
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0372702 A1

Subramanyam et al.

US 201403727 O2A1

(43) Pub. Date: Dec. 18, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(63)

(60)

HANDLING MEMORY PRESSURE IN AN
IN-DATABASE SHARDED QUEUE

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

Inventors: Sunitha Subramanyam, Redwood City,
CA (US); Shubha Bose, Bangalore (IN);
Anil Madan, San Ramon, CA (US);
Devendra Singh, Bangalore (IN); James
W. Stamos, Saratoga, CA (US); Mukesh
Jaiswal, Bangalore (IN)

Assignee: Oracle International Corporation,
Redwood Shores, CA (US)

Appl. No.: 14/165.974

Filed: Jan. 28, 2014

Related U.S. Application Data
Continuation-in-part of application No. 14/095.734,
filed on Dec. 3, 2013, which is a continuation-in-part
of application No. 14/095,543, filed on Dec. 3, 2013.
Provisional application No. 61/834,246, filed on Jun.
12, 2013, provisional application No. 61/834,246,
filed on Jun. 12, 2013.

Publication Classification

(51) Int. Cl.
G06F 2/08 (2006.01)

(52) U.S. Cl.
CPC G06F 12/0848 (2013.01)
USPC .. 711/129

(57) ABSTRACT

Handling memory pressure in an in-database sharded queue
is described. Messages from a plurality of enqueuers are
stored in a plurality of shards of a sharded queue. Messages
from a first enqueuer are stored in a first shard. A queue table
corresponding to the sharded queue is maintained. In Volatile
memory, a plurality of message caches is maintained, each
message cache corresponding to a shard of the plurality of
shards. Memory pressure is detected based on memory usage
of the Volatile memory. To store a specific message from the
enqueuer, the specific message is stored in rows of the queue
table that are assigned to the first shard. When memory pres
Sure is not detected, the specific message is stored in a first
message cache corresponding to the first shard. Subscribers
of the sharded queue are caused to dequeue messages from
the plurality of shards.

QUEUETABLE 300

r ROW FORM

ROW FOR M2

PARTITION 302 < RON FOR M3 > SUBSHARD 352
RON FOR M4

SHARD
2O2

RON FOR M5

ROW FOR M6

RON FORM7

PARTITION3O4 -g RON FOR M8 > SUBSHARD 354
RON FORM9

V
r >

ROW
HN

ROW

FORMO M

FORM11

ROW FORM12

PARTITION 306 K ROW FORM13 X SUBSHARD 356
ROW FORM4

SHARD
204

> ROW

ROW

ROW

FORM15

FORM16

FORM17

K

PARTITION3O8 < ROW FORM18 > SUBSHARD 358
ROW FORM19

> ROW

ROW

ROW

FORM2O 1

FORM21

FORM22

PARTITION 310 < ROW FORM23 X-SUBSHARD 360
ROW FORM24

SHARD ROW FORM25 > 206 ROW

ROW

FORM26

FORM27

PARTITION 312 < ROW FORM28 > SUBSHARD 362
ROW FORM29

ROW FORM30 1.

Patent Application Publication Dec. 18, 2014 Sheet 1 of 13 US 2014/0372702 A1

US 2014/0372702 A1 Dec. 18, 2014 Sheet 2 of 13 Patent Application Publication

Patent Application Publication Dec. 18, 2014 Sheet 3 of 13 US 2014/0372702 A1

QUEUE TABLE 300

ROW FOR

ROW FOR

ROW FOR

ROW FOR

ROW FOR

ROW FOR

ROW FOR

ROW FOR SUBSHARD 354

ROW FOR

ROW FOR M10

ROW FORM

ROW FOR M12

ROW FORM13 SUBSHARD 356

ROW FORM14

ROW FOR M15

ROW FOR M16

ROW FORM17

ROW FOR M18 SUBSHARD 358

ROW FOR M19

ROW FOR M2O

ROW FOR M2

ROW FOR M22

ROW FOR M23 SUBSHARD 360

ROW FOR M24

ROW FOR M25

ROW FOR M26

ROW FOR M27

ROW FORM28 SUBSHARD 362

ROW FORM29

ROW FOR M3O

1

Row FORM2
SUBSHARD 352 M 3 PARTITION 302

SHARD
202

PARTITION 304

PARTITION 306

SHARD
204

PARTITION 308

PARTITION 310

SHARD
206

PARTITION 312

FIG. 3

US 2014/0372702 A1 Dec. 18, 2014 Sheet 4 of 13 Patent Application Publication

Z£79º 9ÕíEHOVOÐySSEN;

VOZ ! CHVHS |

M10

US 2014/0372702 A1 Dec. 18, 2014 Sheet 5 of 13 Patent Application Publication

97 779

909 709

079

8IN HO-H NWOBH A W HO-H NAOH 9 W HOH WOH £IN HO-H NAOH ZW HO-H NWOBH ||N HOH WOH

Patent Application Publication Dec. 18, 2014 Sheet 6 of 13 US 2014/0372702 A1

600
ENOUEUER ASSIGNED TO SHARD

602
SPACE AVAILABLE

604
FREE POOL
EMPTY?

610
INSERT ROW FOR MESSAGE

606
ASSIGNPARTITION IN
FREE POOL TO SHARD

612
ROOMIN
BUFFER

608
CREATE NEW
PARTITION

618
ALLOCATE NEW CHUNK

614
STORE ENTRY IN CACHE

622
PERFORM CALL-BACK

US 2014/0372702 A1 Dec. 18, 2014 Sheet 7 of 13

CINE| ZOZ| |:)(G)CHWASHOH) ?7Z7ZZP ZOWEHOWOROWSSEW;

Patent Application Publication

Patent Application Publication Dec. 18, 2014 Sheet 8 of 13 US 2014/0372702 A1

an e CrOSS
as as a Master

"it

so -

; &Si Si Sa:

804.

S.

/ Shadow Shard \
828

Y -

FIG. 8

Patent Application Publication Dec. 18, 2014 Sheet 9 of 13 US 2014/0372702 A1

$3 is is & $8 x
s: ix3 x is x 910

: SS Sis
- He

S.

8.33 is is
s s 920

s s S.

US 2014/0372702 A1 Dec. 18, 2014 Sheet 10 of 13 Patent Application Publication

|

OOOJ

FOOT
}|OSSE OORHc]

g?IJ?
TOHINOO

Patent Application Publication Dec. 18, 2014 Sheet 11 of 13 US 2014/0372702 A1

1160 1170

-

Subshard 1102

Circular,
Buffer :
11 4.

-

TI 1112(3) 777 after

Subshard 1132

-

-

SubShard 1142

-

Subshard 1152

Circular,
Buffer :
1154.

Partition
1156

FIG. II

Patent Application Publication Dec. 18, 2014 Sheet 12 of 13 US 2014/0372702 A1

Savepoint SA (At time T1)

Time Transaction

--> Savepoint SC(T3)

S3 uncached

FIG. I2

Patent Application Publication Dec. 18, 2014 Sheet 13 of 13 US 2014/0372702 A1

Time

Transaction

S1 uncached

S2 uncached ()

Commit

FIG. I.3

US 2014/0372702 A1

HANDLING MEMORY PRESSURE IN AN
IN-DATABASE SHARDED QUEUE

CROSS-REFERENCE TO RELATED
APPLICATIONS: BENEFIT CLAIM

0001. This application claims the benefit of Provisional
Applin. 61/834.246 filed Jun. 12, 2013, entitled “An In-Data
base Sharded Queue That Supports JMS Session Ordering,
the entire contents of which is hereby incorporated by refer
ence as if fully set forth herein, under 35 U.S.C. S 119(e). This
application also claims the benefit as a Continuation-in-part
of application Ser. No. 14/095.734, filed Dec. 3, 2013,
entitled “An In-Database Sharded Queue for a Shared Disk
Database,” which claims the benefit as a Continuation-in-part
of application Ser. No. 14/095,543, filed Dec. 3, 2013,
entitled “An In-Database Sharded Queue, which claims the
benefit of Provisional Applin. 61/834,246, filed Jun. 12, 2013,
entitled “An In-Database Sharded Queue That Supports JMS
Session Ordering,” the entire contents of each of which are
hereby incorporated by reference as if fully set forth herein.

FIELD OF THE INVENTION

0002 The present invention relates to queues and, more
specifically, to sharded queues implemented in a database
system.

BACKGROUND

0003. In many applications, it is necessary for one process
(computer program, module, or thread) executing on a com
puter system to communicate with one or more other pro
cesses executing on the same or other computer systems. The
mechanism used to carry out these communications varies
from system to system.
0004 One mechanism that has facilitated process-to-pro
cess communication in a variety of systems is a “message
queue'. As illustrated in FIG. 1, to use a conventional mes
sage queue, processes (“enqueue sessions”) send information
to other processes ("dequeue sessions”) by placing messages
in a message queue 100. The dequeue sessions obtain the
information from the endueue Sessions by reading the mes
sages from the message queue 100. When all dequeue Ses
sions that need to read a given message from the message
queue 100 have read the given message, the message is
removed from the message queue 100. Implementations of
message queues are described in U.S. Pat. No. 7,181,482.
U.S. Pat. No. 7,185,033, U.S. Pat. No. 7,185,034, U.S. Pat.
No. 7,203,706, U.S. Pat. No. 7,779,418, U.S. Pat. No. 7,818,
386, U.S. Pat. No. 7,680,793, U.S. Pat. No. 6,058,389, and
U.S. Pat. No. 8,397.244, the contents of all of which are
incorporated herein by reference.
0005. Unfortunately, conventional implementations of
message queues do not scale well. Specifically, as the number
of dequeue Sessions increases, the contention for the “hot”
messages at the head of the queue increases, thereby degrad
ing performance. In addition, when the endueue sessions and
dequeue sessions are spread across several systems, the
amount of communication on the interconnect between the
systems can become excessive. Furthermore, queue perfor
mance may be adversely affected by low memory situations
in both single-instance databases and shared-disk databases.
Low memory situations may result, for example, when the
rate of enqueuing into a queue is faster than the rate of

Dec. 18, 2014

dequeuing from the queue. In such situations, the ever-in
creasing number of queued messages consumes increasingly
large amounts of memory.
0006. The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

BRIEF DESCRIPTION OF THE DRAWINGS

0007. In the drawings:
0008 FIG. 1 is a block diagram of a conventional message
queue,
0009 FIG. 2 is a block diagram of a sharded queue,
according to an embodiment;
0010 FIG. 3 is a block diagram illustrating how a sharded
queue may be implemented using a partitioned queue table,
according to one embodiment;
0011 FIG. 4 is a block diagram illustrating message
caches, according to an embodiment;
0012 FIG. 5 is a block diagram of a dequeue log table,
according to an embodiment;
0013 FIG. 6 is a flowchart illustrating steps performed
during an enqueue operation, according to an embodiment;
0014 FIG. 7 is a block diagram illustrating the use of
dequeue pointers to track dequeue progress of Subscribers,
according to an embodiment;
0015 FIG. 8 is a block diagram illustrating cross pro
cesses between a source instance and destination instances,
according to an embodiment;
0016 FIGS. 9A-D are block diagrams illustrating full
replay protocol, according to an embodiment.
0017 FIG. 10 illustrates a computer system upon which
one or more embodiments may be implemented.
0018 FIG. 11 is a block diagram illustrating enqueues into
Subshards over a time including a period when memory pres
Sure is detected, according to an embodiment.
0019 FIG. 12 is a block diagram illustrating a control
message allocation, according to an embodiment.
0020 FIG. 13 is a block diagram illustrating a control
message allocation, according to an embodiment.

DETAILED DESCRIPTION

0021. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be
practiced without these specific details. In other instances,
well-known structures and devices are shown in block dia
gram form in order to avoid unnecessarily obscuring the
present invention.

General Overview

0022 Techniques are described herein for detecting and
handling low memory situations when using “sharded
queues’ to communicate messages. Similar to conventional
queuing systems, enqueue Sessions add messages to a sharded
queue, and dequeue Sessions consume messages from the
sharded queue. However, a single sharded queue is imple
mented by a plurality of shards, and a message may be placed
in the single sharded queue by placing the message in any one

US 2014/0372702 A1

of the shards that implement that single sharded queue. A
sharded queue may be implemented in a single instance data
base or a shared-disk database.

0023. Each shard of a sharded queue may be divided into
one or more ordered subshards. Within a Subshard, messages
are ordered by enqueue-time. A subshard may be imple
mented on disk using a queue table, and/or in Volatile memory
using a message cache. For example, persistent messages
enqueued in a specific Subshard may be stored in a specific
partition of a queue table that is associated with the specific
subshard.

0024 Messages enqueued in queue shards may be cached,
i.e., stored in a message cache in Volatile memory. In one
embodiment, the messages for a queue shard are stored in a
corresponding message cache that has multiple buffers,
where each buffer is associated with a subshard of the corre
sponding queue shard. Messages enqueued in a specific
queue shard may also be “uncached'. An uncached message
is stored persistently in the queue table (i.e. on disk) but not in
the message cache (i.e. in Volatile memory). In one embodi
ment, an uncached message is enqueued into an uncached
Subshard, which stores the uncached message in the queue
table but does not store the message in the message cache,
although subshard metadata may be stored in the message
cache.

0025. A cached message is stored persistently in the queue
table and in the message cache. In one embodiment, a cached
message is enqueued into a cached subshard, which stores the
cached message in the queue table and the message cache. A
shard may contain both cached Subshards and uncached Sub
shards.

0026. According to one embodiment, when a subshard
needs to be created to store additional messages for a shard, an
uncached subshard is created when a low memory situation is
detected. When a queue shard is uncached due to a low
memory situation, only metadata is stored in the message
cache. Such a subshard does not store a message in the mes
sage cache when the message is enqueued. When a subshard
is uncached, additional indexing information is maintained
on disk.

0027. A subscriber to a sharded queue may have one or
more dequeue Sessions. Subscribers that consume messages
from a particular sharded queue must dequeue messages from
all shards of that particular sharded queue. For environments
with a single database instance, a Subscriber may have a
single dequeue Session that dequeues messages from all
shards.

0028. For shared-disk database environments where mul
tiple database instances are sharing the same persistent Stor
age, a Subscriber may have multiple dequeue Sessions, each of
which dequeues only from the shards that have affinity to the
instance containing the dequeue Session. Dequeue Sessions
that dequeue from shards enqueued on different instances
may be implemented over an interconnect configured to Sup
port communication between different database instances of
the shared-disk database. In a shared-disk database environ
ment, how low memory situations are handled may depend on
whether low memory is detected in the node on which the
enqueuing session is running (the “enqueuing instance') and/
or the node on which the dequeuing session is running (the
"dequeuing instance').

Dec. 18, 2014

Messages

0029. A message is data to be communicated via a queue.
In one embodiment, a message includes a set of metadata and
a payload. Each message is uniquely identified by a corre
sponding message identifier. The payload of a message is the
data in the message. In one embodiment, each payload has
associated metadata that is stored outside the payload in a
message handle. Payloads can be of different sizes. As shall
be explained in greater detail hereafter, the size of a payload
may be a factor in determining whether the payload is stored
in-line, out-of-line or only in a database table (not cached)
and the available memory may determine whether the mes
sage is cached at all.

