(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number WO 2016/071167 A1 (43) International Publication Date 12 May 2016 (12.05.2016) (51) International Patent Classification: A01N 25/00 (2006.01) A01N 43/713 (2006.01) A01N 43/78 (2006.01) A01P 3/00 (2006.01) (21) International Application Number: PCT/EP2015/074922 (22) International Filing Date: 28 October 2015 (28.10.2015) (25) Filing Language: (26) Publication Language: English (30) Priority Data: 7 November 2014 (07.11.2014) 14192252.6 EP 14198463.3 17 December 2014 (17.12.2014) EP - (71) Applicant: BASF SE [DE/DE]; 67056 Ludwigshafen (DE). - (72) Inventors: MONTAG, Jurith; Fratrelstraße 5, 68167 Mannheim (DE). GEWEHR, Markus; Goethestr. 21, Published: 56288 Kastellaun (DE). - (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available); ARIPO (BW. GH. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). with international search report (Art. 21(3)) (57) Abstract: The present invention relates to pesticidal mixtures comprising one fungicidal tetrazol-5-one compound I selected from the group consisting of 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (1-1), 1-[3bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (1-2), 1-[2-[[1-(4-chlorophenyl)pyrazol-3yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (1-3), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (1-4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (1-4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (1-4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (1-4), 1-[2-[[1-(2,4-dichlorophenyl]pyrazol-3-yl]oxymethyl-3-fluoro-phen 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (1-6),1-[3-chloro-2-[[4-(ptolyl)thiazol-2-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-7), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-8),1-[3-(difluoromethoxy)-2-[[2-methyl-4-(1-methylpyrazol-3-(I-9), yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one 1-methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3yl)phenoxy]methyl]phenyl]tetrazol-5-one (I-10) and 1-methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxy $methyl] phenyl] tetrazol-5-one \hspace{0.1cm} (1-11) \hspace{0.1cm} and \hspace{0.1cm} 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl] phenyl] -4-methyl-tetrazol-5-one \hspace{0.1cm} (1-11) \hspace{0.1cm} and \hspace{0.1cm} 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl] -4-methyl-tetrazol-5-one \hspace{0.1cm} (1-11) \hspace{0.1cm} and \hspace{0.1cm} 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl] -4-methyl-tetrazol-5-one \hspace{0.1cm} (1-12) 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[3-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[3-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[3-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[3-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[3-(4-chlorophenyl)pyrazol-3-yl]oxymet$ razol-5-one (1-12) and one or more fungicides. The patent application also relates to plant propagation material and to a pesticidal composition comprising this mixture as well as to the use of the pesicidal mixture in methods for controlling phytopathogenic pests, for improving the health of plants and for the protection of plant propagation material. ## Pesticidal mixtures ## Description 10 25 30 - 5 The present invention relates to fungicidal mixtures comprising - one fungicidal compound I selected from the group consisting of 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-1), 1-[3-bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-2), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-3), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-5), 1-[2-[[1-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-phenyl - 4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-5), 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-6), 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-7), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3- - yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-8), 1-[3-(difluoromethoxy)-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-9), 1-methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]tetrazol-5-one (I-10) and 1-methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]tetrazol-5-one (I-11) and 1-[3- - 20 chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-12); and - and at least one further fungicidal compound II selected from the group of strobilurines consisting of azoxystrobin (II-1), dimoxystrobin (II-2), fluoxastrobin (II-3), kresoxim-methyl (II-4), mandestrobin (II-5), metaminostrobin (II-6), orysastrobin, (II-7), picoxystrobin (II-8), pyraclostrobin (II-9), trifloxystrobin (II-10), pyribencarb (II-11), famoxadone (II-12), fenamidone (II-13); and - the group of carboxamides selected from benzovindiflupyr (II-14), bixafen (II-15), boscalid (II-16), fluopyram (II-17), flutolanil (II-18), fluxapyroxad (II-19), isofetamid (II-20), isopyrazam (II-21), penflufen (II-22), penthiopyrad (II-23), sedaxane (II-24), 3 (difluoromethyl)-1-methyl-N-(1,1,3-trimethyl¬indan-4-yl)pyrazole-4-carboxamide (II-25), 3 (trifluoromethyl)-1-methyl-N-(1,1,3-trimethyl¬indan-4-yl)pyrazole-4-carboxamide (II-26), 1,3-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyr¬azole-4-carboxamide (II-27), 3-(trifluorometh-yl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)¬pyrazole-4-carboxamide (II-28), 1,3,5-tri-methyl-N-(1,1,3-trimethylindan-4-yl)¬pyrazole-4-carboxamide 1,3,5-tri-methyl-N-(1,1,3-trimethyl - (1,1,3-trimethylindan-4-yl)pyrazole-4-car¬boxamide (II-29); and the group of sterol biosynthesis inhibitors (SBI fungicides) consisting of bitertanol (II-30), bromuconazole (II-31), cyproconazole (II-32), difenoconazole (II-33), diniconazole (II-34), diniconazole-M (II-35), epoxiconazole (II-36), fenbuconazole (II-37), fluquinconazole (II38), flusilazole (II-39), flutriafol (II-40), hexaconazole (II-41),
imibenconazole (II-42), ipconazole (II-43), metconazole (II-44), myclobutanil (II-45), oxpoconazole (II-46), paclobutrazole (II-47), penconazole (II-48), propiconazole (II-49), prothioconazole (II-50), simeconazole (II-51), tebuconazole (II-52), tetraconazole (II-53), triadimefon (II-54), triadimenol (II-55), triticonazole (II-56), uniconazole (II-57), 2-[rel-(2S;3R)-3-(2-chlorophenyl)-2-(2,4- difluorophenyl)-oxi-ranyl-methyl]-2H-[1,2,4]triazole-3-thiol (II-58); and 5 10 20 25 30 35 40 the group of sterol biosynthesis inhibitors (SBI fungicides) and delta14-reductase inhibitors consisting of dodemorph (II-59), dodemorph-acetate (II-60), fenpropimorph (II-61), tridemorph (II-62), fenpropidin (II-63), spiroxamine (II-64); and the group of inhibitors of cell division and cytoskeleton consisting of benomyl (II-65), carbendazim (II-66), fuberidazole (II-67), thiabendazole (II-68), thiophanate-methyl (II-69); diethofencarb (II-70), ethaboxam (II-71), pencycuron (II-72), fluopicolide (II-73), zoxamide (II-74), metrafenone (II-75), pyriofenone (II-76); and the group of inhibitors with Multi Site Action consisting of Bordeaux mixture, (II-77), copper acetate, (II-78), copper hydroxide, (II-79), copper oxychloride, (II-80), basic copper sulfate, (II-81), sulfur; (II-82), mancozeb, (II-83), maneb, (II-13), metam, (II-85), metiram, (II-86), propineb, (II-87), thiram, (II-88), zineb, (II-89), ziram; (II-90), chlorothalonil, (II-91), captan, (II-92), folpet, (II-93), phthalide, (II-94), dodine, (II-95), iminoctadine, (II-96), dithianon, (II-97), 2,6-di-methyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetraone (II-98); and the group of cell wall synthesis inhibitors consisting of validamycin (II-99), polyoxin B (II-100), pyroquilon (II-101), tricyclazole (II-102), carpropamid (II-103); and the group of plant defence inducers consisting of acibenzolar-S-methyl (II-104), probenazole (II-105), isotianil (II-106), tiadinil (II-107), prohexadione-calcium (II-108), fosetyl (II-109), phosphorous acid and its salts (II-110); and the group of respiration inhibitors consisting of cyazofamid (II-111), amisulbrom (II-112), dinocap (II-113), fluazinam (II-114), ferimzone (II-115), fentin salts, such as fentin-acetate, fentin chloride or fentin hydroxide, (II-116), ametoctradin (II-117), silthiofam (II-118); and the group of sterol biosynthesis inhibitors (SBI fungicides) consisting of imazalil (II-119), pefurazoate (II-120), prochloraz (II-121), triflumizol (II-122); and the group of sterol biosynthesis inhibitors (SBI fungicides) consisting of fenarimol (II-123), pyrifenox (II-124), triforine (II-125), [3-(4-chloro-2-fluoro-phenyl)-5-(2,4-difluoro-phenyl)isoxazol-4-yl]-(3-pyridyl)methanol (II-126); and the group of inhibitors of amino acid and protein synthesis consisting of cyprodinil (II-127), mepanipyrim (II-128), pyrimethanil (II-129), kasugamycin (II-130), streptomycin (II-131), polyoxin (II-132), validamycin A (II-133); and the group of signal transduction inhibitors consisting of iprodione (II-134), procymidone (II-135), vinclozolin (II-136), fludioxonil (II-137), quinoxyfen (II-138); and the group of lipid and membrane synthesis inhibitors consisting of edifenphos (II-139), iprobenfos (II-140), isoprothiolane (II-141), tolclofos-methyl (II-142), dimethomorph (II-143), flumorph (II-144), mandipropamid (II-145), pyrimorph (II-146), benthiavalicarb (II-147), iprovalicarb (II-148), valifenalat (II-149), propamocarb (II-150), oxathiapiprolin (II-151), 2-{3-[2-(1-{[3,5-bis(di-fluoromethyl-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}phenyl methanesulfonate (G.5.2), 2-{3-[2-(1-{[3,5-bis(difluoro-me-thyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-bis(difluoro-me-thyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-bis(difluoro-me-thyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-bis(difluoro-me-thyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-bis(difluoro-me-thyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-bis(difluoro-me-thyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-bis(difluoro-me-thyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-bis(difluoro-me-thyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-bis(difluoro-me-thyl)-1 oxazol-5-yl}-3-chlorophenyl methanesulfonate; (II-152); and the group of sterol biosynthesis inhibitors (SBI fungicides): Inhibitors of 3-keto reductase consisting of fenhexamid (II-153); and the group of nucleic acid synthesis inhibitors consisting of benalaxyl (II-154), benalaxyl-M (II-155), kiralaxyl (II-156), metalaxyl (II-157), metalaxyl-M (mefenoxam) (II-158), oxadixyl (II-159), hymexazole (II-160), oxolinic acid (II-161), bupirimate (II-162), 5-fluorocytosine (II-163), 5-fluoro-2-(p-tolylmethoxy)pyrimidin-4-amine (II-164), 5-fluoro-2-(4fluorophenylmethoxy)pyrimidin-4-amine (II-165); and the group of fungicides with unknown mode of action consisting of cyflufenamid (II-166), cymoxanil (II-167), diclomezine (II-168), difenzoquat (II-169), difenzoquat-methylsulfate (II-170), fenpyrazamine (II-171), flumetover (II-172), flusulfamide (II-173), flutianil (II-174), oxathiapiprolin (II-175), tolprocarb (II-176), oxine-copper (II-177), proquinazid (II-178), tebufloquin (II-179), tecloftalam (II-180), picarbutrazox (II-181), 3-[5-(4-chloro-phenyl)-2,3dimethyl-isoxazolidin-3-yl]-pyridine (pyrisoxazole) (II-182), 2-[3,5-bis(difluoromethyl)-1Hpyrazol-1-yl]-1-[4-(4-{5-[2-(prop-2-yn-1-yloxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3thiazol-2-yl)piperidin-1-yl]etha-none (II-183), 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2-fluoro-6-(prop-2-yn-1-yl-oxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thi-azol-2yl)piperidin-1-yl]ethanone (II-113), 2-[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]-1-[4-(4-{5-[2chloro-6-(prop-2-yn-1-yl-oxy)phenyl]-4,5-dihydro-1,2-oxazol-3-yl}-1,3-thiazol-2-yl)piperidin-1-yl]ethanone (II-185), 2-[2-[(7,8-difluoro-2-methyl-3-quinolyl)oxy]-6-fluorophenyl]propan-2-ol (II-186), 2-[2-fluoro-6-[(8-fluoro-2-methyl-3-guinolyl)oxy]-phenyl]propan-2-ol (II-187), 9-fluoro-2,2-dimethyl-5-(3-quinolyl)-3H-1,4-benzoxazepine (II-188), 3-(5-fluoro-3,3,4,4-tetramethyl-3,4-dihydroiso-quinolin-1-yl)-quinoline (II-189), 3-(4,4difluoro-3,3-dimethyl-3,4-dihydroisoquinolin-1-yl)-quin-oline (II-190), 3-(4,4,5-trifluoro-3,3dimethyl-3,4-dihydroisoguinolin-1-yl)quinoline (II-191). The above-referred mixtures are herein below also referred as "inventive mixtures". 25 20 5 10 15 Moreover, the invention relates to a method for controlling pests, this refers to includes animal pests and harmful fungi, using the inventive mixtures and to the use of compound I and compound II and optionally a second compound II for preparing such mixtures, and also to compositions comprising such mixtures. 30 Moreover, the invention relates to a method for controlling harmful fungi, using the inventive mixtures of compound I, II and optionally second compound II and to the use of compound I and one or two compounds II as defined above for preparing such mixtures, and also to compositions comprising such mixtures. 35 Additionally, the present invention also comprises a method for protection of plant propagation material (preferably seed) from harmful pests, such as fungi or insects, arachnids or nematodes comprising contacting the plant propagation materials (preferably seeds) with an inventive mixture in pesticidally effective amounts 40 The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring. In a particular preferred embodiment, the term propagation material denotes seeds. Additionally, the present invention also comprises a method for protection of plant propagation material (preferably seed) from harmful fungi comprising contacting the plant propagation materials (preferably seeds) with the inventive mixture in pesticidally effective amounts. 10 5 Moreover, the invention relates to a method for controlling harmful fungi using the inventive mixtures mixtures and to the use of the compounds present in the inventive mixtures for preparing such mixtures, and also to compositions comprising such mixtures. The present invention further relates to plant-protecting active ingredient mixtures having synergistically enhanced action of improving the health of plants and to a method of applying such inventive mixtures to the plants. Compounds I as well as their pesticidal action and methods for producing them are known e.g. from WO 2013/162072, WO 2013/162072, WO 2013/162072, WO 2013/162072, WO 2013/162072, WO 2013/162077, WO 2014/051161, WO 2014/051165 and WO 2014/013223. Compounds II as well as their pesticidal action and methods for producing them are generally known. For instance, they may be found in the e-Pesticide Manual V5.2 (ISBN 978 1 901396 85 0) (2008-2011) among other publications. 25 40 One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicological effects whilst still allowing effective pest control. 30 In regard to the instant invention the term pests embrace harmful fungi. Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum
of harmful fungi. 35 There also exists the need for pest control agents that combine knock-down activity with prolonged control, that is, fast action with long lasting action. Another difficulty in relation to the use of pesticides is that the repeated and exclusive application of an individual pesticidal compound leads in many cases to a rapid selection of pests, that means animal pests, and harmful fungi, which have developed natural or adapted resistance against the active compound in question. Therefore there is a need for pest control agents that help prevent or overcome resistance. Another problem underlying the present invention is the desire for compositions that improve plants, a process which is commonly and hereinafter referred to as "plant health". The term plant health comprises various sorts of improvements of plants that are not connected to the control of pests. For example, advantageous properties that may be mentioned are improved crop characteristics including: emergence, crop yields, protein content, oil content, starch content, more developed root system (improved root growth), improved stress tolerance (e.g. against drought, heat, salt, UV, water, cold), reduced ethylene (reduced production and/or inhibition of reception), tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less input needed (such as fertilizers or water), less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early and better germination; or any other advantages familiar to a person skilled in the art. 15 10 5 It was therefore an object of the present invention to provide pesticidal mixtures which solve the problems of reducing the dosage rate and / or enhancing the spectrum of activity and / or combining knock-down activity with prolonged control and / or to resistance management and/or promoting the health of plants. 20 We have found that this object is in part or in whole achieved by the mixtures comprising the active compounds defined in the outset. 25 Especially, it has been found that the mixtures as defined in the outset show markedly enhanced action against pests compared to the control rates that are possible with the individual compounds and/or is suitable Afor improving the health of plants when applied to plants, parts of plants, seeds, or at their locus of growth. 30 It has been found that the action of the inventive mixtures goes far beyond the fungicidal and/or plant health improving action of the active compounds present in the mixture alone (synergistic action). 35 Moreover, we have found that simultaneous, that is joint or separate, application of the compound I and the compound II and optionally second compound II or successive application of the compound I and the compound II and optionally second compound II allows enhanced control of pests, that harmful fungi, compared to the control rates that are possible with the individual compounds (synergistic mixtures). 40 Moreover, we have found that simultaneous, that is joint or separate, application of the compound I and the compound II and optionally second compound II or successive application of the compound I and the compound II and optionally second compound II allows enhanced control of harmful fungi, compared to the control rates that are possible with the individual compounds (synergistic mixtures). Moreover, we have found that simultaneous, that is joint or separate, application of the compound I and the compound II and optionally second compound II or successive application of the compound I and the compound II and optionally second compound II provides enhanced plant health effects compared to the plant health effects that are possible with the individual compounds. 