machine learning pipelines
that are currently executing on the cluster of artificial
intelligence and machine learning infrastructures (1100) ,
and so on .

US 2019 / 0121673 A1 Apr . 25 , 2019
34

[0251] The example method depicted in FIG . 12B also
includes , responsive to affirmatively determining that the
particular artificial intelligence or machine learning pipeline
will fit on the particular artificial intelligence and machine
learning infrastructure (1100) , initiating (1256) execution of
the particular artificial intelligence or machine learning
pipeline on the particular artificial intelligence and machine
learning infrastructure (1100) . Readers appreciate that in
embodiments where a cluster of artificial intelligence and
machine learning infrastructures (1100) are available , execu
tion of the particular artificial intelligence or machine learn
ing pipeline may be initiated (1256) on a particular artificial
intelligence and machine learning infrastructure (1100) that
was selected using a best fit analysis .
[0252] The example method depicted in FIG . 12B also
includes determining (1258) an estimated time for comple
tion for a particular artificial intelligence or machine learn
ing job . Determining (1258) an estimated time for comple
tion for a particular artificial intelligence or machine
learning job may be carried out , for example , by estimating
an amount of time required to complete a particular artificial
intelligence or machine learning job in view of the amount
of resources that may be made available for use by the
particular artificial intelligence or machine learning job . In
such an example , users in a multi - tenant environment may
even be provided with the estimated time for completion for
a particular artificial intelligence or machine learning job , so
that a user may determine whether to actually submit the
particular artificial intelligence or machine learning job .
Likewise , the estimated time for completion for a particular
artificial intelligence or machine learning job may be given
to a scheduler or other module of computer program instruc
tions that can gather such information from a plurality of
artificial intelligence and machine learning infrastructures
(1100) (e . g . , in a clustered environment) in order to identify
which particular artificial intelligence and machine learning
infrastructure (1100) the particular artificial intelligence or
machine learning job should be submitted to .
[0253] The example method depicted in FIG . 12B also
includes determining (1260) the extent to which one or more
artificial intelligence or machine learning models are
improving over time . Determining (1260) the extent to
which one or more artificial intelligence or machine learning
models are improving over time may be carried out , for
example , through the use of trending information for a
particular artificial intelligence or machine learning job . In
fact , determining (1260) the extent to which one or more
artificial intelligence or machine learning models are
improving over time can include performing things like A / B
testing between different models or transformations , per
forming canary testing to quickly and automatically verify
that everything that a particular model depends on is ready
before other time - consuming tests are conducted , and so on .
In fact , in context of canary testing , a deeply learned model
may be used that predicts if the learned model passed A / B
testing using a history of previous A / B tests , particular for a
continuous integration pipeline . In such an example ,
weighted scores may be created to show if the output is
likely to pass . Through the use of such techniques , historical
trending of various models may be maintained and tracked
such that the details and outcomes of steps in a pipeline may
be maintained .
[0254] The example method depicted in FIG . 12B also
includes generating (1262) model recommendations . Read

ers will appreciate that , in view of the fact that many
artificial intelligence or machine learning pipelines may be
executed a single artificial intelligence and machine learning
infrastructure (1100) and further in view of the fact that
multiple artificial intelligence and machine learning infra
structures (1100) may be included in a single cluster , a
substantial amount of information related to the execution of
artificial intelligence or machine learning pipelines may be
available . Such information may be mined to identify , for
example , models that worked well on various datasets ,
transformations that led to improvements for a particular
pipeline and dataset , and so on . As such , model recommen
dations may be generated (1262) to recommend that a
particular model be alerted in some particular way , particular
transformations be excluded from or included in a particular ,
transformations be modified in some way , and so on .
[0255] In the example method depicted in FIG . 12B ,
generating (1262) model recommendations may be carried
out through the fingerprints or similar mechanisms that
describe various aspects of a particular artificial intelligence
or machine learning pipeline , the data ingested by the
particular artificial intelligence or machine learning pipeline ,
and so on . In such a way , recommendations may only be
generated based on information gathered from artificial
intelligence or machine learning pipelines and datasets with
similar fingerprints . For example , if a particular transforma
tion was particularly useful in an image recognition machine
learning pipeline that ingested images with certain charac
teristics , such a transformation may only be recommended
for owners of other image recognition machine learning
pipelines that ingest images with similar characteristics ,
whereas such a recommendation would not be generated a
speech processing artificial intelligence pipeline . Readers
will appreciate that such recommendations could be anony
mized so as to shield another user ' s data , specific informa
tion about their model , and so on .
[0256] In the example method depicted in FIG . 12B ,
embodiments may make use of auto - indexing techniques
through which the artificial intelligence and machine learn
ing infrastructure (1100) can , for example , generate vectors
for data to quickly and effectively index and understand
large amounts of data . Such auto - indexing techniques may
be used to identify cold data that should be tiered off of the
artificial intelligence and machine learning infrastructure
(1100) , to migrate data to a cache (e . g . , for data that is being
heavily used) , and so on . Through the use of such auto
indexing techniques , insights into the content of the data
may cause the artificial intelligence and machine learning
infrastructure (1100) to automatically tier some less useful
data to slower storage as part of a migration process , rather
than migrating the data and subsequently determining that
the data that has already been stored in the artificial intel
ligence and machine learning infrastructure (1100) should be
tiered away .
[0257] The example method depicted in FIG . 12B also
includes tuning (1212) an artificial intelligence or machine
learning pipeline . In the example method depicted in FIG .
12B , tuning (1212) an artificial intelligence or machine
learning pipeline may be carried out , for example , in a
manner that is automated and / or predictive based on an
examination of the workloads placed on the artificial intel
ligence and machine learning infrastructure (1100) as well as
the attributes of one or more artificial intelligence or
machine learning pipelines . For example , the ratios of