Sharded Queues
0030 FIG. 2 is a block diagram of a sharded queue 200,
according to an embodiment. Referring to FIG. 2, sharded
queue 200 is composed of multiple shards 202, 204 and 206.
While in the illustrated embodiment, sharded queue 200 has
three shards, the actual number of shards used to implement a
sharded queue may vary from implementation to implemen
tation. For example, in one embodiment, the number of
shards for a sharded queue can be specified by an adminis
trator. In an alternative embodiment, lower and upper bounds
may be specified, and the system can dynamically vary the
number of shards available for enqueue.
0031. In the illustrated embodiment, the shards that
belong to queue 200 are maintained separate from each other,
and may be managed by different database server instances.
In the example illustrated in FIG. 2, shards 202, 204 and 206
are respectively maintained by distinct instances 1, 2 and 3 of
a database server. While the illustrated embodiment shows
one shard in each database server instance, there is no limit to
the number of shards, of a given sharded queue, that any
database server instance may have.
0032 Shards 202, 204 and 206 store distinct sets of mes
sages for the same sharded queue 200. In the embodiment
illustrated in FIG. 2, shard 202 stores messages, of sharded
queue 200, that are enqueued by enqueue Sessions that are
executing in instance 1. Similarly, shard 204 stores messages,
of sharded queue 200, that are endueued by enqueue sessions
that are executing in instance 2, and shard 204 stores mes
sages, of sharded queue 200, that are endueued by enqueue
sessions that are executing in instance 3. In one embodiment,
an enqueue Session that enqueues to a sharded queue always
enqueues to the same shard of the sharded queue, hereafter
referred to as “enqueue affinity.”
0033. In the example illustrated in FIG.2, shards 202,204
and 206 are maintained by distinct instances. Alternatively,
one or more shards of a sharded queue may be maintained by
the same instance. In one embodiment, a sharded queue may
be implemented in a single instance database, and all shards
of the sharded queue are maintained by the single instance.
Multiple shards on a single instance may help minimize con
tention, Such as among parallel enqueue Sessions.
0034. A sharded queue, such as sharded queue 200, may
be implemented on disk and/or in memory. Anon-disk imple
mentation may be stored in a database or in any other persis
tent storage. An in-memory implementation may be stored in
RAM or any other volatile memory. In a shared-disk data
base, an in-memory implementation may be stored in shared
memory accessible to all processes belonging to a single
instance, such as the System Global Area (SGA) of a database

US 2014/0372702 A1

instance. In embodiments that shall be described in greater
detail hereafter, a sharded queue may be implemented on disk
using a queue table, and/or in memory using a message cache.

Subshards

0035 Each shard may be divided into one or more ordered
subshards. Within a subshard, messages are ordered by
enqueue-time. In one embodiment, enqueue affinity is main
tained such that an enqueuer always enqueues to the same
shard of the sharded queue. Such that a dequeue Session can
access the messages of each endueuer in chronological order.
In embodiments that shall be described in greater detail here
after, a Subshard may be implemented on disk within a queue
table, and/or in memory within a message cache.

The Queue Table
0036. According to one embodiment, sharded queue 200

is implemented on disk using a partitioned queue table 300, as
illustrated in FIG. 3. Referring to FIG. 3, queue table 300 is
divided into six partitions 302,304,306, 308, 310 and 312.
Each shard of queue 200 is currently assigned two of the
partitions of queue table 300. Specifically, shard 202 is
assigned partitions 302 and 304, shard 204 is assigned parti
tions 306 and 308, and shard 206 is assigned partitions 310
and 312.
0037. While, for the purpose of illustration, each shard of
sharded queue 200 has two partitions of queue table 300, the
number of partitions used by each shard may vary based on a
variety of factors, including the rate at which endueuers are
enqueuing messages to each shard, and the rate at which
dequeuers are dequeuing messages from each shard. Thus,
the number of partitions in any given shard may vary over
time, with new partitions being added when enqueuers run
out of storage for new messages, and partitions being recycled
or dropped as dequeuers finish dequeuing all messages in a
partition.
0038. In the illustrated embodiment, each partition has
five rows of the queue table 300. However, in typical imple
mentations, the number of rows in each partition may vary.
For example, Some partitions may have tens of thousands of
OWS.

0039. Because queue 200 is implemented using a parti
tioned table, enqueuing a persistent message involves insert
ing a row into a partition of queue table 300. For example, an
enqueue session with affinity to shard 202 would enqueue a
message in queue table 300 by inserting a row that corre
sponds to the message into a partition associated with shard
202, such as partition 302 or partition 304 of queue table 300.
In one embodiment, shard 202 is configured to maintain a
current insertion point such that messages are inserted into
one of the associated partitions 302-304 based on the current
insertion point of shard 202.
0040. In an embodiment that shall be described in greater
detail hereafter, the operations performed on queue table 300
include SQL INSERTs (to enqueue messages), SQL
SELECTS (for dequeuing messages with large message pay
loads), and partition-level SQL TRUNCATEs (in the back
ground to discard messages that are no longer needed).

Queue Table Partitions
0041 As mentioned above, queue table 300 is partitioned.
At any given time, a queue table partition is either assigned to
a specific shard, or is in a “free pool of queue table partitions

Dec. 18, 2014

maintained for the sharded queue. When a queue table parti
tion has been processed by all relevant subscribers, the queue
table partition is added to the free pool. When additional
storage is needed for a specific shard, then a queue table
partition is removed from the free pool and assigned to the
shard. When reused in this manner, the same queue table
partition may be assigned to different shards, of the same
sharded queue, at different points in time.
0042. If additional storage is needed for a specific shard
and the free pool is empty, then a new queue table partition is
created and assigned to the shard.

Queue Table Subshard Implementation
0043. When a shard is implemented on disk using a queue
table, a subshard is a subset of the queue table rows that have
been assigned to a shard. In one embodiment, each subshard
of a given shard is assigned one or more queue table partitions
that have been assigned to the given shard. In another embodi
ment, a single queue table partition can be assigned to mul
tiple subshards. In alternative embodiments, the shards are
divided into subshards irrespective of the partitioning of
queue table 300.
0044) When the partitions of the queue table are used to
establish subshards, the number of queue table partitions
assigned to any given Subshard may vary. For example, a
shard may have one subshard with three queue table parti
tions, and another Subshard with five queue table partitions.
0045. For the convenience of explanation, it shall be
assumed that Subshards include a single partition of the queue
table. Under this assumption, each of shards 202,204 and 206
has two Subshards. The mapping between shards, queue table
partitions, and subshards is illustrated in FIG. 3.
0046 Specifically, the partitions 302 and 304 that belong
to shard 202 correspond to subshards 352 and 354. The par
titions 306 and 308 that belong to shard 204 correspond to
subshards 356 and 358. The partitions 310 and 312 that
belong to shard 206 correspond to subshards 360 and 362.

Queue Table Rows
0047. Each row in the queue table corresponds to a persis
tent message that has been enqueued in the sharded queue
associated with the queue table. In the embodiment illustrated
in FIG. 3, partition 302 has one row for each of messages M1
to M5, partition 304 has one row for each of messages M6 to
M10, partition 306 has one row for each of messages M11 to
M15, partition 308 has one row for each of messages M16 to
M20, partition 310 has one row for each of messages. M21 to
M25, and partition 312 has one row for each of messages M26
to M30.
0048. According to one embodiment, within queue table
300, the row for a given message includes the following
information for the message:

0049 MSGID Message identifier
0050 SEQ NUM Sequence number from message id
0051 CORRELATION Correlation id
0.052 ENOUEUE TIME Enqueue time of the mes
Sage

0053 PRIORITY Priority value of the message
0054 EXPIRATION Expiration time of the message
0.055 STATE Message state
0056 SUBSCRIBER MAP Subscriber bitmap
(NULL for a single consumer queue)

US 2014/0372702 A1

0057 USER PROPERTIES TEXT JMS user prop
erties in text (e.g. when the property size is less than or
equal to a property size threshold, such as 4000 bytes.)

0.058 USER PROPERTIES CLOB JMS user prop
erties in LOB (e.g. when the property size is greater than
the property size threshold)

0059 USERDATA RAW Message payload (e.g.
when size is less than or equal to a payload size thresh
old, such as 2000 bytes)

0060 USERDATA BLOB Message payload (e.g.
when size is greater than the payload size threshold)

0061. When a shard is implemented for Java Message
Service (JMS) messages, each corresponding queue table row
may also have the following information:

0062 JMS MSG TYPE Indicates
type (e.g. text, bytes, stream, map, etc.)

JMS message

0063 HEADER PROPERTIES JMS header proper
ties

The Message Identifier
0064. In one embodiment, the message identifier of each
message is unique relative to all other messages in the sharded
queue. Similar to a ROWID of a database table row, the
message id is used for navigation within the queue.
0065 For example, in one embodiment, the message iden

tifier may have the following fields:
0066 subshard id
0067 shard id
0068 priority
0069 endian
(0070 sequence

0071. Subshard id represents the unique number associ
ated with a subshard within a shard. Shard id represents the
unique number associated with the shard in which the mes
Sage is placed.
0072 Priority represents the priority values associated
with the message. The field endian represents the endian of
the platform on which the database is installed. This field is
used to ensure correct representation of message-id
in-memory as well as in queue tables. The sequence field
identifies a message within the Subshard.

Selection Conditions

0073. A queue that has multiple subscribers is referred to
as a multi-consumer queue. Every Subscriber to a multi-con
Sumer queue is not necessarily interested in all messages that
are endueued in the queue. Thus, each Subscriber may have a
rule that indicates selection conditions. During the dequeuing
operation, the messages that satisfy the selection conditions
of the subscriber are to be consumed by the subscriber, and
messages that do not satisfy the selection conditions of the
subscriber are to be skipped by the subscriber. In one embodi
ment:

0074 “rule condition” refers to a combination of Bool
ean SQL expressions that is allowed in a WHERE clause
of a SELECT Statement

0075 "rule” refers to a single embodiment of a single
rule condition

0076 “rule set refers to a set of rules that can be evalu
ated together.

A rule set evaluation results in a set of rules which evaluated
to TRUE. A rule set is associated with a queue, and each rule

Dec. 18, 2014

corresponds to a subscriber. The rule set evaluation for a
message results in a set of subscribers which should be able to
dequeue the message.
0077. As shall be described in greater detail hereafter, the
Subscriber bitmap of a message is used to indicate the Sub
scribers whose selection conditions are satisfied by the mes
sage. The actual rule set evaluation to determine which Sub
scribers are to consume a given message may be performed
by the endueuing sessions as they enqueue messages, in a
background process, or by the dequeuing sessions as they
dequeue messages.

The Subscriber Map
0078. The SUBSCRIBER MAP column of each row
stores a subscriber bitmap that indicates which subscribers
have selection conditions that are satisfied by the message.
The SUBSCRIBER MAP may be NULL for a single con
Sumer queue shard, e.g. a queue shard with one Subscriber.
According to one embodiment, the Subscriber bitmap is used
in conjunction with a “lock” bitmap. A bit position on the
subscriber bitmap and the same bit position on the lock bit
map together indicate the state of the message for the particu
lar subscriber that corresponds to the position.
0079 Specifically, the subscriber bitmap represents all
subscribers to which this message is visible. The lock bitmap
represents the lock status of a Subscriber for this message. In
one embodiment, a bit position is assigned to each Subscriber,
such as when the subscription between a subscriber and a
queue shard is created. For example, the subscriber bitmap
and the lock bitmap for a shard contains information for a
specific Subscriber at the bit position assigned to the specific
Subscriber. The assignment of bit positions may be stored in
another data structure. When a subscription terminates, the
data structure storing the assignment of bit positions is
updated, and the subscriber's bit position can be reused for a
new subscriber. Thus:
0080 Subscriber bit=0 and Lockbit=0 means the message
cache cannot process this message because it has not been
determined whether the message satisfies the selection con
ditions of the subscriber.
0081. Subscriber bit=1 and Lock bit=0 means this mes
sage is valid for this subscriber (i.e. satisfies the selection
conditions of the subscriber) and no other dequeue for the
same Subscriber is working on this message yet.
I0082) Subscriber=1 and Lock bit=1 means this message is
valid for this subscriber and a dequeue process for this sub
scriber has already locked it.
0083. Subscriber=0 and Lock bit=1 means the subscriber
finished the processing of this message and committed the
dequeue.
I0084 As mentioned above, the subscriber bitmap for a
message may be set by

0085 the enqueue session at the time the message is
enqueued,

I0086 a background process after the message is
enqueued and before the message is processed by any
dequeue Session, or

0.087 dequeue sessions at the time the message is pro
cessed by the dequeue Session.

I0088 Regardless of the entity that generates the bitmap,
the entity evaluates the selection conditions of each sub
scriber against the message. The bits within the bitmap that
correspond to each subscriber are then set based on whether
the message satisfies the selection conditions. In the case

US 2014/0372702 A1

where the bitmap is set by a dequeue Session, the first dequeue
session to process the message may set the bitmap for all
Subscribers so that Subsequent dequeue sessions merely need
to inspect the bitmap. In an alternative embodiment, each
dequeue Session may evaluate the message only relative to its
own selection conditions, and only set the bits of the bitmap
that correspond to its subscriber.

Message Cache
0089. To avoid the overhead associated with accessing
queue table 300 every time a message needs to be dequeued
by a subscriber, a message cache is maintained in Volatile
memory. In one embodiment, the message cache is stored in
the shared memory of a database instance. Using the message
cache avoids costly SQL operations to access queued mes
sages. When Sufficient memory is available, the message
cache caches all messages in sharded queues on a database
instance, which includes messages and any metadata, locks,
Subscribers, and transaction states needed to manage the mes
SageS.
0090 The message cache provides a fast in-memory
access path to all queuing functionality including enqueue,
dequeue, and notification so that clients of the message cache
do not need to read, Sort, and lock data in database tables.

Message Cache Structure
0091. According to one embodiment, the message cache is
a specific in-memory structure that stores active messages in
order to avoid costly SQL operations. Most queue operations
will take place in memory and experience minimum disk
latency if there is shared memory available.
0092. Each message cache contains a well-organized set
of data structures to store and retrieve persistent and non
persistent messages and the associated metadata. According
to one embodiment, a message cache is created per queue per
instance.
0093. The message cache can be accessed via queue meta
data. According to one embodiment, each message cache can
contain two types of messages: persistent and non-persistent
messages. Persistent messages will persist in the message
cache and in a database table until it is consumed and
removed. On the other hand, a non-persistent message will be
present only in the message cache and not in a database table.
0094 Memory in the message cache can include one or
more fixed-memory portions and variable-memory portions.
For example, a fixed-memory portion may be configured to
contain the metadata of one or more messages enqueued in
the message cache. Some examples are message cache
handle, shard handles, Subshard handles, transaction hash
tables, commit callbacks, and subscriber hash tables.
0095. A variable-memory portion of the message cache is
usually dependent on the data or payload and the properties
associated with the messages. For example, the payload of
enqueued messages may be stored in a variable-memory por
tion. For example, one or more buffers, such as the circular
buffer described below, may be used to implement the vari
able-memory portion. The fixed-memory portions and vari
able-memory portions may be interspersed—the structures
described herein are an example implementation.

Circular Buffers

0096. The circular buffers described above may be used to
represent Subshards in the message cache. Each subshard

Dec. 18, 2014

contains a circular buffer in the message cache. The Subshard
contains a pointer to its circular buffer. The circular buffer is
a list of chunks which form a circular list. The circular buffer
size can vary from one Subshard to another, depending on the
number of messages in a Subshard and the size of each mes
Sage.

0097. The virtue of a circular structure is the ease of
memory reusability; the circular structure can simplify the
garbage collection process and reduce the potential memory
fragmentation. Messages of a Subshard are arranged in the
circular buffer according to their enqueue time, the data struc
ture being a good match for the message ordering scheme.
0098. A circular buffer can cache apart of a subshard or a
whole subshard. According to one embodiment, there is 1:1
mapping between circular buffers and subshards. For each
message in a Subshard, the corresponding buffer contains
either the whole message, metadata only (if the payload is too
big), or nothing (in case of memory shortage). A buffer can
accommodate multiple transactions, and a transaction can
span multiple buffers. If a rollback happens, the memory
allocated for the transaction is unavailable until the circular
buffer is recycled.
0099. When a new subshard is allocated in the message
cache, the circular buffer includes an initial number of chunks
of memory that are allocated for storing new messages, if
memory is available. When the database instance is short on
memory, no circular buffer is allocated, and the messages in
the subshard are only in the queue table. When there is no
more memory in the chunks to store a new message, at least
one new chunk is allocated to the circular buffer of a subshard
provided more messages can be stored in the Subshard and
memory is available. The circular buffer that corresponds to a
subshard is freed when dequeue for the subshard has been
completed by all subscribers.
0100 Referring to FIG. 4, it illustrates message caches
402, 404 and 406 that store cache entries for the shards of
sharded queue 200. Specifically, message caches 402, 404
and 406 respectively store cache entries for shards 202, 204
and 206.