5 10 15 The ratio by weight of compound I and compound II in binary mixtures is from 20000:1 to 1:20000, from 500:1 to 1:500, preferably from 100:1 to 1:100 more preferably from 50:1 to 1:50, most preferably from 20:1 to 1:20, including also ratios from 10:1 to 1:10, 1:5 to 5:1, or 1:1. The ratio by weight of compound I, II and second compound II in each combination of two ingredients in the mixture of three ingredients is from 20000:1 to 1:20000, from 500:1 to 1:500, preferably from 100:1 to 1:100 more preferably from 50:1 to 1:50, most preferably from 20:1 to 1:20, including also ratios from 10:1 to 1:10, 1:5 to 5:1, or 1:1. The following **binary** mixtures set forth herein are subject to the teaching of the present invention. In the tables A, B, C, D, E, F, G, H and Z - set forth below, compounds of formula I are abbreviated as follows: | No | chemical name | |------|---| | I-1 | 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl- | | | tetrazol-5-one | | I-2 | 1-[3-bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl- | | | tetrazol-5-one | | I-3 | 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl- | | | tetrazol-5-one | | I-4 | 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl- | | | tetrazol-5-one | | I-5 | 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl- | | | tetrazol-5-one | | I-6 | 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl- | | | tetrazol-5-one | | I-7 | 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one | | I-8 | 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4- | | | methyl-tetrazol-5-one | | I-9 | 1-[3-(difluoromethoxy)-2-[[2-methyl-4-(1-methylpyrazol-3- | | | yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one | | I-10 | 1-methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3- | | | yl)phenoxy]methyl]phenyl]tetrazol-5-one | | I-11 | 1-methyl-4-[3-methyl-2-[[1-[3- | | | | | | (trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]tetrazol-5-one | | |------|--|--| | I-12 | 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl- | | | | tetrazol-5-one | | In the tables A, B, C, D, E, F, G and H set forth below compounds II are abbreviated by the number in brackets behind the individual pestidcide as displayed on pages 1 to 3 of the present invention. 5 "I" is compound I, "II" is compound II" Table A1 | No | I | П | |----------|-----|---------| | M.A.1.1 | I-1 | II-1.1 | | M.A.1.2 | I-1 | II-1.2 | | M.A.1.3 | I-1 | II-1.3 | | M.A.1.4 | I-1 | II-1.4 | | M.A.1.5 | I-1 | II-1.5 | | M.A.1.6 | I-1 | II-1.6 | | M.A.1.7 | I-1 | II-1.7 | | M.A.1.8 | I-1 | II-1.8 | | M.A.1.9 | I-1 | II-1.9 | | M.A.1.10 | I-1 | II-1.10 | | M.A.1.11 | I-1 | II-1.11 | | M.A.1.12 | I-1 | II-1.12 | | M.A.1.13 | I-1 | II-1.13 | #### Table A2 Table A2 is as Table A1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.A.2.1 to M.A.2.13. In the context of the present invention, each of the rows of Table A2 corresponds to one mixture. ## Table A3 Table A3 is as Table A1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.A.3.1 to M.A.3.13. In the context of the present invention, each of the rows of Table A3 corresponds to one mixture. # Table A4 Table A4A is as Table A1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.A.4.1 to M.A.4.13. In the context of the present invention, each of the rows of Table A4 corresponds to one mixture. ## Table A5 20 Table A5 is as Table A1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.A.5.1 to M.A.5.13. In the context of the present invention, each of the rows of Table A5 corresponds to one mixture. #### 25 Table A6 Table A6 is as Table A1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.A.6.1 to M.A.6.13. In the context of the present invention, each of the rows of Table A6 corresponds to one mixture. Table A7 Table A7 is as Table A1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.A.7.1 to M.A.7.13. In the context of the present invention, each of the rows of Table A7 corresponds to one mixture. Table A8 Table A8 is as Table A1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.A.8.1 to M.A.8.13. In the context of the present invention, each of the rows of Table A8 corresponds to one mixture. Table A9 Table A9 is as Table A1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.A.9.1 to M.A.9.13. In the context of the present inven- 15 tion, each of the rows of Table A9 corresponds to one mixture. Table A10 Table A10 is as Table A1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.A.10.1 to M.A.10.13. In the context of the present invention, each of the rows of Table A10 corresponds to one mixture. 20 Table A11 Table A11 is as Table A1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.A.11.1 to M.A.11.13. In the context of the present invention, each of the rows of Table A11 corresponds to one mixture. Table A12 Table A12 is as Table A1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.A.12.1 to M.A.12.13. In the context of the present invention, each of the rows of Table A12 corresponds to one mixture. All tables A are preferred embodiments of the present invention. Within table A1 to ta-30 ble A12, the following mixtures are preferred: M.A.1.1, M.A.1.4, M.A.1.5, M.A.1.6, M.A.1.8, M.A.1.9, M.A.1.10, M.A.2.1, M.A.2.4, M.A.2.5, M.A.2.6, M.A.2.8, M.A.2.9, M.A.2.10, M.A.3.1, M.A.3.4, M.A.3.5, M.A.3.6, M.A.3.8, M.A.3.9,
M.A.3.10, M.A.4.1, M.A.4.4, M.A.4.5, M.A.4.6, M.A.4.8, M.A.4.9, M.A.4.10, M.A.5.1, M.A.5.4, M.A.5.5, M.A.5.6, M.A.5.8, M.A.5.9, M.A.5.10, M.A.6.1, M.A.6.4, M.A.6.5, M.A.6.6, M.A.6.8, M.A.6.9, M.A.6.10, M.A.7.1, M.A.7.4, M.A.7.5, M.A.7.6, M.A.7.8, M.A.7.9, M.A.7.10, M.A.8.1, M.A.8.4, M.A.8.5, M.A.8.6, M.A.8.8, M.A.8.9, M.A.8.10, M.A.9.1, M.A.9.4, M.A.9.5, M.A.9.6, M.A.9.8, M.A.9.9, M.A.9.10, M.A.10.1, M.A.10.4, M.A.10.5, M.A.10.6, M.A.10.8, M.A.10.9, M.A.10.10, M.A.11.1, M.A.11.4, M.A.11.5, M.A.11.6, M.A.11.8, M.A.11.9, M.A.11.10, M.A.12.1, M.A.12.4, M.A.12.5, M.A.12.6, M.A.12.8, M.A.12.9 and M.A.12.10. Within table A, the following mixtures are more preferred: M.A.1.4, M.A.1.9, M.A.2.4, M.A.2.9, M.A.3.4, M.A.3.9, M.A.4.4, M.A.4.9, M.A.5.4, M.A.5.9, M.A.6.4, M.A.6.9, M.A.7.4, M.A.7.9, M.A.8.4, M.A.8.9, M.A.9.4, M.A.9.9, M.A.10.4, M.A.10.9, M.A.11.4, M.A.11.9, M.A.12.4 and M.A.12.9. Table B1 | No | 1 | II | |---------|-----|-------| | M.B.1.1 | I-1 | II-14 | | M.B.1.2 | I-1 | II-15 | | M.B.1.3 | I-1 | II-16 | | M.B.1.4 | I-1 | II-17 | | M.B.1.5 | I-1 | II-18 | | M.B.1.6 | I-1 | II-19 | | M.B.1.7 | I-1 | II-20 | | M.B.1.8 | I-1 | II-21 | | M.B.1.9 | I-1 | II-22 | |----------|-----|-------| | M.B.1.10 | I-1 | II-23 | | M.B.1.11 | I-1 | II-24 | | M.B.1.12 | I-1 | II-25 | | M.B.1.13 | I-1 | II-26 | | M.B.1.14 | I-1 | II-27 | | M.B.1.15 | I-1 | II-28 | | M.B.1.16 | I-1 | II-29 | 5 Table B2 Table B2 is as Table B1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.B.2.1 to M.B.2.16. In the context of the present invention, each of the rows of Table B2 corresponds to one mixture. Table B3 Table B3 is as Table B1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.B.3.1 to M.B.3.16. In the context of the present invention, each of the rows of Table B3 corresponds to one mixture. Table B4 Table B4A is as Table B1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.B.4.1 to M.B.4.16. In the context of the present invention, each of the rows of Table B4 corresponds to one mixture. Table B5 Table B5 is as Table B1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.B.5.1 to M.B.5.16. In the context of the present invention, each of the rows of Table B5 corresponds to one mixture. Table B6 Table B6 is as Table B1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.B.6.1 to M.B.6.16. In the context of the present invention, each of the rows of Table B6 corresponds to one mixture. 25 Table B7 20 Table B7 is as Table B1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.B.7.1 to M.B.7.16. In the context of the present invention, each of the rows of Table B7 corresponds to one mixture. Table B8 Table B8 is as Table B1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.B.8.1 to M.B.8.16. In the context of the present invention, each of the rows of Table B8 corresponds to one mixture. Table B9 WO 2016/071167 PCT/EP2015/074922 Table B9 is as Table B1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.B.9.1 to M.B.9.16. In the context of the present invention, each of the rows of Table B9 corresponds to one mixture. Table B10 Table B10 is as Table B1, in which the compound I-1 is replaced by compound I-10, 5 and the mixtures are named from M.B.10.1 to M.B.10.16. In the context of the present invention, each of the rows of Table B10 corresponds to one mixture. Table B11 Table B11 is as Table B1, in which the compound I-1 is replaced by compound I-11, 10 and the mixtures are named from M.B.11.1 to M.B.11.16. In the context of the present invention, each of the rows of Table B11 corresponds to one mixture. Table B12 15 Table B12 is as Table B1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.B.12.1 to M.B.12.16. In the context of the present invention, each of the rows of Table B12 corresponds to one mixture. All tables B are preferred embodiments of the present invention. Within table B1 to table B12, the following mixtures are preferred: M.B.1.1, M.B.1.2, M.B.1.3, M.B.1.4, M.B.1.6, M.B.1.12, M.B.1.13, M.B.1.14, M.B.1.15, M.B.1.16, M.B.2.1, M.B.2.2, M.B.2.3, M.B.2.4, M.B.2.6, M.B.2.12, M.B.2.13, M.B.2.14, 20 M.B.2.15, M.B.2.16, M.B.3.1, M.B.3.2, M.B.3.3, M.B.3.4, M.B.3.6, M.B.3.12, M.B.3.13, M.B.3.14, M.B.3.15, M.B.3.16, M.B.4.1, M.B.4.2, M.B.4.3, M.B.4.4, M.B.4.6, M.B.4.12, M.B.4.13, M.B.4.14, M.B.4.15, M.B.4.16, M.B.5.1, M.B.5.2, M.B.5.3, M.B.5.4, M.B.5.6, M.B.5.12, M.B.5.13, M.B.5.14, M.B.5.15, M.B.5.16, M.B.6.1, M.B.6.2, M.B.6.3, M.B.6.4, M.B.6.6, M.B.6.12, M.B.6.13, M.B.6.14, M.B.6.15, M.B.6.16, M.B.7.1, M.B.7.2, M.B.7.3, 25 M.B.7.4, M.B.7.6, M.B.7.12, M.B.7.13, M.B.7.14, M.B.7.15, M.B.7.16, M.B.8.1, M.B.8.2, M.B.8.3, M.B.8.4, M.B.8.6, M.B.8.12, M.B.8.13, M.B.8.14, M.B.8.15, M.B.8.16, M.B.9.1, M.B.9.2, M.B.9.3, M.B.9.4, M.B.9.6, M.B.9.12, M.B.9.13, M.B.9.14, M.B.9.15, M.B.9.16, M.B.10.1, M.B.10.2, M.B.10.3, M.B.10.4, M.B.10.6, M.B.10.12, M.B.10.13, M.B.10.14, M.B.10.15, M.B.10.16, M.B.11.1, M.B.11.2, M.B.11.3, M.B.11.4, M.B.11.6, M.B.11.12, 30 M.B.11.13, M.B.11.14, M.B.11.15, M.B.11.16, M.B.12.1, M.B.12.2, M.B.12.3, M.B.12.4, M.B.12.6, M.B.12.12, M.B.12.13, M.B.12.14, M.B.12.15 and M.B.12.16. Witin table B1 to table B12, the following mixtures aremore preferred: M.B.1.3, M.B.1.6, M.B.2.3, M.B.2.6, M.B.3.3, M.B.3.6, M.B.4.3, M.B.4.6, M.B.5.3, M.B.5.6, M.B.6.3, M.B.6.6, M.B.7.3, M.B.7.6, M.B.8.3, M.B.8.6, M.B.9.3, M.B.9.6, M.B.10.3, M.B.10.6, M.B.11.3, M.B.11.6, M.B.12.3 and M.B.12.6. Table C1 35 | No | I | II | |---------|-----|-------| | M.C.1.1 | I-1 | II-30 | | M.C.1.2 | I-1 | II-31 | | M.C.1.3 | I-1 | II-32 | | M.C.1.4 | I-1 | II-33 | | M.C.1.5 | I-1 | II-34 | |---------|-----|-------| | M.C.1.6 | I-1 | II-35 | | M.C.1.7 | I-1 | II-36 | | M.C.1.8 | I-1 | II-37 | | M.C.1.9 | I-1 | II-38 | 11 | M.C.1.10 | I-1 | II-39 | |----------|-----|-------| | M.C.1.11 | I-1 | II-40 | | M.C.1.12 | I-1 | II-41 | | M.C.1.13 | I-1 | II-42 | | M.C.1.14 | I-1 | II-43 | | M.C.1.15 | I-1 | 11-44 | | M.C.1.16 | I-1 | II-45 | | M.C.1.17 | I-1 | II-46 | | M.C.1.18 | I-1 | II-47 | | M.C.1.19 | I-1 | II-48 | | | | | | M.C.1.20 | I-1 | II-49 | |----------|-----|-------| | M.C.1.21 | I-1 | II-50 | | M.C.1.22 | I-1 | II-51 | | M.C.1.23 | I-1 | II-52 | | M.C.1.24 | I-1 | II-53 | | M.C.1.25 | I-1 | II-54 | | M.C.1.26 | I-1 | II-55 | | M.C.1.27 | I-1 | II-56 | | M.C.1.28 | I-1 | II-57 | | M.C.1.29 | I-1 | II-58 | Table C2 Table C2 is as Table C1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.C.2.1 to M.C.2.29. In the context of the present invention, each of the rows of Table C2 corresponds to one mixture. Table C3 Table C3 is as Table C1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.C.3.1 to M.C.3.29. In the context of the present invention, each of the rows of Table C3 corresponds to one mixture. 10 Table C4 5 Table C4A is as Table C1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.C.4.1 to M.C.4.29. In the context of the present invention, each of the rows of Table C4 corresponds to one mixture. Table C5 Table C5 is as Table C1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.C.5.1 to M.C.5.29. In the context of the present invention, each of the rows of Table C5 corresponds to one mixture. Table C6 Table C6 is as Table C1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.C.6.1 to M.C.6.29. In the context of the present invention, each of the rows of Table C6 corresponds to one mixture. Table C7 Table C7 is as Table C1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.C.7.1 to M.C.7.29. In the context of the present inven- 25 tion, each of the rows of Table C7 corresponds to one mixture. Table C8 Table C8 is as Table C1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.C.8.1 to M.C.8.29. In the context of the present invention, each of the rows of Table C8 corresponds to one mixture. 30 Table C9 Table C9 is as Table C1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.C.9.1 to M.C.9.29. In the context of the present invention, each of the rows of Table C9 corresponds to one mixture. 12 ## Table C10 Table C10 is as Table C1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.C.10.1 to M.C.10.29. In the context of the present invention, each of the rows of Table C10 corresponds to one mixture. ## 5 Table C11 Table C11 is as Table C1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.C.11.1 to M.C.11.29. In the context of the present invention, each of the rows of Table C11 corresponds to one mixture. ## Table C12 - Table C12 is as Table C1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.C.12.1 to M.C.12.29. In the context of the present invention, each of the rows of Table C12 corresponds to one mixture. - All tables C are preferred embodiments of the present invention. Within Table C1 to Table C12, the following mixtures are preferred: M.C.1.3, M.C.1.4, M.C.1.7, M.C.1.15, - M.C.1.20, M.C.1.21, M.C.1.23, M.C.1.27, M.C.2.3, M.C.2.4, M.C.2.7, M.C.2.15, M.C.2.20, M.C.2.21, M.C.2.23, M.C.2.27, M.C.3.3, M.C.3.4, M.C.3.7, M.C.3.15, M.C.3.20, M.C.3.21, M.C.3.23, M.C.3.27, M.C.4.3, M.C.4.4, M.C.4.7, M.C.4.15, M.C.4.20, M.C.4.21, M.C.4.23, M.C.4.27, M.C.5.3, M.C.5.4, M.C.5.7, M.C.5.15, M.C.5.20, M.C.5.21, M.C.5.23, M.C.5.27, M.C.6.3, M.C.6.4, M.C.6.7, M.C.6.15, - M.C.6.20, M.C.6.21, M.C.6.23, M.C.6.27, M.C.7.3, M.C.7.4, M.C.7.7, M.C.7.15, M.C.7.20, M.C.7.21, M.C.7.23, M.C.7.27,
M.C.8.3, M.C.8.4, M.C.8.7, M.C.8.15, M.C.8.20, M.C.8.21, M.C.8.23, M.C.8.27, M.C.9.3, M.C.9.4, M.C.9.7, M.C.9.15, M.C.9.20, M.C.9.21, M.C.9.23, M.C.9.27, M.C.10.3, M.C.10.4, M.C.10.7, M.C.10.15, M.C.10.20, M.C.10.21, M.C.10.23, M.C.10.27, M.C.11.3, M.C.11.4, M.C.11.7, - M.C.11.15, M.C.11.20, M.C.11.21, M.C.11.23, M.C.11.27, M.C.12.3, M.C.12.4, M.C.12.7, M.C.12.15, M.C.12.20, M.C.12.21, M.C.12.23 and M.C.12.27. Within Table C1 to Table C12, the following mixtures are more preferred: M.C.1.15, M.C.2.15, M.C.3.15, M.C.4.15, M.C.5.15, M.C.6.15, M.C.7.15, M.C.8.15, M.C.9.15, M.C.10.15, M.C.11.15, M.C.12.15, M.C.1.20, M.C.2.20, M.C.3.20, M.C.4.20, M.C.5.20, - 30 M.C.6.20, M.C.7.20, M.C.8.20, M.C.9.20, M.C.10.20, M.C.11.20, M.C.12.20, M.C.1.21, M.C.2.21, M.C.3.21, M.C.4.21, M.C.5.21, M.C.6.21, M.C.7.21, M.C.8.21, M.C.9.21, M.C.10.21, M.C.11.21 and M.C.12.21. Table D1 | No | I | II | |---------|-----|-------| | M.D.1.1 | I-1 | II-59 | | M.D.1.2 | I-1 | II-60 | | M.D.1.3 | I-1 | II-61 | | M.D.1.4 | I-1 | II-62 | | M.D.1.5 | I-1 | II-63 | | M.D.1.6 | I-1 | II-64 | Table D2 is as Table D1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.D.2.1 to M.D.2.6. In the context of the present invention, each of the rows of Table D2 corresponds to one mixture. Table D3 Table D3 is as Table D1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.D.3.1 to M.D.3.6. In the context of the present invention, each of the rows of Table D3 corresponds to one mixture. Table D4 Table D4A is as Table D1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.D.4.1 to M.D.4.6. In the context of the present invention, each of the rows of Table D4 corresponds to one mixture. Table D5 Table D5 is as Table D1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.D.5.1 to M.D.5.6. In the context of the present inven- 15 tion, each of the rows of Table D5 corresponds to one mixture. Table D6 Table D6 is as Table D1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.D.6.1 to M.D.6.6. In the context of the present invention, each of the rows of Table D6 corresponds to one mixture. 20 Table D7 Table D7 is as Table D1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.D.7.1 to M.D.7.6. In the context of the present invention, each of the rows of Table D7 corresponds to one mixture. Table D8 Table D8 is as Table D1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.D.8.1 to M.D.8.6. In the context of the present invention, each of the rows of Table D8 corresponds to one mixture. Table D9 Table D9 is as Table D1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.D.9.1 to M.D.9.6. In the context of the present invention, each of the rows of Table D9 corresponds to one mixture. Table D10 Table D10 is as Table D1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.D.10.1 to M.D.10.6. In the context of the present invention, each of the rows of Table D10 corresponds to one mixture. Table D11 Table D11 is as Table D1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.D.11.1 to M.D.11.6. In the context of the present invention, each of the rows of Table D11 corresponds to one mixture. 40 Table D12 35 Table D12 is as Table D1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.D.12.1 to M.D.12.6. In the context of the present invention, each of the rows of Table D12 corresponds to one mixture. 