US 2019 / 0121673 A1 Apr . 25 , 2019
35

compute - to - storage may be modified based on characteris
tics of the workload , pipelines could be rebalanced based on
an identification of bottlenecks (e . g . , a bottleneck is identi
fied , a solution is identified indicating that additional stream
processing servers are needed , and additional stream - pro
cessing servers are automatically spun up) . Likewise ,
workloads or pipelines could be moved around and various
other actions could be taken to tune (1212) the artificial
intelligence or machine learning pipeline .
[0258] Embodiments of the artificial intelligence and
machine learning infrastructure (1100) may also make use of
a job scheduler and a resource management tool that can
reside within the storage system (s) that are contained in the
artificial intelligence and machine learning infrastructure
(1100) . In such an embodiment , the storage system (s) may
be responsible for managing the scheduling of jobs to the
GPU and other types of resource management , where such
management is carried out by the storage system (s) under a
single management plane . Furthermore , such management
may be carried out in an automated fashion , including
automated scheduling based on various factors (e . g . , the
influx of some data , data contents , and so on) . For example ,
pre - merge tests should see what code has changed and run
tests based on those changes . Furthermore , the storage
systems (s) could implement management in by making
decisions such as , for example , selecting a particular dataset
to train against , the appropriate interval to run tests and
continuously re - train with new data , and so on .
[0259] In some embodiments , a storage system or other
management entity within the artificial intelligence and
machine learning infrastructure (1100) may also implement
automated training with continuous learning based on some
triggers (e . g . , new data , exceptional data) . Furthermore ,
auto - indexing could be used to identify the particular cat
egories of data within a dataset . For example , a user of an
image processing pipeline may want to train against images
of dogs and cats , with no understanding the dataset actually
includes images of dogs , cats , birds , worms , and so on . An
automated indexing solution , however , would detect each of
the categories of data actually contained within the dataset .
[0260] In some embodiments , a storage system or other
management entity within the artificial intelligence and
machine learning infrastructure (1100) may also implement
the real - time coordination of workflows . Readers will appre
ciate that the artificial intelligence and machine learning
infrastructure (1100) do not just execute artificial intelli
gence and machine learning pipelines , as the artificial intel
ligence and machine learning infrastructure (1100) may also
run message queue systems , data cleansing modules , and so
on . As such , the artificial intelligence and machine learning
infrastructure (1100) may be configured to handle the coor
dination of all of the resources under a single management
plane .
10261] For further explanation , FIG . 13 sets forth a flow
chart illustrating an example method of data transformation
caching in an artificial intelligence infrastructure (1302) that
includes one or more storage systems (1304) and one or
more GPU servers (1318) according to some embodiments
of the present disclosure . Although depicted in less detail ,
the storage system (1304) depicted in FIG . 13 may be
similar to the storage systems described above , as the
storage system (1304) depicted in FIG . 13 may include any
combination of the components contained in the storage
systems described above . The GPU servers (1318) depicted

in FIG . 13 may be embodied , for example , as a server ,
workstation , or other computing device that specialize in
using general - purpose computing on graphics processing
units (GPGPU ') to accelerate deep learning applications ,
machine learning applications , artificial intelligence appli
cations , or similar applications . Although not explicitly
depicted in FIG . 13 , the storage systems (1304) and the GPU
servers (1318) may be coupled for data communications via
one or more data communications links . Readers will appre
ciate that the artificial intelligence infrastructure (1302)
depicted in FIG . 13 may be similar to the artificial intelli
gence and machine learning infrastructures described above .
[0262] The artificial intelligence infrastructure (1302)
depicted in FIG . 13 may be configured to support the
execution of one or more machine learning models . Such
machine learning models may consist of one or more
machine learning algorithms that are executed on one or
more of the GPU servers (1308) . Such machine learning
algorithms can include supervised learning algorithms such
as , for example , linear regression algorithms , logistic regres
sion algorithms , decision tree algorithms , or others . Such
machine learning algorithms can also include unsupervised
learning algorithms such as , for example , Apriori algo
rithms , k - means clustering algorithms , or others . Likewise ,
such machine learning algorithms can also include rein
forcement learning algorithms such as , for example , Markov
decision processes , Q - learning algorithms , or others .
[0263] In the examples depicted herein , the machine learn
ing models that are supported by the artificial intelligence
infrastructure (1302) may be provided input data that is
stored within one or more of the storage systems (1304) that
are included in the artificial intelligence infrastructure
(1302) . As such , input data that is stored within one or more
of the storage systems (1304) that are included in the
artificial intelligence infrastructure (1302) may be provided
to the GPU servers (1308) such that the GPU servers (1308)
can utilize the input data as input into the machine learning
algorithms that are being executed on the GPU servers
(1308) . Readers will appreciate , however , that different
machine learning models may require input data that is in
different formats , contains different types of data , and so on .
For example , a first machine learning model may utilize a
vector as input while a second machine learning model may
utilize a matrix as input .
[0264] The example method depicted in FIG . 13 includes
identifying (1308) , in dependence upon one or more
machine learning models (1316) to be executed on the GPU
servers (1318) , one or more transformations to apply to a
dataset (1306) . The dataset (1306) depicted in FIG . 13 may
be embodied , for example , as a collection of files , objects , or
other pieces of data that collectively form a set of data that
is to be used for training a machine learning model . The
dataset (1306) depicted in FIG . 13 may , however , not be in
a format that can be efficiently used by a machine learning
model . For example , the objects in the dataset (1306) may
contain unstructured data that either does not have a pre
defined data model or is not organized in a pre - defined
manner . Such unstructured data may be , for example , text
heavy data that contains data such as dates , numbers , and
facts as well . Such unstructured data may be difficult to
understand using traditional programs relative to data stored
in fielded form in databases , annotated in documents , or
otherwise structured . Alternatively , the objects in the dataset
(1306) may contain untagged data whose meaning cannot be