0101 Each of the message caches 402,404 and 406 stores
a circular buffer for each of the subshards in the shard asso
ciated with the message cache. Specifically, in the illustrated
embodiment, message cache 402 includes circular buffers
422 and 424 that respectively correspond to subshards 352
and 354 of shard 202. Message cache 404 includes circular
buffers 426 and 428 that respectively correspond to subshards
356 and 358 of shard 204. Message cache 406 includes cir
cular buffers 430 and 432 that respectively correspond to
Subshards 360 and 362 of shard 206.

0102 Depending on the size, payloads can be stored in
line, out-of-line or not cached. In one embodiment, if pay
loads are smaller than a first threshold size, they are stored
in-line. This means that payloads are stored in the entry,
within the circular buffer, that corresponds to the message.
The payload of a specific message starts at a specific message
offset into the circular buffer, which will be described in
greater detail hereafter.
0103) If payloads are larger than the first threshold size,
they are stored out-of-line. This means that payloads are not
stored in the entry, within the circular buffer, that corresponds
to the message. Instead, the entry will have an in-memory
message handle that contains a pointer to the in-memory
location which contains the payload.

US 2014/0372702 A1

0104. According to one embodiment, if messages are
larger than a second, higher threshold, then the messages are
not cached. To avoid fragmentation and to conserve memory
within the message cache, large payloads greater than the
second threshold (e.g. size>4k) are stored only in database
tables. They are fetched from the table with SQL during
dequeue.

Enqueuing Messages

0105. When first enqueuing to a sharded queue, an
enqueue Session chooses a shard associated with the queue
and always uses the same shard. The endueue affinity ensures
JMS session ordering requirements are met in the absence of
failures because every dequeuer will see the messages each
enqueuer enqueued in the correct order.
0106 Enqueuing a persistent message in a sharded queue
involves (a) storing a row in the queue table that implements
the sharded queue, and (b) adding an entry for the message to
the message cache. In one embodiment, a row is stored in the
queue table by using SQL to insert a row in a partition of the
queue table that implements the sharded queue. Thus, a mes
sage may be stored in sharded queue 200 by inserting a row
into queue table 300. Multiple messages enqueued onto a
sharded queue in a transaction become available for dequeue
atomically in the message cache as the result of apost-commit
callback.

0107 The entry that is added to the message cache for the
message initially indicates that the message state is NOT
VISIBLE. Thus, the entry will be skipped by any dequeue
process that is dequeuing from the circular buffer to which the
entry belongs. As shall be explained hereafter, the status is
changed to VISIBLE upon the commit of the transaction that
is enqueuing the message.
0108. An enqueue session enqueues a message to a shard
by enqueuing the message to the latest Subshard of the shard.
Within a shard, the subshards are ordered by enqueue time,
with the latest Sub-shard having messages with the most
recent endueue times. Dequeuers navigate the Subshards and
the messages within the Subshards maintaining the endueue
time ordering. To preserve ordering, any given enqueue Ses
sion enqueues messages to only one shard of a sharded queue.
0109 According to one embodiment, the shard to which
an enqueuer is intelligently assigned is selected to improve
performance and reduce traffic. Enqueuing a message may
involve inserting a row into the corresponding partition on
disk. Thus, while new messages may be added to sharded
queue 200 by inserting a corresponding row into any of the
partitions 302,304,306,308,310 and 312 of the queue table
300, the specific partition of queue table 300 into which an
enqueue Session inserts a row is preferably selected based on
a variety of factors.
0110. For example, in one embodiment, to reduce traffic
on the interconnect between systems, each endueue Session
inserts rows only into the queue table partitions that have
affinity to the enqueue session. Thus, as shown in FIG. 2, the
enqueue Sessions executing in instance 1 engueue messages
by inserting rows into the queue table partitions (302 and 304)
that implement shard 202. Similarly, the endueue Sessions
executing in instance 2 enqueue messages by inserting rows
into the queue table partitions (306 and 308) that implement
shard 204, and the endueue Sessions executing in instance 3
enqueue messages by inserting rows into the queue table
partitions (310 and 312) that implement shard 206.

Dec. 18, 2014

Enqueue Commit

0111 Conventional relational database mechanisms may
be used to commit the rows, associated with newly added
messages, to the queue table 300. Upon commit, all rows
inserted by a transaction become visible to other transactions,
Such as the transactions that correspond to dequeuing ses
sions. However, additional actions must be taken to cause the
message cache entries for those new messages to become
visible.
0112 For example, according to one embodiment, upon
commit of an enqueuing transaction, a post-commit callback
is made. The post-commit callback causes the following
operations to be performed on the messages as part of
enqueue commit.

0113 Set the message state to VISIBLE.
0114 Reset the dequeue pointerfor all valid subscribers
to the first message in the transaction if the dequeue
pointer is ahead of it. Dequeue pointers shall be
described in greater detail hereafter.

Enqueue Rollback

0115 Under some circumstances, it may not be possible to
commit an enqueue transaction. When a transaction cannot
commit, all changes made by the transaction have to be rolled
back. Conventional relational database mechanisms may be
used to roll back the changes made to the queue table 300.
However, to undo the changes to the message cache, the
following operations are performed on the message as part of
enqueue rollback:

0116 Set the message state to INVALID.
0.117 For all bit positions of the message: set the sub
scriber bitmap bit to 0 and lock bitmap bit to 1. This
indicates that the message is not of interest to any Sub
scriber, and that the subscriber can move over the mes
Sage, including the commit low watermark described in
the Section entitled “COMMIT LOW WATERMARK.

Enqueue Example

0118 FIG. 6 is a flowchart illustrating steps performed
during an enqueue operation to enqueue one or more persis
tent messages to a sharded queue in a transaction according to
one embodiment. Referring to FIG. 6, step 600, the enqueuer
is assigned to a shard. As explained above, all messages of any
given enqueuer are endueued to the same shard of the sharded
queue. Hence, step 600 is performed only once per enqueuer.
For the purpose of illustration, it shall be assumed that, at step
600, an enqueuer X is assigned to shard 202 of sharded queue
2OO.

0119. At step 602, it is determined whether there is space
available, within the queue table partitions currently assigned
to shard 202, for the new row. If space is available, control
passes to step 610. Otherwise, control passes to step 604
where it is determined whether there is a partition available in
the free pool. The free pool shall be described in greater detail
hereafter.

I0120 Ifa partition is available from the free pool, then the
partition is added to the shard from the free pool (606).
Otherwise, a new partition is created and assigned to the shard
at step 608. Whether from the free pool or newly created, in an
embodiment where each partition is its own subshard, the
newly added partition constitutes a new subshard of shard
202.

US 2014/0372702 A1

0121 Continuing with the example, at step 602 it is deter
mined whether subshard 354 is full. If subshard 354 is full,
then it is determined whether the free pool has a partition that
may be added to shard 202. For the purpose of explanation, it
shall be assumed that subshard 354 is not full. Consequently,
control proceeds to step 610 where a row for the message is
inserted in subshard 354 of queue table 300.
0122. In addition to adding a row for the message to the
queue table, a cache entry for the message has to be added to
the message cache associated with the shard. In the present
example, an entry is added to message cache 402, which is the
message cache that corresponds to shard 202.
0123 To add the entry, at step 612 it is determined whether
there is room for the entry in the circular buffer, in the mes
sage cache, that corresponds to the Subshard in which the
message was inserted. If not, then at Step 618 a new chunk is
added to that circular buffer. Once there is space for the new
entry in the circular buffer, the entry is stored in the message
cache (614).
0.124. In the present example, at step 612, it would be
determined if circular buffer 424, which corresponds to sub
shard 354, has space for the new cache entry. For the purpose
of explanation, it shall be assumed that there is space in
circular buffer 424. Consequently, an entry for the new mes
sage is added to circular buffer 424 at step 614.
0.125. At this point, neither the table row for the message
nor the cache entry for the message is visible to other trans
actions. The row is not visible because the transaction insert
ing the row has not committed. Consequently, conventional
relational database mechanisms will prevent other transac
tions from seeing the row. The cache entry is not visible
because the message state is not yet set to VISIBLE.
0126. At step 620, it is determined whether the enqueue
session is committing. If the enqueue session is committing,
at step 622 a call-back is performed. As mentioned above, the
call-back involves setting the message state to VISIBLE,
resetting the dequeue pointers for all valid subscribers of the
first message in the transaction if the dequeue pointer is ahead
of it.
0127. On the other hand, if the transaction is not commit
ting, then the endueue Session is enqueuing at least one more
message. Consequently, control returns to step 602, where the
process is repeated for the next message.
0128. In the present example, it shall be assumed that the
enqueue Session is committing. Consequently, control pro
ceeds from step 620 to step 622. At step 622, the call-back is
performed and the entry, added to circular buffer 424, is
marked as VISIBLE. In addition, if any subscribers have
dequeue pointers that have passed the position, within buffer
424, of the newly inserted message, those dequeue pointers
are reset to the position of the new message.

Order Preservation

0129. According to one embodiment, messages are
enqueued and dequeued in sharded queue 200 in Such a way
as to preserve the ordering of the messages enqueued by each
enqueue session, but not the ordering of messages of one
enqueue session relative to the messages of other enqueue
sessions. Specifically, each endueue session enqueues mes
sages to only one shard, and within that shard the order of
those messages is preserved. When reading from that shard,
each dequeue Session dequeues in that same order. Therefore,
all messages enqueued in the same shard will be dequeued in
the same order as they were enqueued.

Dec. 18, 2014

0.130. The fact that each enqueue session enqueues to only
one shard ensures session ordering requirements are met, in
the absence of failures, because every dequeue Session will
see the messages each endueue Session enqueued in the cor
rect order.

Subscribers and Dequeue Sessions
0131 A Subscriber is an entity that consumes messages.
To consume messages, a single Subscriber may use any num
ber of dequeue sessions to consume messages from a single
queue. In one embodiment, each dequeue Session for a Sub
scriber must coordinate its message consumption with the
other dequeue Sessions of the same Subscriber so that the
same message is not consumed more than once by the Sub
scriber.
0.132. As used herein, the term “single consumer queue'
refers to a queue containing messages to be consumed by a
single Subscriber, and the term "multi-consumer queue
refers to a queue containing messages to be consumed by two
or more Subscribers. Single consumer queues and multi-con
Sumer queues are described for the purpose of explanation.
However, any other queue type, including any hybrid queue
type, may be implemented in accordance with the disclosure.
I0133) A subscriber has a dequeue pointer per shard. A
subscriber's dequeue pointer for a shard is used by multiple
dequeue Sessions of that Subscriber to dequeue messages
from that shard.

Dequeuing

0.134. Because any shard of a sharded queue may contain
messages that must be consumed by a Subscriber to that
sharded queue, each Subscriber to a sharded queue must pro
cess every shard of the sharded queue. The order in which the
dequeue sessions of subscribers visit the shards of a sharded
queue may be determined based on a variety of efficiency
factors.
I0135) In one embodiment, each subscriber may simply
visit each shard in a round-robin fashion. Alternatively, load
balancing may be used to ensure that no queue shard is
starved of dequeue Sessions at any given time. Any one of a
number of techniques may be used to determine the order in
which subscribers visit shards, and the embodiments
described herein are not limited to any particular one of those
techniques.
0.136. When dequeuing from a shard, each subscriber
tracks the Subscriber's dequeuing progress using (a) a
dequeue pointer and (b) partitions of a dequeue log table.
With respect to the dequeue pointer, the dequeue pointer of
each Subscriber is maintained in volatile memory and points
to the next message, within the message cache, that must be
processed by the Subscriber. In contrast, the dequeue log table
is a durably stored structure for keeping track of the dequeue
process. If a failure occurs, both the dequeue pointers and
message cache content may be lost. The dequeue pointer may
be restored from low watermark (LWM) data (see section
entitled “COMMIT LOW WATERMARK), and the mes
sage cache with lock bitmap content may be restored using
the dequeue log table.

The Dequeue Log Table

0.137. A durable subscriber is a subscriber that receives
messages, whether or not the messages are published when
the durable subscriber is active. On the other hand, a nondu

US 2014/0372702 A1

rable subscriber is a subscriber that only receives messages
that are published while it nondurable subscriber is active. A
dequeue log table logs all dequeues for all durable Subscribers
for each queue table partition i.e., Subshard. This logging is on
a per Subscriber per message basis. Thus, there is a dequeue
log physical partition per mapped queue table partition per
durable subscriber. Each partition thus represents dequeues
for a subscriber on a queue table partition i.e., subshard. For
a single consumer queue, there is only one dequeue log par
tition per queue table partition. The size of the partition is
same as the size of queue table partition.
0138 Sharded queues use dequeue log table as a log to
determine when to unmap (mark for recycle) a queue table
partition. The dequeue log table is also used to implement
various message properties like dequeue attempts, dequeue
retry-delay, etc. The dequeue log table also acts as history for
the dequeues.
0.139. In one embodiment, in order to avoid any row move
ment/chaining on future updates, the dequeue log table is
created with default values set for all columns to maximum
sized values of their respective types. This is possible because
almost all the columns of dequeue log table contain fixed
sized elements throughout its life.
0140. In one embodiment, dequeue commit inserts a
record into the dequeue log on behalf of the subscriber and the
message it successfully dequeued. However, as will be
explained in greater detail hereafter, in an alternate embodi
ment, the sharded queue architecture populates each dequeue
log Subshard once and reuses rows serially.
0141 According to one embodiment, the dequeue log
table of a multi-consumer queue includes the following col
U.S.

0.142 message id (identifier of the message that corre
sponds to the row)

0.143 shard id (identifier of the shard in which the cor
responding message resides)

0144 sequence number (sequence number of the mes
Sage within the Subshard)

0145 version number (version of this partition row)
0146 dequeue time (timestamp of dequeue commit)
0147 transaction id (identifier of the transaction the
performed the dequeue operation)

0148 dequeue user (schema name of the dequeuer)
0149 subscriber (identifier of the subscriber for whom
the dequeue was performed)

0150 retry count (current retry count)
0151. For a single-consumer queue, the subscriber column

is not necessary, since there is only one Subscriber for the
queue.

Example Dequeue Log Table
0152 FIG. 5 is a block diagram that depicts a dequeue log
table 500 that is used by dequeue sessions to perform book
keeping relative to their dequeue operations. When a queue
has N Subscribers at a given point in time, each active partition
of the queue table has N corresponding dequeue log partitions
of the same size as the queue table partition, one for each
Subscriber. A dequeuer updates the dequeue log to indicate it
has successfully dequeued a message.
0153. Each fixed-size partition of a dequeue log is initial
ized once in the background by inserting a placeholder row
for each potential message in a corresponding queue table
partition. Each placeholder row inadequeue log partition has
a unique sequence number column that is Subsequently never

Dec. 18, 2014

updated. Each sequence number in a dequeue log partition
has a single matching sequence number in the corresponding
queue table partition. A session dequeuing a message will use
a SQL UPDATE to modify columns other than the “sequence
number column appropriately.
0154) In the illustrated embodiment, dequeue log table
500 is partitioned such that each subscriber is assigned one
partition of the dequeue log table for each active partition of
each shard from which the Subscriber is dequeuing messages.
Thus, if a sharded queue has X subscribers and Y shards, and
each of the shards has Zactive partitions of the queue table,
then the total number of dequeue log table partitions currently
in use to perform bookkeeping for the subscribers of the
sharded queue is X*Y*Z.
(O155 Referring to FIG.5, it illustrates a situation in which
three subscribers (subscribers 1, 2 and 3) are dequeuing from
shard 202. Shard 202 has two partitions (302 and 304) of
queue table 300. Consequently, relative to shard 202, each of
the three subscribers has two partitions of dequeue log table
500. Subscriber 1 has partition 502 to use to perform book
keeping for partition 302 of shard 202, and partition 504 to
use to perform bookkeeping for partition 304 of shard 202.
Subscriber 2 has partition 506 to use to perform bookkeeping
for partition 302 of shard 202, and partition 508 to use to
perform bookkeeping for partition 304 of shard 202. Sub
scriber 3 has partition 510 to use to perform bookkeeping for
partition 302 of shard 202, and partition 512 to use to perform
bookkeeping for partition 304 of shard 202.
0156 According to one embodiment, the number of rows
in each partition of dequeue log table 500 is equal to the
number of rows in the corresponding partition of queue table
300. For example, if partition 302 has ten thousand rows, then
partitions 502,506 and 510, respectively used by subscribers
1, 2 and 3 to perform bookkeeping for partition 302, would
each have ten thousand rows. Similarly, if partition 304 has
five thousand rows, then partitions 504,508 and 512 used to
perform bookkeeping for partition 304 would have five thou
sand rows.