14 All tables D are preferred embodiments of the present invention. Within Table D1 to Table D12, the following mixtures are preferred: M.D.1.3, M.D.2.3, M.D.3.3, M.D.4.3, M.D.5.3, M.D.6.3, M.D.7.3, M.D.8.3, M.D.9.3, M.D.10.3, M.D.11.3, M.D.12.3, M.D.1.4, M.D.2.4, M.D.3.4, M.D.4.4, M.D.5.4, M.D.6.4, M.D.7.4, M.D.8.4, M.D.9.4, M.D.10.4, M.D.11.4, M.D.12.4, M.D.1.6, M.D.2.6, M.D.3.6, M.D.4.6, M.D.5.6, M.D.6.6, M.D.7.6, M.D.8.6, M.D.9.6, M.D.10.6, M.D.11.6 and M.D.12.6. Within Table D1 to Table D12, the following mixtures are more preferred: M.D.1.3, M.D.2.3, M.D.3.3, M.D.4.3, M.D.5.3, M.D.6.3, M.D.7.3, M.D.8.3, M.D.9.3, M.D.10.3, M.D.11.3, M.D.12.3, M.D.12.4, M.D.2.4, M.D.3.4, M.D.4.4, M.D.5.4, M.D.6.4, M.D.7.4, M.D.8.4, M.D.9.4, M.D.10.4, M.D.11.4, M.D.12.4, M.D.1.6, M.D.2.6, M.D.3.6, M.D.4.6, M.D.5.6, M.D.6.6, M.D.7.6, M.D.8.6, M.D.9.6, M.D.10.6, M.D.11.6 and M.D.12.6. Table E1 Table E1 | No | 1 | II | |---------|-----|-------| | M.F.1.1 | I-1 | II-65 | | M.F.1.2 | I-1 | II-66 | | M.F.1.3 | I-1 | II-67 | | M.F.1.4 | I-1 | II-68 | | M.F.1.5 | I-1 | II-69 | 15 30 35 #### Table E2 Table E2 is as Table E1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.E.2.1 to M.E.2.5. In the context of the present invention, each of the rows of Table E2 corresponds to one mixture. # 20 Table E3 Table E3 is as Table E1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.E.3.1 to M.E.3.5. In the context of the present invention, each of the rows of Table E3 corresponds to one mixture. # Table E4 Table E4A is as Table E1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.E.4.1 to M.E.4.5. In the context of the present invention, each of the rows of Table E4 corresponds to one mixture. # Table E5 Table E5 is as Table E1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.E.5.1 to M.E.5.5. In the context of the present invention, each of the rows of Table E5 corresponds to one mixture. ## Table E6 Table E6 is as Table E1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.E.6.1 to M.E.6.5. In the context of the present invention, each of the rows of Table E6 corresponds to one mixture. Table E7 Table E7 is as Table E1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.E.7.1 to M.E.7.5. In the context of the present invention, each of the rows of Table E7 corresponds to one mixture. Table E8 Table E8 is as Table E1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.E.8.1 to M.E.8.5. In the context of the present invention, each of the rows of Table E8 corresponds to one mixture. Table E9 Table E9 is as Table E1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.E.9.1 to M.E.9.5. In the context of the present invention, each of the rows of Table E9 corresponds to one mixture. Table E10 Table E10 is as Table E1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.E.10.1 to M.E.10.5. In the context of the present invention, each of the rows of Table E10 corresponds to one mixture. Table E11 Table E11 is as Table E1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.E.11.1 to M.E.11.5. In the context of the present invention, each of the rows of Table E11 corresponds to one mixture. 20 Table E12 15 Table E12 is as Table E1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.E.12.1 to M.E.12.5. In the context of the present invention, each of the rows of Table E12 corresponds to one mixture. All tables E are preferred embodiments of the present invention. Within Table E1 to Table E12, the following mixtures are preferred: M.E.1.5, M.E.2.5, M.E.3.5, M.E.4.5, M.E.5.5, M.E.6.5, M.E.7.5, M.E.8.5, M.E.9.5, M.E.10.5, M.E.11.5 and M.E.12.5. Table F1 Table F1 | No | I | II | |---------|-----|-------| | M.F.1.1 | I-1 | II-70 | | M.F.1.2 | I-1 | II-71 | | M.F.1.3 | I-1 | II-72 | | M.F.1.4 | I-1 | II-73 | | M.F.1.5 | I-1 | II-74 | | M.F.1.6 | I-1 | II-75 | | M.F.1.7 | I-1 | II-76 | 30 Table F2 Table F2 is as Table F1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.F.2.1 to M.F.2.7. In the context of the present invention, each of the rows of Table F2 corresponds to one mixture. 35 Table F3 Table F3 is as Table F1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.F.3.1 to M.F.3.7. In the context of the present invention, each of the rows of Table F3 corresponds to one mixture. Table F4 Table F4A is as Table F1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.F.4.1 to M.F.4.7. In the context of the present invention, each of the rows of Table F4 corresponds to one mixture. Table F5 Table F5 is as Table F1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.F.5.1 to M.F.5.7. In the context of the present invention, each of the rows of Table F5 corresponds to one mixture. Table F6 Table F6 is as Table F1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.F.6.1 to M.F.6.7. In the context of the present inven- 15 tion, each of the rows of Table F6 corresponds to one mixture. Table F7 Table F7 is as Table F1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.F.7.1 to M.F.7.7. In the context of the present invention, each of the rows of Table F7 corresponds to one mixture. 20 Table F8 Table F8 is as Table F1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.F.8.1 to M.F.8.7. In the context of the present invention, each of the rows of Table F8 corresponds to one mixture. Table F9 Table F9 is as Table F1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.F.9.1 to M.F.9.7. In the context of the present invention, each of the rows of Table F9 corresponds to one mixture. Table F10 30 35 Table F10 is as Table F1, in which the compound I-1 is replaced by compound I-10, and the
mixtures are named from M.F.10.1 to M.F.10.7. In the context of the present invention, each of the rows of Table F10 corresponds to one mixture. Table F11 Table F11 is as Table F1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.F.11.1 to M.F.11.7. In the context of the present invention, each of the rows of Table F11 corresponds to one mixture. Table F12 Table F12 is as Table F1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.F.12.1 to M.F.12.7. In the context of the present invention, each of the rows of Table F12 corresponds to one mixture. All tables F are preferred embodiments of the present invention. Within Table F1 to Table F12, the following mixtures are preferred: M.F.1.7, M.F.1.6, M.F.2.7, M.F.2.6, M.F.3.7, M.F.3.6, M.F.4.7, M.F.4.6, M.F.5.7, M.F.5.6, M.F.6.7, M.F.6.7, M.F.7.6, M.F.7.7, M.F.8.6, M.F.8.7, M.F.9.6, M.F.9.7, M.F.10.6, M.F.10.7, M.F.11.6, M.F.11.7, M.F.12.6 and M.F.12.7. Within Table F1 to Table F12, the following mixtures are more preferred: 5 M.F.1.7, M.F.2.7, M.F.3.7, M.F.4.7, M.F.5.7, M.F.6.7, M.F.7.7, M.F.8.7, M.F.9.7, M.F.10.7, M.F.11.7 and M.F.12.7. Table G1 | No | 1 | II | |----------|-----|-------| | M.G.1.1 | I-1 | II-77 | | M.G.1.2 | I-1 | II-78 | | M.G.1.3 | I-1 | II-79 | | M.G.1.4 | I-1 | II-80 | | M.G.1.5 | I-1 | II-81 | | M.G.1.6 | I-1 | II-82 | | M.G.1.7 | I-1 | II-83 | | M.G.1.8 | I-1 | II-84 | | M.G.1.9 | I-1 | II-85 | | M.G.1.10 | I-1 | II-86 | | M.G.1.11 | I-1 | II-87 | | M.G.1.12 | I-1 | II-88 | |----------|-----|-------| | M.G.1.13 | I-1 | II-89 | | M.G.1.14 | I-1 | II-90 | | M.G.1.15 | I-1 | II-91 | | M.G.1.16 | I-1 | II-92 | | M.G.1.17 | I-1 | II-93 | | M.G.1.18 | I-1 | II-94 | | M.G.1.19 | I-1 | II-95 | | M.G.1.20 | I-1 | II-96 | | M.G.1.21 | I-1 | II-97 | | M.G.1.22 | I-1 | II-98 | ## 10 Table G2 Table G2 is as Table G1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.G.2.1 to M.G.2.22. In the context of the present invention, each of the rows of Table G2 corresponds to one mixture. Table G3 Table G3 is as Table G1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.G.3.1 to M.G.3.22. In the context of the present invention, each of the rows of Table G3 corresponds to one mixture. Table G4 Table G4A is as Table G1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.G.4.1 to M.G.4.22. In the context of the present invention, each of the rows of Table G4 corresponds to one mixture. Table G5 20 Table G5 is as Table G1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.G.5.1 to M.G.5.22. In the context of the present inven- 25 tion, each of the rows of Table G5 corresponds to one mixture. Table G6 Table G6 is as Table G1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.G.6.1 to M.G.6.22. In the context of the present invention, each of the rows of Table G6 corresponds to one mixture. 30 Table G7 PCT/EP2015/074922 18 Table G7 is as Table G1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.G.7.1 to M.G.7.22. In the context of the present invention, each of the rows of Table G7 corresponds to one mixture. Table G8 Table G8 is as Table G1, in which the compound I-1 is replaced by compound I-8, and 5 the mixtures are named from M.G.8.1 to M.G.8.22. In the context of the present invention, each of the rows of Table G8 corresponds to one mixture. Table G9 Table G9 is as Table G1, in which the compound I-1 is replaced by compound I-9, and 10 the mixtures are named from M.G.9.1 to M.G.9.22. In the context of the present invention, each of the rows of Table G9 corresponds to one mixture. Table G10 Table G10 is as Table G1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.G.10.1 to M.G.10.22. In the context of the present invention, each of the rows of Table G10 corresponds to one mixture. Table G11 Table G11 is as Table G1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.G.11.1 to M.G.11.22. In the context of the present invention, each of the rows of Table G11 corresponds to one mixture. 20 Table G12 15 Table G12 is as Table G1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.G.12.1 to M.G.12.22. In the context of the present invention, each of the rows of Table G12 corresponds to one mixture. All tables G are preferred embodiments of the present invention. Within Table G1 to 25 Table G12, the following mixtures are preferred: M.G.1.7, M.G.2.7, M.G.3.7, M.G.4.7, M.G.5.7, M.G.6.7, M.G.7.7, M.G.8.7, M.G.9.7, M.G.10.7, M.G.11.7, M.G.12.7, M.G.1.15, M.G.2.15, M.G.3.15, M.G.4.15, M.G.5.15, M.G.6.15, M.G.7.15, M.G.8.15, M.G.9.15, M.G.10.15, M.G.11.15, M.G.12.15, M.G.1.22, M.G.2.22, M.G.3.22, M.G.4.22, M.G.5.22, M.G.6.22, M.G.7.22, M.G.8.22, M.G.9.22, M.G.10.22, M.G.11.22 30 and M.G.12.22. Within Table G1 to Table G12, the following mixtures are more preferred: M.G.1.15, M.G.2.15, M.G.3.15, M.G.4.15, M.G.5.15, M.G.6.15, M.G.7.15, M.G.8.15, M.G.9.15, M.G.10.15, M.G.11.15 and M.G.12.15. #### 35 Table H1 Table H1 | No | 1 | II | |---------|------|--------| | M.H.1.1 | II-1 | II-99 | | M.H.1.2 | II-1 | II-100 | | M.H.1.3 | II-1 | II-101 | | M.H.1.4 | II-1 | II-102 | | M.H.1.5 | II-1 | II-103 | | M.H.1.6 | II-1 | II-104 | | II-1 | II-105 | |------|--------| | | 11-103 | | II-1 | II-106 | | II-1 | II-107 | | II-1 | II-108 | | II-1 | II-109 | | II-1 | II-110 | | II-1 | II-111 | | | | WO 2016/071167 PCT/EP2015/074922 | M.H.1.14 | II-1 | II-112 | |----------|------|--------| | M.H.1.15 | II-1 | II-113 | | M.H.1.16 | II-1 | II-114 | | M.H.1.17 | II-1 | II-115 | | M.H.1.18 | II-1 | II-116 | | M.H.1.19 | II-1 | II-117 | | M.H.1.20 | II-1 | II-118 | | M.H.1.21 | II-1 | II-119 | | M.H.1.22 | II-1 | II-120 | | M.H.1.23 | II-1 | II-121 | | M.H.1.24 | II-1 | II-122 | | M.H.1.25 | II-1 | II-123 | | M.H.1.26 | II-1 | II-124 | | M.H.1.27 | II-1 | II-125 | | M.H.1.28 | II-1 | II-126 | | M.H.1.29 | II-1 | II-127 | | M.H.1.30 | II-1 | II-128 | | M.H.1.31 | II-1 | II-129 | | M.H.1.32 | II-1 | II-130 | | M.H.1.33 | II-1 | II-131 | | M.H.1.34 | II-1 | II-132 | | M.H.1.35 | II-1 | II-133 | | M.H.1.36 | II-1 | II-134 | | M.H.1.37 | II-1 | II-135 | | M.H.1.38 | II-1 | II-136 | | M.H.1.39 | II-1 | II-137 | | M.H.1.40 | II-1 | II-138 | | M.H.1.41 | II-1 | II-139 | | M.H.1.42 | II-1 | II-140 | | M.H.1.43 | II-1 | II-141 | | M.H.1.44 | II-1 | II-142 | | M.H.1.45 | II-1 | II-143 | | M.H.1.46 | II-1 | II-144 | | M.H.1.47 | II-1 | II-145 | | M.H.1.48 | II-1 | II-146 | | M.H.1.49 | II-1 | II-147 | | M.H.1.50 | II-1 | II-148 | | M.H.1.51 | II-1 | II-149 | | M.H.1.52 | II-1 | II-150 | | M.H.1.53 | II-1 | II-151 | | M.H.1.54 | II-1 | II-152 | | | | | | M.H.1.55 | II-1 | II-153 | |----------|------|--------| | M.H.1.56 | II-1 | II-154 | | M.H.1.57 | II-1 | II-155 | | M.H.1.58 | II-1 | II-156 | | M.H.1.59 | II-1 | II-157 | | M.H.1.60 | II-1 | II-158 | | M.H.1.61 | II-1 | II-159 | | M.H.1.62 | II-1 | II-160 | | M.H.1.63 | II-1 | II-161 | | M.H.1.64 | II-1 | II-162 | | M.H.1.65 | II-1 | II-163 | | M.H.1.66 | II-1 | II-164 | | M.H.1.67 | II-1 | II-165 | | M.H.1.68 | II-1 | II-166 | | M.H.1.69 | II-1 | II-167 | | M.H.1.70 | II-1 | II-168 | | M.H.1.71 | II-1 | II-169 | | M.H.1.72 | II-1 | II-170 | | M.H.1.73 | II-1 | II-171 | | M.H.1.74 | II-1 | II-172 | | M.H.1.75 | II-1 | II-173 | | M.H.1.76 | II-1 | II-174 | | M.H.1.77 | II-1 | II-175 | | M.H.1.78 | II-1 | II-176 | | M.H.1.79 | II-1 | II-177 | | M.H.1.80 | II-1 | II-178 | | M.H.1.81 | II-1 | II-179 | | M.H.1.82 | II-1 | II-180 | | M.H.1.83 | II-1 | II-181 | | M.H.1.84 | II-1 | II-182 | | M.H.1.85 | II-1 | II-183 | | M.H.1.86 | II-1 | II-184 | | M.H.1.87 | II-1 | II-185 | | M.H.1.88 | II-1 | II-186 | | M.H.1.89 | II-1 | II-187 | | M.H.1.90 | II-1 | II-188 | | M.H.1.91 | II-1 | II-189 | | M.H.1.92 | II-1 | II-190 | | M.H.1.93 | II-1 | II-191 | | | | | Table H2 Table H2 is as Table H1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.H.2.1 to M.H.2.93. In the context of the present invention, each of the rows of Table H2 corresponds to one mixture. 5 Table H3 Table H3 is as Table H1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.H.3.1 to M.H.3.93. In the context of the present invention, each of the rows of Table H3 corresponds to one mixture. Table H4 Table H4A is as Table H1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.H.4.1 to M.H.4.93. In the context of the present invention, each of the rows of Table H4 corresponds to one mixture. Table H5 Table H5 is as Table H1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.H.5.1 to M.H.5. 93. In the context of the present invention, each of the rows of Table H5 corresponds to one mixture. Table H6 Table H6 is as Table H1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.H.6.1 to M.H.6.93. In the context of the present inven- 20 tion, each of the rows of Table H6 corresponds to one mixture. Table H7 Table H7 is as Table H1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.H.7.1 to M.H.7.93. In the context of the present invention, each of the rows of Table H7 corresponds to one mixture. 25 Table H8 Table H8 is as Table H1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.H.8.1 to M.H.8.93. In the context of the present invention, each of the rows of Table H8 corresponds to one mixture. Table H9 Table H9 is as Table H1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.H.9.1 to M.H.9.93. In the context of the present invention, each of the rows of Table H9 corresponds to
one mixture. Table H10 Table H10 is as Table H1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.H.10.1 to M.H.10.93. In the context of the present invention, each of the rows of Table H10 corresponds to one mixture. Table H11 Table H11 is as Table H1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.H.11.1 to M.H.11.93. In the context of the present invention, each of the rows of Table H11 corresponds to one mixture. Table H12 40 Table H12 is as Table H1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.H.12.1 to M.H.12.93. In the context of the present invention, each of the rows of Table H12 corresponds to one mixture. 5 The invention also relates to the ternary mixtures comprising one compound I and two compunds II. In particular, the present invention relates to the ternary mixtures set forth in Table Z. Within Table Z, the following abbreviations are used: azoxystrobin (lla-1); kresoxim-methyl (IIa-2); mandestrobin (IIa-3) 10 metaminostrobin (IIa-4); picoxystrobin (IIa-5); pyraclostrobin (IIa-6) trifloxystrobin (IIa-7); benzovindiflupyr (IIb-1); bixafen (IIb-2) boscalid (IIb-3); fluopyram (IIb-4); fluxapyroxad (IIb-5) 3 (difluoromethyl)-1-methyl-N-(1,1,3-trimethyl-indan-4-yl)pyrazole-4-carboxamide (IIb- - 3 (trifluoromethyl)-1-methyl-N-(1,1,3-trimethyl¬indan-4-yl)pyrazole-4-carboxamide (IIb-15 7) - 1,3-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyr¬azole-4-carboxamide (IIb-8) - 3-(trifluorometh-yl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)¬pyrazole-4-carboxamide (IIb-9) - 20 1,3,5-tri-methyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-car¬boxamide (IIb-10) cyproconazole (IIc-1); difenoconazole (IIc-2); epoxiconazole (IIc-3); metconazole (IIc-4); propiconazole (IIc-5); prothioconazole (IIc-6); tebuconazole (IIc-7); triticonazole (IIc-8); fenpropimorph (IId-1); fenpropidin (IId-2); spiroxamine (IId-3); mancozeb, (Ile-1); - 25 chlorothalonil, (Ile-2); - 2,6-di-methyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetraone (IIe-3) thiophanate-methyl (IIf-1) metrafenone (IIf-2) pyriofenone (IIf-3) "I" means compound I, "II(1)" means the first "II(1)" means the second compound II. 30 The present invention therefore relates to the following ternary mixtures: Table Z1 | No | I | II (1) | II (2) | |---------|-----|--------|--------| | M.Z.1.1 | I-1 | lla-1 | IIb-1 | | M.Z.1.2 | I-1 | lla-1 | IIb-2 | | M.Z.1.3 | I-1 | lla-1 | IIb-3 | | M.Z.1.4 | I-1 | lla-1 | IIb-4 | | M.Z.1.5 | I-1 | lla-1 | IIb-5 | | M.Z.1.6 | I-1 | lla-1 | IIb-6 | | M.Z.1.7 | I-1 | lla-2 | IIb-1 | | M.Z.1.8 | I-1 | lla-2 | IIb-2 | | No | 1 | II (1) | II (2) | |----------|-----|--------|--------| | M.Z.1.9 | I-1 | lla-2 | IIb-3 | | M.Z.1.10 | I-1 | lla-2 | IIb-4 | | M.Z.1.11 | I-1 | lla-2 | IIb-5 | | M.Z.1.12 | I-1 | lla-2 | IIb-6 | | M.Z.1.13 | I-1 | lla-2 | IIb-7 | | M.Z.1.14 | I-1 | lla-2 | IIb-8 | | M.Z.1.15 | I-1 | lla-2 | IIb-9 | | M.Z.1.16 | I-1 | lla-2 | IIb-10 | | No | 1 | II (1) | II (2) | |----------|-----|--------|--------| | M.Z.1.17 | I-1 | IIa-3 | IIb-1 | | M.Z.1.18 | I-1 | IIa-3 | IIb-2 | | M.Z.1.19 | I-1 | IIa-3 | IIb-3 | | M.Z.1.20 | I-1 | IIa-3 | IIb-4 | | M.Z.1.21 | I-1 | IIa-3 | IIb-5 | | M.Z.1.22 | I-1 | IIa-3 | IIb-6 | | M.Z.1.23 | I-1 | IIa-3 | IIb-7 | | M.Z.1.24 | I-1 | IIa-3 | IIb-8 | | M.Z.1.25 | I-1 | IIa-3 | IIb-9 | | M.Z.1.26 | I-1 | IIa-3 | IIb-10 | | M.Z.1.27 | I-1 | IIa-4 | IIb-1 | | M.Z.1.28 | I-1 | IIa-4 | IIb-2 | | M.Z.1.29 | I-1 | IIa-4 | IIb-3 | | M.Z.1.30 | I-1 | IIa-4 | IIb-4 | | M.Z.1.31 | I-1 | IIa-4 | IIb-5 | | M.Z.1.32 | I-1 | IIa-4 | IIb-6 | | M.Z.1.33 | I-1 | IIa-4 | IIb-7 | | M.Z.1.34 | I-1 | IIa-4 | IIb-8 | | M.Z.1.35 | I-1 | IIa-4 | IIb-9 | | M.Z.1.36 | I-1 | IIa-4 | IIb-10 | | M.Z.1.37 | I-1 | IIa-5 | IIb-1 | | M.Z.1.38 | I-1 | IIa-5 | IIb-2 | | M.Z.1.39 | I-1 | IIa-5 | IIb-3 | | M.Z.1.40 | I-1 | IIa-5 | IIb-4 | | M.Z.1.41 | I-1 | lla-5 | IIb-5 | | M.Z.1.42 | I-1 | IIa-5 | IIb-6 | | M.Z.1.43 | I-1 | lla-5 | IIb-7 | | M.Z.1.44 | I-1 | lla-5 | IIb-8 | | M.Z.1.45 | I-1 | lla-5 | IIb-9 | | M.Z.1.46 | I-1 | lla-5 | IIb-10 | | M.Z.1.47 | I-1 | IIa-6 | IIb-1 | | M.Z.1.48 | I-1 | lla-6 | IIb-2 | | M.Z.1.49 | I-1 | IIa-6 | IIb-3 | | M.Z.1.50 | I-1 | lla-6 | IIb-4 | | M.Z.1.51 | I-1 | IIa-6 | IIb-5 | | M.Z.1.52 | I-1 | IIa-6 | IIb-6 | | M.Z.1.53 | I-1 | IIa-6 | IIb-7 | | M.Z.1.54 | I-1 | IIa-6 | IIb-8 | | M.Z.1.55 | I-1 | IIa-6 | IIb-9 | | | - | | | | No | 1 | II (1) | II (2) | |----------|-----|--------|--------| | M.Z.1.56 | I-1 | IIa-6 | IIb-10 | | M.Z.1.57 | I-1 | lla-7 | IIb-1 | | M.Z.1.58 | I-1 | lla-7 | IIb-2 | | M.Z.1.59 | I-1 | lla-7 | IIb-3 | | M.Z.1.60 | I-1 | lla-7 | IIb-4 | | M.Z.1.61 | I-1 | lla-7 | IIb-5 | | M.Z.1.62 | I-1 | lla-7 | IIb-6 | | M.Z.1.63 | I-1 | lla-7 | IIb-7 | | M.Z.1.64 | I-1 | lla-7 | IIb-8 | | M.Z.1.65 | I-1 | lla-7 | IIb-9 | | M.Z.1.66 | I-1 | IIa-7 | IIb-10 | | M.Z.1.67 | I-1 | lla-1 | IIc-1 | | M.Z.1.68 | I-1 | lla-1 | IIc-2 | | M.Z.1.69 | I-1 | lla-1 | IIc-3 | | M.Z.1.70 | I-1 | lla-1 | IIc-4 | | M.Z.1.71 | I-1 | lla-1 | IIc-5 | | M.Z.1.72 | I-1 | lla-1 | IIc-6 | | M.Z.1.73 | I-1 | lla-1 | IIc-7 | | M.Z.1.74 | I-1 | lla-1 | IIc-8 | | M.Z.1.75 | I-1 | lla-2 | IIc-1 | | M.Z.1.76 | I-1 | lla-2 | IIc-2 | | M.Z.1.77 | I-1 | lla-2 | IIc-3 | | M.Z.1.78 | I-1 | lla-2 | IIc-4 | | M.Z.1.79 | I-1 | lla-2 | IIc-5 | | M.Z.1.80 | I-1 | lla-2 | IIc-6 | | M.Z.1.81 | I-1 | lla-2 | IIc-7 | | M.Z.1.82 | I-1 | lla-2 | IIc-8 | | M.Z.1.83 | I-1 | IIa-3 | IIc-1 | | M.Z.1.84 | I-1 | lla-3 | IIc-2 | | M.Z.1.85 | I-1 | IIa-3 | IIc-3 | | M.Z.1.86 | I-1 | lla-3 | IIc-4 | | M.Z.1.87 | I-1 | lla-3 | IIc-5 | | M.Z.1.88 | I-1 | IIa-3 | IIc-6 | | M.Z.1.89 | I-1 | lla-3 | IIc-7 | | M.Z.1.90 | I-1 | lla-3 | IIc-8 | | M.Z.1.91 | I-1 | lla-4 | IIc-1 | | M.Z.1.92 | I-1 | IIa-4 | IIc-2 | | M.Z.1.93 | I-1 | IIa-4 | IIc-3 | | M.Z.1.94 | I-1 | lla-4 | IIc-4 | | No | 1 | II (1) | II (2) | |-----------|-----|--------|--------| | M.Z.1.95 | I-1 | IIa-4 | IIc-5 | | M.Z.1.96 | I-1 | IIa-4 | IIc-6 | | M.Z.1.97 | I-1 | IIa-4 | IIc-7 | | M.Z.1.98 | I-1 | IIa-4 | IIc-8 | | M.Z.1.99 | I-1 | lla-5 | IIc-1 | | M.Z.1.100 | I-1 | lla-5 | IIc-2 | | M.Z.1.101 | I-1 | lla-5 | IIc-3 | | M.Z.1.102 | I-1 | lla-5 | IIc-4 | | M.Z.1.103 | I-1 | lla-5 | IIc-5 | | M.Z.1.104 | I-1 | lla-5 | IIc-6 | | M.Z.1.105 | I-1 | lla-5 | IIc-7 | | M.Z.1.106 | I-1 | lla-5 | IIc-8 | | M.Z.1.107 | I-1 | IIa-6 | IIc-1 | | M.Z.1.108 | I-1 | lla-6 | IIc-2 | | M.Z.1.109 | I-1 | IIa-6 | IIc-3 | | M.Z.1.110 | I-1 | IIa-6 | IIc-4 | | M.Z.1.111 | I-1 | IIa-6 | IIc-5 | | M.Z.1.112 | I-1 | IIa-6 | IIc-6 | | M.Z.1.113 | I-1 | IIa-6 | IIc-7 | | M.Z.1.114 | I-1 | IIa-6 | IIc-8 | | M.Z.1.115 | I-1 | lla-7 | IIc-1 | | M.Z.1.116 | I-1 | lla-7 | IIc-2 | | M.Z.1.117 | I-1 | IIa-7 | IIc-3 | | M.Z.1.118 | I-1 | IIa-7 | IIc-4 | | M.Z.1.119 | I-1 | lla-7 | IIc-5 | | M.Z.1.120 | I-1 | lla-7 | IIc-6 | | M.Z.1.121 | I-1 | lla-7 | IIc-7 | | M.Z.1.122 | I-1 | lla-7 | IIc-8 | | M.Z.1.123 | I-1 | lla-1 | IId-1 | | M.Z.1.124 | I-1 | lla-1 | IId-2 | | M.Z.1.125 | I-1 | lla-1 | IId-3 | | M.Z.1.126 | I-1 | lla-2 | IId-1 | | M.Z.1.127 | I-1 | lla-2 | IId-2 | | M.Z.1.128 | I-1 | lla-2 | IId-3 | | M.Z.1.129 | I-1 | IIa-3 | IId-1 | | M.Z.1.130 | I-1 | IIa-3 | IId-2 | | M.Z.1.131 | I-1 | IIa-3 | IId-3 | | M.Z.1.132 | I-1 | IIa-4 | IId-1 | | M.Z.1.133 | I-1 | IIa-4 | IId-2 | | | | | | | No | I | II (1) | II (2) | |-----------|-----|--------|--------| | M.Z.1.134 | I-1 | lla-4 | IId-3 | | M.Z.1.135 | I-1 | lla-5 | IId-1 | | M.Z.1.136 | I-1 | lla-5 | IId-2 | | M.Z.1.137 | I-1 | lla-5 | IId-3 | | M.Z.1.138 | I-1 | lla-6 | IId-1 | | M.Z.1.139 | I-1 | lla-6 | IId-2 | | M.Z.1.140 | I-1 | IIa-6 | IId-3 | | M.Z.1.141 | I-1 | lla-7 | IId-1 | | M.Z.1.142 | I-1 | lla-7 | IId-2 | | M.Z.1.143 | I-1 | lla-7 | IId-3 | | M.Z.1.144 | I-1 | lla-1 | lle-1 | | M.Z.1.145 | I-1 | lla-1 | lle-2 | | M.Z.1.146 | I-1 | lla-1 | IIe-3 | | M.Z.1.147 | I-1 | lla-2 | lle-1 | | M.Z.1.148 | I-1 | lla-2 | lle-2 | | M.Z.1.149 | I-1 | lla-2 | lle-3 | | M.Z.1.150 | I-1 | lla-3 | lle-1 | | M.Z.1.151 | I-1 | IIa-3 | lle-2 | | M.Z.1.152 | I-1 | IIa-3 | lle-3 | | M.Z.1.153 | I-1 | lla-4 | lle-1 | | M.Z.1.154 | I-1 | IIa-4 | lle-2 | | M.Z.1.155 | I-1 | lla-4 | lle-3 | | M.Z.1.156 | I-1 | lla-5 | lle-1 | | M.Z.1.157 | I-1 | lla-5 | lle-2 | | M.Z.1.158 | I-1 | lla-5 | lle-3 | | M.Z.1.159 | I-1 | lla-6 | lle-1 | | M.Z.1.160 | I-1 | lla-6 | lle-2 | | M.Z.1.161 | I-1 | lla-6 | lle-3 | | M.Z.1.162 | I-1 | lla-7 | lle-1 | | M.Z.1.163 | I-1 | lla-7 | lle-2 | | M.Z.1.164 | I-1 | lla-7 | lle-3 | | M.Z.1.165 | I-1 | lla-1 | IIf-1 | | M.Z.1.166 | I-1 | lla-1 | IIf-2 | | M.Z.1.167 | I-1 | lla-1 | IIf-3 | | M.Z.1.168 | I-1 | lla-2 | IIf-1 | | M.Z.1.169 | I-1 | lla-2 | IIf-2 | | M.Z.1.170 | I-1 | lla-2 | IIf-3 | | M.Z.1.171 | I-1 | IIa-3 | IIf-1 | | M.Z.1.172 | I-1 | IIa-3 | IIf-2 | | No | l | II (1) | II (2) | |-----------|-----|--------|--------| | M.Z.1.173 | I-1 | IIa-3 | IIf-3 | | M.Z.1.174 | I-1 | lla-4 | IIf-1 | | M.Z.1.175 | I-1 | IIa-4 | IIf-2 | | M.Z.1.176 | I-1 | IIa-4 | IIf-3 | | M.Z.1.177 | I-1 | IIa-5 | IIf-1 | | M.Z.1.178 | I-1 | lla-5 | IIf-2 | | M.Z.1.179 | I-1 | lla-5 | IIf-3 | | M.Z.1.180 | I-1 | IIa-6 | IIf-1 | | M.Z.1.181 | I-1 | IIa-6 | IIf-2 | | M.Z.1.182 | I-1 | IIa-6 | IIf-3 | | M.Z.1.183 | I-1 | IIa-7 | IIf-1 | | M.Z.1.184 | I-1 | IIa-7 | IIf-2 | | M.Z.1.185 | I-1 | IIa-7 | IIf-3 | | M.Z.1.186 | I-1 | IIb-1 | IIc-1 | | M.Z.1.187 | I-1 | IIb-1 | IIc-2 | | M.Z.1.188 | I-1 | IIb-1 | IIc-3 | | M.Z.1.189 | I-1 | IIb-1 | IIc-4 | | M.Z.1.190 | I-1 | IIb-1 | IIc-5 | | M.Z.1.191 | I-1 | IIb-1 | IIc-6 | | M.Z.1.192 | I-1 | IIb-1 | IIc-7 | | M.Z.1.193 | I-1 | IIb-1 | IIc-8 | | M.Z.1.194 | I-1 | IIb-2 | IIc-1 | | M.Z.1.195 | I-1 | IIb-2 | IIc-2 | | M.Z.1.196 | I-1 | IIb-2 | IIc-3 | | M.Z.1.197 | I-1 | IIb-2 | IIc-4 | | M.Z.1.198 | I-1 | IIb-2 | IIc-5 | | M.Z.1.199 | I-1 | IIb-2 | IIc-6 | | M.Z.1.200 | I-1 | IIb-2 | IIc-7 | | M.Z.1.201 | I-1 | IIb-2 | IIc-8 | | M.Z.1.202 | I-1 | IIb-3 | IIc-1 | | M.Z.1.203
| I-1 | IIb-3 | IIc-2 | | M.Z.1.204 | I-1 | IIb-3 | IIc-3 | | M.Z.1.205 | I-1 | IIb-3 | IIc-4 | | M.Z.1.206 | I-1 | IIb-3 | IIc-5 | | M.Z.1.207 | I-1 | IIb-3 | IIc-6 | | M.Z.1.208 | I-1 | IIb-3 | IIc-7 | | M.Z.1.209 | I-1 | IIb-3 | IIc-8 | | M.Z.1.210 | I-1 | IIb-4 | IIc-1 | | M.Z.1.211 | I-1 | IIb-4 | IIc-2 | | | | l . | I. | | No | I | II (1) | II (2) | |-----------|-----|--------|--------| | M.Z.1.212 | I-1 | IIb-4 | IIc-3 | | M.Z.1.213 | I-1 | IIb-4 | IIc-4 | | M.Z.1.214 | I-1 | IIb-4 | IIc-5 | | M.Z.1.215 | I-1 | IIb-4 | IIc-6 | | M.Z.1.216 | I-1 | IIb-4 | IIc-7 | | M.Z.1.217 | I-1 | IIb-4 | IIc-8 | | M.Z.1.218 | I-1 | IIb-5 | IIc-1 | | M.Z.1.219 | I-1 | IIb-5 | IIc-2 | | M.Z.1.220 | I-1 | IIb-5 | IIc-3 | | M.Z.1.221 | I-1 | IIb-5 | IIc-4 | | M.Z.1.222 | I-1 | IIb-5 | IIc-5 | | M.Z.1.223 | I-1 | IIb-5 | IIc-6 | | M.Z.1.224 | I-1 | IIb-5 | IIc-7 | | M.Z.1.225 | I-1 | IIb-5 | IIc-8 | | M.Z.1.226 | I-1 | IIb-6 | IIc-1 | | M.Z.1.227 | I-1 | IIb-6 | IIc-2 | | M.Z.1.228 | I-1 | IIb-6 | IIc-3 | | M.Z.1.229 | I-1 | IIb-6 | IIc-4 | | M.Z.1.230 | I-1 | IIb-6 | IIc-5 | | M.Z.1.231 | I-1 | IIb-6 | IIc-6 | | M.Z.1.232 | I-1 | IIb-6 | IIc-7 | | M.Z.1.233 | I-1 | IIb-6 | IIc-8 | | M.Z.1.234 | I-1 | IIb-7 | IIc-1 | | M.Z.1.235 | I-1 | IIb-7 | IIc-2 | | M.Z.1.236 | I-1 | IIb-7 | IIc-3 | | M.Z.1.237 | I-1 | IIb-7 | IIc-4 | | M.Z.1.238 | I-1 | IIb-7 | IIc-5 | | M.Z.1.239 | I-1 | IIb-7 | IIc-6 | | M.Z.1.240 | I-1 | IIb-7 | IIc-7 | | M.Z.1.241 | I-1 | IIb-7 | IIc-8 | | M.Z.1.242 | I-1 | IIb-8 | IIc-1 | | M.Z.1.243 | I-1 | IIb-8 | IIc-2 | | M.Z.1.244 | I-1 | IIb-8 | IIc-3 | | M.Z.1.245 | I-1 | IIb-8 | IIc-4 | | M.Z.1.246 | I-1 | IIb-8 | IIc-5 | | M.Z.1.247 | I-1 | IIb-8 | IIc-6 | | M.Z.1.248 | I-1 | IIb-8 | IIc-7 | | M.Z.1.249 | I-1 | IIb-8 | IIc-8 | | M.Z.1.250 | I-1 | IIb-9 | IIc-1 | | | I | | | |-----------|-----|--------|--------| | No | ı | II (1) | II (2) | | M.Z.1.251 | I-1 | IIb-9 | IIc-2 | | M.Z.1.252 | I-1 | IIb-9 | IIc-3 | | M.Z.1.253 | I-1 | IIb-9 | IIc-4 | | M.Z.1.254 | I-1 | IIb-9 | IIc-5 | | M.Z.1.255 | I-1 | IIb-9 | IIc-6 | | M.Z.1.256 | I-1 | IIb-9 | IIc-7 | | M.Z.1.257 | I-1 | IIb-9 | IIc-8 | | M.Z.1.258 | I-1 | IIb-10 | IIc-1 | | M.Z.1.259 | I-1 | IIb-10 | IIc-2 | | M.Z.1.260 | I-1 | IIb-10 | IIc-3 | | M.Z.1.261 | I-1 | IIb-10 | IIc-4 | | M.Z.1.262 | I-1 | IIb-10 | IIc-5 | | M.Z.1.263 | I-1 | IIb-10 | IIc-6 | | M.Z.1.264 | I-1 | IIb-10 | IIc-7 | | M.Z.1.265 | I-1 | IIb-10 | IIc-8 | | M.Z.1.266 | I-1 | IIb-1 | IId-1 | | M.Z.1.267 | I-1 | IIb-1 | IId-2 | | M.Z.1.268 | I-1 | IIb-1 | IId-3 | | M.Z.1.269 | I-1 | IIb-2 | IId-1 | | M.Z.1.270 | I-1 | IIb-2 | IId-2 | | M.Z.1.271 | I-1 | IIb-2 | IId-3 | | M.Z.1.272 | I-1 | IIb-3 | IId-1 | | M.Z.1.273 | I-1 | IIb-3 | IId-2 | | M.Z.1.274 | I-1 | IIb-3 | IId-3 | | M.Z.1.275 | I-1 | IIb-4 | IId-1 | | M.Z.1.276 | I-1 | IIb-4 | IId-2 | | M.Z.1.277 | I-1 | IIb-4 | IId-3 | | M.Z.1.278 | I-1 | IIb-5 | IId-1 | | M.Z.1.279 | I-1 | IIb-5 | IId-2 | | M.Z.1.280 | I-1 | IIb-5 | IId-3 | | M.Z.1.281 | I-1 | IIb-6 | IId-1 | | M.Z.1.282 | I-1 | IIb-6 | IId-2 | | M.Z.1.283 | I-1 | IIb-6 | IId-3 | | M.Z.1.284 | I-1 | IIb-7 | IId-1 | | M.Z.1.285 | I-1 | IIb-7 | IId-2 | | M.Z.1.286 | I-1 | IIb-7 | IId-3 | | M.Z.1.287 | I-1 | IIb-8 | IId-1 | | M.Z.1.288 | I-1 | IIb-8 | IId-2 | | M.Z.1.289 | I-1 | IIb-8 | IId-3 | | | l | I . | I . | | No | I | II (1) | II (2) | |-----------|-----|--------|--------| | M.Z.1.290 | I-1 | IIb-9 | IId-1 | | M.Z.1.291 | I-1 | IIb-9 | IId-2 | | M.Z.1.292 | I-1 | IIb-9 | IId-3 | | M.Z.1.293 | I-1 | IIb-10 | IId-1 | | M.Z.1.294 | I-1 | IIb-10 | IId-2 | | M.Z.1.295 | I-1 | IIb-10 | IId-3 | | M.Z.1.296 | I-1 | IIb-1 | lle-1 | | M.Z.1.297 | I-1 | IIb-1 | lle-2 | | M.Z.1.298 | I-1 | IIb-1 | lle-3 | | M.Z.1.299 | I-1 | IIb-2 | lle-1 | | M.Z.1.300 | I-1 | IIb-2 | lle-2 | | M.Z.1.301 | I-1 | IIb-2 | lle-3 | | M.Z.1.302 | I-1 | IIb-3 | lle-1 | | M.Z.1.303 | I-1 | IIb-3 | lle-2 | | M.Z.1.304 | I-1 | IIb-3 | lle-3 | | M.Z.1.305 | I-1 | IIb-4 | lle-1 | | M.Z.1.306 | I-1 | IIb-4 | lle-2 | | M.Z.1.307 | I-1 | IIb-4 | lle-3 | | M.Z.1.308 | I-1 | IIb-5 | lle-1 | | M.Z.1.309 | I-1 | IIb-5 | lle-2 | | M.Z.1.310 | I-1 | IIb-5 | lle-3 | | M.Z.1.311 | I-1 | IIb-6 | lle-1 | | M.Z.1.312 | I-1 | IIb-6 | lle-2 | | M.Z.1.313 | I-1 | IIb-6 | lle-3 | | M.Z.1.314 | I-1 | IIb-7 | lle-1 | | M.Z.1.315 | I-1 | IIb-7 | lle-2 | | M.Z.1.316 | I-1 | IIb-7 | lle-3 | | M.Z.1.317 | I-1 | IIb-8 | lle-1 | | M.Z.1.318 | I-1 | IIb-8 | lle-2 | | M.Z.1.319 | I-1 | IIb-8 | lle-3 | | M.Z.1.320 | I-1 | IIb-9 | lle-1 | | M.Z.1.321 | I-1 | IIb-9 | lle-2 | | M.Z.1.322 | I-1 | IIb-9 | lle-3 | | M.Z.1.323 | I-1 | IIb-10 | lle-1 | | M.Z.1.324 | I-1 | IIb-10 | lle-2 | | M.Z.1.325 | I-1 | IIb-10 | lle-3 | | M.Z.1.326 | I-1 | IIb-1 | IIf-1 | | M.Z.1.327 | I-1 | IIb-1 | IIf-2 | | M.Z.1.328 | I-1 | IIb-1 | IIf-3 | | | T | | | |-----------|-----|----------|--------| | No | 1 | II (1) | II (2) | | M.Z.1.329 | I-1 | IIb-2 | IIf-1 | | M.Z.1.330 | I-1 | IIb-2 | IIf-2 | | M.Z.1.331 | I-1 | IIb-2 | IIf-3 | | M.Z.1.332 | I-1 | IIb-3 | IIf-1 | | M.Z.1.333 | I-1 | IIb-3 | IIf-2 | | M.Z.1.334 | I-1 | IIb-3 | IIf-3 | | M.Z.1.335 | I-1 | IIb-4 | IIf-1 | | M.Z.1.336 | I-1 | IIb-4 | IIf-2 | | M.Z.1.337 | I-1 | IIb-4 | IIf-3 | | M.Z.1.338 | I-1 | IIb-5 | IIf-1 | | M.Z.1.339 | I-1 | IIb-5 | IIf-2 | | M.Z.1.340 | I-1 | IIb-5 | IIf-3 | | M.Z.1.341 | I-1 | IIb-6 | IIf-1 | | M.Z.1.342 | I-1 | IIb-6 | IIf-2 | | M.Z.1.343 | I-1 | IIb-6 | IIf-3 | | M.Z.1.344 | I-1 | IIb-7 | IIf-1 | | M.Z.1.345 | I-1 | IIb-7 | IIf-2 | | M.Z.1.346 | I-1 | IIb-7 | IIf-3 | | M.Z.1.347 | I-1 | IIb-8 | IIf-1 | | M.Z.1.348 | I-1 | IIb-8 | IIf-2 | | M.Z.1.349 | I-1 | IIb-8 | IIf-3 | | M.Z.1.350 | I-1 | IIb-9 | IIf-1 | | M.Z.1.351 | I-1 | IIb-9 | IIf-2 | | M.Z.1.352 | I-1 | IIb-9 | IIf-3 | | M.Z.1.353 | I-1 | IIb-10 | IIf-1 | | M.Z.1.354 | I-1 | IIb-10 | IIf-2 | | M.Z.1.355 | I-1 | IIb-10 | IIf-3 | | M.Z.1.356 | I-1 | IIc-1 | IId-1 | | M.Z.1.357 | I-1 | IIc-1 | IId-2 | | M.Z.1.358 | I-1 | IIc-1 | IId-3 | | M.Z.1.359 | I-1 | IIc-2 | IId-1 | | M.Z.1.360 | I-1 | IIc-2 | IId-2 | | M.Z.1.361 | I-1 | IIc-2 | IId-3 | | M.Z.1.362 | I-1 | IIc-3 | IId-1 | | M.Z.1.363 | I-1 | IIc-3 | IId-2 | | M.Z.1.364 | I-1 | IIc-3 | IId-3 | | M.Z.1.365 | I-1 | IIc-4 | IId-1 | | M.Z.1.366 | I-1 | IIc-4 | IId-2 | | M.Z.1.367 | I-1 | IIc-4 | IId-3 | | | | <u> </u> | | | No | I | II (1) | II (2) | |-----------|-----|--------|--------| | M.Z.1.368 | I-1 | IIc-5 | IId-1 | | M.Z.1.369 | I-1 | IIc-5 | IId-2 | | M.Z.1.370 | I-1 | IIc-5 | IId-3 | | M.Z.1.371 | I-1 | IIc-6 | IId-1 | | M.Z.1.372 | I-1 | IIc-6 | IId-2 | | M.Z.1.373 | I-1 | IIc-6 | IId-3 | | M.Z.1.374 | I-1 | IIc-7 | IId-1 | | M.Z.1.375 | I-1 | IIc-7 | IId-2 | | M.Z.1.376 | I-1 | IIc-7 | IId-3 | | M.Z.1.377 | I-1 | IIc-8 | IId-1 | | M.Z.1.378 | I-1 | IIc-8 | IId-2 | | M.Z.1.379 | I-1 | IIc-8 | IId-3 | | M.Z.1.380 | I-1 | IIc-1 | lle-1 | | M.Z.1.381 | I-1 | IIc-1 | lle-2 | | M.Z.1.382 | I-1 | IIc-1 | lle-3 | | M.Z.1.383 | I-1 | IIc-2 | lle-1 | | M.Z.1.384 | I-1 | IIc-2 | lle-2 | | M.Z.1.385 | I-1 | IIc-2 | lle-3 | | M.Z.1.386 | I-1 | IIc-3 | lle-1 | | M.Z.1.387 | I-1 | IIc-3 | lle-2 | | M.Z.1.388 | I-1 | IIc-3 | lle-3 | | M.Z.1.389 | I-1 | IIc-4 | lle-1 | | M.Z.1.390 | I-1 | IIc-4 | lle-2 | | M.Z.1.391 | I-1 | IIc-4 | lle-3 | | M.Z.1.392 | I-1 | IIc-5 | lle-1 | | M.Z.1.393 | I-1 | IIc-5 | lle-2 | | M.Z.1.394 | I-1 | IIc-5 | lle-3 | | M.Z.1.395 | I-1 | IIc-6 | lle-1 | | M.Z.1.396 | I-1 | IIc-6 | lle-2 | | M.Z.1.397 | I-1 | IIc-6 | lle-3 | | M.Z.1.398 | I-1 | IIc-7 | lle-1 | | M.Z.1.399 | I-1 | IIc-7 | lle-2 | | M.Z.1.400 | I-1 | IIc-7 | lle-3 | | M.Z.1.401 | I-1 | IIc-8 | lle-1 | | M.Z.1.402 | I-1 | IIc-8 | lle-2 | | M.Z.1.403 | I-1 | IIc-8 | lle-3 | | M.Z.1.404 | I-1 | IIc-1 | IIf-1 | | M.Z.1.405 | I-1 | IIc-1 | IIf-2 | | M.Z.1.406 | I-1 | IIc-1 | IIf-3 | | No | 1 | II (1) | II (2) | |-----------|-----|--------|--------| | M.Z.1.407 | I-1 | IIc-2 | IIf-1 | | M.Z.1.408 | I-1 | IIc-2 | IIf-2 | | M.Z.1.409 | I-1 | IIc-2 | IIf-3 | | M.Z.1.410 | I-1 | IIc-3 | IIf-1 | | M.Z.1.411 | I-1 | IIc-3 | IIf-2 | | M.Z.1.412 | I-1 | IIc-3 | IIf-3 | | M.Z.1.413 | I-1 | IIc-4 | IIf-1 | | M.Z.1.414 | I-1 | IIc-4 | IIf-2 | | M.Z.1.415 | I-1 | IIc-4 | IIf-3 | | M.Z.1.416 | I-1 | IIc-5 | IIf-1 | | M.Z.1.417 | I-1 | IIc-5 | IIf-2 | | M.Z.1.418 | I-1 | IIc-5 | IIf-3 | | M.Z.1.419 | I-1 | IIc-6 | IIf-1 | | M.Z.1.420 | I-1 | IIc-6 | IIf-2 | | M.Z.1.421 | I-1 | IIc-6 | IIf-3 | | M.Z.1.422 | I-1 | IIc-7 | IIf-1 | | M.Z.1.423 | I-1 | IIc-7 | IIf-2 | | M.Z.1.424 | I-1 | IIc-7 | IIf-3 | | M.Z.1.425 | I-1 | IIc-8 | IIf-1 | | M.Z.1.426 | I-1 | IIc-8 | IIf-2 | | M.Z.1.427 | I-1 | IIc-8 | IIf-3 | | M.Z.1.428 | I-1 | IId-1 | lle-1 | | M.Z.1.429 | I-1 | IId-1 | lle-2 | | M.Z.1.430 | I-1 | IId-1 | lle-3 | | M.Z.1.431 | I-1 | IId-2 | lle-1 | | M.Z.1.432 | I-1 | IId-2 | lle-2 | | M.Z.1.433 | I-1 | IId-2 | lle-3 | | No | I | II (1) | II (2) | |-----------|-----|--------|--------| | M.Z.1.434 | I-1 | IId-3 | lle-1 | | M.Z.1.435 | I-1 | IId-3 | lle-2 | | M.Z.1.436 | I-1 | IId-3 | lle-3 | | M.Z.1.437 | I-1 | IId-1 | IIf-1 | | M.Z.1.438 | I-1 | IId-1 | IIf-2 | | M.Z.1.439 | I-1 | IId-1 | IIf-3 | | M.Z.1.440 | I-1 | IId-2 | IIf-1 | | M.Z.1.441 | I-1 | IId-2 | IIf-2 | | M.Z.1.442 | I-1 | IId-2 | IIf-3 | | M.Z.1.443 | I-1 | IId-3 | IIf-1 | | M.Z.1.444 | I-1 | IId-3 | IIf-2 | | M.Z.1.445 | I-1 | IId-3 | IIf-3 | | M.Z.1.446 | I-1 | lle-1 | IIf-1 | | M.Z.1.447 | I-1 | lle-1 | IIf-2 | | M.Z.1.448 | I-1 | lle-1 | IIf-3 | | M.Z.1.449 | I-1 | lle-2 | IIf-1 | | M.Z.1.450 | I-1 | lle-2 | IIf-2 | | M.Z.1.451 | I-1 | lle-2 | IIf-3 | | M.Z.1.452 | I-1 | lle-3 | IIf-1 | | M.Z.1.453 | I-1 | lle-3 | IIf-2 | | M.Z.1.454 | I-1 | lle-3 | IIf-3 | | M.Z.1.455 | I-1 | IIc-6 | IIc-2 | | M.Z.1.456 | I-1 | IIc-6 | IIc-5 | | M.Z.1.457 | I-1 | lla-1 | IIb-7 | | M.Z.1.458 | I-1 | lla-1 | IIb-8 | | M.Z.1.459 | I-1 | lla-1 | IIb-9 | | M.Z.1.460 | I-1 | lla-1 | IIb-10 | ## Table Z2 Table Z2 is as Table Z1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.Z.2.1 to M.Z.2.456. In the