US 2019 / 0121673 A1 Apr . 25 , 2019
36

readily identified by a machine learning model . Readers will
appreciate that in other examples , the contents of the dataset
(1306) may be inefficiently formatted , tagged , or otherwise
inefficient for use as training data for a machine learning
model .
[0265] . Consider an example in which the dataset (1306) is
embodied as a collection of log files generated by the storage
system (1304) . In such an example , each line in each of the
log files may be unstructured as each line is created in a way
so as to be in a human readable format . Such unstructured
data may be inefficient for use by a machine learning model
as the unstructured data may not be structured via pre
defined data models or schema that enable for easy search
ing of the data . Other examples of datasets (1306) that
contain unstructured data can include , for example , datasets
that include video files , image files , audio files , and many
others .
[0266] In the example method depicted in FIG . 13 , the one
or more transformations to apply to the dataset (1306) may
include , for example , performing scaling transformations to
standardize the range of independent variables or features of
data , performing decomposition transformations to decom
pose features that represent a complex concept into con
stituent parts (e . g . , decomposing a date that has day and time
components an hour of the day constituent part) , performing
aggregation transformations to aggregate multiple features
into a single feature (e . g . , instances for each time a customer
logged into a system could be aggregated into a count
feature that identifies the number of logins) , and many
others . Readers will appreciate that the specific transforma
tions to apply to the dataset (1306) may not only be a
function of the format of the dataset (1306) itself , but
specific transformations to apply may also be a function of
the expected input for the one or more machine learning
models (1316) to be executed on the GPU servers (1318) .
The one or more transformations to apply to the dataset
(1306) can further include , for example , transforming
unstructured data into structure data by extracting informa
tion from the unstructured format and populating the data in
a structured format , transforming structured data in a first
format to a second format that is expected by the one or more
machine learning models (1316) , and so on .
[0267] The example method depicted in FIG . 13 also
includes generating (1310) , in dependence upon the one or
more transformations , a transformed dataset (1304) . The
transformed dataset (1314) may be embodied , for example ,
as vector that can serve as input to a machine learning
model , as a tensor that can serve as an input to a machine
learning model , and so on . FIG . 13 relates to an embodiment
where something other than the storage system (1304)
generates (1310) the transformed dataset (1304) in depen
dence upon the one or more transformations . For example ,
the artificial intelligence infrastructure (1302) may include
other computing devices (e . g . , dedicated servers) that gen
erate (1310) the transformed dataset (1304) . Likewise , in
other embodiments the GPU servers (1318) may be used to
generate (1310) the transformed dataset (1304) . In addi
tional embodiments , generating (1310) the transformed
dataset (1304) may be offloaded to a cloud services provider
that is in data communications with the artificial intelligence
infrastructure (1302) . Readers will appreciate that prior to
actually generating (1310) the transformed dataset (1314) ,
the storage system (1304) or other computing resources that
are performing the transformation may perform other opera