Dequeue Log Table Operations

0157 According to one embodiment, database commands
are executed against the dequeue log table to use the dequeue
log table to track dequeue progress. Execution of a database
command, such as a SQL command, causes a database opera
tion to be performed. Specifically, according to one embodi
ment, an insert operation is performed for a dequeue log table
partition only during its creation i.e. add partition. The parti
tion maintenance layer inserts the appropriate number of rows
within the partition. The insert operation only inserts SEQ
NUM column, other columns are left to their default values.
As the number of dequeue log partitions can be large, it is
important to reduce this pre-population cost. For sharded
queues, this may be done by using a connect by SQL state
ment.

0158 An update is performed for dequeue log table parti
tion during dequeue on behalf of the particular subscriber to
which the partition belongs. The nature of the update, as well
as the use of the version number column, shall be described in
greater detail below.
0159. According to one embodiment, each fixed-size par
tition of the dequeue log is initialized once, in the back
ground, by inserting a “placeholder” row for each potential
message in the queue table partition that corresponds to the
dequeue log partition. Each placeholder row in a dequeue log

US 2014/0372702 A1

partition has a unique message sequence number in a column
that is Subsequently never updated. Each sequence number in
the dequeue log partition has a single matching sequence
number in the corresponding queue table partition. As shall be
described in greater detail hereafter, each dequeue Session
uses a SQL UPDATE to modify columns, other than the
sequence number column, when dequeuing a message.

Dequeue Pointers

0160 According to one embodiment, each subscriber has
a dequeue pointer for each shard of the sharded queue from
which the Subscriber is dequeuing messages. As mentioned
above, the dequeue pointer for a subscriber, for a given shard,
indicates the next message in the message cache available to
dequeue. The dequeue pointer of a Subscriber advances as the
Subscriber dequeues messages. If the transaction performing
dequeue operations for a subscriber is rolled back, then the
dequeue pointer for that subscriber moves backward to the
position of the pointer at the time the transaction began. In
addition, the dequeue pointer for a Subscriber may move
backward when a message, located at a position within the
message queue that has already been passed by the dequeue
pointer, is committed.
0161 Referring to FIG.7, it illustrates a scenario in which
three Subscribers are dequeuing messages from Subshard 354
of shard 202. Circular buffer 424 corresponds to subshard
354, so the dequeue pointer of each of the subscribers indi
cates the position, within circular buffer 424, of the next
message for the Subscriber to dequeue.
0162 Specifically, subscriber 1 has dequeued messages
M6 to M9. Consequently, the dequeue pointer 702 of sub
scriber 1 points to the message cache entry associated with
message M10. Subscriber 2 has only dequeued messages M6
to M8. Consequently, the dequeue pointer 704 of subscriber 2
points to the message cache entry associated with message
M9. Subscriber 3 has only processed message M6. Conse
quently, the dequeue pointer 706 of subscriber 3 points to the
message cache entry associated with message M7.
0163 The dequeue pointer contains two pieces of infor
mation that determine the visibility of messages in uncached
Subshards and the visibility of messages in cached subshards.
We discuss these two pieces of information in turn.
0164. The database maintains a logical timestamp of com
mit operations in the form of an SCN (System Change Num
ber). The dequeue pointer contains an SCN so that dequeuers
can use flashback query at this SCN to get a transactionally
consistent view of uncached subshards. When a transaction
that enqueues messages on sharded queues commits, the cur
rent SCN is stored within each dequeue pointer of these
sharded queues. Dequeue sessions can also use the database
current SCN to update the SCN in the dequeue pointer.
0.165. The dequeue pointer also stores an incarnation num
ber that represents enqueue commit order for a shard. The
incarnation number is an in-memory equivalent of the SCN
and provides a transactionally consistent view of cached Sub
shards. On enqueue commit, this incarnation number is
updated and stored both within each cached message that is
enqueued in the transaction and also in each corresponding
dequeue pointer.
0166 The SCN and incarnation number together provide a
transactionally consistent view across both uncached Sub
shards and cached Subshards. These two pieces of informa

Dec. 18, 2014

tion ensure session-level ordering of enqueued messages is
observed by dequeuers that dequeue from uncached and
cached subshards.

Commit Low Water Mark

0.167 According to one embodiment, every subscriber
state contains a commit low watermark (LWM). The LWM of
a subscriber represents a position within a shard below which
none of the messages are of interest to the subscriber. This
value is also durably stored to ensure it will not be lost in the
case of a failure. In one embodiment, a LWM table is main
tained on disk to track subshards that have been completely
dequeued by the subscribers.
0.168. Every dequeue commit for a subscriber tries to
move the watermark forward as much as possible. The com
mit function typically starts from the current watermark posi
tion (Subshard-message) and moves it above all Subsequent
messages whose subscriber bit and lock bit for the particular
position has value (0,1).
0169. This movement stops on the message which does
not have the above value. If, in this process, the commit
watermark moves over a subshard (indicating that the Sub
scriber has dequeued all messages in the Subshard), then an
indication that the Subscriber has completed dequeuing the
subshard is stored. When all subscribers to a shard have
indicated that they have competed dequeuing a subshard, then
(a) the partition(s) associated with the Subshard is truncated,
and (b) the circular buffer used to cache messages for the
subshard can be deallocated.
0170 Because messages cannot be processed by subscrib
ers before the transactions enqueuing the messages are com
mitted, all messages that precede the commit low water mark
will necessarily have been committed. Therefore, there will
not be any in-flight engueuing transaction ordequeuing trans
action involving a message that precedes the commit low
watermark.
(0171 The global LWM (Low Water Mark) is the mini
mum LWM value across all subscriber LWMs for a shard.
Below a global LWM of all subscribers, no messages are of
interest to any subscriber. Subshards below the global LWM
can therefore be deleted, unmapped or otherwise removed at
any time without affecting any Subscriber.

Fully-Dequeued Table-Queue Partitions
0172. After all subscribers of a sharded queue have pro
cessed the messages of a table queue partition that belongs to
the sharded queue, the table queue partition is considered
“fully-dequeued. Thus, all partitions that are below the cur
rent commit low watermark are fully-dequeued table-queue
partitions. According to one embodiment, rather than delete
individual messages after the messages have been consumed
by all subscribers, messages are deleted in batches by trun
cating table queue partitions that have become fully-de
queued.
0173 According to one embodiment, once truncated, the
table queue partitions are returned to a “free pool of table
queue partitions that may be reused when room is needed for
new messages that need to be endueued in the sharded queue.

Dequeue Operations
0.174. In general, a dequeue session dequeues a persistent
message by temporarily marking the message in the message
cache as being dequeued, and by using SQL to update the

US 2014/0372702 A1

appropriate row in a dequeue log partition. A post-commit
callback updates the state of dequeued messages in the mes
Sage cache.
0.175. According to one embodiment, the dequeue opera
tions for a subscriber include:

0176 Iterating over all messages from the dequeue
pointer of the subscriber,

0177 Determining whether the message satisfies the
message selection conditions, if any, associated with the
Subscriber,

0.178 Determining whether each message has already
been dequeued by the subscriber,

0179 Sending to the subscriber each message that (a)
satisfies the message selection conditions and (b) has not
already been dequeued by the subscriber.

0180 Temporarily marking each message in the mes
Sage cache as being dequeued by the Subscriber

0181 Updating the appropriate row in the appropriate
dequeue log partition; and

0182 Making a post-commit callback to update the
state of the dequeued messages in the message cache

0183 Returning to FIG. 5, each message that is stored in
sharded queue 200 corresponds to the one row in queue table
300. For example, a message M7 that is enqueued in sharded
queue 200 may be stored in row 540. As illustrated in FIG. 5,
row 540 is the second row in partition 304 of queue table 300.
0184. When a subscriber successfully dequeues a persis
tent message, the Subscriber updates its dequeue log to indi
cate that it has successfully dequeued the message. Specifi
cally, the Subscriber updates the row, within its dequeue log,
that corresponds to the row, of the queue table, for the
dequeued message. In addition, the Subscriber temporarily
marks the message in the message cache as being dequeued.
0185. In the present example, after dequeuing message
M7, subscriber 1 would update row 542 of partition 504,
which is the dequeue log row, for subscriber 1, that corre
sponds to row 540 of partition 304. Similarly, after dequeuing
message M7, subscriber 2 would update row 544 of partition
508, which is the dequeue log row, for subscriber 2, that
corresponds to row 540 of partition 304. After dequeuing
message M7, subscriber 3 would update row 546 of partition
512, which is the dequeue log row, for subscriber 3, that
corresponds to row 540 of partition 304.

Dequeue Commit

0186. When a transaction that has dequeued messages for
a Subscriber commits, a post-commit callback operation is
performed to update the state of the dequeued messages in the
message cache. Specifically, in one embodiment, the follow
ing operations are performed on dequeue commit.
0187. For the bit position of the subscriber for the message
set the subscriber bitmap bit to 0 and lock bitmap bit to 1.
0188 Try to move the commit low water mark forward
from its current position. A commit low water mark can be
moved over a message if the subscriber bit is 0 and lock bit is
set to 1.

0189 If the transaction commit completed the dequeue
of a subshard, store the subshard number within the
LWM table on disk. This indicates all messages below
the updated subshard number are not of interest to the
Subscriber for the shard.

Dec. 18, 2014

Dequeue Rollback
0190. In the case that a dequeue session cannot commit,
the dequeue Session may be rolled back. According to one
embodiment, the following operations are performed on a
dequeue rollback:

0191 For the bit position of the subscriber for the mes
Sage, set the lock bitmap bit to 0 indicating initial state of
the message.

0.192 Reset the subscriber's dequeue pointer to this
message only if the Subscriber's dequeue pointer is
ahead of the message.

Recycling/Reuse of Queue Partitions
0193 As mentioned above, when a new queue table par
tition is needed to store incoming messages, the partition is
obtained from a free pool if the free pool is not empty. Queue
table partitions are added to the free pool when the messages
they contain have been fully dequeued.
0194 Specifically, according to one embodiment, parti
tions of the queue table are cycled from state “unmapped/
free” to “mapped/in-use” to “unmapped/free’ like reusable
resource units from a pool. Once all the subscribers have
dequeued a Subshard, the partition mapped to the Subshard is
truncated and made available for reuse by a future subshard at
the same instance.

Truncating Queue Table Partitions

(0195 When a dequeue commit happens, and the transac
tion was such that its dequeue position advanced across a
subshard boundary to the next subshard, then the commit time
callback Stores an indication that the corresponding Sub
scriber has completed the dequeue of the subshard. If the
dequeuer was the final subscriber that needed to dequeue
from the subshard which it switched from during the trans
action, then that subshard could be freeable and truncatable.
0196. On receiving the indication, a background process
re-calculates. Such as from existing Subscriber commit
LWMs, the global LWM for the shard. If there is something
which is found freeable below the global LWM (which indi
cates the subshard below which everything is dequeued), then
a background process frees the Subshards and truncates the
partitions mapped to those Subshard.
0.197 According to one embodiment, a SELECT query is
used to identify all the partitions in the queue table map which
are mapped and are below the Global Minimum LWM. These
partitions are organized into one or more disjoint batches.
Partition truncation is done one batch at a time by providing
a list of partitions in a batch to ALTERTABLE TRUNCATE.
After each batch of partitions is truncated, an UPDATE state
ment is used to unmap the partitions in the batch by clearing
the shard, priority, Subshard and map time columns of the
records corresponding to those partitions.

Unmapping Queue Table Partitions

(0198 An update is done on each fetch of the SELECT
query, mentioned above, to unmap the partition i.e. to unmark
the shard, priority, Subshard and map time columns of the
partition record. While the SELECT fetched all rows/parti
tions below the Global Minimum LWMandall are truncated,
a commit is issued which will commit the update statement
which unmapped the partition record. Each truncate DDL
was committed immediately with an autonomous transaction.

US 2014/0372702 A1

Reusing Queue Table Partitions
0199. Once partitions are unmapped, they satisfy the con
dition of the SQL query which loads free partitions from the
dictionary to refill the prefetch cache. On next prefetch refill
query they are picked up using ORDER BY and put towards
the head of the prefetch cache so that they can be reused.
0200. The partitions are made available to reuse quickly
by using ORDER BY and putting into the consuming end of
the cache, so that the queue can be served using the minimum
number of distinct partitions possible, for the benefits of
locality of reference, cache trails, etc. of recently used
SOUC.

Overview of Reuse of Dequeue Log Partitions
0201 According to one embodiment, the dequeue log
table includes a VERSION column that permits serial reuse of
dequeue log partitions without the need for a SQL TRUN
CATE or SQL UPDATE on the dequeue log partition each
time the dequeue log partition is reused.
0202 Specifically, when a dequeue log partition is cre
ated, a “0” is stored in the VERSION column of every row in
the partition. In addition, metadata is stored in a data dictio
nary to indicate that “1” is the current version of the partition.
Each time a dequeue log partition is reused, the version num
ber for the dequeue log partition is updated in the data dictio
nary. Thus, when the dequeue log partition is reused for the
first time, the version number will be updated to “2, and
when reused for the second time the version number will be
updated to “3”.
0203) Any row within adequeue log partition whoseVER
SION column is less than the version identified for that
dequeue log partition in the data dictionary is treated as
empty. Thus, if a dequeue log partition has five rows, and the
VERSION column of those rows respectively contain the
values 2, 2, 1, 0, 2, and the current version of the dequeue log
partition is “2, then the third and fourth rows within the
dequeue log partition are treated as empty.
0204 When adequeue log partition is no longer in use, the
current version number for the dequeue log partition, which is
maintained in the data dictionary, is incremented by 1. Incre
menting the current version effectively invalidates all rows
currently in the dequeue log partition.
0205 Because the current version number is incremented
with each reuse of the corresponding dequeue log partition,
there is a possibility that the version number will eventually
“overflow”. According to one embodiment, to prevent such
overflow, a background process may use a database transac
tion to both (a) reset the current version to 1, and (b) update
the VERSION column of all rows within the partition to “0”
when the version number reaches a threshold.

Recycling/Reuse of Dequeue Log Partitions

0206. As explained above, recycling/reuse of dequeue log
partitions is very different from how queue table partitions are
recycled. Specifically, dequeue log partitions are not reused
using a conventional truncate DDL. Since a fixed number of
same shape records, containing all fixed sized columns, is
what is stored in dequeue log partitions, the dequeue log is
designed to be reused without expensive truncate DDLs.
0207. The dequeue log stores one row per message, per
subscriber. Subshard-size number of rows is the maximum
number of rows which can be stored in a dequeue log parti

Dec. 18, 2014

tion. In one embodiment, the default subshard size is 2000.
One row per message is logged with the sequence number of
the message as the key.
0208. At partition creation time, 2000 empty rows are
inserted into a dequeue log partition with just the sequence
number column inserted. Using this sequence number col
umn, a session dequeuing a message does not insert adequeue
log record, but updates an existing empty row in the dequeue
log. This update over previous rows is used in Subsequent
reuse of dequeue log partitions, to reuse the partition without
truncate.