context of the present invention, each of the rows of Table Z2 corresponds to one mixture. # Table Z3 Table Z3 is as Table Z1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.Z.3.1 to M.Z.3.456. In the context of the present invention, each of the rows of Table Z3 corresponds to one mixture. Table Z4 10 Table Z4A is as Table Z1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.Z.4.1 to M.Z.4.456. In the context of the present invention, each of the rows of Table Z4 corresponds to one mixture. Table Z5 Table Z5 is as Table Z1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.Z.5.1 to M.Z.5.456. In the context of the present invention, each of the rows of Table Z5 corresponds to one mixture. Table Z6 Table Z6 is as Table Z1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.Z.6.1 to M.Z.6.456. In the context of the present invention, each of the rows of Table Z6 corresponds to one mixture. Table Z7 Table Z7 is as Table Z1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.Z.7.1 to M.Z.7.456. In the context of the present inven- 15 tion, each of the rows of Table Z7 corresponds to one mixture. Table Z8 Table Z8 is as Table Z1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.Z.8.1 to M.Z.8.456. In the context of the present invention, each of the rows of Table Z8 corresponds to one mixture. 20 Table Z9 Table Z9 is as Table Z1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.Z.9.1 to M.Z.9.456. In the context of the present invention, each of the rows of Table Z9 corresponds to one mixture. Table Z10 Table Z10 is as Table Z1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.Z.10.1 to M.Z.10.456. In the context of the present invention, each of the rows of Table Z10 corresponds to one mixture. Table Z11 30 35 Table Z11 is as Table Z1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.Z.11.1 to M.Z.11.456. In the context of the present invention, each of the rows of Table Z11 corresponds to one mixture. Table Z12 Table Z12 is as Table Z1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.Z.12.1 to M.Z.12.456. In the context of the present invention, each of the rows of Table Z12 corresponds to one mixture. The invention also relates to the ternary mixtures comprising one compound I and two compunds II, wherein, wherein the first compound II (compound II-1) is metrafenone and the other compound II (compound II-2) is selected from the group consisting of - 40 (a) strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin or trifloxystrobin; and - (b) azoles such as cyproconazole; difenoconazole; epoxiconazole; metconazole (; propiconazole; prothioconazole; tebuconazole; triticonazole or bromoconazole; - (c) morphopholines such as fenpropimorph, tridemorph, fenpropidin and spirox- - (d) chlorothalonil; and amine; - (e) 2-[[(7R,8R,9S)-7-benzyl-9-methyl-8-(2-methylpropanoyloxy)-2,6-dioxo-1,5- - dioxonan-3-yl]carbamoyl]-4-methoxy-3-pyridyl]oxymethyl 2-methylpropanoate (ii-z-01) and [(6S,7R,8R)-8-benzyl-3-[(3-hydroxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate (ii-z-02). # Preferred compounds II-2 are selected from - 10 (a) strobilurines such as azoxystrobin; kresoxim-methyl; picoxystrobin; pyraclostrobin or trifloxystrobin; and - (b) azoles such as propiconazole, prothioconazole or bromoconazoke; - (c) morphopholines such as fenpropimorph, fenpropidin and spiroxamine; - (d) chlorothalonil; and - (e) 2-[[(7R,8R,9S)-7-benzyl-9-methyl-8-(2-methylpropanoyloxy)-2,6-dioxo-1,5-dioxonan-3-yl]carbamoyl]-4-methoxy-3-pyridyl]oxymethyl 2-methylpropanoate and [(6S,7R,8R)-8-benzyl-3-[(3-hydroxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate; and - (f) SDHIs such as benzovindiflupyr, bixafen, boscalid, fluopyram and fluxapyroxad More preferred second compounds II are selected from pyraclostrobin, propiconazole, prothioconazole and chlorothalonil. 25 These ternary mixtures are shown below in Tables Za1 to Za12. Table Za1 20 | No | I | II-1 | II-2 | |-----------|-----|-------------|-----------------| | M.Za.1.1 | I-1 | metrafenone | pyraclostrobin | | M.Za.1.2 | I-1 | metrafenone | propiconazole | | M.Za.1.3 | I-1 | metrafenone | prothioconazole | | M.Za.1.4 | I-1 | metrafenone | chlorothalonil | | M.Za.1.5 | I-1 | metrafenone | azoxystrobin | | M.Za.1.6 | I-1 | metrafenone | kresoxim-methyl | | M.Za.1.7 | I-1 | metrafenone | picoxystrobin | | M.Za.1.8 | I-1 | metrafenone | trifloxystrobin | | M.Za.1.9 | I-1 | metrafenone | bromoconazole | | M.Za.1.10 | I-1 | metrafenone | fenpropimorph | | M.Za.1.11 | I-1 | metrafenone | fenpropidin | | M.Za.1.12 | I-1 | metrafenone | spiroxamine | | M.Za.1.13 | I-1 | metrafenone | II-z-01 | | M.Za.1.14 | I-1 | metrafenone | II-z-02 | | No | I | II-1 | II-2 | |-----------|-----|-------------|------------------| | M.Za.1.15 | I-1 | metrafenone | mandestrobin | | M.Za.1.16 | I-1 | metrafenone | metaminostrobin | | M.Za.1.17 | I-1 | metrafenone | tebuconazole | | M.Za.1.18 | I-1 | metrafenone | triticonazole | | M.Za.1.19 | I-1 | metrafenone | cyproconazole | | M.Za.1.20 | I-1 | metrafenone | difenoconazole | | M.Za.1.21 | I-1 | metrafenone | epoxiconazole | | M.Za.1.22 | I-1 | metrafenone | metconazole | | M.Za.1.23 | I-1 | metrafenone | tridemorph | | M.Za.1.24 | I-1 | metrafenone | benzovindiflupyr | | M.Za.1.25 | I-1 | metrafenone | bixafen | | M.Za.1.26 | I-1 | metrafenone | boscalid | | M.Za.1.27 | I-1 | metrafenone | fluopyram | | M.Za.1.28 | I-1 | metrafenone | fluxapyroxad | #### Table Za2 Table Za2 is as Table Za1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.Za.2.1 to M.Za.2.28. In the context of the present invention, each of the rows of Table Za2 corresponds to one mixture. # Table Za3 Table Za3 is as Table Za1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.Za.3.1 to M.Za.3.28. In the context of the present invention, each of the rows of Table Za3 corresponds to one mixture. # 10 Table Za4 5 Table Za4A is as Table Za1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.Za.4.1 to M.Za.4.28. In the context of the present invention, each of the rows of Table Za4 corresponds to one mixture. Table Za5 Table Za5 is as Table Za1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.Za.5.1 to M.Za.5.28. In the context of the present invention, each of the rows of Table Za5 corresponds to one mixture. Table Za6 Table Za6 is as Table Za1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.Za.6.1 to M.Za.6.28. In the context of the present invention, each of the rows of Table Za6 corresponds to one mixture. Table Za7 Table Za7 is as Table Za1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.Za.7.1 to M.Za.7.28. In the context of the present invention, each of the rows of Table Za7 corresponds to one mixture. Table Za8 25 Table Za8 is as Table Za1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.Za.8.1 to M.Za.8.28. In the context of the present invention, each of the rows of Table Za8 corresponds to one mixture. Table Za9 Table Za9 is as Table Za1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.Za.9.1 to M.Za.9.28. In the context of the present invention, each of the rows of Table Za9 corresponds to one mixture. Table Za10 Table Za10 is as Table Za1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.Za.10.1 to M.Za.10.28. In the context of the present invention, each of the rows of Table Za10 corresponds to one mixture. Table Za11 Table Za11 is as Table Za1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.Za.11.1 to M.Za.11.28. In the context of the pre- sent invention, each of the rows of Table Za11 corresponds to one mixture. Table Za12 Table Za12 is as Table Za1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.Za.12.1 to M.Za.12.28. In the context of the present invention, each of the rows of Table Za12 corresponds to one mixture. 20 Within tables Za1 to Za12, the following mixtures are preferred: M.Za.1.1, M.Za.1.2, M.Za.1.3, M.Za.1.4, M.Za.1.5, M.Za.1.6, M.Za.1.7, M.Za.1.8, M.Za.1.9, M.Za.1.10, M.Za.1.11, M.Za.1.12, M.Za.1.28 M.Za.2.1, M.Za.2.2, M.Za.2.3, M.Za.2.4, M.Za.2.5, M.Za.2.6, M.Za.2.7, M.Za.2.8, - M.Za.2.9, M.Za.2.10, M.Za.2.11, M.Za.2.12, M.Za.2.28 M.Za.3.1, M.Za.3.2, M.Za.3.3, M.Za.3.4, M.Za.3.5, M.Za.3.6, M.Za.3.7, M.Za.3.8, M.Za.3.9, M.Za.3.10, M.Za.3.11, M.Za.3.12, M.Za.3.28 M.Za.4.1, M.Za.4.2, M.Za.4.3, M.Za.4.4, M.Za.4.5, M.Za.4.6, M.Za.4.7, M.Za.4.8, M.Za.4.9, M.Za.4.10, M.Za.4.11, M.Za.4.12, M.Za.4.28 - M.Za.5.1, M.Za.5.2, M.Za.5.3, M.Za.5.4, M.Za.5.5, M.Za.5.6, M.Za.5.7, M.Za.5.8, M.Za.5.9, M.Za.5.10, M.Za.5.11, M.Za.5.12, M.Za.5.28 M.Za.6.1, M.Za.6.2, M.Za.6.3, M.Za.6.4, M.Za.6.5, M.Za.6.6, M.Za.6.7, M.Za.6.8, M.Za.6.9, M.Za.6.10, M.Za.6.11, M.Za.6.12, M.Za.6.28 M.Za.7.1, M.Za.7.2, M.Za.7.3, M.Za.7.4, M.Za.7.5, M.Za.7.6, M.Za.7.7, M.Za.7.8, - M.Za.7.9, M.Za.7.10, M.Za.7.11, M.Za.7.12, M.Za.7.28 M.Za.8.1, M.Za.8.2, M.Za.8.3, M.Za.8.4, M.Za.8.5, M.Za.8.6, M.Za.8.7, M.Za.8.8, M.Za.8.9, M.Za.8.10, M.Za.8.11, M.Za.8.12, M.Za.8.28 M.Za.9.1, M.Za.9.2, M.Za.9.3, M.Za.9.4, M.Za.9.5, M.Za.9.6, M.Za.9.7, M.Za.9.8, M.Za.9.9, M.Za.9.10, M.Za.9.11, M.Za.9.12, M.Za.9.28 - M.Za.10.1, M.Za.10.2, M.Za.10.3,
M.Za.10.4, M.Za.10.5, M.Za.10.6, M.Za.10.7, M.Za.10.8, M.Za.10.9, M.Za.10.10, M.Za.10.11, M.Za.10.12, M.Za.10.28 M.Za.11.1, M.Za.11.2, M.Za.11.3, M.Za.11.4, M.Za.11.5, M.Za.11.6, M.Za.11.7, M.Za.11.8, M.Za.11.9, M.Za.11.10, M.Za.11.11, M.Za.11.12, M.Za.11.28 M.Za.12.1, M.Za.12.2, M.Za.12.3, M.Za.12.4, M.Za.12.5, M.Za.12.6, M.Za.12.7, M.Za.12.8, M.Za.12.9, M.Za.12.10, M.Za.12.11, M.Za.12.12 and M.Za.12.28. Within tables Za1 to Za12, the following mixtures are more preferred: 5 M.Za.1.1, M.Za.1.2, M.Za.1.3, M.Za.1.4, M.Za.1.28, M.Za.2.1, M.Za.2.2, M.Za.2.3, M.Za.2.4, M.Za.2.28, M.Za.3.1, M.Za.3.2, M.Za.3.3, M.Za.3.4, M.Za.3.28, M.Za.4.1, M.Za.4.2, M.Za.4.3, M.Za.4.4, M.Za.4.28, M.Za.5.1, M.Za.5.2, M.Za.5.3, M.Za.5.4 M.Za.5.28, 10 M.Za.6.1, M.Za.6.2, M.Za.6.3, M.Za.6.4, M.Za.6.28, M.Za.7.1, M.Za.7.2, M.Za.7.3, M.Za.7.4, M.Za.7.28, M.Za.8.1, M.Za.8.2, M.Za.8.3, M.Za.8.4, M.Za.8.28, M.Za.9.1, M.Za.9.2, M.Za.9.3, M.Za.9.4, M.Za.9.28, M.Za.10.1, M.Za.10.2, M.Za.10.3, M.Za.10.4, M.Za.10.28, 15 M.Za.11.1, M.Za.11.2, M.Za.11.3, M.Za.11.4, M.Za.11.28, M.Za.12.1, M.Za.12.2, M.Za.12.3, M.Za.12.4 and M.Za.12.28. The invention also relates to the ternary mixtures comprising one compound I and two compunds II, wherein the first compound II (compound II-1) is propiconazole and the other compound II (compound II-2) is selected from the group consisting of - strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin or trifloxystrobin; and - morphopholines such as fenpropimorph, tridemorph, fenpropidin and spiroxamine; and - 25 chlorothalonil. (d) 20 Preferred compounds II-2 are selected from - strobilurines such as azoxystrobin; kresoxim-methyl; picoxystrobin; pyraclostrobin or trifloxystrobin; and - 30 morphopholines such as fenpropimorph, fenpropidin and spiroxamine; and (c) - (d) chlorothalonil. Most preferred second compounds II are selected from pyraclostrobin chlorothalonil. 35 These ternary mixtures are shown below in Tables Zb1 to Zb12 as herein set forth below. Table Zb1 | No | | II (1) | II (2) | |----------|-----|---------------|-----------------| | M.Zb.1.1 | I-1 | propiconazole | pyraclostrobin | | M.Zb.1.2 | I-1 | propiconazole | chlorothalonil | | M.Zb.1.3 | I-1 | propiconazole | azoxystrobin | | M.Zb.1.4 | I-1 | propiconazole | kresoxim-methyl | | No | I | II (1) | II (2) | |-----------|-----|---------------|-----------------| | M.Zb.1.5 | I-1 | propiconazole | picoxystrobin | | M.Zb.1.6 | I-1 | propiconazole | trifloxystrobin | | M.Zb.1.7 | I-1 | propiconazole | fenpropimorph | | M.Zb.1.8 | I-1 | propiconazole | fenpropidin | | M.Zb.1.9 | I-1 | propiconazole | spiroxamine | | M.Zb.1.10 | I-1 | propiconazole | tridemorph | | M.Zb.1.11 | I-1 | propiconazole | mandestrobin | | M.Zb.1.12 | I-1 | propiconazole | metaminostrobin | #### Table Zb2 Table Zb2 is as Table Zb1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.Zb.2.1 to M.Zb.2.12. In the context of the present invention, each of the rows of Table Zb2 corresponds to one mixture. Table Zb3 Table Zb3 is as Table Zb1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.Zb.3.1 to M.Zb.3.12. In the context of the present invention, each of the rows of Table Zb3 corresponds to one mixture. 10 Table Zb4 5 20 25 Table Zb4A is as Table Zb1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.Zb.4.1 to M.Zb.4.12. In the context of the present invention, each of the rows of Table Zb4 corresponds to one mixture. Table Zb5 Table Zb5 is as Table Zb1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.Zb.5.1 to M.Zb.5.12. In the context of the present invention, each of the rows of Table Zb5 corresponds to one mixture. Table Zb6 Table Zb6 is as Table Zb1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.Zb.6.1 to M.Zb.6.12. In the context of the present invention, each of the rows of Table Zb6 corresponds to one mixture. Table Zb7 Table Zb7 is as Table Zb1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.Zb.7.1 to M.Zb.7.12. In the context of the present invention, each of the rows of Table Zb7 corresponds to one mixture. Table Zb8 Table Zb8 is as Table Zb1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.Zb.8.1 to M.Zb.8.12. In the context of the present invention, each of the rows of Table Zb8 corresponds to one mixture. 30 Table Zb9 Table Zb9 is as Table Zb1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.Zb.9.1 to M.Zb.9.12. In the context of the present invention, each of the rows of Table Zb9 corresponds to one mixture. Table Zb10 Table Zb10 is as Table Zb1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.Zb.10.1 to M.Zb.10.12. In the context of the present invention, each of the rows of Table Zb10 corresponds to one mixture. Table Zb11 Table Zb11 is as Table Zb1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.Zb.11.1 to M.Zb.11.12. In the context of the present invention, each of the rows of Table Zb11 corresponds to one mixture. Table Zb12 Table Zba12 is as Table Zba1, in which the compound I-1 is replaced by compound I-10 12, and the mixtures are named from M.Zba.12.1 to M.Zba.12.12. In the context of the present invention, each of the rows of Table Zba12 corresponds to one mixture. Within tables Zb1 to Zb12, the following mixtures are preferred: M.Zb.1.1, M.Zb.1.2, M.Zb.1.3, M.Zb.1.4, M.Zb.1.5, M.Zb.1.6, M.Zb.1.7, M.Zb.1.8, 15 M.Zb.1.9, M.Zb.2.1, M.Zb.2.2, M.Zb.2.3, M.Zb.2.4, M.Zb.2.5, M.Zb.2.6, M.Zb.2.7, M.Zb.2.8, M.Zb.2.9, M.Zb.3.1, M.Zb.3.2, M.Zb.3.3, M.Zb.3.4, M.Zb.3.5, M.Zb.3.6, M.Zb.3.7, M.Zb.3.8, M.Zb.3.9, 20 M.Zb.4.1, M.Zb.4.2, M.Zb.4.3, M.Zb.4.4, M.Zb.4.5, M.Zb.4.6, M.Zb.4.7, M.Zb.4.8, M.Zb.4.9, M.Zb.5.1, M.Zb.5.2, M.Zb.5.3, M.Zb.5.4, M.Zb.5.5, M.Zb.5.6, M.Zb.5.7, M.Zb.5.8, M.Zb.5.9. M.Zb.6.1, M.Zb.6.2, M.Zb.6.3, M.Zb.6.4, M.Zb.6.5, M.Zb.6.6, M.Zb.6.7, M.Zb.6.8, 25 M.Zb.6.9, M.Zb.7.1, M.Zb.7.2, M.Zb.7.3, M.Zb.7.4, M.Zb.7.5, M.Zb.7.6, M.Zb.7.7, M.Zb.7.8, M.Zb.7.9, M.Zb.8.1, M.Zb.8.2, M.Zb.8.3, M.Zb.8.4, M.Zb.8.5, M.Zb.8.6, M.Zb.8.7, M.Zb.8.8, M.Zb.8.9. 30 M.Zb.9.1, M.Zb.9.2, M.Zb.9.3, M.Zb.9.4, M.Zb.9.5, M.Zb.9.6, M.Zb.9.7, M.Zb.9.8, M.Zb.9.9, M.Zb.10.1, M.Zb.10.2, M.Zb.10.3, M.Zb.10.4, M.Zb.10.5, M.Zb.10.6, M.Zb.10.7, M.Zb.10.8, M.Zb.10.9, M.Zb.11.1, M.Zb.11.2, M.Zb.11.3, M.Zb.11.4, M.Zb.11.5, M.Zb.11.6, M.Zb.11.7, 35 M.Zb.11.8, M.Zb.11.9, M.Zb.12.1, M.Zb.12.2, M.Zb.12.3, M.Zb.12.4, M.Zb.12.5, M.Zb.12.6, M.Zb.12.7, M.Zb.12.8 and M.Zb.12.9. Within tables Zb1 to Zb12, the following mixtures are more preferred: M.Zb.1.1, M.Zb.1.2 M.Zb.2.1, M.Zb.2.2 M.Zb.3.1, M.Zb.3.2 M.Zb.4.1, M.Zb.4.2 M.Zb.5.1, M.Zb.5.2 M.Zb.6.1, M.Zb.6.2 M.Zb.7.1, M.Zb.7.2 M.Zb.8.1, M.Zb.8.2 M.Zb.9.1, M.Zb.9.2 M.Zb.10.1, M.Zb.10.2 M.Zb.11.1, M.Zb.11.2 M.Zb.12.1 and M.Zb.12.2. The invention also relates to the ternary mixtures comprising one compound I and two compunds II, wherein, wherein the first compound II (compound II-1) is fluxapyroxad and the other compound II (compound II-2) is selected from the group consisting of - 5 (a) strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin or trifloxystrobin; and - (b) azoles such as cyproconazole; difenoconazole; epoxiconazole; metconazole (; propiconazole; prothioconazole; tebuconazole or triticonazole; - (c) morphopholines such as fenpropimorph, tridemorph, fenpropidin and spiroxamine 10 and - (d) chlorothalonil. Preferred compounds II-2 are selected from - (a) strobilurines such as azoxystrobin; kresoxim-methyl; picoxystrobin; pyraclostrobin15 or trifloxystrobin; and - (b) azoles such as propiconazole or prothioconazole; - (c) morphopholines such as fenpropimorph, fenpropidin and spiroxamine; and - (d) chlorothalonil; and - More preferred second compounds II are selected from pyraclostrobin, propiconazole, prothioconazole and chlorothalonil. These ternary mixtures are shown below in Tables Zc1 to Zc12. # 25 Table Za1 | No | I | II-1 | II-2 | |-----------|-----|--------------|-----------------| | M.Zc.1.1 | I-1 | fluxapyroxad | pyraclostrobin | | M.Zc.1.2 | I-1 | fluxapyroxad | propiconazole | | M.Zc.1.3 | I-1 | fluxapyroxad | prothioconazole | | M.Zc.1.4 | I-1 | fluxapyroxad | chlorothalonil | | M.Zc.1.5 | I-1 | fluxapyroxad | azoxystrobin | | M.Zc.1.6 | I-1 | fluxapyroxad | kresoxim-methyl | | M.Zc.1.7 | I-1 | fluxapyroxad | picoxystrobin | | M.Zc.1.8 | I-1 | fluxapyroxad | trifloxystrobin | | M.Zc.1.9 | I-1 | fluxapyroxad | fenpropimorph | | M.Zc.1.10 | I-1 | fluxapyroxad | fenpropidin | | M.Zc.1.11 | I-1 | fluxapyroxad | spiroxamine | | M.Zc.1.12 | I-1 | fluxapyroxad | mandestrobin | | M.Zc.1.13 | I-1 | fluxapyroxad | metaminostrobin | | M.Zc.1.14 | I-1 | fluxapyroxad | tebuconazole | | M.Zc.1.15 | I-1 | fluxapyroxad | triticonazole | | M.Zc.1.16 | I-1 | fluxapyroxad | cyproconazole | | No | I | II-1 | II-2 | |-----------|-----|--------------|----------------| | M.Zc.1.17 | I-1 | fluxapyroxad | difenoconazole | | M.Zc.1.18 | I-1 | fluxapyroxad | epoxiconazole | | M.Zc.1.19 | I-1 | fluxapyroxad | metconazole | | M Zc 1 20 | I-1 | fluxapyroxad | tridemorph | Table Zc2 Table Zc2 is as Table Zc1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.Zc.2.1 to M.Zc.2.20. In the context of the present invention, each of the rows of Table Zc2 corresponds to one mixture. Table Zc3 Table Zc3 is as Table Zc1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.Zc.3.1 to M.Zc.3.20. In the context of the present invention, each of the rows of Table Zc3 corresponds to one mixture. 10 Table Zc4 5 Table Zc4A is as Table Zc1, in which the compound I-1 is replaced by compound