tions to prepare the dataset (1306) for use by the machine
learning models that are supported by the artificial intelli
gence infrastructure (1302) . For example , the storage system
(1304) or other computing resources that are performing the
transformation may select data for inclusion in the trans
formed dataset (1314) , format the data to ensure that data
formats are consistent for data received from different
sources , clean the data to discard unwanted data , remove
duplicated data , delete unusable data , handle missing data ,
or perform other preprocessing operations .
[0268] Readers will appreciate that in embodiments where
the storage system (1304) or other computing resources that
performs the steps described above , the GPU servers (1318)
that actually execute the machine learning algorithms may
avoid performing the computationally demanding task of
preparing data for use by the machine learning algorithms ,
as the process of receiving , cleaning , pre - processing , and
transforming the data may be performed by the storage
system (1304) rather than the GPU servers (1318) . As such ,
the computing resources provided by the GPU servers
(1318) may be reserved for actually executing the machine
learning algorithms against an already prepared transformed
dataset (1314) , rather than having the computing resources
provided by the GPU servers (1318) burdened with the task
of preparing data for ingestion by the machine learning
algorithms .
[0269] The example method depicted in FIG . 13 also
includes storing (1312) , within one or more of the storage
systems (1304) , the transformed dataset (1314) . In the
example method depicted in FIG . 13 , portions of the trans
formed dataset (1314) may be stored across multiple storage
devices within the storage system (1304) , along with parity
data , to increase the resiliency of the transformed dataset
(1314) through the use of a RAID (e . g . , RAID 6) or
RAID - like approach . Furthermore , concepts such as , for
example , data tiering may be applied when storing (1312)
the transformed dataset (1314) such that more frequently
accessed transformed datasets are stored in portions of the
storage system (1304) that provide for faster access while
less frequently accessed transformed datasets are stored in
portions of the storage system (1304) that provide for slower
access . In fact , such concepts can be extended such that
transformed datasets are tiered away from the storage sys
tems (1304) themselves and stored on , for example , storage
that is provided by a cloud services provider . In such
examples , heuristics may be used to place and move the
transformed datasets within a storage environment that can
include the one or more storage systems (1304) as well as
storage resources that may exist outside of the artificial
intelligence infrastructure (1302) , although in other embodi
ments storing (1312) the transformed dataset (1314) occurs
exclusively within one or more of the storage systems
(1304) that reside within the artificial intelligence infrastruc
ture (1302) .
[0270] The example method depicted in FIG . 13 also
includes receiving (1320) a plurality of requests (1324) to
transmit the transformed dataset (1314) to one or more of the
GPU servers (1318) . Readers will appreciate that multiple
requests (1324) for the same transformed dataset (1314) may
be received (1320) for a variety of reasons . For example , a
first request to transmit the transformed dataset (1314) to
one or more of the GPU servers (1318) may be received
(1320) in response to the GPU servers (1318) initiating
execution of a particular machine learning model that will

US 2019 / 0121673 A1 Apr . 25 , 2019
37

train on the transformed dataset (1314) . In such an example ,
after training has completed , changes may be made to the
particular machine learning model as part of an effort to
improve the particular machine learning model . Once the
changes have been made to the particular machine learning
model , a second request to transmit the transformed dataset
(1314) to one or more of the GPU servers (1318) may be
received (1324) in response to the GPU servers (1318)
initiating execution of the updated machine learning model
that will train on the transformed dataset (1314) . Similarly ,
multiple requests for the same transformed dataset (1314)
may be received (1320) , for example , when a first GPU
server is going to execute a first version of a particular
machine learning model that trains on the transformed
dataset (1314) more or less simultaneously to a second GPU
server executing a second version of a particular machine
learning model that trains on the transformed dataset (1314) .
Readers will appreciate that , because the one or more
storage systems (1304) can store the transformed dataset
(1314) within the storage systems (1304) themselves , nei
ther the storage systems (1304) nor the GPU servers (1318)
will need to repeat a transformation that has previously been
performed
[0271] The example method depicted in FIG . 13 also
includes , responsive to each request (1324) , transmitting
(1322) , from the one or more storage systems (1304) to the
one or more GPU servers (1318) without re - performing the
one or more transformations on the dataset (1306) , the
transformed dataset (1314) . The transformed dataset (1314)
may be transmitted (1322) from the storage system (1304) to
the one or more GPU servers (1318) , for example , via one
or more data communications links between the storage
system (1304) and the one or more GPU servers (1318) ,
which may be embodied in many different ways as described
in more detail above . Transmitting (1322) the transformed
dataset (1314) from the storage system (1304) to the one or
more GPU servers (1318) may be carried out , for example ,
via RDMA . Transmitting (1322) the transformed dataset
(1314) via RDMA may be carried out , for example , by a
network adapter that is included in the storage system (1304)
transferring the transformed dataset (1314) directly from
memory in the storage system (1304) to memory within the
one or more GPU servers (1318) . Through the use of such
an RDMA transfer , the operating system and the GPUs
within the GPU servers (1318) may be bypassed such that no
work is required by the GPUs within the GPU servers (1318)
to obtain the transformed dataset (1314) , as would be
required in non - RDMA transfers (e . g . , message - based trans
fers) were used . Readers will appreciate that the use of
RDMA transfers is an additional mechanism that can enable
the GPU servers (1318) that actually execute the machine
learning algorithms to avoid performing the computationally
demanding task of obtaining the transformed dataset (1314) .
As such , the computing resources provided by the GPU
servers (1318) may be reserved for actually executing the
machine learning algorithms against an already prepared
transformed dataset (1314) , rather than having the comput -
ing resources provided by the GPU servers (1318) burdened
with the task of obtaining the transformed dataset (1314) . In
such a way , the one or more storage systems (1304) may
effectively operate as a cache that can be used by the GPU
servers (1318) to obtain already transformed datasets
(1314) .