Dequeue Log Partition Pre-Population

0209 When a dequeue log partition is created, in the same
transaction empty rows are inserted in the partition. For the
purpose of explanation, it shall be assumed that the dequeue
log partition has 2000 rows. At this point, only the values 0 to
1999 are inserted into the seq num column. The 2000 rows
form a place holder for the dequeue log information which
will be updated into these rows during dequeues. No later
insert is required.
0210. According to one embodiment, there is only one
index on the dequeue log, and it is on the seq num column.
Since the sequence number is inserted during pre-population,
the index on whole partition is created during pre-population
which happens in most cases in a background process. This
index, once built, is not required to be maintained rest of the
life of the partition because the seq num column is never
changed. So on each reuse of a dequeue log partition, new
dequeue log records are updated into the partition, but the
index is not required to be maintained during foreground
dequeue operations.

Dequeue Log Partition Reuse Using Row Markers

0211. According to one embodiment, the metadata record
of each dequeue log partition (in the dequeue-log partition
map table) has a column which stores a value called row
marker for the partition. When a partition is created, the value
is initially 1.
0212. The dequeue log table also has a VERSION column.
The value stored in this column in a record indicates whether
a dequeue log row is virtually present in this record or not.
0213 If a dequeue log. VERSION column in a row of a
dequeue log partition is “marked with the row marker value
in its metadata, then it signifies that the Subscriber has
dequeued the corresponding message.
0214. When dequeue log information for a message is
updated into a record in the prepopulated dequeue log parti
tion, the present Row Marker of the partition from its meta
data is stored into the VERSION column of the dequeue log
record.

0215. While looking to check if a message is dequeued by
a Subscriber or not e.g., by reload, etc., the row marker value
of the partition is picked from the metadata and each row of
dequeue log partition is checked for this row marker value. If
the row marker is found in the row, the message is dequeued
(dequeue log row is present).
0216. When a dequeue log partition is unmapped, the par
tition is not actually truncated. The rows are left just as is, but
the row marker in the partition metadata in partition map is
incremented from its previous value. The row marker can
have several values to signify the status of the message for the

US 2014/0372702 A1

subscriber. In one embodiment, the value starts from 1 and on
next reuse of the partition is incremented by 5.
0217. A row in a partition can have a version value as an
offset from corresponding row marker stored in dequeue-log
partition map table. The following are the offset values:

0218 0-dequeue committed
0219 1=this message is not qualified for this non-du
rable subscriber

0220 2-background process committed this message
0221 3-message rolled backed and retry updated
0222 4-message reached maximum retries
0223 5-truncate marker offset: The final offset version
representing next legitimate row marker and version
value. This offset represents reuse of the dequeue-log
partition.

0224. When a truncatable partition is unmapped, its row
marker value in metadata is incremented. The existing rows in
the partition virtually disappear because the reader expects
the new incremented row marker value in the rows for a valid
row. Thus all old rows with smaller values of row marker are
interpreted as not present.

Row Marker Wraparound

0225. Since the row marker is incremented on every
unmap and a partition can be reused an indefinite number of
times, the row marker cannot be incremented indefinitely,
because it will reach the upper value of its storage. This row
marker is reset to its start value i.e. 1 after a fixed number of
reuse cycles. When the row marker is reset to 1, the VER
SION column of all 2000 rows is set to Zero. This is required
to be done, because there could be still some rows which, for
example, were updated only by the first use of partition with
first time value of row marker-1, and now after wraparound
on second time value of row marker=1, those old rows might
look like dequeued on current usage of the partition.

Unmapping Dequeue Log Partitions

0226. A dequeue log partition is unmapped when the par
ent queue table partition is being truncated, and a cascaded
truncate/free is called on all associated dequeue log partitions
(of all subscribers). When the dequeue log partitions are
unmapped, row marker update is done. Row marker reset is
also done, if necessary.
0227. In one embodiment, all these SQL updates during
dequeue log partition unmap are committed only if (in same
transaction of) the outer queue table parent partition unmap is
committed.

Recycling/Reuse of Dequeue Log Partitions

0228. Once dequeue log partitions are unmapped, they
satisfy the condition of the SQL query which loads informa
tion about free partition from the dictionary to refill the
prefetch cache. On the next prefetch refill query, partitions are
picked up using ORDER BY and put towards the head of the
prefetch cache, so that they can be reused.
0229. The dequeue log partitions are made to be reused
quickly by using ORDER BY and putting into the consuming
end of the cache, so that the queue can be served using a
minimum number of distinct partitions, for the benefits of
locality of reference, cache trails, etc. of a recently used
SOUC.

Dec. 18, 2014

Memory Pressure

0230 Messages may be stored on disk (such as in the
queue table) as well as in-memory, Such as in the message
cache. When retrieving a message, obtaining the message
from the message cache instead of from disk avoids costly
SQL operations to access queued messages. Consequently,
when sufficient memory is available, the message cache may
be used to cache all messages. The messages may include any
metadata, locks, Subscribers, and transaction states needed to
manage the messages.
0231. As used herein, the term “memory pressure” refers
to any low-memory condition with the potential to affect
message caching. Memory pressure usually arises when mes
sages are not consumed fast enough, thereby causing memory
to be used faster than it is released or otherwise recycled.
0232 A database implementing a sharded queue may be
configured to detect memory pressure by identifying one or
more specific low memory conditions. In a shared-disk data
base, memory pressure may be handled differently based on
the database instance in which the memory pressure occurs,
which is discussed in more detail below.

0233 According to one embodiment, the message cache is
stored in a pool of memory designated for use by the message
cache. A low memory condition may be defined based on
usage statistics for this pool of memory. For example,
memory pressure may be detected when the current memory
usage of this pool exceeds a threshold. For example, the
message cache may be considered “under memory pressure”
when the free space falls below 30 percent of the pool of
memory, or some other threshold. In one embodiment, when
performing an enqueue operation, memory pressure is
checked before allocating any memory for the message
within the message cache. When memory pressure is
detected, the endueue operation does not store the message in
the message cache.
0234. A sharded queue's behavior with respect to memory
may be customized. For example, a queue may be allocated a
memory quota and/or a priority relative to other queues. The
memory quota and/or priority may be based on the impor
tance and load of the sharded queue.

Enqueue Under Memory Pressure

0235. In the general case, sharded queues use at least one
message cache in memory to avoid always having to retrieve
messages from disk. As explained above, in one embodiment,
the in-memory message cache corresponds to a partition of
the queue table on disk. Under memory pressure, when
enqueuing a message, a decision may be made not to store the
message in a message cache. Instead, only a small amount of
metadata is stored in the message cache. For persistent mes
sages that are also stored on disk in the queue table, the
metadata stored in the message cache identifies the location
that the message is stored in the queue table. A message stored
in the queue table but not in the message cache is referred to
herein as an "uncached message'.
0236. In addition to supporting uncached individual mes
sages, entire queue shards may also be “uncached’. Specifi
cally, according to one embodiment, a queue shard may be
cached or uncached based on whether memory pressure
exists. When the queue shard is cached, messages are stored
in both the message cache (in Volatile memory) and the queue
table (on disk). When the queue shard is uncached, messages

US 2014/0372702 A1

are only stored in the queue table. The queue shard may be
Switched from cached to uncached, and vice versa, depending
on memory pressure.
0237. In one embodiment, the level of granularity at which
the cachefuncache decision is made may be any one of (a)
individual messages, (b) entire queue shards, and/or (c) indi
vidual subshards within a queue shard. When the caching
decision is made at the Subshard level, the same shard queue
may contain both cached Subshards and uncached subshards.
0238. In embodiments that make the caching decision at
the subshard level, a subshard of a queue shard may be either
cached or uncached. For an uncached Subshard, all messages
in the Subshard are not stored in the message cache. Rather,
the message cache stores metadata that identifies the mes
sages in the queue table, and dequeues are performed by
obtaining the messages from the queue table.
0239. The “current subshard refers to the subshard on
which enqueues are currently being performed. If the queue
shard to which the current Subshard belongs is cached, such as
when no memory pressure is detected, the current Subshard is
a cached subshard. If the queue shard to which the current
Subshard belongs is uncached. Such as when memory pres
Sure is detected, the current Subshard is an uncached Sub
shard.

Transitioning from No Pressure to Pressure
0240. In one embodiment, when memory pressure is first
detected, the queue shard to which the current subshard
belongs is changed from cached to uncached, and no new
messages are stored in the buffer of the message cache cor
responding to the current Subshard. This may result in a
partially filled buffer in the message cache and/or a partially
filled partition in the queue table.
0241 According to one embodiment, in response to
detecting memory pressure, the current Subshard is marked as
FULL, indicating that no new messages will be accepted into
that subshard. A new subshard is created and marked to be
uncached. The new subshard is now the current subshard into
which new enqueues are accepted.

Transitioning from Pressure to No Pressure

0242. In one embodiment, when memory ceases to be
under pressure and the current Subshard is an uncached Sub
shard, the current uncached subshard is allowed to complete.
Thus, even if it is detected that memory pressure is no longer
present, the uncached subshard may be used until the corre
sponding queue table partition is full. In other words, until the
uncached subshard is full, the shard operates as an uncached
shard, and messages are only stored in the queue table.
0243 Alternatively, when the current subshard is
uncached but there is sufficient shared memory available, an
enqueuing session can terminate the current Subshard and
start using a cached Subshard. To avoid a high number of
changes between a cached subshard and an uncached Sub
shard, Such as when available memory is close to a condition
that determines memory pressure, the uncached-to-cached
transition can depend on the number of messages in the cur
rent uncached partition as well as the amount of shared
memory available, or any other appropriate factor useful to
avoid thrashing between states. In one embodiment, an
uncached Subshard may be dynamically converted to a
cached subshard, which shall be described in more detail
hereafter.

Dec. 18, 2014

Enqueuing Example

0244 FIG. 11 is a block diagram illustrating, in an
embodiment, enqueues into Subshards of one shard of a
sharded queue, over a period of time. The period of time
covered in FIG. 11 includes a period when memory pressure
is detected, according to an embodiment. Specifically, at time
T1, memory pressure is detected. At time T2, it is detected
that memory pressure is no longer present.
0245. In FIG. 11, the vertical axis represents time, and
each horizontal row indicates which subshard was the “cur
rent Subshard' at any given time. Specifically, the chronologi
cal sequence of subshards that were the “current subshard'
during the period depicted in FIG. 11 is: subshard 1102,
subshard 1112, subshard 1122, subshard 1132, subshard
1142, then subshard 1152.
0246 Arrows 1160 and 1170 correspond to enqueue
operations performed over time on the shard that includes
subshards 1102, 1112, 1122, 1132, 1142 and 1152.
0247 Subshard 1102 is a cached subshard. When sub
shard 1102 is the current subshard, no memory pressure is
detected. For each message endueued into the shard, the
message is stored in circular buffer 1104 and partition 1106
until partition 1106 is full.
0248 Subshard 1112 is an uncached subshard. When sub
shard 1112 is the current subshard, memory pressure is
detected at T1. At T1, Subshard 1112 is marked as full, and no
more messages are stored in either circular buffer 1114 or
partition 1116.
(0249 Memory pressure is detected from T1 to T2. Sub
shards 1122 and 1132 are uncached subshards. Subshards
1122 and 1132 are current subshards that fall completely
within the period T1 to T2. When subshard 1122 is the current
subshard, messages are only stored in partition 1126. When
subshard 1132 is the current subshard, messages are only
stored in partition 1136. Even though the messages them
selves are not stored in the message cache during periods of
memory pressure, message metadata may still be stored in the
message cache, such as in a fixed-memory portion of the
message cache (not shown).
(0250) Subshard 1142 is an uncached subshard because
there is memory pressure at the time subshard 1142 becomes
the current subshard. At T2, while subshard 1142 is still the
current Subshard, it is detected that memory pressure is no
longer present. Although it is detected that no memory pres
sure is present, the subshard 1142 is allowed to complete until
partition 1146 is full. As mentioned above, message metadata
may still be stored in the message cache. Such as in a fixed
memory portion of the message cache (not shown).
0251 Subshard 1152 is the next subshard created after T2.
Because subshard 1152 becomes the current subshard when
memory pressure is no longer present, Subshard 1152 is cre
ated as a cached subshard. Thus, while subshard 1152 is the
current Subshard, each message enqueued into the shard is
stored both in circular buffer 1154 and in partition 1156, until
partition 1156 is full.

Adapting to Changes in Memory Pressure

0252) According to one embodiment, as the amount of
available shared memory changes, the sharded queue auto
matically adapts. As shown in the embodiment of FIG. 11,
even if it is detected that memory pressure is no longer
present, an uncached subshard may continue to be used until
the corresponding partition is full. Alternatively, in response

US 2014/0372702 A1

to detecting that memory pressure has ceased, an enqueuing
session can terminate the current uncached Subshard and start
using a cached Subshard.
0253) A cached subshard may be dynamically converted
to an uncached subshard, Such as to make more memory
available. For example, in a shared-disk database, when an
instance of the shared-disk database restarts, cached parti
tions are read into shared memory. In this scenario, cached
Subshards that have not been processed by slow dequeuers
can occupy shared memory for a long time. Dynamic conver
sion of a cached subshard to an uncached subshard can reduce
the amount of memory allocated to existing Subshards in this
and other scenarios.
0254 Conversely, an uncached subshard may be dynami
cally converted to a cached subshard. For example, when
Sufficient free memory is available, converting an uncached
Subshard into a cached Subshard may make dequeue opera
tions on these subshards more efficient.

Sequence Number Indexes
0255. There are two kinds of sharded queue partitions for
a queue table: cached and uncached. Messages in a cached
partition correspond to a cached subshard and are also stored
in the message cache. Messages in an uncached partition
correspond to an uncached Subshard and are not stored in the
message cache. Every message that is stored in a partition has
a unique “sequence number within the partition. The
sequence number represents the relative message order based
on enqueue time of a message within a subshard and corre
sponding partition. Typically, for a cached Subshard, the mes
sage is dequeued by reading from the message cache rather
than the corresponding partition.
0256 In some circumstances, such as when one or more
instances are under memory pressure, messages are not
cached in the message cache. In one embodiment, for Such
uncached partitions, the sequence numbers of these uncached
messages are indexed. For example, the sequence number
may be stored in an indexed column of the queue table. To
dequeue a specific message from a queue table partition, the
queue table partition needs to be searched for the particular
sequence number corresponding to the specific message. The
sequence number index facilitates efficient dequeuing of a
message from the queue table.
0257 Because messages stored in cached partitions are
typically dequeued from the message cache rather than the
queue table, it is not essential to index the sequence numbers
for these messages. To reduce the costs of index maintenance,
the sequence number may be recorded in different columns of
the queue table for cached partitions and uncached partitions.
The column corresponding to the uncached partitions is
indexed in a sequence number index, while the column cor
responding to the cached partitions is not indexed. Because
the indexed column is not populated for messages in a cached
partition, the number of entries in the sequence number index
is reduced. In one embodiment, the unindexed column is a
virtual column derived from the column containing the mes
sage identifier. When queried, virtual columns appear to be
normal table columns, but their values are derived rather than
being stored on disk.