I-4, and the mixtures are named from M.Zc.4.1 to M.Zc.4.20. In the context of the present invention, each of the rows of Table Zc4 corresponds to one mixture. Table Zc5 Table Zc5 is as Table Zc1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.Zc.5.1 to M.Zc.5.20. In the context of the present invention, each of the rows of Table Zc5 corresponds to one mixture. Table Zc6 Table Zc6 is as Table Zc1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.Zc.6.1 to M.Zc.6.20. In the context of the present invention, each of the rows of Table Zc6 corresponds to one mixture. Table Zc7 Table Zc7 is as Table Zc1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.Zc.7.1 to M.Zc.7.20. In the context of the present invention, each of the rows of Table Zc7 corresponds to one mixture. Table Zc8 25 Table Zc8 is as Table Zc1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.Zc.8.1 to M.Zc.8.20. In the context of the present invention, each of the rows of Table Zc8 corresponds to one mixture. 30 Table Zc9 Table Zc9 is as Table Zc1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.Zc.9.1 to M.Zc.9.20. In the context of the present invention, each of the rows of Table Zc9 corresponds to one mixture. Table Zc10 Table Zc10 is as Table Zc1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.Zc.10.1 to M.Zc.10.20. In the context of the present invention, each of the rows of Table Zc10 corresponds to one mixture. Table Zc11 Table Zc11 is as Table Zc1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.Zc.11.1 to M.Zc.11.20. In the context of the present invention, each of the rows of Table Zc11 corresponds to one mixture. Table Zc12 Table Zc12 is as Table Zc1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.Zc.12.1 to M.Zc.12.20. In the context of the present invention, each of the rows of Table Zc12 corresponds to one mixture. Within tables Zc1 to Zc12, the following mixtures are preferred: - 10 M.Zc.1.1, M.Zc.1.2, M.Zc.1.3, M.Zc.1.4, M.Zc.1.5, M.Zc.1.6, M.Zc.1.7, M.Zc.1.8, M.Zc.1.9, M.Zc.1.10, M.Zc.1.11 - M.Zc.2.1, M.Zc.2.2, M.Zc.2.3, M.Zc.2.4, M.Zc.2.5, M.Zc.2.6, M.Zc.2.7, M.Zc.2.8, M.Zc.2.9, M.Zc.2.10, M.Zc.2.11 - M.Zc.3.1, M.Zc.3.2, M.Zc.3.3, M.Zc.3.4, M.Zc.3.5, M.Zc.3.6, M.Zc.3.7, M.Zc.3.8, - M.Zc.3.9, M.Zc.3.10, M.Zc.3.11 M.Zc.4.1, M.Zc.4.2, M.Zc.4.3, M.Zc.4.4, M.Zc.4.5, M.Zc.4.6, M.Zc.4.7, M.Zc.4.8, M.Zc.4.9, M.Zc.4.10, M.Zc.4.11 M.Zc.5.1, M.Zc.5.2, M.Zc.5.3, M.Zc.5.4, M.Zc.5.5, M.Zc.5.6, M.Zc.5.7, M.Zc.5.8, M.Zc.5.9, M.Zc.5.10, M.Zc.5.11 - M.Zc.6.1, M.Zc.6.2, M.Zc.6.3, M.Zc.6.4, M.Zc.6.5, M.Zc.6.6, M.Zc.6.7, M.Zc.6.8, M.Zc.6.9, M.Zc.6.10, M.Zc.6.11 M.Zc.7.1, M.Zc.7.2, M.Zc.7.3, M.Zc.7.4, M.Zc.7.5, M.Zc.7.6, M.Zc.7.7, M.Zc.7.8, M.Zc.7.9, M.Zc.7.10, M.Zc.7.11 - M.Zc.8.1, M.Zc.8.2, M.Zc.8.3, M.Zc.8.4, M.Zc.8.5, M.Zc.8.6, M.Zc.8.7, M.Zc.8.8, - M.Zc.8.9, M.Zc.8.10, M.Zc.8.11 M.Zc.9.1, M.Zc.9.2, M.Zc.9.3, M.Zc.9.4, M.Zc.9.5, M.Zc.9.6, M.Zc.9.7, M.Zc.9.8, M.Zc.9.9, M.Zc.9.10, M.Zc.9.11 M.Zc.10.1, M.Zc.10.2, M.Zc.10.3, M.Zc.10.4, M.Zc.10.5, M.Zc.10.6, M.Zc.10.7, M.Zc.10.8, M.Zc.10.9, M.Zc.10.10, M.Zc.10.11 - M.Zc.11.1, M.Zc.11.2, M.Zc.11.3, M.Zc.11.4, M.Zc.11.5, M.Zc.11.6, M.Zc.11.7, M.Zc.11.8, M.Zc.11.9, M.Zc.11.10, M.Zc.11.11 M.Zc.12.1, M.Zc.12.2, M.Zc.12.3, M.Zc.12.4, M.Zc.12.5, M.Zc.12.6, M.Zc.12.7, M.Zc.12.8, M.Zc.12.9, M.Zc.12.10 and M.Zc.12.11. - Within tables Zc1 to Zc12, the following mixtures are more preferred: - M.Zc.1.1, M.Zc.1.2, M.Zc.1.3, M.Zc.1.4, - M.Zc.2.1, M.Zc.2.2, M.Zc.2.3, M.Zc.2.4, - M.Zc.3.1, M.Zc.3.2, M.Zc.3.3, M.Zc.3.4, - M.Zc.4.1, M.Zc.4.2, M.Zc.4.3, M.Zc.4.4, - 40 M.Zc.5.1, M.Zc.5.2, M.Zc.5.3, M.Zc.5.4, - M.Zc.6.1, M.Zc.6.2, M.Zc.6.3, M.Zc.6.4, - M.Zc.7.1, M.Zc.7.2, M.Zc.7.3, M.Zc.7.4, - M.Zc.8.1, M.Zc.8.2, M.Zc.8.3, M.Zc.8.4, M.Zc.9.1, M.Zc.9.2, M.Zc.9.3, M.Zc.9.4, M.Zc.10.1, M.Zc.10.2, M.Zc.10.3, M.Zc.10.4, M.Zc.11.1, M.Zc.11.2, M.Zc.11.3, M.Zc.11.4, M.Zc.12.1, M.Zc.12.2, M.Zc.12.3 and M.Zc.12.4. 5 10 The invention also relates to the ternary mixtures comprising one compound I and two compounds II, wherein the first compound II (compound II-1) is chlorothalonil and the other compound II (compound II-2) is selected from the group consisting of - (a) strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin or trifloxystrobin; and - (c) morphopholines such as fenpropimorph, tridemorph, fenpropidin and spiroxamine. Preferred compounds II-2 are selected from - 15 (a) strobilurines such as azoxystrobin; kresoxim-methyl; picoxystrobin; pyraclostrobin or trifloxystrobin; and - (c) morphopholines such as fenpropimorph, fenpropidin and spiroxamine Most preferred, the ternary mixtures comprise one compound I, chlorothalonil and py-20 raclostrobin. These ternary mixtures are shown below in Tables Zd1 to Zd12 as herein set forth below. ## 25 Table Zd1 | No | 1 | II (1) | II (2) | |-----------|-----|----------------|-----------------| | M.Zd.1.1 | I-1 | chlorothalonil | pyraclostrobin | | M.Zd.1.2 | I-1 | chlorothalonil | azoxystrobin | | M.Zd.1.3 | I-1 | chlorothalonil | kresoxim-methyl | | M.Zd.1.4 | I-1 | chlorothalonil | picoxystrobin | | M.Zd.1.5 | I-1 | chlorothalonil | trifloxystrobin | | M.Zd.1.6 | I-1 | chlorothalonil | fenpropimorph | | M.Zd.1.7 | I-1 | chlorothalonil | fenpropidin | | M.Zd.1.8 | I-1 | chlorothalonil | spiroxamine | | M.Zd.1.9 | I-1 | chlorothalonil | tridemorph | | M.Zd.1.10 | I-1 | chlorothalonil | mandestrobin | | M.Zd.1.11 | I-1 | chlorothalonil | metaminostrobin | Table Zd2 30 Table Zd2 is as Table Zd1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.Zd.2.1 to M.Zd.2.11. In the context of the present invention, each of the rows of Table Zd2 corresponds to one mixture. Table Zd3 Table Zd3 is as Table Zd1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.Zd.3.1 to M.Zd.3.11. In the context of the present invention, each of the rows of Table Zd3 corresponds to one mixture. 5 Table Zd4 Table Zd4A is as Table Zd1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.Zd.4.1 to M.Zd.4.11. In the context of the present invention, each of the rows of Table Zd4 corresponds to one mixture. Table Zd5 Table Zd5 is as Table Zd1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.Zd.5.1 to M.Zd.5.11. In the context of the present invention, each of the rows of Table Zd5 corresponds to one mixture. Table Zd6 Table Zd6 is as Table Zd1, in which the compound I-1 is replaced by compound I-6, and the mixtures are named from M.Zd.6.1 to M.Zd.6.11. In the context of the present invention, each of the rows of Table Zd6 corresponds to one mixture. Table Zd7 Table Zd7 is as Table Zd1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.Zd.7.1 to M.Zd.7.11. In the context of the present invention, each of the rows of Table Zd7 corresponds to one mixture. Table Zd8 Table Zd8 is as Table Zd1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.Zd.8.1 to M.Zd.8.11. In the context of the present invention, each of the rows of Table Zd8 corresponds to one mixture. 25 Table Zd9 20 Table Zd9 is as Table Zd1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.Zd.9.1 to M.Zd.9.11. In the context of the present invention, each of the rows of Table Zd9 corresponds to one mixture. Table Zd10 Table Zd10 is as Table Zd1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.Zd.10.1 to M.Zd.10.11. In the context of the present invention, each of the rows of Table Zd10 corresponds to one mixture. Table Zd11 Table Zd11 is as Table Zd1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.Zd.11.1 to M.Zd.11.11. In the context of the present invention, each of the rows of Table Zd11 corresponds to one mixture. Table Zd12 Table Zd12 is as Table Zd1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.Zd.12.1 to M.Zd.12.11. In the context of the pre- 40 sent invention, each of the rows of Table Zda12 corresponds to one mixture. Within tables Zd1 to Zd12, the following mixtures are preferred: M.Zb.1.1, M.Zb.1.2, M.Zb.1.3, M.Zb.1.4, M.Zb.1.5, M.Zb.1.6, M.Zb.1.7, M.Zb.1.8, M.Zb.2.1, M.Zb.2.2, M.Zb.2.3, M.Zb.2.4, M.Zb.2.5, M.Zb.2.6, M.Zb.2.7, M.Zb.2.8, M.Zb.3.1, M.Zb.3.2, M.Zb.3.3, M.Zb.3.4, M.Zb.3.5, M.Zb.3.6, M.Zb.3.7, M.Zb.3.8, M.Zb.4.1, M.Zb.4.2, M.Zb.4.3, M.Zb.4.4, M.Zb.4.5, M.Zb.4.6, M.Zb.4.7, M.Zb.4.8, M.Zb.5.1, M.Zb.5.2, M.Zb.5.3, M.Zb.5.4, M.Zb.5.5, M.Zb.5.6, M.Zb.5.7, M.Zb.5.8, M.Zb.6.1, M.Zb.6.2, M.Zb.6.3, M.Zb.6.4, M.Zb.6.5, M.Zb.6.6, M.Zb.6.7, M.Zb.6.8, M.Zb.7.1, M.Zb.7.2, M.Zb.7.3, M.Zb.7.4, M.Zb.7.5, M.Zb.7.6, M.Zb.7.7, M.Zb.7.8, M.Zb.8.1, M.Zb.8.2, M.Zb.8.3, M.Zb.8.4, M.Zb.8.5, M.Zb.8.6, M.Zb.8.7, M.Zb.8.8, M.Zb.9.1, M.Zb.9.2, M.Zb.9.3, M.Zb.9.4, M.Zb.9.5, M.Zb.9.6, M.Zb.9.7, M.Zb.9.8, M.Zb.10.1, M.Zb.10.2, M.Zb.10.3, M.Zb.10.4, M.Zb.10.5, M.Zb.10.6, M.Zb.10.7, 10 M.Zb.10.8, , 5 25 30 35 M.Zb.11.1, M.Zb.11.2, M.Zb.11.3, M.Zb.11.4, M.Zb.11.5, M.Zb.11.6, M.Zb.11.7, M.Zb.11.8, , M.Zb.12.1, M.Zb.12.2, M.Zb.12.3, M.Zb.12.4, M.Zb.12.5, M.Zb.12.6, M.Zb.12. and M.Zb.12.8., 15 Within tables Zd1 to Zd12, the following mixtures are most preferred: M.Zb.1.1, M.Zb.2.1, M.Zb.3.1, M.Zb.4.1, M.Zb.5.1, M.Zb.6.1, M.Zb.7.1, M.Zb.8.1, M.Zb.9.1, M.Zb.10.1, M.Zb.11.1 and M.Zb.12.1. The invention also relates to the ternary mixtures comprising one compound I and two 20 compounds II, wherein the first compound II (compound II-1) is prothioconazole and the other compound II (compound II-2) is selected from
the group consisting of - strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin or trifloxystrobin; and - morphopholines such as fenpropimorph, tridemorph, fenpropidin and spiroxamine; and - chlorothalonil. (d) Preferred compounds II-2 are selected from - strobilurines such as azoxystrobin; kresoxim-methyl; picoxystrobin; pyraclostrobin or trifloxystrobin; and - morphopholines such as fenpropimorph, fenpropidin and spiroxamine; and (c) - (d) chlorothalonil. Most preferred second compounds II are selected from pyraclostrobin chlorothalonil. These ternary mixtures are shown below in Tables Ze1 to Ze12 as herein set forth below. Table Ze1 | No | I | II (1) | II (2) | |----------|-----|-----------------|----------------| | M.Ze.1.1 | I-1 | prothioconazole | pyraclostrobin | | M.Ze.1.2 | I-1 | prothioconazole | chlorothalonil | | M.Ze.1.3 | I-1 | prothioconazole | azoxystrobin | | No | | II (1) | II (2) | |-----------|-----|-----------------|-----------------| | M.Ze.1.4 | I-1 | prothioconazole | kresoxim-methyl | | M.Ze.1.5 | I-1 | prothioconazole | picoxystrobin | | M.Ze.1.6 | I-1 | prothioconazole | trifloxystrobin | | M.Ze.1.7 | I-1 | prothioconazole | fenpropimorph | | M.Ze.1.8 | I-1 | prothioconazole | fenpropidin | | M.Ze.1.9 | I-1 | prothioconazole | spiroxamine | | M.Ze.1.10 | I-1 | prothioconazole | tridemorph | | M.Ze.1.11 | I-1 | prothioconazole | mandestrobin | | M.Ze.1.12 | I-1 | prothioconazole | metaminostrobin | #### Table Ze2 Table Ze2 is as Table Ze1, in which the compound I-1 is replaced by compound I-2, and the mixtures are named from M.Ze.2.1 to M.Ze.2.12. In the context of the present invention, each of the rows of Table Ze2 corresponds to one mixture. #### Table Ze3 Table Ze3 is as Table Ze1, in which the compound I-1 is replaced by compound I-3, and the mixtures are named from M.Ze.3.1 to M.Ze.3.12. In the context of the present invention, each of the rows of Table Ze3 corresponds to one mixture. ## 10 Table Ze4 5 Table Ze4A is as Table Ze1, in which the compound I-1 is replaced by compound I-4, and the mixtures are named from M.Ze.4.1 to M.Ze.4.12. In the context of the present invention, each of the rows of Table Ze4 corresponds to one mixture. Table Ze5 Table Ze5 is as Table Ze1, in which the compound I-1 is replaced by compound I-5, and the mixtures are named from M.Ze.5.1 to M.Ze.5.12. In the context of the present invention, each of the rows of Table Ze5 corresponds to one mixture. Table Ze6 Table Ze6 is as Table Ze1, in which the compound I-1 is replaced by compound I-6, 20 and the mixtures are named from M.Ze.6.1 to M.Ze.6.12. In the context of the present invention, each of the rows of Table Ze6 corresponds to one mixture. Table Ze7 Table Ze7 is as Table Ze1, in which the compound I-1 is replaced by compound I-7, and the mixtures are named from M.Ze.7.1 to M.Ze.7.12. In the context of the present invention, each of the rows of Table Ze7 corresponds to one mixture. Table Ze8 Table Ze8 is as Table Ze1, in which the compound I-1 is replaced by compound I-8, and the mixtures are named from M.Ze.8.1 to M.Ze.8.12. In the context of the present invention, each of the rows of Table Ze8 corresponds to one mixture. 30 Table Ze9 Table Ze9 is as Table Ze1, in which the compound I-1 is replaced by compound I-9, and the mixtures are named from M.Ze.9.1 to M.Ze.9.12. In the context of the present invention, each of the rows of Table Ze9 corresponds to one mixture. Table Ze10 Table Ze10 is as Table Ze1, in which the compound I-1 is replaced by compound I-10, and the mixtures are named from M.Ze.10.1 to M.Ze.10.12. In the context of the present invention, each of the rows of Table Ze10 corresponds to one mixture. Table Ze11 Table Ze11 is as Table Ze1, in which the compound I-1 is replaced by compound I-11, and the mixtures are named from M.Ze.11.1 to M.Ze.11.12. In the context of the present invention, each of the rows of Table Ze11 corresponds to one mixture. Table Ze12 Table Zea12 is as Table Zea1, in which the compound I-1 is replaced by compound I-12, and the mixtures are named from M.Zea.12.1 to M.Zea.12.12. In the context of the present invention, each of the rows of Table Zea12 corresponds to one mixture. Within tables Ze1 to Ze12, the following mixtures are preferred: M.Ze.1.1, M.Ze.1.2, M.Ze.1.3, M.Ze.1.4, M.Ze.1.5, M.Ze.1.6, M.Ze.1.7, M.Ze.1.8, M.Ze.1.9, 20 M.Ze.2.1, M.Ze.2.2, M.Ze.2.3, M.Ze.2.4, M.Ze.2.5, M.Ze.2.6, M.Ze.2.7, M.Ze.2.8, M.Ze.2.9, M.Ze.3.1, M.Ze.3.2, M.Ze.3.3, M.Ze.3.4, M.Ze.3.5, M.Ze.3.6, M.Ze.3.7, M.Ze.3.8, M.Ze.3.9. M.Ze.4.1, M.Ze.4.2, M.Ze.4.3, M.Ze.4.4, M.Ze.4.5, M.Ze.4.6, M.Ze.4.7, M.Ze.4.8, 25 M.Ze.4.9, M.Ze.5.1, M.Ze.5.2, M.Ze.5.3, M.Ze.5.4, M.Ze.5.5, M.Ze.5.6, M.Ze.5.7, M.Ze.5.8, M.Ze.5.9, M.Ze.6.1, M.Ze.6.2, M.Ze.6.3, M.Ze.6.4, M.Ze.6.5, M.Ze.6.6, M.Ze.6.7, M.Ze.6.8, M.Ze.6.9, 30 M.Ze.7.1, M.Ze.7.2, M.Ze.7.3, M.Ze.7.4, M.Ze.7.5, M.Ze.7.6, M.Ze.7.7, M.Ze.7.8, M.Ze.7.9, M.Ze.8.1, M.Ze.8.2, M.Ze.8.3, M.Ze.8.4, M.Ze.8.5, M.Ze.8.6, M.Ze.8.7, M.Ze.8.8, M.Ze.8.9, M.Ze.9.1, M.Ze.9.2, M.Ze.9.3, M.Ze.9.4, M.Ze.9.5, M.Ze.9.6, M.Ze.9.7, M.Ze.9.8, 35 M.Ze.9.9, M.Ze.10.1, M.Ze.10.2, M.Ze.10.3, M.Ze.10.4, M.Ze.10.5, M.Ze.10.6, M.Ze.10.7, M.Ze.10.8, M.Ze.10.9, M.Ze.11.1, M.Ze.11.2, M.Ze.11.3, M.Ze.11.4, M.Ze.11.5, M.Ze.11.6, M.Ze.11.7, M.Ze.11.8, M.Ze.11.9, 40 M.Ze.12.1, M.Ze.12.2, M.Ze.12.3, M.Ze.12.4, M.Ze.12.5, M.Ze.12.6, M.Ze.12.7, M.Ze.12.8 and M.Ze.12.9. Within tables Ze1 to Ze12, the following mixtures are more preferred: M.Ze.1.1, M.Ze.1.2 M.Ze.2.1, M.Ze.2.2 M.Ze.3.1, M.Ze.3.2 M.Ze.4.1, M.Ze.4.2 M.Ze.5.1, M.Ze.5.2 M.Ze.6.1, M.Ze.6.2 M.Ze.7.1, M.Ze.7.2 M.Ze.8.1, M.Ze.8.2 M.Ze.9.1, M.Ze.9.2 M.Ze.10.1, M.Ze.10.2 M.Ze.11.1, M.Ze.11.2 M.Ze.12.1 and M.Ze.12.2. 5 10 25 30 35 40 All above-referred mixtures are herein below referred to as "inventive mixtures". The inventive mixtures can further contain one or more insecticides, fungicides, herbicides. The inventive mixtures can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wetTable Apowders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6th Ed. May 2008, CropLife International. The compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005. Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders. Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegeTable Aor animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof. Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegeTable Aorigin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof. 5 10 15 20 25 30 35 40 Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emusifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1: Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.). Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylarylsulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates. Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based
surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-subsititued fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinylpyrrolidone, vinylalcohols, or vinylacetate. SuitableSuitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyethyleneamines. Suitable adjuvants are compounds, which have a neglecTable Aor even no pesticidal activity themselves, and which improve the biological performance of the inventive mixtures on the target. Examples are surfactants, mineral or vegeTable Aoils, and other auxiliaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5. Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellu- lose), anorganic clays (organically modified or unmodified), polycarboxylates, and silicates. Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones. 5 Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin. Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids. Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants). Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers. Examples for composition types and their preparation are: i) Water-soluble concentrates (SL, LS) 10-60 wt% of an inventive mixture and 5-15 wt% wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e.g. alcohols) ad 100 wt%. The active substance dissolves upon dilution with water. ii) Dispersible concentrates (DC) 10 15 20 35 40 5-25 wt% of an inventive mixture and 1-10 wt% dispersant (e. g. polyvinylpyrrolidone) are dissolved in organic solvent (e.g. cyclohexanone) ad 100 wt%. Dilution with water gives a dispersion. 25 iii) Emulsifiable concentrates (EC) 15-70 wt% of an inventive mixture and 5-10 wt% emulsifiers (e.g. calcium do-decylbenzenesulfonate and castor oil ethoxylate) are dissolved in water-insoluble organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%. Dilution with water gives an emulsion. 30 iv) Emulsions (EW, EO, ES) 5-40 wt% of an inventive mixture and 1-10 wt% emulsifiers (e.g. calcium do-decylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 wt% water-insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is introduced into water ad 100 wt% by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion. v) Suspensions (SC, OD, FS) In an agitated ball mill, 20-60 wt% of an inventive mixture are comminuted with addition of 2-10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1-2 wt% thickener (e.g. xanthan gum) and water ad 100 wt% to give a fine active substance suspension. Dilution with water gives a sTable Asuspension of the active substance. For FS type composition up to 40 wt% binder (e.g. polyvinylalcohol) is added. vi) Water-dispersible granules and water-soluble granules (WG, SG) 50-80 wt% of an inventive mixture are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a sTable Adispersion or solution of the active substance. PCT/EP2015/074922 vii) Water-dispersible powders and water-soluble powders (WP, SP, WS) 50-80 wt% of an inventive mixture are ground in a rotor-stator mill with addition of 1-5 wt% dispersants (e.g. sodium lignosulfonate), 1-3 wt% wetting agents (e.g. alcohol ethoxylate) and solid carrier (e.g. silica gel) ad 100 wt%. Dilution with water gives a sTable Adispersion or solution of the active substance. ## viii) Gel (GW, GF) 5 10 15 20 25 30 35 In an agitated ball mill, 5-25 wt% of an inventive mixture are comminuted with addition of 3-10 wt% dispersants (e.g. sodium lignosulfonate), 1-5 wt% thickener (e.g. carboxymethylcellulose) and water ad 100 wt% to give a fine suspension of the active substance. Dilution with water gives a sTable Asuspension of the active substance. ## iv) Microemulsion (ME) 5-20 wt% of an inventive mixture are added to 5-30 wt% organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 wt% surfactant blend (e.g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically sTable Amicroemulsion. # iv) Microcapsules (CS) An oil phase comprising 5-50 wt% of an inventive mixture, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt% of an inventive mixture according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylmethene-4,4'-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyamine (e.g. hexamethylenediamine) results in the formation of polyurea microcapsules. The monomers amount to 1-10 wt%. The wt% relate to the total CS composition. ## ix) Dustable powders (DP, DS) 1-10 wt% of an inventive mixture are ground finely and mixed intimately with solid carrier (e.g. finely divided kaolin) ad 100 wt%. # x) Granules (GR, FG) 0.5-30 wt% of an inventive mixture is ground finely and associated with solid carrier (e.g. silicate) ad 100 wt%. Granulation is achieved by extrusion, spray-drying or fluidized bed. #### 40 xi) Ultra-low volume liquids (UL) 1-50 wt% of an inventive mixture are dissolved in organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%. The compositions types i) to xi) may optionally comprise further auxiliaries, such as 0.1-1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1-1 wt% anti-foaming agents, and 0.1-1 wt% colorants. The resulting agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum). 5 10 15 20 25 30 35 40 Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying the inventive mixtures and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material. Preferably, the inventive mixtures or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting. When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.01 to 1.0 kg per ha, and in particular from 0.05 to 0.75 kg per ha. In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.01-10kg, preferably from 0.1-1000 g, more preferably from 1-100 g per 100 kilogram of plant propagation material (preferably seeds) are generally required. When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g