[0272] For further explanation , FIG . 14 sets forth a flow
chart illustrating an additional example method of data
transformation caching in an artificial intelligence infra
structure (1302) that includes one or more storage systems
(1304) and one or more GPU servers (1318) according to
some embodiments of the present disclosure . The example
method depicted in FIG . 14 is similar to the example method
depicted in FIG . 13 , as the example method depicted in FIG .
14 also includes identifying (1308) one or more transfor
mations to apply to a dataset (1306) , generating (1310) a
transformed dataset (1304) , storing (1312) the transformed
dataset (1314) within one or more of the storage systems
(1304) , receiving (1320) a plurality of requests (1324) to
transmit the transformed dataset (1314) to one or more of the
GPU servers (1318) , and responsive to each request (1324) ,
transmitting (1322) the transformed dataset (1314) from the
one or more storage systems (1304) to the one or more GPU
servers (1318) without re - performing the one or more trans
formations on the dataset (1306) .
10273] . In the example method depicted in FIG . 14 , the
storage system (1304) both identifies (1308) one or more
transformations to apply to the dataset (1306) and generates
(1310) the transformed dataset (1304) . Readers will appre
ciate that , as described above , the storage system (1304)
may include a variety of computing resources to perform
such tasks . As such , the storage systems (1304) may be
configured to include computer program instructions that ,
when executed by the computing resources within the stor
age system (1304) , perform the steps of identifying (1308)
one or more transformations to apply to the dataset (1306)
and generating (1310) the transformed dataset (1304) .
[0274] In the example method depicted in FIG . 14 , trans
mitting (1322) the transformed dataset (1314) from the one
or more storage systems (1304) to the one or more GPU
servers (1318) without re - performing the one or more trans
formations on the dataset (1306) can include transmitting
(1402) the transformed dataset (1314) from the one or more
storage systems (1304) directly to application memory on
the GPU servers (1318) . Transmitting (1322) the trans
formed dataset (1314) from the one or more storage systems
directly to application memory on the GPU servers (1318)
may be carried , for example , by transmitting the transformed
dataset (1314) from the storage system (1304) to the GPU
servers (1318) via RDMA . Transmitting the transformed
dataset (1314) via RDMA may be carried out , for example ,
by a network adapter that is included in the storage system
(1304) transferring the transformed dataset (1314) directly
from memory in the storage system (1304) to application
memory within the one or more GPU servers (1318) .
Through the use of such an RDMA transfer , the operating
system and the GPUs within the GPU servers (1318) may be
bypassed such that no work is required by the GPUs within
the GPU servers (1318) to obtain the transformed dataset
(1314) , as would be required in non - RDMA transfers (e . g . ,
message - based transfers) were used . Readers will appreciate
that the use of RDMA transfers is an additional mechanism
that can enable the GPU servers (1318) that actually execute
the machine learning algorithms to avoid performing the
computationally demanding task of obtaining the trans
formed dataset (1314) . As such , the computing resources
provided by the GPU servers (1318) may be reserved for
actually executing the machine learning algorithms against
an already prepared transformed dataset (1314) , rather than
having the computing resources provided by the GPU serv

US 2019 / 0121673 A1 Apr . 25 , 2019
38

ers (1318) burdened with the task of obtaining the trans
formed dataset (1314) . Readers will appreciate that in other
embodiments , transmitting (1322) the transformed dataset
(1314) from the one or more storage systems directly to
application memory on the GPU servers (1318) may be
carried , for example , through the use of NFS or other
appropriate technology .
[0275] For further explanation , FIG . 15 sets forth a flow
chart illustrating an additional example method of data
transformation caching in an artificial intelligence infra
structure (1302) that includes one or more storage systems
(1304) and one or more GPU servers (1318) according to
some embodiments of the present disclosure . The example
method depicted in FIG . 15 is similar to the example
methods depicted in FIG . 13 and FIG . 14 , as the example
method depicted in FIG . 15 also includes identifying (1308)
one or more transformations to apply to a dataset (1306) ,
generating (1310) a transformed dataset (1304) , storing
(1312) the transformed dataset (1314) within one or more of
the storage systems (1304) , receiving (1320) a plurality of
requests (1324) to transmit the transformed dataset (1314) to
one or more of the GPU servers (1318) , and responsive to
each request (1324) , transmitting (1322) the transformed
dataset (1314) from the one or more storage systems (1304)
to the one or more GPU servers (1318) without re - perform
ing the one or more transformations on the dataset (1306) .
[0276] The example method depicted in FIG . 15 includes
executing (1508) , by one or more of the GPU servers (1318) ,
one or more machine learning algorithms associated with the
machine learning model (1316) using the transformed data
set (1314) as input . Readers will appreciate that the output
generated by executing (1508) one or more machine learn
ing algorithms associated with the machine learning model
(1316) using the transformed dataset (1314) as input may
vary in dependence upon the particular machine learning
model that is being carried out .
[0277] The example method depicted in FIG . 15 also
includes scheduling (1504) , by a unified management plane
(1502) , one or more transformations for one or more of the
storage systems (1304) to apply to the dataset (1306) . The
unified management plane (1502) depicted in FIG . 15 may
be embodied , for example , as a module of computer pro
gram instructions executing on computer hardware such as
one or more CPUs . The unified management plane (1502)
may be configured to monitor and manage all elements
within the artificial intelligence infrastructure (1302) ,
including the storage systems (1304) , the GPU servers
(1318) , and any devices (e . g . , network switches) that enable
data communications between the storage systems (1304)
and the GPU servers (1318) . The unified management plane
(1502) may be configured to perform tasks such as , for
example , scheduling tasks such as one or more dataset
transformations to be performed by one or more of the
storage systems (1304) , scheduling tasks such as executing
of one or more machine learning algorithms on the one or
more GPU servers (1318) , managing the amount of storage
system resources that are made available for performing one
or more dataset transformations by one or more of the
storage systems (1304) , managing the amount of GPU
server resources that are made available for executing of one
or more machine learning algorithms on the one or more
GPU servers (1318) , managing data paths between the one
or more storage systems (1304) and the one or more GPU
servers (1318) , and so on .