Preserving Transaction Atomicity
0258 An enqueuing session can enqueue messages in
both cached and uncached partitions for the same queue

Dec. 18, 2014

shard. Transaction commits, transaction rollbacks, and roll
backs to a savepoint are handled consistently across the queue
table, the dequeue log, and the message cache. To preserve
transaction atomicity, messages that were endueued by the
same transaction in cached and uncached partitions of the
same message queue shard become visible to a session
dequeuing from that shard at the same time.
0259. According to an embodiment, a database maintains
a logical timestamp to uniquely identify the order that any
database operation occurred relative to another database
operation. In one embodiment, the logical timestamps are
based on an actual system time, a counter, or any other data
that identifies order. In one embodiment, each cached mes
sage has an incarnation number, representing the logical com
mit timestamp of the transaction that enqueued this message.
0260 A flashback query provides a mechanism for view
ing data as it existed at a prior point in time. Flashback queries
are described in U.S. Pat. No. 7,689,549, which is hereby
incorporated by reference. According to one embodiment,
when examining an uncached partition, a dequeuer uses a
flashback query based on the System Change Number (SCN)
stored within the dequeue pointer. By using a flashback query
with the SCN of the dequeue pointer, enqueued messages
associated with transactions that committed at a later logical
timestamp will not be selected for dequeue.
0261. In one embodiment, the flashback query uses the
sequence number index to avoid sorting messages within the
partition while looking for undedueued messages. When
examining a cached partition, a dequeuer scans cached mes
sages in enqueue order but ignores messages whose incarna
tion number is larger than the incarnation number component
of the dequeue pointer being used. A dequeuer unable to
dequeue messages on a shard will periodically refresh its
SCN/incarnation number pair and look for enqueued mes
sages that were recently committed. A post-commit callback
for enqueuing transactions captures the current SCN, derives
an incarnation number from the SCN, and updates all cached
messages enqueued to sharded queues in the transaction with
the new incarnation number.
0262 These methods ensure that all messages within the
same enqueue transaction are visible atomically, and that
dequeue operations follow enqueue Session level ordering
correctly.

Shared-Disk Database

0263. A shared-disk database includes multiple instances
configured to access a single database. One example of a
shared-disk database is the Oracle Real Application Clusters
(RAC). Oracle RAC includes multiple servers or hosts con
nected to each other by a high bandwidth, low latency inter
connect. The interconnect is a private network that connects
all of the instances of the shared-disk database. The system
appears as a single database server to end users and applica
tions. Various techniques provided herein may apply to mul
tiple instance database configurations. Furthermore, the tech
niques provided herein, as applied to multiple instance
database configurations, are not limited to Oracle RAC, and
may apply to any proprietary and/or standardized shared-disk
database architecture.

Shard Ownership for Enqueue Session on a
Shared-Disk Database

0264. In a shared-disk database, a shard is ideally con
tained within a single instance. In this case, all sessions

US 2014/0372702 A1

enqueuing on the shard and dequeuing from the shard are
connected to the same instance. When more flexibility is
needed for a given subscriber, the instance on which the
dequeuing occurs for that subscriber can be different than the
instance on which the engueuing occurs. In this case a data
base background process (referred to herein as the “cross
process”) sends messages from the message cache in the
enqueuing instance to the message cache in the dequeuing
instance. In a shared-disk database, a load balancer may make
decisions on adding, removing, or changing cross processes.
Embodiments of load balancers and cross processes are
described in greater detail hereafter.
0265. When one instance of the shared-disk database has
the exclusive right to enqueue on a specific shard, it has
enqueue ownership of the specific shard. Enqueue ownership
of a shard is typically with the instance which created the
shard. Enqueue ownership for shards ensures that no two
enqueue sessions at different instances can enqueue in the
same shard. In one embodiment, enqueue ownership of a
shard assigned to a specific instance is always fixed and never
changed until the specific instance is no longer alive. In case
of death of an instance owning shards, enqueue ownership of
Such shards may be assigned to other alive instances, such as
by load balancer.
0266 Enqueue ownership information for all shards may
be stored in a database dictionary table. For example, the
enqueue ownership table may include the following columns:

0267 QUEUE (specifies a sharded queue)
0268 SHARD (specifies a shard of the specified
sharded queue)

0269 ENOUEUE INSTANCE (specifies an instance
of a shared-disk database where the specified shard is
created; the specified instance may have engueue Ses
sions to the specified shard).

0270. Any enqueue session at the specified instance will
perform enqueues in a shard associated with the endueue
instance. In one embodiment, the endueue Session continues
to enqueue all its messages for a queue in the same shard in its
lifetime, so as to preserve the order of messages enqueued by
the session. The enqueue sessions of an instance may be
distributed across the shards associated with the instance
using a round-robin assignment scheme, a load-balancing
assignment scheme or any other assignment scheme.
0271 The enqueue ownership table may include addi
tional columns, such as to facilitate the addition and removal
instances, such as in an embodiment that shall be described in
greater detail hereafter.

Shard Ownership for Dequeue Session on a
Shared-Disk Database

0272 For a specific shard and a specific subscriber, the
instance of a shared-disk database that has the right to
dequeue from the specific shard on behalf of the specific
subscriber has “dequeue ownership' of the specific shard
relative to the specific subscriber. For example, if instance X
has dequeue ownership of shard Y relative to subscriber Z.
then only instance X can dequeue messages from shard Y on
behalf of Subscriber Z.
0273 Allowing only a single instance to dequeue from a
given shard for a given Subscriber ensures all data manipula
tion commands on the shard for dequeue purposes is done on
a single instance for the given Subscriber. Dequeue ownership
may be enforced for a specific shard Such that no two dequeue
sessions at different instances can dequeue from the specific
shard on behalf of the same subscriber. However, a subscriber
can dequeue from two different instances from two different

Dec. 18, 2014

shards of the queue at the same time. For example, while
instance X is dequeuing messages from shard Y for Subscriber
Z, another instance A can be dequeuing messages from
another shard B for subscriber Z, conversely, instance Acan
not dequeue messages from shardY for subscriber Zhowever,
instance A can dequeue messages from shard Y for another
Subscriber Q. Thus, a dequeue Session can concurrently
dequeue messages for a Subscriber of a queue from different
shards, where endueue ownership of Such shards is owned by
dequeue instance or instances other than dequeue instance.
0274. According to one embodiment, dequeue ownership
of a shard for all subscribers of the queue remains with the
enqueue instance of the shard. In one embodiment, this
causes local dequeues (i.e. in memory from a message cache
local to the instance), increasing performance and Scalability
by avoiding message copy across instance and reducing
memory footprint. In another embodiment, dequeue owner
ship of Some Subscribers for a shard can be assigned to a
non-enqueue owner instance to ensure effective draining of
shards based on eagerness/capacity of dequeue Session in
certain instances. A load-balancer is typically responsible for
deciding whether Such a change in dequeue affinity can be
done.
0275 Dequeue ownership may be described using a tuple
that identifies the following fields: Queue. Subscriber, Shard
and Dequeue Instance. For the specified sharded queue, the
specified Subscriber can dequeue from the specified shard at
the specified instance. In one embodiment, each Subscriber
has a dequeue Session on each instance, the dequeue Session
of each specific instance dequeuing from one or more shards
associated with that instance.
0276. In one embodiment, there are cases where a sub
scriber does not dequeue messages from all shards and/or
does not have a dequeue Session on one or more instances,
Such as due to application design. For example, for a non
durable JMS subscriber, dequeues for a particular subscriber
happen at a single instance or at less than all of the instances
that are alive, and messages from shards at other instances are
expected to be dequeued at the instance where subscribers
dequeue session is present.
0277 Dequeue ownership of a shard for a subscriber is not
fixed and can be changed to different instances to drain the
shards across instances. For example, this allows non-durable
JMS subscribers to the sharded queue. However, at any point
of time, a Subscriber can dequeue from a shard at any single
instance. Therefore, enqueue ownership and dequeue owner
ship of a shard may be with different instances for a particular
Subscriber. In such cases of ownership mismatch, message
forwarding mechanisms may be configured to detect the own
ership mismatch and forward the messages for Subscriber
from the enqueuing instance to the dequeuing instance seam
lessly, such as by one or more cross processes.

Load Balancer

0278. In a shared-disk database, a load balancer may auto
matically perform load-balancing procedures. Load-balanc
ing may be performed based on one or more factors, such as:

(0279 Enqueue rate
0280 Dequeue rate
0281 Message backlog
0282 Available memory
(0283) CPU usage
0284 Message throughput
0285 Message latency.

US 2014/0372702 A1

0286 Furthermore, additional factors may be used in
addition to these example factors. Different local and/or glo
bal policies may be implemented in a shared-disk database.
0287. For example, consider a load-balancing policy that
defines load as latency, where latency is amount of time a
Subscriber would take to dequeue all the messages at an
instance based on factors such as past enqueue rate, past
dequeue rate, current backlog, predicted enqueue rate, and
predicted dequeue rate of that particular subscriber. In this
case, "load calculations are unique to a Subscriber-instance
pair. If enqueue rate is higher than dequeue rate of a Sub
scriber at an instance, that instance is "loaded for that sub
scriber. If dequeue rate of a Subscriber is higher than or equal
to enqueue rate at an instance, that instance is “not loaded for
that subscriber.
0288 A load balancer may perform functions such as:
0289 Load calculation at all instances:
0290 Detection of need of message forwarding from an
instance (loaded) to other instance (not loaded) when
messages are not getting dequeued by Subscriber(s) at all
instances where endueues are in progress;

0291 Choosing a shard from all available shards at
loaded instance from which messages are forwarded to
instance where load is less;

0292 Shifting dequeue ownership of a chosen shard
from loaded instance to an instance with less load;

0293 Starting cross processes to forward messages to
less loaded instances;

0294 Stopping cross processes to end forwarding mes
Sages to avoid overloading other instances and to reduce
inter-instance communication;

0295 Changing shard's ownership—e.g. in case of
addition or removal of instances from the shared-disk
database, shards owned by dead instances may be made
available to alive instances for draining purposes;

0296. These functions are example functions that may be
performed by a load balancer; additional functions may be
implemented by one or more load balancers in a shared-disk
database system.
0297 Load-balancing functionality may be performed
locally and globally, such as by a local load balancer and a
global load balancer. In one embodiment, load-balancing is
implemented in one or more load-balancing layers.

Local Load Balancing
0298 Local load balancing may be performed at each
alive instance, and may include tasks Such as:

0299 Based on load balancing policy in use, collecting
required statistics to calculate "load' at that instance;

0300 Receiving and processing requests from a global
load balancer to change dequeue ownership for a par
ticular shard-subscriber pair;

0301 Ensuring that no uncommitted dequeue transac
tion is present for a shard-Subscriberpair while changing
dequeue ownership;

0302 Starting a cross process to forward messages to
less loaded instances;

0303 Stopping a cross process to end forwarding mes
Sages. Such as to avoid overloading other instances and
to reduce inter-instance communication;

(0304. Owning shards whose OWNER INSTANCE is
no longer alive;

0305 These tasks are examples of tasks that may be per
formed by a local load balancer or a local load balancing

Dec. 18, 2014

process; additional tasks may be implemented by one or more
local load balancers in a shared-disk database system.

Global Load Balancing
0306 Global load balancing is performed at only one
instance amongst all live instances in a shared-disk database,
and may include tasks Such as:

0307 Evaluating calculated “load' by local load bal
ancers at all instances;

0308 Deciding if dequeue ownership shift (message
forwarding) is required for subscribers;

0309 Sending requests to loaded instances to shift load
to less loaded instances;

0310. These tasks are examples of tasks that may be per
formed by a global load balancer or a global load balancing
process; additional tasks may be implemented by one or more
local load balancers in a shared-disk database system.

Shared-Disk Database Cross Processes

0311. A cross process refers to a background process in a
shared-disk database that sends message data from a shards
enqueue owner instance to one of the queue shard's dequeue
owner instances. A cross process forwards messages from
one instance to another instance so that the messages may be
drained at a different instance. Message transfer results in a
shard from enqueue owner instance being replicated at the
dequeue owner instance. In one embodiment, cross processes
are implemented as a layer adjacent to one or more load
balancing layers. A load balancer or a load-balancing process
may trigger a cross process.
0312. In one embodiment, a cross process involves the
following components:

0313 Source instance—An instance (engueue owner
ship instance) from where messages are being for
warded;

0314 Destination instance—An instance (dequeue
ownership instance) where messages are being for
warded to:

0315 Cross master—A background master process
which runs at the Source instance and forwards messages
to the destination instance, and can handle multiple cross
processes simultaneously;

0316 Cross server—A background server process
which runs at the destination instance and receives mes
Sages from the source instance;

0317 Source and shadow shard The shard which is
being forwarded. At the Source instance, it is called a
Source shard. At the destination instance, it is called a
shadow shard.

0318. A single cross process unit may be uniquely defined
by specifying all of above components.
0319 Messages associated with a shard can be forwarded
to multiple instances at the same time to be dequeued by
different subscribers. Furthermore, messages associated with
the shard be forwarded by different cross masters to different
instances at the same time.
0320 A cross master reads messages from the message
cache at the Source instance and forwards messages to the
destination instance through the interconnect of the shared
disk database. A cross server receives these messages and
populates them in the message cache at the destination
instance. In one embodiment, only one cross master can for
ward messages associated with a shard from a source instance

US 2014/0372702 A1

to a particular destination instance at any point of time. A
cross process may be used by any number of Subscribers to
access messages when the same combination of shard, Source
instance and destination instance is involved.

Shadow Shard

0321) A shard may be forwarded from a source instance to
a destination instance. The term "shadow shard' shard refers
to a forwarded shard at the destination instance. A shadow
shard is created and populated at a non enqueue owner
instance of the source shard for remote subscribers at the non
enqueue owner instance to dequeue from. Shadow shards
may be created and populated by a cross process by forward
ing data over the interconnect of a shared-disk database. On a
shared-disk database where forwarding is enabled, the
instance with dequeue affinity and enqueue affinity might be
different. In such a case, the message data on a first instance
with enqueue affinity to a shard is replicated to the message
cache of a second instance with dequeue affinity for that
shard. The replicate shard is called a shadow shard. Shadow
shards do not need queue table partition associations as no
enqueue will be done, only dequeues will be performed.
Shadow shards are thus only associated with dequeue log
partitions.
0322 FIG. 8 is a block diagram illustrating an embodi
ment of cross processes with respect to a source instance and
destination instances. Cross jobs CJ1, CJ2, CJ3 forward
source shard 820 (SH1) from source instance 802 to shadow
shards 824-828 of destination instances 804-808 for different
subscribers. A cross master 810-812 reads messages from the
message cache at the source instance 802 and forwards mes
sages to the destination instance 804-808 through the inter
connect. A cross server 834-838 receives these messages and
populates them in the message cache at the destination
instance 804-808.
0323 For example:
0324 cross job CJ1 forwards SH1 from source instance
802 to destination instance 804 via cross master 810;
0325 cross job CJ2 forwards SH1 from source instance
802 to destination instance 808 via cross master 810; and
0326 cross job CJ3 forwards SH1 from source instance
802 to destination instance 806 via cross master 812.
0327. As shown, a cross master, such as cross master 810,
can handle multiple cross jobs simultaneously. A shard SH1
can also be forwarded to multiple destination instances 804
808 at the same time to be dequeued by different subscribers.
Additionally, a shard can be forwarded by different cross
masters 810-812 to different destination instances 804-808 at
the same time. In one embodiment, only one cross master can
forward a shard from a source instance to a particular desti
nation instance at any specific point of time. A cross job could
be used by any number of subscribers to forward messages for
the same combination of shard, Source instance and destina
tion instance.