to 1 kg, of active substance per cubic meter of treated material. Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1. The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation systeM.A. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area. - According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate. - 10 Consequently, one embodiment of the invention is a kit for preparing a usable pesticidal composition, the kit comprising a) a composition comprising component 1) as defined herein and at least one auxiliary; and b) a composition comprising component 2) as defined herein and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally a further active component 3) as defined herein. - As said above, the present invention comprises a method for controlling harmful fungi, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material (preferably seed) are treated with an pesticidally effective amount of a inventive mixture. - Advantageously, the inventive mixtures are suitable for controlling the following fungal plant diseases: - Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. candida) and sunflowers (e. g. A. tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables, rape (A. brassicola or brassicae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. - A. solani or A. alternata), tomatoes (e. g. A. solani or A. alternata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight (B. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e. g. B. - oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad- - leaved trees and evergreens, e. g. *C. ulmi* (Dutch elm disease) on elms; *Cercospora* spp. (Cercospora leaf spots) on corn (e. g. Gray leaf spot: *C. zeae-maydis*), rice, sugar beets (e. g. *C. beticola*), sugar cane, vegetables, coffee, soybeans (e. g. *C. sojina* or *C. kikuchii*) and rice; *Cladosporium* spp. on tomatoes (e. g. *C. fulvum*: leaf mold) and cereals, e. g. *C. herbarum* (black ear) on wheat; *Claviceps purpurea* (ergot) on cereals; - 40 Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e. g. C. sativus, anamorph: B. sorokiniana) and rice (e. g. C. miyabeanus, anamorph: H. oryzae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e. g. C. gossypii), corn (e. g. C. graminicola: Anthracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes: black dot), beans (e. g. C. lindemuthianum) and soybeans (e. g. C. truncatum or C. gloeosporioides); Corticium spp., e. g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. 5 (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C. liriodendri, teleomorph: Neonectria liriodendri: Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, 10 cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeoacremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta: anthracnose) and 15 vines (E. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e. g. E. pisi), such as cucurbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum 20 (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxysporum on tomatoes, F. solani (f. sp. glycines now syn. F. virguliforme) and F. tucumaniae and F. brasiliense each causing sudden death syndrome on soybeans, and F. 25 verticillioides on corn; Gaeumannomyces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuroi: Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining complex on rice; Guignardia bidwellii (black rot) on vines: Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae 30 (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (pow-35 dery mildew) on soybeans; Monilinia spp., e. q. M.A. laxa, M.A. fructicola and M.A. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M.A. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M.A. fijiensis (black Sigatoka disease) on bananas; Peronospora spp. (downy mildew) on cabbage 40 (e. g. P. brassicae), rape (e. g. P. parasitica), onions (e. g. P. destructor), tobacco (P. tabacina) and soybeans (e. g. P. manshurica); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora) and soybeans (e. g. P. gregata: stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P. betae (root rot, leaf spot and damping-off) on sugar beets; *Phomopsis* spp. on sunflowers, vines (e. g. *P. viticola*: can and leaf spot) and soybeans (e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum); Physoderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and 5 stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans: late blight) and broad-leaved trees (e. g. P. ramorum: sudden oak death); Plasmodiophora brassicae (club root) on cabbage, rape, radish and other plants; Plasmopara spp., e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers; Podo-10 sphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples; Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpotrichoides (eyespot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; *Pseudoperonospora* (downy mildew) on various plants, e. g. *P.* 15 cubensis on cucurbits or P. humili on hop; Pseudopezicula tracheiphila (red fire disease or ,rotbrenner', anamorph: Phialophora) on vines; Puccinia spp. (rusts) on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, P. kuehnii (orange rust) on sugar cane and 20 P. asparagi on asparagus; Pyrenophora (anamorph: Drechslera) tritici-repentis (tan spot) on wheat or P. teres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans,
sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphani-25 dermatum); Ramularia spp., e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer (black mold, 30 soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhynchosporium secalis (scald) on barley, rye and triticale; Sarocladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotinia spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e. g. S. sclerotiorum) and soybeans (e. g. S. rolfsii or S. sclerotiorum); Septoria spp. on various plants, e. g. S. glycines (brown spot) on soy-35 beans, S. tritici (Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; *Uncinula* (syn. *Erysiphe*) *necator* (powdery mildew, anamorph: Oidium tuckeri) on vines; Setospaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. reiliana: head smut), sorghum und sugar cane; Sphaerotheca fuliginea 40 (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e. g. *T. deformans* (leaf curl disease) on peaches and *T. pruni* (plum pocket) on plums; *Thielaviopsis* spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. *T. basicola* (syn. *Chalara elegans*); *Tilletia* spp. (common bunt or stinking smut) on cereals, such as e. g. *T. tritici* (syn. *T. caries*, wheat bunt) and *T. controversa* (dwarf bunt) on wheat; *Typhula incarnata* (grey snow mold) on barley or wheat; *Urocystis* spp., e. g. *U. occulta* (stem smut) on rye; *Uromyces* spp. (rust) on vegetables, such as beans (e. g. *U. appendiculatus*, syn. *U. phaseoli*) and sugar beets (e. g. *U. betae*); *Ustilago* spp. (loose smut) on cereals (e. g. *U. nuda* and *U. avaenae*), corn (e. g. *U. maydis*: corn smut) and sugar cane; *Venturia* spp. (scab) on apples (e. g. *V. inaequalis*) and pears; and *Verticillium* spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. *V. dahliae* on strawberries, rape, potatoes and tomatoes. 5 10 15 The mixtures according to the present invention, respectively, are also suitable Afor controlling harmful fungi in the protection of stored products or harvest and in the protection of materials. The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paper-board, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi: Ascomycetes such as *Ophiostoma* spp., *Ceratocystis* spp., *Aureobasidium pullulans*, *Sclerophoma* spp., *Chaetomium* spp., *Humicola* spp., *Petriella* spp., *Trichurus* spp.; Basidiomycetes such as *Coniophora* spp., *Coriolus* spp., *Gloeophyllum* spp., *Lentinus* spp., *Pleurotus* spp., *Poria* spp., *Serpula* spp. and *Tyromyces* spp., Deuteromycetes such as *Aspergillus* spp., *Cladosporium* spp., *Penicillium* spp., *Trichoderma* spp., *Alternaria* spp., *Paecilomyces* spp. and Zygomycetes such as *Mucor* spp., and in addition in the protection of stored products and harvest the following yeast fungi are worthy of note: *Candida* spp. and *Saccharomyces cerevisae*. They are particularly important for controlling a multitude of fungi on various cultivated plants, such as bananas, cotton, vegetable species (for example cucumbers, beans and cucurbits), cereals such as wheat, rye, barley, rice, oats; grass coffee, potatoes, corn, fruit species, soya, tomatoes, grape-vines, ornamental plants, sugar cane and also on a large number of seeds. In a preferred embodiment, the inventive mixtures are used in soya (soybean), cereals and corn. The inventive mixture can be applied to any and all developmental stages of pests, such as egg, larva, pupa, and adult. The pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures. "Locus" means a plant, plant propagation material (preferably seed), soil, area, material or environment in which a pest is growing or may grow. In general, "pesticidally effective amount" means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or otherwise diminishing the occurrence and activity of the target organisM.A. The pesticidally effective amount can vary for the various mixtures / compositions used in the invention. A pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like. 5 10 15 20 35 As said above, the present invention comprises a method for improving the health of plants, wherein the plant, the locus where the plant is growing or is expected to grow or plant propagation material, from which the plant grows, is treated with an plant health effective amount of an inventive mixture. The term "plant effective amount" denotes an amount of the inventive mixtures, which is sufficient for achieving plant health effects as defined herein below. More exemplary information about amounts, ways of application and suitable Aratios to be used is given below. Anyway, the skilled artisan is well aware of the fact that such an amount can vary in a broad range and is dependent on various factors, e.g. the treated cultivated plant or material and the climatic conditions. - When preparing the mixtures, it is preferred to employ the pure active compounds, to which further active compounds against pests, such as insecticides, herbicides, fungicides or else herbicidal or growth-regulating active compounds or fertilizers can be added as further active components according to need. - The inventive mixtures are employed by treating the fungi or the plants, plant propagation materials (preferably seeds), materials or soil to be protected from fungal attack with a pesticidally effective amount of the active compounds. The application can be carried out both before and after the infection of the materials, plants or plant propagation materials (preferably seeds) by the pests. In the context of the present invention, the term plant refers to an entire plant, a part of the plant or the propagation material of the plant. The inventive mixtures and compositions thereof are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (Table Agrapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants. 5 10 15 20 25 30 35 40 Preferably, the inventive mixturs and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes, sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes. Preferably, treatment of plant propagation materials with the inventive mixtures and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; potatoes, tomatoes, vines, rice, corn, cotton and soybeans. The term "cultivated plants" is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://ceragmc.org/, see GM crop database therein). Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be
obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties. Plants that have been modified by breeding, mutagenesis or genetic engineering, e. g. have been rendered tolerant to applications of specific classes of herbicides, such as auxin herbicides such as dicamba or 2,4-D; bleacher herbicides such as hydroxylphenylpyruvate dioxygenase (HPPD) inhibitors or phytoene desaturase (PDS) inhibitors; acetolactate synthase (ALS) inhibitors such as sulfonyl ureas or imidazolinones; enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; protoporphyrinogen-IX oxidase inhibitors; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil (i. e. bromoxynil or ioxynil) herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made re- sistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or AC-Case inhibitors. These herbicide resistance technologies are e. g. described in Pest 5 ManageM.A. Sci. 61, 2005, 246; 61, 2005, 258; 61, 2005, 277; 61, 2005, 269; 61, 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Sci. 57, 2009, 108; Austral. J. Agricult. Res. 58, 2007, 708; Science 316, 2007, 1185; and references quoted therein. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e. g. Clearfield® summer rape (Canola, BASF SE, Germany) 10 being tolerant to imidazolinones, e. g. imazamox, or ExpressSun® sunflowers (DuPont, USA) being tolerant to sulfonyl ureas, e. g. tribenuron. Genetic engineering methods have been used to render cultivated plants such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate-tolerant, 15 Monsanto, U.S.A.), Cultivance® (imidazolinone tolerant, BASF SE, Germany) and LibertyLink® (glufosinate-tolerant, Bayer CropScience, Germany). 20 25 30 35 40 Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as δendotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CrylIA(b), CrylIIA, CrylIIB(b1) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g. Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdvsteroid-IDP-glvcosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701). Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of athropods, especially to beetles (Coeloptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda). Genetically modified plants capable to synthesize one or more insecticidal proteins are, e. q., described in the publications mentioned above, and some of which are commercially available such as YieldGard® (corn cultivars producing the Cry1Ab toxin), YieldGard® Plus (corn cultivars producing Cry1Ab and Cry3Bb1 toxins), Starlink® (corn cultivars producing the Cry9c toxin), Her-5 culex® RW (corn cultivars producing Cry34Ab1, Cry35Ab1 and the enzyme Phosphinothricin-N-Acetyltransferase [PAT]); NuCOTN® 33B (cotton cultivars producing the Cry1Ac toxin), Bollgard® I (cotton cultivars producing the Cry1Ac toxin), Bollgard® II (cotton cultivars producing Cry1Ac and Cry2Ab2 toxins); VIPCOT® (cotton cultivars 10 producing a VIP-toxin); NewLeaf® (potato cultivars producing the Cry3A toxin); Bt-Xtra®, NatureGard®, KnockOut®, BiteGard®, Protecta®, Bt11 (e.g. Agrisure® CB) and Bt176 from Syngenta Seeds SAS, France, (corn cultivars producing the Cry1Ab toxin and PAT enyzme), MIR604 from Syngenta Seeds SAS, France (corn cultivars producing a modified version of the Cry3A toxin, c.f. WO 03/018810), MON 863 from Monsan-15 to Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the Cry1Ac toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1F toxin and PAT enzyme). Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called "pathogenesis-related proteins" (PR proteins, see, e. g. EP-A 392 225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against *Phytophthora infestans* derived from the mexican wild potato *Solanum bulbocastanum*) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as *Erwinia amylvora*). The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above. 20 25 30 35 40 Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants. Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera® rape, DOW Agro Sciences, Canada). Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato, BASF SE, Germany). The separate or joint application of the compounds of the inventive mixtures is carried out by spraying or dusting the seeds, the seedlings, the plants or the soils before or after sowing of the plants or before or after emergence of the plants. **56** PCT/EP2015/074922 5 10 15 WO 2016/071167 The inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities). Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound per m² treated material, desirably from 0.1 g to 50 g per m². For use in spray compositions, the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %. #### Claims 25 30 35 1. Fungicidal mixtures comprising, as active components, 5 one fungicidal compound I selected from the group consisting of 1-[3-chloro-2-[[1-(4-1) chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-1), 1-[3bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-2), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyltetrazol-5-one (I-3),