[0278] Readers will appreciate that , because the unified
management plane (1502) has insights into both the storage
systems (1304) and the GPU servers (1318) via monitoring
both the storage systems (1304) and the GPU servers (1318) ,
the unified management plane (1502) can manage both the
storage systems (1304) and the GPU servers (1318) in a way
so as to optimize interactions between the storage systems
(1304) and the GPU servers (1318) and also to optimize the
series of steps that are needed to support the execution of a
machine learning model . In fact , the unified management
plane (1502) may be configured to perform automated
scheduling of tasks on the storage systems (1304) and on the
GPU servers (1318) based on various factors (e . g . , the influx
of some data , data contents , and so on) . For example , the
unified management plane (1502) could be configured to
decide that a particular machine learning model should train
against a particular dataset , the unified management plane
(1502) could be configured to decide the appropriate interval
to run tests and continuously re - train with new data , and so
on . In such an example , the unified management plane
(1502) could be configured to support automated training
with continuous learning based on some triggers (e . g . , new
data , exceptional data) .
[0279] In the example method depicted in FIG . 15 , the
unified management plane (1502) is configured to schedule
(1504) one or more transformations for one or more of the
storage systems (1304) to apply to the dataset (1306) and
also configured to schedule (1506) execution of one or more
machine learning algorithms associated with the machine
learning model (1316) by the one or more GPU servers
(1318) . In such an example , the unified management plane
(1502) may be configured to work with a scheduler on one
or more of the storage systems (1304) as well as a scheduler
on the one or more GPU servers (1318) . The unified
management plane (1502) may be configured to work with
a scheduler on one or more of the storage systems (1304) as
well as a scheduler on the one or more GPU servers (1318) ,
for example , by sending one or more messages to the storage
systems (1304) that are understood by the storage system
(1304) as a scheduling instruction , by sending one or more
messages to the GPU servers (1318) that are understood by
the GPU servers (1318) as a scheduling instruction , and so
on . In such an example , the storage systems (1304) and the
GPU servers (1318) may be configured , via an API or some
other mechanism , to receive scheduling instructions from
the unified management plane (1502) and to implement the
scheduling instructions received from the unified manage
ment plane (1502) via one or more local schedulers .
[0280] For further explanation , FIG . 16 sets forth a flow
chart illustrating an additional example method of data
transformation caching in an artificial intelligence infra
structure (1302) that includes one or more storage systems
(1304) and one or more GPU servers (1318) according to
some embodiments of the present disclosure . The example
method depicted in FIG . 16 is similar to the example
methods depicted in FIGS . 13 - 15 , as the example method
depicted in FIG . 16 also includes identifying (1308) one or
more transformations to apply to a dataset (1306) , generat
ing (1310) a transformed dataset (1304) , storing (1312) the
transformed dataset (1314) within one or more of the storage
systems (1304) , receiving (1320) a plurality of requests
(1324) to transmit the transformed dataset (1314) to one or
more of the GPU servers (1318) , and responsive to each
request (1324) , transmitting (1322) the transformed dataset

US 2019 / 0121673 A1 Apr . 25 , 2019
39

(1314) from the one or more storage systems (1304) to the
one or more GPU servers (1318) without re - performing the
one or more transformations on the dataset (1306) .
[0281] The example method depicted in FIG . 16 also
includes providing (1602) , by the unified management plane
(1502) to the one or more GPU servers (1318) , information
(1604) describing the dataset (1306) , the one or more
transformations applied to the dataset (1306) , and the trans
formed dataset (1314) . The information (1604) describing
the dataset (1306) , the one or more transformations applied
to the dataset (1306) , and the transformed dataset (1314)
may be maintained , for example , by an entity such as the
unified management plane (1502) described above , by the
storage system itself , or by some other component that is
within or accessible to the artificial intelligence infrastruc
ture (1302) . By providing (1602) the information (1604)
describing the dataset (1306) , the one or more transforma
tions applied to the dataset (1306) , and the transformed
dataset (1314) to the GPU servers (1318) , the GPU servers
(1318) may be configured to simply request such a trans
formed dataset (1314) rather than seeking to have the
transformations applied again . As such , the storage system
(1304) may serve as a transformation cache such that the
computationally intensive process of transforming a dataset
(1306) for use by a machine learning model (1316) need not
be repeated . Readers will appreciate that , in view of the fact
that different machine learning models may require identical
transformations and that different instances of the same
machine learning mode may require identical transforma
tions , by maintaining the information describing the dataset
(1306) , the one or more transformations applied to the
dataset (1306) , the transformed dataset (1314) , as well as the
transformed dataset (1314) itself , the storage system (1304)
may serve as a transformation cache whose presence can
prevent the GPUs within the GPU servers (1318) from being
repeatedly tasked with the computationally intensive pro
cess of transforming a dataset (1306) for use by a machine
learning model (1316) that is supported by the GPU servers
(1318) .
[0282] Readers will appreciate that although the previous
paragraphs relate to embodiments where steps may be
described as occurring in a certain order , no ordering is
required unless otherwise stated . In fact , steps described in
the previous paragraphs may occur in any order . Further
more , although one step may be described in one figure and
another step may be described in another figure , embodi
ments of the present disclosure are not limited to such
combinations , as any of the steps described above may be
combined in particular embodiments .
[0283] Readers will further appreciate that although the
examples described above relate to embodiments where an
artificial intelligence infrastructure supports the execution of
machine learning models , the artificial intelligence infra
structure may support the execution of a broader class of AI
algorithms , including production algorithms . In fact , the
steps described above may similarly apply to such a broader
class of AI algorithms .
[0284] Readers will further appreciate that although the
embodiments described above relate to embodiments where
the artificial intelligence infrastructure includes one or more
storage systems and one or more GPU servers , in other
embodiments , other technologies may be used . For example ,
in some embodiments the GPU servers may be replaced by
a collection of GPUs that are embodied in a non - server form