Cross Process Control Messages
0328. When messages are dequeued from shadow shards
at a destination instance, the ordering of messages enqueued
by each endueue Session must be maintained. In one embodi
ment, cross process control messages containing special con
trol metadata are inserted in the Source shard's message cache
at the time of transaction activity, like commit or rollback.
Control messages contain transactional details of ongoing

Dec. 18, 2014

enqueues in the Subshard. The remote instance can determine
the state of each message in the Subshard using the control
messages.
0329. Using cross process control messages, a full replay
protocol may be implemented. All transactional activity
which happened in the source shard at the Source instance is
replayed in the shadow shard at the destination instance in
exactly same order.
0330 FIGS. 9A-D are block diagrams illustrating full
replay protocol, according to an embodiment. For example, in
FIG.9A, messages M1, M3 and M4 are enqueued in source
shard 910 at times T0, T2 and T3 respectively and are part of
transaction Tx1, where T0<T2<T3. Similarly, messages M2,
M5 and M6 are enqueued at time T1, T4 and T6 respectively
and part of transaction Tx2 where T1<T4<T6.
0331. At time T4, messages M1 to M5 are not committed
and hence not seen by dequeuers. When transaction Tx1
commits at time T5, special control metadata is inserted
which signifies transaction Tx1 is committed for messages
M1, M3 and M4. At this time, only messages M1, M3 and M4
could be dequeued. Messages M2 and M5 are still not visible
to dequeue Sessions at time T5.
0332. When transaction Tx2 commits at T7, a special con
trol metadata is inserted which signifies transaction TX2 is
committed for messages M2, M5 and M6. At this time, all
messages from M1 to M6 could be dequeued.
0333 When a cross master process forwards source shard
910 to the destination instance, all messages along with the
special control metadata are forwarded as is. At first, mes
sages M1 to M5 are sent in order of enqueue time. In shadow
shard 920, all messages are allocated as not committed and
thus are not visible for dequeue, as marked “UC in FIG.9B.
0334. When the special control metadata for Tx1 commit

is forwarded to the destination instance, the cross server pro
cess at the destination instance makes messages intransaction
Tx1 visible for dequeue, as marked by “C” in FIG.9C.
0335. In one embodiment, special control metadata is not
allocated in shadow shards. Finally, when the special control
metadata for Tx2 commit is forwarded to the destination
instance, the cross server process at destination instance
makes messages in transaction TX2 visible for dequeue as
represented in FIG.9D. As shown in FIGS.9A-9D, full replay
protocol preserves the ordering of messages enqueued by
enqueue sessions in shadow shard 920.

Message Cache and Queue Table in Shared-Disk
Databases

0336. In one embodiment, a partition subsystem is used to
implement a partitioning scheme to avoid write-write conten
tion during enqueue and dequeue operations across instances
of a shared-disk database. In one embodiment, the partition
Subsystem is implemented as a partition layer. The partition
Subsystem implements this partitioning scheme via two key
Subcomponents:

0337 Partition Map
0338 Partition Cache

eart1t1On mar) ma1nta1nS the mapping between a 0339. The partiti p maintains th pping b
physical partition and a Subshard. The partition map contains
partition usage information across the shared-disk database
system. Since every persistent queuing operation requires
partition information, i.e., partition id or partition name, to
access the partition, reducing the response time from the
partition map is critical to reducing the overall latency of

US 2014/0372702 A1

queuing operations. For this purpose, the partition Subsystem
employs the partition cache, an in-memory caching facility.
0340. The partition cache proactively caches the partition
information and thus allows fast reads and writes for persis
tent messages. The partition cache always guarantees the
inclusion property that all partition information used in the
message cache is always available in the partition cache.
0341 The message cache expects to receive a partition
from the partition subsystem while the partition subsystem
proactively provisions partitions in background. For the first
enqueue to a subshard, the partition Subsystem maps a parti
tion for the given shard id, priority id, and subshard id by
updating the mapping of the partition map table and adding an
entry into the partition cache. Similarly, for reload from a
Subshard (after instance restart or removal of an instance), the
partition Subsystem searches the entry in the partition cache
with the given shard id, priority, and Subshard id.

Special Considerations for Enqueue Under Memory
Pressure in a Shared-Disk Database

0342. In a shared-disk database, due to the need to include
control messages in the message cache, an uncached subshard
may have a corresponding circular buffer even if the message
cache is under memory pressure. Unlike a circular buffer
associated with a cached subshard, the circular buffer asso
ciated with an uncached Subshard does not store endueued
messages. Rather, after the enqueued messages are endueued
in the corresponding partition of the queue table, a control
message is generated and placed in the circular buffer. If a
transaction enqueues only uncached messages, then the data
base generates a control message with only a commit SCN in
case of commit and no control message in case of rollback. If
a transaction enqueues both cached and uncached messages,
the control message will contain all the message identifiers of
the cached messages that were committed or rolled back,
followed by the commit SCN or the rollback SCN. Control
messages stored in a circular buffer for an uncached subshard
are used for message forwarding. For example, a cross pro
cess may use control messages stored in the circular buffer of
an uncached Subshard message to populate a shadow shard.
Message forwarding under memory pressure shall be
described in greater detail hereafter.
0343 FIG. 12 illustrates the control message allocations.
In this example, subshards S1 and S2 are cached, and sub
shard S3 is uncached. Subshards S1, S2 and S3 have circular
buffers CB1, CB2 and CB3, respectively. In case the transac
tion is rolled back to savepoint SC, no control message is
allocated as the messages enqueued after time T3 are
uncached. If the endueue transaction is rolled back to save
point SB, a control message is allocated which contains the
identifiers of all the messages the transaction enqueued in
Subshard S2. The control message is a rollback message as the
control message is sent ahead of the commit or rollback. If the
enqueue transaction performs a commit without any roll
backs, a control message is allocated which contains the
identifiers of messages the transaction enqueued in Subshards
S1 and S2 followed by the commit SCN.
0344. In another example shown in FIG. 13, Subshards S1
and S2 are uncached. If the endueue transaction performs a
commit, a control message is allocated with only the commit
SCN of the transaction.

Source and/or Destination Under Memory Pressure
0345. In a shared-disk database, messages may be for
warded from an enqueuing instance to a dequeuing instance,

Dec. 18, 2014

Such as over an interconnect of the shared-disk database.
There are four possible combinations with respect to memory
pressure:

0346 sufficient shared memory available at the enqueu
ing instance and the dequeuing instance;

0347 sufficient memory available at the enqueuing
instance, and memory pressure at the dequeuing
instance;

0348 memory pressure at the enqueuing instance, and
Sufficient memory at the dequeuing instance;

0349 memory pressure at both the enqueuing instance
and the dequeuing instance.

0350. When there is sufficient shared memory available at
the endueuing instance and the dequeuing instance, sharded
queues operate without special considerations for memory
pressure. The handling of each of the other scenarios is
described hereafter.

Memory Pressure at Dequeuing Instance
0351 When there is sufficient memory available at the
enqueuing instance and memory pressure at the dequeuing
instance, messages are endueued as cached messages in the
Source shard at the enqueuing instance. However, there is not
enough shared memory available at the dequeuing instance
for newly created subshards and/or cached subshards at the
enqueuing instance that have not been forwarded to the
dequeuing instance. Instead of sending messages to the
dequeuing instance and inserting these messages to message
cache at the dequeuing instance, the dequeuing instance will
access these messages using a SQL command.
0352. At the engueuing instance, which has adequate
shared memory, cached Subshards are still generated. How
ever, the queue table partition corresponding to these cached
Subshards are modified to Support uncached access by the
dequeuing instance. On the engueuing instance, the indexed
column (used for dequeuing from the queue table when a
message is not in the message cache, as described above)
must be populated so that the sequence number is available in
order to access respond to a request for a message by the
dequeuing instance.
0353. To avoid write-write contention between the
enqueuing instance and the dequeuing instance, the enqueu
ing instance (rather than the dequeuing instance) populates
the indexed column. For the messages that will not be cached
at the dequeuing instance, the endueuing instance also
updates all the control messages with the latest SCN so the
flashback query used by dequeuers at the dequeuing instance
will see the populated indexed column.
0354 The enqueuing instance still sends control messages
to the dequeuing instance that is under memory pressure.
Each control message contains Sufficient information for the
dequeuing instance to obtain the endueued message. Such as
by using a SQL command. For example, rather than forward
ing enqueued messages to the dequeuing instance, the
enqueuing instance forwards control messages correspond
ing to the enqueued messages. Until there is Sufficient shared
memory at the dequeuing instance, future partitions of the
Source shard at the engueuing instance are created to Support
uncached access of the partition (i.e., by populating the
indexed column). When the dequeuing instance has sufficient
shared memory, the endueuing instance can resume its ordi
nary behavior. In one embodiment, the decision to resume
message caching is delayed to avoid thrashing between
operation under memory pressure and regular behavior. For

US 2014/0372702 A1

example, the decision to resume message caching may be
delayed until the current subshard is full.

Memory Pressure at Endueuing Instance
0355. When there is memory pressure at the enqueuing
instance and Sufficient memory at the dequeuing instance, the
Subshard is uncached at the engueuing instance. Instead of
forwarding enqueued messages, control messages corre
sponding to the endueued messages are forwarded. These
control messages contains sufficient information for the
dequeuing instance to obtain an enqueued message. Such as
by using a SQL command.

Memory Pressure at Both Enqueuing Instance and
Dequeuing Instance

0356. When there is memory pressure at the enqueuing
instance as well as the dequeuing instance, the Subshard is
uncached at the enqueuing instance. Instead of forwarding
enqueued messages, control messages corresponding to the
enqueued messages are forwarded. These control messages
contains Sufficient information for the dequeuing instance to
obtain an enqueued message. Such as by using a SQL com
mand.

Cross Process Operation Under Memory Pressure
0357. As described above, in a shared-disk database, cross
processes are configured to forwarded messages and/or con
trol messages to a dequeuing instance, or a destination
instance, from a source instance of the shared-disk database.
A cross process involves a component on the source instance
(e.g. the cross master background process) and a component
on the destination instance (e.g. the cross server background
process) that writes messages to the in-memory message
cache at the destination instance.
0358. When the destination instance has enough memory

to accommodate messages in a message cache:
0359 For any uncached subshard of a source shard, a
cross process transmits control messages from the
Source instance to the destination instance. The control
messages contain Sufficient information (e.g. Sufficient
message metadata to dequeue the message using SQL)
to generate the corresponding uncached shadow shard.

0360 For any cached subshard of a source shard, a cross
process transmits messages from the source instance to
the destination instance. The messages populate an allo
cated cached Subshard in the corresponding shadow
shard at the destination instance.

0361. When the destination instance is under memory
pressure:

0362 For any uncached subshard of a source shard, a
cross process transmits control messages from the
Source instance to the destination instance. The control
messages contain Sufficient information (e.g. Sufficient
message metadata to dequeue the message using SQL)
to generate the corresponding uncached shadow shard.

0363 For any cached subshard of a source shard, a cross
process transmits control messages from the Source
instance to the destination instance. The control mes
Sages contain Sufficient information (e.g. Sufficient mes
Sage metadata to dequeue the message using SQL) to
generate the corresponding uncached shadow shard.

0364. When the destination instance is under memory
pressure, the forwarding of a cached subshard requires spe

Dec. 18, 2014

cial handling, which shall be described in detail hereafter.
This corresponds to the case where the destination instance is
under memory pressure, but the source instance was not
under memory pressure.

Forwarding a Cached Subshard to a Destination
Instance Under Memory Pressure

0365. When the destination instance is under memory
pressure, control messages received from the source instance
will be placed in an uncached subshard of a shadow shard on
the destination instance. Thus, the "current subshard of the
shadow shard will be an uncached subshard, even if the cur
rent uncached Subshard corresponds to a cached subshard of
a source shard at the Source instance.

0366. To dequeue a message from the uncached shadow
Subshard of the destination instance, a dequeue Session at the
destination instance dequeues the control message, which
contains sufficient message metadata for the dequeue Session
to obtain the message from the corresponding queue table
partition of the Source instance, Such as by using an SQL
command.

0367. When the source instance is not under memory pres
Sure, it maintains cached Subshards. As explained above, for
messages that belong to cached subshards, the indexed
sequence number column is not populated in the queue table
partition corresponding to the Subshard, since messages are
typically dequeued from the message cache rather than the
queue table partition. For example, as described above, an
indexed “sequence number column may be populated only
for uncached Subshards to reduce index maintenance over
head.

0368 To facilitate dequeuing from such uncached shadow
Subshards at the destination instance, the indexed sequence
number column is populated in the queue table partition of at
the source instance before control messages corresponding to
the enqueued messages are forwarded to the destination
instance. If the indexed sequence number column is popu
lated for a specific cached source subshard N to facilitate
dequeuing at a destination instance under memory pressure,
the SCN generated after the population procedure may be
higher than the commit SCNs stored with subshards in the
shard enqueued after subshard N. To preserve the order of
messages enqueued by each enqueue Session in this Subshard,
all the control messages present from subshard N to last
subshard of the shard are updated with the latest SCN.

Addition and Removal of Instances

0369. The enqueue ownership table described herein may
include additional columns, such as to facilitate the addition
and removal instances. Such as in an embodiment that shall be
described in greater detail hereafter.
0370. In one embodiment, load-balancing architecture is
configured such that the addition of an instance to the shared
disk database does not require additional set up.
0371. When an instance is removed from a shared-disk
database, shards owned by the removed instance need to be
taken over by other live instances. As stated earlier, a dictio
nary table storing shard ownership information may include
the following columns:

0372 QUEUE
0373 SHARD
0374 ENOUEUE INSTANCE.

US 2014/0372702 A1

0375 Additional columns may be implemented for
changing the owner of shards owned by dead/removed
instances. The additional columns may include:

0376 PREFERRED OWNER INSTANCE (system
generated preferred instance number to used during fail
over on owner instance crash)

0377 OWNER INSTANCE (current owner instance)
0378 FLAGS (state of the shard).

0379. In the embodiment, ENOUEUE INSTANCE is the
instance where shard is created and is the only instance eli
gible for enqueue for the specified SHARD. OWNER IN
STANCE is the instance which takes load balancing decisions
for that shard. At the time of shard creation, ENOUEUE
INSTANCE and OWNER INSTANCE are same. When
OWNER INSTANCE is not alive, OWNER INSTANCE
may change and differ from ENQUEUE INSTANCE. How
ever ENOUEUE INSTANCE is never changed. PRE
FERRED OWNER INSTANCE is the instance which is
supposed to take ownership of the shard if OWNER IN
STANCE is not alive. If PREFERRED OWNER IN
STANCE is not alive, the ownership could be taken by any
live instance.

Non-Persistent Messages
0380. In the previous sections, embodiments have been
described in which messages in the queue persist on disk until
all messages in the queue have been consumed by all Sub
scribers, or until the queue has been removed. However, non
persistent messages are maintained only in the message
cache, and not durably stored in any disk table (e.g. the queue
table or dequeue-log table).
0381. A shard may be persistent or volatile. A persistent
shard is a shard associated with one or more queue table
partitions. Messages in the shard are written to a database
table by the enqueue driver. A volatile shard is used only for
buffered or non-persistent messages which are not persisted
to a database table. Volatile shards are not associated with
queue table partitions or dequeue log partitions.

Crash Recovery

0382. When a database instance is started after an instance
crash or a normal shutdown, for each sharded queue a SQL
SELECT command is issued with an ORDER BY clause on
each nonempty partition of the queue table. This SQL
SELECT Statement reads all not-yet-dequeued messages
from the queue table into the message cache. A SQL SELECT
command is also issued on each non-empty dequeue log
partition, to load the information contained therein into
cache.

Java Message Service Queues
0383. The sharded queues described herein may be used to
implement JMS queues. Sharded queues may be configured
to completely support JMS. Point-to-point queues as well as
publish-subscribe topics (i.e. multiple subscriber queue) are
Supported.
0384. Nonpersistent JMS messages are implemented like
persistent JMS messages, but do not use the queue table and
dequeue log table. Message listeners can be supported by
having an existing message listener mechanism iterate over
all shards.
0385. Nondurable JMS subscribers are implemented like
durable JMS subscribers, but keep their metadata only in

20
Dec. 18, 2014

volatile memory. Nondurable subscribers do not log dequeue
operations in the dequeue log.
0386. In one embodiment, a nondurable subscriber evalu
ates its rule when deciding whether a message is eligible for
dequeue. However, in alternative embodiments, this evalua
tion could also be done at endueue time or in the background.
(0387 Like durable subscribers, a nondurable subscriber
uses an entry in the subscriber bitmap to indicate whether the
Subscriber is dequeuing or has dequeued a message.