1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-10 phenyl]-4-methyl-tetrazol-5-one (I-4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-5), 1-[2-[[4-(4chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-6), 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-7), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-15 methyl-tetrazol-5-one (I-8), 1-[3-(difluoromethoxy)-2-[[2-methyl-4-(1-methylpyrazol-3yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-9), 1-methyl-4-[3-methyl-2-[[2methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]tetrazol-5-one (I-10) and 1methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]tetrazol-5-one (I-11) and 20 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5one (I-12); and 2) and one further fungicidal compound II selected from the group of sterol biosynthesis inhibitors (SBI fungicides) and delta14-reductase inhibitors consisting of dodemorph (II-59), dodemorph-acetate (II-60), fenpropimorph (II-61), tridemorph (II-62), fenpropidin (II-63), spiroxamine (II-64); and the group of inhibitors of cell division and cytoskeleton consisting of benomyl (II-65), carbendazim (II-66), fuberidazole (II-67), thiabendazole (II-68), thiophanate-methyl (II-69); diethofencarb (II-70), ethaboxam (II-71), pencycuron (II-72), fluopicolide (II-73), zoxamide (II-74), metrafenone (II-75), pyriofenone (II-76); and the group of inhibitors with Multi Site Action consisting of Bordeaux mixture, (II-77), copper acetate, (II-78), copper hydroxide, (II-79), copper oxychloride, (II-80), basic copper sulfate, (II-81), sulfur; (II-82), mancozeb, (II-83), maneb, (II-84), metam, (II-85), metiram, (II-86), propineb, (II-87), thiram, (II-88), zineb, (II-89), ziram; (II-90), chlorothalonil, (II-91), captan, (II-92), folpet, (II-93), phthalide, (II-94), dodine, (II-95), iminoctadine, (II-96), dithianon, (II-97), 2,6-di-methyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c']dipyrrole-1,3,5,7(2H,6H)-tetraone (II-98) - 2. A mixture as claimed in claim 1 comprising fenpropiomorph, fenpropidine or spiroxamine as compound II. - 5 3. A mixture as claimed in claim 1 comprising chlorothalonil, mancozeb or dithianone as compound II. - 4. A mixture as claimed in claim 1 comprising metrafenone or pyriofenone as compound II. - 10 5. A mixture as claimed in claim 1 comprising thiophanate-methyl as compound II. - 6. Ternary fungicidal mixtures comprising - a) one fungicidal compound I selected from the group consisting of 1-[3-chloro-2-[[1-(4-15 chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-1), 1-[3-bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-2), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-3), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-20 one (I-5), 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyltetrazol-5-one (I-6), 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]oxymethyl]phenyl]-4-methyltetrazol-5-one (I-7), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-8), 1-[3-(difluoromethoxy)-2-[[2methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-9), 1-25 methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]tetrazol-5one (I-10) and 1-methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]tetrazol-5-one (I-11) and) and 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-12); and 30 35 - b) metrafenone as first compound II; and - c) a second compound II selected from the group consisting of (i) strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin or trifloxystrobin; and (ii) azoles such as cyproconazole; difenoconazole; epoxiconazole; metconazole (; - propiconazole; prothioconazole; tebuconazole; triticonazole or bromoconazole; (iii) morphopholines such as fenpropimorph, tridemorph, fenpropidin and spirox-amine; - (iv) chlorothalonil; and 40 (v) 2-[[(7R,8R,9S)-7-benzyl-9-methyl-8-(2-methylpropanoyloxy)-2,6-dioxo-1,5-dioxonan-3-yl]carbamoyl]-4-methoxy-3-pyridyl]oxymethyl 2-methylpropanoate and [(6S,7R,8R)-8-benzyl-3-[(3-hydroxy-4-methoxy-pyridine-2-carbonyl)amino]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate. ## 7. Ternary fungicidal mixtures comprising 5 10 15 20 - a) one fungicidal compound I selected from the group consisting of 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-1), 1-[3-bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-2), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-3), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-5), 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-6), 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]oxymethyl]phenyl]-4-methyl-tetrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-8), 1-[3-(difluoromethoxy)-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-9), 1-methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]tetrazol-5-one (I-10) and 1-methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]tetrazol-5-one (I-11) and 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-11) - b) propiconazole as first compound II; and - 25 - c) a second compound II selected from the group consisting of - (i) strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin and trifloxystrobin; - (ii) morphopholines such as fenpropimorph, tridemorph, fenpropidin and spiroxamine; and - 30 (iii) chlorothalonil. 12); and - 8. Ternary fungicidal mixtures comprising - a) one fungicidal compound I selected from the group consisting of 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-1), 1-[3-bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-2), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-3), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-5), 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-6), 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]oxymethyl]phenyl]-4-methyl- 60 tetrazol-5-one (I-7), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-8), 1-[3-(difluoromethoxy)-2-[[2methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-9), 1methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]tetrazol-5one (I-10) and 1-methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]tetrazol-5-one (I-11) and 1-[3chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-12); and - 10 b) fluxapyroxad as first compound II; and - c) a second compound II selected from the group consisting of - strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin or trifloxystrobin; and - azoles such as cyproconazole; difenoconazole; epoxiconazole; metconazole (; pro-(ii) piconazole; prothioconazole; tebuconazole; triticonazole or bromoconazole; - (iii) morphopholines such as fenpropimorph, tridemorph, fenpropidin and spirox-amine and - (iv) chlorothalonil. 20 15 - 9. Ternary fungicidal mixtures comprising - a) one fungicidal compound I selected from the group consisting of 1-[3-chloro-2-[[1-(4chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-1), 1-[3-bromo-2-25 [[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-2), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one
1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl-1-[1-(4-chlorophenyl)pyrazol-3-yl]oxy chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-3), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5one (I-5), 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-30 tetrazol-5-one (I-6), 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]oxymethyl]phenyl]-4-methyltetrazol-5-one (I-7), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-8), 1-[3-(difluoromethoxy)-2-[[2methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-9), 1methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]tetrazol-5-35 one (I-10) and 1-methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]tetrazol-5-one (I-11) and 1-[3-chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-12); and - 40 b) chlorothalonil as first compound II; and - c) a second compound II selected from the group consisting of - (i) strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin or trifloxystrobin; and - (ii) morphopholines such as fenpropimorph, tridemorph, fenpropidin and spirox-amine. 10. Ternary fungicidal mixtures comprising 5 30 - a) one fungicidal compound I selected from the group consisting of 1-[3-chloro-2-[[1-(4chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (I-1), 1-[3-bromo-2-10 [[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (l-2), 1-[2-[[1-(4chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (I-3), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (I-4), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5one (I-5), 1-[2-[[4-(4-chlorophenyl)thiazol-2-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-15 tetrazol-5-one (I-6), 1-[3-chloro-2-[[4-(p-tolyl)thiazol-2-yl]oxymethyl]phenyl]-4-methyltetrazol-5-one (I-7), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-8), 1-[3-(difluoromethoxy)-2-[[2methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (I-9), 1methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]tetrazol-5-20 one (I-10) and 1-methyl-4-[3-methyl-2-[[1-[3-(trifluoromethyl)phenyl]ethylideneamino]oxymethyl]phenyl]tetrazol-5-one (I-11)and 1-[3chloro-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (l-12); and - b) prothioconazole as first compound II; and - c) a second compound II selected from the group consisting of - (i) strobilurines such as azoxystrobin; kresoxim-methyl; mandestrobin, metaminostrobin; picoxystrobin; pyraclostrobin and trifloxystrobin; - (ii) morphopholines such as fenpropimorph, tridemorph, fenpropidin and spiroxamine; and - (iii) chlorothalonil. - 11. A mixture as claimed in any of claims 1 to 10, wherein ratio by weight of compound I and compound II is from 10000:1 to 1:1 0000. - 12. A mixture as claimed in any of claims 1 and 10, wherein ratio by weight of compound I, II and second compound II in each combination of two ingredients in the mixture of three ingredients is from 10000:1 to 1:1 0000. WO 2016/071167 PCT/EP2015/074922 62 - 13. A mixture as claimed in claim 12, wherein the weight ratio of compound I, II and second compound II in each combination of two ingredients in the mixture of three ingredients is from 50:1 to 1:50. - 5 14. A pesticidal composition, comprising a liquid or solid carrier and a mixture as defined in any of claims 1 to 13. 10 15 - 15. A method for controlling phytopathogenic pests, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material are treated with an effective amount of a mixture as defined in any of claims 1 to 13. - 16. A method for improving the health of plants, wherein the plant, the locus where the plant is growing or is expected to grow or plant propagation material from which the plant grows are treated with an effective amount of a mixture as defined in any of claims 1 to 13. - 17. A method for protection of plant propagation material from pests comprising contacting the plant propagation materials with a mixture as defined in any of claims 1 to 13 in pesticidally effective amounts. - 18. A method as claimed in claim 17, wherein the mixture as defined in any of claims 1 to 13 is applied in an amount of from 0.01 g to 10 kg per 100 kg of plant propagation materials. - 19. A method as claimed in any of claims 15 to 18, wherein the mixture as defined in any of claims 1 to 13 are applied simultaneously, that is jointly or separately, or in succession. - 20. Plant propagation material, comprising the mixture as defined in any of claims 1 to 13 in an amount of from 0.01 g to 10 kg per 100 kg of plant propagation materials. International application No PCT/EP2015/074922 A. CLASSIFICATION OF SUBJECT MATTER INV. A01N43/713 A01N43/78 A01N25/00 A01P3/00 ADD. According to International Patent Classification (IPC) or to both national classification and IPC #### B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) $A01N\,$ Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, WPI Data, CHEM ABS Data | C. DOCUME | ENTS CONSIDERED TO BE RELEVANT | |-----------|--------------------------------| | | | | Category* | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | |-----------|--|-----------------------| | Y | WO 2013/162072 A1 (SUMITOMO CHEMICAL CO [JP]) 31 October 2013 (2013-10-31) cited in the application paragraphs [0001], [0005] - [0006] paragraph [0625]; example 1; compound 1 paragraph [0627]; example 3; compound 3 paragraph [0631]; example 7; compound 7 paragraph [0636]; example 12; compound 12 Test examples 1-34; page 1260 - page 1289 | 1-20 | | Further documents are listed in the continuation of Box C. | X See patent family annex. | |--|--| | "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family | | Date of the actual completion of the international search 24 November 2015 | Date of mailing of the international search report $04/12/2015$ | | Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 | Authorized officer Hateley, Martin | International application No PCT/EP2015/074922 | tion). DOCUMENTS CONSIDERED TO BE RELEVANT | PC1/EP2015/0/4922 | |--|---| | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | | W0 2013/162077 A1 (SUMITOMO CHEMICAL CO [JP]) 31 October 2013 (2013-10-31) cited in the application paragraphs [0002], [0005] - [0006] paragraph [0312]; example 29; compound t031 Test examples 1-38; page 837 - page 872 | 1-20 | | W0 2014/051161 A1 (SUMITOMO CHEMICAL CO [JP]) 3 April 2014 (2014-04-03) cited in the application paragraphs [0002], [0005] - [0006] page 417; example 12; compound 12 page 421; example 18; compound 18 Test examples 1-17; page 612 - page 628 | 1-20 | | W0 2014/051165 A1 (SUMITOMO CHEMICAL CO [JP]) 3 April 2014 (2014-04-03) cited in the application paragraphs [0002], [0005] - [0006] page 500; example 40; compound 40 Test examples 1-20; page 1047 - page 1075 | 1-20 | | WO 2014/084223 A1 (SUMITOMO CHEMICAL CO
[JP]) 5 June 2014 (2014-06-05)
abstract
page 238 | 1-20 | | WO 2009/090181 A2 (BAYER CROPSCIENCE SA [FR]; COQUERON PIERRE-YVES [FR]; GROSJEAN-COURNOY) 23 July 2009 (2009-07-23) page 1, lines 7-11 page 2, line 21 - page 4, line 20 page 46 - page 58; examples A-D | 1-20 | | Karl-Heinz Kuck ET AL: "FRAC Mode of Action Classification and Resistance Risk of Fungicides" In: "Modern Crop Protection Compounds", 1 January 2007 (2007-01-01), Wiley-VCH Verlag, XP055175244, ISBN: 978-3-52-731496-6 page 423 - page 432; tables 12.6-12.18 | 1-20 | | | WO 2013/162077 A1 (SUMITOMO CHEMICAL CO [JP]) 31 October 2013 (2013-10-31) cited in the application paragraphs [0002], [0005] - [0006] paragraph [0312]; example 29; compound t031 Test examples 1-38; page 837 - page 872 WO 2014/051161 A1 (SUMITOMO CHEMICAL CO [JP]) 3 April 2014 (2014-04-03) cited in the application paragraphs [0002], [0005] - [0006] page 417; example 12; compound 12 page 421; example 18; compound 18 Test examples 1-17; page 612 - page 628 WO 2014/051165 A1 (SUMITOMO CHEMICAL CO [JP]) 3 April 2014 (2014-04-03) cited in the application paragraphs [0002], [0005] - [0006] page 500; example 40; compound 40 Test examples 1-20; page 1047 - page 1075 WO 2014/084223 A1 (SUMITOMO CHEMICAL CO [JP]) 5 June 2014 (2014-06-05) abstract page 238 WO 2009/090181 A2 (BAYER CROPSCIENCE SA [FR]; COQUERON PIERRE-YVES [FR]; GROSJEAN-COURNOY) 23 July 2009 (2009-07-23) page 1, lines 7-11 page 2, line 21 - page 4, line 20 page 46 - page 58; examples A-D Karl-Heinz Kuck ET AL: "FRAC Mode of Action Classification and Resistance Risk of Fungicides" In: "Modern Crop Protection Compounds", 1 January 2007 (2007-01-01), Wiley-VCH Verlag, XP055175244, ISBN: 978-3-52-731496-6 | Information on patent family members International application No PCT/EP2015/074922 | | | - | | | | , | 015/0/4922 | |----|--------------------------------------|----|---------------------|--|---|---|--| | | atent document
d in search report | | Publication
date | | Patent family
member(s) | | Publication
date | | WO | 2013162072 | A1 | 31-10-2013 | AR
AU
CA
CL
CN
CO
EP
JP
KR
PH
TW
US
WO | 090862
2013253325
2866815
2014002879
104245689
7101248
2841429
2014080415
20150008863
12014502117
201402566
2015051171
2013162072 | 5 A1
5 A1
9 A
9 A2
9 A1
5 A
7 A1
5 A | 10-12-2014
25-09-2014
31-10-2013
30-01-2015
24-12-2014
31-10-2014
04-03-2015
08-05-2014
23-01-2015
10-12-2014
16-01-2014
19-02-2015
31-10-2013 | | WO | 2013162077 | A1 | 31-10-2013 | AR
CN
EP
JP
TW
US
WO | 090861
104271571
2841433
2014101347
201400486
2015031733
2013162077 | A
B A1
7 A
D A
B A1 | 10-12-2014
07-01-2015
04-03-2015
05-06-2014
01-01-2014
29-01-2015
31-10-2013 | | WO | 2014051161 | A1 | 03-04-2014 | AU
CA
CN
EP
IL
JP
KR
TW
US
WO | 2013320864
2885855
104684909
2900654
237578
2014141451
20150063048
201427961
2015223466
2014051161 | 5 A1
9 A
4 A1
8 A
1 A
2 A | 19-03-2015
03-04-2014
03-06-2015
05-08-2015
30-04-2015
07-08-2014
08-06-2015
16-07-2014
13-08-2015
03-04-2014 | | WO | 2014051165 | A1 | 03-04-2014 | AU
CA
CN
EP
IL
JP
KR
TW
US | 2013320868
2885857
104684908
2900655
237579
2015027978
20150070113
201420577
2015203511
2014051165 | 7 A1
B A
5 A1
B A
B A
7 A
L A1 | 12-03-2015
03-04-2014
03-06-2015
05-08-2015
30-04-2015
12-02-2015
24-06-2015
01-06-2014
23-07-2015
03-04-2014 | | WO | 2014084223 | A1 | 05-06-2014 | CN
EP
IL
US
WO | 104822666
2927218
238881
2015299146
2014084223 | 8 A1
1 A
5 A1 | 05-08-2015
07-10-2015
30-07-2015
22-10-2015
05-06-2014 | | | 2009090181 | A2 | 23-07-2009 | AU
BR
CA
CN
CN
CO
EP
JP | 2009204855
PI0905613
2710178
101977501
104381270
6300907
2234489
5465679 | 3 A2
3 A1
1 A
0 A
7 A2
9 A2 | 23-07-2009
30-06-2015
23-07-2009
16-02-2011
04-03-2015
21-07-2011
06-10-2010
09-04-2014 | Information on patent family members International application No PCT/FP2015/074922 | Patent document cited in search report | Publication
date | JP
KR
RU
US
US
WO | Patent family member(s) 201150997 2010010588 201013399 201105255 201525738 200909018 | 1 A
3 A
6 A
5 A1 | Publication date 31-03-2011 30-09-2010 27-02-2012 03-03-2011 17-09-2015 | |--|---------------------|----------------------------------|---|----------------------------|--| | | | KR
RU
US
US | 2010010588
201013399
201105255
201525738 | 3 A
6 A
5 A1
7 A1 | 30-09-2010
27-02-2012
03-03-2011
17-09-2015 | | | | | | | 23-07-2009 |