factor . Likewise , in some embodiments , the GPU servers
may be replaced by some other form of computer hardware
that can execute computer program instructions , where the
computer hardware that can execute computer program
instructions may be embodied in a server form factor or in
a non - server form factor .
[0285] Example embodiments are described largely in the
context of a fully functional computer system . Readers of
skill in the art will recognize , however , that the present
disclosure also may be embodied in a computer program
product disposed upon computer readable storage media for
use with any suitable data processing system . Such com
puter readable storage media may be any storage medium
for machine - readable information , including magnetic
media , optical media , or other suitable media . Examples of
such media include magnetic disks in hard drives or dis
kettes , compact disks for optical drives , magnetic tape , and
others as will occur to those of skill in the art . Persons skilled
in the art will immediately recognize that any computer
system having suitable programming means will be capable
of executing the steps of the method as embodied in a
computer program product . Persons skilled in the art will
recognize also that , although some of the example embodi
ments described in this specification are oriented to software
installed and executing on computer hardware , nevertheless ,
alternative embodiments implemented as firmware or as
hardware are well within the scope of the present disclosure .
[0286] Embodiments can include be a system , a method ,
and / or a computer program product . The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present disclosure .
0287] The computer readable storage medium can be a

tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0288] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may

US 2019 / 0121673 A1 Apr . 25 , 2019
40

comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0289] Computer readable program instructions for carry
ing out operations of the present disclosure may be assem
bler instructions , instruction - set - architecture (ISA) instruc
tions , machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , or
either source code or object code written in any combination
of one or more programming languages , including an object
oriented programming language such as Smalltalk , C + + or
the like , and conventional procedural programming lan
guages , such as the “ C ” programming language or similar
programming languages . The computer readable program
instructions may execute entirely on the user ' s computer ,
partly on the user ' s computer , as a stand - alone software
package , partly on the user ' s computer and partly on a
remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user ' s computer through any type of
network , including a local area network (LAN) or a wide
area network (WAN) , or the connection may be made to an
external computer (for example , through the Internet using
an Internet Service Provider) . In some embodiments , elec
tronic circuitry including , for example , programmable logic
circuitry , field - programmable gate arrays (FPGA) , or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present disclosure .
10290] Aspects of the present disclosure are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to some embodiments of the
disclosure . It will be understood that each block of the
flowchart illustrations and / or block diagrams , and combina
tions of blocks in the flowchart illustrations and / or block
diagrams , can be implemented by computer readable pro
gram instructions .
[0291] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .

[0292] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0293] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present disclosure . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions .
[0294] Readers will appreciate that the steps described
herein may be carried out in a variety ways and that no
particular ordering is required . It will be further understood
from the foregoing description that modifications and
changes may be made in various embodiments of the present
disclosure without departing from its true spirit . The descrip
tions in this specification are for purposes of illustration only
and are not to be construed in a limiting sense . The scope of
the present disclosure is limited only by the language of the
following claims .

1 . A method of data transformation caching in an artificial
intelligence infrastructure that includes one or more storage
systems and one or more graphical processing unit (“ GPU ')
servers , the method comprising :

identifying , by one or more computer processors of the
artificial intelligence infrastructure , in dependence
upon one or more machine learning models to be
executed on the GPU servers , one or more transforma
tions to apply to a dataset ;

generating , in dependence upon the one or more trans
formations , a transformed dataset ;

storing , within one or more of the storage systems , the
transformed dataset ;

receiving a plurality of requests to transmit the trans
formed dataset to one or more of the GPU servers , and

responsive to each request , transmitting , from the one or
more storage systems to the one or more GPU servers
without re - performing the one or more transformations
on the dataset , the transformed dataset .

2 . The method of claim 1 wherein generating , in depen
dence upon the one or more transformations , a transformed
dataset further comprises generating , by the storage system
in dependence upon the one or more transformations , trans
formed dataset .

US 2019 / 0121673 A1 Apr . 25 , 2019

3 . The method of claim 1 wherein transmitting , from the
one or more storage systems to the one or more GPU servers
without re - performing the one or more transformations on
the dataset , the transformed dataset further comprises trans
mitting the transformed dataset from the one or more storage
systems directly to application memory on the GPU servers .

4 . The method of claim 3 wherein transmitting the trans
formed dataset from the one or more storage systems
directly to application memory on the GPU servers further
comprises transmitting the transformed data dataset from the
one or more storage systems to the GPU servers via remote
direct memory access (?RDMA ') .

5 . The method of claim 1 further comprising executing , by
one or more of the GPU servers , one or more machine
learning algorithms associated with the machine learning
model using the transformed dataset as input .