Hardware Overview

0388 According to one embodiment, the techniques
described herein are implemented by one or more special
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform the techniques, or may
include digital electronic devices such as one or more appli
cation-specific integrated circuits (ASICs) or field program
mable gate arrays (FPGAs) that are persistently programmed
to perform the techniques, or may include one or more gen
eral purpose hardware processors programmed to perform the
techniques pursuant to program instructions in firmware,
memory, other storage, or a combination. Such special-pur
pose computing devices may also combine custom hard
wired logic, ASICs, or FPGAs with custom programming to
accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable com
puter systems, handheld devices, networking devices or any
other device that incorporates hard-wired and/or program
logic to implement the techniques.
0389 For example, FIG. 10 is a block diagram that illus
trates a computer system 1000 upon which an embodiment of
the invention may be implemented. Computer system 1000
includes a bus 1002 or other communication mechanism for
communicating information, and a hardware processor 1004
coupled with bus 1002 for processing information. Hardware
processor 1004 may be, for example, a general purpose
microprocessor.
0390 Computer system 1000 also includes a main
memory 1006, such as a random access memory (RAM) or
other dynamic storage device, coupled to bus 1002 for storing
information and instructions to be executed by processor
1004. Main memory 1006 also may be used for storing tem
porary variables or other intermediate information during
execution of instructions to be executed by processor 1004.
Such instructions, when stored in non-transitory storage
media accessible to processor 1004, render computer system
1000 into a special-purpose machine that is customized to
perform the operations specified in the instructions.
0391 Computer system 1000 further includes a read only
memory (ROM) 1008 or other static storage device coupled to
bus 1002 for storing static information and instructions for
processor 1004. A storage device 1010, such as a magnetic
disk, optical disk, or Solid-state drive is provided and coupled
to bus 1002 for storing information and instructions.
0392 Computer system 1000 may be coupled via bus
1002 to a display 1012, such as a cathode ray tube (CRT), for
displaying information to a computer user. An input device
1014, including alphanumeric and other keys, is coupled to
bus 1002 for communicating information and command
selections to processor 1004. Another type of user input
device is cursor control 1016, such as a mouse, a trackball, or
cursor direction keys for communicating direction informa
tion and command selections to processor 1004 and for con
trolling cursor movement on display 1012. This input device

US 2014/0372702 A1

typically has two degrees of freedom in two axes, a first axis
(e.g., X) and a second axis (e.g., y), that allows the device to
specify positions in a plane.
0393 Computer system 1000 may implement the tech
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or
programs computer system 1000 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 1000 in response to
processor 1004 executing one or more sequences of one or
more instructions contained in main memory 1006. Such
instructions may be read into main memory 1006 from
another storage medium, Such as storage device 1010. Execu
tion of the sequences of instructions contained in main
memory 1006 causes processor 1004 to perform the process
steps described herein. In alternative embodiments, hard
wired circuitry may be used in place of or in combination with
Software instructions.
0394 The term “storage media' as used herein refers to
any non-transitory media that store data and/or instructions
that cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or Vola
tile media. Non-volatile media includes, for example, optical
disks, magnetic disks, or Solid-state drives, such as storage
device 1010. Volatile media includes dynamic memory, such
as main memory 1006. Common forms of storage media
include, for example, a floppy disk, a flexible disk, hard disk,
solid-state drive, magnetic tape, or any other magnetic data
storage medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a
RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM,
any other memory chip or cartridge.
0395 Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including the wires that
comprise bus 1002. Transmission media can also take the
form of acoustic or light waves, such as those generated
during radio-wave and infra-red data communications.
0396 Various forms of media may be involved in carrying
one or more sequences of one or more instructions to proces
sor 1004 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid-state drive of a
remote computer. The remote computer can load the instruc
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 1000 can receive the data on the telephone line and use
an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the
infra-red signal and appropriate circuitry can place the data
on bus 1002. Bus 1002 carries the data to main memory 1006,
from which processor 1004 retrieves and executes the instruc
tions. The instructions received by main memory 1006 may
optionally be stored on storage device 1010 either before or
after execution by processor 1004.
0397) Computer system 1000 also includes a communica
tion interface 1018 coupled to bus 1002. Communication
interface 1018 provides a two-way data communication cou
pling to a network link 1020 that is connected to a local
network 1022. For example, communication interface 1018
may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data

Dec. 18, 2014

communication connection to a corresponding type of tele
phone line. As another example, communication interface
1018 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN. Wire
less links may also be implemented. In any such implemen
tation, communication interface 1018 sends and receives
electrical, electromagnetic or optical signals that carry digital
data streams representing various types of information.
0398 Network link 1020 typically provides data commu
nication through one or more networks to other data devices.
For example, network link 1020 may provide a connection
through local network 1022 to a host computer 1024 or to data
equipment operated by an Internet Service Provider (ISP)
1026. ISP 1026 in turn provides data communication services
through the worldwide packet data communication network
now commonly referred to as the “Internet 1028. Local
network 1022 and Internet 1028 both use electrical, electro
magnetic or optical signals that carry digital data streams. The
signals through the various networks and the signals on net
work link 1020 and through communication interface 1018,
which carry the digital data to and from computer system
1000, are example forms of transmission media.
0399 Computer system 1000 can send messages and
receive data, including program code, through the network
(s), network link 1020 and communication interface 1018. In
the Internet example, a server 1030 might transmit a
requested code for an application program through Internet
1028, ISP 1026, local network 1022 and communication
interface 1018.
0400. The received code may be executed by processor
1004 as it is received, and/or stored in storage device 1010, or
other non-volatile storage for later execution.
04.01. In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive sense.
The sole and exclusive indicator of the scope of the invention,
and what is intended by the applicants to be the scope of the
invention, is the literal and equivalent scope of the set of
claims that issue from this application, in the specific form in
which such claims issue, including any Subsequent correc
tion.
What is claimed is:
1. A method comprising:
storing messages from a plurality of enqueuers in a plural

ity of shards of a sharded queue;
wherein the plurality of enqueuers comprises a first

enqueuer, wherein messages from the first enqueuer are
stored in the first shard;

maintaining, in a relational database system, a queue table
corresponding to the sharded queue;

maintaining, in Volatile memory, a plurality of message
caches, each message cache corresponding to a shard of
the plurality of shards;

detecting memory pressure based on memory usage of the
Volatile memory;

wherein storing a specific message from the first enqueuer
comprises:
storing the specific message in rows of the queue table

that are assigned to the first shard;
when memory pressure is not detected, storing the spe

cific message in a first message cache of the plurality

US 2014/0372702 A1

of message caches, the first message cache corre
sponding to the first shard;

causing Subscribers of the sharded queue to dequeue mes
Sages from the plurality of shards;

wherein the method is performed by one or more comput
ing devices.

2. The method of claim 1,
wherein the first message cache comprises a fixed-memory

portion and a variable-memory portion;
wherein, when memory pressure is not detected, the spe

cific message is stored in the variable-memory portion of
the message cache;

the method further comprising, when memory pressure is
detected, storing message metadata corresponding to the
first message in the fixed-memory portion of the first
message cache.

3. The method of claim 2,
wherein a first shard of the plurality of shards comprises a

plurality of subshards;
wherein the specific message is stored in rows of the queue

table that are assigned to a current subshard of the first
shard;

wherein the variable-memory portion of the first message
cache comprises a plurality of buffers each correspond
ing to a subshard of the first shard;

wherein the specific message is stored in a current buffer of
the plurality of circular buffers, the current buffer corre
sponding to the current Subshard.

4. A method comprising:
storing messages from a plurality of enqueuers in a plural

ity of shards of a sharded queueina shared-disk database
system;

maintaining, by the shared-disk database system, a queue
table corresponding to the sharded queue;

maintaining, in Volatile memory of database instances of
the shared-disk database system, a plurality of message
caches, each message cache corresponding to a shard of
the plurality of shards;

wherein the plurality of enqueuers comprises at least one
first endueuer, wherein messages from the at least one
first endueuer are endueued in the first shard;

determining whether the first shard is currently cached or
uncached based on whether memory pressure is detected
in a first instance of the shared-disk database, wherein
the first instance has enqueue ownership of the first
shard;

wherein storing a specific message from the first enqueuer
comprises:
storing the specific message in a row of the queue table

in a partition assigned to the first shard;
when the first shard is cached, storing the specific mes

sage in a first message cache of the plurality of mes
sage caches, the first message cache corresponding to
the first shard;

when the first shard is uncached, storing message meta
data corresponding to the specific message in the first
message cache;

wherein the method is performed by one or more comput
ing devices.

5. The method of claim 4,
wherein a first shard of the plurality of shards comprises a

plurality of subshards;
wherein the partition is assigned to a current Subshard of

the plurality of subshards;

22
Dec. 18, 2014

wherein, when the first shard is cached, the specific mes
Sage is stored in a current buffer of the first message
cache, the current buffer corresponding to the current
subshard;

wherein determining whether the first shard is currently
cached or uncached comprises determining whether the
current Subshard is a cached Subshard or an uncached
subshard.

6. The method of claim 5, further comprising:
when memory pressure is detected, if the current subshard

is a particular cached Subshard, changing the current
subshard to a next subshard, wherein the next subshard
is uncached;

wherein Subsequent messages are stored in a partition
assigned to the next Subshard.

7. The method of claim 5, further comprising:
converting a first cached subshard to a first uncached Sub

shard; and
converting a second uncached Subshard to a second cached

subshard.
8. The method of claim 5, further comprising:
causing Subscribers of the sharded queue to dequeue mes

Sages from the plurality of shards;
wherein dequeuing a selected message stored in a selected

subshard of the first shard comprises:
when the selected subshard is a cached subshard,

dequeuing the selected message from the first mes
Sage cache;

when the selected subshard is an uncached subshard,
dequeuing the selected message from the queue table
using SQL.

9. The method of claim 5, further comprising:
causing a Subscriberata second instance of the shared-disk

database to dequeue messages from the first message
queue by generating a shadow shard of the first shard at
the second instance by transmitting entries of the first
message cache over an interconnect of the shared-disk
database;

wherein generating the shadow shard at the second
instance comprises populating a second message cache
corresponding to the shadow shard at the second
instance;

wherein the Subscriber at the second instance dequeues
from the shadow shard of the first shard.

10. The method of claim 9, further comprising:
detecting whether the second instance is under memory

pressure;
wherein, for at least one uncached subshard of the first

shard, the second message cache is populated with mes
Sage metadata for at least one message of the at least one
uncached subshard;

wherein, for at least one cached subshard of the first shard,
when the second instance is not under memory pressure,

the second message cache is populated with at least
one message of the at least one cached subshard;

when the second instance is under memory pressure, the
second message cache is populated with message
metadata for at least one message of the at least one
cached subshard.

11. A non-transitory computer-readable medium storing
instructions which, when executed by one or more proces
sors, cause the one or more processors to carry out the steps
of:

US 2014/0372702 A1

storing messages from a plurality of enqueuers in a plural
ity of shards of a sharded queue;

wherein the plurality of enqueuers comprises a first
enqueuer, wherein messages from the first enqueuer are
stored in the first shard;

maintaining, in a relational database system, a queue table
corresponding to the sharded queue;

maintaining, in volatile memory, a plurality of message
caches, each message cache corresponding to a shard of
the plurality of shards;

detecting memory pressure based on memory usage of the
Volatile memory;

wherein storing a specific message from the first enqueuer
comprises:
storing the specific message in rows of the queue table

that are assigned to the first shard;
when memory pressure is not detected, storing the spe

cific message in a first message cache of the plurality
of message caches, the first message cache corre
sponding to the first shard;

causing Subscribers of the sharded queue to dequeue mes
Sages from the plurality of shards;

wherein the method is performed by one or more comput
ing devices.

12. The non-transitory computer-readable medium of
claim 11,

wherein the first message cache comprises a fixed-memory
portion and a variable-memory portion;

wherein, when memory pressure is not detected, the spe
cific message is stored in the variable-memory portion of
the message cache;

the method further comprising, when memory pressure is
detected, storing message metadata corresponding to the
first message in the fixed-memory portion of the first
message cache.

13. The non-transitory computer-readable medium of
claim 12,

wherein a first shard of the plurality of shards comprises a
plurality of subshards;

wherein the specific message is stored in rows of the queue
table that are assigned to a current subshard of the first
shard;

wherein the variable-memory portion of the first message
cache comprises a plurality of buffers each correspond
ing to a subshard of the first shard;

wherein the specific message is stored in a current buffer of
the plurality of circular buffers, the current buffer corre
sponding to the current Subshard.

14. A non-transitory computer-readable medium storing
instructions which, when executed by one or more proces
sors, cause the one or more processors to carry out the steps
of:

storing messages from a plurality of enqueuers in a plural
ity of shards of a sharded queueina shared-disk database
system;

maintaining, by the shared-disk database system, a queue
table corresponding to the sharded queue;

maintaining, in Volatile memory of database instances of
the shared-disk database system, a plurality of message
caches, each message cache corresponding to a shard of
the plurality of shards;

wherein the plurality of enqueuers comprises at least one
first endueuer, wherein messages from the at least one
first endueuer are endueued the first shard;

Dec. 18, 2014

determining whether the first shard is currently cached or
uncached based on whether memory pressure is detected
in a first instance of the shared-disk database, wherein
the first instance has enqueue ownership of the first
shard;

wherein storing a specific message from the first enqueuer
comprises:
storing the specific message in a row of the queue table

in a partition assigned to the first shard;
when the first shard is cached, storing the specific mes

sage in a first message cache of the plurality of mes
sage caches, the first message cache corresponding to
the first shard;

when the first shard is uncached, storing message meta
data corresponding to the specific message in the first
message cache;

wherein the method is performed by one or more comput
ing devices.

15. The non-transitory computer-readable medium of
claim 14.

wherein a first shard of the plurality of shards comprises a
plurality of subshards:

wherein the partition is assigned to a current Subshard of
the plurality of subshards;

wherein, when the first shard is cached, the specific mes
Sage is stored in a current buffer of the first message
cache, the current buffer corresponding to the current
subshard;

wherein determining whether the first shard is currently
cached or uncached comprises determining whether the
current Subshard is a cached Subshard or an uncached
subshard.

16. The non-transitory computer-readable medium of
claim 15, the steps further comprising:
when memory pressure is detected, if the current subshard

is a particular cached Subshard, changing the current
subshard to a next subshard, wherein the next subshard
is uncached;

wherein Subsequent messages are stored in a partition
assigned to the next Subshard.

17. The non-transitory computer-readable medium of
claim 15, the steps further comprising:

converting a first cached subshard to a first uncached Sub
shard; and

converting a second uncached Subshard to a second cached
subshard.

18. The non-transitory computer-readable medium of
claim 15, the steps further comprising:

causing Subscribers of the sharded queue to dequeue mes
Sages from the plurality of shards;

wherein dequeuing a selected message stored in a selected
subshard of the first shard comprises:
when the selected subshard is a cached subshard,

dequeuing the selected message from the first mes
Sage cache;

when the selected subshard is an uncached subshard,
dequeuing the selected message from the queue table
using SQL.

19. The non-transitory computer-readable medium of
claim 15, the steps further comprising:

causing a Subscriberata second instance of the shared-disk
database to dequeue messages from the first message
queue by generating a shadow shard of the first shard at

US 2014/0372702 A1 Dec. 18, 2014
24

the second instance by transmitting entries of the first
message cache over an interconnect of the shared-disk
database;

wherein generating the shadow shard at the second
instance comprises populating a second message cache
corresponding to the shadow shard at the second
instance;

wherein the Subscriber at the second instance dequeues
from the shadow shard of the first shard.

20. The non-transitory computer-readable medium of
claim 19, the steps further comprising:

detecting whether the second instance is under memory
pressure;

wherein, for at least one uncached subshard of the first
shard, the second message cache is populated with mes
Sage metadata for at least one message of the at least one
uncached Subshard;

wherein, for at least one cached subshard of the first shard,
when the second instance is not under memory pressure,

the second message cache is populated with at least
one message of the at least one cached subshard;

when the second instance is under memory pressure, the
second message cache is populated with message
metadata for at least one message of the at least one
cached Subshard.

k k k k k