6 . The method of claim 1 further comprising :
scheduling , by a unified management plane , one or more

transformations for one or more of the storage systems
to apply to the dataset ; and

scheduling , by the unified management plane , execution
of one or more machine learning algorithms associated
with the machine learning model by the one or more
GPU servers .

7 . The method of claim 1 further comprising providing , by
a unified management plane to the one or more GPU servers ,
information describing the dataset , the one or more trans
formations applied to the dataset , and the transformed data
set .

8 . An artificial intelligence infrastructure that includes one
or more memory of storage systems and one or more
graphical processing unit (GPU ') servers , and one or more
computer processors of the artificial intelligence infrastruc
ture that are configured to carry out the steps of :

identifying , by the one or more computer processors of
the artificial intelligence infrastructure , in dependence
upon one or more machine learning models to be
executed on the GPU servers , one or more transforma
tions to apply to a dataset ;

generating , in dependence upon the one or more trans
formations , a transformed dataset ;

storing , within the one or more memory of the storage
systems , the transformed dataset ;

receiving a plurality of requests to transmit the trans
formed dataset to one or more of the GPU servers ; and

responsive to each request , transmitting , from the one or
more storage systems to the one or more GPU servers
without re - performing the one or more transformations
on the dataset , the transformed dataset .

9 . The artificial intelligence infrastructure of claim 8
wherein generating , in dependence upon the one or more
transformations , a transformed dataset further comprises
generating , by the storage system in dependence upon the
one or more transformations , transformed dataset .

10 . The artificial intelligence infrastructure of claim 8
wherein transmitting , from the one or more storage systems
to the one or more GPU servers without re - performing the
one or more transformations on the dataset , the transformed
dataset further comprises transmitting the transformed data
set from the one or more storage systems directly to appli
cation memory on the GPU servers .

11 . The artificial intelligence infrastructure of claim 10
wherein transmitting the transformed dataset from the one or
more storage systems directly to application memory on the

GPU servers further comprises transmitting the transformed
data dataset from the one or more storage systems to the
GPU servers via remote direct memory access (?RDMA ') .

12 . The artificial intelligence infrastructure of claim 8
wherein the artificial intelligence infrastructure is further
configured to carry out the step of executing , by one or more
of the GPU servers , one or more machine learning algo
rithms associated with the machine learning model using the
transformed dataset as input .

13 . The artificial intelligence infrastructure of claim 8
wherein the artificial intelligence infrastructure is further
configured to carry out the steps of :

scheduling , by a unified management plane , one or more
transformations for one or more of the storage systems
to apply to the dataset ; and

scheduling , by the unified management plane , execution
of one or more machine learning algorithms associated
with the machine learning model by the one or more
GPU servers .

14 . The artificial intelligence infrastructure of claim 8
wherein the artificial intelligence infrastructure is further
configured to carry out the step of providing , by a unified
management plane to the one or more GPU servers , infor
mation describing the dataset , the one or more transforma
tions applied to the dataset , and the transformed dataset .

15 . An apparatus for data transformation offloading in an
artificial intelligence infrastructure that includes one or more
storage systems and one or more graphical processing unit
(GPU ') servers , the apparatus comprising a computer pro
cessor , a computer memory operatively coupled to the
computer processor , the computer memory having disposed
within it computer program instructions that , when executed
by the computer processor , cause the apparatus to carry out
the steps of :

identifying , in dependence upon one or more machine
learning models to be executed on the GPU servers , one
or more transformations to apply to a dataset ;

generating , in dependence upon the one or more trans
formations , a transformed dataset ;

storing , within one or more of the storage systems , the
transformed dataset ;

receiving a plurality of requests to transmit the trans
formed dataset to one or more of the GPU servers ; and

responsive to each request , transmitting , from the one or
more storage systems to the one or more GPU servers
without re - performing the one or more transformations
on the dataset , the transformed dataset .

16 . The apparatus of claim 15 wherein generating , in
dependence upon the one or more transformations , a trans
formed dataset further comprises generating , by the storage
system in dependence upon the one or more transformations ,
transformed dataset .

17 . The apparatus of claim 15 wherein transmitting , from
the one or more storage systems to the one or more GPU
servers without re - performing the one or more transforma
tions on the dataset , the transformed dataset further com
prises transmitting the transformed dataset from the one or
more storage systems directly to application memory on the
GPU servers .

18 . The apparatus of claim 15 further comprising com
puter program instructions that , when executed by the com
puter processor , cause the apparatus to carry out the steps of :

US 2019 / 0121673 A1 Apr . 25 , 2019

scheduling , by a unified management plane , one or more
transformations for one or more of the storage systems
to apply to the dataset ; and

scheduling , by the unified management plane , execution
of one or more machine learning algorithms associated
with the machine learning model by the one or more
GPU server .

19 . The apparatus of claim 15 further comprising com
puter program instructions that , when executed by the com
puter processor , cause the apparatus to carry out the step of
providing , by a unified management plane to the one or more
GPU servers , information describing the dataset , the one or
more transformations applied to the dataset , and the trans
formed dataset .

20 . The apparatus of claim 15 further comprising com
puter program instructions that , when executed by the com
puter processor , cause the apparatus to carry out the step of
executing , by one or more of the GPU servers , one or more
machine learning algorithms associated with the machine
learning model using the transformed dataset as input .

* * * * *

